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2 Overall objectives

OURAGAN proposes to focus on the transfer of computational algebraic methods to some related fields
(computational geometry, topology, number theory, etc.) and some carefully chosen application domains
(robotics, control theory, evaluation of the security of cryptographic systems, etc.), which implies working
equally on the use (modeling, know - how) and on the development of new algorithms. The latest
breakthrough developments and applications where algebraic methods are currently decisive remain
few and very targeted. We wish to contribute to increase the impact of these methods but also the
number of domains where the use of computational algebraic methods represent a significant added
value. This transfer-oriented positioning does not imply to stop working on the algorithms, it simply sets
the priorities.

An original aspect of the OURAGAN proposal is to blend into an environment of fundamental mathe-
matics, at the Institut de Mathématiques de Jussieu – Paris Rive Gauche (IMJ-PRG CNRS 7586), and to be
cross-functional to several teams (Algebraic Analysis, Complex Analysis and Geometry, Number Theory
to name only the main ones), which will be our first source of transfer of computational know-how. The
success of this coupling allows to maintain a strong theoretical basis and to measure objectively our
transfer activity in the direction of mathematicians (in geometry, topology, number theory, algebraic
analysis, etc.) and to consolidate the presence of Inria in scientific areas among the most theoretical.

We propose three general directions with five particular targets:

• Number Theory

• Algorithmic Number Theory

• Rigorous Numerical Computations

• Topology in small dimension

• Character varieties

• Knot theory

• Computational geometry

• Algebraic analysis of functional systems

These actions come, of course, in addition to the study and development of a common set of core
elements of

• Basic theory and algorithms in algebra and geometry [Transverse activity].

This core activity is the invention and study of fundamental algebraic algorithms and objects that
can be grouped into 2 categories: algorithms designed to operate on finite fields and algorithms running
on fields of characteristic 0; with 2 types of computational strategies: the exactness and the use of
approximate arithmetic (but with exact results). This mix also installs joint studies between the various
axes and is an originality of the project-team. For example many kinds of arithmetic tools around
algebraic numbers have to face to similar theoretical problems such as finding a good representation
for a number field; almost all problems related to the resolution of algebraic systems will reduce to the
study of varieties in small dimension and in particular, most of the time, to the effective computation of
the topology of curves and surfaces, or the certified drawing of non algebraic function over an algebraic
variety.

The tools and objects developed for research on algorithmic number theory as well as in computa-
tional geometry apply quite directly on some selected connected challenging subjects:

• Security of cryptographic systems

• Control theory

• Robotics

• Signal processing

These applications will serve for the evaluation of the general tools we develop when used in a
different context, in particular their capability to tackle state of the art problems.
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2.1 Scientific ground

2.1.1 Basic computable objects and algorithms

The basic computable objects and algorithms we study, use, optimize or develop are among the most
classical ones in computer algebra and are studied by many people around the world: they mainly focus
on basic computer arithmetic, linear algebra, lattices, and both polynomial system and differential system
solving.

In the context of OURAGAN, it is important to avoid reinventing the wheel and to re-use wherever
possible existing objects and algorithms, not necessarily developed in our team so that the main effort
is focused on finding good formulations/modelisations for an efficient use. Also, our approach for the
development of basic computable objects and algorithms is application driven and follows a simple
strategy : use the existing tools in priority, develop missing tools when required and then optimize the
critical operations. First, for some selected problems, we do propose and develop general key algorithms
(isolation of real roots of univariate polynomials, parametrisations of solutions of zero-dimensional
polynomial systems, solutions of parametric equations, equidimensional decompositions, etc.) in order
to complement the existing set computable objects developed and studied around the world (Gröbner
bases, resultants [70], subresultants [91], critical point methods [47], etc.) which are also deeply used in
our developments. Second, for a selection of well-known problems, we propose different computational
strategies (for example the use of approximate arithmetic to speed up LLL algorithm or root isolators, still
certifying the final result). Last, we propose specialized variants of known algorithms optimized for a
given problem (for example, dedicated solvers for degenerated bivariate polynomials to be used in the
computation of the topology of plane curves).

In the activity of OURAGAN, many key objects or algorithms around the resolution of algebraic systems
are developed or optimized within the team, such as the resolution of polynomials in one variable with
real coefficients [110] [17], rational parameterizations of solutions of zero-dimensional systems with
rational coefficients [56] [16] or discriminant varieties for solving systems depending on parameters
[14], but we are also power users of existing software (mainly Sage 1, Maple 2, Pari-GP 3,Snappea 4) and
libraries (mainly gmp 5, mpfr 6, flint 7, arb 8, etc.) to which we contribute when it makes sense.

For our studies in number theory and applications to the security of cryptographic systems, our team
works on three categories of basic algorithms: discrete logarithm computations [105] (for example to
make progress on the computation of class groups in number fields [92]), network reductions by means
of LLL variants [81] and, obviously, various computations in linear algebra, for example dedicated to
almost sparse matrices [106].

For the algorithmic approach to algebraic analysis of functional equations [51] [108] [109], we
developed the effective study of both module theory and homological algebra [142] over certain non-
commutative polynomial rings of functional operators [4], of Stafford’s famous theorems on the Weyl
algebras [133], of the equidimensional decomposition of functional systems [129], etc.

Finally, we study effective methods in algebraic topology, with a view towards the computation of
normal forms or bases, and the construction of small resolutions of various algebraic structures: monoids
and groups, algebras and operads, categories and higher structures, etc. The construction methods can
come from combinatorial group theory (rewriting, Garside structures), combinatorial algebra (Gröbner
bases), or homological algebra (Koszul duality, Morse theory). We explore potential deep foundational
connexions between these different points of view, to unify, generalise and improve them.

2.1.2 Computational Number Theory

Many frontiers between computable objects, algorithms (above section), computational number theory
and applications, especially in cryptography are porous. However, one can classify our work in computa-

1www.sagemath.org
2maplesoft.com
3pari.math.u-bordeaux.fr
4www.geometrygames.org/SnapPea
5gmplib.org
6www.mpfr.org
7flintlib.org
8arblib.org

http://www.sagemath.org/
https://maplesoft.com
https://pari.math.u-bordeaux.fr
http://www.geometrygames.org/SnapPea/
https://gmplib.org/
https://www.mpfr.org/
http://www.flintlib.org/
http://arblib.org/
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tional number theory into two classes of studies : computational algebraic number theory and (rigorous)
numerical computations in number theory.

Our work on rigorous numerical computations is somehow a transverse activity in Ouragan : floating
point arithmetic is used in many basic algorithms we develop (root isolation, LLL) and is thus present
in almost all our research directions. However there are specific developments that could be labelized
Number Theory, in particular contributions to numerical evaluations of L-functions which are deeply
used in many problems in number theory (for example the Riemann Zeta function). We participate, for
example to the L-functions and Modular Forms Database 9 a world wide collaborative project.

Our work in computational algebraic number theory is driven by the algorithmic improvement to
solve presumably hard problems relevant to cryptography. The use of number-theoretic hard problems
in cryptography dates back to the invention of public-key cryptography by Diffie and Hellman [77], where
they proposed a first instantiation of their paradigm based on the discrete logarithm problem in prime
fields. The invention of RSA [140], based on the hardness of factoring came as a second example. The
introduction of discrete logarithms on elliptic curves [111] [144] only confirmed this trend.

These crypto-systems attracted a lot of interest on the problems of factoring and discrete log. Their
study led to the invention of fascinating new algorithms that can solve the problems much faster than
initially expected :

• the elliptic curve method (ECM) [122]

• the quadratic field for factoring [126] and its variant for discrete log called the Gaussian integers
method [119]

• the number field sieve (NFS) [121]

Since the invention of NFS in the 90’s, many optimizations of this algorithm have been performed.
However, an algorithm with better complexity hasn’t been found for factoring and discrete logarithms in
large characteristic.

While factorization and discrete logarithm problems have a long history in cryptography, the recent
post-quantum cryptosystems introduce a new variety of presumably hard problems/objects/algorithms
with cryptographic relevance: the shortest vector problem (SVP), the closest vector problem (CVP) or the
computation of isogenies between elliptic curves, especially in the supersingular case.

Members of OURAGAN started working on the topic of discrete logarithms around 1998, with several
computation records that were announced on the NMBRTHRY mailing list. In large characteristic, espe-
cially for the case of prime fields, the best current method is the number field sieve (NFS) algorithm. In
particular, they published the first NFS based record computation[13]. Despite huge practical improve-
ments, the prime field case algorithm hasn’t really changed since that first record. Around the same time,
we also presented small characteristic computation record based on simplifications of the Function Field
Sieve (FFS) algorithm [104].

In 2006, important changes occurred concerning the FFS and NFS algorithms, indeed, while the
algorithms only covered the extreme case of constant characteristic and constant extension degree, two
papers extended their ranges of applicability to all finite fields. At the same time, this permitted a big
simplification of the FFS, removing the need for function fields.

Starting from 2012, new results appeared in small characteristic. Initially based on a simplification of
the 2006 result, they quickly blossomed into the Frobenial representation methods, with quasi-polynomial
time complexity [105, 93].

An interesting side-effect of this research was the need to revisit the key sizes of pairing-based
cryptography. This type of cryptography is also a topic of interest for OURAGAN. In particular, it was
introduced in 2000 [12].

The computations of class groups in number fields has strong links with the computations of discrete
logarithms or factorizations using the NFS (number field sieve) strategy which as the name suggests
is based on the use of number fields. Roughly speaking, the NFS algorithm uses two number fields
and the strategy consists in choosing number fields with small sized coefficients in their definition
polynomials. On the contrary, in class group computations, there is a single number field, which is
clearly a simplification, but this field is given as input by some fixed definition polynomial. Obviously,

9www.lmfdb.org

http://www.lmfdb.org
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the degree of this polynomial as well as the size of its coefficients are both influencing the complexity
of the computations so that finding other polynomials representing the same class group but with a
better characterization (degree or coefficient’s sizes) is a mathematical problem with direct practical
consequences. We proposed a method to address the problem [92], but many issues remain open.

Computing generators of principal ideals of cyclotomic fields is also strongly related to the computa-
tion of class groups in number fields. Ideals in cyclotomic fields are used in a number of recent public-key
cryptosystems. Among the difficult problems that ensure the safety of these systems, there is one that
consists in finding a small generator, if it exists, of an ideal. The case of cyclotomic fields is considered
[50].

2.1.3 Topology in small dimension

Character varieties There is a tradition of using computations and software to study and understand
the topology of small dimensional manifolds, going back at least to Thurston’s works (and before him,
Riley’s pioneering work). The underlying philosophy of these tools is to build combinatorial models of
manifolds (for example, the torus is often described as a square with an identification of the sides). For
dimensions 2, 3 and 4, this approach is relevant and effective. In the team OURAGAN, we focus on the
dimension 3, where the manifolds are modelized by a finite number of tetrahedra with identification
of the faces. The software SnapPy 10 implements this strategy [146] and is regularly used as a starting
point in our work. Along the same philosophy of implementation, we can also cite Regina 11. A specific
trait of SnapPy is that it focuses on hyperbolic structures on the 3-dimensional manifolds. This setting is
the object of a huge amount of theoretical work that were used to speed up computations. For example,
some Newton methods were implemented without certification for solving a system of equations, but
the theoretical knowledge of the uniqueness of the solution made this implementation efficient enough
for the target applications. In recent years, in part under the influence of our team 12, more attention
has been given to certified computations (at least with an error control) and now this is implemented in
SnapPy.

This philosophy (modelization of manifolds by quite simple combinatoric models to compute such
complicated objects as representations of the fundamental group) was applied in a pioneering work
of Falbel [8] when he begins to look for another type of geometry on 3-dimensional manifolds (called
CR-spherical geometry). From a computational point of view, this change of objectives was a jump
in the unknown: the theoretical justification for the computations were missing, and the number of
variables of the systems were multiplied by four. So instead of a relatively small system that could be
tackled by Newton methods and numerical approximations, we had to deal with/study (were in front of)
relatively big systems (the smallest example being 8 variables of degree 6) with no a priori description of
the solutions.

Still, the computable objects that appear from the theoretical study are very often outside the reach of
automated computations and are to be handled case by case. A few experts around the world have been
tackling this kind of computations (Dunfield, Goerner, Heusener, Porti, Tillman, Zickert) and the main
current achievement is the Ptolemy module 13 for SnapPy.

From these early computational needs, topology in small dimension has historically been the source
of collaboration with the IMJ-PRG laboratory. At the beginning, the goal was essentially to provide
computational tools for finding geometric structures in triangulated 3-dimensional varieties. Triangulated
varieties can be topologically encoded by a collection of tetrahedra with gluing constraints (this can
be called a triangulation or mesh, but it is not an approximation of the variety by simple structures,
rather a combinatorial model). Imposing a geometric structure on this combinatorial object defines a
number of constraints that we can translate into an algebraic system that we then have to solve to study
geometric structures of the initial variety, for example in relying on solutions to study representations
of the fundamental group of the variety. For these studies, a large part of the computable objects or
algorithms we develop are required, from the algorithms for univariate polynomials to systems depending
on parameters. It should be noted that most of the computational work lies in the modeling of problems

10www.math.uic.edu/t3m/SnapPy
11regina-normal.github.io
12as part of the CURVE project
13www.math.uic.edu/t3m/SnapPy/ptolemy.html

https://www.math.uic.edu/t3m/SnapPy/
https://regina-normal.github.io
http://curve.unhyperbolic.org
https://www.math.uic.edu/t3m/SnapPy/ptolemy.html
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[49][7] that have strictly no chance to be solved by blindly running the most powerful black boxes: we
usually deal here with systems that have 24 to 64 variables, depend on 4 to 8 parameters and with degrees
exceeding 10 in each variable. With an ANR 14 funding on the subject, the progress that we did [85] were
(much) more significant than expected. In particular, we have introduced new computable objects with
an immediate theoretical meaning (let us say rather with a theoretical link established with the usual
objects of the domain), namely, the so-called deformation variety.

Knot theory Knot theory is a wide area of mathematics. We are interested in polynomial representa-
tions of long knots, that is to say polynomial embeddings R → R3 ⊂ S3. Every knot admits a polynomial
representation and a natural question is to determine explicit parameterizations, minimal degree param-
eterizations. On the other hand we are interested to determine what is the knot of a given polynomial
smooth embedding R → R3. These questions involve real algebraic curves. This subject was first consid-
ered by Vassiliev in the 90’s[145].

A Chebyshev knot [113], is a polynomial knot parameterized by a Chebyshev curve (Ta(t ),Tb(t ),Tc (t +
ϕ)) where Tn(t) = cos(n arccos t) is the n-th Chebyshev polynomial of the first kind. Chebyshev knots
are polynomial analogues of Lissajous knots that have been studied by Jones, Hoste, Lamm... It was first
established that any knot can be parameterized by Chebyshev polynomials, then we have studied the
properties of harmonic nodes [114] which then opened the way to effective computations.

Our activity in Knot theory is a bridge between our work in computational geometry (topology and
drawing of real space curves) and our work on topology in small dimensions (varieties defined as a knot
complement).

Two-bridge knots (or rational knots) are particularly studied because they are much easier to study.
The first 26 knots (except 85) are two-bridge knots. We were able to give an exhaustive, minimal and certi-
fied list of Chebyshev parameterizations of the first rational two-bridge knots, using blind computations
[116]. On the other hand, we propose the identification of Chebyshev knot diagrams [117] by developing
new certified algorithms for computing trigonometric expressions [118]. These works share many tools
with our action in visualization and computational geometry.

We made use of Chebyshev polynomials so as Fibonacci polynomials which are families of orthog-
onal polynomials. Considering the Alexander-Conway polynomials as continuant polynomials in the
Fibonacci basis, we were able to give a partial answer to Hoste’s conjecture on the roots of Alexander
polynomials of alternating knots ( [115]).

We study the lexicographic degree of the two-bridge knots, that is to say the minimal (multi)degree of
a polynomial representation of a N -crossing two-bridge knot. We show that this degree is (3,b,c) with
b + c = 3N . We have determined the lexicographic degree of the first 362 first two-bridge knots with 12
crossings or fewer [63] 15. These results make use of the braid theoretical approach developped by Y.
Orevkov to study real plane curves and the use of real pseudoholomorphic curves [62], the slide isotopies
on trigonal diagrams, namely those that never increase the number of crossings [64].

Visualization and Computational Geometry The drawing of algebraic curves and surfaces is a critical
action in OURAGAN since it is a key ingredient in numerous developments. For example, a certified
plot of a discriminant variety could be the only admissible answer that can be proposed for engineering
problems that need the resolution of parametric algebraic systems: this variety (and the connected
components of its counter part) defines a partition of the parameter’s space in regions above which the
solutions are numerically stable and topologically simple. Several directions have been explored since the
last century, ranging from pure numerical computations to infallible exact ones, depending on the needs
(global topology, local topology, simple drawing, etc.). For plane real algebraic curves, one can mention
the cylindrical algebraic decomposition [69], grids methods (for ex. the marching square algorithm),
subdivision methods, etc.

As mentioned above, we focus on curves and surfaces coming from the study of parametric systems.
They mostly come from some elimination process, they highly (numerically) unstable (a small defor-
mation of the coefficients might change a lot the topology of the curve) and we are mostly interested in
getting qualitative information about their counter part in the parameter’s space.

14ANR project Structures Géométriques et Triangulations
15Minimal degrees are listed in webusers.imj-prg.fr/ pierre-vincent.koseleff/knots/2bk-lexdeg.html

https://webusers.imj-prg.fr/~pierre-vincent.koseleff/knots/2bk-lexdeg.html
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For this work, we are associated with the GAMBLE EPI (Inria Nancy Grand Est) with the aim of
developing computational techniques for the study, plotting and topology. In this collaboration, Ouragan
focuses on CAD-Like methods while Gamble develops numerical strategies (that could also apply on
non algebraic curves). Ouragan’s work involves the development of effective methods for the resolution
of algebraic systems with 2 or 3 variables [56, 110, 57, 58] which are basic engines for computing the
topology [124, 76] and / or plotting.

2.1.4 Algebraic analysis of functional systems

Systems of functional equations or simply functional systems are systems whose unknowns are functions,
such as systems of ordinary or partial differential equations, of differential time-delay equations, of
difference equations, of integro-differential equations, etc.

Numerical aspects of functional systems, especially differential systems, have been widely studied in
applied mathematics due to the importance of numerical simulation issues.

Complementary approaches, based on algebraic methods, are usually upstream or help the numerical
simulation of systems of functional systems. These methods also tackle a different range of questions
and problems such as algebraic preconditioning, elimination and simplification, completion to formal
integrability or involution, computation of integrability conditions and compatibility conditions, index
reduction, reduction of variables, choice of adapted coordinate systems based on symmetries, com-
putation of first integrals of motion, conservation laws and Lax pairs, Liouville integrability, study of
the (asymptotic) behavior of solutions at a singularity, etc. Although not yet very popular in applied
mathematics, these theories have lengthy been studied in fundamental mathematics and were developed
by Lie, Cartan, Janet, Ritt, Kolchin, Spencer, etc. [100] [108] [109] [112] [139] [127].

Over the past years, certain of these algebraic approaches to functional systems have been investi-
gated within an algorithmic viewpoint, mostly driven by applications to engineering sciences such as
mathematical systems theory and control theory. We have played a role towards these effective develop-
ments, especially in the direction of an algorithmic approach to the so-called algebraic analysis [108, 109,
51], a mathematical theory developed by the Japanese school of Sato, which studies linear differential
systems by means of both algebraic and analytic methods. To develop an effective approach to algebraic
analysis, we first have to make algorithmic standard results on rings of functional operators, module
theory, homological algebra, algebraic geometry, sheaf theory, category theory, etc., and to implement
them in computer algebra systems. Based on elimination theory (Gröbner or Janet bases [100, 68, 141],
differential algebra [53] [82], Spencer’s theory [127], etc.), in [4, 5], we have initiated such a computational
algebraic analysis approach for general classes of functional systems (and not only for holonomic systems
as done in the literature of computer algebra [68]). Based on the effective aspects to algebraic analysis
approach, the parametrizability problem [4], the reduction and (Serre) decomposition problems [5], the
equidimensional decomposition [129], Stafford’s famous theorems for the Weyl algebras [133], etc., have
been studied and solutions have been implemented in Maple, Mathematica, and GAP [67][5]. But these
results are only the first steps towards computational algebraic analysis, its implementation in com-
puter algebra systems, and its applications to mathematical systems, control theory, signal processing,
mathematical physics, etc.

2.2 Synergies

Outside applications which can clearly be seen as transversal acitivies, our development directions are
linked at several levels : shared computable objects, computational strategies and transversal research
directions.
Sharing basic algebraic objects As seen above, is the well-known fact that the elimination theory for
functional systems is deeply intertwined with the one for polynomial systems so that, topology in small
dimension, applications in control theory, signal theory and robotics share naturally a large set of
computable objects developped in our project team.

Performing efficient basic arithmetic operations in number fields is also a key ingredient to most of
our algorithms, in Number theory as well as in topology in small dimension or , more generally in the
use of roots of polynomials systems. In particular, finding good representations of number fields, lead to
the same computational problems as working with roots of polynomial systems by means of triangular
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systems (towers of number fields) or rational parameterizations (unique number field). Making any
progress in one direction will probably have direct consequences for almost all the problems we want to
tackle.

Elimination theory is also deeply connected to Gröbner bases and rewriting, which are themselves
linked to Garside theory and Koszul duality, establishing a continuum with the effective methods studied
in algebraic topology.

Symbolic-numeric strategies. Several general low-level tools are also shared such as the use of approxi-
mate arithmetic to speed up certified computations. Sometimes these can also lead to improvement for a
different purpose (for example computations over the rationals, deeply used in geometry can often be
performed in parallel combining computations in finite fields together with fast Chinese remaindering
and modular evaluations).

As simple example of this sharing of tools and strategies, the use of approximate arithmetic is common
to the work on LLL (used in the evaluation of the security of cryptographic systems), resolutions of
real-world algebraic systems (used in our applications in robotics, control theory, and signal theory),
computations of signs of trigonometric expressions used in knot theory or to certified evaluations of
dilogarithm functions on an algebraic variety for the computation of volumes of representations in our
work in topology, numerical integration and computations of L-functions.

Transversal research directions. The study of the topology of complex algebraic curves is central in the
computation of periods of algebraic curves (number theory) but also in the study of character varieties
(topology in small dimension) as well as in control theory (stability criteria). Very few computational
tools exists for that purpose and they mostly convert the problem to the one of variety over the reals (we
can then recycle our work in computational geometry).

As for real algebraic curves, finding a way to describe the topology (an equivalent to the graph obtained
in the real case) or computing certified drawings (in the case of a complex plane curve, a useful drawing
is the so called associated amoeba) are central subjects for Ouragan.

As mentioned in the section 3.3 the computation of the Mahler measure of an algebraic implicit
curve is either a challenging problem in number theory and a new direction in topology. The basic
formula requires the study of points of moduli 1 , as for stability problems in Control Theory (stability
problems), and certified numerical evaluations of non algebraic functions at algebraic points as for many
computations for L-Functions.

3 Research program

3.1 Basic computable objects and algorithms

The development of basic computable objects is somehow on demand and depends on all the other
directions. However, some critical computations are already known to be bottlenecks and are sources of
constant efforts.

Computations with algebraic numbers appear in almost all our activities: when working with number
fields in our work in algorithmic number theory as well as in all the computations that involve the use
of solutions of zero-dimensional systems of polynomial equations. Among the identified problems:
finding good representations for single number fields (optimizing the size and degree of the defining
polynomials), finding good representations for towers or products of number fields (typically working with
a tower or finding a unique good extension), efficiently computing in practice with number fields (using
certified approximation vs working with the formal description based on polynomial arithmetics). Strong
efforts are currently done in the understanding of the various strategies by means of tight theoretical
complexity studies [76, 120, 57] and many other efforts will be required to find the right representation for
the right problem in practice. For example, for isolating critical points of plane algebraic curves, it is still
unclear (at least the theoretical complexity cannot help) that an intermediate formal parameterization is
more efficient than a triangular decomposition of the system and it is still unclear that these intermediate
computations could be dominated in time by the certified final approximation of the roots.
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3.2 Algorithmic Number Theory

Concerning algorithmic number theory, the main problems we will be considering in the coming years
are the following:

• Number fields. We will continue working on the problems of class groups and generators. In
particular, the existence and accessibility of good defining polynomials for a fixed number field
remain very largely open. The impact of better polynomials on the algorithmic performance is a
very important parameter, which makes this problem essential.

• Lattice reduction. Despite a great amount of work in the past 35 years on the LLL algorithm and
its successors, many open problems remain. We will continue the study of the use of interval
arithmetic in this field and the analysis of variants of LLL along the lines of the Potential-LLL
which provides improved reduction comparable to BKZ with a small block size but has better
performance.

• Elliptic curves and Drinfeld modules. The study of elliptic curves is a very fruitful area of number
theory with many applications in crypto and algorithms. Drinfeld modules are “cousins” of elliptic
curves which have been less explored in the algorithm context. However, some recent advances [80]
have used them to provide some fast sophisticated factoring algorithms. As a consequence, it is
natural to include these objects in our research directions.

Rigorous numerical computations Some studies in this area will be driven by some other directions,
for example, the rigorous evaluation of non algebraic functions on algebraic varieties might become
central for some of our work on topology in small dimension (volumes of varieties, drawing of amoeba) or
control theory (approximations of discriminant varieties) are our two main current sources of interesting
problems. In the same spirit, the work on L-functions computations (extending the computation range,
algorithmic tools for computing algebraic data from the L function) will naturally follow.

On the other hand, another objective is to extend existing results on periods of algebraic curves to
general curves and higher dimensional varieties is a general promising direction. This project aims at
providing tools for integration on higher homology groups of algebraic curves, ie computing Gauss-Manin
connections. It requires good understanding of their topology, and more algorithmic tools on differential
equations.

3.3 Topology in small dimension

Character varieties The brute force approach to computable objects from topology of small dimension
will not allow any significant progress. As explained above, the systems that arise from these problems
are simply outside the range of doable computations. We still continue the work in this direction by a
four-fold approach, with all three directions deeply inter-related. First, we focus on a couple of especially
meaningful (for the applications) cases, in particular the 3-dimensional manifold called Whitehead
link complement. At this point, we are able to make steps in the computation and describe part of the
solutions [85, 97]; we hope to be able to complete the computation using every piece of information
to simplify the system. Second, we continue the theoretical work to understand more properties of
these systems [83]. These properties may prove how useful for the mathematical understanding is the
resolution of such systems - or at least the extraction of meaningful information. This approach is for
example carried on by Falbel and his work on configuration of flags [86, 88]. Third, we position ourselves
as experts in the know-how of this kind of computations and natural interlocutors for colleagues coming
up with a question on such a computable object (see [95] and [97]). This also allows us to push forward
the kind of computation we actually do and make progress in the direction of the second point. We
are credible interlocutors because our team has the blend of theoretical knowledge and computational
capabilities that grants effective resolutions of the problems we are presented. And last, we use the
knowledge already acquired to pursue our theoretical study of the CR-spherical geometry [75, 87, 84].

Another direction of work is the help to the community in experimental mathematics on new objects.
It involves downsizing the system we are looking at (for example by going back to systems coming from
hyperbolic geometry and not CR-spherical geometry) and get the most out of what we can compute, by
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studying new objects. An example of this research direction is the work of Guilloux around the volume
function on deformation varieties. This is a real-analytic function defined on the varieties we specialized
in computing. Being able to do effective computations with this function led first to a conjecture [94].
Then, theoretical discussions around this conjecture led to a paper on a new approach to the Mahler
measure of some 2-variables polynomials [96]. In turn, this last paper gave a formula for the Mahler
measure in terms of a function akin to the volume function applied at points in an algebraic variety whose
moduli of coordinates are 1. The OURAGAN team has the expertise to compute all the objects appearing
in this formula, opening the way to another area of application. This area is deeply linked with number
theory as well as topology of small dimension. It requires all the tools at disposition within OURAGAN.

Knot theory We will carry on the exhaustive search for the lexicographic degrees for the rational knots.
They correspond to trigonal space curves: computations in the braid group B3, explicit parametrization
of trigonal curves corresponding to "dessins d’enfants", etc. The problem seems much more harder when
looking for more general knots.

On the other hand, a natural direction would be: given an explicit polynomial space curve, determine
the under/over nature of the crossings when projecting, draw it and determine the known knot 16 it is
isotopic to.

Vizualisation and Computational Geometry As mentioned above, the drawing of algebraic curves and
surfaces is a critical action in OURAGAN since it is a key ingredient in numerous developments. In some
cases, one will need a fully certified study of the variety for deciding existence of solutions (for example a
region in a robot’s parameter’s space with solutions to the DKP above or deciding if some variety crosses
the unit polydisk for some stability problems in control-theory), in some other cases just a partial but
certified approximation of a surface (path planning in robotics, evaluation of non algebraic functions
over an algebraic variety for volumes of knot complements in the study of character varieties).

On the one hand, we will contribute to general tools like ISOTOP 17 under the supervision of the
GAMBLE project-team and, on the other hand, we will propose ad-hoc solutions by gluing some of our
basic tools (problems of high degrees in robust control theory). The priority is to provide a first software
that implements methods that fit as most as possible the very last complexity results we got on several
(theoretical) algorithms for the computation of the topology of plane curves.

A particular effort will be devoted to the resolution of overconstraint bivariate systems which are
useful for the studies of singular points and to polynomials systems in 3 variables in the same spirit :
avoid the use of Gröbner basis and propose a new algorithm with a state-of-the-art complexity and with
a good practical behavior.

In parallel, one will have to carefully study the drawing of graphs of non algebraic functions over
algebraic complex surfaces for providing several tools which are useful for mathematicians working on
topology in small dimension (a well known example is the drawing of amoebia, a way of representing a
complex curve on a sheet of paper).

3.4 Algebraic analysis of functional systems

We want to further develop our expertise in the computational aspects of algebraic analysis by continuing
to develop effective versions of results of module theory, homological algebra, category theory and sheaf
theory [142] which play important roles in algebraic analysis [51, 108, 109] and in the algorithmic
study of linear functional systems. In particular, we shall focus on linear systems of integro-differential-
constant/varying/distributed delay equations [128, 132] which play an important role in mathematical
systems theory, control theory, and signal processing [128, 138, 131, 134].

The rings of integro-differential operators are highly more complicated than the purely differential
case (i.e. Weyl algebras) [15], due to the existence of zero-divisors, or the fact of having a coherent ring
instead of a noetherian ring [48]. Therefore, we want to develop an algorithmic study of these rings.
Following the direction initiated in [132] for the computation of zero divisors (based on the polynomial
null spaces of certain operators), we first want to develop algorithms for the computation of left/right

16for example the first rational knots are listed at team.Inria.fr/ouragan/knots
17isotop.gamble.loria.fr

https://team.Inria.fr/ouragan/knots
https://isotop.gamble.loria.fr
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kernels and left/right/generalized inverses of matrices with entries in such rings, and to use these results
in module theory (e.g. computation of syzygy modules, (shorter/shortest) free resolutions, split short/long
exact sequences). Moreover, Stafford’s results [143], algorithmically developed in [15] for rings of partial
differential operators (i.e. the Weyl algebras), are known to still hold for rings of integro-differential
operators. We shall study their algorithmic extensions. Our corresponding implementation will be
extended accordingly.

Finally, within a computer algebra viewpoint, we shall continue to algorithmically study issues on
rings of integro-differential-delay operators [128, 131] and their applications to the study of equivalences
of differential constant/varying/distributed delay systems (e.g. Artstein’s reduction, Fiagbedzi-Pearson’s
transformation) which play an important role in control theory.

4 Application domains

4.1 Security of cryptographic systems

The study of the security of asymmetric cryptographic systems comes as an application of the work carried
out in algorithmic number theory and revolves around the development and the use of a small number
of general purpose algorithms (lattice reduction, class groups in number fields, discrete logarithms in
finite fields, . . . ). For example, the computation of generators of principal ideals of cyclotomic fields can
be seen as one of these applications since these are used in a number of recent public key cryptosystems.

The cryptographic community is currently very actively assessing the threat coming for the devel-
opment of quantum computers. Indeed, such computers would permit tremendous progress on many
number theoretic problems such as factoring or discrete logarithm computations and would put the
security of current cryptosystem under a major risk. For this reason, there is a large global research
effort dedicated to finding alternative methods of securing data. For example, the US standardization
agency called NIST has recently launched a standardization process around this issue. In this context,
OURAGAN is part of the competition and has submitted a candidate (which has not been selected)
[46]. This method is based on number-theoretic ideas involving a new presumably difficult problem
concerning the Hamming distance of integers modulo large numbers of Mersenne.

4.2 Robotics

Algebraic computations have tremendously been used in Robotics, especially in kinematics, since the last
quarter of the 20th century [99]. For example, one can find algebraic proofs for the 40 possible solutions
to the direct kinematics problem [123] for steward platforms and companion experiments based on
Gröbner basis computations [89]. On the one hand, hard general kinematics problems involve too many
variables for pure algebraic methods to be used in place of existing numerical or semi-numerical methods
everywhere and everytime, and on the other hand, global algebraic studies allow to propose exhaustive
classifications that cannot be reached by other methods,for some quite large classes.

Robotics is a long-standing collaborative work with LS2N (Laboratory of Numerical Sciences of
Nantes). Work has recently focused on the offline study of mechanisms, mostly parallel, their singularities
or at least some types of singularities (cuspidals robots [147]).

For most parallel or serial manipulators, pose variables and joints variables are linked by algebraic
equations and thus lie an algebraic variety. The two-kinematics problems (the direct kinematics problem
- DKP- and the inverse kinematics problem - IKP) consist in studying the preimage of the projection of this
algebraic variety onto a subset of unknowns. Solving the DKP remains to computing the possible positions
for a given set of joint variables values while solving the IKP remains to computing the possible joints
variables values for a given position. Algebraic methods have been deeply used in several situations for
studying parallel and serial mechanisms, but finally their use stays quite confidential in the design process.
Cylindrical Algebraic Decomposition coupled with variable’s eliminations by means of Gröbner based
computations can be used to model the workspace, the joint space and the computation of singularities.
On the one hand, such methods suffer immediately when increasing the number of parameters or when
working with imprecise data. On the other hand, when the problem can be handled, they might provide
full and exhaustive classifications. The tools we use in that context [66, 65, 101, 103, 102] depend mainly
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on the resolution of parameter-based systems and therefore of study-dependent curves or flat algebraic
surfaces (2 or 3 parameters), thus joining our thematic Computational Geometry.

4.3 Control theory

Certain problems studied in mathematical systems theory and control theory can be better understood
and finely studied by means of algebraic structures and methods. Hence, the rich interplay between
algebra, computer algebra, and control theory has a long history.

For instance, the first main paper on Gröbner bases written by their creators, Buchberger, was
published in Bose’s book [52] on control theory of multidimensional systems. Moreover, the differential
algebra approach to nonlinear control theory (see [79, 78] and the references therein) was a major
motivation for the algorithmic study of differential algebra [53, 82]. Finally, the behaviour approach to
linear systems theory [148, 125] advocates for an algorithmic study of algebraic analysis (see Section 2.1.4).
More generally, control theory is porous to computer algebra since one finds algebraic criteria of all kinds
in the literature even if the control theory community has a very few knowledge in computer algebra.

OURAGAN has a strong interest in the computer algebra aspects of mathematical systems theory
and control theory related to both functional and polynomial systems, particularly in the direction of
robust stability analysis and robust stabilization problems for multidimensional systems [52, 125] and
infinite-dimensional systems [72] (such as, e.g., differential time-delay systems).

Let us shortly state a few points of our recent interests in this direction.
In control theory, stability analysis of linear time-invariant control systems is based on the famous

Routh-Hurwitz criterion (late 19th century) and its relation with Sturm sequences and Cauchy index.
Thus, stability tests were only involving tools for univariate polynomials [107]. While extending those tests
to multidimensional systems or differential time-delay systems, one had to tackle multivariate problems
recursively with respect to the variables [52]. Recent works use a mix of symbolic/numeric strategies,
Linear Matrix Inequalities (LMI), sums of squares, etc. But still very few practical experiments are currently
involving certified algebraic computations based on general solvers for polynomial equations. We have
recently started to study certified stability tests for multidimensional systems or differential time-delay
systems with an important observation: with a correct modelization, some recent algebraic methods
− derived from our work in algorithmic geometry and shared with applications in robotics − can now
handle previously impossible computations and lead to a better understanding of the problems to be
solved [59, 60, 61]. The previous approaches seem to be blocked on a recursive use of one-variable
methods, whereas our approach involves the direct processing of the problem for a larger number of
variables.

The structural stability of n-D discrete linear systems (with n ≥ 2) is a good source of problems of
several kinds ranging from solving univariate polynomials to studying algebraic systems depending on
parameters. For instance, we show [54, 60, 61] that the standard characterization of the structural stability
of a multivariate rational transfer function (namely, the denominator of the transfer function does not
have solutions in the unit polydisc of Cn) is equivalent to deciding whether or not a certain system of
polynomial equations has real solutions. The use state-of-the-art computer algebra algorithms to check
this last condition, and thus the structural stability of multidimensional systems has been validated in
several situations from toy examples with parameters to state-of-the-art examples involving, e.g., the
resolution of bivariate systems [58, 57].

The rich interplay between control theory, algebra, and computer algebra is also well illustrated with
our recent work on robust stabilization problems for multidimensional and finite/infinite-dimensional
systems [55, 130, 136, 135, 137, 138].

4.4 Signal processing

Due to numerous applications (e.g. sensor network, mobile robots), sources and sensors localization has
intensively been studied in the literature of signal processing. The anchor position self calibration problem
is a well-known problem which consists in estimating the positions of both the moving sources and a set
of fixed sensors (anchors) when only the distance information between the points from the different sets
is available. The position self-calibration problem is a particular case of the Multidimensional Unfolding
(MDU) problem for the Euclidean space of dimension 3. In the signal processing literature, this problem
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is attacked by means of optimization problems (see [71] and the references therein). Based on computer
algebra methods for polynomial systems, we have recently developed a new approach for the MDU
problem which yields closed-form solutions and a very efficient algorithm for the estimation of the
positions [73] based only on linear algebra techniques. This first result, done in collaboration with Dagher
(Inria Chile) and Zheng (DEFROST, Inria Lille), yielded a recent patent [74]. This result advocates for the
study of other localization problems based on the computational polynomial techniques developed in
OURAGAN.

In collaboration with Safran Tech (Barau, Hubert) and Dagher (Inria Chile), a symbolic-numeric study
of the new multi-carrier demodulation method [98] has recently been initiated. Gear fault diagnosis is an
important issue in aeronautics industry since a damage in a gearbox, which is not detected in time, can
have dramatic effects on the safety of a plane. Since the vibrations of a spur gear can be modeled as a
product of two periodic functions related to the gearbox kinematic, it is proposed to recover each function
from the global signal by means of an optimal reconstruction problem which, based on Fourier analysis,
can be rewritten as argminu∈Cn ,v1,v2∈Cm ∥ M −u v?1 −D u v?2 ∥F , where M ∈ Cn×m (resp. D ∈ Cn×n) is a
given matrix with a special shape (resp. diagonal matrix), ∥ · ∥F is the Frobenius norm, and v? is the
Hermitian transpose of v . We have recently obtained closed-form solutions for the exact problem, i.e.,
M = u v?1 +D u v?2 , which is a polynomial system with parameters. This first result gives interesting new
insides for the study of the non-exact case, i.e. for the above optimization problem.

Our expertise on algebraic parameter estimation problem, developed in the former NON-A project-
team (Inria Lille), will be further developed. Following this work [90], the problem consists in estimating
a set θ of parameters of a signal x(θ, t) − which satisfies a certain dynamics − when the signal y(t) =
x(θ, t)+γ(t)+$(t) is observed, where γ denotes a structured perturbation and $ a noise. It has been
shown that θ can sometimes be explicitly determined by means of closed-form expressions using iterated
integrals of y . These integrals are used to filter the noise $. Based on a combination of algebraic analysis
techniques (rings of differential operators), differential elimination theory (Gröbner basis techniques for
Weyl algebras), and operational calculus (Laplace transform, convolution), an algorithmic approach to
algebraic parameter estimation problem has been initiated in [131] for a particular type of structured
perturbations (i.e. bias) and was implemented in the Maple prototype NonA. The case of a general
structured perturbation is still lacking.

5 Social and environmental responsibility

We have set a machine for a collective use and implementing as virtual machines a server for computa-
tions, another for visio-conferencing and a last one for website.

The advantages of such a strategy is to avoid to buy costly laptops for difficult computations but also
to dynamically set the power of each virtual machine depending on the use. For example, we give more
power to the virtual machine for visio-conferences when needed and give back this power to the server
for computations the rest of the time.

6 Highlights of the year

6.1 Limit sets

Limit sets in the 3-dimensional sphere are a general generalization of the well-known fractal sets in the
plane given by the complex dynamic, a.k.a Julia and Mandelbrot sets. The efficient computation and
rendering of the latter has been a powerful drive for their theoretical and algorithmic study and can now
be considered as achieved (real time rendering, arbitrary precision...). However, passing to dimension 3 is
a challenge and is yet at its first steps. The website limit-sets.imj-prg.fr presents the first result of an effort
leaded by R. Alexandre and A. Guilloux to compute and render such limit sets. Though still experimental,
they are already used for improving the theoretical understanding of these limit sets. Moreover, one can
hope that their visual attractiveness helps attract interest for this fields of research.

https://limit-sets.imj-prg.fr
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6.2 Hecke Grossencharacters

A collaboration between Pascal Molin and Aurel Page (Inria Bordeaux, Lfant team) recently added to
the Pari/GP number theory software the support of Hecke Grossencharacters. These objects have been
mathematically understood from the 1950s and establish explicit links between remote parts of number
theory (algebraic curves, galois representations, L functions). Despite their immense computational
interest, there has been no computer implementation until a partial Magma package in 2015. This is
due to the fact that these characters are defined on infinite spaces which cannot be represented on a
computer. The algorithm introduced by Molin and Page is the first to give access to the full family of
Hecke characters, with routine interfaces to Pari/GP.

6.3 Parallel mechanisms

In 2021, we did sign a contract with Safran Technologies and Defense and the CNRS Laboratory LS2B
(Nantes) for working on the design of parallel manipulators. After few months it has been decided that
this contrat will be extended 3 years more at least and a co-dupervised PhD will start on the subject in
January 2022.

7 New software and platforms

A new developement in 2021 : PTOPO - a Maple package for the study of the Topology of Parametric
Algebraic Curves.

7.1 New software

7.1.1 ISOTOP

Name: Topology and geometry of planar algebraic curves

Keywords: Topology, Curve plotting, Geometric computing

Functional Description: Isotop is a Maple software for computing the topology of an algebraic plane
curve, that is, for computing an arrangement of polylines isotopic to the input curve. This problem
is a necessary key step for computing arrangements of algebraic curves and has also applications
for curve plotting. This software has been developed since 2007 in collaboration with F. Rouillier
from Inria Paris - Rocquencourt.

URL: https://isotop.gamble.loria.fr/

Publications: hal-00809430, hal-00809425, inria-00329754, inria-00580431, hal-00992634, hal-01342211,
inria-00425383, inria-00517175, hal-01468796, hal-00977671

Contact: Marc Pouget

Participants: Luis Penaranda, Marc Pouget, Sylvain Lazard

7.1.2 RS

Functional Description: Real Roots isolation for algebraic systems with rational coefficients with a finite
number of Complex Roots

URL: https://team.inria.fr/ouragan/software/

Contact: Fabrice Rouillier

Participant: Fabrice Rouillier

https://isotop.gamble.loria.fr/
https://hal.inria.fr/hal-00809430
https://hal.inria.fr/hal-00809425
https://hal.inria.fr/inria-00329754
https://hal.inria.fr/inria-00580431
https://hal.inria.fr/hal-00992634
https://hal.inria.fr/hal-01342211
https://hal.inria.fr/inria-00425383
https://hal.inria.fr/inria-00517175
https://hal.inria.fr/hal-01468796
https://hal.inria.fr/hal-00977671
https://team.inria.fr/ouragan/software/
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7.1.3 A NewDsc

Name: A New Descartes

Keyword: Scientific computing

Functional Description: Computations of the real roots of univariate polynomials with rational coeffi-
cients.

URL: https://anewdsc.mpi-inf.mpg.de

Authors: Fabrice Rouillier, Alexander Kobel, Michael Sagraloff

Contact: Fabrice Rouillier

Partner: Max Planck Institute for Software Systems

7.1.4 SIROPA

Keywords: Robotics, Kinematics

Functional Description: Library of functions for certified computations of the properties of articulated
mechanisms, particularly the study of their singularities

URL: http://siropa.gforge.inria.fr/

Authors: Damien Chablat, Fabrice Rouillier, Guillaume Moroz, Philippe Wenger

Contact: Guillaume Moroz

Partner: LS2N

7.1.5 MPFI

Keyword: Arithmetic

Functional Description: MPFI is a C library based on MPFR and GMP for multi precision floating point
arithmetic.

URL: http://mpfi.gforge.inria.fr

Contact: Fabrice Rouillier

7.2 New platforms

No new platforms.

8 New results

8.1 Number Theory

8.1.1 A classification of ECM-friendly families using modular curves

In [19], we establish a link between the classification of ECM-friendly curves and Mazur’s program B,
which consists in parameterizing all the families of elliptic curves with exceptional Galois image. Building
upon two recent works which treated the case of congruence subgroups of prime-power level which
occur for infinitely many j-invariants, we prove that there are exactly 1525 families of rational elliptic
curves with distinct Galois images which are cartesian products of subgroups of prime-power level. This
makes a complete list of rational families of ECM-friendly elliptic curves, out of which less than 25 were
known in the literature. We furthermore refine a heuristic of Montgomery to compare these families and
conclude that the best 4 families which can be put in a=-1 twisted Edwards’ form are new.

https://anewdsc.mpi-inf.mpg.de
http://siropa.gforge.inria.fr/
http://mpfi.gforge.inria.fr
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8.1.2 Montgomery-friendly primes and applications to cryptography

The paper [18] deals with Montgomery-friendly primes designed for the modular reduction algorithm of
Montgomery. These numbers are scattered in the literature and their properties are partially exploited.
We exhibit a large family of Montgomery-friendly primes which give rise to efficient modular reduction
algorithms. We develop two main uses. The first one is dedicated directly to cryptography, in particular
for isogeny based approaches and more generally to Elliptic Curves Cryptography. We suggest more
appropriate finite fields and curves in terms of complexity for the recommended security levels, for both
isogeny-based cryptography and ECC. The second use is purely arithmetic, and we propose families of
alternative RNS bases. We show that, for dedicated architectures with word operators, we can reach, for a
same or better complexity, larger RNS bases with Montgomery-friendly pair-wise co-primes than the RNS
bases generally used in the literature with Pseudo-Mersenne numbers. This is particularly interesting for
modular arithmetic used in cryptography.

8.1.3 Generating Residue Number System Bases

Residue number systems provide efficient techniques for speeding up calculations and/or protecting
against side channel attacks when used in the context of cryptographic engineering. One of the interests
of such systems is their scalability, as the existence of large bases for some specialized systems is often
an open question. In [29], we present highly optimized methods for generating large bases for residue
number systems and, in some cases, the largest possible bases. We show their efficiency by demonstrating
their improvement over the state-of-the-art bases reported in the literature. This work make it possible to
address the problem of the scalability issue of finding new bases for a specific system that arises whenever
a parameter changes, and possibly open new application avenues.

8.2 Computer Algebra

8.2.1 Computation of the L-infinity norm of finite-dimensional linear systems

In [22], we study the problem of computing the L∞ norm of finite-dimensional linear time-invariant
systems. This problem is first reduced to the computation of the maximal x-projection of the real
solutions (x, y) of a bivariate polynomial system Σ = {P, ∂P

∂y }, with P ∈ Q[x, y]. Then, we use standard
computer algebra methods to solve the problem. In this paper, we alternatively study a method based on
rational univariate representations, a method based on root separation, and finally a method first based
on the sign variation of the leading coefficients of the signed subresultant sequence and then based on
the identification of an isolating interval for the maximal x-projection of the real solutions of Σ.

8.2.2 Computing the Homology of Semialgebraic Sets. II: General formulas

In [23], we describe and analyze a numerical algorithm for computing the homology (Betti numbers
and torsion coefficients) of semialgebraic sets given by Boolean formulas. The algorithm works in weak
exponential time. This means that outside a subset of data having exponentially small measure, the
cost of the algorithm is single exponential in the size of the data. This extends the work in Part I to
arbitrary semialgebraic sets. All previous algorithms proposed for this problem have doubly exponential
complexity.

8.2.3 Koszul-type determinantal formulas for families of mixed multilinear systems

Effective computation of resultants is a central problem in elimination theory and polynomial system
solving. Commonly, we compute the resultant as a quotient of determinants of matrices and we say
that there exists a determinantal formula when we can express it as a determinant of a matrix whose
elements are the coefficients of the input polynomials. In [20], we study the resultant in the context of
mixed multilinear polynomial systems, that is multilinear systems with polynomials having different
supports, on which determinantal formulas were not known. We construct determinantal formulas for
two kind of multilinear systems related to the Multiparameter Eigenvalue Problem (MEP): first, when
the polynomials agree in all but one block of variables; second, when the polynomials are bilinear with
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different supports, related to a bipartite graph. We use the Weyman complex to construct Koszul-type
determinantal formulas that generalize Sylvester-type formulas. We can use the matrices associated
to these formulas to solve square systems without computing the resultant. The combination of the
resultant matrices with the eigenvalue and eigenvector criterion for polynomial systems leads to a new
approach for solving MEP.

8.2.4 Multilinear Polynomial Systems: Root Isolation and Bit Complexity

In [25], we exploit structure in polynomial system solving by considering polyno-mials that are linear
in subsets of the variables. We focus on algorithms and their Boolean complexity for computing isolat-
ing hyperboxes for all the isolated complex roots of well-constrained, unmixed systems of multilinear
polynomials based on resultant methods. We enumerate all expressions of the multihomogeneous
(or multigraded) resultant of such systems as a determinant of Sylvester-like matrices, aka generalized
Sylvester matrices. We construct these matrices by means of Weyman homological complexes, which
generalize the Cayley-Koszul complex. The computation of the determinant of the resultant matrix is
the bottleneck for the overall complexity. We exploit the quasi-Toeplitz structure to reduce the problem
to efficient matrix-vector multiplication, which corresponds to multivariate polynomial multiplication,
by extending the seminal work on Macaulay matrices of Canny, Kaltofen, and Yagati [9] to the multi-
homogeneous case. We compute a rational univariate representation of the roots, based on the primitive
element method. In the case of 0-dimensional systems we present a Monte Carlo algorithm with probabil-
ity of success 1−1/2r , for a given r ≥ 1, and bit complexity OB (n2D (4+e)(n(N +1)+τ)+nD (2+e)r (D+r ))
for any e > 0, where n is the number of variables, D equals the multilinear Bézout bound, N is the number
of variable subsets, and τ is the maximum coefficient bitsize. We present an algorithmic variant to
compute the isolated roots of overdetermined and positive-dimensional systems. Thus our algorithms
and complexity analysis apply in general with no assumptions on the input.

8.2.5 Sampling the feasible sets of SDPs and volume approximation

In [24], we present algorithmic, complexity, and implementation results on the problem of sampling
points in the interior and the boundary of a spectrahedron, that is the feasible region of a semidefinite
program. Our main tool is random walks. We define and analyze a set of primitive geometric operations
that exploits the algebraic properties of spectrahedra and the polynomial eigenvalue problem, and leads
to the realization of a broad collection of efficient random walks. We demonstrate random walks that
experimentally show faster mixing time than the ones used previously for sampling from spectrahedra
in theory or applications, for example Hit and Run. Consecutively, the variety of random walks allows
us to sample from general probability distributions, for example the family of log-concave distributions
which arise frequently in numerous applications. We apply our tools to compute (i) the volume of a
spectrahedron and (ii) the expectation of functions coming from robust optimal control. We provide
a C++ open source implementation of our methods that scales efficiently up to to dimension 200. We
illustrate its efficiency on various data sets.

8.2.6 Geometric algorithms for sampling the flux space of metabolic networks

Systems Biology is a fundamental field and paradigm that introduces a new era in Biology. The crux of
its functionality and usefulness relies on metabolic networks that model the reactions occurring inside
an organism and provide the means to understand the underlying mechanisms that govern biological
systems. Even more, metabolic networks have a broader impact that ranges from resolution of ecosystems
to personalized medicine. The analysis of metabolic networks is a computational geometry oriented field
as one of the main operations they depend on is sampling uniformly points from polytopes; the latter
provides a representation of the steady states of the metabolic networks. However, the polytopes that
result from biological data are of very high dimen- sion (to the order of thousands) and in most, if not
all, the cases are considerably skinny. Therefore, to perform uniform random sampling efficiently in this
setting, we need a novel algorithmic and computational framework specially tailored for the properties of
metabolic networks. In [30], we present a complete software framework to handle sampling in metabolic
networks. Its backbone is a Multiphase Monte Carlo Sampling (MMCS) algorithm that unifies rounding
and sampling in one pass, obtaining both upon termination. It exploits an improved variant of the
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Billiard Walk that enjoys faster arithmetic complexity per step. We demonstrate the efficiency of our
approach by performing extensive experiments on various metabolic networks. Notably, sampling on the
most complicated human metabolic network accessible today, Recon3D, corresponding to a polytope of
dimension 5 335 took less than 30 hours. To our knowledge, that is out of reach for existing software.

8.3 Algebraic Analysis

8.3.1 On the inverse Cauchy problem for linear ordinary differential equations

The Cauchy problem characterizes the solutions of a linear ordinary differential equation that satisfies
initial conditions. In [31], we investigate the converse problem, namely, given a function that is known to
satisfy a linear ordinary differential equation of a fixed order, determine the coefficients of the ordinary
differential equation and the initial conditions. The techniques used to investigate the inverse Cauchy
problem come from the algebraic estimation problem introduced by Fliess and Sira-Ramírez. From the
perfect observation of the solution, i.e., without external perturbation and noise corrupting it, the initial
value problem can be explicitly reconstructed using only iterative indefinite integrals of the solution.

8.4 Geometry

8.4.1 Cartan connections and path structures with large automorphism groups

In [27], we classify compact manifolds of dimension three equipped with a path structure and a fixed
contact form (which we refer to as a strict path structure) under the hypothesis that their automorphism
group is non-compact. We use a Cartan connection associated to the structure and show that its curvature
is constant.

8.4.2 Geometric structures and configurations of flags in orbits of real forms

[26] is an introduction and a survey on geometric structures modelled on closed orbits of real forms
acting on spaces of flags. We focus on 3-manifolds and the flag space of all pairs of a point and a line
containing it in P(C3). It includes a description of general flag structures which are not necessarily flat
and a combinatorial description of flat structures through con- figurations of flags in closed orbits of real
forms. We also review volume and Chern-Simons invariants for those structures.

8.4.3 Volume function and Mahler measure of exact polynomials

In [28], we study a class of two-variable polynomials called exact polynomials which contains A-polynomials
of knot complements. The Mahler measure of these polynomials can be computed in terms of a volume
function defined on the vanishing set of the polynomial. We prove that the local extrema of the volume
function are on the two-dimensional torus and give a closed formula for the Mahler measure in terms
of these extremal values. This formula shows that the Mahler measure of an irreducible and exact poly-
nomial divided by π is greater than the amplitude of the volume function. We also prove a K -theoretic
criterion for a polynomial to be a factor of an A-polynomial and give a topological interpretation of its
Mahler measure.

8.5 Control Theory

8.5.1 Centrohermitian solutions of a factorization problem arising in vibration analysis. Part I:
Lee’s transformation

Motivated by an application of vibration analysis to gearbox fault surveillance, a new demodulation
approach for gearbox vibration signals has recently been developed. Within this approach, the demod-
ulation problem yields the study of a rank factorization problem for centrohermitian matrices. In [32],
using the properties of centrohermitian matrices, we first show that the rank factorization problem for
centrohermitian matrices can be transformed into a rank factorization problem for real matrices. Based
on previous works, we then show how to parametrize a class of centrohermitian solutions of the rank
factorization problem that is important in practice.
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8.5.2 Centrohermitian Solutions of a Factorization Problem Arising in Vibration Analysis. Part II: A
Coninvolutory Matrix Approach

In "Centrohermitian solutions of a factorization problem arising in vibration analysis. Part I: Lee’s
Transformation", we showed that the structure of centrohermitian matrices and Lee’s transformation
can be used to transform the search for centrohermitian solutions of a rank factorization problem – at
the core of a new demodulation approach arising in gearbox vibration analysis – into the search for
real solutions of a polynomial system. Hence, in "Centrohermitian solutions of a factorization problem
arising in vibration analysis. Part I: Lee’s Transformation", we parametrized a class of centrohermitian
solutions of the rank factorization problem that is interesting in practice. Despite its effectiveness, Lee’s
transformation can be seen as a black box hiding information on the resolution of the rank factorization
problem for centrohermitian solutions. To get more insight, in [33], we develop an alternative approach
to the centrohermitian rank factorization problem.

8.6 Algebraic aspects of a rank factorization problem arising in vibration analysis

The article [21] continues the study of a rank factorization problem arising in gear fault surveillance. The
structure of a class of solutions – important in practice – of the rank factorization problem is studied. We
show that these solutions can be parametrized. Using module theory and computer algebra methods, the
parameter space P is explicitly characterized and is shown to be the complementary of an algebraic set.
Finally, a finite open cover of P is obtained and for each basic open subset of the cover of P, a closed-form
solution is characterized.

9 Bilateral contracts and grants with industry

9.1 Bilateral contracts with industry

• The objective of our Agrement with WATERLOO MAPLE INC. is to promote software developments
to which we actively contribute.

On the one hand, WMI provides man power, software licenses, technical support (development,
documentation and testing) for an inclusion of our developments in their commercial products.
On the other hand, OURAGAN offers perpetual licenses for the use of the concerned source code.

As past results of this agreement one can cite our C-Library RS for the computations of the real
solutions zero-dimensional systems or also our collaborative development around the Maple
package DV for solving parametric systems of equations.

For this term, the agreement covers algorithms developed in areas including but not limited to:
1) solving of systems of polynomial equations, 2) validated numerical polynomial root finding,
3) computational geometry, 4) curves and surfaces topology, 5) parametric algebraic systems, 6)
cylindrical algebraic decompositions, 7) robotics applications.

In particular, it covers our collaborative work with some of our partners, especially the Gamble
Project-Team - Inria Nancy Grand Est.

• A research contract was signed with the company Safran Electronics & Defense on the study of
parallel mecanisms.

10 Partnerships and cooperations

10.1 International initiatives

10.1.1 Inria associate team not involved in an IIL or an international program

MACAO

Title: Mathematics and Algorithms for Cryptographic Advanced Objects



Project OURAGAN 21

Duration: 2019 ->2021

Coordinator: Thomas Plantard (thomaspl@uow.edu.au)

Partners:

• University of Wollongong

Inria contact: Antoine Joux

10.1.2 Participation in other International Programs

AFRIMath

Title: Afrique France Réseau International de Mathématiques

Date/Duration : 2021 - 2026

Additionnal info/keywords : International Research Network (IRN)

10.2 National initiatives

10.2.1 ANR

• ANR JCJC GALOP (Games through the lens of ALgebra and OPptimization)

Coordinator: Elias Tsigaridas

Duration: 2018 – 2022

GALOP is a Young Researchers (JCJC) project with the purpose of extending the limits of the state-
of-the-art algebraic tools in computer science, especially in stochastic games. It brings original
and innovative algebraic tools, based on symbolic-numeric computing, that exploit the geometry
and the structure and complement the state-of-the-art. We support our theoretical tools with a
highly efficient open-source software for solving polynomials. Using our algebraic tools we study
the geometry of the central curve of (semi-definite) optimization problems. The algebraic tools and
our results from the geometry of optimization pave the way to introduce algorithms and precise
bounds for stochastic games.

10.2.2 Inria Exploratory actions

• LOCUS (non-Linear geOmetriC compUting at Scale) Inria Exploratory Action

Coordinator: Elias Tsigaridas

Duration 2022 - 2025

Summary : LOCUS shapes a novel theoretical, algorithmic, and computational framework at the
intersection of computational algebra, high dimensional geometric and statistical computing, and
optimization. It focuses on sampling and integrating in convex bodies, algorithms for convex opti-
mization, and applications in structural biology. It aims to deliver effective theoretical algorithms
and efficient open source software for the problems of interest.

• Réal (Réécriture algébrique) Inria Exploratory Action

Coordinator : Yves Guiraud

Duration : 2022-2025

Summary : Rewriting is a branch of computer algebra consisting in transforming mathematical
expressions according to admissible rules. Examples range from elementary situations, such as a
remarkable identity (a+b)2 = a2+2ab+b2 in a ring, to calculations in complex algebraic structures,
such as the Jacobi relation [[x,y],z] = [x,[y,z]] - [[x,z],y] in a Lie algebra.

The Réal project proposes to explore the connections between rewriting and algebra. The aim is to
understand the algebraic foundations of rewriting, to integrate similar calculation mechanisms
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known in algebra, and to develop new calculation tools with a view to applications in three areas
of mathematics: combinatorial and higher algebra, theory groups and representations, study of
algebraic systems and varieties.

11 Dissemination

11.1 Promoting scientific activities

11.1.1 Scientific events: selection

• Elias Tsigaridas : Minisymposium Algebraic and Geometric Tools for High Dimensional Computing
SIAM Conference on Applied Algebraic Geometry, Texas (virtual)

Member of the conference program committees

• Fabrice Rouillier is member of the scientific committee of the conference for the 150 years of the
SMF (Société Mathématique de France)

• Elisa Tsigaridas was member of the conference program committees 2021 22th International
Workshop on Computer Algebra in Scientific Computing (CASC)

Reviewer

• Pascal Molin reviewed a book proposed to Springer.

• Alban Quadrat reviewed a book proposed to Springer and articles submitted to Internal Journal of
Robust and Nonlinear Control, Mathematics in Computer Science, European Control Conference,
Maple Conference, etc.

11.1.2 Journal

Member of the editorial boards

• Elisha Falbel is a member of the editorial board of São Paulo Journal of Mathematical Sciences -
Springer

• Antoine Joux is a member of the editorial board of Designs, Codes and Cryptography

• Alban Quadrat is associate editor of Multidimensional Systems and Signal Processing, Springer

• Alban Quadrat is associate editor of Maple Transactions

• Fabrice Rouillier is associate editor of Journal of Symbolic Computation, Elsevier

• Fabrice Rouillier is associate editor of Maple Transactions

11.1.3 Invited talks

• Alban Quadrat gave the talk On the general solutions of a rank factorization problem arising in vi-
bration analysis at the Aromath seminar, Inria Sophia Antipolis - Méditerranée, France, 10/02/2021,
and at the Séminaire de Calcul Formel de Limoges, France, 18/03/2021

• Alban Quadrat gave the talk Algorithmic aspects of the algebraic parameter estimation problem at
the 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics
(GAMM 2020), Kassel, Germany, 15-19/03/2021

• Alban Quadrat gave the talk An introduction to the Quillen-Suslin theorem: algorithms and applica-
tions at the Symbolic Computation Seminar at North Carolina State University, USA, 03/05/2021

• Alban Quadrat gave the talks Centrohermitian solutions of a factorization problem arising in vibra-
tion analysis, Part I: Lee’s transformation, Part II: A coninvolutory matrix approach, at European
Control Conference 2021, Netherlands, 03/06/2021
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11.1.4 Leadership within the scientific community

• Alban Quadrat is member of the technical committee Linear Systems of the International Federation
of Automatic Control (IFAC)

11.1.5 Scientific expertise

• Alban Quadrat reviewed a project submitted to the LabEx CIMI "Centre International de Mathé-
matiques et d’Informatique" (Institut de Mathématiques de Toulouse et Institut de Recherche en
Informatique de Toulouse).

11.1.6 Research administration

• Yves Guiraud is elected member of the bureau du Comité National de la Recherche Scientifique,
section 41 (mathématiques)

• Yves Guiraud is elected member of the Conseil scientifique de l’UFR de mathématiques de l’Université
de Paris

• Yves Guiraud is elected member of the Conseil de laboratoire de l’IMJ-PRG

• Alban Quadrat is member of the Conseil d’Administration of the Société Mathématique de France
(SMF)

• Elisa Tsigaridas is elected member of the CE

11.2 Teaching - Supervision - Juries

11.2.1 Teaching

• Jean-Claude Bajard, Antonin Guilloux, Pierre-Vincent Koseleff and Fabrice Rouillier take part to the
"agrégation de mathématiques - option C" at Sorbonne Université

• Pierre-Vincent Koseleff : Master 2 EducFellow in Maths - Computer Algebra (120H) at Sorbonne
Université

• Pierre-Vincent Koseleff : Master 1 Maths - Sorbonne Université : Algebraic Algorithmic (36H) at
Sorbonne Université

• Pascal Molin manages the Master math-info spécialités crypto et big-data at Paris Université

• Pascal Molin : teaches codes et crypto and théorie de l’information in Master 1 at Paris Université

• Elias Tsigaridas : Algorithms and CompetitiveProgramming, 2021 Ingénieur 2A, modal. 20h lectures
and 25h TD. Department of Informatics (LIX), École Polytechnique, France

• Elias Tsigaridas : Algorithms for data analysis in C++, 2021 Ingénieur 2A. 40h TD. Department of
Informatics (LIX), École Polytechnique, France

11.2.2 Supervision

• PhD in progress: Mahya Mehrabdollahei, 09/2018, directed by Antonin Guilloux and Fabrice
Rouillier

• PhD in progress: Grace Younes, 09/2018, directed by Alban Quadrat and Fabrice Rouillier

• PhD in progress: Alen Ðurić, 10/2019, directed by Yves Guiraud (co-supervision with Pierre-Louis
Curien, IRIF)

• PhD in progress: Christina Katsamaki, 09/2019, directed by Elias Tsigaridas and Fabrice Rouillier

• PhD in progress: Raphael Alexandre, 09/2019, directed by Elisha Falbel
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• PhD in progress : Thibauld Feneuil, 10/2020, directed by Jean-Claude Bajard

• PhD in progress : Carles Checa, 10/2020, directed by Elias Tsigaridas (co-supervision with Ioannis
Emiris)

• PhD in Progress : Andrea Negro , 10/2021, directed by Pierre-Vincent Koseleff (co-supervision with
Julien Marché IMJ-PRG)

• Antonin Guilloux co-supervised with Julien Tierny (LIP6) the Master thesis of Quyen Nguyen, M2
Algèbre appliquée, Université Paris Saclay

• Yves Guiraud co-supervised with Emmanuel Wagner (IMJ-PRG) the Master thesis of Octave Mestoud-
jian, M2 Mathématiques Fondamentales, Sorbonne Université

• Alban Quadrat supervised the Master thesis of Maya Chartouny, Étude algorithmique du problème
d’estimation de paramètres, M2 Algèbre Appliquée, University of Paris Saclay

11.2.3 Juries

• Alban Quadrat was president of the jury of the PhD defense of P.-C. Aubin-Frankowski, Estimation
and Control under Constraints through Kernel Methods, MINES ParisTech, 05/07/2021

11.3 Popularization

11.3.1 Internal or external Inria responsibilities

• Fabrice Rouillier is the chair of the association Animath

• Fabrice Rouillier is Chargé de mission médiation for the Inria Paris research center

• Fabrice Rouillier is a member of the comité de pilotage de la semaine des mathématiques

• Fabrice Rouillier est membre du Jury des Olympiades Nationales de Mathématiques

12 Scientific production

12.1 Major publications
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using Rational Univariate Representations’. In: Journal of Complexity 37 (2016), pp. 34–75. DOI:
10.1016/j.jco.2016.07.002. URL: https://hal.inria.fr/hal-01342211.
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Journal Of Knot Theory And Its Ramifications (JKTR) 25.7 (June 2016). 14p., 21 figs. DOI: 10.1142
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