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2 Overall objectives

The PARADYSE team gathers mathematicians from different communities with the same motivation:
to provide a better understanding of dynamical phenomena involving particles. These phenomena
are described by fundamental models arising from several fields of physics. We shall focus on model
derivation, study of stationary states and asymptotic behaviors, as well as links between different levels
of description (from microscopic to macroscopic) and numerical methods to simulate such models.
Applications include non-linear optics, thermodynamics and ferromagnetism. Research in this direction
has a long history, that we shall only partially describe in the sequel. We are confident that the fact that
we come from different mathematical communities (PDE theory, mathematical physics, probability
theory and numerical analysis), as well as the fact that we have strong and effective collaborations with
physicists, will bring new and efficient scientific approaches to the problems we plan to tackle and will
make our team strong and unique in the scientific landscape. Our goal is to obtain original and important
results on a restricted yet ambitious set of problems that we develop in this document.
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3 Research program

3.1 Time asymptotics: Stationary states, solitons, and stability issues

The team investigates the existence of solitons and their link with the global dynamical behavior for
non-local problems such as the Gross–Pitaevskii (GP) equation which arises in models of dipolar gases.
These models, in general, also introduce non-zero boundary conditions which constitute an additional
theoretical and numerical challenge. Numerous results are proved for local problems, and numerical
simulations allow to verify and illustrate them, as well as making a link with physics. However, most
fundamental questions are still open at the moment for non-local problems.

The non-linear Schrödinger (NLS) equation finds applications in numerous fields of physics. We
concentrate, in a continued collaboration with our colleagues from the physics department (PhLAM) at
Université de Lille (U-Lille), in the framework of the Laboratoire d’Excellence CEMPI, on its applications
in non-linear optics and cold atom physics. Issues of orbital stability and modulational instability are
central here (see Section 4.1 below).

Another typical example of problem that the team wishes to address concerns the Landau–Lifshitz
(LL) equation, which describes the dynamics of the spin in ferromagnetic materials. This equation is
a fundamental model in the magnetic recording industry [39] and solitons in magnetic media are of
particular interest as a mechanism for data storage or information transfer [41]. It is a quasilinear PDE
involving a function that takes values on the unit sphere S2 of R3. Using the stereographic projection, it
can be seen as a quasilinear Schrödinger equation and the questions about the solitons, their dynamics
and potential blow-up of solutions evoked above are also relevant in this context. This equation is
less understood than the NLS equation: even the Cauchy theory is not completely understood [28, 35].
In particular, the geometry of the target sphere imposes non-vanishing boundary conditions; even in
dimension one, there are kink-type solitons having different limits at ±∞.

3.2 Derivation of macroscopic laws from microscopic dynamics

The team investigates, from a microscopic viewpoint, the dynamical mechanism at play in the phe-
nomenon of relaxation towards thermal equilibrium for large systems of interacting particles. For
instance, a first step consists in giving a rigorous proof of the fact that a particle repeatedly scattered by
random obstacles through a Hamiltonian scattering process will eventually reach thermal equilibrium,
thereby completing previous works in this direction by the team. As a second step, similar models as the
ones considered classically will be defined and analyzed in the quantum mechanical setting, and more
particularly in the setting of quantum optics.

Another challenging problem is to understand the interaction of large systems with the boundaries,
which is responsible for most energy exchanges (forcing and dissipation), even though it is concentrated
in very thin layers. The presence of boundary conditions to evolution equations sometimes lacks under-
standing from a physical and mathematical point of view. In order to legitimate the choice done at the
macroscopic level of the mathematical definition of the boundary conditions, we investigate systems
of atoms (precisely chains of oscillators) with different local microscopic defects. We apply our recent
techniques to understand how anomalous (in particular fractional) diffusive systems interact with the
boundaries. For instance, the powerful tool given by Wigner functions that we already used has been
successfully applied to the derivation of anomalous behaviors in open systems (for instance in [34]). The
next step consists in developing an extension of that tool to deal with bounded systems provided with
fixed boundaries. We also intend to derive anomalous diffusion by adding long-range interactions to
diffusive models. There are very few rigorous results in this direction.

Finally, we aim at obtaining from a microscopic description the fractional porous medium equation
(FPM), a non-linear variation of the fractional diffusion equation, involving the fractional Laplacian
instead of the usual one. Its rigorous study carries many mathematical difficulties in treating at the same
time the non-linearity and fractional diffusion. We want to make PDE theorists and probabilists work
together, in order to take advantage of the analytical results which went further ahead and are more
advanced than the statistical physics theory.

https://en.wikipedia.org/wiki/Soliton
https://phlam.univ-lille.fr/
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3.3 Numerical methods: analysis and simulations

The team addresses both questions of precision and numerical cost of the schemes for the numerical
integration of non-linear evolution PDEs, such as the NLS equation. In particular, we aim at developing,
studying and implementing numerical schemes with high order that are more efficient for these problems.
We also want to contribute to the design and analysis of schemes with appropriate qualitative properties.
These properties may as well be “asymptotic-preserving” properties, energy-preserving properties, or
convergence to an equilibrium properties. Other numerical goals of the team include the numerical
simulation of standing waves of non-linear non-local GP equations. We also keep on developing numer-
ical methods to efficiently simulate and illustrate theoretical results on instability, in particular in the
context of the modulational instability in optical fibers, where we study the influence of randomness in
the physical parameters of the fibers.

The team also designs simulation methods to estimate the accuracy of the physical description via
microscopic systems, by computing precisely the rate of convergence as the system size goes to infinity.
One method under investigation is related to cloning algorithms, which were introduced very recently
and turn out to be essential in molecular simulation.

4 Application domains

4.1 Optical fibers

In the propagation of light in optical fibers, the combined effect of non-linearity and group velocity
dispersion (GVD) may lead to the destabilization of the stationary states (plane or continuous waves).
This phenomenon, known under the name of modulational instability (MI), consists in the exponential
growth of small harmonic perturbations of a continuous wave. MI has been pioneered in the 60s in the
context of fluid mechanics, electromagnetic waves as well as in plasmas, and it has been observed in
non-linear fiber optics in the 80s. In uniform fibers, MI arises for anomalous (negative) GVD, but it may
also appear for normal GVD if polarization, higher order modes or higher order dispersion are considered.
A different kind of MI related to a parametric resonance mechanism emerges when the dispersion or the
non-linearity of the fiber are periodically modulated.

As a follow-up of our work on MI in periodically modulated optical fibers, we investigate the effect of
random modulations in the diameter of the fiber on its dynamics. It is expected on theoretical grounds
that such random fluctuations can lead to MI and this has already been illustrated for some models of
the randomness. We investigate precisely the conditions under which this phenomenon can be strong
enough to be experimentally verified. For this purpose, we investigate different kinds of random processes
describing the modulations, taking into account the manner in which such modulations can be created
experimentally by our partners of the fiber facility of the PhLAM. This necessitates a careful modeling
of the fiber and a precise numerical simulation of its behavior as well as a theoretical analysis of the
statistics of the fiber dynamics.

This application domain involves in particular S. De Bièvre and G. Dujardin.

4.2 Ferromagnetism

The Landau–Lifshitz equation describes the dynamics of the spin in ferromagnetic materials. Depending
on the properties of the material, the LL equation can include a dissipation term (the so-called Gilbert
damping) and different types of anisotropic terms. The LL equation belongs to a larger class of non-linear
PDEs which are often referred to as geometric PDEs, and some related models are the Schrödinger map
equation and the harmonic heat flow. We focus on the following aspects of the LL equation.

Solitons In the absence of Gilbert damping, the LL equation is Hamiltonian. Moreover, it is integrable in
the one-dimensional case and explicit formulas for solitons can be given. In the easy-plane case,
the orbital and asymptotic stability of these solitons have been established. However, the stability in
other cases, such as in biaxial ferromagnets, remains an open problem. In higher dimensional cases,
the existence of solitons is more involved. In a previous work, a branch of semitopological solitons
with different speeds has been obtained numerically in planar ferromagnets. A rigorous proof of
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the existence of such solitons is established using perturbation arguments, provided that the speed
is small enough. However, the proof does not give information about their stability. We would like
to propose a variational approach to study the existence of this branch of solitons, that would lead
to the existence and stability of the whole branch of ground-state solitons as predicted. We also
investigate numerically the existence of other types of localized solutions for the LL equation, such
as excited states or vortices in rotation.

Approximate models An important physical conjecture is that the LL model is to a certain extent univer-
sal, so that the non-linear Schrödinger and Sine-Gordon equations can be obtained as its various
limit cases. In a previous work, A. de Laire has proved a result in this direction and established an
error estimate in Sobolev norms, in any dimension. A next step is to produce numerical simulations
that will enlighten the situation and drive further developments in this direction.

Self-similar behavior Self-similar solutions have attracted a lot of attention in the study of non-linear
PDEs because they can provide some important information about the dynamics of the equation.
While self-similar expanders are related to non-uniqueness and long time description of solutions,
self-similar shrinkers are related to a possible singularity formation. However, there is not much
known about the self-similar solutions for the LL equation. A. de Laire and S. Gutierrez (University
of Birmingham) have studied expander solutions and proved their existence and stability in the
presence of Gilbert damping. We will investigate further results about these solutions, as well as
the existence and properties of self-similar shrinkers.

This application domain involves in particular A. de Laire and G. Dujardin.

4.3 Cold atoms

The cold atoms team of the PhLAM Laboratory is reputed for having realized experimentally the so-called
Quantum Kicked Rotor, which provides a model for the phenomenon of Anderson localization. The
latter was predicted by Anderson in 1958, who received in 1977 a Nobel Prize for this work. Anderson
localization is the absence of diffusion of quantum mechanical wave functions (and of waves in general)
due to the presence of randomness in the medium in which they propagate. Its transposition to the
Quantum Kicked Rotor goes as follows: a freely moving quantum particle periodically subjected to a
“kick” will see its energy saturate at long times. In this sense, it “localizes” in momentum space since
its momenta do not grow indefinitely, as one would expect on classical grounds. In its original form,
Anderson localization applies to non-interacting quantum particles and the same is true for the saturation
effect observed in the Quantum Kicked Rotor.

The challenge is now to understand the effects of interactions between the atoms on the localiza-
tion phenomenon. Transposing this problem to the Quantum Kicked Rotor, this means describing the
interactions between the particles with a Gross–Pitaevskii equation, which is a NLS equation with a
local (typically cubic) non-linearity. So the particle’s wave function evolves between kicks following
the Gross–Pitaevskii equation and not the linear Schrödinger equation, as is the case in the Quantum
Kicked Rotor. Preliminary studies for the Anderson model have concluded that in that case the local-
ization phenomenon gives way to a slow subdiffusive growth of the particle’s kinetic energy. A similar
phenomenon is expected in the non-linear Quantum Kicked Rotor, but a precise understanding of the
dynamical mechanisms at work, of the time scale at which the subdiffusive growth will occur and of
the subdiffusive growth exponent is lacking. It is crucial to design and calibrate the experimental setup
intended to observe the phenomenon. The analysis of these questions poses considerable theoretical
and numerical challenges due to the difficulties involved in understanding and simulating the long term
dynamics of the non-linear system. A collaboration of the team members with the PhLAM cold atoms
group is currently under way.

This application domain involves in particular S. De Bièvre and G. Dujardin.

4.4 Qualitative and quantitative properties of numerical methods

Numerical simulation of multimode fibers The use of multimode fibers is a possible way to overcome
the bandwidth crisis to come in our worldwide communication network consisting in singlemode
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fibers. Moreover, multimode fibers have applications in several other domains, such as high power fiber
lasers and femtosecond-pulse fiber lasers which are useful for clinical applications of non-linear optical
microscopy and precision materials processing. From the modeling point of view, the envelope equations
are a system of non-linear non-local coupled Schrödinger equations. For a better understanding of
several physical phenomena in multimode fibers (e.g. continuum generation, condensation) as well as
for the design of physical experiments, numerical simulations are an adapted tool. However, the huge
number of equations, the coupled non-linearities and the non-local effects are very difficult to handle
numerically. Some attempts have been made to develop and make available efficient numerical codes
for such simulations. However, there is room for improvement: one may want to go beyond MATLAB
prototypes, and to develop an alternative parallelization to the existing ones, which could use the linearly
implicit methods that we plan to develop and analyze. In link with the application domain 4.1, we develop
in particular a code for the numerical simulation of the propagation of light in multimode fibers, using
high-order efficient methods, that is to be used by the physics community.

This application domain involves in particular G. Dujardin and A. Roget.

Qualitative and long-time behavior of numerical methods We contribute to the design and analysis
of schemes with good qualitative properties. These properties may as well be “asymptotic-preserving”
properties, energy-preserving properties, decay properties, or convergence to an equilibrium properties.
In particular, we contribute to the design and analysis of numerically hypocoercive methods for Fokker–
Planck equations [33], as well as energy-preserving methods for hamiltonian problems [2].

This application domain involves in particular G. Dujardin.

High-order methods We contribute to the design of efficient numerical methods for the simulation of
non-linear evolution problems. In particular, we focus on a class of linearly implicit high-order methods,
that have been introduced for ODEs [23]. We wish both to extend their analysis to PDE contexts, and to
analyze their qualitative properties in such contexts.

This application domain involves in particular G. Dujardin.

4.5 Modeling of the liquid-solid transition and interface propagation

Analogously to the so-called Kinetically Constrained Models (KCM) that have served as toy models for
glassy transitions, stochastic particle systems on a lattice can be used as toy models for a variety of
physical phenomena. Among them, the kinetically constrained lattice gases (KCLG) are models in which
particles jump randomly on a lattice, but are only allowed to jump if a local constraint is satisfied by the
system.

Because of the hard constraint, the typical local behavior of KCLGs will differ significantly depending
on the value of local conserved fields (e.g. particle density), because the constraint will either be typically
satisfied, in which case the system is locally diffusive (liquid phase), or not, in which case the system
quickly freezes out (solid phase).

Such a toy model for liquid-solid transition is investigated by C. Erignoux, M. Simon and their co-
authors in [3] and [31]. The focus of these articles is the so-called facilitated exclusion process, which is
a terminology coined by physicists for a specific KCLG, in which particles can only jump on an empty
neighbor if another neighboring site is occupied. They derive the macroscopic behavior of the model,
and show that in dimension 1 the hydrodynamic limit displays a phase separated behavior where the
liquid phase progressively invades the solid phase.

Both from a physical and mathematical point of view, much remains to be done regarding these
challenging models: in particular, they present significant mathematical difficulties because of the way
the local physical constraints put on the system distort the equilibrium and steady-states of the model.
For this reason, C. Erignoux, A. Roget and M. Simon are currently trying to work with A. Shapira (MAP5,
Paris) to generate numerical results on generalizations of the facilitated exclusion process, in order to
shine some light on the microscopic and macroscopic behavior of these difficult models.

This application domain involves in particular C. Erignoux, A. Roget and M. Simon.
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4.6 Mathematical modeling for ecology

This application domain is at the interface of mathematical modeling and numerics. Its object of study is
a set of concrete problems in ecology. The landscape of the south of the Hauts-de-France region is made
of agricultural land, encompassing forest patches and ecological corridors such as hedges. The issues are

• the study of the invasive dynamics and the control of a population of beetles which damages the
oaks and beeches of our forests;

• the study of native protected species (the purple wireworm and the pike-plum) which find refuge
in certain forest species.

Running numerics on models co-constructed with ecologists is also at the heart of the project. The
timescales of animals and plants are no different; the beetle larvae spend a few years in the earth before
moving. As a by-product, the mathematical model may tackle other major issues such as the interplay
between heterogeneity, diversity and invasibility.

The models use Markov chains at a mesoscopic scale and evolution advection-diffusion equations at
a macroscopic scale.

This application domain involves O. Goubet. Interactions with PARADYSE members concerned with
particle models and hydrodynamic limits are planned.

5 New results

Participants: Stephan De Bièvre, André de Laire, Guillaume Dujardin, Clément Erig-
noux, Olivier Goubet, Salvador López-Martínez, Marielle Simon, Lin-
jie Zhao.

Some of the results presented below overlap several of the main research themes presented in section
3. However, results presented in paragraphs 5.1-5.5 are mainly concerned with research axis 3.1, whereas
paragraphs 5.6-5.13 mostly concern axis 3.2. Paragraphs 5.14-5.16 concern numerics-oriented results,
and are encompassed in axis 3.3.

5.1 Existence and decay of traveling waves for the non-local Gross–Pitaevskii equa-
tion

The non-local Gross–Pitaevskii equation is a model that appears naturally in several areas of quantum
physics, for instance in the description of superfluids and in optics when dealing with thermo-optic
materials because the thermal non-linearity is usually highly non-local. A. de Laire and S. López-Martínez
considered a non-local family of Gross–Pitaevskii equations in dimension one, and they found in [26]
general conditions on the interactions, for which there is existence of dark solitons for almost every
subsonic speed. Moreover, they established properties of the solitons such as exponential decay at
infinity and analyticity. This work improves on the results obtained by A. de Laire and P. Mennuni in [38].

5.2 The cubic Schrödinger regime of the Landau–Lifshitz equation with a strong
easy-axis anisotropy

It is well-known that the dynamics of biaxial ferromagnets with a strong easy-axis anisotropy is essentially
governed by the cubic Schrödinger equation. A. de Laire and P. Gravejat provided in [7] a rigorous
justification to this observation, continuing with the work started in [37]. More precisely, they showed
the convergence of the solutions to the Landau–Lifshitz equation for biaxial ferromagnets towards the
solutions to the cubic Schrödinger equation in the regime of an easy-axis anisotropy. This result holds for
solutions to the Landau–Lifshitz equation in high-order Sobolev spaces. By introducing high-order energy
quantities with good symmetrization properties, they derived the convergence from the consistency of
the Landau–Lifshitz equation with the sine-Gordon equation by using well-tailored energy estimates.
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In this regime, they additionally classified the one-dimensional solitons of the Landau–Lifshitz
equation and quantified their convergence towards the solitons of the one-dimensional cubic Schrödinger
equation.

5.3 Recent results for the Landau–Lifshitz equation

In [16], A. de Laire surveys recent results concerning the Landau–Lifshitz equation, a fundamental
non-linear PDE with a strong geometric content, describing the dynamics of the magnetization in
ferromagnetic materials. He revisits the Cauchy problem for the anisotropic Landau–Lifshitz equation,
without dissipation, for smooth solutions, and also in the energy space in dimension one. He also
examines two approximations of the Landau–Lifshitz equation given by the sine-Gordon equation and
the cubic Schrödinger equation, arising in certain singular limits of strong easy-plane and easy-axis
anisotropy, respectively. Concerning localized solutions, he reviews the orbital and asymptotic stability
problems for a sum of solitons in dimension one, exploiting the variational nature of the solitons in the
hydrodynamical framework. Finally, he surveys results concerning the existence, uniqueness and stability
of self-similar solutions (expanders and shrinkers) for the isotropic LL equation with Gilbert term.

5.4 Modulational instability in random fibers and stochastic Schrödinger equations

The team achieved an analysis of modulational instability in optical fibers with randomly kicked normal
dispersion in [12] as well as with a normal dispersion perturbed with a coloured noise in [20]. S. De Bièvre,
G. Dujardin and collaborators developed and analyzed in [12] a physically realistic model of optical fibers
with randomly kicked normal dispersion. They analyzed the modulational instability generated in such
fibers through the associated gain, both theoretically and numerically. In [20] the effect of coloured
noise on the modulational instability was investigated in order to assess whether it can produce a larger
modulational instability. We found that generally this is not the case. This research was carried out with
physicists from the PhLAM laboratory in Lille.

Another important result of the team in this direction is [5], where O. Goubet et al. established the
decay rate of solutions to a non-linear Schrödinger equation with stochastic modulation. The result of [5]
is the first result concerning the long time behavior of solutions for non-linear Schrödinger equations
with white noise modulation. The final result is that the decay rate towards equilibrium for the non-linear
Schödinger equation is twice slower with white noise modulation than in the deterministic case.

5.5 Quantum optics and quantum information

Given two orthonormal bases in a d-dimensional Hilbert space, one may associate to each state its
Kirkwood–Dirac (KD) quasi-probability distribution. KD-non-classical states – those for which the KD-
distribution takes on negative and/or non-real values – have been shown to provide a quantum advantage
in quantum metrology and information, raising the question of their identification. Under suitable
conditions of incompatibility between the two bases, S. De Bièvre provided sharp lower bounds on the
support uncertainty of states that guarantee their KD-non-classicality in [4]. In particular, when the bases
are completely incompatible, a new notion introduced in this work, states whose support uncertainty is
not equal to its minimal value d+1 are necessarily KD-non-classical. The implications of these general
results for various commonly used bases, including the mutually unbiased ones, and their perturbations,
are detailed.

5.6 Hydrodynamic limit for a chain with thermal and mechanical boundary forces

In a collaboration with T. Komorowski and S. Olla [15], M. Simon proved the hydrodynamic limit for
an harmonic chain with a random exchange of momentum that conserves the kinetic energy but not
the momentum. The system is open and subject to two thermostats at the boundaries and to external
tension. Under a diffusive scaling of space-time, the authors proved that the empirical profiles of the two
locally conserved quantities, the volume stretch and the energy, converge to the solution of a non-linear
diffusive system of conservative partial differential equations.
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5.7 Stefan problem for a non-ergodic facilitated exclusion process

In [3], O. Blondel, C. Erignoux and M. Simon investigated the general hydrodynamics for the facilitated
exclusion process whose supercritical phase’s hydrodynamics had been previously investigated in [31].
This process is similar to the celebrated symmetric simple exclusion process, except that a particle is only
allowed to jump to a neighboring site if its other neighbor is occupied by a particle. This hard constraint
on the particle’s motion has a number of consequences on the microscopic and macroscopic behavior of
the system. In particular, under the critical density ρc = 1/2, the system quickly freezes out and particles
stop moving.

The purpose of this work was to investigate the macroscopic invasion of the frozen phase by the
ergodic phase, and the authors were able to prove that starting from a profile with both supercritical and
subcritical regions, the hydrodynamics for the facilitated exclusion process is given by a Stefan problem:
the diffusive supercritical phase progressively invades the subcritical phase via flat interfaces, until either
one of the phases disappears.

5.8 Hydrodynamic limit for an active exclusion process

In [6], C. Erignoux investigated the scaling limit of an active exclusion process, which is a microscopic
dynamics put forward to model self-organization as observed in various animal species (e.g. school of fish,
flock of birds). Active models can exhibit rich phenomenology, such as Motility Induced Phase Separation
(MIPS), and the formation of spontaneous collective dynamics, as in Viszek’s celebrated model. However,
because of the exclusion rule between particles (two particles cannot occupy the same site of the lattice),
the model is non-gradient, resulting in a complex, non-explicit, cross-diffusive hydrodynamic equation.

In [24], C. Erignoux builds on previous work [6], [36] and explores various aspects of modeling
individual-based active matter models. In particular, [24] describes general aspects of the mathematical
theory of hydrodynamic limits, and basic principles to conjecture the hydrodynamic equation given the
underlying microscopic system. One of the objectives of the article is to provide members of the physics
community interested in active matter with tools to navigate and use mathematical theory for hydro-
dynamic limits. The article also conjectures the so-called non-equilibrium fluctuating hydrodynamics
for active lattice gases. The long term goal is to derive in a mathematically satisfying way the two phe-
nomena described above (MIPS and collective dynamics), for which the hydrodynamic equation yields
some information, but the fluctuating hydrodynamics is necessary to fully understand the underlying
mechanisms.

5.9 Large deviations principle for the SSEP with weak boundary interactions

Efficiently characterizing non-equilibrium stationary states (NESS) has been in recent years a central
question in statistical physics. The Macroscopic Fluctuations Theory [30] developped by Bertini et
al. has laid out a strong mathematical framework to understand NESS, however fully deriving and
characterizing large deviations principles for NESS remains a challenging endeavour. In [27], C. Erignoux
and his collaborators proved that a static large deviations principle holds for the NESS of the classical
Symmetric Simple Exclusion Process (SSEP) in weak interaction with particles reservoirs. This result
echoes a previous result by Derrida, Lebowitz and Speer [32], where the SSEP with strong boundary
interactions was considered. In [27], it was also shown that the rate function can be characterized both
by a variational formula involving the corresponding dynamical large deviations principle, and by the
solution to a non-linear differential equation. The obtained differential equation is the same as in [32],
with different boundary conditions corresponding to the different scales of boundary interaction.

5.10 Asymmetric attractive zero-range process with destruction at the origin

In [25], C. Erignoux, M. Simon and L. Zhao considered the effect of boundary interactions on the one-
dimensional asymmetric zero-range process on the full line. More precisely, particles are destroyed
at the origin of the system at rate αNβ, and they showed that depending on the value of β, different
behaviors can be derived for the macroscopic limit of the system: for negative β, particle destructions do
not have a macroscopic effect, and the system macroscopically behaves as the asymmetric zero-range



10 Inria Annual Report 2021

process without destruction. For β= 0, a proportion (depending on α) of particles is destroyed, and the
right-hand side x > 0 behaves as a zero-range process with a boundary condition at the origin which is a
function of the density on the left of the origin. For β> 0, finally, most particles are destroyed while they
go through the origin, so that no mass crosses through the origin at the macroscopic level.

5.11 SSEP with a slow bond and site boundary

In [18], L. Zhao and his coauthor considered the one-dimensional symmetric simple exclusion process
with a slow bond. In this model, particles cross each bond at rate N 2, except one particular bond, the
slow bond, where the rate is N . Above, N is the scaling parameter. This model has been considered in the
context of hydrodynamic limits, fluctuations and large deviations. They investigated moderate deviations
from hydrodynamics and obtained a moderate deviations principle.

5.12 Non-equilibrium fluctuations of the weakly asymmetric normalized binary
contact path process

In [19], X. Xue and L. Zhao further investigated the problem studied in [40], where the authors proved a
law of large numbers for the empirical measure of the weakly asymmetric normalized binary contact
path process on Zd , d ≥ 3, and then conjectured that a central limit theorem should hold under a non-
equilibrium initial condition. They proved that the said conjecture is true when the dimension d of the
underlying lattice and the infection rate λ of the process are sufficiently large.

5.13 Mathematical modeling for ecology

The team had an important contribution to the multi-scale ecosystem modeling. O. Goubet and his
collaborators computed in [22] the large population limit of a stochastic process that models the evolution
of a complex forest ecosystem to an evolution convection-diffusion equation that is more suitable for
concrete computations. Then, they proved on the limit equation that the existence of exchange of
population between forest patches slows down the extinction of species.

In [21] O. Goubet and his collaboraters addressed the initial value problem for a shallow water system
of equations with a Coriolis force term. This result is non-standard due to the Coriolis term.

5.14 Numerical integration of the stochastic Manakov system

The stochastic Manakov system is a dispersive non-linear system of PDEs that models the propagation of
light in an optical fiber with randomly varying birefringence.

In [29], G. Dujardin and his collaborators introduced a linearly implicit scheme for the time integration
of the stochastic Manakov system, that they analyzed and compared to the existing methods from the
literature. In particular, they proved that the strong order of the numerical approximation is 1/2 if the
non-linear term in the system is globally Lipschitz-continuous. They also proved that this numerical
method converges with order 1/2 in probability and with order 1/2− almost surely, in the case of the
cubic non-linear coupling which is relevant in optical fibers. They also proposed a modification of their
method to obtain a mass-preserving scheme.

In [8], G. Dujardin and his collaborators developed, analyzed and implemented a numerical method
based on the Lie–Trotter formula for the integration of the stochastic Manakov system. In particular, they
proved that the strong order of the numerical approximation is 1/2 if the non-linear term in the system is
globally Lipschitz. They also proved that this splitting scheme converges with order 1/2 in probability,
and converges almost surely with order 1/2− as well. They provided numerical experiments to compare
the efficiency of this scheme with existing methods from the literature, and they investigated numerically
the possible blow-up in finite time of solutions to this SPDE system.

5.15 Linearly implicit high-order numerical methods for evolution problems

G. Dujardin and his collaborator derived in [23] a new class of numerical methods for the time integration
of evolution equations set as Cauchy problems of ODEs or PDEs, in the research direction detailed in
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Section 3.3. The systematic design of these methods mixes the Runge–Kutta collocation formalism with
collocation techniques, in such a way that the methods are linearly implicit and have high order. The fact
that these methods are implicit allows to avoid CFL conditions when the large systems to integrate come
from the space discretization of evolution PDEs. Moreover, these methods are expected to be efficient
since they only require to solve one linear system of equations at each time step, and efficient techniques
from the literature can be used to do so.

5.16 Energy-preserving methods for non-linear Schrödinger equations

G. Dujardin and his co-authors revisited and extended relaxation methods for non-linear Schrödinger
equations (NLS). The classical relaxation method for NLS is a mass- and energy-preserving method. More-
over, it is only linearly implicit. A first proof of the second-order accuracy was achieved in [2]. Moreover,
the method was extended to enable to treat non-cubic non-linearities, non-local non-linearities, as well
as rotation terms. The resulting methods are still mass-preserving and energy-preserving. Moreover,
they are shown to have second-order accuracy numerically. These new methods are compared with fully
implicit, mass- and energy-preserving methods of Crank and Nicolson.

6 Partnerships and cooperations

Participants: André de Laire, Olivier Goubet, Marielle Simon.

6.1 International initiatives

André de Laire and Olivier Goubet got a support from CNRS to develop a collaboration on the study of
travelling wave solutions with the CMM of Santiago in Chile (with the team of Claudio Muñoz).

• Title: "LISA (LIlle-Santiago)"

• Members: A. de Laire, O. Goubet

• Total amount of the grant: 4 000 euros/year

• Duration: 2021-2022

6.2 European initiatives

Marielle Simon is the PI of the MATMOVIN project cofunded by the European Union together with the
“Fonds de Développement Régional”.

• Title: “Description microscopique des transitions de phase et interfaces mobiles : avancées
mathématiques”

• Type: Post-doc grant of 2 years

• Duration: September 2020 – August 2022

• Research group: M. Simon (PI, Inria Lille), A. Roget (Inria Lille), L. Zhao (Inria Lille)

6.3 National initiatives

6.3.1 ANR MICMOV

Marielle Simon is the PI of the ANR MICMOV project.

• Title: “Microscopic description of moving interfaces”

• Link to the website

• ANR Reference: ANR-19-CE40-0012

https://www.cmm.uchile.cl/
https://www.cmm.uchile.cl/?cmm_people=claudio-munoz
https://anr.fr/Projet-ANR-19-CE40-0012
http://chercheurs.lille.inria.fr/masimon/anr.html
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• Members: M. Simon (PI, Inria Lille), G. Barraquand (LPTENS Paris), O. Blondel (Université de
Lyon), C. Cancès (Inria Lille), C. Erignoux (Inria Lille), M. Herda (Inria Lille), L. Zhao (Inria
Lille)

• Total amount of the grant: 132 000 euros

• Duration: March 2020 – October 2024

6.3.2 LabEx CEMPI

Through their affiliation to the Laboratoire Paul Painlevé of Université de Lille, PARADYSE team members
benefit from the support of the LabEx CEMPI.

Title: Centre Européen pour les Mathématiques, la Physique et leurs Interactions

Partners: Laboratoire Paul Painlevé (LPP) and Laser Physics department (PhLAM), Université de Lille

ANR reference: 11-LABX-0007

Duration: February 2012 - December 2024 (the project has been renewed in 2019)

Budget: 6 960 395 euros

Coordinator: Emmanuel Fricain (LPP, Université de Lille)

The "Laboratoire d’Excellence" CEMPI (Centre Européen pour les Mathématiques, la Physique et leurs
Interactions), a project of the Laboratoire de mathématiques Paul Painlevé (LPP) and the laboratoire
de Physique des Lasers, Atomes et Molécules (PhLAM), was created in the context of the "Programme
d’Investissements d’Avenir" in February 2012. The association Painlevé-PhLAM creates in Lille a research
unit for fundamental and applied research and for training and technological development that covers a
wide spectrum of knowledge stretching from pure and applied mathematics to experimental and applied
physics. The CEMPI research is at the interface between mathematics and physics. It is concerned with
key problems coming from the study of complex behaviors in cold atoms physics and nonlinear optics, in
particular fiber optics. It deals with fields of mathematics such as algebraic geometry, modular forms,
operator algebras, harmonic analysis, and quantum groups, that have promising interactions with several
branches of theoretical physics.

6.3.3 ADT SIMPAPH

The PARADYSE project-team was granted the SIMPAPH “Action de Développement Technologique”,
which allowed to hire Alexandre Roget as an engineer in the project-team from 2019 to 2021. This ADT
SIMPAPH’s goals were originally threefold:

• develop a software for the simulation of the propagation of light in multimode optical fibers for the
optical physics community;

• simulate large systems of random particles such as two-dimensional constrained lattice gases;

• simulate the dynamics of 3D Bose–Einstein condensates.

6.4 Regional initiatives

Olivier Goubet (PI) got a support from Région Hauts-de-France (grant STIMULE STIR) to initiate a
research program involving applied mathematicians in Amiens, Calais, Lille and Valenciennes.

• Title: "Super QUantum fluids and shAllow Water equations"

• Members: C. Calgaro, O. Goubet, T. Rey (U-Lille), J.-P. Chehab, V. Desveaux, Y. Mammeri, V.
Martin, H. Le Meur (UPJV), A. Benoit, C. Bourel, C. Rosier, L. Rosier (ULCO), E. Creusé (UPHF)

• Total amount of the grant: 14 400 euros

• Duration: November 2021–April 2023
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7 Dissemination

Participants: Stephan De Bièvre, André de Laire, Guillaume Dujardin, Clément Erig-
noux, Olivier Goubet, Salvador López-Martínez, Marielle Simon, Lin-
jie Zhao.

7.1 Promoting scientific activities

7.1.1 Scientific events: organisation

• A. de Laire co-organized the “Journée des Doctorants en Mathématiques de la région Hauts-de-
France”, on October 1st, 2021, held at the Universtié Picardie Jules Verne, Amiens. Event’s webpage.

• C. Erignoux co-organized the “Journée de rentrée du Laboratoire Paul Painlevé”, on November 25th,
2021, held at "La Piscine de Roubaix". Event’s webpage.

• O. Goubet co-organized the "Conférence en l’honneur de Serge Nicaise", from November 2nd to
5th, 2021, held at the University of Valenciennes. Event’s webpage.

• M. Simon co-organized the "Online junior conference on random graphs and interacting particle
systems", from September 6th to 10th, 2021, held online. Event’s webpage.

7.1.2 Journal

Member of the editorial boards: O. Goubet was the guest co-editor of the special issue of Discrete &
Continuous Dynamical Systems - A (DCDS-A) Vol. 14, no. 8 of August 2021.

S. De Bièvre is associate editor of the Journal of Mathematical Physics (since January 2019).

Reviewer - reviewing activities: All permanent members of the PARADYSE team work as referees for
many of the main scientific publications in analysis, probability and statistical physics, depending on
their respective fields of expertise.

7.1.3 Invited talks

All PARADYSE team members take active part in numerous scientific conferences, workshops and semi-
nars, and in particular give frequent talks both in France and abroad.

7.1.4 Leadership within the scientific community

O. Goubet is the president of the Société de Mathématiques Appliquées et Industrielles (SMAI).

7.1.5 Research administration

• S. De Bièvre and A. de Laire are both members of the “Conseil de Laboratoire Paul Painlevé” at
Université de Lille.

• S. De Bièvre is member of the executive committee of the LabEx CEMPI.

• C. Erignoux is a member of the LNE Inria research center’s "Comité de Centre".

• M. Simon is member of the CNU (Conseil National des Universités), Section 26.

https://indico.math.cnrs.fr/event/6774/
https://www.mathconf.org/jlpp2021/
https://nicaise2021.sciencesconf.org
https://www.math.univ-paris13.fr/~mallein/graphsandparticles2021/
http://smai.emath.fr/
https://math.univ-lille1.fr/~cempi/index_eng.php
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7.2 Teaching - Supervision - Juries

7.2.1 Teaching

The PARADYSE team teaches various undergraduate level courses in several partner universities and
Grandes Écoles. We only make explicit mention here of the Master courses (level M1-M2) and the doctoral
courses.

• Master: O. Goubet and A. de Laire, "Modélisation et Approximation par Différences Finies", M1
(Université de Lille, 54h).

• Master: O. Goubet, "Etude de problèmes elliptiques et paraboliques", M1 (Université de Lille, 24h).

• Doctoral School: M. Simon, "Harmonic chain of oscillators with random flips of velocities" (GSSI
Institute, L’Aquila, Italy, 12h).

• Doctoral School: S. De Bièvre, "Quantum information" (Université de Lille, 24h).

S. De Bièvre represents (since 2018) the department of Mathematics in the organization of the newly
created Master of Data Science of EC Lille, Université de Lille and IMT.

7.2.2 Supervision

• A. de Laire supervised the post-doc of S. López-Martínez, which ended in August 2021.

• G. Dujardin co-advises (with I. Lacroix-Violet) the PhD thesis of Anthony Nahas. Title: "Simulation
of rotating multi-species Bose–Einstein condensates".

• C. Erignoux and M. Simon co-supervise the post-doc of Linjie Zhao.

• C. Erignoux supervised the first year of master’s internship of Hugues Moyart from March to August
2021. Title: "Duality and influence of thermostats on the macroscopic limit of the symmetric simple
exclusion process".

• O. Goubet co-advises (with B. Alouini, B. Dehman and V. Martin) the PhD thesis of Mariem Abidi.
Title: "Logarithmic Schrödinger equations".

• O. Goubet co-advises (with V. Desveaux) the PhD thesis of Alice Masset. Title: "Shallow water
equations with Coriolis forcing and temperature".

• O. Goubet co-advises (with G. Decocq) the PhD thesis of Clément Carlier. Title: "Models for
metapopulations in forest ecology".

• M. Simon co-advises (with P. Gonçalves) the PhD thesis of Gabriel Nahum. Title: "Non-linear
Problems in Interacting Particle Systems".

7.2.3 Juries

• A. de Laire was referee and member of the jury of the PhD thesis of J. Alhelou (Université de Toulouse
III, November 2021). Title: "Mathematical and numerical analysis for a Gross–Clark–Schrödinger
system".

• A. de Laire was referee and member of the jury of the PhD thesis of X. Yuan (École polytechnique,
Paris, June 2021). Title: "Long time dynamics for non-linear wave-type equations with or without
damping".

• O. Goubet was the referee and member of the jury of the PhD thesis of S. Bahrouni (University of
Monastir, Tunisia, July 2021). Title: "Orlicz–Sobolev fractional spaces and applications to non-linear
problems".
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• O. Goubet was president of the jury of the PhD thesis of M. Handa (Unheld iverstié Picardie Jules
Verne, Amiens, July 2021). Title: "Modelisation, optimisation and simulation of power distribution
networks".

• O. Goubet was member of the jury of the Habilitation of B. Alouini (University of Monastir, Tunisia,
July 2021). Title: "Study of non-linear anisotropic Bose–Einstein and Shrödinger equations".

• M. Simon was member of the jury of the PhD thesis of B. Dagallier (École polytechnique, Paris,
September 2021). Title: "Large deviations in interacting particle systems: out of equilibrium
correlations and interface dynamics".

• M. Simon was member of the jury of the PhD thesis of A. Ertul (Université Lyon 1, December 2021).
Title: "Diffusion and relaxation for particle systems with kinetic constraints".

• M. Simon was member of the jury of the PhD thesis of A. Hannani (Université PSL Dauphine, Paris,
December 2021). Title: "Random perturbation of certain interacting particle systems related to
quantum mechanics".

7.3 Popularization

A. de Laire participated in Declics 2021, a scientific speed meeting with high school students at Lycée
Faidherbe, on December 7th 2021, Lille.

S. De Bièvre published a series of three articles in Images des Mathématiques on quantum cryptogra-
phy.

8 Scientific production

8.1 Major publications
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(2018), pp. 1731–1757. DOI: 10.1214/17-AIHP853. URL: https://hal.archives-ouvertes.fr
/hal-01348503.
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