
2021
ACTIVITY REPORT

Project-Team

PARKAS

RESEARCH CENTRE

Paris

IN PARTNERSHIP WITH:

CNRS, Ecole normale supérieure de Paris

Parallélisme de Kahn Synchrone

IN COLLABORATION WITH: Département d’Informatique de l’Ecole
Normale Supérieure

DOMAIN

Algorithmics, Programming, Software
and Architecture

THEME

Embedded and Real-time Systems

Contents

Project-Team PARKAS 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 2

3 Research program 3
3.1 Programming Languages for Cyber-Physical Systems . 3
3.2 Compiling for Sequential and Multi-Core Processors . 3
3.3 Validation and Proof of Compilers . 4
3.4 Probabilistic Reactive Programming . 4

4 Application domains 5
4.1 Embedded Control Software . 5
4.2 Hybrid Systems Design and Simulation . 5

5 Highlights of the year 5
5.1 Awards . 5

6 New software and platforms 5
6.1 New software . 6

6.1.1 Heptagon . 6
6.1.2 SundialsML . 6
6.1.3 Zelus . 7
6.1.4 Vélus . 7
6.1.5 MPPcodegen . 8
6.1.6 MPP . 8
6.1.7 ProbZelus . 8
6.1.8 DeepStan . 9

7 New results 9
7.1 Verified compilation of Lustre . 9
7.2 Latency-based scheduling of synchronous programs . 11
7.3 Sundials/ML: OCaml interface to Sundials Numeric Solvers 12
7.4 The Zelus Language . 12
7.5 An executable reference semantics for Zelus . 13
7.6 Array Size Checking and Inference with an ML Type System 13
7.7 Probabilistic Programming . 14

7.7.1 Reactive Probabilistic Programming . 14
7.7.2 Compiling Stan to Generative Probabilistic Languages 15

7.8 Automated Machine Learning . 15
7.8.1 Lale: Gradual Automation . 15
7.8.2 Extracting Hyperparameters Constraints from Code 15

7.9 Application: Learning GraphQL Query Cost . 16

8 Bilateral contracts and grants with industry 16
8.1 Bilateral contracts with industry . 16

9 Partnerships and cooperations 16
9.1 International initiatives . 16

9.1.1 Participation in other International Programs . 16
9.2 European initiatives . 17

9.2.1 FP7 & H2020 projects . 17
9.3 National initiatives . 18

9.3.1 ANR . 18

9.3.2 FUI: Fonds unique interministériel . 18
9.3.3 Programme d’Investissements d’Avenir (PIA) . 19
9.3.4 Others . 19

10 Dissemination 19
10.1 Promoting scientific activities . 19

10.1.1 Scientific events: organisation . 19
10.1.2 Scientific events: selection . 19
10.1.3 Journal . 20
10.1.4 Invited talks . 20
10.1.5 Research administration . 20

10.2 Teaching - Supervision - Juries . 20
10.2.1 Teaching . 20
10.2.2 Supervision . 21

10.3 Popularization . 21
10.3.1 Education . 21

11 Scientific production 21
11.1 Major publications . 21
11.2 Publications of the year . 22
11.3 Cited publications . 23

Project PARKAS 1

Project-Team PARKAS

Creation of the Project-Team: 2012 January 01

Keywords

Computer sciences and digital sciences

A1.1.1. – Multicore, Manycore

A1.2.7. – Cyber-physical systems

A2.1.1. – Semantics of programming languages

A2.1.4. – Functional programming

A2.1.6. – Concurrent programming

A2.1.9. – Synchronous languages

A2.1.10. – Domain-specific languages

A2.2.4. – Parallel architectures

A2.2.8. – Code generation

A2.3. – Embedded and cyber-physical systems

A2.3.1. – Embedded systems

A2.3.2. – Cyber-physical systems

A2.3.3. – Real-time systems

A2.4.3. – Proofs

A3.4.5. – Bayesian methods

A6.2.1. – Numerical analysis of PDE and ODE

A6.2.2. – Numerical probability

A6.2.3. – Probabilistic methods

A6.4.1. – Deterministic control

A6.4.2. – Stochastic control

Other research topics and application domains

B5.2.1. – Road vehicles

B5.2.2. – Railway

B5.2.3. – Aviation

B6.4. – Internet of things

B6.6. – Embedded systems

B7.2.1. – Smart vehicles

B9.5.1. – Computer science

B9.5.2. – Mathematics

https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Inria Annual Report 2021

1 Team members, visitors, external collaborators

Research Scientists

• Guillaume Baudart [Inria, Starting Faculty Position]

• Timothy Bourke [Inria, Researcher]

Faculty Members

• Marc Pouzet [Team leader, Sorbonne Université, Professor, HDR]

• Paul Feautrier [Université de Lyon, Emeritus]

PhD Students

• Paul Jeanmaire [Inria]

• Ismail Lahkim Bennani [Inria, until May 2021]

• Astyax Nourel [Inria, from Apr 2021 until Sep 2021]

• Baptiste Pauget [ANSYS, CIFRE]

• Basile Pesin [Inria]

Interns and Apprentices

• Antonin Reitz [Inria, from Apr 2021 until Aug 2021]

• Reyyan Tekin [Inria, from Mar 2021 until Aug 2021]

Administrative Assistants

• Christine Anocq [Inria]

• Nelly Maloisel [Inria]

2 Overall objectives

Research in PARKAS focuses on the design, semantics, and compilation of programming languages which
allow going from parallel deterministic specifications to target embedded code executing on sequential
or multi-core architectures. We are driven by the ideal of a mathematical and executable language used
both to program and simulate a wide variety of systems, including real-time embedded controllers in
interaction with a physical environment (e.g., fly-by-wire, engine control), computationally intensive
applications (e.g., video), and compilers that produce provably correct and efficient code.

The team bases its research on the foundational work of Gilles Kahn on the semantics of determin-
istic parallelism, the theory and practice of synchronous languages and typed functional languages,
synchronous circuits, modern (polyhedral) compilation, and formal models to prove the correctness of
low-level code.

To realize our research program, we develop languages (LUCID SYNCHRONE, REACTIVEML, LUCY-N,
ZELUS), compilers, contributions to open-source projects (Sundials/ML), and formalizations in Interac-
tive Theorem Provers of language semantics (Vélus and n-synchrony). These software projects constitute
essential “laboratories”: they ground our scientific contributions, guide and validate our research through
experimentation, and are an important vehicle for long-standing collaborations with industry.

Project PARKAS 3

3 Research program

3.1 Programming Languages for Cyber-Physical Systems

We study the definition of languages for reactive and Cyber-Physical Systems in which distributed
control software interacts closely with physical devices. We focus on languages that mix discrete-time
and continuous-time; in particular, the combination of synchronous programming constructs with
differential equations, relaxed models of synchrony for distributed systems communicating via periodic
sampling or through buffers, and the embedding of synchronous features in a general purpose ML
language.

The synchronous language SCADE based on synchronous languages principles, is ideal for program-
ming embedded software and is used routinely in the most critical applications. But embedded design
also involves modeling the control software together with its environment made of physical devices
that are traditionally defined by differential equations that evolve on a continuous-time basis and ap-
proximated with a numerical solver. Furthermore, compilation usually produces single-loop code, but
implementations increasingly involve multiple and multi-core processors communicating via buffers
and shared-memory.

The major player in embedded design for cyber-physical systems is undoubtedly SIMULINK, with
MODELICA a new player. Models created in these tools are used not only for simulation, but also for test-
case generation, formal verification, and translation to embedded code. That said, many foundational
and practical aspects are not well-treated by existing theory (for instance, hybrid automata), and current
tools. In particular, features that mix discrete and continuous time often suffer from inadequacies and
bugs. This results in a broken development chain: for the most critical applications, the model of the
controller must be reprogrammed into either sequential or synchronous code, and properties verified
on the source model have to be reverified on the target code. There is also the question of how much
confidence can be placed in the code used for simulation.

We attack these issues through the development of the ZELUS research prototype, industrial collabora-
tions with the SCADE team at ANSYS/Esterel-Technologies, and collaboration with Modelica developers
at Dassault-Systèmes and the Modelica association. Our approach is to develop a conservative extension
of a synchronous language capable of expressing in a single source text a model of the control software
and its physical environment, to simulate the whole using off-the-shelf numerical solvers, and to generate
target embedded code. Our goal is to increase faithfulness and confidence in both what is actually
executed on platforms and what is simulated. The goal of building a language on a strong mathematical
basis for hybrid systems is shared with the Ptolemy project at UC Berkeley; our approach is distinguished
by building our language on a synchronous semantics, reusing and extending classical synchronous
compilation techniques.

Adding continuous time to a synchronous language gives a richer programming model where reactive
controllers can be specified in idealized physical time. An example is the so called quasi-periodic
architecture studied by Caspi, where independent processors execute periodically and communicate
by sampling. We have applied ZELUS to model a class of quasi-periodic protocols and to analyze an
abstraction proposed for model-checking such systems.

Communication-by-sampling is suitable for control applications where value timeliness is paramount
and lost or duplicate values tolerable, but other applications—for instance, those involving video streams—
seek a different trade-off through the use of bounded buffers between processes. We developed the
n-synchronous model and the programming language LUCY-N to treat this issue.

3.2 Compiling for Sequential and Multi-Core Processors

We develop compilation techniques for sequential and multi-core processors, and efficient parallel
run-time systems for computationally intensive real-time applications (e.g., video and streaming). We
study the generation of parallel code from synchronous programs, compilation techniques based on the
polyhedral model, and the exploitation of synchronous Single Static Assignment (SSA) representations in
general purpose compilers.

We consider distribution and parallelism as two distinct concepts.

https://www.ansys.com/products/embedded-software/ansys-scade-suite
http://www.mathworks.com/products/simulink
https://www.modelica.org
https://zelus.di.ens.fr

4 Inria Annual Report 2021

• Distribution refers to the construction of multiple programs which are dedicated to run on specific
computing devices. When an application is designed for, or adapted to, an embedded multipro-
cessor, the distribution task grants fine grained—design- or compilation-time—control over the
mapping and interaction between the multiple programs.

• Parallelism is about generating code capable of efficiently exploiting multiprocessors. Typically
this amounts to making (in)dependence properties, data transfers, atomicity and isolation explicit.
Compiling parallelism translates these properties into low-level synchronization and communica-
tion primitives and/or onto a runtime system.

We also see a strong relation between the foundations of synchronous languages and the design of
compiler intermediate representations for concurrent programs. These representations are essential to
the construction of compilers enabling the optimization of parallel programs and the management of
massively parallel resources. Polyhedral compilation is one of the most popular research avenues in this
area. Indirectly, the design of intermediate representations also triggers exciting research on dedicated
runtime systems supporting parallel constructs. We are particularly interested in the implementation of
non-blocking dynamic schedulers interacting with decoupled, deterministic communication channels to
hide communication latency and optimize local memory usage.

While distribution and parallelism issues arise in all areas of computing, our programming language
perspective pushes us to consider four scenarios:

1. designing an embedded system, both hardware and software, and codesign;

2. programming existing embedded hardware with functional and behavioral constraints;

3. programming and compiling for a general-purpose or high-performance, best-effort system;

4. programming large scale distributed, I/O-dominated and data-centric systems.

We work on a multitude of research experiments, algorithms and prototypes related to one or more of
these scenarios. Our main efforts focused on extending the code generation algorithms for synchronous
languages and on the development of more scalable and widely applicable polyhedral compilation
methods.

3.3 Validation and Proof of Compilers

Compilers are complex software and not immune from bugs. We work on validation and proof tools for
compilers to relate the semantics of source programs with the corresponding executable code.

The formal validation of a compiler for a synchronous language, or more generally for a language
based on synchronous block diagrams, promises to reduce the likelihood of compiler-introduced bugs,
the cost of testing, and also to ensure that properties verified on the source model hold of the target
code. Such a validation would be complementary to existing industrial qualifications which certify
the development process and not the functional correctness of a compiler. The scientific interest is in
developing models and techniques that both facilitate the verification and allow for convenient reasoning
over the semantics of a language and the behavior of programs written in it.

3.4 Probabilistic Reactive Programming

Most embedded systems evolve in an open, noisy environment that they only perceive through noisy
sensors (e.g., accelerometers, cameras, or GPS). Another level of uncertainty comes from interactions
with other autonomous entities (e.g., surrounding cars, or pedestrians crossing the street). Yet, to date,
existing tools for cyber-physical system have had limited support for modeling uncertainty, to simulate
the behavior of the systems, or to infer parameters from noisy observations. The classic approach consists
in hand-coding robust stochastic controllers. But this solution is limited to well-understood and relatively
simple tasks like the lane following assist system. However, no such controller can handle, for example,
the difficult to anticipate behavior of a pedestrian crossing the street. A modern alternative is to rely on
deep-learning techniques. But neural networks are black-box models that are notoriously difficult to

Project PARKAS 5

understand and verify. Training them requires huge amounts of curated data and computing resources
which can be problematic for corner-case scenarios in embedded control systems.

Over the last few years, Probabilistic Programming Languages (PPL) have been introduced to describe
probabilistic models and automatically infer distributions of parameters from observed data. Compared
to deep-learning approaches, probabilistic models show great promise: they overtly represent uncertainty,
and they enable explainable models that can capture both expert knowledge and observed data.

A probabilistic reactive language provides the facilities of a synchronous language to write control
software, with probabilistic constructs to model uncertainties and perform inference-in-the-loop. This
approach offers two key advantages for the design of embedded systems with uncertainty: 1) Probabilistic
models can be used to simulate an uncertain environment for early stage design and incremental
development. 2) The embedded controller itself can rely on probabilistic components which implement
skills that are out of reach for classic automatic controllers.

4 Application domains

4.1 Embedded Control Software

Embedded control software defines the interactions of specialized hardware with the physical world. It
normally ticks away unnoticed inside systems like medical devices, trains, aircraft, satellites, and factories.
This software is complex and great effort is required to avoid potentially serious errors, especially over
many years of maintenance and reuse.

Engineers have long designed such systems using block diagrams and state machines to represent the
underlying mathematical models. One of the key insights behind synchronous programming languages
is that these models can be executable and serve as the base for simulation, validation, and automatic
code generation. This approach is sometimes termed Model-Based Development (MBD). The SCADE
language and associated code generator allow the application of MBD in safety-critical applications. They
incorporate ideas from LUSTRE, LUCID SYNCHRONE, and other programming languages.

4.2 Hybrid Systems Design and Simulation

Modern embedded systems are increasingly conceived as rich amalgams of software, hardware, net-
working, and physical processes. The terms Cyberphysical System (CPS) or Internet-of-Things (IoT) are
sometimes used as labels for this point of view.

In terms of modeling languages, the main challenges are to specify both discrete and continuous
processes in a single hybrid language, give meaning to their compositions, simulate their interactions,
analyze the behavior of the overall system, and extract code either for target control software or more
efficient, possibly online, simulation. Languages like Simulink and Modelica are already used in the
design and analysis of embedded systems; it is more important than ever to understand their underlying
principles and to propose new constructs and analyses.

5 Highlights of the year

The PARKAS team organized the 28th International Open Workshop on Synchronous Programming
(SYNCHRON 2021).

5.1 Awards

Timothy Bourke, Basile Pesin, Paul Jeanmaire, and Marc Pouzet received the best paper award for “Verified
Lustre Normalization with Node Subsampling” [13] at the ACM SIGBED International Conference on
Embedded Software (EMSOFT) in October 2021.

6 New software and platforms

Software developed in the PARKAS team.

https://synchron2021.inria.fr

6 Inria Annual Report 2021

6.1 New software

6.1.1 Heptagon

Keywords: Compilers, Synchronous Language, Controller synthesis

Functional Description: Heptagon is an experimental language for the implementation of embedded
real-time reactive systems. It is developed inside the Synchronics large-scale initiative, in col-
laboration with Inria Rhones-Alpes. It is essentially a subset of Lucid Synchrone, without type
inference, type polymorphism and higher-order. It is thus a Lustre-like language extended with
hierchical automata in a form very close to SCADE 6. The intention for making this new language
and compiler is to develop new aggressive optimization techniques for sequential C code and
compilation methods for generating parallel code for different platforms. This explains much of
the simplifications we have made in order to ease the development of compilation techniques.

The current version of the compiler includes the following features: - Inclusion of discrete controller
synthesis within the compilation: the language is equipped with a behavioral contract mechanisms,
where assumptions can be described, as well as an "enforce" property part. The semantics of this
latter is that the property should be enforced by controlling the behaviour of the node equipped
with the contract. This property will be enforced by an automatically built controller, which will act
on free controllable variables given by the programmer. This extension has been named BZR in
previous works. - Expression and compilation of array values with modular memory optimization.
The language allows the expression and operations on arrays (access, modification, iterators). With
the use of location annotations, the programmer can avoid unnecessary array copies.

URL: https://gitlab.inria.fr/synchrone/heptagon

Contact: Gwenaël Delaval

Participants: Adrien Guatto, Brice Gelineau, Cédric Pasteur, Eric Rutten, Gwenaël Delaval, Léonard
Gérard, Marc Pouzet

Partners: UGA, ENS Paris, Inria, LIG

6.1.2 SundialsML

Name: Sundials/ML

Keywords: Simulation, Mathematics, Numerical simulations

Scientific Description: Sundials/ML is a comprehensive OCaml interface to the Sundials suite of numer-
ical solvers (CVODE, CVODES, IDA, IDAS, KINSOL). Its structure mostly follows that of the Sundials
library, both for ease of reading the existing documentation and for adapting existing source code,
but several changes have been made for programming convenience and to increase safety, namely:

solver sessions are mostly configured via algebraic data types rather than multiple function calls,

errors are signalled by exceptions not return codes (also from user-supplied callback routines),

user data is shared between callback routines via closures (partial applications of functions),

vectors are checked for compatibility (using a combination of static and dynamic checks), and

explicit free commands are not necessary since OCaml is a garbage-collected language.

Functional Description: Sundials/ML is an OCaml interface to the Sundials suite of numerical solvers
(CVODE, CVODES, IDA, IDAS, KINSOL, ARKODE).

Release Contributions: Sundials/ML v6.0.0p0 adds support for v5.x and v6.x of the Sundials Suite of
numerical solvers. This includes the latest Arkode features, many vectors, and nonlinear solvers.

URL: http://inria-parkas.github.io/sundialsml/

Publications: hal-01408230v1, hal-01967659v1

https://gitlab.inria.fr/synchrone/heptagon
http://inria-parkas.github.io/sundialsml/
https://hal.inria.fr/hal-01408230v1
https://hal.inria.fr/hal-01967659v1

Project PARKAS 7

Contact: Timothy Bourke

Participants: Jun Inoue, Marc Pouzet, Timothy Bourke

6.1.3 Zelus

Keywords: Numerical simulations, Compilers, Embedded systems, Hybrid systems

Scientific Description: The Zélus implementation has two main parts: a compiler that transforms Zélus
programs into OCaml programs and a runtime library that orchestrates compiled programs and
numeric solvers. The runtime can use the Sundials numeric solver, or custom implementations of
well-known algorithms for numerically approximating continuous dynamics.

Functional Description: Zélus is a new programming language for hybrid system modeling. It is based
on a synchronous language but extends it with Ordinary Differential Equations (ODEs) to model
continuous-time behaviors. It allows for combining arbitrarily data-flow equations, hierarchical
automata and ODEs. The language keeps all the fundamental features of synchronous languages:
the compiler statically ensure the absence of deadlocks and critical races, it is able to generate
statically scheduled code running in bounded time and space and a type-system is used to distin-
guish discrete and logical-time signals from continuous-time ones. The ability to combines those
features with ODEs made the language usable both for programming discrete controllers and their
physical environment.

URL: https://zelus.di.ens.fr

Publications: hal-03051954v1, hal-02333603v1, hal-02426533v1, inria-00554271v1, hal-01242732v1, hal-
00654113v1, hal-00909029v1, hal-01575621v4, hal-01575631v1, hal-00766726v1, hal-00938891v1,
hal-00654112v1, hal-01879026v1, hal-01549183v2, hal-00938866v1

Contact: Marc Pouzet

Participants: Marc Pouzet, Timothy Bourke

Partner: ENS Paris

6.1.4 Vélus

Name: Verified Lustre Compiler

Keywords: Synchronous Language, Compilation, Software Verification, Coq, Ocaml

Functional Description: Vélus is a prototype compiler from a subset of Lustre to assembly code. It
is written in a mix of Coq and OCaml and incorporates the CompCert verified C compiler. The
compiler includes formal specifications of the semantics and type systems of Lustre, as well as the
semantics of intermediate languages, and a proof of correctness that relates the high-level dataflow
model to the values produced by iterating the generated assembly code.

Release Contributions: Vélus 3.0 introduces syntax and semantics for Lustre (previous versions only
treated the normalized form of Lustre). It includes a verified normalization pass that transforms
Lustre programs into NLustre programs.

URL: https://velus.inria.fr

Publications: hal-01817949, hal-03287572, hal-01512286, hal-01403830, tel-03068862, hal-02005639,
hal-02426573, hal-03370264

Contact: Timothy Bourke

Participants: Timothy Bourke, Basile Pesin, Paul Jeanmaire, Marc Pouzet

https://zelus.di.ens.fr
https://hal.inria.fr/hal-03051954v1
https://hal.inria.fr/hal-02333603v1
https://hal.inria.fr/hal-02426533v1
https://hal.inria.fr/inria-00554271v1
https://hal.inria.fr/hal-01242732v1
https://hal.inria.fr/hal-00654113v1
https://hal.inria.fr/hal-00654113v1
https://hal.inria.fr/hal-00909029v1
https://hal.inria.fr/hal-01575621v4
https://hal.inria.fr/hal-01575631v1
https://hal.inria.fr/hal-00766726v1
https://hal.inria.fr/hal-00938891v1
https://hal.inria.fr/hal-00654112v1
https://hal.inria.fr/hal-01879026v1
https://hal.inria.fr/hal-01549183v2
https://hal.inria.fr/hal-00938866v1
https://velus.inria.fr
https://hal.inria.fr/hal-01817949
https://hal.inria.fr/hal-03287572
https://hal.inria.fr/hal-01512286
https://hal.inria.fr/hal-01403830
https://hal.inria.fr/tel-03068862
https://hal.inria.fr/hal-02005639
https://hal.inria.fr/hal-02426573
https://hal.inria.fr/hal-03370264

8 Inria Annual Report 2021

6.1.5 MPPcodegen

Name: Source-to-source loop tiling based on MPP

Keywords: Source-to-source compiler, Polyhedral compilation

Functional Description: MPPcodegen applies a monoparametric tiling to a C program enriched with
pragmas specifying the tiling and the scheduling function. The tiling can be generated by any
convex polyhedron and translation functions, it is not necessarily a partition. The result is a C pro-
gram depending on a scaling factor (the parameter). MPPcodegen relies on the MPP mathematical
library to tile the iteration sets.

URL: http://foobar.ens-lyon.fr/mppcodegen/

Publication: hal-02493164

Authors: Christophe Alias, Guillaume Iooss, Sanjay Rajopadhye

Contact: Christophe Alias

Partner: Colorado State University

6.1.6 MPP

Name: MonoParametric Partitionning transformation

Keywords: Compilation, Polyhedral compilation

Functional Description: This library applies a monoparametric partitioning transformation to polyhe-
dra and affine functions. This transformation is a subset of the parametric sized tiling transfor-
mation, specialized for the case where shapes depend only on a single parameter. Unlike in the
general case, the resulting sets and functions remain in the polyhedral model.

URL: https://github.com/guillaumeiooss/MPP

Contact: Guillaume Iooss

6.1.7 ProbZelus

Keywords: Probabilistic Programming, Synchronous Language

Scientific Description: ProbZelus is a probabilistic reactive language which provides the facilities of a
synchronous language to write control software, with probabilistic constructs to model uncertain-
ties and perform inference-in-the-loop.

Functional Description: ProbZelus is built on top of Zelus a dataflow language à la Scade/Lustre and
offers several streaming inference techniques including classic Sequential Monte Carlo (SMC)
algorithms and semi-symbolic inference algorithm based on delayed sampling.

URL: https://github.com/IBM/probzelus

Authors: Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, Michael
Carbin

Contact: Guillaume Baudart

Partners: CSAIL, MIT, IBM

http://foobar.ens-lyon.fr/mppcodegen/
https://hal.inria.fr/hal-02493164
https://github.com/guillaumeiooss/MPP
https://github.com/IBM/probzelus

Project PARKAS 9

6.1.8 DeepStan

Keywords: Probabilistic Programming, Compilers, Stan, Pyro

Scientific Description: Stan is a probabilistic programming language that is popular in the statistics
community, with a high-level syntax for expressing probabilistic models. Stan differs by nature
from generative probabilistic programming languages like Pyro. DeepStan is a compiler from Stan
to Pyro. Building on Pyro we can extend Stan with support for explicit variational inference guides,
automatic guide generation, and deep probabilistic models.

Functional Description: The compiler is a fork of the Stanc3 compiler with two new backends for Pyro
and NumPyro. The runtime is packaged as an independent Python library and contains the Stan
standard library and thin wrapper for the Pyro/NumPyro runtime.

URL: https://github.com/deepppl

Contact: Guillaume Baudart

Participants: Guillaume Baudart, Louis Mandel

Partner: IBM

7 New results

7.1 Verified compilation of Lustre

Participants: Timothy Bourke, Paul Jeanmaire, Basile Pesin, Marc Pouzet.

Vélus is a compiler for a subset of LUSTRE and SCADE that is specified in the Coq [32] Interactive
Theorem Prover (ITP). It integrates the CompCert C compiler [37, 23] to define the semantics of machine
operations (integer addition, floating-point multiplication, etcetera) and to generate assembly code for
different architectures. The research challenges are to

• to mechanize, i.e., put into Coq, the semantics of the programming constructs used in modern
languages for Model-Based Development;

• to implement compilation passes and prove them correct;

• to interactively verify source programs and guarantee that the obtained invariants also hold of the
generated code.

Work continued this year on this long-running project in three main directions: finalizing and
presenting the normalization pass, progressively supporting higher-level constructions, and developing
increasingly abstract models to facilitate interactive verification.

Normalizing Lustre: We continued the work from last year on translating Lustre programs into the
normalized form required by existing compilation passes. Proofs about normalized Lustre programs
proceed by induction on a list of equations ordered so that variables are defined before being used. This
is not possible in the unrestricted form so we developed a new approach based on induction over an
acyclic dependency graph. As part of this work, and to better prepare for future compilation passes, we
reimplemented the generation of identifiers and simplified the axioms that specify the underlying OCaml
routines that are shared with the CompCert verified C compiler. We wrote and submitted an article on
this work to the EMSOFT conference [13]. The article was presented at a virtual event in October and
received the best paper award.

https://github.com/deepppl
https://velus.inria.fr
https://compcert.org

10 Inria Annual Report 2021

Adding higher-level constructs: Our next major goal in terms of verified Lustre compilation is to
specify the semantics of hierarchical state machines and implement verified algorithms to compile them
into compositions of simpler constructions. This is the Basile Pesins thesis topic. Over the last year, we
made solid progress toward this goal.

The syntax and semantics of the Vélus compiler was updated with the notion of a “block” to group
sets of equations. We added passes to flatten the block structure and proved semantic preservation
for these passes. We then generalized the reset operator to blocks. This was surprisingly difficult. It
was necessary to adapt the existing treatment for node instances [24], to study existing formalisations
and implementations of clock typing, and to treat fby-equations within a block. Next, we augmented
blocks with local variable declarations. This involved updating the semantic model, the typing definitions,
implementing a compilation pass to rename and lift local variables, and extending the proofs of semantics
preservation. During this work we encountered many problems with the “anonymous variables” [25]
introduced to treat node subsampling. We thus replaced this mechanism by a simpler solution.

State machines are compiled to switch statements over an enumerated type that encodes possible
states [31]. We added this construct to the syntax of V?lus and extended the semantic model. The
challenge was to adapt the existing relational predicates to define an overall behavior on a set of streams
as the conjunction of constraints, one for each branch, over complementary intervals of those streams. It
was necessary to impose a global constraint for intervals when the switch statement is inactive (i.e., when
the streams it defines must be absent). The resulting model seemed reasonable but we were worried that
it would be difficult to treat last variables [31], since they require that branch definitions interact over
time. It turns out that this problem can be solved by using a distinct environment and applying last
definitions from the top down. The compilation algorithms for the switch and last features have been
verified, and the various proofs about typing, clock alignment, and determinism have been restored.

We have defined a subset of state machine features to treat over the next few months and we have
made progress on the semantic model.

Abstract Models and Program Verification: To date we have focused on proving the correctness
of compilation passes. This involves specifying semantic models to define the input/output relation
associated with a program, implementing compilation functions to transform the syntax of a program,
and proving that the relation is unchanged by the functions. In addition to specifying compiler correctness,
semantic models can also serve as a base for verifying individual programs. The challenge is to present
and manipulate such detailed specifications in interactive proofs. The potential advantage is to be able
to reason on abstract models and to obtain, via the compiler correctness theorem, proofs that apply to
generated code. Making this idea work requires solving several scientific and technical challenges. It is
the subject of Paul Jeanmaire’s thesis.

We began the year by examining the related literature [40, 28, 26] and performing practical experi-
ments on simple program fragments. We looked at different techniques to improve the readability of
program terms in the proof assistant and experimented with dependent types for expressing a programs’
type and clock constraints. For programs with subsampling, there are two standard approaches for
treating filtered values: add explicit absent markers or reason on unsynchronized streams à la Kahn [36].
Our existing semantic models use explicit absent markers but prior work [26] suggests that a Kahn-style
model permits simpler and more readable proofs. We thus started to develop a Kahn-style semantics
in Coq using C. Paulin-Mohring’s library [41]. The goal is to reason by rewriting on stream equations in
a denotational model and to link this model with the one used in the compiler specifications. We have
made solid progress in understanding the library and using it to express and reason about a subset of
Lustre operators. Current work is focused on relating this model to the existing one.

Glossary

Interactive Theorem Prover (ITP, also known as a proof assistant) Software for formal specification
and proof, with features for generating and checking proofs, and extracting programs for later
compilation

Project PARKAS 11

Model-Based Development (MBD) The specification of control software using block-diagrams,
state machines, and other high-level constructions allowing programmers to focus on de-
scribing desired behaviour and to rely on automatic code generation to produce low-level
executables.

7.2 Latency-based scheduling of synchronous programs

Participants: Timothy Bourke, Baptiste Pauget, Marc Pouzet.

External collaborators: Michel Angot, Vincent Bregeon, and Matthieu Boitrel, (Airbus).
It is sometimes desirable to compile a single synchronous language program into multiple tasks for

execution by a real-time operating system. We have been investigating this question from three different
perspectives.

Harmonic clocks: We studied the extension of a synchronous language with periodic harmonic clocks
based on the work of Mandel et al. [29, 42, 30, 38, 39] on n-synchrony and the extension proposed by
Forget et al. [35]

Mandel et al. considered a language with periodic clocks expressed as ultimately periodic binary
sequences. The decision procedures (equality, inclusion, precedence) for such an expressive language
can be very costly. It is thus sometimes useful to apply an envelope-based abstraction, that is, one where
sets of clocks are represented by a rational slope and an interval. Forget considered simpler “harmonic”
clocks. His decision procedures conincide with those for the envelope-based abstraction but without any
loss of information. During his M2 internship, B. Pauget continued this line of work by extending the
input language of the Vélus Lustre compiler with harmonic clocks. This work was the starting point for
the proposal of a new intermediate language for a synchronous compiler that is capable of exploiting
clock information to apply agressive optimizations and generate parallel code.

New Intermediate Language MObc (Multi Object Code): This intermediate language is reminiscent
of the intermediate Obc language used in the Vélus and Heptagon compiler, but with some important
differences and new features. MObc permits a synchronous function to be represented as a set of named
state variables and possibly nested blocks with a partial ordering which express the way blocks can
and must be called. In comparison, Obc represents a synchronous function as a set of state variables
and a transition function that is itself written in a sequential language. Each block comprises a set of
equations in Single Static Assignment (SSA) form, that is, exactly one equation per variable, so as to
simplify the implementation of a number of classic optimizations (for example, constant propagation,
inlining, common sub-expression elimination, code specialisation). Then, every block is translated
into a step function (e.g., a C function). This intermediate language has been designed to facilitate
the generation of code for a real-time OS and a multi-core target. This work exploits two older results:
the article of Caspi et al. [27] that introduces an object representation for synchronous nodes and a
“scheduling policy” that specifies how their methods may be called, and; the work of Pouzet et al. [43]
on the calculation of input/output relations to merge calculations. We are preparing and article on this
subject.

Scheduling and code generation for periodic streams: In this approach, the top-level node of a
Lustre program is distinguished from inner nodes. It may contain special annotations to specify the
triggering and other details of node instances from which separate “tasks” are to be generated. Special
operators are introduced to describe the buffering between top-level instances. Notably, different forms
of the when and current operators are provided. Some of the operators are under-specified and a
constraint solver is used to determine their exact meaning, that is, whether the signal is delayed by zero,
one, or more cycles of the receiving clock, which depends on the scheduling of the source and destination
nodes. Scheduling is formalized as a constraint solving problem based on latency constraints between
some pairs of input/outputs that are specified by the designer.

12 Inria Annual Report 2021

This year we continued work on a new prototype compiler for a synchronous language with clock
rates and a model where “synchronous” does not necessarily mean “simultaneous”. This year, we made
progress on constraining latency across chains of components, treating cycles in the dataflow graph, and
generating imperative code.

Embedded controllers often contain calculation sequences whose end-to-end latency is critical to
application performance. This is notably the case for control calculations that occur between input acqui-
sition and output emission. We devised and implemented an algorithm for expressing and constraining
this latency as part of the overall scheduling problem. The difficulty is to treat the causality between
and within instants, and to properly handle rate changes across sequences. This algorithm has been
implemented in our prototype compiler. We also wrote a visualization tool for validating and explaining
the algorithm. This tool helped us to find many bugs in the original implementation. It also appears to be
a useful means of analyzing application behavior. We also adapted our prototype with support for atomic
sequences.

Our algorithm worked well on a mid-sized case study, but upon attempting to apply it to a production
problem, we had many problems with cyclic dependencies. In an attempt to visualize the problem
we contributed algorithms to the ocamlgraph library and developed some simple tools (undotter and
subdotter). We then surveyed the literature on heuristics for removing cycles by calculating feedback arc
sets. Good heuristics are essential since the problem is NP-complete and our graphs are quite large. We
adapted the “FASH” algorithm [34, 33] by extending it with weights and irreversible arcs and implemented
it in OCaml. This approach seems to work quite well, but we are still experimenting with it.

We extended our compiler by implementing standard techniques for constraining and load-balancing
resources. We extended the standard code generation scheme [22] to treat rate-based components.

This work is funded by a direct industrial contract with Airbus.

7.3 Sundials/ML: OCaml interface to Sundials Numeric Solvers

Participants: Timothy Bourke.

This year we made major updates to the Sundials/ML OCaml interface to support support v5.x and
v6.x of the Sundials Suite of numerical solvers. This involved a significant reworking of the interface to
the ARKode MRIStep solver. A major rewriting of the interface to nonlinear solvers, notably to permit
callbacks from OCaml, through a C solver, and back to a custom OCaml solver. This rewriting uncovered
a subtle inter-heap cycle that caused a difficult-to-diagnose memory leak and resulting performance
problems. We added support for “many vectors” which provide arrays of heterogeneous vector types. The
challenge here was to provide such a heterogeneous collection in OCaml. As usual, much time was spent
on adding and updating example programs, fixing bugs uncovered in the process, and also analyzing
and improving overall performance. This library is being used in the Miking, OWL (OCaml Scientific
Computing), and Zelus projects.

7.4 The Zelus Language

Participants: Guillaume Baudart, Marc Pouzet.

Zelus is our laboratory to experiment our research on programming languages for hybrid systems. It
is devoted to the design and implementation of systems that may mix discrete-time/continuous-time
signals and systems between those signals. It is essentially a synchronous language reminiscent of Lustre
and Lucid Synchrone but with the ability to define functions that manipulate continuous-time signals
defined by Ordinary Differential Equations (ODEs). The language is functional in the sense that a system
is a function from signals to signals (not a relation). It provides some features from ML languages like
higher-order and parametric polymorphism as well as dedicated static analyses.

http://ocamlgraph.lri.fr/
https://github.com/inria-parkas/undotter
https://github.com/inria-parkas/subdotter
https://inria-parkas.github.io/sundialsml/
https://github.com/miking-lang/miking
https://ocaml.xyz/
https://zelus.di.ens.fr

Project PARKAS 13

Distribution of the language The language, its compiler and examples (release 2.1) are now on GitHub.
It is also available as an OPAM package. All the installation machinery has been greatly simplified.

Set-based simulation of Zelus programs In collaboration with Francois Bidet (PhD. student under the
supervision of Sylvie Putot and Eric Goubault from Ecole polytechnique), we are developing a method to
perform set-based simulation of Zelus program. Set-based simulation goes beyond concrete simulation
(the default simulation mode of all existing hybrid system modeling languages). Instead of computing
one trajectory, it computes a set of trajectories or flowpipes at once, replacing a possibly unbounded
number of concrete simulations. It is also able to deal with models with partially known parameters and
inputs.

Very little tools currently deal with models expressed modularily (as the parallel and hierarchical
composition of subsystems, with function application and the mix between a software model and ODEs,
for example). A prototype is under way. Set based simulation is done on the intermediate language
generated by Zelus, that is a collection of tarnsition functions acting on a state.

Property Based Testing of Hybrid Programs Property-based program testing involves checking an
executable specification by running many tests. We build on the work of Georgios Fainekos and Alexandre
Donzé, and take inspiration from earlier work by Nicolas Halbwachs, to write a Zélus library of syn-
chronous observers with a quantitative semantics that can be used to specify properties of a system
under test. We implemented several optimization algorithms for producing test cases, some of which are
gradient-based. This year, we have studied the use SUNDIALS CVODEs (sensitivity analysis) to find more
falsification examples and faster.

7.5 An executable reference semantics for Zelus

During year 2021, we have worked on the definition of a comprehensive semantics for Zelus language,
including all language constructs, that is executable and can lead to a reference interpreter.

The scientific objective is to use it to test an existing compiler, to prove the correctness of compile-
time checks (e.g., that a well typed/causal/initialized program does not lead to an error); to prove the
semantics preservation of compiler transformations (e.g., static scheduling, compilation of automata);
to execute unfinished programs or programs that are semantically correct but are statically rejected by
the compiler. Examples are cyclic circuits accepted by an Esterel compiler (the so-called "constructively
causal" programs) but are rejected by Lustre, Lucid Synchrone, Scade, Zelus compilers that impose
stronger causality constraints; finally to prototype new language constructs.

The existing semantics for rich languages like Scade is defined by its translation into a small data-flow
language; we expect instead to have a semantics that apply directly to the source, before any rewriting or
check is made.

The current prototype we have developed only deal with the synchronous subset only. It builds on the
works 1/ “A Coiterative Characterization of Synchronous Stream Functions”, by Caspi and Pouzet, CMCS,
1998 (VERIMAG tech. report, 1997) and 2/ “The semantics and execution of a synchronous block-diagram
language”, by Edwards and Lee, Science of Computer Programming 2006.

7.6 Array Size Checking and Inference with an ML Type System

Participants: Baptiste Pauget, Marc Pouzet.

External collaborators: Jean-Louis Colaco (ANSYS, Toulouse).
We are interested here in the programming, with a high-level language, of real-time embedded

applications that are submitted to strong safety requirements, such as those found in avionics, railway
and automotive (eg, flight control, braking, electrical engine). Modern real-time applications combine
complex control code, with a high level of nesting of hierarchical automata, and intensive computations
using arrays. This work focuses on the latter aspect. We seek to express array computations within the
framework of a purely functional language such as Scade, by offering a sufficient expressiveness for

https://github.com/INRIA/zelus
https://github.com/marcpouzet/zrun

14 Inria Annual Report 2021

typical applications, and whose safety can be ensured at compile-time by relatively inexpensive and
modular means.

During year 2001, we have worked on a compile-time analysis for checking and inferring the size of
arrays in a statically typed and strict functional language. Rather than relying on dependent types, we
propose a type-system close to that of ML. Polymorphism is used to define functions that are generic in
type and size. Inference allows a lighter writing of the classical signal processing operations — point-to-
point application, accumulation, projection, transposition, convolution, a restricted form of recursion
over sizes — and their composition. The automatic inference of types is a key feature of the proposed
solution. To obtain a good compromise between the expressiveness of the type language, the decidability
of the verification and automatic inference, the solution relies on two elements: (i) a language of types
where sizes in types are multivariate polynomials; (ii) the possible insertion of explicit coercions between
sizes in the source program. When the program is well-typed, it executes without any size errors outside
of these coercion points. Two uses of the proposed solution can be considered: (i) the generation of
defensive code at coercion points or, (ii) their static verification by restricting them to be expressions
that can be evaluated at compile-time — a frequent situation in safety critical applications — or by other
formal verification means for the remaining cases.

The article defines a core functional language that is sufficient to express array operations and to
capture size constraints in types; in particular, arrays are simply functions on a finite domain. The
article presents the dynamic semantics of the language, the type system and inference algorithm, and its
correctness. Then, it presents a surface language for the programmer, with the classical notations for
arrays, that elaborates to the core language. All the presented material is supported by an implementation
in OCAML, whose source code is available.

A prelinary work, written in French, is accepted for publication at Journés Francophones des langages
applicatifs (JFLA), June 2022.

7.7 Probabilistic Programming

Participants: Guillaume Baudart, Marc Pouzet, Reyyan Tekin.

7.7.1 Reactive Probabilistic Programming

Synchronous languages were introduced to design and implement real-time embedded systems with a
(justified) enphasis on determinacy. Yet, they interact with a physical environment that is only partially
known and are implemented on architectures subject to failures and noise (e.g., channels, variable
communication delays or computation time). Dealing with uncertainties is useful for online monitoring,
learning, statistical testing or to build simplified models for faster simulation. Actual synchronous and
languages provide limited support for modeling the non-deterministic behaviors that are omnipresent in
embedded systems.

We previously designed ProbZelus, an extension of Zelus with probabilistic constructs to model
uncertainties and perform inference-in-the-loop. Importanty, we introduced a novel streaming delayed
sampling implementation which enables partial exact inference over infinite streams in bounded memory
for a large class of models.

Continuing the collaboration with Louis Mandel (IBM), Erik Atkinson, Michael Carbin and Charles
Yuan (MIT), we found conditions on a reactive probabilistic model’s execution under which delayed
sampling will execute in bounded memory. The two conditions are dataflow properties of the core
operations of delayed sampling: the m-consumed property and the unseparated paths property. A
showed that a program executes in bounded memory under delayed sampling if, and only if, it satises the
m-consumed and unseparated paths properties. We proposed a static analysis that abstracts over these
properties to soundly ensure that any program that passes the analysis satises these properties, and thus
executes in bounded memory under delayed sampling.

The main article Statically Bounded-Memory Delayed Sampling for Probabilistic Streams was pre-
sented at the Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2021) and published in the Proceedings of the ACM on Programming Languages (PACMPL) [12]

Project PARKAS 15

. A short version was also presented at the international conference on Probabilistic Programming
(PROGPROB 2021) [19].

7.7.2 Compiling Stan to Generative Probabilistic Languages

Stan is a probabilistic programming language that is popular in the statistics community, with a high-
level syntax for expressing probabilistic models. Stan differs by nature from generative probabilistic
programming languages like Church,Anglican, or Pyro. We proposed a comprehensive compilation
scheme to compile any Stan model to a generative language and proved its correctness. We use our
compilation scheme to build two new backends for the Stanc3 compiler targeting Pyro and NumPyro.
Experimental results show that the NumPyro backend yields significant speedup compared to Stan on
existing benchmarks.

Our compiler leverages the rich set of Pyro and Numpyro features for Stan users. Building on Pyro we
thus extended Stan with support for explicit variational inference guides and deep probabilistic models,
i.e., probabilistic models involving neural networks. Leveraging NumPyro runtime we show that using our
recently proposed compiler from Stan to Pyro, Stan users can easily try the set of algorithms implemented
in Pyro for black-box variational inference.

The compiler is available on GitHub and the main article Compiling Stan to Generative Probabilis-
tic Languages and Extension to Deep Probabilistic Programming was presented at the Conference on
Programming Language Design and Implementation (PLDI 2021) [14] . The article Automatic Guide
Generation for Stan via NumPyro was accepted as an oral presentation at the international conference on
Probabilistic Programming (PROGPROB 2021) [19].

7.8 Automated Machine Learning

Participants: Guillaume Baudart.

7.8.1 Lale: Gradual Automation

Automated machine learning (AutoML) can make data scientists more productive. But if machine learning
is totally automated, that leaves no room for data scientists to apply their intuition. Hence, data scientists
often prefer not total but gradual automation, where they control certain choices and AutoML explores
the rest. We thus proposed Lale, a sklearn-compatible AutoML library based on a small set of orthogonal
combinators for composing machine- learning operators into pipelines. Lale then compiles pipelines
and associated hyperparameter schemas to search spaces for AutoML optimizers.

Lale is gradual, letting users specify only what they want while reusing and automating the rest. For
instance, Lale comes with an extensive library of reusable hyperparameter schemas for many popular
operators, so users rarely need to write their own schemas; but it also makes it easy to customize
schemas when desired. There are Lale optimizer backends for multiple optimizers: Hyperopt; sklearn’s
GridSearchCV and HalvingGridSearchCV; ADMM; SMAC; and Hyberband.

Lale is available on GitHub and the main article Pipeline Combinators for Gradual AutoML was
presented at the Conference on Neural Information Processing Systems (NeurIPS’21) [15]

7.8.2 Extracting Hyperparameters Constraints from Code

In Lale, each machine learning operator is associated to a schema that captures its hyperparameters and
correctness constraints that cut across multiple hyperparameters and/or data. Violating these constraints
causes runtime exceptions, but they are usually documented only informally or not at all. We proposed
an interprocedural weakest-precondition analysis for Python code to extract hyperparameter constraints.
The analysis is mostly static, but to make it tractable for typical Python idioms in machine-learning
libraries, it selectively switches to the concrete domain for some cases.

The paper Extracting Hyperparameter Constraints from Code was presented at the ICLR 2021 Work-
shop on Security and Safety in Machine Learning Systems [21].

https://github.com/deepppl/stanc3
https://github.com/ibm/lale

16 Inria Annual Report 2021

7.9 Application: Learning GraphQL Query Cost

GraphQL is a query language for APIs and a runtime for executing those queries. Its expressiveness and
its flexibility have made it an attractive candidate for API providers in many industries, especially through
the web. A major drawback to blindly servicing a client’s query in GraphQL is that the cost of a query
can be unexpectedly large. To mitigate these drawbacks, it is necessary to efficiently estimate the cost
of a query before executing it. We proposed a machine-learning approach to efficiently and accurately
estimate the query cost.

There are many well-known operators that implement regression algorithms and feature preprocess-
ing. A library like scikit-learn implements many of these operators, but picking the right operators and
configuring their hyperparameters is a tedious task and depends on the dataset. We thus used Lale to
select the best operators and tune the hyperparameters given a query/response dataset. We demonstrated
the power of this approach by testing it on query-response data from publicly available commercial APIs.

The paper Learning GraphQL Query Cost was presented as an industry showcase at the International
Conference on Automated Software Engineering (ASE) [20]

8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

Collaboration with Airbus

Participants: Timothy Bourke, Marc Pouzet.

Our work on multi-clock Lustre programs is funded by a contract with Airbus.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Participation in other International Programs

MIT-IBM

Participants: Guillaume Baudart.

Title: Probabilistic Programming

Partner Institution(s): • IBM, United States of America

• MIT, United States of America

Partners: • Louis Mandel (IBM)

• Michael Carbin (MIT)

• Eric Atkinson (MIT)

• Charles Yuan (MIT)

Inria contact: Guillaume Baudart

Summary: Collaboration started when G. Baudart was at IBM Research. This project focuses on reactive
probabilistic programming, in particular the development of ProbZelus and associated inference
algorithms and static analyses.

Project PARKAS 17

RPI-IBM

Participants: Guillaume Baudart.

Title: Constraints from Machine Learning Code

Partner Institution(s): • IBM, United States of America

• Rensselaer Polytechnic Institute, United States of America

Partners: • Martin Hirzel (IBM)

• Julian Dolby (IBM)

• Ana Milanova (RPI)

• Ingkarat Rak-amnouykit (RPI)

Inria contact: Guillaume Baudart

Summary: Collaboration started when G. Baudart was at IBM Research. This project focuses on static
analysis techniques to extract constraints from machine learning operator codes. These constraints
can then be used by the Lale project for automated machine learning.

9.2 European initiatives

9.2.1 FP7 & H2020 projects

TETRAMAX (582)

Title: TEchnology TRAnsfer via Multinational Application eXperiments

Duration: 9/2017 - 12/2021

Coordinator: Rainer Leupers

Partners:

• AMG TECHNOLOGY OOD (Bulgaria)

• BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM (Hungary)

• INSTITUT JOZEF STEFAN (Slovenia)

• RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN (Germany)

• RUHR-UNIVERSITAET BOCHUM (Germany)

• SVEUCILISTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RACUNARSTVA (Croatia)

• TALLINNA TEHNIKAULIKOOL (Estonia)

• TECHNISCHE UNIVERSITAET MUENCHEN (Germany)

• TECHNISCHE UNIVERSITEIT DELFT (Netherlands)

• THE UNIVERSITY OF EDINBURGH (United Kingdom)

• THINK SILICON EREYNA KAI TECHNOLOGIA ANONYMI ETAIRIA (Greece)

• TTY-SAATIO (Finland)

• UNIVERSITA DI PISA (Italy)

• UNIVERSITAT POLITECNICA DE CATALUNYA (Spain)

• UNIVERSITEIT GENT (Belgium)

• VYSOKA SKOLA BANSKA - TECHNICKA UNIVERZITA OSTRAVA (Czech Republic)

• VYSOKE UCENI TECHNICKE V BRNE (Czech Republic)

18 Inria Annual Report 2021

• ZENIT ZENTRUM FUR INNOVATION UND TECHNIK IN NORDRHEIN-WESTFALEN GMBH
(Germany)

Inria contact: Timothy Bourke

Summary: TETRAMAX, Technology Transfer via Multinational Application Experiments, is funded by
the H2020 “Smart Anything Everywhere (SAE)” initiative. The overall ambition is to build and
leverage a European Competence Center Network in customized low-energy computing, providing
easy access for SMEs and mid-caps to novel CLEC technologies via local contact points. This is a
bidirectional interaction: SMEs can demand CLEC technologies and solutions via the network, and
vice versa academic research institutions can actively and effectively offer their new technologies
to European industries. Furthermore, TETRAMAX wants to support 50+ industry clients and 3rd
parties with innovative technologies, using different kinds of Technology Transfer Experiments
(TTX) to accelerate innovation within European industries and to create a competitive advantage
in the global economy.

MNEMOSENE

Title: Computation-in-memory architecture based on resistive devices

Duration: 1/2018 - 6/2021

Coordinator: Said Hamdioui

Partners:

• ARM LIMITED (UK)

• EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH (Switzerland)

• IBM RESEARCH GMBH (Switzerland)

• INTELLIGENTSIA CONSULTANTS SARL (Luxembourg)

• RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN (Germany)

• STICHTING IMEC NEDERLAND (Netherlands)

• TECHNISCHE UNIVERSITEIT DELFT (Netherlands)

• TECHNISCHE UNIVERSITEIT EINDHOVEN (Netherlands)

Inria contact: Andi Drebes

Summary: MNEMOSENE aims at demonstrating a new computation-in-memory (CIM) computer ar-
chitecture based on resistive devices, together with its required programming flow and interface.
MNEMOSENE targets advanced explorative technology development at TRL 2 (technology concept
formulation) and TRL3 (experimental proof-of-concept) and represents a first step towards the
development of a fully operational CIM based computer, which MNEMOSENE consortium partners
believe will require 9 to 12 years of further research after project completion.

9.3 National initiatives

9.3.1 ANR

The ANR JCJC project “FidelR” led by T. Bourke began in 2020 and continues for four years.

9.3.2 FUI: Fonds unique interministériel

Modeliscale contract (AAP-24) Using Modelica at scale to model and simulate very large Cyber-Physical
Systems. Principal industrial partner: Dassault-Systèmes. INRIA contacts are Benoit Caillaud (HYCOMES,
Rennes) and Marc Pouzet (PARKAS, Paris).

Project PARKAS 19

9.3.3 Programme d’Investissements d’Avenir (PIA)

ES3CAP collaborative project (Bpifrance) Develop a software and hardware platform for tomorrow’s
intelligent systems. PARKAS collaborates with the industrial participants ANSYS/Esterel Technologies,
Kalray, and Safran Electronics & Defense. Inria contacts are Marc Pouzet (PARKAS, Paris) and Fabrice
Rastello (CORSE, Grenoble).

9.3.4 Others

Inria Project Lab (IPL) Modeliscale This project treats the modelling and analysis of Cyber-Physical
Systems at large scale. The PARKAS team contributes their expertise in programming language design for
reactive and hybrid systems to this multi-team effort.

10 Dissemination

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

Member of the organizing committees

• Timothy Bourke and Marc Pouzet were coorganizers, with Thérèse Hardin, of the 28th International
Open Workshop on Synchronous Programming (SYNCHRON 2021).

• Timothy Bourke was tutorial chair for Embedded Systems Week 2021 (ESWEEK 2021).

10.1.2 Scientific events: selection

Member of the conference program committees

• Guillaume Baudart served on the program committee of the Workshop on Reactive and Event-Based
Languages and Systems (REBLS 2021).

• Guillaume Baudart served on the program committee of the Industry Track of the ACM International
Conference on Distributed and Event-Based System (DEBS 2021).

• Guillaume Baudart served on the program committee of the ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES 2021)

• Guillaume Baudart served on the program committee of the ACM/IEEE International conference
on Embedded Software (EMSOFT 2021).

• Guillaume Baudart served on the program committee of the ACM SIGPLAN International Confer-
ence on Compiler Construction (CC 2021).

• Timothy Bourke served on the program committee of the Design Automation Conference (DAC
2021, track ESS1: Embedded Software).

• Timothy Bourke served on the program committee of the Journées Francophones des Langages
Applicatifs (JFLA 2021).

• Timothy Bourke served on the program committee of the 24th International Workshop on Software
and Compilers for Embedded Systems (SCOPES 2021).

• Timothy Bourke served on the program committee of the International Modelica Conference
(MODELICA 2021).

• Marc Pouzet served on the program committee of the 24th International Workshop on Software
and Compilers for Embedded Systems (SCOPES 2021).

• Marc Pouzet served on the program committee of the International Forum on specification &
Design Languages (FDL 2021).

https://synchron2021.inria.fr

20 Inria Annual Report 2021

Reviewer

• Timothy Bourke reviewed articles for the 2021 Symposium on Principles of Programming Languages.

10.1.3 Journal

Reviewer - reviewing activities

• Timothy Bourke reviewed articles for the Journal of Logical and Algebraic Methods in Programming.

10.1.4 Invited talks

• Guillaume Baudart was an invited speaker at the Workshop on Probabilistic Interactive and Higher-
Order Computation (PIHOC 2021).

• Guillaume Baudart was an invited speaker at the Inria Paris, demi-heure de science seminar.

• Timothy Bourke gave the keynote talk at the Workshop on Reactive and Event-Based Languages
and Systems (REBLS 2021).

• Marc Pouzet was invited speaker by the formal method group of NASA Langley, January 2021.

10.1.5 Research administration

• Timothy Bourke was a jury member for the Paris Centre CRCN/ISFP concours.

• Timothy Bourke participated in several thesis monitoring committees.

• Marc Pouzet was jury member of the Phd. thesis of Vincent Lampietro (Univl. Montpellier, Decem-
ber 2021.

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Marc Pouzet is Director of Studies for the CS department, at ENS.

• Licence : Marc Pouzet & Timothy Bourke: “Operating Systems” (L3), Lectures and TDs, ENS, France.

• Master : Marc Pouzet, Guillaume Baudart, & Timothy Bourke, “Models and Languages for Program-
ming Reactive Systems” (M1), Lectures and TDs, ENS, France.

• Master: Marc Pouzet & Timothy Bourke: “Synchronous Systems” (M2), Lectures and TDs, MPRI,
France

• Master: Marc Pouzet: “Synchronous Reactive Languages” (M2), Lectures, Master COMASIC (École
Polytechnique) and FIL (Université Paris-Sud, Saclay), France

• Master: Marc Pouzet "The Elements of Computing Systems". Cycle pluridisciplinaire d’études
supérieures (CPES), L2.

• Master: Timothy Bourke: “A Programmer’s introduction to Computer Architectures and Operating
Systems" (M1), École Polytechnique, France

• Master: Timothy Bourke presented two lectures and TPs on Synchronous Languages in Carlos
Agon’s course on concurrent models at Sorbonne Université.

• Master: Guillaume Baudart: “Synchronous Programming” (M2), TDs, Université de Paris, France

• Master: Guillaume Baudart: “Probabilistic Programming Languages” (M2), Lectures and TDs, MPRI,
France

Project PARKAS 21

• Aggregation: Guillaume Baudart: “Introduction to Software Engineering” (préparation à l’aggrégation
d’informatique), Lectures and TDs, France

• Bachelor: Timothy Bourke: “A Programmer’s introduction to Computer Architectures and Operating
Systems" (L2), École Polytechnique, France

• Internships Timothy Bourke & Guillaume Baudart participated in reviewing the L3 and M1 intern-
ships of students at the ENS, France.

10.2.2 Supervision

• PhD in progress: Paul Jeanmaire, 2nd year, supervised by Timothy Bourke and Marc Pouzet.

• PhD in progress: Baptiste Pauget, 2nd year, supervised by Marc Pouzet.

• PhD in progress: Basile Pesin, 2nd year, supervised by Timothy Bourke and Marc Pouzet.

• PhD in progress: Astyax Nourel, 1st year, supervised by Adrien Guatto (IRIF, Univ. of Paris) and
Marc Pouzet.

• Master: Antonin Reitz, M2 research internship, supervised by Marc Pouzet (March-August 2021).

• Master: Reyan Tekin, M2 research internship, supervised by Guillaume Baudart and Marc Pouzet
(March-August 2021).

10.3 Popularization

10.3.1 Education

• Timothy Bourke presented at a meeting of the IEEE Student Chapter at the École polytechnique.

11 Scientific production

11.1 Major publications

[1] G. Baudart, L. Mandel, E. Atkinson, B. Sherman, M. Pouzet and M. Carbin. ‘Reactive probabilistic
programming’. In: PLDI 2020 - 41th ACM SIGPLAN International Conference in Programming
Language Design and Implementation. London / Virtual, United Kingdom, June 2020. DOI: 10.114
5/3385412.3386009. URL: https://hal.inria.fr/hal-03051954.

[2] T. Bourke, L. Brun, P.-E. Dagand, X. Leroy, M. Pouzet and L. Rieg. ‘A Formally Verified Compiler
for Lustre’. In: PLDI 2017 - 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM. Barcelone, Spain, June 2017. URL: https://hal.inria.fr/hal-0151228
6.

[3] T. Bourke, F. Carcenac, J.-L. Colaço, B. Pagano, C. Pasteur and M. Pouzet. ‘A Synchronous Look at
the Simulink Standard Library’. In: EMSOFT 2017 - 17th International Conference on Embedded
Software. Seoul, South Korea: ACM Press, Oct. 2017, p. 23. URL: https://hal.inria.fr/hal-01
575631.

[4] T. Bourke, J.-L. Colaço, B. Pagano, C. Pasteur and M. Pouzet. ‘A Synchronous-based Code Generator
For Explicit Hybrid Systems Languages’. In: International Conference on Compiler Construction
(CC). LNCS. London, United Kingdom, July 2015. URL: https://hal.inria.fr/hal-01242732.

[5] L. Gérard, A. Guatto, C. Pasteur and M. Pouzet. ‘A modular memory optimization for synchronous
data-flow languages: application to arrays in a lustre compiler’. In: Proceedings of the 13th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers, Tools and Theory for Embed-
ded Systems. Beijing, China: ACM, June 2012, pp. 51–60. DOI: 10.1145/2248418.2248426. URL:
https://hal.inria.fr/hal-00728527.

https://doi.org/10.1145/3385412.3386009
https://doi.org/10.1145/3385412.3386009
https://hal.inria.fr/hal-03051954
https://hal.inria.fr/hal-01512286
https://hal.inria.fr/hal-01512286
https://hal.inria.fr/hal-01575631
https://hal.inria.fr/hal-01575631
https://hal.inria.fr/hal-01242732
https://doi.org/10.1145/2248418.2248426
https://hal.inria.fr/hal-00728527

22 Inria Annual Report 2021

[6] J. C. Juega, S. Verdoolaege, A. Cohen, J. I. Gómez, C. Tenllado and F. Catthoor. ‘Patterns for par-
allel programming on GPUs’. In: Patterns for parallel programming on GPUs. Ed. by F. Magoulès.
Vol. Evaluation of State-of-the-Art Parallelizing Compilers Generating CUDA Code for Heteroge-
neous CPU/GPU Computing. ISBN 978-1-874672-57-9. Saxe-Cobourg, 2013. URL: https://hal.a
rchives-ouvertes.fr/hal-01257261.

[7] L. Mandel, F. Plateau and M. Pouzet. ‘Static Scheduling of Latency Insensitive Designs with Lucy-n’.
In: FMCAD 2011 - Formal Methods in Computer Aided Design. Austin, TX, United States, Oct. 2011.
URL: https://hal.inria.fr/hal-00654843.

[8] R. Morisset, P. Pawan and F. Zappa Nardelli. ‘Compiler testing via a theory of sound optimisations
in the C11/C++11 memory model’. In: PLDI 2013 - 34th ACM SIGPLAN conference on Programming
language design and implementation. Seattle, WA, United States: ACM, June 2013, pp. 187–196. DOI:
10.1145/2491956.2491967. URL: https://hal.inria.fr/hal-00909083.

[9] A. Pop and A. Cohen. ‘OpenStream: Expressiveness and Data-Flow Compilation of OpenMP Stream-
ing Programs’. In: ACM Transactions on Architecture and Code Optimization 9.4 (2013). Selected for
presentation at the HiPEAC 2013 Conf. DOI: 10.1145/2400682.2400712. URL: https://hal.in
ria.fr/hal-00786675.

[10] J. Sevcik, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan and P. Sewell. ‘CompCertTSO: A Verified
Compiler for Relaxed-Memory Concurrency’. In: Journal of the ACM (JACM) 60.3 (2013), art. 22:1–50.
DOI: 10.1145/2487241.2487248. URL: https://hal.inria.fr/hal-00909076.

[11] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset and F. Zappa Nardelli. ‘Common compiler
optimisations are invalid in the C11 memory model and what we can do about it’. In: POPL 2015 -
42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Mumbai, India,
Jan. 2015. URL: https://hal.inria.fr/hal-01089047.

11.2 Publications of the year

International journals

[12] Best Paper
E. Atkinson, G. Baudart, L. Mandel, C. Yuan and M. Carbin. ‘Statically bounded-memory delayed
sampling for probabilistic streams’. In: Proceedings of the ACM on Programming Languages 5.OOP-
SLA (20th Oct. 2021), pp. 1–28. DOI: 10.1145/3485492. URL: https://hal.archives-ouvertes
.fr/hal-03401752.

[13] T. Bourke, P. Jeanmaire, B. Pesin and M. Pouzet. ‘Verified Lustre Normalization with Node Sub-
sampling’. In: ACM Transactions on Embedded Computing Systems (TECS) 20.5s (1st Oct. 2021),
pp. 1–25. DOI: 10.1145/3477041. URL: https://hal.inria.fr/hal-03370264.

International peer-reviewed conferences

[14] Best Paper
G. Baudart, J. Burroni, M. Hirzel, L. Mandel and A. 2. Shinnar. ‘Compiling Stan to generative
probabilistic languages and extension to deep probabilistic programming’. In: PLDI ’21 - 42nd
ACM SIGPLAN International Conference on Programming Language Design and Implementation.
Virtual, Canada: ACM, 18th June 2021, pp. 497–510. DOI: 10.1145/3453483.3454058. URL:
https://hal.archives-ouvertes.fr/hal-03401742.

[15] G. Baudart, M. Hirzel, K. Kate, P. Ram, A. Shinnar and J. Tsay. ‘Pipeline Combinators for Gradual
AutoML’. In: NeurIPS 2021 - Thirty-fifth Conference on Neural Information Processing Systems.
Virtual, France, 6th Dec. 2021. URL: https://hal.archives-ouvertes.fr/hal-03464012.

[16] L. Chelini, A. Drebes, O. Zinenko, A. Cohen, N. Vasilache, T. Grosser and H. Corporaal. ‘Progressive
Raising in Multi-level IR’. In: CGO 2021 : International Symposium on Code Generation and
Optimization. International Conference on Code Generation and Optimization (CGO). Seoul /
Virtual, South Korea, 27th Feb. 2021. URL: https://hal.inria.fr/hal-03139764.

https://hal.archives-ouvertes.fr/hal-01257261
https://hal.archives-ouvertes.fr/hal-01257261
https://hal.inria.fr/hal-00654843
https://doi.org/10.1145/2491956.2491967
https://hal.inria.fr/hal-00909083
https://doi.org/10.1145/2400682.2400712
https://hal.inria.fr/hal-00786675
https://hal.inria.fr/hal-00786675
https://doi.org/10.1145/2487241.2487248
https://hal.inria.fr/hal-00909076
https://hal.inria.fr/hal-01089047
https://doi.org/10.1145/3485492
https://hal.archives-ouvertes.fr/hal-03401752
https://hal.archives-ouvertes.fr/hal-03401752
https://doi.org/10.1145/3477041
https://hal.inria.fr/hal-03370264
https://doi.org/10.1145/3453483.3454058
https://hal.archives-ouvertes.fr/hal-03401742
https://hal.archives-ouvertes.fr/hal-03464012
https://hal.inria.fr/hal-03139764

Project PARKAS 23

National peer-reviewed Conferences

[17] T. Bourke, P. Jeanmaire, B. Pesin and M. Pouzet. ‘Verified normalization of the Lustre language’. In:
JFLA 2021 - 32ème Journées Francophones des Langages Applicatifs. JFLA 2021 - 32ème Journées
Francophones des Langages Applicatifs. En ligne, France, 7th Apr. 2021, pp. 117–133. URL: https:
//hal.inria.fr/hal-03287572.

Conferences without proceedings

[18] E. Atkinson, G. Baudart, L. Mandel, C. Yuan and M. Carbin. ‘Checking Bounded-Memory Execution
for Delayed Sampling on Probabilistic Streams’. In: PROBPROG 2021 - Third International Confer-
ence on Probabilistic Programming. Virtual, United States, 20th Oct. 2021. URL: https://hal.arc
hives-ouvertes.fr/hal-03401720.

[19] G. Baudart and L. Mandel. ‘Automatic Guide Generation for Stan via NumPyro’. In: PROBPROG 2021
- Third International Conference on Probabilistic Programming. Virtual, United States, 20th Oct.
2021. URL: https://hal.archives-ouvertes.fr/hal-03401708.

[20] G. Mavroudeas, G. Baudart, A. Cha, M. Hirzel, J. A. Laredo, M. Magdon-Ismail, L. Mandel and E.
Wittern. ‘Learning GraphQL Query Cost’. In: ASE 2021 - IEEE/ACM International Conference on
Automated Software Engineering – Industry Showcase. Melbourne / Virtuel, Australia, 14th Nov.
2021. URL: https://hal.archives-ouvertes.fr/hal-03469475.

[21] I. Rak-Amnouykit, A. Milanova, G. Baudart, M. Hirzel and J. Dolby. ‘Extracting Hyperparameter
Constraints from Code’. In: ICLR Workshop on Security and Safety in Machine Learning Systems.
Virtual, United States, 7th May 2021. URL: https://hal.archives-ouvertes.fr/hal-034016
83.

11.3 Cited publications

[22] D. Biernacki, J.-L. Colaço, G. Hamon and M. Pouzet. ‘Clock-directed Modular Code Generation of
Synchronous Data-flow Languages’. In: ACM International Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES). Tucson, Arizona, June 2008.

[23] S. Blazy, Z. Dargaye and X. Leroy. ‘Formal Verification of a C Compiler Front-End’. In: FM 2006: Int.
Symp. on Formal Methods. Vol. 4085. Lecture Notes in Computer Science. Springer-Verlag, 2006,
pp. 460–475. URL: http://gallium.inria.fr/~xleroy/publi/cfront.pdf.

[24] T. Bourke, L. Brun and M. Pouzet. ‘Towards a verified Lustre compiler with modular reset’. In:
21st International Workshop on Software and Compilers for Embedded Systems (SCOPES 2018).
Proceedings of the 21st International Workshop on Software and Compilers for Embedded Systems
(SCOPES 2018). Sankt Goar, Germany: ACM Press, May 2018, p. 4. DOI: 10.1145/3207719.320773
2. URL: https://hal.inria.fr/hal-01817949.

[25] T. Bourke and M. Pouzet. ‘Clocked arguments in a verified Lustre compiler’. In: JFLA 2019 - Les
Trentièmes Journées Francophones des Langages Applicatifs. Les actes des trentièmes Journées
Francophones des Langages Applicatifs (JFLA 2019). Les Rousses, France, Jan. 2019, p. 16. URL:
https://hal.inria.fr/hal-02005639.

[26] C. D. Canovas. ‘Méthodes déductives pour la preuve de programmes Lustre’. PhD thesis. Université
Joseph Fourier (Grenoble), Nov. 2000.

[27] P. Caspi, J.-L. Colaço, L. Gérard, M. Pouzet and P. Raymond. ‘Synchronous Objects with Schedul-
ing Policies: Introducing safe shared memory in Lustre’. In: ACM International Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES). Dublin, June 2009.

[28] P. Caspi and C. Dumas. ‘A PVS Proof Obligation Generator for Lustre Programs’. In: 2nd Interna-
tional Conference on Logic for Programming and Reasonning, LPAR2000. Vol. 1955. La Réunion:
Lecture Notes in Artificial Intelligence, Nov. 2000.

[29] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau and M. Pouzet. ‘N -Synchronous Kahn
Networks: a Relaxed Model of Synchrony for Real-Time Systems’. In: ACM International Conference
on Principles of Programming Languages (POPL’06). Charleston, South Carolina, USA, Jan. 2006.

https://hal.inria.fr/hal-03287572
https://hal.inria.fr/hal-03287572
https://hal.archives-ouvertes.fr/hal-03401720
https://hal.archives-ouvertes.fr/hal-03401720
https://hal.archives-ouvertes.fr/hal-03401708
https://hal.archives-ouvertes.fr/hal-03469475
https://hal.archives-ouvertes.fr/hal-03401683
https://hal.archives-ouvertes.fr/hal-03401683
http://gallium.inria.fr/~xleroy/publi/cfront.pdf
https://doi.org/10.1145/3207719.3207732
https://doi.org/10.1145/3207719.3207732
https://hal.inria.fr/hal-01817949
https://hal.inria.fr/hal-02005639

24 Inria Annual Report 2021

[30] A. Cohen, L. Mandel, F. Plateau and M. Pouzet. ‘Abstraction of Clocks in Synchronous Data-flow Sys-
tems’. In: The Sixth ASIAN Symposium on Programming Languages and Systems (APLAS). Bangalore,
India, Dec. 2008.

[31] J.-L. Colaço, B. Pagano and M. Pouzet. ‘A Conservative Extension of Synchronous Data-flow with
State Machines’. In: ACM International Conference on Embedded Software (EMSOFT’05). Jersey city,
New Jersey, USA, Sept. 2005.

[32] The Coq proof Assistant. http://coq.inria.fr. 2019.

[33] P. Eades and X. Lin. ‘A Heuristic for the Feedback Arc Set Problem’. In: Australasian Journal of
Combinatorics 12 (Sept. 1995), pp. 15–25. URL: https://ajc.maths.uq.edu.au/pdf/12/ocr-a
jc-v12-p15.pdf.

[34] P. Eades, X. Lin and W. Smyth. ‘A Fast & Effective Heuristic for the Feedback Arc Set Problem’. In:
Information Processing Letters 47.6 (Oct. 1993), pp. 319–323. DOI: 10.1016/0020-0190(93)90079
-O.

[35] J. Forget. ‘Un Langage Synchrone pour les Systèmes Embarqués Critiques Soumis à des Contraintes
Temps Réel Multiples’. PhD thesis. Université de Toulouse, Nov. 2009.

[36] G. Kahn. ‘The semantics of a simple language for parallel programming’. In: IFIP 74 Congress. North
Holland, Amsterdam, 1974.

[37] X. Leroy. The Compcert verified compiler. 2009. URL: http://compcert.inria.fr/doc/index.h
tml.

[38] L. Mandel, F. Plateau and M. Pouzet. ‘Lucy-n: a n-Synchronous Extension of Lustre’. In: Tenth
International Conference on Mathematics of Program Construction (MPC 2010). Québec, Canada,
June 2010. URL: http://www.lri.fr/~mandel/papiers/MandelPlateauPouzet-MPC-10.pd
f.

[39] L. Mandel, F. Plateau and M. Pouzet. ‘Static Scheduling of Latency Insensitive Designs with Lucy-n’.
In: International Conference on Formal Methods in Computer-Aided Design (FMCAD). Austin, Texas,
USA, Oct. 2011.

[40] Z. Manna and A. Pnueli. Temporal Verifications of Reactive Systems – safety. Spinger, 1995.

[41] C. Paulin-Mohring. ‘A constructive denotational semantics for Kahn networks in Coq’. In: From
Semantics to Computer Science: Essays in Honour of Gilles Kahn. Ed. by Y. Bertot, G. Huet, J.-J. Lévy
and G. Plotkin. Cambridge, UK: Cambridge University Press, 2009, pp. 383–413. URL: https://hal
.inria.fr/inria-00431806/document.

[42] F. Plateau. ‘Modèle n-synchrone pour la programmation de réseaux de Kahn à mémoire bornée’.
PhD thesis. Orsay, France: Université Paris-Sud 11, June 2010. URL: https://www.lri.fr/~mand
el/lucy-n/~plateau/these/.

[43] M. Pouzet and P. Raymond. ‘Modular Static Scheduling of Synchronous Data-flow Networks: An
efficient symbolic representation’. In: ACM International Conference on Embedded Software (EM-
SOFT’09). Grenoble, France, Oct. 2009.

https://ajc.maths.uq.edu.au/pdf/12/ocr-ajc-v12-p15.pdf
https://ajc.maths.uq.edu.au/pdf/12/ocr-ajc-v12-p15.pdf
https://doi.org/10.1016/0020-0190(93)90079-O
https://doi.org/10.1016/0020-0190(93)90079-O
http://compcert.inria.fr/doc/index.html
http://compcert.inria.fr/doc/index.html
http://www.lri.fr/~mandel/papiers/MandelPlateauPouzet-MPC-10.pdf
http://www.lri.fr/~mandel/papiers/MandelPlateauPouzet-MPC-10.pdf
https://hal.inria.fr/inria-00431806/document
https://hal.inria.fr/inria-00431806/document
https://www.lri.fr/~mandel/lucy-n/~plateau/these/
https://www.lri.fr/~mandel/lucy-n/~plateau/these/

	Project-Team PARKAS
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Programming Languages for Cyber-Physical Systems
	Compiling for Sequential and Multi-Core Processors
	Validation and Proof of Compilers
	Probabilistic Reactive Programming

	Application domains
	Embedded Control Software
	Hybrid Systems Design and Simulation

	Highlights of the year
	Awards

	New software and platforms
	New software
	Heptagon
	SundialsML
	Zelus
	Vélus
	MPPcodegen
	MPP
	ProbZelus
	DeepStan

	New results
	Verified compilation of Lustre
	Latency-based scheduling of synchronous programs
	Sundials/ML: OCaml interface to Sundials Numeric Solvers
	The Zelus Language
	An executable reference semantics for Zelus
	Array Size Checking and Inference with an ML Type System
	Probabilistic Programming
	Reactive Probabilistic Programming
	Compiling Stan to Generative Probabilistic Languages

	Automated Machine Learning
	Lale: Gradual Automation
	Extracting Hyperparameters Constraints from Code

	Application: Learning GraphQL Query Cost

	Bilateral contracts and grants with industry
	Bilateral contracts with industry

	Partnerships and cooperations
	International initiatives
	Participation in other International Programs

	European initiatives
	FP7 & H2020 projects

	National initiatives
	ANR
	FUI: Fonds unique interministériel
	Programme d'Investissements d'Avenir (PIA)
	Others

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks
	Research administration

	Teaching - Supervision - Juries
	Teaching
	Supervision

	Popularization
	Education

	Scientific production
	Major publications
	Publications of the year
	Cited publications

