
2021
ACTIVITY REPORT

Project-Team

PARTOUT

RESEARCH CENTRE

Saclay - Île-de-France

IN PARTNERSHIP WITH:

CNRS, Ecole Polytechnique

Proof Automation and RepresenTation: a
fOundation of compUtation and
deducTion

IN COLLABORATION WITH: Laboratoire d’informatique de l’école
polytechnique (LIX)

DOMAIN

Algorithmics, Programming, Software
and Architecture

THEME

Proofs and Verification

Contents

Project-Team PARTOUT 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3

3 Research program 4

4 Application domains 5
4.1 Automated Theorem Proving . 5
4.2 Proof-assistants . 5
4.3 Programming language design . 6

5 Highlights of the year 6
5.1 Awards . 6

6 New software and platforms 6
6.1 New software . 6

6.1.1 MOIN . 6
6.1.2 OCaml . 6
6.1.3 Abella . 7
6.1.4 ocaml-boxroot . 7

6.2 New platforms . 7

7 New results 8
7.1 Game Semantics for Constructive Modal Logic . 8
7.2 Combinatorial Proofs and Decomposition Theorems for First-order Logic 8
7.3 Coqlex, an approach to generate verified lexers . 8
7.4 Perspectives on proof theory and logic programming . 8
7.5 Unification of terms containing bindings . 9
7.6 Proof search when equality is a logical connective . 9
7.7 Improving Gentzen’s LK proof system . 9
7.8 Extending the Inferno type-inference approach to realistic type-system features 10
7.9 OCaml Constructor unboxing . 10
7.10 Camlboot . 10
7.11 The (In)Efficiency of Interaction . 10
7.12 The Space of Interaction . 10
7.13 Strong Call-by-Value is Reasonable, Implosively . 11
7.14 Asymptotic Distribution of Parameters in Trivalent Maps and Linear Lambda Terms 11
7.15 Subformula linking for intuitionistic logic . 12

8 Bilateral contracts and grants with industry 12
8.1 Bilateral contracts with industry . 12

8.1.1 CIFRE Thesis Inria - Siemens . 12
8.2 Bilateral grants with industry . 13

8.2.1 OCaml Software Foundation . 13
8.2.2 General OCaml funding from Nomadic Labs . 13

9 Partnerships and cooperations 14
9.1 International initiatives . 14

9.1.1 Inria associate team not involved in an IIL or an international program 14
9.1.2 STIC/MATH/CLIMAT AmSud project . 14

9.2 National initiatives . 14

10 Dissemination 14
10.1 Promoting scientific activities . 14

10.1.1 Scientific events: organisation . 14
10.1.2 Scientific events: selection . 15
10.1.3 Journal . 15
10.1.4 Invited talks . 16

10.2 Teaching - Supervision - Juries . 16
10.2.1 Teaching . 16
10.2.2 Supervision . 16
10.2.3 Juries . 17

11 Scientific production 17
11.1 Major publications . 17
11.2 Publications of the year . 17
11.3 Other . 19
11.4 Cited publications . 19

Project PARTOUT 1

Project-Team PARTOUT

Creation of the Project-Team: 2019 December 01

Keywords

Computer sciences and digital sciences

A2.1. – Programming Languages

A2.2. – Compilation

A2.4. – Formal method for verification, reliability, certification

A4.5. – Formal methods for security

A7.2. – Logic in Computer Science

A7.2.1. – Decision procedures

A7.2.2. – Automated Theorem Proving

A7.2.3. – Interactive Theorem Proving

A7.2.4. – Mechanized Formalization of Mathematics

A7.3.1. – Computational models and calculability

A8.1. – Discrete mathematics, combinatorics

A8.11. – Game Theory

Other research topics and application domains

B6.1. – Software industry

https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Inria Annual Report 2021

1 Team members, visitors, external collaborators

Research Scientists

• Lutz Straßburger [Team leader, Inria, Researcher, HDR]

• Beniamino Accattoli [Inria, Researcher]

• Kaustuv Chaudhuri [Inria, Researcher]

• Ian Mackie [CNRS, Researcher]

• Dale Miller [Inria, Senior Researcher]

• Gabriel Scherer [Inria, Researcher]

• Noam Zeilberger [École polytechnique, Researcher]

Post-Doctoral Fellow

• Marianna Girlando [Inria, until Feb 2021]

PhD Students

• Farah Al Wardani [Inria, from Nov 2021]

• Nicolas Blanco [Université de Birmingham, from Jul 2021]

• Maico Carlos Leberle [Inria, until May 2021]

• Matteo Manighetti [Inria, until Oct 2021]

• Olivier Martinot [Inria]

• Marianela Evelyn Morales Elena [École polytechnique]

• Giti Omidvar [Inria]

• Wendlasida Ouedraogo [Siemens Mobility, CIFRE]

• Jui Hsuan Wu [Institut Polytechnique de Paris, from Oct 2021]

Interns and Apprentices

• Nicolas Chataing [École Normale Supérieure de Paris, from Mar 2021 until Jul 2021]

• Maxime Legoupil [École Normale Supérieure de Paris, from Mar 2021 until Jul 2021]

• Maxime Vemclefs [Inria, from May 2021 until Aug 2021]

Administrative Assistant

• Bahar Carabetta [Inria]

Project PARTOUT 3

2 Overall objectives

There is an emerging consensus that formal methods must be used as a matter of course in software
development. Most software is too complex to be fully understood by one programmer or even a team of
programmers, and requires the help of computerized techniques such as testing and model checking
to analyze and eliminate entire classes of bugs. Moreover, in order for the software to be maintainable
and reusable, it not only needs to be bug-free but also needs to have fully specified behavior, ideally
accompanied with formal and machine-checkable proofs of correctness with respect to the specification.
Indeed, formal specification and machine verification is the only way to achieve the highest level of
assurance (EAL7) according to the ISO/IEC Common Criteria.1

Historically, achieving such a high degree of certainty in the operation of software has required
significant investment of manpower, and hence of money. As a consequence, only software that is of
critical importance (and relatively unchanging), such as monitoring software for nuclear reactors or
fly-by-wire controllers in airplanes, has been subjected to such intense scrutiny. However, we are entering
an age where we need trustworthy software in more mundane situations, with rapid development cycles,
and without huge costs. For example: modern cars are essentially mobile computing platforms, smart-
devices manage our intensely personal details, elections (and election campaigns) are increasingly fully
computerized, and networks of drones monitor air pollution, traffic, military arenas, etc. Bugs in such
systems can certainly lead to unpleasant, dangerous, or even life-threatening incidents.

The field of formal methods has stepped up to meet this growing need for trustworthy general purpose
software in recent decades. Techniques such as computational type systems and explicit program
annotations/contracts, and tools such as model checkers and interactive theorem provers, are starting
to become standard in the computing industry. Indeed, many of these tools and techniques are now
a part of undergraduate computer science curricula. In order to be usable by ordinary programmers
(without PhDs in logic), such tools and techniques have to be high level and rely heavily on automation.
Furthermore, multiple tools and techniques often need to marshaled to achieve a verification task,
so theorem provers, solvers, model checkers, property testers, etc. need to be able to communicate
with—and, ideally, trust—each other.

With all this sophistication in formal tools, there is an obvious question: what should we trust?
Sophisticated formal reasoning tools are, generally speaking, complex software artifacts themselves; if we
want complex software to undergo rigorous formal analysis we must be prepared to formally analyze the
tools and techniques used in formal reasoning itself. Historically, the issue of trust has been addressed
by means of relativizing it to small and simple cores. This is the basis of industrially successful formal
reasoning systems such as Coq, Isabelle, HOL4, and ACL2. However, the relativization of trust has led to a
balkanization of the formal reasoning community, since the Coq kernel, for example, is incompatible
with the Isabelle kernel, and neither can directly cross-validate formal developments built with the other.
Thus, there is now a burgeoning cottage industry of translations and adaptations of different formal proof
languages for bridging the gap. A number of proposals have also been made for universal or retargetable
proof languages (e.g., Dedukti, ProofCert) so that the cross-platform trust issues can be factorized into
single trusted checkers.

Beyond mutual incompatibility caused by relativized trust, there is a bigger problem that the proof
evidence that is accepted by small kernels is generally far too detailed to be useful. Formal developments
usually occurs at a much higher level, relying on algorithmic techniques such as unification, simplification,
rewriting, and controlled proof search to fill in details. Indeed, the most reusable products of formal
developments tend to be these algorithmic techniques and associated collections of hand-crafted rules.
Unfortunately, these techniques are even less portable than the fully detailed proofs themselves, since the
techniques are often implemented in terms of the behaviors of the trusted kernels. We can broadly say that
the problem with relativized trust is that it is based on the operational interpretation of implementations
of trusted kernels. There still remains the question of meta-theoretic correctness. Most formal reasoning
systems implement a variant of a well known mathematical formalism (e.g., Martin-Löf type theory, set
theory, higher-order logic), but it is surprising that hardly any mainstream system has a formalized meta-
theory.2 Furthermore, formal reasoning systems are usually associated with complicated checkers for

1http://www.commoncriteriaportal.org/cc/
2A prominent exception is HOL-Light, whose implementation has been self-certified—in HOL-Light itself—up to a strong

assumption necessary to side-step incompleteness.

http://www.commoncriteriaportal.org/cc/

4 Inria Annual Report 2021

side-conditions that often have unclear mathematical status. For example, the Coq kernel has a built-in
syntactic termination checker for recursive fixed-point expressions that is required to work correctly for
the kernel to be sound. This termination checker evolves and improves with each version of Coq, and
therefore the most accurate documentation of its behavior is its own source code. Coq is not special in
this regard: similar trusted features exist in nearly every mainstream formal reasoning system.

The PARTOUT project is interested in the principles of deductive and computational formalisms. In
the broadest sense, we are interested in the question of trustworthy and verifiable meta-theory. At one
end, this includes the well studied foundational questions of the meta-theory of logical systems and
type systems: cut-elimination and focusing in proof theory, type soundness and normalization theorems
in type theory, etc. The focus of our research here is on the fundamental relationships behind the the
notions of computation and deduction. We are particularly interested in relationships that go beyond the
well known correspondences between proofs and programs.3 Indeed, interpreting computation in terms
of deduction (as in logic programming) or deduction in terms of computation (as in rewrite systems or
in model checking) can often lead to fruitful and enlightening research questions, both theoretical and
practical.

From another end, PARTOUT works on the question of the essential nature of deductive or computa-
tional formalisms. For instance, we are interested in the question of proof identity that attempts to answer
the following question: when are two proofs of the same theorem the same? Surprisingly, this very basic
question is left unanswered in proof theory, the branch of mathematics that supposedly treats proofs
as algebraic objects of interest. We also pay particular attention to the combinatorial and complexity-
theoretic properties of the formalisms. Indeed, it is surprising that until very recently the λ-calculus,
which is the de facto basis of every functional programming language, lacked a good complexity-theoretic
foundation, i.e., a cost model that would allow us to use the λ-calculus directly to define complexity
classes.

To put trustworthy meta-theory to use, the PARTOUT project also works on the design and imple-
mentations of formal reasoning tools and techniques. We study the mathematical principles behind the
representations of formal concepts (λ-terms, proofs, abstract machines, etc.), with the goal of identifying
the relationships and trade-offs. We also study computational formalisms such as higher-order relational
programming that is well suited to the specification and analysis of systems defined in the structural oper-
ational semantics (SOS) style. We also work on foundational questions about induction and co-induction,
which are used in intricate combinations in metamathematics.

3 Research program

Software and hardware systems perform computation (systems that process, compute and perform)
and deduction (systems that search, check or prove). The makers of those systems express their intent
using various frameworks such as programming languages, specification languages, and logics. The
PARTOUT project aims at developing and using mathematical principles to design better frameworks for
computation and reasoning. Principles of expression are researched from two directions, in tandem:

• Foundational approaches, from theories to applications: studying fundamental problems of pro-
gramming and proof theory.

Examples include studying the complexity of reduction strategies in lambda-calculi with sharing,
or studying proof representations that quotient over rule permutations and can be adapted to
many different logics.

• Empirical approaches, from applications to theories: studying systems currently in use to build a
theoretical understanding of the practical choices made by their designers.

Examples include studying realistic implementations of programming languages and proof assis-
tants, which differ in interesting ways from their usual high-level formal description (regarding of
sharing of code and data, for example), or studying new approaches to efficient automated proof
search, relating them to existing approaches of proof theory, for example to design proof certificates
or to generalize them to non-classical logics.

3The Curry-Howard correspondence.

Project PARTOUT 5

One of the strengths of PARTOUT is the co-existence of a number of different expertise and points of
view. Many dichotomies exist in the study of computation and deduction: functional programming vs
logic programming, operational semantics vs denotational semantics, constructive logic vs classical logic,
proof terms vs proof nets, etc. We do not identify with any one of them in particular, rather with them
as a whole, believing in the value of interaction and cross-fertilization between different approaches.
PARTOUT defines its scope through the following core tenets:

• An interest in both computation and logic.

• The use of mathematical formalism as our core scientific method, paired with practical implemen-
tations of the systems we study.

• A shared belief in the importance of good design when creating new means of expression, iterating
towards simplicity and elegance.

More concretely, the research in PARTOUT will be centered around the following four themes:

1. Foundations of proof theory as a theory of proofs. Current proof theory is not a theory of proofs
but a theory of proof systems. This has many practical consequences, as a proof produced by
modern theorem provers cannot be considered independent from the tool that produced it. A
central research topic here is the quest for proof representations that are independent from the
proof system, so that proof theory becomes a proper theory of proofs.

2. Program Equivalence We intend to use our proof theoretical insights to deepen our understanding
of the structure of computer programs by discovering canonical representations for functional
programming languages, and to apply these to the problems of program equivalence checking and
program synthesis.

3. Reasoning with relational specifications of formal systems. Formal systems play a central role
for proof checkers and proof assistants that are used for software verification. But there is usually
a large gap between the specification of those formal systems in concise informal mathematical
language and their implementation in ML or C code. Our research goal is to close that gap.

4. Foundations of complexity analysis for functional programs. One of the great merits of the
functional programming paradigm is the natural availability of high-level abstractions. However,
these abstractions jeopardize the programmer’s predictive control on the performance of the code,
since many low-level steps are abstracted away by higher-order functions. Our research goal is to
regain that control by developing models of space and time costs for functional programs.

4 Application domains

4.1 Automated Theorem Proving

The Partout team studies the structure of mathematical proofs, in ways that often makes them more
amenable to automated theorem proving – automatically searching the space of proof candidates for a
statement to find an actual proof – or a counter-example.

(Due to fundamental computability limits, fully-automatic proving is only possible for simple state-
ments, but this field has been making a lot of progress in recent years, and is in particular interested with
the idea of generating verifiable evidence for the proofs that are found, which fits squarely within the
expertise of Partout.)

4.2 Proof-assistants

Our work on the structure of proofs also suggests ways how they could be presented to a user, edited
and maintained, in particular in “proof assistants”, automated tool to assist the writing of mathematical
proofs with automatic checking of their correctness.

6 Inria Annual Report 2021

4.3 Programming language design

Our work also gives insight on the structure and properties of programming languages. We can improve
the design or implementation of programming languages, help programmers or language implementors
reason about the correctness of the programs in a given language, or reason about the cost of execution
of a program.

5 Highlights of the year

5.1 Awards

Noam Zeilberger was awarded an ANR PRC grant as project coordinator for the LambdaComb project,
which starts in 2022. The aim of the project is to develop some surprising connections between lambda
calculus and combinatorics that were discovered over recent years. Partners include labs in Paris (LIX,
LIPN, LIGM), Marseille (LIS), and Poland (Jagiellonian), with an overall budget of roughly 285k€.

6 New software and platforms

6.1 New software

6.1.1 MOIN

Name: MOdal Intuitionistic Nested sequents

Keywords: Logic programming, Modal logic

Functional Description: MOIN is a SWI Prolog theorem prover for classical and intuitionstic modal
logics. The modal and intuitionistic modal logics considered are all the 15 systems occurring in
the modal S5-cube, and all the decidable intuitionistic modal logics in the IS5-cube. MOIN also
provides a protptype implementation for the intuitionistic logics for which decidability is not
known (IK4,ID5 and IS4). MOIN is consists of a set of Prolog clauses, each clause representing
a rule in one of the three proof systems. The clauses are recursively applied to a given formula,
constructing a proof-search tree. The user selects the nested proof system, the logic, and the
formula to be tested. In the case of classic nested sequent and Maehara-style nested sequents,
MOIN yields a derivation, in case of success of the proof search, or a countermodel, in case of
proof search failure. The countermodel for classical modal logics is a Kripke model, while for
intuitionistic modal logic is a bi-relational model. In case of Gentzen-style nested sequents, the
prover does not perform a countermodel extraction.

A system description of MOIN is available at https://hal.inria.fr/hal-02457240

URL: http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/Software/Moin/MoinPr
over.html

Publication: hal-02457240

Contact: Lutz Strassburger

6.1.2 OCaml

Keywords: Functional programming, Static typing, Compilation

Functional Description: The OCaml language is a functional programming language that combines
safety with expressiveness through the use of a precise and flexible type system with automatic type
inference. The OCaml system is a comprehensive implementation of this language, featuring two
compilers (a bytecode compiler, for fast prototyping and interactive use, and a native-code compiler

http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/Software/Moin/MoinProver.html
http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/Software/Moin/MoinProver.html
https://hal.inria.fr/hal-02457240

Project PARTOUT 7

producing efficient machine code for x86, ARM, PowerPC, RISC-V and System Z), a debugger, and a
documentation generator. Many other tools and libraries are contributed by the user community
and organized around the OPAM package manager.

URL: https://ocaml.org/

Publications: hal-03146495, hal-03510931, hal-03145030, hal-01929508, hal-03125031, hal-00772993,
hal-00914493, hal-00914560, inria-00074804, hal-01499973, hal-01499946

Contact: Damien Doligez

Participants: Florian Angeletti, Damien Doligez, Xavier Leroy, Luc Maranget, Gabriel Scherer, Alain
Frisch, Jacques Garrigue, Marc Shinwell, Jeremy Yallop, Leo White

6.1.3 Abella

Keyword: Proof assistant

Functional Description: Abella is an interactive theorem prover for reasoning about computations given
as relational specifications. Abella is particuarly well suited for reasoning about binding constructs.

URL: http://abella-prover.org/

Contact: Kaustuv Chaudhuri

Participants: Dale Miller, Gopalan Nadathur, Kaustuv Chaudhuri, Mary Southern, Matteo Cimini, Olivier
Savary-Bélanger, Yuting Wang

Partner: Department of Computer Science and Engineering, University of Minnesota

6.1.4 ocaml-boxroot

Keywords: Interoperability, Library, Ocaml, Rust

Scientific Description: Boxroot is an implementation of roots for the OCaml GC based on concurrent
allocation techniques. These roots are designed to support a calling convention to interface
between Rust and OCaml code that reconciles the latter’s foreign function interface with the idioms
from the former.

Functional Description: Boxroot implements fast movable roots for OCaml in C. A root is a data type
which contains an OCaml value, and interfaces with the OCaml GC to ensure that this value and its
transitive children are kept alive while the root exists. This can be used to write programs in other
languages that interface with programs written in OCaml.

URL: https://gitlab.com/ocaml-rust/ocaml-boxroot

Contact: Guillaume Munch

Participants: Guillaume Munch, Gabriel Scherer

6.2 New platforms

https://ocaml.org/
https://hal.inria.fr/hal-03146495
https://hal.inria.fr/hal-03510931
https://hal.inria.fr/hal-03145030
https://hal.inria.fr/hal-01929508
https://hal.inria.fr/hal-03125031
https://hal.inria.fr/hal-00772993
https://hal.inria.fr/hal-00914493
https://hal.inria.fr/hal-00914560
https://hal.inria.fr/inria-00074804
https://hal.inria.fr/hal-01499973
https://hal.inria.fr/hal-01499946
http://abella-prover.org/
https://gitlab.com/ocaml-rust/ocaml-boxroot

8 Inria Annual Report 2021

7 New results

7.1 Game Semantics for Constructive Modal Logic

Participants: Lutz Straßburger.

External Collaborators: Matteo Acclavio (University of Luxembourg), Davide Catta (University of
Montpellier)

Continuing our work on constructive and intuitionistic modal logics, we provide the first game
semantics for the constructive modal logic CK. We define arenas encoding modal formulas, and we define
winning innocent strategies for games on these arenas. Finally we characterize the winning strategies
corresponding to proofs in the logic CK. To prove the full-completeness of our semantics, we provide a
sequentialization procedure of winning strategies. We also prove their compositionality and showing how
our results can be extend to the constructive modal logic CD. The results are published in [23] and [24].

7.2 Combinatorial Proofs and Decomposition Theorems for First-order Logic

Participants: Lutz Straßburger, Jui-Hsuan Wu.

External Collaborators: Dominic Hughes (U.C. Berkeley)
We uncover a close relationship between combinatorial and syntactic proofs for first-order logic

(without equality). Whereas syntactic proofs are formalized in a deductive proof system based on
inference rules, a combinatorial proof is a syntax-free presentation of a proof that is independent from
any set of inference rules. We show that the two proof representations are related via a deep inference
decomposition theorem that establishes a new kind of normal form for syntactic proofs. This yields
(a) a simple proof of soundness and completeness for first-order combinatorial proofs, and (b) a full
completeness theorem: every combinatorial proof is the image of a syntactic proof.

This result is published in the LICS 2021 conference [17]

7.3 Coqlex, an approach to generate verified lexers

Participants: Lutz Straßburger, Wendlasida Ouedraogo.

External Collaborators: Danko Ilik (Siemens)
A compiler consists of a sequence of phases going from lexical analysis to code generation. Ideally,

the formal verification of a compiler should include the formal verification of every component of the
tool-chain. In order to contribute to the end-to-end verification of compilers, we implemented a verified
lexer generator with usage similar to OCamllex. This software-Coqlex-reads a lexer specification and
generates a lexer equipped with Coq proofs of its correctness. Although the performance of the generated
lexers does not measure up to the performance of a standard lexer generator such as OCamllex, the safety
guarantees it comes with make it an interesting alternative to use when implementing totally verified
compilers or other language processing tools.

This work has been presented at the ML 2021 workshop [22]

7.4 Perspectives on proof theory and logic programming

Participants: Dale Miller.

Project PARTOUT 9

For more than thirty years, various researchers, including current and previous members of Partout
and Parsifal, have been applying proof theory to multiple topics in computational logic. A survey of that
work has been published in [9], an invited submission to the 20th Anniversary Issue of the Theory and
Practice of Logic Programming. This survey documents various ways that proof theory has been applied
to logic programming. One can actually see from this history a surprising influence of logic programming
also on the development of proof theory. This reciprocal influences between logic programming and
proof theory is reported in the paper [10].

7.5 Unification of terms containing bindings

Participants: Dale Miller.

External Collaborators: Tomer Libal, University of Luxembourg, Computer Science Department
Higher-order pattern unification is often used in proof assistants and other computational logic

systems to discover appropriate instances of quantifiers when implementing the mechanical search
for proofs. Recently, this approach to unification has been expanded to the functions-as-constructors
higher-order unification setting: this expanded setting continues to be decidable and possesses most
general unifiers whenever unifiers exist [7].

7.6 Proof search when equality is a logical connective

Participants: Dale Miller.

External Collaborators: Alexandre Viel
The formulation of equality uses in the team’s implementations of model checking and theorem

proving identifies equality as a logical connective. Other treatments of equality treat it as a non-logical
predicate axiomatized by an appropriate theory. Our treatment as a logical connective, however, allows us
to have very strong focusing theorems in the setting of arithmetic proofs. The Bedwyr and Abella systems
incorporate this approach to equality. The paper [11] provides a proof that such unification, in its most
general form, is undecidability.

7.7 Improving Gentzen’s LK proof system

Participants: Dale Miller.

External Collaborators: Chuck Liang, Hofstra University, New York, USA.
Gentzen’s sequent calculi LK is a landmark proof systems. Given the extensive uses that have been

made of LK by computer scientists in recent decades, several undesirable features of this calculus have
been identified. Among such features is that its inferences rules are low-level and frequently permute
over each other. As a result, large-scale structures within sequent calculus proofs are hard to identify.
Liang and Miller [26] present a different approach to designing a sequent calculus for classical logic.
Starting with LK, they examined the proof search meaning of its inference rules and classify them as
involving either don’t care nondeterminism or don’t know nondeterminism. Based on that classification,
they designed the focused proof system LKF in which inference rules belong to one of two phases of proof
construction depending on which flavor of nondeterminism they involve. They then prove that the cut
rule and the general form of the initial rule are admissible in LKF. These results can be used to provide
simple proofs of various meta-theoretic properties of classical logic, including Herbrand’s theorem.

10 Inria Annual Report 2021

7.8 Extending the Inferno type-inference approach to realistic type-system features

Participants: Gabriel Scherer, Olivier Martinot.

Inferno is a software library from François Pottier (EPI Cambium) to implement constraint-based
type-inference in a pleasant, declarative style. It contains a proof-of-concept inference engine for a very
small programming language, but it is not obvious how to scale its declarative style to richer language
features.

Olivier Martinot, as a PhD student, has been working with Gabriel Scherer on extending the Inferno
approach to more language features, hoping to eventually cover a large subset of the OCaml type system.
This action is continued from last year.

Gabriel presented a part of this joint work at the "ML Family Workshop" 2021, [21].

7.9 OCaml Constructor unboxing

Participants: Nicolas Chataing (M2 intern), Gabriel Scherer
Constructor unboxing is a proposed data-representation optimization for OCaml; it could improve

memory usage in certain cases by eliminating overhead in the memory representation of values. We
worked on a prototype implmentation of constructor unboxing. This required solving a decision problem
for unfolding of ML datatype declarations in presence of mutual recursion, an interesting scientific result
of its own.

This work was presented at the ML workshop [20] and will be presented at the JFLA’22 [19].

7.10 Camlboot

Participants: Nathanaëlle Courant (INRIA Paris, EPI Cambium), Julien Lepiller (Yale University), Gabriel
Scherer

Camlboot is a software project to "debootstrap" the OCaml compiler, that is, compile the OCaml
compiler (which is itself written in OCaml) without requiring the use of a previous version of the OCaml
compiler. It relies on a reference interpreter for OCaml written in a small subset of OCaml, that can be
compiled to bytecode by a small, special-purpose compiler written in Scheme. A reference interpreter for
OCaml is also a result of independent interest.

7.11 The (In)Efficiency of Interaction

Participants: Beniamino Accattoli.

External Collaborators: Ugo Dal Lago (University of Bologna & Inria) and Gabriele Vanoni (University
of Bologna & Inria).

This work studies the time performance of abstract machines for the λ-calculus inspired by the
geometry of interaction, building over work by the same authors in 2020. The results are that in general
these machines are less efficient than those based on environments. The paper also studies the link
between the time of the interaction abstract machine and intersection types, showing how to extract
the former from the latter. The type system is then used to show that the inefficiency of the interaction
abstract machine is due and proportional to the use of higher-order types.

This work belongs to the research theme Foundations of complexity analysis for functional programs
and it has been published in [5].

7.12 The Space of Interaction

Project PARTOUT 11

Participants: Beniamino Accattoli.

External Collaborators: Ugo Dal Lago (University of Bologna & Inria) and Gabriele Vanoni (University
of Bologna & Inria).

This work complements the one in the previous subsection by studying the space of the interaction
abstract machine (shortened to IAM) for the λ-calculus via a new type system based on intersection types,
the first such type system able to measure space. The type system is then used to give a strong argument
against the conjecture that the space of the IAM is a reasonable space cost model for the λ-calculus,
roughly disproving the conjecture.

This work belongs to the research theme Foundations of complexity analysis for functional programs
and it has been published in [15].

7.13 Strong Call-by-Value is Reasonable, Implosively

Participants: Beniamino Accattoli.

External Collaborators: Andrea Condoluci (Tweag I/O) and Claudio Sacerdoti Coen (University of
Bologna).

This work proves that the number of steps taken by the strong call-by-value evaluation strategy of
the λ-calculus, which is used in the implementation of the Coq proof assistant, is a reasonable time cost
model. The proof rests on a new abstract machine which—thanks to a new mix of sharing techniques—is
remarkably efficient: it is the first machine for strong evaluation (that is, evaluation that enters function
bodies)working within an overhead linear in both the number of β-steps and the size of the initial term.
We actually show that on some families of terms the overhead is actually logarithmic inthe number of
β-steps.

This work belongs to the research theme Foundations of complexity analysis for functional programs
and it has been published in [13].

7.14 Asymptotic Distribution of Parameters in Trivalent Maps and Linear Lambda
Terms

Participants: Noam Zeilberger
External Collaborators: Olivier Bodini, LIPN, Université Sorbonne Paris Nord; Alexandros Singh,

LIPN, Université Sorbonne Paris Nord
This work builds on recent surprising connections discovered between lambda calculus and the

study of map enumeration, which is an active subfield of combinatorics initiated by Bill Tutte in the
1960s. Notably, bijections between different families of linear lambda terms and different families of
rooted maps were independently discovered by Bodini, Gardy, and Jacquot (2013) and by Zeilberger and
Giorgetti (2015), and have since been the subject of a variety of followup works (for an overview, see the
introduction to Zeilberger, “A theory of linear typings as flows on 3-valent graphs”, LICS’2018).

In this paper, we dive deeper into the study of the combinatorics of linear lambda calculus, focusing on
the analysis of different parameters of lambda terms and their map-theoretic counterparts. For instance,
under the bijections mentioned above, closed subterms of a linear lambda term correspond to bridges in
the corresponding map, i.e., edges whose deletion increases the number of connected components. We
proved that the limit distribution of the number of closed proper subterms of a random closed linear
lambda term is a Poisson distribution of parameter 1 (= the asymptotic probability of having k closed
proper subterms is 1/(k !e)), therefore allowing us to conclude exactly the same for the limit distribution
of the number of bridges in a random map, as a surprising application of lambda calculus to graph theory.
We also studied the distribution of free variables in open terms, which correspond to 1-valent vertices.

This is work that occurs in the context of Singh’s doctoral thesis research, co-supervised by Bodini
and Zeilbeger. It has been presented by Singh at various venues including the journées ALEA 2021, the

12 Inria Annual Report 2021

“Structure Meets Power” workshop at LICS 2021, and the “Combinatorics and Arithmetic for Physics”
workshop at IHES, among others. The pre-print [25] has been submitted to the open-access journal
Combinatorial Theory and is currently under review.

7.15 Subformula linking for intuitionistic logic

Participants: Kaustuv Chaudhuri.

In 2013 we proposed a new method of interactive theorem proving based on the use of subformula
linking, which involves the use of links between arbitrary subformulas of a goal conjecture (i.e., the
theorem being proved) [29]. In a work published at CADE 2021 [16] we show how to extend this technique
to intuitionistic logic and a certain kind of intuitionistic type theories.

The main purpose of this work is to build new interactive theorem proving interfaces that are de-
coupled from the formal languages used to instruct proof verifiers. This allows the same proof building
interface to be used across a variety of theorem provers, and also to simplify the instruction that must be
given to novice users.

We are currently exploring mechanisms to add induction and higher-order logic to this framework.

8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

8.1.1 CIFRE Thesis Inria - Siemens

Participants: Lutz Straßburger, Wendlasida Ouedraogo.

Title: Optimization of source code for safety-critical systems

Duration: 2020 – 2022

Scientific Responsible: Lutz Straßburger

Industrial Partner: Siemens Mobility, Chatillon

Summary: The goal of the thesis is to develop ways to optimize the performance of software, while not
sacrificing the guarantees of safety already provided for non-optimized code. The software that
Siemens is using for their self-driving trains (e.g. Metro 14 in Paris) is programmed in Ada. Due
to the high safety requirements for the software, the used Ada compiler has to be certified. At the
current state of the art, only non-optimized code fulfils all necessary requirements. Because of
higher performance needs, we are interested in producing optimized code that also fulfils these
reqirements.

Stated most generally, the aim of the thesis is to assure, at the same time:

• optimization of execution-time of safety-critical software — safety-critical software is more
prone to bad execution-time performance, because most of its actions involve performing
checks (i.e., CPU branch instructions), and

• maintaining the safety guarantees from the input source code to the produced binary code
— in general, as soon as we decide to use a compiler optimization, the qualification of the
compiler no longer applies.

Project PARTOUT 13

8.2 Bilateral grants with industry

8.2.1 OCaml Software Foundation

Participants: Gabriel Scherer.

The OCaml Software Foundation (OCSF),4 established in 2018 under the umbrella of the Inria Foun-
dation, aims to promote, protect, and advance the OCaml programming language and its ecosystem, and
to support and facilitate the growth of a diverse and international community of OCaml users.

Since 2019, Gabriel Scherer serves as the director of the foundation.

8.2.2 General OCaml funding from Nomadic Labs

Participants: Gabriel Scherer, Olivier Martinot.

Nomadic Labs, a Paris-based company, has implemented the Tezos blockchain and cryptocurrency
entirely in OCaml. In 2019, Nomadic Labs and Inria have signed a framework agreement (“contrat-cadre”)
that allows Nomadic Labs to fund multiple research efforts carried out by Inria groups. Within this
framework, we participate to the following grants, in collaboration with the project-team Cambium at
INRIA Paris:

Évolution d’OCaml

This grant is intended to fund a number of improvements to OCaml, including the addition of new
features and a possible re-design of the OCaml type-checker. This grant funds the PhD thesis of Olivier
Martinot on this topic.

Maintenance d’OCaml

This grant is intended to fund the day-to-day maintenance of OCaml as well as the considerable work
involved in managing the release cycle.

OCaml-Rust

Title: OCaml/Rust bindings

Duration: 2021-2023

Coordinator: Gabriel Scherer (INRIA Saclay, EPI Partout)

Participants: Guillaume Munch-Maccagnoni (INRIA Rennes, EPI Galinette), Jacques-Henri Jourdan
(CNRS, LRI)

Partners: Inria, Nomadic Labs

Inria contact: Gabriel Scherer

Summary: We often want to write hybrid programs with components in several different programming
languages. Interfacing two languages typically goes through low-level, unsafe interfaces. The
OCaml/Rust project studies safer interfaces between OCaml and Rust.

4http://ocaml-sf.org/

http://ocaml-sf.org/

14 Inria Annual Report 2021

Expected Impact: We investigated safe low-level representations of OCaml values on the Rust side,
representing GC ownership, and developed a calling convention that reconciles the OCaml FFI
idioms with Rust idioms. We also developed Boxroot, a new API to register values with the OCaml
GC, for used when interfacing with Rust (and other programming languages) and possibly when
writing concurrent programs. This resulted in novel techniques which can benefit other pairs of
languages in the future. These works are now integrated in the ocaml-rs interface between OCaml
and Rust used in the industry.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Inria associate team not involved in an IIL or an international program

COMPRONOM

Title: Combinatorial Proof Normalization

Duration: 2020 ->

Coordinator: Lutz Straßburger

Partners:

• University of Bath

Inria contact: Lutz Strassburger

Summary: This project teams up three research groups at Inria Saclay, the University of Bath, and Uni-
versity College London, who are driven by their joint interest in the development of a combinatorial
proof theory which is able to treat formal proofs independently from syntactic proof systems. We
plan to focus our research in two major directions: First, study the normalization of combinatorial
proofs, with possible applications for the implementation of functional programming languages,
and second, study combinatorial proofs for the logic of bunched implications, with the possible
application for separation logic and its use in the verification of imperative programs.

9.1.2 STIC/MATH/CLIMAT AmSud project

• “Dynamic Logics: Model Theory, Proof Theory and Computational Complexity (DyLo-MPC)” (joint
project beween France, Argentina, Brazil, 2020–2022)

9.2 National initiatives

• ANR JCJC project COCA HOLA: Cost Models for Complexity Analyses of Higher-Order Languages,
coordinated by B. Accattoli, 2016–2021, ANR-16-CE40-004-01.

10 Dissemination

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

General chair, scientific chair

• Dale Miller completed in July 2021 a three year appointment as the General Chair of LICS.

Project PARTOUT 15

Member of the organizing committees

• Giti Omidvar was student volunteer at POPL’21

• Wendlasida Ouedraogo was student volunteer at POPL’21

• Miller is a member of the Steering Committees of both LICS and LFMTP.

• Chaudhuri serves on the Steering Committee of the International Joint Conference on Automated
Reasoning (IJCAR, 2020-2022).

• Marianela Morales was student volunteer at POPL’21 and ICFP’21

10.1.2 Scientific events: selection

Member of the conference program committees

• Lutz Straßburger was member of the PC of Tableaux 2021 and of TLLA 2021

• Miller was on the program committees of RAMiCS 2021 (19th International Conference on Rela-
tional and Algebraic Methods in Computer Science) and LPAR-23 (23rd International Conference
on Logic for Programming, Artificial Intelligence and Reasoning).

• Accattoli was member of the PC of IWC 2021 (International workshop on confluence).

• Chaudhuri was on the program committee of Tableaux 2021

• Marianela Morales was member of the Artifact Evaluation Committee at CAV2021: 33rd Interna-
tional Conference on Computer-Aided Verification.

Reviewer

• Lutz Straßburger was reviewer for Tableaux 2021, TLLA 2021, and CSL 2022

• Zeilberger was reviewer for LICS 2021, MSCS 2021, and CALCO 2021.

• Accattoli was reviewer for LICS 2021 (2 papers), ICFP 2021, FSCD 2021 (2 papers).

10.1.3 Journal

Member of the editorial boards

• Miller is a member of the Advirsory Board of the new Diamond Open Access electronic journal
TheoretiCS, which will cover all areas of Theoretical Computer Science.

• Miller is a member of the Journal of Automated Reasoning, published by Springer (since May 2011).

• Miller is an area editor for “Type Theory for Theorem Proving Systems” of the Journal of Applied
Logic, published by Elsevier (since 2003).

Reviewer - reviewing activities

• Lutz Straßburger was reviewer for the Journal of Philosopical Logic (JLP), and Logical Methods in
Computer Science (LMCS)

• Miller was a reviewer for the Annals of Mathematics and Artificial Intelligence.

• Miller was a reviewer for Deutsche Forschungsgemeinschaft (German Research Foundation).

• Zeilberger was a reviewer for LMCS.

• Accattoli was reviewer for LMCS (2 papers), TOCL (ACM Transactions on Computational Logic) and
JLAMP (Journal of Logical and Algebraic Methods in Programming).

16 Inria Annual Report 2021

10.1.4 Invited talks

• Miller was an invited speaker at the Seventh Meeting of ANR-FWF Project Ticamore (June) and
the PhilMath Seminar, Institut d’histoire et de philosophie des sciences et des techniques (IHPST)
(December).

• In March, Miller was invited to speak to both the Online Worldwide Seminar on Logic and Semantics
(OWLS) and the Proof Theory Virtual Seminar.

• Zeilberger gave an invited talk as part of the special session on Categorical Type Theory at MFPS
2021. Over the year he also gave invited online seminars at the University of Bath, Tallinn University
of Technology, and Masaryk University.

• Accattoli was invited speaker at TLLA 2021 (International Workshop on Trends in Linear Logic and
Applications).

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Lutz Straßburger was teaching a course at ESSLLI 2022. Course notes can be found here [28]

• Giti Omidvar was teaching assistant for the course INF442 – Algorithms Pour l’analyse de donées
en C++ (from the beginning of March to the beginning of June) at Ecole Polytechnique

• Wendlasida Ouedraogo was teaching assistant for the course INF411 at Ecole Polytechnique

• Miller was an instructor for MPRI (Master Parisien de Recherche en Informatique) in the Course
2-1: Logique linéaire et paradigmes logiques du calcul. He taught 12 hours during Spring and 15
hours during Fall 2021.

• Noam Zeilberger taught the third year undergraduate course "Functional Programming" in the
Bachelors program at Ecole Polytechnique, and was a teaching assistant for the second year
polytechnicien course INF412 "Fondements de l’informatique".

• Accattoli was an instructor for MPRI (Master Parisien de Recherche en Informatique) in the Course
2-1: Logique linéaire et paradigmes logiques du calcul. He taught 15 hours.

• Chaudhuri taught the third year undergraduate course "CSE 302: Compiler Design" at the Ecole
polytechnique. He was also a teach assistant for INF412 at the engineering program at the poly-
technique.

• Marianela Morales was teaching assistant at the course Computer Programming at École Polytech-
nique (CSE101), second semester of Bachelor of Science 1

10.2.2 Supervision

• Lutz Straßburger is supervising three PhD students: Giti Omidvar, Marianela Morales, and Wend-
lasida Ouedraogo

• Miller is supervising three Ph.D. students: Farah Al Wardani, Matteo Manighetti, and Jui-Hsuan Wu.

• Zeilberger is co-supervising two PhD students: Nicolas Blanco (with Paul Blain Levy) and Alexan-
dros Singh (with Olivier Bodini).

• Accattoli completed the supervision of one PhD student, Maico Leberle, who defended in May
2021, and one master student, Maxime Vemclefs, for an internship.

• Chaudhuri is co-supervising the PhD thesis of Farah Al Wardani.

Project PARTOUT 17

10.2.3 Juries

• Lutz Straßburger was in the jury (as external reviewer) for the PhD defense of Tim Lyon (TU Wien,
Austria)

• Miller was a reporter for the Ph.D. defense of Ahmed Bhayat (University of Manchester).

11 Scientific production

11.1 Major publications

[1] B. Accattoli, A. Condoluci and C. S. Coen. ‘Strong Call-by-Value is Reasonable, Implosively’. In:
2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Rome, Italy: IEEE,
29th June 2021, pp. 1–14. DOI: 10.1109/LICS52264.2021.9470630. URL: https://hal.inria
.fr/hal-03475461.

[2] B. Accattoli, U. Dal Lago and G. Vanoni. ‘The (In)Efficiency of interaction’. In: Proceedings of the
ACM on Programming Languages 5.POPL (4th Jan. 2021), pp. 1–33. DOI: 10.1145/3434332. URL:
https://hal.inria.fr/hal-03346750.

[3] B. Accattoli, U. D. Lago and G. Vanoni. ‘The Space of Interaction’. In: LICS 2021 - 36th Annual
ACM/IEEE Symposium on Logic in Computer Science. Vol. 5. Rome, France: IEEE, 4th Jan. 2021,
pp. 1–13. DOI: 10.1109/LICS52264.2021.9470726. URL: https://hal.inria.fr/hal-03346
767.

[4] L. Straßburger, D. J. D. Hughes and J.-H. Wu. ‘Combinatorial Proofs and Decomposition Theorems
for First-order Logic’. In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). Rome, Italy: IEEE, 27th Apr. 2021, pp. 1–13. DOI: 10.1109/LICS52264.2021.9470579.
URL: https://hal.inria.fr/hal-03369764.

11.2 Publications of the year

International journals

[5] B. Accattoli, U. Dal Lago and G. Vanoni. ‘The (In)Efficiency of interaction’. In: Proceedings of the
ACM on Programming Languages 5.POPL (4th Jan. 2021), pp. 1–33. DOI: 10.1145/3434332. URL:
https://hal.inria.fr/hal-03346750.

[6] M. Girlando, S. Negri and N. Olivetti. ‘Uniform labelled calculi for preferential conditional logics
based on neighbourhood semantics’. In: Journal of Logic and Computation 31.3 (2021), pp. 947–997.
DOI: 10.1093/logcom/exab019. URL: https://hal.archives-ouvertes.fr/hal-02330319.

[7] T. Libal and D. Miller. ‘Functions-as-constructors higher-order unification: extended pattern unifi-
cation’. In: Annals of Mathematics and Artificial Intelligence (30th Sept. 2021). DOI: 10.1007/s104
72-021-09774-y. URL: https://hal.archives-ouvertes.fr/hal-03457303.

[8] S. Marin, M. Morales and L. Straßburger. ‘A fully labelled proof system for intuitionistic modal
logics’. In: Journal of Logic and Computation 31.3 (6th May 2021), pp. 998–1022. DOI: 10.1093/log
com/exab020. URL: https://hal.inria.fr/hal-02390454.

[9] D. Miller. ‘A Survey of the Proof-Theoretic Foundations of Logic Programming’. In: Theory and
Practice of Logic Programming (18th Nov. 2021), pp. 1–46. DOI: 10.1017/S1471068421000533.
URL: https://hal.inria.fr/hal-03411144.

[10] D. Miller. ‘Reciprocal Influences Between Proof Theory and Logic Programming’. In: Philosophy &
Technology 34 (2021), pp. 75–104. DOI: 10.1007/s13347-019-00370-x. URL: https://hal.inr
ia.fr/hal-02368867.

[11] D. Miller and A. Viel. ‘The undecidability of proof search when equality is a logical connective’. In:
Annals of Mathematics and Artificial Intelligence (3rd July 2021). DOI: 10.1007/s10472-021-097
64-0. URL: https://hal.archives-ouvertes.fr/hal-03457312.

https://doi.org/10.1109/LICS52264.2021.9470630
https://hal.inria.fr/hal-03475461
https://hal.inria.fr/hal-03475461
https://doi.org/10.1145/3434332
https://hal.inria.fr/hal-03346750
https://doi.org/10.1109/LICS52264.2021.9470726
https://hal.inria.fr/hal-03346767
https://hal.inria.fr/hal-03346767
https://doi.org/10.1109/LICS52264.2021.9470579
https://hal.inria.fr/hal-03369764
https://doi.org/10.1145/3434332
https://hal.inria.fr/hal-03346750
https://doi.org/10.1093/logcom/exab019
https://hal.archives-ouvertes.fr/hal-02330319
https://doi.org/10.1007/s10472-021-09774-y
https://doi.org/10.1007/s10472-021-09774-y
https://hal.archives-ouvertes.fr/hal-03457303
https://doi.org/10.1093/logcom/exab020
https://doi.org/10.1093/logcom/exab020
https://hal.inria.fr/hal-02390454
https://doi.org/10.1017/S1471068421000533
https://hal.inria.fr/hal-03411144
https://doi.org/10.1007/s13347-019-00370-x
https://hal.inria.fr/hal-02368867
https://hal.inria.fr/hal-02368867
https://doi.org/10.1007/s10472-021-09764-0
https://doi.org/10.1007/s10472-021-09764-0
https://hal.archives-ouvertes.fr/hal-03457312

18 Inria Annual Report 2021

[12] A. Reynaud, G. Scherer and J. Yallop. ‘A practical mode system for recursive definitions’. In: Pro-
ceedings of the ACM on Programming Languages 5.POPL (4th Jan. 2021), pp. 1–29. DOI: 10.1145/3
434326. URL: https://hal.inria.fr/hal-03125031.

International peer-reviewed conferences

[13] B. Accattoli, A. Condoluci and C. S. Coen. ‘Strong Call-by-Value is Reasonable, Implosively’. In:
2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Rome, Italy: IEEE,
29th June 2021, pp. 1–14. DOI: 10.1109/LICS52264.2021.9470630. URL: https://hal.inria
.fr/hal-03475461.

[14] B. Accattoli, C. Faggian and G. Guerrieri. ‘Factorize Factorization’. In: CSL 2021 - 29th EACSL Annual
Conference on Computer Science Logic. Vol. 183. CSL 2021: 29th EACSL Annual Conference on
Computer Science Logic. Ljubljana, Slovenia, 25th Jan. 2021. DOI: 10.4230/LIPIcs.CSL.2021.22.
URL: https://hal.archives-ouvertes.fr/hal-03044338.

[15] B. Accattoli, U. D. Lago and G. Vanoni. ‘The Space of Interaction’. In: LICS 2021 - 36th Annual
ACM/IEEE Symposium on Logic in Computer Science. Vol. 5. Rome, France: IEEE, 4th Jan. 2021,
pp. 1–13. DOI: 10.1109/LICS52264.2021.9470726. URL: https://hal.inria.fr/hal-03346
767.

[16] K. Chaudhuri. ‘Subformula Linking for Intuitionistic Logic with Application to Type Theory’. In:
Automated Deduction – CADE 28. CADE 2021 - 28th International Conference on Automated
Deduction. Vol. 12699. Lecture Notes in Computer Science. Pittsburgh, PA (Virtual), United States:
Springer International Publishing, 5th July 2021, pp. 200–216. DOI: 10.1007/978-3-030-79876-
5_12. URL: https://hal.inria.fr/hal-03528659.

[17] L. Straßburger, D. J. D. Hughes and J.-H. Wu. ‘Combinatorial Proofs and Decomposition Theorems
for First-order Logic’. In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). Rome, Italy: IEEE, 27th Apr. 2021, pp. 1–13. DOI: 10.1109/LICS52264.2021.9470579.
URL: https://hal.inria.fr/hal-03369764.

National peer-reviewed Conferences

[18] F. Bour, B. Clément and G. Scherer. ‘Tail Modulo Cons’. In: JFLA 2021 - Journées Francophones des
Langages Applicatifs. Saint Médard d’Excideuil, France, 6th Apr. 2021. URL: https://hal.inria
.fr/hal-03146495.

[19] N. Chataing, C. Noûs and G. Scherer. ‘Déboîter les constructeurs’. In: Journées Francophones des
Langages Applicatifs. Saint-Médard-d’Excideuil, France, 2nd Feb. 2022. URL: https://hal.inria
.fr/hal-03510931.

Conferences without proceedings

[20] N. Chataing and G. Scherer. ‘Unfolding ML datatype declarations without loops’. In: ML Family
Workshop. online, South Korea, 27th Aug. 2021. URL: https://hal.inria.fr/hal-03510898.

[21] O. Martinot and G. Scherer. ‘Frozen inference constraints for type-directed disambiguation’. In:
ML Family Workshop. online, South Korea, 27th Aug. 2021. URL: https://hal.inria.fr/hal-0
3510890.

[22] W. Ouedraogo, D. Ilik and L. Straßburger. ‘Demo Paper: Coqlex, an approach to generate verified
lexers’. In: ML 2021-ACM SIGPLAN Workshop on ML. Online event, United States, 26th Aug. 2021.
URL: https://hal.inria.fr/hal-03470713.

Scientific book chapters

[23] M. Acclavio, D. Catta and L. Straßburger. ‘Game Semantics for Constructive Modal Logic’. In:
Automated Reasoning with Analytic Tableaux and Related Methods. Vol. 12842. Lecture Notes in
Computer Science. Springer International Publishing, 30th Aug. 2021, pp. 428–445. DOI: 10.1007
/978-3-030-86059-2_25. URL: https://hal.inria.fr/hal-03369819.

https://doi.org/10.1145/3434326
https://doi.org/10.1145/3434326
https://hal.inria.fr/hal-03125031
https://doi.org/10.1109/LICS52264.2021.9470630
https://hal.inria.fr/hal-03475461
https://hal.inria.fr/hal-03475461
https://doi.org/10.4230/LIPIcs.CSL.2021.22
https://hal.archives-ouvertes.fr/hal-03044338
https://doi.org/10.1109/LICS52264.2021.9470726
https://hal.inria.fr/hal-03346767
https://hal.inria.fr/hal-03346767
https://doi.org/10.1007/978-3-030-79876-5_12
https://doi.org/10.1007/978-3-030-79876-5_12
https://hal.inria.fr/hal-03528659
https://doi.org/10.1109/LICS52264.2021.9470579
https://hal.inria.fr/hal-03369764
https://hal.inria.fr/hal-03146495
https://hal.inria.fr/hal-03146495
https://hal.inria.fr/hal-03510931
https://hal.inria.fr/hal-03510931
https://hal.inria.fr/hal-03510898
https://hal.inria.fr/hal-03510890
https://hal.inria.fr/hal-03510890
https://hal.inria.fr/hal-03470713
https://doi.org/10.1007/978-3-030-86059-2_25
https://doi.org/10.1007/978-3-030-86059-2_25
https://hal.inria.fr/hal-03369819

Project PARTOUT 19

Reports & preprints

[24] M. Acclavio, D. Catta and L. Straßburger. Towards a Denotational Semantics for Proofs in Construc-
tive Modal Logic. 18th Apr. 2021. URL: https://hal.archives-ouvertes.fr/hal-03201439.

[25] O. Bodini, A. Singh and N. Zeilberger. Asymptotic Distribution of Parameters in Trivalent Maps and
Linear Lambda Terms. 20th Dec. 2021. URL: https://hal.archives-ouvertes.fr/hal-03495
894.

[26] C. Liang and D. Miller. Focusing Gentzen’s LK proof system. 30th Nov. 2021. URL: https://hal.arc
hives-ouvertes.fr/hal-03457379.

[27] M. Manighetti and D. Miller. Computational logic based on linear logic and fixed points. 18th Feb.
2022. URL: https://hal.inria.fr/hal-03579451.

11.3 Other

Educational activities

[28] W. Heijltjes and L. Straßburger. ‘From Proof Nets to Combinatorial Proofs - A New Approach to
Hilbert’s 24th Problem’. École thématique. Netherlands, 2nd Aug. 2021. URL: https://hal.inria
.fr/hal-03316571.

11.4 Cited publications

[29] K. Chaudhuri. ‘Subformula Linking as an Interaction Method’. In: 4th Conference on Interactive
Theorem Proving. Vol. 7998. Lecture Notes in Computer Science. Rennes, France: Springer, July
2013, pp. 386–401. DOI: 10.1007/978-3-642-39634-2_28. URL: https://hal.inria.fr/hal
-00937009.

https://hal.archives-ouvertes.fr/hal-03201439
https://hal.archives-ouvertes.fr/hal-03495894
https://hal.archives-ouvertes.fr/hal-03495894
https://hal.archives-ouvertes.fr/hal-03457379
https://hal.archives-ouvertes.fr/hal-03457379
https://hal.inria.fr/hal-03579451
https://hal.inria.fr/hal-03316571
https://hal.inria.fr/hal-03316571
https://doi.org/10.1007/978-3-642-39634-2_28
https://hal.inria.fr/hal-00937009
https://hal.inria.fr/hal-00937009

	Project-Team PARTOUT
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Application domains
	Automated Theorem Proving
	Proof-assistants
	Programming language design

	Highlights of the year
	Awards

	New software and platforms
	New software
	MOIN
	OCaml
	Abella
	ocaml-boxroot

	New platforms

	New results
	Game Semantics for Constructive Modal Logic
	Combinatorial Proofs and Decomposition Theorems for First-order Logic
	Coqlex, an approach to generate verified lexers
	Perspectives on proof theory and logic programming
	Unification of terms containing bindings
	Proof search when equality is a logical connective
	Improving Gentzen's LK proof system
	Extending the Inferno type-inference approach to realistic type-system features
	OCaml Constructor unboxing
	Camlboot
	The (In)Efficiency of Interaction
	The Space of Interaction
	Strong Call-by-Value is Reasonable, Implosively
	Asymptotic Distribution of Parameters in Trivalent Maps and Linear Lambda Terms
	Subformula linking for intuitionistic logic

	Bilateral contracts and grants with industry
	Bilateral contracts with industry
	CIFRE Thesis Inria - Siemens

	Bilateral grants with industry
	OCaml Software Foundation
	General OCaml funding from Nomadic Labs

	Partnerships and cooperations
	International initiatives
	Inria associate team not involved in an IIL or an international program
	STIC/MATH/CLIMAT AmSud project

	National initiatives

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Scientific production
	Major publications
	Publications of the year
	Other
	Cited publications

