
2021
ACTIVITY REPORT

Team

PI.R2

RESEARCH CENTRE

Paris

Design, study and implementation of
languages for proofs and programs
Inria teams are typically groups of researchers working on the definition of a common

project, and objectives, with the goal to arrive at the creation of a project-team. Such

project-teams may include other partners (universities or research institutions)

DOMAIN

Algorithmics, Programming, Software
and Architecture

THEME

Proofs and Verification

Contents

Team PI.R2 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 4

3 Research program 4
3.1 Proof theory and the Curry-Howard correspondence . 4

3.1.1 Proofs as programs . 4

3.1.2 Towards the calculus of constructions . 4

3.1.3 The Calculus of Inductive Constructions . 5

3.2 The development of Coq . 5

3.2.1 The underlying logic and the verification kernel . 6

3.2.2 Programming and specification languages . 6

3.2.3 Standard library . 6

3.2.4 Tactics . 7

3.2.5 Extraction . 7

3.2.6 Documentation . 7

3.2.7 Proof development infrastructure . 7

3.3 Dependently typed programming languages . 7

3.3.1 Type-checking and proof automation . 8

3.4 Around and beyond the Curry-Howard correspondence . 8

3.4.1 Control operators and classical logic . 8

3.4.2 Sequent calculus . 8

3.4.3 Abstract machines . 9

3.4.4 Delimited control . 9

3.5 Effective higher-dimensional algebra . 9

3.5.1 Higher-dimensional algebra . 9

3.5.2 Higher-dimensional rewriting . 9

3.5.3 Squier theory . 9

4 Application domains 10

5 Social and environmental responsibility 10
5.1 Footprint of research activities . 10

6 Highlights of the year 10
6.1 Awards . 11

6.2 Towards PiCube . 11

7 New software and platforms 11
7.1 New software . 11

7.1.1 Coq . 11

7.1.2 Rewr . 12

7.1.3 Catex . 13

7.1.4 Cox . 13

7.1.5 coqbot . 13

7.1.6 jsCoq . 14

7.1.7 coq-serapi . 14

7.1.8 pyCoq . 15

8 New results 15
8.1 Effects in proof theory and programming . 15

8.1.1 Computational contents of the axiom of choice . 15
8.1.2 Proof-search in proof nets . 15
8.1.3 Algebraic Logic Programming . 15

8.2 Reasoning and programming with infinite data . 15
8.2.1 Proof theory of non-wellfounded and circular proofs 16
8.2.2 On the semantics of finitary and non-wellfounded proofs 16
8.2.3 Quantum programming languages with inductive and coinductive types 17

8.3 Effective higher-dimensional algebra . 17
8.3.1 Coherent presentations of monoids . 17
8.3.2 Polygraphs and opetopes . 18
8.3.3 Foundations and formalisation of higher algebra . 18

8.4 Metatheory and development of Coq . 18
8.4.1 Dependent pattern-matching . 18
8.4.2 Software engineering aspects of the development of Coq 18
8.4.3 Software infrastructure and Tools . 19

8.5 Formalisation and verification . 19
8.5.1 Lexing and regular expressions in Coq . 19
8.5.2 Hofstadter nested recursive functions and Coq . 19
8.5.3 Sensitivity Conjecture in Coq . 20
8.5.4 Proofs of algorithms on graphs . 20
8.5.5 Iterated parametricity and semi-cubical sets . 20
8.5.6 Verified Datalog programs with applications to low-level binary analysis 20
8.5.7 Infinitary Proofs and Parity Automaton . 20
8.5.8 Real-time Digital Signal Processing . 20
8.5.9 Mechanism design . 21

9 Bilateral contracts and grants with industry 21
9.1 Bilateral contracts with industry . 21

10 Partnerships and cooperations 21
10.1 International initiatives . 21

10.1.1 Associate Teams in the framework of an Inria International Lab or in the framework
of an Inria International Program . 21

10.2 International research visitors . 21
10.2.1 Visits of international scientists . 21

10.3 National initiatives . 22
10.4 Regional initiatives . 22

11 Dissemination 22
11.1 Promoting scientific activities . 22

11.1.1 Scientific events: organisation . 22
11.1.2 Scientific events: selection . 22
11.1.3 Journal . 23
11.1.4 Invited talks . 23
11.1.5 Research administration . 23

11.2 Teaching - Supervision - Juries . 23
11.2.1 Courses . 23
11.2.2 Supervision . 23

11.3 Popularization . 25
11.3.1 Internal or external Inria responsibilities . 25
11.3.2 Articles and contents . 25

12 Scientific production 25
12.1 Major publications . 25
12.2 Publications of the year . 26
12.3 Other . 27
12.4 Cited publications . 27

Project PI.R2 1

Team PI.R2

Creation of the Team: 2021 January 01

Keywords

Computer sciences and digital sciences

A2.1.1. – Semantics of programming languages

A2.1.4. – Functional programming

A2.1.11. – Proof languages

A2.4.3. – Proofs

A7.2. – Logic in Computer Science

A7.2.3. – Interactive Theorem Proving

A7.2.4. – Mechanized Formalization of Mathematics

A8.1. – Discrete mathematics, combinatorics

A8.4. – Computer Algebra

Other research topics and application domains

B6.1. – Software industry

https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Inria Annual Report 2021

1 Team members, visitors, external collaborators

Research Scientists

• Alexis Saurin [Team leader, CNRS, Researcher]

• Pierre-Louis Curien [CNRS, Emeritus, HDR]

• Thomas Ehrhard [CNRS, Senior Researcher]

• Emilio Jesus Gallego Arias [Inria, Starting Research Position]

• Hugo Herbelin [Inria, Senior Researcher, HDR]

• Jean-Jacques Lévy [Inria, Emeritus, HDR]

• Paul-André Melliès [CNRS, Senior Researcher]

Faculty Members

• Pierre Letouzey [Université de Paris, Associate Professor]

• Daniela Petrisan [Université de Paris, from Feb 2021]

PhD Students

• Antoine Allioux [Inria, Jan 2021]

• Esaie Bauer [Université de Paris]

• Vincent Blazy [Université de Paris]

• Felix Castro [Université de Paris]

• Kostia Chardonnet [Université Paris-Saclay]

• El Mehdi Cherradi [Conseil général de l’économie, de l’industrie, de l’énergie et des technologies]

• Abhishek De [Université de Paris]

• Alen Duric [Université de Paris]

• Colin Gonzalez [Nomadic Labs, CIFRE]

• Farzad Jafarrahmani [Université de Paris]

• Hugo Moeneclaey [Université Paris-Saclay]

Technical Staff

• Thierry Martinez [Inria, Engineer]

• Théo Zimmermann [Inria, Engineer]

• Daniel de Rauglaudre [Inria, Engineer]

Interns and Apprentices

• Jeremy Damour [Inria, Jun 2021]

• Naomi Jacquet [Inria, from Feb 2021 until Jun 2021]

• Amel Kebbouche [Université de Paris]

Project PI.R2 3

Administrative Assistants

• Christelle Guiziou [Inria]

• Anne Mathurin [Inria]

• Scheherazade Rouag [Inria, from Oct 2021]

External Collaborator

• Yann Régis-Gianas [Université de Paris, Dec 2021]

4 Inria Annual Report 2021

2 Overall objectives

Since 2012, the research conducted in πr 2 has been devoted both to the study of foundational aspects of
formal proofs and programs and to the development of the Coq proof assistant software, with a focus
on the dependently typed programming language aspects of Coq. The team acts as one of the strongest
teams involved in the development of Coq as it hosts in particular the current coordinator of the Coq
development team. The team also expanded its scope to the study of the homotopy of rewriting systems,
which shares foundational tools with recent advanced works on the semantics of type theories.

2021 is the final year of the project-team which shall be replaced, early 2022, by a newly created team,
named PiCube, welcoming new members and exploring new research directions which will be presented
in this report.

3 Research program

3.1 Proof theory and the Curry-Howard correspondence

3.1.1 Proofs as programs

Proof theory is the branch of logic devoted to the study of the structure of proofs. An essential contributor
to this field is Gentzen [63] who developed in 1935 two logical formalisms that are now central to the
study of proofs. These are the so-called “natural deduction”, a syntax that is particularly well-suited
to simulate the intuitive notion of reasoning, and the so-called “sequent calculus”, a syntax with deep
geometric properties that is particularly well-suited for proof automation.

Proof theory gained a remarkable importance in computer science when it became clear, after genuine
observations first by Curry in 1958 [54], then by Howard and de Bruijn at the end of the 60’s [75, 44], that
proofs had the very same structure as programs: for instance, natural deduction proofs can be identified
as typed programs of the ideal programming language known as λ-calculus.

This proofs-as-programs correspondence has been the starting point to a large spectrum of researches
and results contributing to deeply connect logic and computer science. In particular, it is from this line of
work that Coquand and Huet’s Calculus of Constructions [51, 52] stemmed out – a formalism that is both
a logic and a programming language and that is at the source of the Coq system [93].

3.1.2 Towards the calculus of constructions

The λ-calculus, defined by Church [50], is a remarkably succinct model of computation that is defined
via only three constructions (abstraction of a program with respect to one of its parameters, reference to
such a parameter, application of a program to an argument) and one reduction rule (substitution of the
formal parameter of a program by its effective argument). The λ-calculus, which is Turing-complete, i.e.
which has the same expressiveness as a Turing machine (there is for instance an encoding of numbers as
functions in λ-calculus), comes with two possible semantics referred to as call-by-name and call-by-value
evaluations. Of these two semantics, the first one, which is the simplest to characterise, has been deeply
studied in the last decades [40].

To explain the Curry-Howard correspondence, it is important to distinguish between intuitionistic
and classical logic: following Brouwer at the beginning of the 20th century, classical logic is a logic that
accepts the use of reasoning by contradiction while intuitionistic logic proscribes it. Then, Howard’s
observation is that the proofs of the intuitionistic natural deduction formalism exactly coincide with
programs in the (simply typed) λ-calculus.

A major achievement has been accomplished by Martin-Löf who designed in 1971 a formalism, re-
ferred to as modern type theory, that was both a logical system and a (typed) programming language [85].

In 1985, Coquand and Huet [51, 52] in the Formel team of INRIA-Rocquencourt explored an alter-
native approach based on Girard-Reynolds’ system F [64, 89]. This formalism, called the Calculus of
Constructions, served as logical foundation of the first implementation of Coq in 1984. Coq was called
CoC at this time.

Project PI.R2 5

3.1.3 The Calculus of Inductive Constructions

The first public release of CoC dates back to 1989. The same project-team developed the programming
language Caml (nowadays called OCaml and coordinated by the Gallium team) that provided the expres-
sive and powerful concept of algebraic data types (a paragon of it being the type of lists). In CoC, it was
possible to simulate algebraic data types, but only through a not-so-natural not-so-convenient encoding.

In 1989, Coquand and Paulin [53] designed an extension of the Calculus of Constructions with a
generalisation of algebraic types called inductive types, leading to the Calculus of Inductive Constructions
(CIC) that started to serve as a new foundation for the Coq system. This new system, which got its current
definitive name Coq, was released in 1991.

In practice, the Calculus of Inductive Constructions derives its strength from being both a logic
powerful enough to formalise all common mathematics (as set theory is) and an expressive richly-
typed functional programming language (like ML but with a richer type system, no effects and no
non-terminating functions).

3.2 The development of Coq

During 1984-2012 period, about 40 persons have contributed to the development of Coq, out of which
7 persons have contributed to bring the system to the place it was six years ago. First Thierry Coquand
through his foundational theoretical ideas, then Gérard Huet who developed the first prototypes with
Thierry Coquand and who headed the Coq group until 1998, then Christine Paulin who was the main
actor of the system based on the CIC and who headed the development group from 1998 to 2006. On the
programming side, important steps were made by Chet Murthy who raised Coq from the prototypical
state to a reasonably scalable system, Jean-Christophe Filliâtre who turned to concrete the concept of
a small trustful certification kernel on which an arbitrary large system can be set up, Bruno Barras and
Hugo Herbelin who, among other extensions, reorganised Coq on a new smoother and more uniform
basis able to support a new round of extensions for the next decade.

The development started from the Formel team at Rocquencourt but, after Christine Paulin got a
position in Lyon, it spread to École Normale Supérieure de Lyon. Then, the task force there globally moved
to the University of Orsay when Christine Paulin got a new position there. On the Rocquencourt side, the
part of Formel involved in ML moved to the Cristal team (now Gallium) and Formel got renamed into Coq.
Gérard Huet left the team and Christine Paulin started to head a Coq team bilocalised at Rocquencourt
and Orsay. Gilles Dowek became the head of the team which was renamed into LogiCal. Following Gilles
Dowek who got a position at École Polytechnique, LogiCal moved to the new INRIA Saclay research
center. It then split again, giving birth to ProVal. At the same time, the Marelle team (formerly Lemme,
formerly Croap) which has been a long partner of the Formel team, invested more and more energy in
the formalisation of mathematics in Coq, while contributing importantly to the development of Coq, in
particular for what regards user interfaces.

After various other spreadings resulting from where the wind pushed former PhD students, the
development of Coq got multi-site with the development now realised mainly by employees of INRIA, the
CNAM, and Paris Diderot.

In the last seven years, Hugo Herbelin and Matthieu Sozeau coordinated the development of the
system, the official coordinator hat passed from Hugo to Matthieu in August 2016. The ecosystem and
development model changed greatly during this period, with a move towards an entirely distributed
development model, integrating contributions from all over the world. While the system had always been
open-source, its development team was relatively small, well-knit and gathered regularly at Coq working
groups, and many developments on Coq were still discussed only by the few interested experts.

The last years saw a big increase in opening the development to external scrutiny and contributions.
This was supported by the “core” team which started moving development to the open GitHub platform
(including since 2017 its bug-tracker [94] and wiki), made its development process public, starting to
use public pull requests to track the work of developers, organising yearly hackatons/coding-sprints for
the dissemination of expertise and developers & users meetings like the Coq Workshop and CoqPL, and,
perhaps more anecdotally, retransmitting Coq working groups on a public YouTube channel.

This move was also supported by the hiring of Maxime Dénès in 2016 as an INRIA research engineer
(in Sophia-Antipolis), and the work of Matej Košík (2-year research engineer). Their work involved making

6 Inria Annual Report 2021

the development process more predictable and streamlined and to provide a higher level of quality to the
whole system. In 2018, a second engineer, Vincent Laporte, was hired. Yves Bertot, Maxime Dénès and
Vincent Laporte are developing the Coq consortium, which aims to become the incarnation of the global
Coq community and to offer support for our users.

Today, the development of Coq involves participants from the INRIA project-teams pi.r2 (Paris),
Marelle (Sophia-Antipolis), Toccata (Saclay), Gallinette (Nantes), Gallium (Paris), and Camus (Strasboug),
the LIX at École Polytechnique and the CRI Mines-ParisTech. Apart from those, active collaborators
include members from MPI-Saarbrucken (D. Dreyer’s group), KU Leuven (B. Jacobs group), MIT CSAIL
(A. Chlipala’s group, which hosted an INRIA/MIT engineer, and N. Zeldovich’s group), the Institute for
Advanced Study in Princeton (from S. Awodey, T. Coquand and V. Voevodsky’s Univalent Foundations
program) and Intel (M. Soegtrop). The latest released versions have typically a couple of dozens of
contributors (e.g. 40 for 8.8, 54 for 8.9, ...).

On top of the developer community, there is a much wider user community, as Coq is being used in
many different fields. The Software Foundations series, authored by academics from the USA, along with
the reference Coq’Art book by Bertot and Castéran [41], the more advanced Certified Programming with
Dependent Types book by Chlipala [49] and the recent book on the Mathematical Components library by
Mahboubi, Tassi et al. provide resources for gradually learning the tool.

In the programming languages community, Coq is being taught in two summer schools, OPLSS and
the DeepSpec summer school. For more mathematically inclined users, there are regular Winter Schools
in Nice and in 2017 there was a school on the use of the Univalent Foundations library in Birmingham.

Since 2016, Coq also provides a central repository for Coq packages, the Coq opam archive, relying on
the OCaml opam package manager and including around 250 packages contributed by users. It would be
too long to make a detailed list of the uses of Coq in the wild. We only highlight four research projects
relying heavily on Coq. The Mathematical Components library has its origins in the formal proof of
the Four Colour Theorem and has grown to cover many areas of mathematics in Coq using the now
integrated (since Coq 8.7) SSREFLECT proof language. The DeepSpec project is an NSF Expedition project
led by A. Appel whose aim is full-stack verification of a software system, from machine-checked proofs
of circuits to an operating system to a web-browser, entirely written in Coq and integrating many large
projects into one. The ERC CoqHoTT project led by N. Tabareau aims to use logical tools to extend the
expressive power of Coq, dealing with the univalence axiom and effects. The ERC RustBelt project led by
D. Dreyer concerns the development of rigorous formal foundations for the Rust programming language,
using the Iris Higher-Order Concurrent Separation Logic Framework in Coq.

We next briefly describe the main components of Coq.

3.2.1 The underlying logic and the verification kernel

The architecture adopts the so-called de Bruijn principle: the well-delimited kernel of Coq ensures
the correctness of the proofs validated by the system. The kernel is rather stable with modifications
tied to the evolution of the underlying Calculus of Inductive Constructions formalism. The kernel
includes an interpreter of the programs expressible in the CIC and this interpreter exists in two flavours: a
customisable lazy evaluation machine written in OCaml and a call-by-value bytecode interpreter written
in C dedicated to efficient computations. The kernel also provides a module system.

3.2.2 Programming and specification languages

The concrete user language of Coq, called Gallina, is a high-level language built on top of the CIC.
It includes a type inference algorithm, definitions by complex pattern-matching, implicit arguments,
mathematical notations and various other high-level language features. This high-level language serves
both for the development of programs and for the formalisation of mathematical theories. Coq also
provides a large set of commands. Gallina and the commands together forms the Vernacular language of
Coq.

3.2.3 Standard library

The standard library is written in the vernacular language of Coq. There are libraries for various arith-
metical structures and various implementations of numbers (Peano numbers, implementation ofN, Z,

https://softwarefoundations.cis.upenn.edu/
https://math-comp.github.io/mcb/
https://www.cs.uoregon.edu/research/summerschool/archives.html
http://deepspec.org
https://team.inria.fr/marelle/en/two-new-winter-schools-on-coq
https://unimath.github.io/bham2017/
http://math-comp.github.io/math-comp/
http://deepspec.org
http://coqhott.gforge.inria.fr/
http://plv.mpi-sws.org/rustbelt/

Project PI.R2 7

Qwith binary digits, implementation of N, Z, Q using machine words, axiomatisation of R). There are
libraries for lists, list of a specified length, sorts, and for various implementations of finite maps and finite
sets. There are libraries on relations, sets, orders.

3.2.4 Tactics

The tactics are the methods available to conduct proofs. This includes the basic inference rules of the
CIC, various advanced higher level inference rules and all the automation tactics. Regarding automation,
there are tactics for solving systems of equations, for simplifying ring or field expressions, for arbitrary
proof search, for semi-decidability of first-order logic and so on. There is also a powerful and popular
untyped scripting language for combining tactics into more complex tactics.

Note that all tactics of Coq produce proof certificates that are checked by the kernel of Coq. As a
consequence, possible bugs in proof methods do not hinder the confidence in the correctness of the Coq
checker. Note also that the CIC being a programming language, tactics can have their core written (and
certified) in the own language of Coq if needed.

3.2.5 Extraction

Extraction is a component of Coq that maps programs (or even computational proofs) of the CIC to
functional programs (in OCaml, Scheme or Haskell). Especially, a program certified by Coq can fur-
ther be extracted to a program of a full-fledged programming language then benefiting of the efficient
compilation, linking tools, profiling tools, ... of the target language.

3.2.6 Documentation

Coq is a feature-rich system and requires extensive training in order to be used proficiently; current
documentation includes the reference manual, the reference for the standard library, as well as tutorials,
and related tooling [sphinx plugins, coqdoc]. The jsCoq tool allows writing interactive web pages were
Coq programs can be embedded and executed.

3.2.7 Proof development infrastructure

Coq is used in large-scale proof developments, and provides users miscellaneous tooling to help with
them: the coq_makefile and Dune build systems help with incremental proof-checking; the Coq OPAM
repository contains a package index for most Coq developments; the CoqIDE, ProofGeneral, jsCoq,
and VSCoq user interfaces are environments for proof writing; and the Coq’s API does allow users to
extend the system in many important ways. Among the current extensions we have QuickChik, a tool for
property-based testing; STMCoq and CoqHammer integrating Coq with automated solvers; ParamCoq,
providing automatic derivation of parametricity principles; MetaCoq for metaprogramming; Equations
for dependently-typed programming; SerAPI, for data-centric applications; etc... This also includes the
main open Coq repository living at Github.

3.3 Dependently typed programming languages

Dependently typed programming (shortly DTP) is an emerging concept referring to the diffuse and
broadening tendency to develop programming languages with type systems able to express program
properties finer than the usual information of simply belonging to specific data-types. The type systems
of dependently-typed programming languages allow to express properties dependent of the input and the
output of the program (for instance that a sorting program returns a list of same size as its argument).
Typical examples of such languages were the Cayenne language, developed in the late 90’s at Chalmers
University in Sweden and the DML language developed at Boston. Since then, various new tools have been
proposed, either as typed programming languages whose types embed equalities (Ωmega at Portland,
ATS at Boston, ...) or as hybrid logic/programming frameworks (Agda at Chalmers University, Twelf at
Carnegie, Delphin at Yale, OpTT at U. Iowa, Epigram at Nottingham, ...).

DTP contributes to a general movement leading to the fusion between logic and programming. Coq,
whose language is both a logic and a programming language which moreover can be extracted to pure

8 Inria Annual Report 2021

ML code plays a role in this movement and some frameworks combining logic and programming have
been proposed on top of Coq (Concoqtion at Rice and Colorado, Ynot at Harvard, Why in the ProVal team
at INRIA, Iris at MPI-Saarbrucken). It also connects to Hoare logic, providing frameworks where pre- and
post-conditions of programs are tied with the programs.

DTP approached from the programming language side generally benefits of a full-fledged language
(e.g. supporting effects) with efficient compilation. DTP approached from the logic side generally benefits
of an expressive specification logic and of proof methods so as to certify the specifications. The weakness
of the approach from logic however is generally the weak support for effects or partial functions.

3.3.1 Type-checking and proof automation

In between the decidable type systems of conventional data-types based programming languages and the
full expressiveness of logically undecidable formulae, an active field of research explores a spectrum of
decidable or semi-decidable type systems for possible use in dependently typed programming languages.
At the beginning of the spectrum, this includes, for instance, the system F’s extension MLF of the ML
type system or the generalisation of abstract data types with type constraints (G.A.D.T.) such as found in
the Haskell programming language. At the other side of the spectrum, one finds arbitrary complex type
specification languages (e.g. that a sorting function returns a list of type “sorted list”) for which more or
less powerful proof automation tools exist – generally first-order ones.

3.4 Around and beyond the Curry-Howard correspondence

For two decades, the Curry-Howard correspondence has been limited to the intuitionistic case but
since 1990, an important stimulus spurred on the community following Griffin’s discovery that this
correspondence was extensible to classical logic. The community then started to investigate unexplored
potential connections between computer science and logic. One of these fields is the computational
understanding of Gentzen’s sequent calculus while another one is the computational content of the
axiom of choice.

3.4.1 Control operators and classical logic

Indeed, a significant extension of the Curry-Howard correspondence has been obtained at the beginning
of the 90’s thanks to the seminal observation by Griffin [65] that some operators known as control
operators were typable by the principle of double negation elimination (¬¬A ⇒ A), a principle that
enables classical reasoning.

Control operators are used to jump from one location of a program to another. They were first
considered in the 60’s by Landin [81] and Reynolds [88] and started to be studied in an abstract way in
the 80’s by Felleisen et al [61], leading to Parigot’s λµ-calculus [87], a reference calculus that is in close
Curry-Howard correspondence with classical natural deduction. In this respect, control operators are
fundamental pieces to establish a full connection between proofs and programs.

3.4.2 Sequent calculus

The Curry-Howard interpretation of sequent calculus started to be investigated at the beginning of
the 90’s. The main technicality of sequent calculus is the presence of left introduction inference rules,
for which two kinds of interpretations are applicable. The first approach interprets left introduction
rules as construction rules for a language of patterns but it does not really address the problem of
the interpretation of the implication connective. The second approach, started in 1994, interprets left
introduction rules as evaluation context formation rules. This line of work led in 2000 to the design by
Hugo Herbelin and Pierre-Louis Curien of a symmetric calculus exhibiting deep dualities between the
notion of programs and evaluation contexts and between the standard notions of call-by-name and
call-by-value evaluation semantics.

Project PI.R2 9

3.4.3 Abstract machines

Abstract machines came as an intermediate evaluation device, between high-level programming lan-
guages and the computer microprocessor. The typical reference for call-by-value evaluation of λ-calculus
is Landin’s SECD machine [82] and Krivine’s abstract machine for call-by-name evaluation [78, 77]. A
typical abstract machine manipulates a state that consists of a program in some environment of bindings
and some evaluation context traditionally encoded into a “stack”.

3.4.4 Delimited control

Delimited control extends the expressiveness of control operators with effects: the fundamental result
here is a completeness result by Filinski [62]: any side-effect expressible in monadic style (and this
covers references, exceptions, states, dynamic bindings, ...) can be simulated in λ-calculus equipped with
delimited control.

3.5 Effective higher-dimensional algebra

3.5.1 Higher-dimensional algebra

Like ordinary categories, higher-dimensional categorical structures originate in algebraic topology. In-
deed, ∞-groupoids have been initially considered as a unified point of view for all the information
contained in the homotopy groups of a topological space X : the fundamental ∞-groupoid Π(X) of X
contains the elements of X as 0-dimensional cells, continuous paths in X as 1-cells, homotopies between
continuous paths as 2-cells, and so on. This point of view translates a topological problem (to determine
if two given spaces X and Y are homotopically equivalent) into an algebraic problem (to determine if the
fundamental groupoidsΠ(X) andΠ(Y) are equivalent).

In the last decades, the importance of higher-dimensional categories has grown fast, mainly with the
new trend of categorification that currently touches algebra and the surrounding fields of mathematics.
Categorification is an informal process that consists in the study of higher-dimensional versions of
known algebraic objects (such as higher Lie algebras in mathematical physics [39]) and/or of “weakened”
versions of those objects, where equations hold only up to suitable equivalences (such as weak actions of
monoids and groups in representation theory [56]).

The categorification process has also reached logic, with the introduction of homotopy type theory.
After a preliminary result that had identified categorical structures in type theory [74], it has been observed
recently that the so-called “identity types” are naturally equiped with a structure of ∞-groupoid: the
1-cells are the proofs of equality, the 2-cells are the proofs of equality between proofs of equality, and so on.
The striking resemblance with the fundamental ∞-groupoid of a topological space led to the conjecture
that homotopy type theory could serve as a replacement of set theory as a foundational language for
different fields of mathematics, and homotopical algebra in particular.

3.5.2 Higher-dimensional rewriting

Higher-dimensional categories are algebraic structures that contain, in essence, computational aspects.
This has been recognised by Street [92], and independently by Burroni [45], when they have introduced
the concept of computad or polygraph as combinatorial descriptions of higher categories. Those are
directed presentations of higher-dimensional categories, generalising word and term rewriting systems.

In the recent years, the algebraic structure of polygraph has led to a new theory of rewriting, called
higher-dimensional rewriting, as a unifying point of view for usual rewriting paradigms, namely abstract,
word and term rewriting [79, 84, 66, 67], and beyond: Petri nets [69] and formal proofs of classical and
linear logic have been expressed in this framework [68]. Higher-dimensional rewriting has developed its
own methods to analyse computational properties of polygraphs, using in particular algebraic tools such
as derivations to prove termination, which in turn led to new tools for complexity analysis [42].

3.5.3 Squier theory

The homotopical properties of higher categories, as studied in mathematics, are in fact deeply related
to the computational properties of their polygraphic presentations. This connection has its roots in a

10 Inria Annual Report 2021

tradition of using rewriting-like methods in algebra, and more specifically in the works of Anick [36]
and Squier [90, 91]: Squier has proved that, if a monoid M can be presented by a finite, terminating
and confluent rewriting system, then its third integral homology group H3(M ,Z) is finitely generated
and the monoid M has finite derivation type (a property of homotopical nature). This allowed him
to conclude that finite convergent rewriting systems were not a universal solution to decide the word
problem of finitely generated monoids. Since then, Yves Guiraud and Philippe Malbos have shown
that this connection was part of a deeper unified theory when formulated in the higher-dimensional
setting [12, 13], [73, 70, 72].

In particular, the computational content of Squier’s proof has led to a constructive methodology to
produce, from a convergent presentation, coherent presentations and polygraphic resolutions of algebraic
structures, such as monoids [12] and algebras [11]. A coherent presentation of a monoid M is a 3-
dimensional combinatorial object that contains not only a presentation of M (generators and relations),
but also higher-dimensional cells, corresponding each to two fundamentally different proofs of the same
equality: this is, in essence, the same as the proofs of equality of proofs of equality in homotopy type
theory. When this process of “unfolding” proofs of equalities is pursued in every dimension, one gets a
polygraphic resolution of the starting monoid M . This object has the following desirable qualities: it is
free and homotopically equivalent to M (in the canonical model structure of higher categories [80, 37]). A
polygraphic resolution of an algebraic object X is a faithful formalisation of X on which one can perform
computations, such as homotopical or homological invariants of X . In particular, this has led to new
algorithms and proofs in representation theory [8], and in homological algebra [71][11]. See [10] for a
summary of these results.

4 Application domains

The application domains of the team researchers range from the formalization of mathematical theories
and computational systems using the Coq proof assistant to the design of programming languages with
rich type systems and the design and analysis of certified program transformations.

5 Social and environmental responsibility

5.1 Footprint of research activities

The environmental impact of the team is mainly two sorts:

• travel footprint to attend conferences or for longer-term visits

• secondly, computer resources notably those affected to the series of benchmark tests which are run
before integrated new features in the Coq system.

Members of the team are committed to decreasing the environmental impact of our research. In
the IRIF lab environment, a working group investigates the footprint of our scientific community and
its practices (notably numerous international conferences) and the potential medium and long-term
evolution that can be made. Several members of the team and active contributors or interested followers
of the WG. As an achievement of this working group, recommendations have been made at the IRIF level
to encourage every lab member to travel by train rather than by plane when the travel duration is not
significantly longer by train.

6 Highlights of the year

The team published five papers in the LICS 2021 conference, authored by Antoine Allioux (with Eric
Finster and Mathieu Sozeau), Thomas Ehrhard and Farzad Jafarrahmani, Hugo Herbelin (with Nuria
Brede), Paul-André Melliès and Hugo Moeneclaey ; and a POPL 2022 paper authored by Paul-André
Melliès (with Arthur Vale, Zhong Shao, Jérémie Koenig and Léo Stefanesco).

Project PI.R2 11

6.1 Awards

Coq was awarded early 2022 the open science free software award in the Scientific and Technical category
(see website.

6.2 Towards PiCube

During 2021, one of the main creative aspects of the team’s work has been to set up the new team and to
design the new scientific proposal for the follow-up team that will be created after the end of π.r 2. The
purpose of the team is to take advantage of the most recent advances of

• type theory and foundations of mathematics — such as homotopy type theory, realizability and
forcing, differential linear logic,

• programming language semantics — such as computational effects, differential and probabilistic
programming

• architecture and design of proof assistants — such as formalisation of mathematics, unification
and symbolic elaboration techniques

in order to reduce the “technological gap” which currently separates the vernacular language used by the
working mathematicians in their daily practice and the formal language used today in a proof assistant
such as Coq, Agda or Lean.

By building on these converging lines and combining them with an active involvement to the Coq
ecosystem at all levels, and a firm commitment towards the formalisation of mathematics, the ambition
of the Picube project is to provide the foundations for a new generation of proof assistants

• based on a structured notion of mathematical document, which reflects and guides the creative
process of each working mathematician in a personalised way, and integrates the dynamic and
incremental nature of mathematics,

• allowing transport of proofs and concepts across libraries possibly relying on different definitions
of basic notions, such as the rationals or reals,

• better adapted to information retrieval techniques and to statistical methods as well as to proba-
bilistic algorithms coming from machine learning.

The Picube team is organised in five research axis:

1. Fundamental Structures of Logic and of Mathematical Reasoning,

2. Differential and Probabilistic Tools for Programming, Reasoning and Learning,

3. Architecture and Design of a Proof Assistant for the Working Mathematician,

4. Formalisation and Linguistics of Mathematics,

5. Higher Dimensional Algebra and Synthetic Homotopy Theory.

and includes three new members: Thomas Ehrhard (DR CNRS), Paul-André Melliès (DR CNRS and future
team manager) and Daniela Petrişan (MdC UPC).

7 New software and platforms

7.1 New software

7.1.1 Coq

Name: The Coq Proof Assistant

Keywords: Proof, Certification, Formalisation

https://www.ouvrirlascience.fr/open-science-free-software-award-ceremony/

12 Inria Annual Report 2021

Scientific Description: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and
co-inductive families, an impredicative sort and a hierarchy of predicative universes, making it a
very expressive logic. The calculus allows to formalize both general mathematics and computer
programs, ranging from theories of finite structures to abstract algebra and categories to program-
ming language metatheory and compiler verification. Coq is organised as a (relatively small) kernel
including efficient conversion tests on which are built a set of higher-level layers: a powerful proof
engine and unification algorithm, various tactics/decision procedures, a transactional document
model and, at the very top an integrated development environment (IDE).

Functional Description: Coq provides both a dependently-typed functional programming language
and a logical formalism, which, altogether, support the formalisation of mathematical theories
and the specification and certification of properties of programs. Coq also provides a large and
extensible set of automatic or semi-automatic proof methods. Coq’s programs are extractible to
OCaml, Haskell, Scheme, ...

Release Contributions: Coq version 8.14 integrates many usability improvements, as well as an impor-
tant change in the core language. The main changes include:

- The internal representation of match has changed to a more space-efficient and cleaner structure,
allowing the fix of a completeness issue with cumulative inductive types in the type-checker. The
internal representation is now closer to the user-level view of match, where the argument context
of branches and the inductive binders "in" and "as" do not carry type annotations.

- A new "coqnative" binary performs separate native compilation of libraries, starting from a .vo file.
It is supported by coq_makefile.

- Improvements to typeclasses and canonical structure resolution, allowing more terms to be
considered as classes or keys.

- More control over notation declarations and support for primitive types in string and number
notations.

- Removal of deprecated tactics, notably omega, which has been replaced by a greatly improved lia,
along with many bug fixes.

- New Ltac2 APIs for interaction with Ltac1, manipulation of inductive types and printing.

Many changes and additions to the standard library in the numbers, vectors and lists libraries. A
new signed primitive integers library Sint63 is available in addition to the unsigned Uint63 library.

News of the Year: Coq version 8.14 integrates many usability improvements, as well as an important
change in the core language. See the changelog at https://coq.inria.fr/refman/changes.html#version-
8-14 for an overview of the new features and changes, along with the full list of contributors.

URL: http://coq.inria.fr/

Contact: Matthieu Sozeau

Participants: Yves Bertot, Frederic Besson, Tej Chajed, Cyril Cohen, Pierre Corbineau, Pierre Courtieu,
Maxime Denes, Jim Fehrle, Julien Forest, Emilio Jesús Gallego Arias, Gaetan Gilbert, Georges
Gonthier, Benjamin Grégoire, Jason Gross, Hugo Herbelin, Vincent Laporte, Olivier Laurent, Assia
Mahboubi, Kenji Maillard, Érik Martin-Dorel, Guillaume Melquiond, Pierre-Marie Pedrot, Clément
Pit-Claudel, Kazuhiko Sakaguchi, Vincent Semeria, Michael Soegtrop, Arnaud Spiwack, Matthieu
Sozeau, Enrico Tassi, Laurent Théry, Anton Trunov, Li-Yao Xia, Theo Zimmermann

Partners: CNRS, Université Paris-Sud, ENS Lyon, Université Paris-Diderot

7.1.2 Rewr

Name: Rewriting methods in algebra

Keywords: Computer algebra system (CAS), Rewriting systems, Algebra

http://coq.inria.fr/

Project PI.R2 13

Functional Description: Rewr is a prototype of computer algebra system, using rewriting methods to
compute resolutions and homotopical invariants of monoids. The library implements various
classical constructions of rewriting theory (such as completion), improved by experimental features
coming from Garside theory, and allows homotopical algebra computations based on Squier theory.
Specific functionalities have been developed for usual classes of monoids, such as Artin monoids
and plactic monoids.

URL: https://www.imj-prg.fr/~yves.guiraud/programmes/rewr

Publications: hal-00326974, hal-00531242, hal-00682233, hal-00818253, hal-00932845, hal-01141226

Contact: Yves Guiraud

Participants: Yves Guiraud, Samuel Mimram

7.1.3 Catex

Keywords: LaTeX, String diagram, Algebra

Functional Description: Catex is a Latex package and an external tool to typeset string diagrams easily
from their algebraic expression. Catex works similarly to Bibtex.

URL: https://www.imj-prg.fr/~yves.guiraud/programmes/catex

Contact: Yves Guiraud

Participant: Yves Guiraud

7.1.4 Cox

Keywords: Computer algebra system (CAS), Rewriting systems, Algebra

Functional Description: Cox is a Python library for the computation of coherent presentations of Artin
monoids, with experimental features to compute the lower dimensions of the Salvetti complex.

URL: https://www.imj-prg.fr/~yves.guiraud/programmes/cox

Publications: hal-00682233, hal-00818253

Contact: Yves Guiraud

Participant: Yves Guiraud

7.1.5 coqbot

Keywords: Web API, Automation, Software engineering

Functional Description: This software is a bot to help and automatize the development of the Coq
proof assistant on the GitHub platform. It is written in OCaml and provides numerous features:
synchronization between GitHub and GitLab to allow the use of GitLab for automatic testing
(continuous integration), management of milestones on issues, management of the backporting
process, merging of pull request upon request by maintainers, etc.

Most of the features are used only for the development of Coq, but the synchronization with GitLab
feature is also used in dozens of independent projects.

Release Contributions: The Julien Coolen’s internship final release.

Added

Integrate with Jason Gross’ coq-bug-minimizer tool. Merge a branch in the coq repository if some
conditions are met, by writing @coqbot: merge now in a comment. Parameterize the bot with a
configuration file. Installation as a GitHub App is supported. Report CI status checks with the

https://www.imj-prg.fr/~yves.guiraud/programmes/rewr
https://hal.inria.fr/hal-00326974
https://hal.inria.fr/hal-00531242
https://hal.inria.fr/hal-00682233
https://hal.inria.fr/hal-00818253
https://hal.inria.fr/hal-00932845
https://hal.inria.fr/hal-01141226
https://www.imj-prg.fr/~yves.guiraud/programmes/catex
https://www.imj-prg.fr/~yves.guiraud/programmes/cox
https://hal.inria.fr/hal-00682233
https://hal.inria.fr/hal-00818253

14 Inria Annual Report 2021

Checks API when using the GitHub app. Report errors of jobs in allow failure mode when the
Checks API is used.

Changed

Refactored the architecture of the application and of the bot-components library Always create a
merge commit when pushing to GitLab. More informative bot merge commit title for GitLab CI.

URL: https://github.com/coq/bot/

Contact: Theo Zimmermann

7.1.6 jsCoq

Keywords: Coq, Program verification, Interactive, Formal concept analysis, Proof assistant, Ocaml,
Education, JavaScript

Functional Description: jsCoq is an Online Integrated Development Environment for the Coq proof
assistant and runs in your browser! It aims to enable new UI/interaction possibilities and to
improve the accessibility of the Coq platform itself.

Release Contributions: - Port to Coq 8.14 - Improved packaging system for libraries - Improved display
and interaction - Settings panel

URL: https://github.com/ejgallego/jscoq

Publication: hal-01425752

Contact: Emilio Jesus Gallego Arias

Participants: Emilio Jesus Gallego Arias, Shachar Itzhaky

Partners: Mines ParisTech, Technion, Israel Institute of Technology

7.1.7 coq-serapi

Keywords: Interaction, Coq, Ocaml, Data centric, User Interfaces, GUI (Graphical User Interface), Toolkit

Scientific Description: SerAPI is a library for machine-to-machine interaction with the Coq proof assis-
tant, with particular emphasis on applications in IDEs, code analysis tools, and machine learning.
SerAPI provides automatic serialization of Coq’s internal OCaml datatypes from/to JSON or S-
expressions (sexps).

Functional Description: SerAPI is a library for machine-to-machine interaction with the Coq proof
assistant, with particular emphasis on applications in IDEs, code analysis tools, and machine
learning. SerAPI provides automatic serialization of Coq’s internal OCaml datatypes from/to JSON
or S-expressions (sexps).

Release Contributions: - Support for Coq 8.15 -

News of the Year: In 2021, SerAPI has seen a sizable increase of users, and many bugs and improvements
have been made in response to users requests. Also, SerAPI has been updated to support Coq 8.13,
8.14, and 8.15 versions.

URL: https://github.com/ejgallego/coq-serapi

Publication: hal-01384408

Contact: Emilio Jesus Gallego Arias

Participants: Karl Palmskog, Theo Zimmermann, Shachar Itzhaky, Jason Gross

Partner: KTH Royal Institute of Technology

https://github.com/coq/bot/
https://github.com/ejgallego/jscoq
https://hal.inria.fr/hal-01425752
https://github.com/ejgallego/coq-serapi
https://hal.inria.fr/hal-01384408

Project PI.R2 15

7.1.8 pyCoq

Keywords: Coq, Python

Functional Description: PyCoq is a set of bindings and libraries allowing to interact with the Coq inter-
active proof assistant from inside Python 3.

Release Contributions: Initial release

URL: https://github.com/ejgallego/pycoq

Contact: Emilio Jesus Gallego Arias

Participant: Thierry Martinez

8 New results

8.1 Effects in proof theory and programming

Participants: Félix Castro, Emilio Jesús Gallego Arias, Hugo Herbelin, Yann Régis-
Gianas, Alexis Saurin.

8.1.1 Computational contents of the axiom of choice

Hugo Herbelin developed in collaboration with Nuria Brede (U. Potsdam) a unified approach of the
underlying logical structure of choice and bar induction principles [23]. The work was presented at LICS
2021, TYPES 2021 and at the Proof Society Virtual Seminar.

8.1.2 Proof-search in proof nets

Building on the work initiated in 2020, Alexis Saurin expanded his work on proof-net construction building
on an interpretation a general view of sequentialization as a converse operation to proof construction
for a class of correctness criteria. This approach contrast to focusing proof-search which reduces the
non-determinism of the search for a proof by adding sequentializability constraints in sequent proofs
(sometimes refered to as hypersequentialized in this case) preserving the completeness of the resulting
proof-search space. After considering paraproofnet-search as a dual operation to the parsing correctness
criterion, he is currently investigating how proof-structures contractibility properties, which can also be
viewed as a distributed sequentialization of a proof-graph, can lead to proof construction mechanisms.

Late 2021, he started a collaboration with Aurore Alcolei and Luc Pellissier on a related topic, namely an
approach to interactive proof construction in game-semantical frameworks (concurrent games, ludics...)
to express the search for proofs as specified by a set of counter-strategies presented as proof-nets, or
more abstractly desequentialized strategies.

8.1.3 Algebraic Logic Programming

Emilio J. Gallego Arias and Jim Lipton continued work on algebraic models of proof search, in particular
they have developed a notion of step-indexed tabular alegory which provides an improved semantic
setting for the proof search machine developed in Gallego’s PhD.

8.2 Reasoning and programming with infinite data

Participants: Esaie Bauer, Kostia Chardonnet, Abhishek De, Thomas Ehrhard,
Farzad Jafarrahmani, Alexis Saurin.

https://github.com/ejgallego/pycoq

16 Inria Annual Report 2021

8.2.1 Proof theory of non-wellfounded and circular proofs

Validity conditions of infinitary and circular proofs and cut-elimination. Alexis Saurin generalized
the cut-elimination-theorem for non-wellfounded proofs of multiplicative additive linear logic with least
and greatest fixed points (µMALL) that he obtained with David Baelde and Amina Doumane [38] to full
linear logic, accomodating a treatment of the exponentials. This goes by a fixed-point encoding of LL
exponentials which allowed him, using results from infinitary rewriting, to lift the cut-elimination result
to for µLL. Moreover, designing embedding of µLJ and µLK in µLL he obtained similar cut-elimination
theorems for those logics as well. A paper will be submitted during the first semester of 2022.

An advantage of this approach is to abstract from the precise choice of a validity condition making the
proof quite robust wrt. modifications of the validity conditions. For instance it adapts nicely to bouncing
validity.

Proof nets for non-wellfounded proofs. Together with Luc Pellissier (LACL, Université Paris Est-Créteil),
Abhishek De and Alexis Saurin generalized infinets [55] (proof-nets for non-wellfounded proofs of µMLL,
relaxing problematic restrictions of the original presentation, namely the need to consider only finitely
many cuts. Considering potentially infinite (non-wellfounded) proof-objects, it is indeed natural to
allow for infinitely many cut rules (typically when a cut occurs within a cycle of a regular proof). Their
new results, published at PPDP[24], show how to integrate infinitely many cuts, while proposing a new
presentation of the productive cut-elimination on µMLL infinets as well as for its sequent calculus. A
journal version is being written.

Decision problems of linear logic with fixed points. In a collaboration with Anupam Das, Abhishek
De and Alexis Saurin investigated the decision problems for variants of linear logic with fixed-points.
Decision problems for fragments of linear logic exhibiting ‘infinitary’ behaviour (such as exponentials)
are notoriously complicated. In this work, they addressed the decision problems for variations of linear
logic with fixed points (muMALL), in particular, recent systems based on ‘circular’ and ‘non-wellfounded’
reasoning. In particular, they show that muMALL is undecidable.

More explicitly, they show that the general non-wellfounded system isΠ0
1-hard via a reduction to the

non-halting of Minsky machines. It is thus is strictly stronger than its circular counterpart which is in Σ0
1.

Moreover, they showed that the restriction of these systems to theorems with only the least fixed points is
already Σ0

1-complete via a reduction to the reachability problem of alternating vector addition systems
with states. This implies that both the circular system and the finitary system (with explicit (co)induction)
are Σ0

1-complete. A paper has been submitted early 2022.

8.2.2 On the semantics of finitary and non-wellfounded proofs

Denotational semantics On the semantics of finitary and non-wellfounded proofs. In 2021 Thomas
Ehrhard, motivated by an earlier wook [58] (long version to appear in the journal LMCS in 2022), has
developed the differential aspects of probabilistic coherence spaces, a denotational model of Linear
Logic which provides a faithful account of stochastic programs. In this model programs are represented
as analytic functions which can be written as powerseries with non-negative coefficients and such
functions can be deriveted an arbitrary number of times, whatever be their type. Ehrhard has developed
a categorical and syntactical framework for such differential models of Linear Logic, where addition
is only partially defined: the fundamental observation is that, even if the differential calculus requires
addition as it is well known, one does not need all of them and many models of Linear Logic feature
enough additions for hosting a fully-fledged differential calculus. This shows that, contrarily to what
was believed earlier, differential Linear Logic and the differential lambda-calculus are compatible with
deterministic computations. An article [57] is currently submitted to a journal.

With his PhD student Farzad Jafarrahmani, Ehrhard has developed a categorical semantics of Linear
Logic with least and greatest fixpoints of types, with logical fixpoint rules generalizing those introduced
by David Baelde, adapting Park’s rules. They have also developed a concrete example of such categories,
the non-uniform totality spaces, where least and greatest fixpoints have distinct interpretations. This
work has been published [59].

Project PI.R2 17

Thomas Ehrhard, Farzad Jafarrahmani and Alexis Saurin extended the previous work to polarized
Linear Logic with fixed-points. One of our objectives is to develop Linear Logic foundations to inductive
and coinductive types in Coq.

Last, they presented to TLLA 2021 [60] the first results on extending the above interpretation to circular
proofs unveiling the denotational counterpart of the validity condition of circular proofs.

Phase semantics for linear logic with fixed points. The truth semantics of linear logic (i.e. phase
semantics) is often overlooked despite having a wide range of applications and deep connections with
several denotational semantics. In phase semantics one is concerned about the provability of formulas
rather than the contents of their proofs (or refutations).

Abhishek De, Farzad Jafarrahmani and Alexis Saurin extended the phase semantics of MALL to
µM ALL with explicit (co)induction (µM ALL), proving soundness and completeness theorems. The
completeness theorem provides a cut-admissibility result for µM ALL.

They also considered a constructive fragment that yields a Tait-style wellfounded system (µM ALLω)
for which they defined the phase semantics together with soundness and completeness results and
proved a cut-elimination theorem for this system.

With his Master student Naim Favier, Alexis Saurin studied polarization properties of linear logics
from the point of view of phase semantics, obtainined a semantic proof of focusing in the case of MALL
that he is currently working at lifting to µM ALL.

8.2.3 Quantum programming languages with inductive and coinductive types

Chardonnet’s PhD research focuses on extending quantum programming languages with inductive and
coinductive types, under the hypothesis of quantum control (as in QML [35] compared to classical
control). In 2021, Chardonnet, Saurin and Valiron developed their work on a language of type isomor-
phisms with inductive and coinductive types and understanding the connections of those reversible
programs with µM ALL type isomorphisms and more specifically with µM ALL focused circular proof
isomorphisms. In particular, they studied the expressiveness of a restricted validity condition for a class
of type isomorphisms, relating it with the class of recursive primitive permutations by Paolini, Piccolo
and Roversi. This was presented in TLLA 2021.

In a collaboration with Valiron and Vilmart, Chardonnet investigated an asynchronous model of
Geometry of Interaction for the pure ZX-Calculus, a graphical language for quantum computation, and
its extension to ground-processes. This GoI semantics takes the form of a Token Machine. They showed
how to connect this new semantics to the usual standard interpretation of the ZX-diagrams. This was
published in MFCS 2021 [47].

In addition, in a collaboration with Lemonnier and Valiron, he presented a categorical semantics
for reversible computation. Focusing on a typed, functional reversible language based on Theseus, they
discuss how join inverse rig categories do not in general capture pattern-matching, the core construct
used in Theseus to enforce reversibility and then derive a categorical structure to add to join inverse rig
categories in order to capture pattern-matching, showing how such a structure makes an adequate model
for reversible pattern-matching. This work was published in MFPS 2021 [46].

8.3 Effective higher-dimensional algebra

Participants: Antoine Allioux, Pierre-Louis Curien, Alen Ðurić.

8.3.1 Coherent presentations of monoids

The work of Alen Ðurić, Pierre-Louis Curien and Yves Guiraud on coherent presentations of monoids
admitting a Garside family has been submitted, and presented at the workshop “Braids and beyond" held
in memory of Patrick Dehornoy in September 2021 [30].

18 Inria Annual Report 2021

8.3.2 Polygraphs and opetopes

Pierre-Louis Curien has found a new, elementary, proof of the isomorphism between many-to-one
polygraphs on one hand, and opetopic sets on the other hand. This result had been proved quite
indirectly by Harnik, Makkai, and Zawadowski in 2008. A more direct proof was given by Cédric Ho Tanh
(former student of the team) in his PhD thesis (2019), with a reference to some results of Simon Henry.
The new proof is entirely self-contained, and, more importantly, unveils invariants of the polygraphic
syntax. It will be presented at the 2022 Workshop on Polynomial Functors to be held in April 2022 at the
Topos Institute (virtually).

8.3.3 Foundations and formalisation of higher algebra

Antoine Allioux (PhD started in February 2018), Eric Finster, Yves Guiraud and Matthieu Sozeau continued
to explore the development of higher algebra in type theory, based on an extension of type theory with a
universe of strict polynomial monads. Their approach and their work on internalising the ∞-groupoids
associated to any type was presented at LICS 2021 and at TYPES 2021. They are now concentrating on
developing the theory of (∞,1)-categories in this new framework [34].

8.4 Metatheory and development of Coq

Participants: Vincent Blazy, Félix Castro, Emilio Jesús Gallego Arias, Hugo Herbelin,
Pierre Letouzey, Thierry Martinez, Hugo Moeneclaey, Yann Régis-
Gianas, Théo Zimmermann.

Vincent Blazy, Hugo Herbelin and Pierre Letouzey continued a work aiming at making explicit the
universe subtyping in the Calculus of Constructions (PhD thesis of Vincent Blazy). The first goal is to
detect more easily each use of the Prop-Type cumulativity in Coq, with potential application to Coq
extraction and also to the mathematical foundations.

8.4.1 Dependent pattern-matching

Thierry Martinez carried on full time the implementation of a dependent pattern-matching compilation
algorithm in Coq based on the PhD thesis work of Pierre Boutillier and on the internship work of Meven
Bertrand. Together with Meven Bertrand and Hugo Herbelin, they almost reached the point of submitting
a paper describing the implementation.

8.4.2 Software engineering aspects of the development of Coq

In January 2020, Théo Zimmermann was recruited on a three-year fixed term position to contribute both
to the collaborative maintenance and evolution effort around Coq and its community, and to further
investigate these software engineering aspects through empirical methods.

From a technical standpoint, in 2021, Théo Zimmermann has collaborated with Cyril Cohen (Inria
Stamp) to create the Coq Nix Toolbox, which allows using the Nix package manager to contribute to
and maintain Coq projects. In particular, this tool supports generating Continuous Integration (CI)
configurations to test a project with its reverse dependencies (the projects that depend on it). This work
was presented at the Coq Workshop 2021 [32]. He has also collaborated with Jason Gross (from MIT
CSAIL) on integrating the bug minimizer created by Jason Gross in Coq’s CI infrastructure, by relying on
coqbot, the bot that Théo Zimmermann has created and maintains. This integration has allowed many
Coq developers and contributors to benefit from automatic test-case reduction from CI failures. Théo
Zimmermann is in the process of writing and submitting a paper on the topic, with Jason Gross and Adam
Chlipala. The bot itself has also been the topic of another submission [31], with the various contributors
to the bot as co-authors. In particular, the second co-author, Julien Coolen, was Théo Zimmerman’s
intern during the summer of 2020.

Project PI.R2 19

In June 2021, Théo Zimmermann supervised the internship of Jérémy Damour, who was tasked with
several contributions to the Hydras & Co. project of Pierre Castéran. This work resulted in a publication
at the national conference JFLA 2022 [27].

From an empirical research standpoint, Théo Zimmermann has continued his collaboration with
Jean-Rémy Falleri (from LaBRI) on understanding Community Package Maintenance Organizations. They
have published a registered report about it at ICSME 2021 [29], and are thus expected to submit a full
journal version in 2022.

Finally, during the last three months of 2021, Théo Zimmermann has coordinated an ad hoc working
group to prepare the Coq Community Survey that is being run in the beginning of 2022, with objectives to
get an updated picture of the Coq community and to inform future decisions of the Coq development
team. Emilio J. Gallego Arias also participated in this working group.

8.4.3 Software infrastructure and Tools

Emilio J. Gallego Arias continued work on revamping Coq’s build system as to implement a workflow
based on the state-of-the-art, industrial build system Dune. Many improvements were made including
porting the OCaml parts of Coq to Dune, which allowed the team to remove large parts of custom build
code, and with Ali Caglayan, Coq’s test suite was made incremental. Additionally, Emilio J. Gallego Arias
coordinated the release of Dune version 2.9. Many other improvements as to make Coq more modular
and better prepared for upcoming incremental and multi-threaded type-checking were also made.

Hugo Herbelin, Emilio J. Gallego Arias and Théo Zimmermann, helped by members from Gallinette
(Nantes) and Stamp (ex-Marelle, Sophia-Antipolis), devoted an important part of their time to coordinate
the development, to review propositions of extensions of Coq from external and/or young contributors,
and to propose themselves extensions, amounting to hundreths of proposals in the form of pull requests.
Moreover, we organized a beginner-focused community Hackathon in early 2022, including a diversity
session, with peak attendance of over 100 contributors. Similar community events are planned later on.

Emilio J. Gallego Arias and Shachar Itzaky continued the development of the education-targeted tool
jsCoq, which saw in 2021 5 new releases bringing many new features and refinements, and in particular a
new backend that has made us declare the tool "production ready" for the first time.

Emilio J. Gallego Arias also maintained the coq-serapi tool, used in a few labs as the standard commu-
nication API with Coq to perform experiments (including machine learning ones). In collaboration with
Thierry Martinez, Gallego Arias also released a pyCoq package which is specifically targeted at learning
and software engineering researchers using Coq for their experiments.

8.5 Formalisation and verification

Participants: Emilio Jesús Gallego Arias, Pierre Letouzey, Jean-Jacques Lévy,
Daniel de Rauglaudre, Yann Régis-Gianas, Alexis Saurin.

8.5.1 Lexing and regular expressions in Coq

Pierre Letouzey continued working on a Coq formalisation started with Yann Régis-Gianas, on regular
expressions (with complement and conjunction) and their Brzozowski derivatives. Many techniques
have been attempted to prove correct the exact details used in a real-world implementation (ml-ulex),
but a complete proof of this implementation is still elusive.

8.5.2 Hofstadter nested recursive functions and Coq

Pierre Letouzey continued this year the study of a family of nested recursive functions proposed by D.
Hofstadter in his book “Gödel Escher Bach”. Some earlier conjectures have been proved. In particular,
the appearance of a Rauzy fractal during this work is now better understood. The formalization of these
proofs are pending, requiring quite some matrix theory and complex polynomials. Another important
conjecture states that this family of nested functions is increasing. Despite some progress, this conjecture
still lacks a complete proof. More details on this site.

https://www.irif.fr/~letouzey/hofstadter_g/

20 Inria Annual Report 2021

8.5.3 Sensitivity Conjecture in Coq

Daniel de Rauglaudre pursued his formalization in Coq of the Sensitivity Conjecture (which became a
Theorem in 2019 thanks to Hao Huang [76]). The sensitivity conjecture remained an open-problem for
more than thirty years, aiming to relate the sensitivity of a Boolean function results to its input values
to other complexity measures of Boolean functions, such as block sensitivity. De Rauglaudre started to
formalize Huang’s very succinct proof of the conjecture.

For proving some lemmas in this theorem, numerous formalizations in Linear Algebra (matrices,
determinants, eigenvalues, permutations, sorting etc.) have been implemented. In this context, a study
of algebra of ring-like structures has been started, and some syntax of iterators have been studied and
added. This development is available a here.

8.5.4 Proofs of algorithms on graphs

Jean-Jacques Lévy pursues his work about formal proofs of graph algorithms. The goal is to provide
computer-checked proofs of algorithms that remain human readable. At ITP 2019 [48], they presented an
article with Chen Ran, Cyril Cohen, Stephan Merz and Laurent Théry on three different ways of proving
such an algorithm in Why3, Coq and Isabelle/HOL. By publishing the entire proofs, they encouraged the
community to compare our proofs with the ones possible in other machine-checked proof systems.

Jean-Jacques Lévy now remodels his proof with new versions of Why3 and also plan to compare the
existing Coq proof using Mathcomp/ssreflect with a proof using Coq classics. He still works on a proof of
implementation of Tarjan SCC algorithm with imperative programming and memory pointers.

8.5.5 Iterated parametricity and semi-cubical sets

Hugo Herbelin and Ramkumar Ramachandra carried on their formalization in Coq of an original
dependently-typed construction of semi-cubical sets inspired by the parametricity translation. This con-
tinued to highly stressed the limits of Coq, especially in terms of second-order unification, higher-order
rewriting, efficiency.

8.5.6 Verified Datalog programs with applications to low-level binary analysis

Emilio J. Gallego Arias continued collaboration with Stefania Dumbrava and Cody Roux on the use of
our verified Datalog engine [43] for the analysis of low-level binary code. In particular, using metacoq
we have developed a method to translate datalog programs to Coq proof friendly specifications while
preserving the semantic correspondence with the verified engine. This allows us to specify analysis as
efficient datalog programs, but to prove properties about them using a more convenient native to Coq
representation.

8.5.7 Infinitary Proofs and Parity Automaton

Esaïe Bauer, Emilio J. Gallego Arias and Alexis Saurin have started a Coq formalization of infinitary proofs
and their validity checking using Parity Automaton. They have started from the proof methodology
developed for the the math-comp library, but this particular topic poses many interesting challenges
from the point of view of proof engineering, in particular related to the formalization of infinite graphs
and automaton in a natural way.

8.5.8 Real-time Digital Signal Processing

Emilio J. Gallego Arias and Pierre Jouvelot presented their work on a formalized synchronous language
for linear DSP processors at the FARM 2021 conference (part of ICFP), which was held virtually. The
development produced a paper and uses techniques from the programming language literature such as
logical relations to prove that every well typed program is linear (in the linear algebra sense). This opens
up the door to many other interesting developments which are being discussed now.

https://github.com/roglo/coq_sensitivity

Project PI.R2 21

8.5.9 Mechanism design

Emilio J. Gallego Arias collaborated with Pierre Jouvelot on the formalized verification of the general
Vickrey-Clarke-Groves mechanism (see for example [86]) using Coq, designing a Coq-based framework
for the specification and refinement of mechanisms, covering classical examples from the literature. This
has resulted in a conference paper submission early 2022.

9 Bilateral contracts and grants with industry

9.1 Bilateral contracts with industry

An industrial contract started with Nomadics Lab aiming at improving the development of Coq (con-
tinuous integration, merging of pull requests, bug tracking, improving the release process, ...) and of
its package ecosystem (for instance building documented best practices, tools and easy installers for
newcomers).

Theo Zimmermann started a three-year research engineer position in January 2020 funded by this con-
tract, continuing his research and development work about improving the Software Engineering practices
of the development of Coq, especially to continue the improvement of the collaborative development
processes and of its ecosystem.

A CIFRE PhD application with the goal of developing an assistant for the verification of software using
Coq based on machine-learning techniques has been submitted to the ANRT, in collaboration with the
Equisafe.io enterprise. The prospective student, Thomas Binetruy-Pic, is expected to start his PhD first
half of 2022.

10 Partnerships and cooperations

10.1 International initiatives

10.1.1 Associate Teams in the framework of an Inria International Lab or in the framework of an
Inria International Program

VIP (Verification, Interaction and Proofs), from 2017 coordinated by Ying JIANG, involving as partners the
Chinese Academy of Sciences.

10.2 International research visitors

10.2.1 Visits of international scientists

International visits to the team.

• Jim Lipton, professor at Wesleyan university visited the team for 2 week in July 2021.

• Niccolo Veltri, researcher at the Department of Software Science of Tallinn University of Technology,
visited the team in november 2021.

• Aurore Alcolei, from the University of Bologna, visited the team in december 2021.

Research stays abroad.

• Pierre-Louis Curien has been staying 6 weeks at the Mathematical Research Institute in Oberwolfach
(August 2021, and November-December 2021) as a Research Fellow. This stay allowed him to
prepare new material for his M2 course on homotopical algebra and higher categories at Université
de Paris (parcours LMFI).

• Abhishek De visited Anupam Das in Birmingham.

• Emilio J. Gallego Arias visited Jim Lipton at Wesleyan University in December 2021.

22 Inria Annual Report 2021

10.3 National initiatives

Pierre-Louis Curien, Thomas Ehrhard, Emilio J. Gallego Arias, Hugo Herbelin, Paul-André Melliès and
Alexis Saurin are members of the GDR Informatique Mathématique, in the LHC (Logique, Homotopie,
Catégories) and Scalp (Structures formelles pour le calcul et les preuves) working groups. Alexis Saurin is
coordinator of the Scalp working group (see website here).

Pierre-Louis Curien and Paul-André Melliès are members of the GDR Topologie Algébrique, federat-
ing French researchers working on classical topics of algebraic topology and homological algebra, such as
homotopy theory, group homology, K-theory, deformation theory, and on more recent interactions of
topology with other themes, such as higher categories and theoretical computer science.

Alexis Saurin is member of the S3 ANR project coordinated by Christine Tasson (Sorbonne Université)
as well as the QuaReMe coordinated by Matteo Mio (ENS Lyon).

Kostia Chardonnet, Abhishek De, Thomas Ehrhard, Farzad Jafarrahmani, Hugo Herbelin, Paul-André
Melliès, Daniela Petrisan and Alexis Saurin (coordinator) are members of the four-year RECIPROG project.
RECIPROG is an ANR collaborative project (aka. PRC) started in the fall 2021-2022 and running till the end
of 2025. ReCiProg aims at extending the proofs-as-programs correspondence to recursive programs and
circular proofs for logic and type systems using induction and coinduction. The project will contribute
both to the necessary theoretical foundations of circular proofs and to the software development allowing
to enhance the use of coinductive types and coinductive reasoning in the Coq proof assistant: such
coinductive types present, in the current state of the art serious defects that the project will aim at solving.

The project is coordinated by Alexis Saurin and has four sites: IRIF in Paris Where π.r 2 is located,
LIP in Lyon, LIS in Marseille and LS2N in Nantes. More informations on the project can be found at this
website.

10.4 Regional initiatives

Thomas Ehrhard and Alexis Saurin are members of the Emergence de la Ville de Paris RealiSe project,
aiming at a convergence between the studies on the semantics of functional programs (and their proba-
bilistic extensions) and of reactive and synchronous programs. The project is led by Christine Tasson,
from LIP6, and also involves memebers of PARKA team.

Thomas Erhard, Emilio J. Gallego Arias, and Paul-André Melliès have started a collaboration with
the Inria SIERRA team in order to relate programming languages methods with machine learning and
optimization techniques.

11 Dissemination

11.1 Promoting scientific activities

11.1.1 Scientific events: organisation

• Alexis Saurin co-organized the 2021 annual meeting of the Scalp working group in IUT Fontainebleau-
Sénart (3 days).

• Thomas Ehrhard and Pierre-Louis Curien are part of the organizing committee of the Logic and
interaction weeks taking place in CIRM early 2022.

11.1.2 Scientific events: selection

• Daniela Petrisan was a member of the program committee of RAMICS 2021 international confer-
ence.

• Alexis Saurin was a member of the program committee of the PPDP 2021 international conference.

• Emilio J. Gallego Arias was a member of the program committe of the BCCA 2021 international
conference.

https://www.irif.fr/gt-scalp/index
https://www.irif.fr/reciprog/index
https://www.irif.fr/reciprog/index

Project PI.R2 23

11.1.3 Journal

• Pierre-Louis Curien is editor-in-chief of the journal Mathematical Structures in Computer Science.

11.1.4 Invited talks

Hugo Herbelin has given an invited talk at the Proof Theory Virtual Seminar on june 16th 2021, entited
"On the logical structure of choice and bar induction principles".

Pierre-Louis Curien has given an invited talk “Coherent presentations of monoids with a Garside
family” at the workshop Braids and beyond, in the memory of Patrick Dehornoy (Caen, September 8-10,
2021, website).

Jean-Jacques Lévy was invited to give a talk “Vive la Recherche en Informatique !” at the seminar of
LMF (Laboratoire des Méthodes Formelles) in ENS Saclay (October 15).

Jean-Jacques Lévy gave a tutorial on “Finite Developments in the Lambda-Calculus” at ISR 2021 (the
12th International School on Rewriting), Madrid, 5-16 July 2021. [hal-03566512]

Alexis Saurin has given an invited talk at the Proof Theory Virtual Seminar, on november 17th, entitled
"Virtuous circles in proofs" .

11.1.5 Research administration

Alexis Saurin was a member of the CRCN and ISFP hiring committee for INRIA Saclay.
Alexis Saurin is a member of the research council for the Faculté des sciences of Université de Paris.
Thomas Ehrhard, Hugo Herbelin, Paul-André Melliès and Alexis Saurin seat and the scientific council

of UFR d’informatique, Université de Paris.

11.2 Teaching - Supervision - Juries

11.2.1 Courses

Pierre-Louis Curien has been teaching a course “Homotopical algebra and higher categories" in the
Master LMFI of Université de Paris in 2020-2021.

Thomas Ehrhard and Paul-André Melliès taught the course on denotational semantics at Master MPRI
of Université de Paris in the first and second semester 2020-2021 and 2021-2022.

Hugo Herbelin and Hugo Moeneclaey taught a class on Homotopy Type Theory in the Master LMFI of
Université de Paris in the second semester of 2020-2021.

Pierre Letouzey taught the course on functional programming, proof assistants and M2 LMFI.
Paul-André Melliès taught the course on lambda-calculus and categories at ENS Ulm (M1 MPRI).
Daniela Petrisan taught in the automata course of M2 MPRI.
Alexis Saurin has been teaching a course in proof theory in the Master LMFI of Université de Paris in

the first semester of 2021-2022.

11.2.2 Supervision

PhD supervision

• PhD started: Esaie Bauer, on the Curry-Howard correspondence between temporal logic proofs
and reactive programming, Université de Paris, started in September 2021, supervised by Alexis
Saurin and Thomas Ehrhard.

• PhD started: Giulia Manara, Towards parallel cut elimination in MELL proof structures, started in
October 2021, supervised by Thomas Ehrhard.

• PhD started: Vincent Moreau, on the connections between higher-order automata and topological
duality, started in September 2021, supervised by Paul-André Melliès.

• PhD started: Sarah Reboullet, Parametricity and Univalence, started in September 2021, supervised
by Hugo Herbelin.

https://conf.lmno.cnrs.fr/Braids2020

24 Inria Annual Report 2021

• PhD started: Clément Théron, sémantique interactive et vectorielle de la programmation proba-
biliste et différentielle, started in September 2021, supervised by Thomas Ehrhard and Paul-André
Melliès

• PhD in progress: Vincent Blazy, Fine-graine structure of universe subtyping in Coq and applications
to program certification and mathematical foundations, Université de Paris, started in September
2020, supervised by Hugo Herbelin and Pierre Letouzey.

• PhD in progress: Kostia Chardonnet, Inductive and coinductive types in quantum programming
languages, Université Paris Saclay, started in November 2019, supervised by Alexis Saurin and
Benoît Valiron.

• PhD in progress: El Medhi Cheraddi, Computational and interactive interpretation of homotopy
type theory, started in september 2021, supervised by Paul-André Melliès.

• PhD in progress: Alen Ðurić, Normalisation for monoids and higher categories, Université de Paris,
started in October 2O19, supervised by Yves Guiraud and Pierre-Louis Curien.

• PhD in progress: Farzad Jafar-Rahmani, Denotational semantics of circular and non-wellfounded
proofs, Université de Paris, started in October 2019, supervised by Thomas Ehrhard and Alexis
Saurin.

• PhD in progress: Hugo Moeneclaey, Syntax of spheres in homotopy type theory, Université de Paris,
started in September 2019, supervised by Hugo Herbelin.

• PhD in progress: Antoine Allioux, Opetopes in Type Theory, Université de Paris, since March 2018,
supervised by Yves Guiraud and Matthieu Sozeau.

• PhD in progress: Abhishek De, Proof-nets for fixed-point logics and non-well-founded proofs,
Université de Paris, since October 2018, supervised by Alexis Saurin.

• PhD in progress: Lucas Massoni Sguerra, Formal verification of mechanism design, Université PSL,
since January 2018, supervised by Gérard Memmi, Pierre Jouvelot, and Emilio J. Gallego Arias.

• PhD defended: Rémi Nollet, Validity conditions for circular proofs, Université de Paris, defended in
june 2021, supervised by Alexis Saurin and Christine Tasson.

• PhD defended: Axel Osmond, A categorical study of spectral duality, defended in December 2021,
supervised by Paul-André Melliès

• PhD defended: Chaitanya Leena Subramaniam, From dependent type theory to higher algebraic
structures, defended in September 2021, supervised by Paul-André Melliès.

Master supervision

• Pierre-Louis Curien, jointly with François Métayer, supervised the M2 internship (Université de
Paris, parcours Mathématiques Fondamentales) of Aloÿs Dufour, on various notions of contractibil-
ity for simplicial sets. Aloÿs Dufour is now a doctoral student under the supervision of Damiano
Mazza at Université Sorpbonne Paris Nord.

• Pierre-Louis Curien, jointly with Samuel Mimram, supervised the M2 internship (Sorbonne Uni-
versité, parcours Mathématiques Fondamentales) of Naomi Jacquet on model structures for pre-
sentations and Lawvere theories. Unfortunately, Naomi experienced serious health problems and
regretfully had to abandon.

• Hugo Herbelin supervised Sarah Reboullet’s LMFI M2 internship leading to her PhD topic on
parametricity and univalence.

• Alexis Saurin supervised Esaie Bauer’s LMFI M2 intenrship one the proof theory of LTL and reactive
programming. (see above in the PhD supervision section.)

Project PI.R2 25

11.3 Popularization

11.3.1 Internal or external Inria responsibilities

Jean-Jacques Lévy is member of the Inria-Alumni’s executive committee (6 meetings in 2021). He co-
organized and organized 2 sessions about Quantum Computing (June 2) and Natural Language Processing
(November 19).

11.3.2 Articles and contents

Pierre-Louis Curien, jointly with Nicolas Curien, has published a recreational mathematics article with
title “Quand les nombres content autant qu’ils comptent” in the journal La Recherche (numéro 561,
juillet-août 2021).

Jean-Jacques Lévy has sent an article [83] about Tracking Redexes in the Lambda-Calculus for a
chapter in the future book FSP92 (the French Science of Programming), edited by Bertrand Meyer (ETHZ).

12 Scientific production

12.1 Major publications

[1] D. Baelde, A. Doumane and A. Saurin. ‘Infinitary proof theory : the multiplicative additive case’. In:
Proceedings of CSL 2016. Sept. 2016. URL: https://hal.archives-ouvertes.fr/hal-0133903
7.

[2] P.-L. Curien. ‘Operads, clones, and distributive laws’. In: Operads and Universal Algebra : Proceedings
of China-France Summer Conference. Ed. by C. Bai, L. Guo and J.-L. Loday. Nankai Series in Pure,
Applied Mathematics and Theoretical Physics, Vol. 9. Tianjin, China: World Scientific, July 2010,
pp. 25–50. URL: https://hal.archives-ouvertes.fr/hal-00697065.

[3] P.-L. Curien, R. Garner and M. Hofmann. ‘Revisiting the categorical interpretation of dependent
type theory’. In: Theoretical computer Science 546 (2014), pp. 99–119. URL: http://dx.doi.org/1
0.1007/s10990-007-9006-0.

[4] P.-L. Curien and H. Herbelin. ‘Abstract machines for dialogue games’. In: Interactive models of
computation and program behavior. Panoramas et Synthèses. Société Mathématique de France,
2009, pp. 231–275. URL: https://hal.archives-ouvertes.fr/hal-00155295.

[5] P.-L. Curien and H. Herbelin. ‘The duality of computation’. In: Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00). SIGPLAN Notices 35(9). Montreal,
Canada: ACM, Sept. 2000, pp. 233–243. DOI: \url{http://doi.acm.org/10.1145/351240.351
262}. URL: http://hal.archives-ouvertes.fr/inria-00156377/en/.

[6] P. Dehornoy and Y. Guiraud. ‘Quadratic normalization in monoids’. In: Internat. J. Algebra Comput.
26.5 (2016), pp. 935–972. URL: https://doi.org/10.1142/S0218196716500399.

[7] E. J. Gallego Arias, B. Pin and P. Jouvelot. ‘jsCoq: Towards Hybrid Theorem Proving Interfaces’. In:
\rmfamily Proceedings of the 12th Workshop on User Interfaces for Theorem Provers, \rmfamily
Coimbra, Portugal, 2nd July 2016. Ed. by S. Autexier and P. Quaresma. Vol. 239. Electronic Pro-
ceedings in Theoretical Computer Science. Open Publishing Association, 2017, pp. 15–27. URL:
http://dx.doi.org/10.4204/EPTCS.239.2.

[8] S. Gaussent, Y. Guiraud and P. Malbos. ‘Coherent presentations of Artin monoids’. In: Compositio
Mathematica 151.5 (2015), pp. 957–998. DOI: 10.1112/S0010437X14007842. URL: https://hal
.archives-ouvertes.fr/hal-00682233.

[9] G. Gilbert, J. Cockx, M. Sozeau and N. Tabareau. ‘Definitional Proof-Irrelevance without K’. In: 46th
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2019. POPL. Lisbon,
Portugal, Jan. 2019. URL: https://hal.inria.fr/hal-01859964.

[10] Y. Guiraud. ‘Rewriting methods in higher algebra’. Habilitation à diriger des recherches. Université
Paris 7, June 2019. URL: https://hal.archives-ouvertes.fr/tel-02161197.

https://hal.archives-ouvertes.fr/hal-01339037
https://hal.archives-ouvertes.fr/hal-01339037
https://hal.archives-ouvertes.fr/hal-00697065
http://dx.doi.org/10.1007/s10990-007-9006-0
http://dx.doi.org/10.1007/s10990-007-9006-0
https://hal.archives-ouvertes.fr/hal-00155295
https://doi.org/\url{http://doi.acm.org/10.1145/351240.351262}
https://doi.org/\url{http://doi.acm.org/10.1145/351240.351262}
http://hal.archives-ouvertes.fr/inria-00156377/en/
https://doi.org/10.1142/S0218196716500399
http://dx.doi.org/10.4204/EPTCS.239.2
https://doi.org/10.1112/S0010437X14007842
https://hal.archives-ouvertes.fr/hal-00682233
https://hal.archives-ouvertes.fr/hal-00682233
https://hal.inria.fr/hal-01859964
https://hal.archives-ouvertes.fr/tel-02161197

26 Inria Annual Report 2021

[11] Y. Guiraud, E. Hoffbeck and P. Malbos. ‘Convergent presentations and polygraphic resolutions of
associative algebras’. In: Mathematische Zeitschrift 293.1-2 (2019), pp. 113–179. DOI: 10.1007/s00
209-018-2185-z. URL: https://hal.archives-ouvertes.fr/hal-01006220.

[12] Y. Guiraud and P. Malbos. ‘Higher-dimensional normalisation strategies for acyclicity’. In: Advances
in Mathematics 231.3-4 (2012), pp. 2294–2351. DOI: 10.1016/j.aim.2012.05.010. URL: https:
//hal.archives-ouvertes.fr/hal-00531242.

[13] Y. Guiraud, P. Malbos and S. Mimram. ‘A Homotopical Completion Procedure with Applications to
Coherence of Monoids’. In: RTA - 24th International Conference on Rewriting Techniques and Appli-
cations - 2013. Ed. by F. Van Raamsdonk. Vol. 21. Leibniz International Proceedings in Informatics
(LIPIcs). Eindhoven, Netherlands: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, June 2013,
pp. 223–238. DOI: 10.4230/LIPIcs.RTA.2013.223. URL: https://hal.inria.fr/hal-00818
253.

[14] H. Herbelin. ‘A Constructive Proof of Dependent Choice, Compatible with Classical Logic’. In:
LICS 2012 - 27th Annual ACM/IEEE Symposium on Logic in Computer Science. Proceedings of the
27th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2012, 25-28 June 2012,
Dubrovnik, Croatia. Dubrovnik, Croatia: IEEE Computer Society, June 2012, pp. 365–374. URL:
https://hal.inria.fr/hal-00697240.

[15] H. Herbelin. ‘An intuitionistic logic that proves Markov’s principle’. Anglais. In: Logic In Computer
Science. Edinburgh, Royaume-Uni: IEEE Computer Society, 2010. URL: http://hal.inria.fr/i
nria-00481815/en/.

[16] H. Herbelin. ‘On the Degeneracy of Sigma-Types in Presence of Computational Classical Logic’.
In: Proceedings of TLCA 2005. Ed. by P. Urzyczyn. Vol. 3461. Lecture Notes in Computer Science.
Springer, 2005, pp. 209–220.

[17] G. Jaber, N. Tabareau and M. Sozeau. ‘Extending Type Theory with Forcing’. In: LICS 2012 : Logic In
Computer Science. Dubrovnik, Croatia, June 2012. URL: https://hal.archives-ouvertes.fr
/hal-00685150.

[18] P. Letouzey. Hofstadter’s problem for curious readers. Research Report. Université Paris Diderot ;
INRIA Paris-Rocquencourt, Sept. 2015, p. 29. URL: https://hal.inria.fr/hal-01195587.

[19] T. U. F. Program. Homotopy type theory—univalent foundations of mathematics. The Univalent
Foundations Program, Princeton, NJ; Institute for Advanced Study (IAS), Princeton, NJ, 2013,
pp. xiv+589. URL: http://homotopytypetheory.org/book.

[20] Y. Régis-Gianas and F. Pottier. ‘A Hoare Logic for Call-by-Value Functional Programs’. In: Proceedings
of the Ninth International Conference on Mathematics of Program Construction (MPC’08). Vol. 5133.
Lecture Notes in Computer Science. Springer, July 2008, pp. 305–335. URL: http://gallium.inri
a.fr/%5Ctextasciitilde%20fpottier/publis/regis-gianas-pottier-hoarefp.ps.gz.

[21] B. Ziliani and M. Sozeau. ‘A comprehensible guide to a new unifier for CIC including universe
polymorphism and overloading’. In: Journal of Functional Programming 27 (2017). DOI: 10.1017
/S0956796817000028. URL: https://hal.inria.fr/hal-01671925.

12.2 Publications of the year

International journals

[22] A. Oliveira Vale, P.-A. Melliès, Z. Shao, J. Koenig and L. Stefanesco. ‘Layered and Object-Based
Game Semantics *’. In: Proceedings of the ACM on Programming Languages (16th Jan. 2022). DOI:
10.1145/3498703. URL: https://hal.inria.fr/hal-03456034.

International peer-reviewed conferences

[23] N. Brede and H. Herbelin. ‘On the logical structure of choice and bar induction principles’. In: LICS
2021 - 36th Annual Symposium on Logic in Computer Science. Rome / Virtual, Italy, 29th June
2021. URL: https://hal.inria.fr/hal-03144849.

https://doi.org/10.1007/s00209-018-2185-z
https://doi.org/10.1007/s00209-018-2185-z
https://hal.archives-ouvertes.fr/hal-01006220
https://doi.org/10.1016/j.aim.2012.05.010
https://hal.archives-ouvertes.fr/hal-00531242
https://hal.archives-ouvertes.fr/hal-00531242
https://doi.org/10.4230/LIPIcs.RTA.2013.223
https://hal.inria.fr/hal-00818253
https://hal.inria.fr/hal-00818253
https://hal.inria.fr/hal-00697240
http://hal.inria.fr/inria-00481815/en/
http://hal.inria.fr/inria-00481815/en/
https://hal.archives-ouvertes.fr/hal-00685150
https://hal.archives-ouvertes.fr/hal-00685150
https://hal.inria.fr/hal-01195587
http://homotopytypetheory.org/book
http://gallium.inria.fr/%5Ctextasciitilde%20fpottier/publis/regis-gianas-pottier-hoarefp.ps.gz
http://gallium.inria.fr/%5Ctextasciitilde%20fpottier/publis/regis-gianas-pottier-hoarefp.ps.gz
https://doi.org/10.1017/S0956796817000028
https://doi.org/10.1017/S0956796817000028
https://hal.inria.fr/hal-01671925
https://doi.org/10.1145/3498703
https://hal.inria.fr/hal-03456034
https://hal.inria.fr/hal-03144849

Project PI.R2 27

[24] A. De, L. Pellissier and A. Saurin. ‘Canonical proof-objects for coinductive programming: infinets
with infinitely many cuts’. In: PPDP 2021: 23rd International Symposium on Principles and Practice
of Declarative Programming. Tallinn, Estonia: ACM, 6th Sept. 2021, pp. 1–15. DOI: 10.1145/34793
94.3479402. URL: https://hal.archives-ouvertes.fr/hal-03371935.

[25] E. J. Gallego Arias, P. Jouvelot, S. Ribstein and D. Desblancs. ‘The W-calculus: A Synchronous
Framework for the Verified Modelling of Digital Signal Processing Algorithms’. In: FARM 2021:
Proceedings of the 9th ACM SIGPLAN International Workshop on Functional Art, Music, Modelling,
and Design. FARM 2021 - 9th ACM SIGPLAN International Workshop on Functional Art, Music,
Modelling, and Design. Virtual, South Korea, 22nd Aug. 2021. DOI: 10.1145/3471872.3472970.
URL: https://hal-mines-paristech.archives-ouvertes.fr/hal-03322174.

[26] P.-A. Melliès. ‘Asynchronous Template Games and the Gray Tensor Product of 2-Categories’. In:
LICS 2021 - 36th Annual ACM/IEEE Symposium on Logic in Computer Science. Rome, Italy: IEEE,
29th July 2021. DOI: 10.1109/LICS52264.2021.9470758. URL: https://hal.inria.fr/hal-0
3455968.

Conferences without proceedings

[27] P. Castéran, J. Damour, K. Palmskog, C. Pit-Claudel and T. Zimmermann. ‘Hydras & Co.: Formalized
mathematics in Coq for inspiration and entertainment’. In: Journées Francophones des Langages
Applicatifs: JFLA 2022. St-Médard d’Excideuil, France, Feb. 2022. URL: https://hal.archives-o
uvertes.fr/hal-03404668.

[28] L. Massoni Sguerra, P. Jouvelot, E. J. Gallego Arias, G. Memmi and F. Coelho. ‘Blockchain Perfor-
mance Benchmarking: a VCG Auction Smart Contract Use Case for Ethereum and Tezos (Short
Paper)’. In: FAB 2021 - Fourth International Symposium on Foundations and Applications of
Blockchain. Davis / Virtual, United States, 7th May 2021. URL: https://hal-mines-paristech
.archives-ouvertes.fr/hal-03210222.

[29] T. Zimmermann and J.-R. Falleri. ‘A grounded theory of Community Package Maintenance Organizations-
Registered Report’. In: ICSME 2021 - 37th International Conference on Software Maintenance and
Evolution. Luxembourg City / Virtual, Luxembourg, 27th Sept. 2021. URL: https://hal.inria.f
r/hal-03320556.

Reports & preprints

[30] P.-L. Curien, A. Ðurić and Y. Guiraud. Coherent presentations of a class of monoids admitting a
Garside family. 1st July 2021. URL: https://hal.archives-ouvertes.fr/hal-03276119.

[31] T. Zimmermann, J. Coolen, J. Gross, P.-M. Pédrot and G. Gilbert. Extending the team with a project-
specific bot. 14th Dec. 2021. URL: https://hal.inria.fr/hal-03479327.

Other scientific publications

[32] C. Cohen and T. Zimmermann. A Nix toolbox for reproducible Coq environments, Continuous
Integration and artifact reuse. Virtual, France, 2nd July 2021. URL: https://hal.inria.fr/hal-
03366644.

12.3 Other

Educational activities

[33] J.-J. Levy. ‘Finite Develpments in the Lambda Calculus’. Doctoral. Spain, 6th July 2021. URL: https:
//hal.inria.fr/hal-03566512.

12.4 Cited publications

[34] A. Allioux, E. Finster and M. Sozeau. ‘Types are internal infinity-groupoids’. working paper or
preprint. Jan. 2021. URL: https://hal.inria.fr/hal-03133144.

https://doi.org/10.1145/3479394.3479402
https://doi.org/10.1145/3479394.3479402
https://hal.archives-ouvertes.fr/hal-03371935
https://doi.org/10.1145/3471872.3472970
https://hal-mines-paristech.archives-ouvertes.fr/hal-03322174
https://doi.org/10.1109/LICS52264.2021.9470758
https://hal.inria.fr/hal-03455968
https://hal.inria.fr/hal-03455968
https://hal.archives-ouvertes.fr/hal-03404668
https://hal.archives-ouvertes.fr/hal-03404668
https://hal-mines-paristech.archives-ouvertes.fr/hal-03210222
https://hal-mines-paristech.archives-ouvertes.fr/hal-03210222
https://hal.inria.fr/hal-03320556
https://hal.inria.fr/hal-03320556
https://hal.archives-ouvertes.fr/hal-03276119
https://hal.inria.fr/hal-03479327
https://hal.inria.fr/hal-03366644
https://hal.inria.fr/hal-03366644
https://hal.inria.fr/hal-03566512
https://hal.inria.fr/hal-03566512
https://hal.inria.fr/hal-03133144

28 Inria Annual Report 2021

[35] T. Altenkirch and J. Grattage. ‘A functional quantum programming language’. In: 20th Annual IEEE
Symposium on Logic in Computer Science (LICS’ 05). 2005, pp. 249–258. DOI: 10.1109/LICS.2005
.1.

[36] D. J. Anick. ‘On the Homology of Associative Algebras’. In: Trans. Amer. Math. Soc. 296.2 (1986),
pp. 641–659.

[37] D. Ara and F. Métayer. ‘The Brown-Golasiński Model Structure on strict ∞-groupoids revisited’. In:
Homology, Homotopy and Applications 13.1 (2011), pp. 121–142.

[38] D. Baelde, A. Doumane and A. Saurin. ‘Infinitary Proof Theory: the Multiplicative Additive Case’. In:
CSL. Vol. 62. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, 42:1–42:17.

[39] J. Baez and A. Crans. ‘Higher-dimensional algebra. VI. Lie 2-algebras’. In: Theory Appl. Categ. 12
(2004), pp. 492–538.

[40] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Amsterdam: North Holland, 1984.

[41] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development Coq’Art: The
Calculus of Inductive Constructions. Springer, 2004.

[42] G. Bonfante and Y. Guiraud. ‘Polygraphic Programs and Polynomial-Time Functions’. In: Logical
Methods in Computer Science 5.2 (2009), pp. 1–37.

[43] A. Bonifati, S. Dumbrava and E. J. Gallego Arias. ‘Certified Graph Maintenance with Regular Datalog’.
In: Theory and Practice of Logic Programming (2018).

[44] N. de Bruijn. AUTOMATH, a language for mathematics. Tech. rep. 66-WSK-05. Technological Uni-
versity Eindhoven, Nov. 1968.

[45] A. Burroni. ‘Higher-dimensional word problems with applications to equational logic’. In: Theoreti-
cal Computer Science 115.1 (July 1993), pp. 43–62.

[46] K. Chardonnet, L. Lemonnier and B. Valiron. ‘Categorical Semantics of Reversible Pattern-Matching’.
In: MFPS. Vol. 351. EPTCS. 2021, pp. 18–33.

[47] K. Chardonnet, B. Valiron and R. Vilmart. ‘Geometry of Interaction for ZX-Diagrams’. In: 46th
International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Ed. by F.
Bonchi and S. J. Puglisi. Vol. 202. Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 30:1–30:16.

[48] R. Chen, C. Cohen, J.-J. Levy, S. Merz and L. Théry. ‘Formal Proofs of Tarjan’s Strongly Connected
Components Algorithm in Why3, Coq and Isabelle’. In: ITP 2019 - 10th International Conference
on Interactive Theorem Proving. Ed. by J. Harrison, J. O’Leary and A. Tolmach. Vol. 141. Portland,
United States: Schloss Dagstuhl–Leibniz-Zentrum f́’ur Informatik, Sept. 2019, 13:1–13:19. DOI:
10.4230/LIPIcs.ITP.2019.13. URL: https://hal.inria.fr/hal-02303987.

[49] A. Chlipala. Certified Programming with Dependent Types - A Pragmatic Introduction to the Coq
Proof Assistant. MIT Press, 2013. URL: http://mitpress.mit.edu/books/certified-program
ming-dependent-types.

[50] A. Church. ‘A set of Postulates for the foundation of Logic’. In: Annals of Mathematics 2 (1932),
pp. 33, 346–366.

[51] T. Coquand. ‘Une théorie des Constructions’. Dissertation. University Paris 7, Jan. 1985.

[52] T. Coquand and G. Huet. ‘Constructions : A Higher Order Proof System for Mechanizing Math-
ematics’. In: EUROCAL’85. Vol. 203. Lecture Notes in Computer Science. Linz: Springer Verlag,
1985.

[53] T. Coquand and C. Paulin-Mohring. ‘Inductively defined types’. In: Proceedings of Colog’88. Ed. by
P. Martin-Löf and G. Mints. Vol. 417. Lecture Notes in Computer Science. Springer Verlag, 1990.

[54] H. B. Curry, R. Feys and W. Craig. Combinatory Logic. Vol. 1. §9E. North-Holland, 1958.

[55] A. De and A. Saurin. ‘Infinets: The parallel syntax for non-wellfounded proof-theory’. In: TABLEAUX
2019 - 28th International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods. TABLEAUX 2019 - 28th International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods. London, United Kingdom, Sept. 2019. URL: https://hal.archiv
es-ouvertes.fr/hal-02337286.

https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.4230/LIPIcs.ITP.2019.13
https://hal.inria.fr/hal-02303987
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://mitpress.mit.edu/books/certified-programming-dependent-types
https://hal.archives-ouvertes.fr/hal-02337286
https://hal.archives-ouvertes.fr/hal-02337286

Project PI.R2 29

[56] P. Deligne. ‘Action du groupe des tresses sur une catégorie’. In: Invent. Math. 128.1 (1997), pp. 159–
175.

[57] T. Ehrhard. ‘Coherent differentiation’. In: CoRR abs/2107.05261 (2021). arXiv: 2107.05261. URL:
https://arxiv.org/abs/2107.05261.

[58] T. Ehrhard. ‘Differentials and Distances in Probabilistic Coherence Spaces’. In: 4th International
Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24-30, 2019,
Dortmund, Germany. Ed. by H. Geuvers. Vol. 131. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019, 17:1–17:17. DOI: 10.4230/LIPIcs.FSCD.2019.17. URL: https://doi.org/10
.4230/LIPIcs.FSCD.2019.17.

[59] T. Ehrhard and F. Jafarrahmani. ‘Categorical models of Linear Logic with fixed points of formulas’.
In: 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS. IEEE, 2021, pp. 1–13.

[60] T. Ehrhard, F. Jafarrahmani and A. Saurin. ‘On relation between totality semantic and syntactic
validity’. In: 5th International Workshop on Trends in Linear Logic and Applications (TLLA 2021).
Rome (virtual), Italy, June 2021. URL: https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408.

[61] M. Felleisen, D. P. Friedman, E. Kohlbecker and B. F. Duba. ‘Reasoning with continuations’. In: First
Symposium on Logic and Computer Science. 1986, pp. 131–141.

[62] A. Filinski. ‘Representing Monads’. In: Conf. Record 21st ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages, POPL’94. Portland, OR, USA: ACM Press, Jan. 1994, pp. 446–457.

[63] G. Gentzen. ‘Untersuchungen über das logische Schließen’. In: Mathematische Zeitschrift 39 (1935),
pp. 176–210, 405–431.

[64] J.-Y. Girard. ‘Une extension de l’interpretation de Gödel à l’analyse, et son application à l’élimination
des coupures dans l’analyse et la théorie des types’. In: Second Scandinavian Logic Symposium.
Ed. by J. Fenstad. Studies in Logic and the Foundations of Mathematics 63. North Holland, 1971,
pp. 63–92.

[65] T. G. Griffin. ‘The Formulae-as-Types Notion of Control’. In: Conf. Record 17th Annual ACM Symp.
on Principles of Programming Languages, POPL ’90. San Francisco, CA, USA, 17-19 Jan 1990: ACM
Press, 1990, pp. 47–57.

[66] Y. Guiraud. ‘Présentations d’opérades et systèmes de réécriture’. PhD thesis. Univ. Montpellier 2,
2004.

[67] Y. Guiraud. ‘Termination Orders for 3-Dimensional Rewriting’. In: Journal of Pure and Applied
Algebra 207.2 (2006), pp. 341–371.

[68] Y. Guiraud. ‘The Three Dimensions of Proofs’. In: Annals of Pure and Applied Logic 141.1–2 (2006),
pp. 266–295.

[69] Y. Guiraud. ‘Two Polygraphic Presentations of Petri Nets’. In: Theoretical Computer Science 360.1–3
(2006), pp. 124–146.

[70] Y. Guiraud and P. Malbos. ‘Identities among relations for higher-dimensional rewriting systems’. In:
Séminaires et Congrès, Société Mathématique de France 26 (2011), pp. 145–161.

[71] Y. Guiraud, E. Hoffbeck and P. Malbos. ‘Confluence of linear rewriting and homology of algebras’.
In: 3rd International Workshop on Confluence. Vienna, Austria, July 2014. URL: https://hal.arch
ives-ouvertes.fr/hal-01105087.

[72] Y. Guiraud and P. Malbos. ‘Coherence in monoidal track categories’. In: Math. Structures Comput.
Sci. 22.6 (2012), pp. 931–969.

[73] Y. Guiraud and P. Malbos. ‘Higher-dimensional categories with finite derivation type’. In: Theory
Appl. Categ. 22.18 (2009), pp. 420–478.

[74] M. Hofmann and T. Streicher. ‘The groupoid interpretation of type theory’. In: Twenty-five years of
constructive type theory (Venice, 1995). Vol. 36. Oxford Logic Guides. Oxford Univ. Press, New York,
1998, pp. 83–111.

https://arxiv.org/abs/2107.05261
https://arxiv.org/abs/2107.05261
https://doi.org/10.4230/LIPIcs.FSCD.2019.17
https://doi.org/10.4230/LIPIcs.FSCD.2019.17
https://doi.org/10.4230/LIPIcs.FSCD.2019.17
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408
https://hal.archives-ouvertes.fr/hal-01105087
https://hal.archives-ouvertes.fr/hal-01105087

30 Inria Annual Report 2021

[75] W. A. Howard. ‘The formulae-as-types notion of constructions’. In: to H.B. Curry: Essays on Combi-
natory Logic, Lambda Calculus and Formalism. Unpublished manuscript of 1969. Academic Press,
1980.

[76] H. Huang. ‘Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture’. In: Annals
of Mathematics 190.3 (2019), pp. 949–955. URL: https://www.jstor.org/stable/10.4007/ann
als.2019.190.3.6.

[77] J.-L. Krivine. ‘A call-by-name lambda-calculus machine’. In: Higher Order and Symbolic Computa-
tion (2005).

[78] J.-L. Krivine. ‘Un interpréteur du lambda-calcul’. Unpublished. 1986.

[79] Y. Lafont. ‘Towards an Algebraic Theory of Boolean Circuits’. In: Journal of Pure and Applied Algebra
184 (2003), pp. 257–310.

[80] Y. Lafont, F. Métayer and K. Worytkiewicz. ‘A Folk Model Structure on Omega-Cat’. In: Advances in
Mathematics 224.3 (2010), pp. 1183–1231.

[81] P. Landin. A generalisation of jumps and labels. Tech. rep. ECS-LFCS-88-66. Reprinted in Higher
Order and Symbolic Computation, 11(2), 1998. UNIVAC Systems Programming Research, Aug.
1965.

[82] P. Landin. ‘The mechanical evaluation of expressions’. In: The Computer Journal 6.4 (Jan. 1964),
pp. 308–320.

[83] J.-J. Levy. ‘Tracking Redexes in the Lambda Calculus’. working paper or preprint. Feb. 2022. URL:
https://hal.inria.fr/hal-03564707.

[84] P. Malbos. ‘Critères de finitude homologique pour la non convergence des systèmes de réécriture
de termes’. PhD thesis. Univ. Montpellier 2, 2004.

[85] P. Martin-Löf. A theory of types. Tech. rep. 71-3. University of Stockholm, 1971.

[86] N. Nisan, T. Roughgarden, É. Tardos and V. V. Vazirani. Algorithmic Game Theory. New York, NY,
USA: Cambridge University Press, 2007.

[87] M. Parigot. ‘Free Deduction: An Analysis of "Computations" in Classical Logic’. In: Logic Program-
ming, Second Russian Conference on Logic Programming. Ed. by A. Voronkov. Vol. 592. Lecture
Notes in Computer Science. St. Petersburg, Russia: Springer, Sept. 1991, pp. 361–380. URL: http:
//www.informatik.uni-trier.de/~ley/pers/hd/p/Parigot:Michel.html.

[88] J. C. Reynolds. ‘Definitional interpreters for higher-order programming languages’. In: ACM ’72:
Proceedings of the ACM annual conference. Boston, Massachusetts, United States: ACM Press, 1972,
pp. 717–740.

[89] J. C. Reynolds. ‘Towards a theory of type structure’. In: Symposium on Programming. Ed. by B.
Robinet. Vol. 19. Lecture Notes in Computer Science. Springer, 1974, pp. 408–423.

[90] C. C. Squier. ‘Word problems and a homological finiteness condition for monoids’. In: J. Pure Appl.
Algebra 49.1-2 (1987), pp. 201–217.

[91] C. Squier, F. Otto and Y. Kobayashi. ‘A finiteness condition for rewriting systems’. In: Theoret.
Comput. Sci. 131.2 (1994), pp. 271–294.

[92] R. Street. ‘Limits Indexed by Category-Valued 2-Functors’. In: Journal of Pure and Applied Algebra 8
(1976), pp. 149–181.

[93] T. C. D. Team. The Coq Proof Assistant, version 8.7.1. Dec. 2017. DOI: 10.5281/zenodo.1133970.
URL: https://doi.org/10.5281/zenodo.1133970.

[94] T. Zimmermann and A. Casanueva Artís. ‘Impact of switching bug trackers: a case study on a
medium-sized open source project’. In: ICSME 2019 - International Conference on Software Main-
tenance and Evolution. Cleveland, United States, Sept. 2019. URL: https://hal.inria.fr/hal-
01951176.

https://www.jstor.org/stable/10.4007/annals.2019.190.3.6
https://www.jstor.org/stable/10.4007/annals.2019.190.3.6
https://hal.inria.fr/hal-03564707
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Parigot:Michel.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Parigot:Michel.html
https://doi.org/10.5281/zenodo.1133970
https://doi.org/10.5281/zenodo.1133970
https://hal.inria.fr/hal-01951176
https://hal.inria.fr/hal-01951176

	Team PI.R2
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Proof theory and the Curry-Howard correspondence
	Proofs as programs
	Towards the calculus of constructions
	The Calculus of Inductive Constructions

	The development of Coq
	The underlying logic and the verification kernel
	Programming and specification languages
	Standard library
	Tactics
	Extraction
	Documentation
	Proof development infrastructure

	Dependently typed programming languages
	Type-checking and proof automation

	Around and beyond the Curry-Howard correspondence
	Control operators and classical logic
	Sequent calculus
	Abstract machines
	Delimited control

	Effective higher-dimensional algebra
	Higher-dimensional algebra
	Higher-dimensional rewriting
	Squier theory

	Application domains
	Social and environmental responsibility
	Footprint of research activities

	Highlights of the year
	Awards
	Towards PiCube

	New software and platforms
	New software
	Coq
	Rewr
	Catex
	Cox
	coqbot
	jsCoq
	coq-serapi
	pyCoq

	New results
	Effects in proof theory and programming
	Computational contents of the axiom of choice
	Proof-search in proof nets
	Algebraic Logic Programming

	Reasoning and programming with infinite data
	Proof theory of non-wellfounded and circular proofs
	On the semantics of finitary and non-wellfounded proofs
	Quantum programming languages with inductive and coinductive types

	Effective higher-dimensional algebra
	Coherent presentations of monoids
	Polygraphs and opetopes
	Foundations and formalisation of higher algebra

	Metatheory and development of Coq
	Dependent pattern-matching
	Software engineering aspects of the development of Coq
	Software infrastructure and Tools

	Formalisation and verification
	Lexing and regular expressions in Coq
	Hofstadter nested recursive functions and Coq
	Sensitivity Conjecture in Coq
	Proofs of algorithms on graphs
	Iterated parametricity and semi-cubical sets
	Verified Datalog programs with applications to low-level binary analysis
	Infinitary Proofs and Parity Automaton
	Real-time Digital Signal Processing
	Mechanism design

	Bilateral contracts and grants with industry
	Bilateral contracts with industry

	Partnerships and cooperations
	International initiatives
	Associate Teams in the framework of an Inria International Lab or in the framework of an Inria International Program

	International research visitors
	Visits of international scientists

	National initiatives
	Regional initiatives

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks
	Research administration

	Teaching - Supervision - Juries
	Courses
	Supervision

	Popularization
	Internal or external Inria responsibilities
	Articles and contents

	Scientific production
	Major publications
	Publications of the year
	Other
	Cited publications

