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2 Overall objectives

2.1 Scientific Context

Critical problems of the 21st century like the search for highly energy efficient or even carbon-neutral,
and cost-efficient systems, or the design of new molecules against extensively drug-resistant bacteria
crucially rely on the resolution of challenging numerical optimization problems. Such problems typically
depend on noisy experimental data or involve complex numerical simulations where derivatives are not
useful or not available and the function is seen as a black-box.

Many of those optimization problems are in essence multiobjective—one needs to optimize simul-
taneously several conflicting objectives like minimizing the cost of an energy network and maximizing
its reliability—and most of the challenging black-box problems are non-convex and non-smooth and
they combine difficulties related to ill-conditioning, non-separability, and ruggedness (a term that char-
acterizes functions that can be non-smooth but also noisy or multi-modal). Additionally, the objective
function can be expensive to evaluate, that is one function evaluation can take several minutes to hours
(it can involve for instance a CFD simulation).

In this context, the use of randomness combined with proper adaptive mechanisms that particularly
satisfy several invariance properties (affine invariance, invariance to monotonic transformations) has
proven to be one key component for the design of robust global numerical optimization algorithms [53,
38].

The field of adaptive stochastic optimization algorithms has witnessed some important progress over
the past 15 years. On the one hand, subdomains like medium-scale unconstrained optimization may
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be considered as “solved” (particularly, the CMA-ES algorithm, an instance of Evolution Strategy (ES)
algorithms, stands out as state-of-the-art method) and considerably better standards have been estab-
lished in the way benchmarking and experimentation are performed. On the other hand, multiobjective
population-based stochastic algorithms became the method of choice to address multiobjective prob-
lems when a set of some best possible compromises is thought for. In all cases, the resulting algorithms
have been naturally transferred to industry (the CMA-ES algorithm is now regularly used in companies
such as Bosch, Total, ALSTOM, . . . ) or to other academic domains where difficult problems need to be
solved such as physics, biology [58], geoscience [46], or robotics [49]).

Very recently, ES algorithms attracted quite some attention in Machine Learning with the OpenAI
article Evolution Strategies as a Scalable Alternative to Reinforcement Learning. It is shown that the
training time for difficult reinforcement learning benchmarks could be reduced from 1 day (with standard
RL approaches) to 1 hour using ES [55].1 A few years ago, another impressive application of CMA-ES, how
“Computer Sim Teaches Itself To Walk Upright” (published at the conference SIGGRAPH Asia 2013) was
presented in the press in the UK.

Several of these important advances around adaptive stochastic optimization algorithms are relying
to a great extent on works initiated or achieved by the founding members of RandOpt, particularly related
to the CMA-ES algorithm and to the Comparing Continuous Optimizer (COCO) platform.

Yet, the field of adaptive stochastic algorithms for black-box optimization is relatively young compared
to the “classical optimization” field that includes convex and gradient-based optimization. For instance,
the state-of-the art algorithms for unconstrained gradient based optimization like quasi-Newton methods
(e.g. the BFGS method) date from the 1970s [35] while the stochastic derivative-free counterpart, CMA-ES
dates from the early 2000s [36]. Consequently, in some subdomains with important practical demands,
not even the most fundamental and basic questions are answered:

• This is the case of constrained optimization where one needs to find a solution x∗ ∈Rn minimizing
a numerical function minx∈Rn f (x) while respecting a number of constraints m typically formulated
as gi (x∗) ≤ 0 for i = 1, . . . ,m. Only recently, the fundamental requirement of linear convergence2,
as in the unconstrained case, has been clearly stated [27].

• In multiobjective optimization, most of the research so far has been focusing on how to select
candidate solutions from one iteration to the next one. The difficult question of how to generate
effectively new solutions is not yet answered in a proper way and we know today that simply
applying operators from single-objective optimization may not be effective with the current best
selection strategies. As a comparison, in the single-objective case, the question of selection of
candidate solutions was already solved in the 1980s and 15 more years were needed to solve the
trickier question of an effective adaptive strategy to generate new solutions.

• With the current demand to solve larger and larger optimization problems (e.g. in the domain of
deep learning), optimization algorithms that scale linearly (in terms of internal complexity, memory
and number of function evaluations to reach an ε-ball around the optimum) with the problem
dimension are nowadays in increasing demand. Only recently, first proposals of how to reduce
the quadratic scaling of CMA-ES have been made without a clear view of what can be achieved in
the best case in practice. These later variants apply to optimization problems with thousands of
variables. The question of designing randomized algorithms capable to handle problems with one
or two orders of magnitude more variables effectively and efficiently is still largely open.

1The key behind such an improvement is the parallelization of the algorithm (on thousands of CPUs) that is done in such a
way that the communication between the different workers is reduced to only exchanging a vector of permutation of small length
(typically less than 100) containing the ranking of candidate solutions on the function to be optimized. In contrast, parallelization
of backpropagation requires to exchange the gradient vector of the size of the problem (of the order of 106). This reduced
communication time is a decisive factor for the impressive speedup.

2In optimization, linear convergence for an algorithm whose estimate of the optimum x∗ of f at iteration t is denoted xt ,
refers to a convergence where after a certain time (usually once the initialization is forgotten) the following typically holds:
‖xt+1 −x∗‖ ≤ c‖xt −x∗‖ where c < 1. This type of convergence is also called geometric. In the case of stochastic algorithms, there
exist different definitions of linear convergence (depending on whether we consider the expectation of the sequence or we want
a statement that holds with high probability) not strictly equivalent but that always translate the idea that the distance to the
optimum at iteration t +1 is a fraction of the distance to the optimum at iteration t .

https://blog.openai.com/evolution-strategies/
http://www.huffingtonpost.co.uk/2014/01/14/computer-program-teaches-itself-to-walk_n_4594125.html
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• For expensive optimization, standard methods are so called Bayesian optimization (BO) algorithms
often based on Gaussian processes. Commonly used examples of BO algorithms are EGO [43],
SMAC [41], Spearmint [56], or TPE [30] which are implemented in different libraries. Yet, our
experience with a popular method like EGO is that many important aspects to come up with a good
implementation rely on insider knowledge and are not standard across implementations. Two EGO
implementations can differ for example in how they perform the initial design, which bandwidth
for the Gaussian kernel is used, or which strategy is taken to optimize the expected improvement.

Additionally, the development of stochastic adaptive methods for black-box optimization has been
mainly driven by heuristics and practice—rather than a general theoretical framework—validated by
intensive computational simulations. Undoubtedly, this has been an asset as the scope of possibilities
for design was not restricted by mathematical frameworks for proving convergence. In effect, powerful
stochastic adaptive algorithms for unconstrained optimization like the CMA-ES algorithm emerged
from this approach. At the same time, naturally, theory strongly lags behind practice. For instance, the
striking performances of CMA-ES empirically observed contrast with how little is theoretically proven on
the method. This situation is clearly not satisfactory. On the one hand, theory generally lifts performance
assessment from an empirical level to a conceptual one, rendering results independent from the problem
instances where they have been obtained. On the other hand, theory typically provides insights that
change perspectives on some algorithm components. Also theoretical guarantees generally increase the
trust in the reliability of a method and facilitate the task to make it accepted by wider communities.

Finally, as discussed above, the development of novel black-box algorithms strongly relies on scientific
experimentation, and it is quite difficult to conduct proper and meaningful experimental analysis. This is
well known for more than two decades now and summarized in this quote from Johnson in 1996

“the field of experimental analysis is fraught with pitfalls. In many ways, the implementation of
an algorithm is the easy part. The hard part is successfully using that implementation to produce
meaningful and valuable (and publishable!) research results.” [42]

Since then, quite some progress has been made to set better standards in conducting scientific experi-
ments and benchmarking. Yet, some domains still suffer from poor benchmarking standards and from
the generic problem of the lack of reproducibility of results. For instance, in multiobjective optimization,
it is (still) not rare to see comparisons between algorithms made by solely visually inspecting Pareto
fronts after a fixed budget. In Bayesian optimization, good performance seems often to be due to insider
knowledge not always well described in papers.

In the context of black-box numerical optimization previously described, the scientific positioning
of the RandOpt ream is at the intersection between theory, algorithm design, and applications. Our
vision is that the field of stochastic black-box optimization should reach the same level of maturity than
gradient-based convex mathematical optimization. This entails major algorithmic developments for
constrained, multiobjective and large-scale black-box optimization and major theoretical developments
for analyzing current methods including the state-of-the-art CMA-ES.

The specificity in black-box optimization is that methods are intended to solve problems characterized
by "non-properties"—non-linear, non-convex, non-smooth, non-Lipschitz. This contrasts with gradient-
based optimization and poses on the one hand some challenges when developing theoretical frameworks
but also makes it compulsory to complement theory with empirical investigations.

Our ultimate goal is to provide software that is useful for practitioners. We see that theory is a means
for this end (rather than an end in itself) and we also firmly belief that parameter tuning is part of the
algorithm designer’s task.

This shapes, on the one hand, four main scientific objectives for our team:

1. develop novel theoretical frameworks for guiding (a) the design of novel black-box methods and
(b) their analysis, allowing to

2. provide proofs of key features of stochastic adaptive algorithms including the state-of-the-art
method CMA-ES: linear convergence and learning of second order information.



Project RANDOPT 5

3. develop stochastic numerical black-box algorithms following a principled design in domains
with a strong practical need for much better methods namely constrained, multiobjective, large-
scale and expensive optimization. Implement the methods such that they are easy to use. And
finally, to

4. set new standards in scientific experimentation, performance assessment and benchmarking
both for optimization on continuous or combinatorial search spaces. This should allow in particular
to advance the state of reproducibility of results of scientific papers in optimization.

On the other hand, the above motivates our objectives with respect to dissemination and transfer:

1. develop software packages that people can directly use to solve their problems. This means having
carefully thought out interfaces, generically applicable setting of parameters and termination
conditions, proper treatment of numerical errors, catching properly various exceptions, etc.;

2. have direct collaborations with industrials;

3. publish our results both in applied mathematics and computer science bridging the gap between
very often disjoint communities.

3 Research program

The lines of research we intend to pursue is organized along four axis namely developing novel theoreti-
cal framework, developing novel algorithms, setting novel standards in scientific experimentation and
benchmarking and applications.

3.1 Developing Novel Theoretical Frameworks for Analyzing and Designing Adap-
tive Stochastic Algorithms

Stochastic black-box algorithms typically optimize non-convex, non-smooth functions. This is possible
because the algorithms rely on weak mathematical properties of the underlying functions: the algorithms
do not use the derivatives—hence the function does not need to be differentiable—and, additionally,
often do not use the exact function value but instead how the objective function ranks candidate solutions
(such methods are sometimes called function-value-free). (To illustrate a comparison-based update,
consider an algorithm that samples λ (with λ an even integer) candidate solutions from a multivariate
normal distribution. Let x1, . . . , xλ in Rn denote those λ candidate solutions at a given iteration. The
solutions are evaluated on the function f to be minimized and ranked from the best to the worse:

f (x1:λ) ≤ . . . ≤ f (xλ:λ) .

In the previous equation i :λ denotes the index of the sampled solution associated to the i -th best solution.
The new mean of the Gaussian vector from which new solutions will be sampled at the next iteration can
be updated as

m ← 4

λ

λ/4∑
i=1

xi :λ .

The previous update moves the mean towards the λ/2 best solutions. Yet the update is only based
on the ranking of the candidate solutions such that the update is the same if f is optimized or g ◦ f
where g : Im( f ) →R is strictly increasing. Consequently, such algorithms are invariant with respect to
strictly increasing transformations of the objective function. This entails that they are robust and their
performances generalize well.)

Additionally, adaptive stochastic optimization algorithms typically have a complex state space which
encodes the parameters of a probability distribution (e.g. mean and covariance matrix of a Gaussian
vector) and other state vectors. This state-space is a manifold. While the algorithms are Markov chains,
the complexity of the state-space makes that standard Markov chain theory tools do not directly apply.
The same holds with tools stemming from stochastic approximation theory or Ordinary Differential
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Equation (ODE) theory where it is usually assumed that the underlying ODE (obtained by proper averaging
and limit for learning rate to zero) has its critical points inside the search space. In contrast, in the cases
we are interested in, the critical points of the ODEs are at the boundary of the domain.

Last, since we aim at developing theory that on the one hand allows to analyze the main properties of
state-of-the-art methods and on the other hand is useful for algorithm design, we need to be careful not
to use simplifications that would allow a proof to be done but would not capture the important properties
of the algorithms. With that respect one tricky point is to develop theory that accounts for invariance
properties.

To face those specific challenges, we need to develop novel theoretical frameworks exploiting invari-
ance properties and accounting for peculiar state-spaces. Those frameworks should allow researchers to
analyze one of the core properties of adaptive stochastic methods, namely linear convergence on the
widest possible class of functions.

We are planning to approach the question of linear convergence from three different complementary
angles, using three different frameworks:

• the Markov chain framework where the convergence derives from the analysis of the stability of a
normalized Markov chain existing on scaling-invariant functions for translation and scale-invariant
algorithms [29]. This framework allows for a fine analysis where the exact convergence rate can
be given as an implicit function of the invariant measure of the normalized Markov chain. Yet it
requires the objective function to be scaling-invariant. The stability analysis can be particularly
tricky as the Markov chain that needs to be studied writes asΦt+1 = F (Φt ,Wt+1) where {Wt : t > 0}
are independent identically distributed and F is typically discontinuous because the algorithms
studied are comparison-based. This implies that practical tools for analyzing a standard property
like irreducibility, that rely on investigating the stability of underlying deterministic control models
[50, Chapter 7], cannot be used. Additionally, the construction of a drift to prove ergodicity is
particularly delicate when the state space includes a (normalized) covariance matrix as it is the
case for analyzing the CMA-ES algorithm.

• The stochastic approximation or ODE framework. Those are standard techniques to prove the
convergence of stochastic algorithms when an algorithm can be expressed as a stochastic approxi-
mation of the solution of a mean field ODE [32, 31, 47]. What is specific and induces difficulties
for the algorithms we aim at analyzing is the non-standard state-space since the ODE variables
correspond to the state-variables of the algorithm (e.g. Rn ×R>0 for step-size adaptive algorithms,
Rn ×R>0 ×Sn++ where Sn++ denotes the set of positive definite matrices if a covariance matrix is
additionally adapted). Consequently, the ODE can have many critical points at the boundary of its
definition domain (e.g. all points corresponding to σt = 0 are critical points of the ODE) which is
not typical. Also we aim at proving linear convergence, for that it is crucial that the learning rate
does not decrease to zero which is non-standard in ODE method.

• The direct framework where we construct a global Lyapunov function for the original algorithm
from which we deduce bounds on the hitting time to reach an ε-ball of the optimum. For this
framework as for the ODE framework, we expect that the class of functions where we can prove
linear convergence are composite of g ◦ f where f is differentiable and g : Im( f ) → R is strictly
increasing and that we can show convergence to a local minimum.

We expect those frameworks to be complementary in the sense that the assumptions required are
different. Typically, the ODE framework should allow for proofs under the assumptions that learning rates
are small enough while it is not needed for the Markov chain framework. Hence this latter framework
captures better the real dynamics of the algorithm, yet under the assumption of scaling-invariance of
the objective functions. Also, we expect some overlap in terms of function classes that can be studied
by the different frameworks (typically convex-quadratic functions should be encompassed in the three
frameworks). By studying the different frameworks in parallel, we expect to gain synergies and possibly
understand what is the most promising approach for solving the holy grail question of the linear con-
vergence of CMA-ES. We foresee for instance that similar approaches like the use of Foster-Lyapunov
drift conditions are needed in all the frameworks and that intuition can be gained on how to establish the
conditions from one framework to another one.
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3.2 Algorithmic developments

We are planning on developing algorithms in the subdomains with strong practical demand for better
methods of constrained, multiobjective, large-scale and expensive optimization.

Many of the algorithm developments, we propose, rely on the CMA-ES method. While this seems
to restrict our possibilities, we want to emphasize that CMA-ES became a family of methods over the
years that nowadays include various techniques and developments from the literature to handle non-
standard optimization problems (noisy, large-scale, . . . ). The core idea of all CMA-ES variants—namely
the mechanism to adapt a Gaussian distribution—has furthermore been shown to derive naturally from
first principles with only minimal assumptions in the context of derivative-free black-box stochastic
optimization [53, 38]. This is a strong justification for relying on the CMA-ES premises while new
developments naturally include new techniques typically borrowed from other fields. While CMA-ES is
now a full family of methods, for visibility reasons, we continue to refer often to “the CMA-ES algorithm”.

3.2.1 Constrained optimization

Many (real-world) optimization problems have constraints related to technical feasibility, cost, etc.
Constraints are classically handled in the black-box setting either via rejection of solutions violating the
constraints—which can be quite costly and even lead to quasi-infinite loops—or by penalization with
respect to the distance to the feasible domain (if this information can be extracted) or with respect to
the constraint function value [33]. However, the penalization coefficient is a sensitive parameter that
needs to be adapted in order to achieve a robust and general method [34]. Yet, the question of how to
handle properly constraints is largely unsolved. Previous constraints handling for CMA-ES were ad-hoc
techniques driven by many heuristics [34]. Also, only recently it was pointed out that linear convergence
properties should be preserved when addressing constraint problems [27].

Promising approaches though, rely on using augmented Lagrangians [27, 28]. The augmented
Lagrangian, here, is the objective function optimized by the algorithm. Yet, it depends on coefficients
that are adapted online. The adaptation of those coefficients is the difficult part: the algorithm should be
stable and the adaptation efficient. We believe that the theoretical frameworks developed (particularly
the Markov chain framework) will be useful to understand how to design the adaptation mechanisms.
Additionally, the question of invariance will also be at the core of the design of the methods: augmented
Lagrangian approaches break the invariance to monotonic transformation of the objective functions,
yet understanding the maximal invariance that can be achieved seems to be an important step towards
understanding what adaptation rules should satisfy.

3.2.2 Large-scale Optimization

In the large-scale setting, we are interested to optimize problems with the order of 103 to 104 variables.
For one to two orders of magnitude more variables, we will talk about a “very large-scale” setting.

In this context, algorithms with a quadratic scaling (internal and in terms of number of function
evaluations needed to optimize the problem) cannot be afforded. In CMA-ES-type algorithms, we
typically need to restrict the model of the covariance matrix to have only a linear number of parameters
to learn such that the algorithms scale linearly in terms of internal complexity, memory and number
of function evaluations to solve the problem. The main challenge is thus to have rich enough models
for which we can efficiently design proper adaptation mechanisms. Some first large-scale variants of
CMA-ES have been derived. They include the online adaptation of the complexity of the model [26, 25].
Yet, the type of Hessian matrices they can learn is restricted and not fully satisfactory. Different restricted
families of distributions are conceivable and it is an open question which can be effectively learned and
which are the most promising in practice.

Another direction, we want to pursue, is exploring the use of large-scale variants of CMA-ES to solve
reinforcement learning problems [55].

Last, we are interested to investigate the very-large-scale setting. One approach consists in doing
optimization in subspaces. This entails the efficient identification of relevant spaces and the restriction
of the optimization to those subspaces.



8 Inria Annual Report 2021

3.2.3 Multiobjective Optimization

Multiobjective optimization, i.e., the simultaneous optimization of multiple objective functions, differs
from single-objective optimization in particular in its optimization goal. Instead of aiming at converging
to the solution with the best possible function value, in multiobjective optimization, a set of solutions 3 is
sought. This set, called Pareto-set, contains all trade-off solutions in the sense of Pareto-optimality—no
solution exists that is better in all objectives than a Pareto-optimal one. Because converging towards a set
differs from converging to a single solution, it is no surprise that we might lose many good convergence
properties if we directly apply search operators from single-objective methods. However, this is what
has typically been done so far in the literature. Indeed, most of the research in stochastic algorithms for
multiobjective optimization focused instead on the so called selection part, that decides which solutions
should be kept during the optimization—a question that can be considered as solved for many years in
the case of single-objective stochastic adaptive methods.

We therefore aim at rethinking search operators and adaptive mechanisms to improve existing
methods. We expect that we can obtain orders of magnitude better convergence rates for certain problem
types if we choose the right search operators. We typically see two angles of attack: On the one hand, we
will study methods based on scalarizing functions that transform the multiobjective problem into a set
of single-objective problems. Those single-objective problems can then be solved with state-of-the-art
single-objective algorithms. Classical methods for multiobjective optimization fall into this category, but
they all solve multiple single-objective problems subsequently (from scratch) instead of dynamically
changing the scalarizing function during the search. On the other hand, we will improve on currently
available population-based methods such as the first multiobjective versions of the CMA-ES. Here,
research is needed on an even more fundamental level such as trying to understand success probabilities
observed during an optimization run or how we can introduce non-elitist selection (the state of the art
in single-objective stochastic adaptive algorithms) to increase robustness regarding noisy evaluations
or multi-modality. The challenge here, compared to single-objective algorithms, is that the quality of a
solution is not anymore independent from other sampled solutions, but can potentially depend on all
known solutions (in the case of three or more objective functions), resulting in a more noisy evaluation as
the relatively simple function-value-based ranking within single-objective optimizers.

3.2.4 Expensive Optimization

In the so-called expensive optimization scenario, a single function evaluation might take several minutes
or even hours in a practical setting. Hence, the available budget in terms of number of function evaluation
calls to find a solution is very limited in practice. To tackle such expensive optimization problems, it
is needed to exploit the first few function evaluations in the best way. To this end, typical methods
couple the learning of a surrogate (or meta-model) of the expensive objective function with traditional
optimization algorithms.

In the context of expensive optimization and CMA-ES, which usually shows its full potential when
the number n of variables is not too small (say larger than 3) and if the number of available function
evaluations is about 100n or larger, several research directions emerge. The two main possibilities to
integrate meta-models into the search with CMA-ES type algorithms are (i) the successive injection of the
minimum of a learned meta-model at each time step into the learning of CMA-ES’s covariance matrix and
(ii) the use of a meta-model to predict the internal ranking of solutions. While for the latter, first results
exist, the former idea is entirely unexplored for now. In both cases, a fundamental question is which type
of meta-model (linear, quadratic, Gaussian Process, . . . ) is the best choice for a given number of function
evaluations (as low as one or two function evaluations) and at which time the type of the meta-model
shall be switched.

3.3 Setting novel standards in scientific experimentation and benchmarking

Numerical experimentation is needed as a complement to theory to test novel ideas, hypotheses, the sta-
bility of an algorithm, and/or to obtain quantitative estimates. Optimally, theory and experimentation go
hand in hand, jointly guiding the understanding of the mechanisms underlying optimization algorithms.

3Often, this set forms a manifold of dimension one smaller than the number of objectives.
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Though performing numerical experimentation on optimization algorithms is crucial and a common
task, it is non-trivial and easy to fall in (common) pitfalls as stated by J. N. Hooker in his seminal paper
[40].

In the RandOpt team we aim at raising the standards for both scientific experimentation and bench-
marking.

On the experimentation aspect, we are convinced that there is common ground over how scientific
experimentation should be done across many (sub-)domains of optimization, in particular with respect
to the visualization of results, testing extreme scenarios (parameter settings, initial conditions, etc.), how
to conduct understandable and small experiments, how to account for invariance properties, performing
scaling up experiments and so forth. We therefore want to formalize and generalize these ideas in order to
make them known to the entire optimization community with the final aim that they become standards
for experimental research.

Extensive numerical benchmarking, on the other hand, is a compulsory task for evaluating and
comparing the performance of algorithms. It puts algorithms to a standardized test and allows to
make recommendations which algorithms should be used preferably in practice. To ease this part of
optimization research, we have been developing the Comparing Continuous Optimizers platform (COCO)
since 2007 which allows to automatize the tedious task of benchmarking. It is a game changer in the sense
that the freed time can now be spent on the scientific part of algorithm design (instead of implementing
the experiments, visualization, statistical tests, etc.) and it opened novel perspectives in algorithm testing.
COCO implements a thorough, well-documented methodology that is based on the above mentioned
general principles for scientific experimentation.

Also due to the freely available data from 300+ algorithms benchmarked with the platform, COCO
became a quasi-standard for single-objective, noiseless optimization benchmarking. It is therefore
natural to extend the reach of COCO towards other subdomains (particularly constrained optimization,
many-objective optimization) which can benefit greatly from an automated benchmarking methodology
and standardized tests without (much) effort. This entails particularly the design of novel test suites and
rethinking the methodology for measuring performance and more generally evaluating the algorithms.
Particularly challenging is the design of scalable non-trivial testbeds for constrained optimization where
one can still control where the solutions lies. Other optimization problem types, we are targeting are
expensive problems (and the Bayesian optimization community in particular, see our AESOP project),
optimization problems in machine learning (for example parameter tuning in reinforcement learning),
and the collection of real-world problems from industry.

Another aspect of our future research on benchmarking is to investigate the large amounts of bench-
marking data, we collected with COCO during the years. Extracting information about the influence of
algorithms on the best performing portfolio, clustering algorithms of similar performance, or the auto-
mated detection of anomalies in terms of good/bad behavior of algorithms on a subset of the functions
or dimensions are some of the ideas here.

Last, we want to expand the focus of COCO from automatized (large) benchmarking experiments
towards everyday experimentation, for example by allowing the user to visually investigate algorithm
internals on the fly or by simplifying the set up of algorithm parameter influence studies.

4 Application domains

Applications of black-box algorithms occur in various domains. Industry but also researchers in other
academic domains have a great need to apply black-box algorithms on a daily basis. Generally, we do
not target a specific application domain and are interested in black-box applications stemming from
various origins. This is to us intrinsic to the nature of the methods we develop that are general purpose
algorithms. Hence our strategy with respect to applications can be considered as opportunistic and our
main selection criteria when approached by colleagues who want to develop a collaboration around
an application is whether we find the application interesting and valuable: that means the application
brings new challenges and/or gives us the opportunity to work on topics we already intended to work on,
and it brings, in our judgement, an advancement to society in the application domain.

The concrete applications related to industrial collaborations we are currently dealing with are:

• With Thales for the theses of Konstantinos Varelas and Paul Dufossé (DGA-CIFRE theses) related to
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the design of radars (shape optimization of the wave form). They investigate more specifically the
development of large-scale variants of CMA-ES and constrained-handling for CMA-ES, respectively.

• With Storengy, a subsidiary of the ENGIE group, specialized in gas storage for the thesis of Cheikh
Touré and Mohamed Gharafi. Different multiobjective applications are considered in this context
but the primary motivation of Storengy is to get at their disposal a better multiobjective variant of
CMA-ES which is the main objective of the developments within the theses.

• With PSA in the context of the OpenLab and the thesis of Marie-Ange Dahito for the design of part
of a car body.

5 Social and environmental responsibility

5.1 Footprint of research activities

We are concerned about CO2 footprint. This year we attended online conferences only and had all our
international collaboration meetings online. We discourage oversea conferences when far away. In case
the situation with respect to covid goes back to normal with respect to be able to travel, we will still be
happy to travel less than in the past and to be able to attend some conferences from home.

5.2 Impact of research results

We develop general purpose optimization methods that apply in difficult optimization contexts where
little is required on the function to be optimized. Application domains include optimization and design
of renewable systems and climate change.

Our main method CMA-ES is transferred and widely used. The code stemming from the team is largely
downlowded (see Section 7). Among the usage of our method and our code, we find naturally problems
in the domain of energy to capture carbon dioxide [51, 48, 52], solar energy [44, 45], or wind-thermal
power systems [54].

Those publications witness the impact of our research results with respect to research questions and
engineering design related to climate change and renewable energy.

In the context of our collaboration with the company Storengy, we can report another, even more
immediate environmental impact. Storengy plans to use our CMA-ES method (and variants developed
during the project) to optimize the underground storage of hydrogen—as a CO2-neutral alternative to
natural gas.

6 Highlights of the year

We published the paper [13] that summarizes our work on benchmarking over ten years and its imple-
mentation in the COCO platform. It highlights our impact of this research by providing usage and dataset
numbers. We report 300+ algorithm data sets available online, 140+ workshop papers written with the
support of the software, and 1800+ citations to the various papers, documenting software, test problems,
and experimental procedure.

We have been invited to write an article for the ACM SIGEVO newsletter [24] after receiving the ACM
impact award for our 2010 GECCO paper [39]. It acknowledges the impact of research on benchmarking,
the COCO platform and the organization of our Black-Box-Optimization workshops.

7 New software and platforms

The RandOpt team maintains and further develops the two software libraries CMA-ES and COCO with
around 149 commits in 2021. The shutdown of gforge.inria.fr created a considerable overhead in
particular for the maintenance of COCO.

As an indicator of the research and software impact, the Figure 1 shows weekly downloads during
the second half of 2021 of software packages developed by the RandOpt team and of the cmaes package

https://github.com/CMA-ES
https://github.com/numbbo
https://github.com/numbbo
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Figure 1: Weekly downloads from PyPI of RandOpt related Python software packages.

developed by Masashi Shibata (as a direct competitor of the cma module more tailored to machine
learning applications but also based on RandOpt research results). The cma module has currently almost
30,000 weekly downloads, the cmaes module has close to 200,000 weekly downloads. The cma module
from RandOpt has been downloaded overall more than 2 million times.

7.1 New software

7.1.1 COCO

Name: COmparing Continuous Optimizers

Keywords: Benchmarking, Numerical optimization, Black-box optimization, Stochastic optimization

Scientific Description: COmparing Continuous Optimisers (COCO) is a tool for benchmarking algo-
rithms for black-box optimisation. COCO facilitates systematic experimentation in the field of
continuous optimization. COCO provides: (1) an experimental framework for testing the algo-
rithms, (2) post-processing facilities for generating publication quality figures and tables, including
the easy integration of data from benchmarking experiments of 300+ algorithm variants, (3) LaTeX
templates for scientific articles and HTML overview pages which present the figures and tables.

The COCO software is composed of two parts: (i) an interface available in different programming
languages (C/C++, Java, Matlab/Octave, Python, external support for R) which allows to run and
log experiments on several function test suites (unbounded noisy and noiseless single-objective
functions, unbounded noiseless multiobjective problems, mixed-integer problems, constrained
problems) and (ii) a Python tool for generating figures and tables that can be looked at in every web
browser and that can be used in the provided LaTeX templates to write scientific papers.

Functional Description: The Coco platform aims at supporting the numerical benchmarking of black-
box optimization algorithms in continuous domains. Benchmarking is a vital part of algorithm
engineering and a necessary path to recommend algorithms for practical applications. The Coco
platform releases algorithm developers and practitioners alike from (re-)writing test functions,
logging, and plotting facilities by providing an easy-to-handle interface in several programming
languages. The Coco platform has been developed since 2007 and has been used extensively within
the “Blackbox Optimization Benchmarking (BBOB)” workshop series since 2009. Overall, 300+
algorithms and algorithm variants by contributors from all over the world have been benchmarked
on the platform’s supported test suites so far. The most recent extensions have been towards
large-scale as well as mixed-integer problems.

https://pypi.org/
https://pepy.tech/project/cma
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URL: https://github.com/numbbo/coco

Contact: Dimo Brockhoff

Participants: Anne Auger, Asma Atamna, Dejan Tusar, Dimo Brockhoff, Marc Schoenauer, Nikolaus
Hansen, Ouassim Ait Elhara, Raymond Ros, Tea Tusar, Thanh-Do Tran, Umut Batu, Konstantinos
Varelas

Partners: TU Dortmund University, Charles University Prague, Jozef Stefan Institute (JSI)

7.1.2 CMA-ES

Name: Covariance Matrix Adaptation Evolution Strategy

Keywords: Numerical optimization, Black-box optimization, Stochastic optimization

Scientific Description: The CMA-ES is considered as state-of-the-art in evolutionary computation and
has been adopted as one of the standard tools for continuous optimisation in many (probably
hundreds of) research labs and industrial environments around the world. The CMA-ES is typically
applied to unconstrained or bounded constraint optimization problems, and search space dimen-
sions between three and a hundred. The method should be applied, if derivative based methods,
e.g. quasi-Newton BFGS or conjugate gradient, (supposedly) fail due to a rugged search landscape
(e.g. discontinuities, sharp bends or ridges, noise, local optima, outliers). If second order derivative
based methods are successful, they are usually faster than the CMA-ES: on purely convex-quadratic
functions, f(x)=xTHx, BFGS (Matlabs function fminunc) is typically faster by a factor of about ten
(in terms of number of objective function evaluations needed to reach a target function value,
assuming that gradients are not available). On the most simple quadratic function f(x)=||x||2=xTx
BFGS is faster by a factor of about 30.

Functional Description: The CMA-ES is an evolutionary algorithm for difficult non-linear non-convex
black-box optimisation problems in continuous domain.

URL: http://cma.gforge.inria.fr/cmaes_sourcecode_page.html

Contact: Nikolaus Hansen

Participant: Nikolaus Hansen

7.1.3 COMO-CMA-ES

Name: Comma Multi-Objective Covariance Matrix Adaptation Evolution Strategy

Keywords: Black-box optimization, Global optimization, Multi-objective optimisation

Scientific Description: The CMA-ES is considered as state-of-the-art in evolutionary computation and
has been adopted as one of the standard tools for continuous optimisation in many (probably
hundreds of) research labs and industrial environments around the world. The CMA-ES is typi-
cally applied to unconstrained or bounded constraint optimization problems, and search space
dimensions between three and a hundred. COMO-CMA-ES is a multi-objective optimization algo-
rithm based on the standard CMA-ES using the Uncrowded Hypervolume Improvement within the
so-called Sofomore framework.

Functional Description: The COMO-CMA-ES is an evolutionary algorithm for difficult non-linear non-
convex black-box optimisation problems with several (two) objectives in continuous domain.

URL: https://github.com/CMA-ES/pycomocma

Contact: Nikolaus Hansen

https://github.com/numbbo/coco
http://cma.gforge.inria.fr/cmaes_sourcecode_page.html
https://github.com/CMA-ES/pycomocma
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7.1.4 MOarchiving

Name: Multiobjective Optimization Archiving Module

Keywords: Mathematical Optimization, Multi-objective optimisation

Scientific Description: Multi-objective optimization relies on the maintenance of a set of non-dominated
(and hence incomparable) solutions. Performance indicator computations and in particular the
computation of the hypervolume indicator is based on this solution set. The hypervolume compu-
tation and the update of the set of non-dominated solutions are generally time critical operations.
The module computes the bi-objective hypervolume in linear time and updates the non-dominated
solution set in logarithmic time.

Functional Description: The module implements a bi-objective non-dominated archive using a Python
list as parent class. The main functionality is heavily based on the bisect module. The class provides
easy and fast access to the overall hypervolume, the contributing hypervolume of each element,
and to the uncrowded hypervolume improvement of any given point in objective space.

URL: https://github.com/CMA-ES/moarchiving

Contact: Nikolaus Hansen

8 New results

8.1 Analysis of Adaptive Stochastic Search Algorithms

Participants: Anne Auger, Nikolaus Hansen, Cheikh Touré, Armand Gissler.

External collaborators: Youhei Akimoto (Tsukuba University), Tobias Glasmachers (Ruhr University,
Bochum)

We have proven the global linear convergence of the (1+1)-ES with one-fifth success rule as step-
size adaptation on a class of functions that embed smooth strongly convex functions and positively
homogeneous functions. Because of the invariance to monotonic transformations, the study holds for
non-continuous and non-convex functions. Arguably, our study provides the first proof of the linear
convergence of an adaptive evolution strategy without modifying its underlying updates (to make a proof
work) on such a wide class of functions [20].

Over the past years, we have developed a methodology to analyze the linear convergence of adaptive
comparison-based algorithms including Evolution Strategies by studying the stability of underlying
Markov chains. This methodology allows to derive convergence on so-called scaling-invariant functions.
Yet this class of functions has not been studied in the past such that we needed to derive important
mathematical properties that are needed to conduct our convergence studies. Based on the work of the
master thesis of Armand Gissler, we published a theoretical analysis of the link between scaling-invariant
functions and positively homogeneous ones [14].

We have analyzed the linear convergence of a step-size adaptive (µ/µ,λ)-ES on continuously differen-
tiable scaling invariant functions [22]. The study constitutes the first convergence analysis of this class of
algorithm which is the underlying algorithmic scheme of the CMA-ES algorithms while we assume here
only step-size adaptation. This study has been using the methodology based on Markov chain that we
have been developing. We published our research on extending ODE theory (that connects convergence
of a stochastic algorithm to the statility of an underlying ODE obtained when taking the limit for learning
rate to zero) in order to prove the geometric convergence of an algorithm [11]. We illustrate how to apply
the theory to prove the linear convergence of a step-size adaptive ES.

8.2 Algorithm Design for Single-Objective Optimization

https://github.com/CMA-ES/moarchiving
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Participants: Nikolaus Hansen, Dimo Brockhoff, Paul Dufossé, Clément Micol,
Jingyun Yang.

We investigated the combination of Augmented Lagrangian methods with Evolution Strategies for
constrained optimization problems in [16]. We experimented on a small set of benchmark problems and
exhibited failure cases of the Augmented Lagrangian technique in this context. These preliminary results
suggest that surrogate modeling of the constraints may overcome some of these difficulties.

During an internship, Clément Micol from ENSTA investigated the distribution of the incumbent
mean of the sample distribution in (µ/µ,λ) Evolution Strategies. We found in particular that the waiting
time to cross the optimal value in a single coordinate tends not to exceed 5

p
n where n is the search space

dimension. This result may prove to be useful in designing or tuning constraint handling methods in
future.

During his internship, Jingyun Yang from Ecole Polytechnique developed a new version of the
surrogate-assisted lq-CMA-ES of [37] that employs a quadratic, tri-diagonal surrogate as its forth model.

8.3 Multi-objective optimization

Participants: Cheikh Touré, Eugénie Marescaux, Baptiste Plaquevent-Jourdain, Mo-
hamed Gharafi, Anne Auger, Dimo Brockhoff, Nikolaus Hansen.

External collaborators: Youhei Akimoto (Tsukuba University), Tea Tušar (Jozef Stefan Institute)
A central theme for the team is the design, analysis, and benchmarking of multi-objective optimization

algorithms. In 2021, we have progressed in several ways on those aspects.
In terms of algorithm design, we improved the COMO-CMA-ES algorithm from [57] towards an

algorithm that aims at converging to the entire Pareto front. Restarts and new stopping criteria allow to
also handle multi-modal objective functions effectively. A publication is in progress. In parallel, in her
thesis, Eugénie Marescaux studied the convergence of the ensuing solver from a theoretical standpoint
and was able to prove, under proper assumptions, that the algorithm converges towards the entire Pareto
front [21]. On the contrary, also lower bounds of how fast multiobjective algorithms can convergence
optimally towards the optimal hypervolume indicator have been established [17]. The mentioned COMO-
CMA-ES algorithm has also, to a large extend, contributed to the PhD thesis of Cheikh Touré [18].

To document and promote our benchmarking efforts with the COCO platform, we have published the
description of the bi-objective bbob-biobj and bbob-biobj-ext test suites in the Evolutionary Computation
journal [12]. New empirical benchmarking results from the classical Direct Multisearch (DMS) and
MultiGLODS algorithms have been prepared and described as well [15].

Our publicly available Python modules, the MO-archiving module and the module implementing the
COMO-CMA-ES algorithm, slowly started to get picked up after their release in 2020 with, on average, 1–2
downloads per day on PyPi, the python package index.

8.4 Benchmarking: methodology and the Comparing Continuous Optimziers Plat-
form (COCO)

Participants: Anne Auger, Dimo Brockhoff, Paul Dufossé, Nikolaus Hansen.

External collaborators: Olaf Mersmann (TH Köln), Raymond Ros (U Paris-Saclay), Tea Tušar (Jozef
Stefan Institute)

Benchmarking is an important task in optimization in order to assess and compare the performance
of algorithms as well as to motivate the design of better solvers. We are leading the benchmarking of
derivative free solvers in the context of difficult problems: we have been developing methodologies and
testbeds as well as assembled this into a platform automatizing the benchmarking process. This is a
continuing effort that we are pursuing in the team.
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Figure 2: Structural overview of the COCO platform. COCO provides all black parts while users only have
to connect their solver to the COCO interface in the language of interest, here for instance Matlab, and
to decide on the test suite the solver should run on. The other red components show the output of the
experiments (number of function evaluations to reach certain target precisions) and their post-processing
and are automatically generated.

The COCO platform, developed at Inria first in the TAO team and then in Randopt since 2007, aims
at automatizing numerical benchmarking experiments and the visual presentation of their results. The
platform consists of an experimental part to generate benchmarking data (in various programming
languages) and a postprocessing module (in python), see Figure 2. At the interface between the two, we
provide data sets from numerical experiments of 300+ algorithms and algorithm variants from various
fields (quasi-Newton, derivative-free optimization, evolutionary computing, Bayesian optimization) and
for various problem characteristics (noiseless/noisy optimization, single-/multi-objective optimization,
continuous/mixed-integer, . . . ).

The main innovations and methodological ideas of the platform have been published in the paper
[13].

We have been using the platform in the past to initiate workshop papers during the ACM-GECCO
conference as well as to collect algorithm data sets from the entire optimization community (300+ so far
over the different test suites). The next workshop in this series is going to take place in 20224 and we also
held a workshop in 2021.

In this context, we constantly improve and extend the software and provide additional data from
benchmarking experiments. In 2021, four new data sets have been collected from the BBOB-2021
participants and which are available via the COCO postprocessing module.

The largest effort, this year, went into the finalization of a new test suite for constrained optimization
(work still in progress).

9 Bilateral contracts and grants with industry

9.1 Bilateral contracts with industry

• Contract with the company Storengy partially funding the PhD thesis of Cheikh Touré (2017–2020)
[14]

• Contract with the company Storengy funding the PhD thesis of Mohamed Gharafi in the context of
the CIROQUO project (2021–2024)

4See BBOB-2022 webpage

https://numbbo.github.io/workshops/BBOB-2022/
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• Contract with Thales in the context of the CIFRE PhD thesis of Konstantinos Varelas (2017–2020)
[19]

• Contract with PSA (now Stellantis) in the context of the CIFRE PhD thesis of Marie-Ange Dahito
(2018–2021)

• Contract with Thales for the CIFRE PhD thesis of Paul Dufossé (2018–2021)

10 Partnerships and cooperations

10.1 International research visitors

10.1.1 Visits to international teams

Due to the covid-19 pandemic, no physical visits to other teams have been made.

10.2 National initiatives

• CIROQUO ("Consortium Industriel de Recherche en Optimisation et QUantification d’incertitudes
pour les données Onéreuses"), participation as Inria Saclay/Ecole Polytechnique, together with six
other academic and five industrial partners (2020–2024)

11 Dissemination

11.1 Promoting scientific activities

11.1.1 Scientific events: organisation

• In 2021, the Blackbox Optimization Benchmarking workshop (BBOB) has been co-organized by
Anne Auger, Dimo Brockhoff, and Nikolaus Hansen at the Genetic and Evolutionary Computation
Conference (online) together with colleagues Peter A. N. Bosman from Centrum Wiskunde &
Informatica (CWI) and TU Delft, Tobias Glasmachers from Ruhr-Universität Bochum, Petr Pošík
from the Czech Technical University, and Tea Tušar from the Jozef Stefan Institute.

• In 2022, the next Blackbox Optimization Benchmarking workshop (BBOB), co-organized by Anne
Auger, Dimo Brockhoff, Paul Dufossé, and Nikolaus Hansen in collaboration with colleagues from
TU Köln, University of Bochum, the Jozef Stefan Institute, and Czech Technical University will take
place at the Genetic and Evolutionary Computation Conference.

Member of the organizing committees

• Dagstuhl seminar "Challenges in Benchmarking Optimization Heuristics", February 2021, cancelled
due to covid-19, Anne Auger co-organizer

• Dagstuhl seminar "Theory of Randomized Optimization Heuristics", February 2022, Anne Auger
co-organizer

11.1.2 Scientific events: selection

Reviewer

• Anne Auger: ACM-GECCO 2021

• Dimo Brockhoff: ACM-GECCO 2021
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11.1.3 Journal

Member of the editorial boards

• ACM Transcations on Evolutionary Learning and Optimization (TELO): Anne Auger, Dimo Brock-
hoff, and Nikolaus Hansen are associate editors

• Evolutionary Computation Journal: Anne Auger and Nikolaus Hansen are editorial board members

Reviewer - reviewing activities
The three permanent members are frequent reviewers for major journals in Evolutionary Computa-

tion. Anne Auger is a frequent reviewer of mathematical optimization journal (JOGO, SIAM OPT). We
additionally review papers in Machine Learning related to optimization for JMLR, Machine Learning.

11.1.4 Invitations

• Anne Auger, Dimo Brockhoff, and Nikolaus Hansen were invited to the Dagstuhl seminar "Chal-
lenges in Benchmarking Optimization Heuristics", February 2021, cancelled due to covid-19

• Anne Auger, Dimo Brockhoff, Nikolaus Hansen, and Eugénie Marescaux were invited to the
Dagstuhl seminar "Theory of Randomized Optimization Heuristics", February 2022

• Anne Auger, Dimo Brockhoff, and Nikolaus Hansen were invited to the Lorentz Center seminar
"Benchmarked: Optimization meets Machine Learning", May/June 2022

11.1.5 Leadership within the scientific community

• Anne Auger is elected member of the ACM SIVEVO board

• Anne Auger is member of the SIGEVO buisness committee

• Dimo Brockhoff, Michael Emmerich (Leiden, The Netherlands), Boris Naujoks (Cologne, Germany),
and Robin Purshouse (Sheffield, UK) lead the initiative towards a book on Manycriteria Optimiza-
tion, initiated during the 2019 Lorentz Center workshop "MACODA: Manycriteria Optimization
and Decision Analysis"

11.1.6 Research administration

• Anne Auger is member of the BCEP of Inria Saclay

• Anne Auger: member of the conseil de laboratoire of the CMAP

• Anne Auger co-responsible of CMAP scientific seminar

• Dimo Brockhoff: member of the Commission de développement technologique (CDT) of Inria
Saclay

11.2 Teaching - Supervision - Juries

11.2.1 Teaching

• Master: Anne Auger, “Optimization without gradients”, 22.5h ETD, niveau M2 (Optimization Master
of Paris-Saclay)

• Master: Dimo Brockhoff, “Algorithms and Complexity”, 36h ETD, niveau M1 (joint MSc with ESSEC
“Data Sciences & Business Analytics”), CentraleSupelec, France

• Master: Dimo Brockhoff, “Advanced Optimization”, 36h ETD, niveau M2 (joint MSc with ESSEC
“Data Sciences & Business Analytics”), CentraleSupelec, France

• Master: Anne Auger and Dimo Brockhoff, “Introduction to Optimization”, 22.5h ETD, niveau M2
(Master Artificial Intelligence), U. Paris-Saclay, France
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11.2.2 Tutorials

• Dimo Brockhoff and Tea Tušar: tutorial on Benchmarking Multiobjective Optimizers 2.0, 3h ETD,
niveau PhD, ACM-GECCO conference, Lille/online

• Nikolaus Hansen and Anne Auger: tutorial “Benchmarking: State-of-the-art and Beyond”, 3h ETD,
niveau PhD, ACM-GECCO conference 2021

• Nikolaus Hansen (together with Youhei Akimoto): tutorial on “CMA-ES and Advanced Adaptation
Mechanisms”, 3h ETD, niveau PhD, ACM-GECCO conference 2021

11.2.3 Supervision

• PhD: Konstantinos Varelas, "Large-Scale Optimization, CMA-ES and Radar Applications" (Dec.
2017–Feb 2021), supervisors: Anne Auger and Dimo Brockhoff

• PhD: Cheikh Touré, "Linearly Convergent Multi-objective Stochastic Optimizers" (Dec. 2017–Oct.
2021), supervisors: Anne Auger and Dimo Brockhoff

• PhD in progress: Paul Dufossé, "Constrained Optimization and Radar Applications", (Oct. 2018–),
supervisor: Nikolaus Hansen

• PhD: Marie-Ange Dahito, "Mixed-Integer Blackbox Optimization for Multiobjective Problems in the
Automotive Industry" (Jan. 2019–Feb. 2021), previous supervisors: Dimo Brockhoff and Nikolaus
Hansen, now transferred to Institut Mines-Télécom

• PhD in progress: Eugénie Marescaux, Theoretical Analysis of convergence of multi-objective solvers
(2019–), supervisor: Anne Auger

• PhD: Alann Cheral, "Black-box optimization for the optimization of hyperspectral bandwidth for
anomaly detection" (2019–August 2021), supervisor: Anne Auger, Sidonie Lefebvre (Onera)

• PhD in progress: Armand Gissler, "Analysis of covariance matrix adaptation methods for random-
ized derivative free optimization" (2021–), supervisors: Anne Auger and Nikolaus Hansen

• PhD in progress: Mohamed Gharafi (Jan. 2022–), supervisors: Nikolaus Hansen and Dimo Brockhoff

• Master: Jingyun Yang, Ecole Polytechnique, supervisors: Dimo Brockhoff and Nikolaus Hansen

• Master: Clément Micol, ENSTA, supervisor: Nikolaus Hansen

11.2.4 Juries

• Anne Auger reviewer and jury member of the PhD thesis of Stef Maree (CWI, Amsterdam)
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