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2 Overall objectives

2.1 Scientific challenges, expected impact

The general orientation of our team is described by the short name given to it: Special Functions, that is,
particular mathematical functions that have established names due to their importance in mathematical
analysis, physics, and other application domains. Indeed, we ambition to study special functions with
the computer, by combined means of computer algebra and formal methods.

Computer-algebra systems have been advertised for decades as software for “doing mathematics by
computer” [88]. For instance, computer-algebra libraries can uniformly generate a corpus of mathemati-
cal properties about special functions, so as to display them on an interactive website. This possibility
was recently shown by the computer-algebra component of the team [41]. Such an automated generation
significantly increases the reliability of the mathematical corpus, in comparison to the content of existing
static authoritative handbooks. The importance of the validity of these contents can be measured by the
very wide audience that such handbooks have had, to the point that a book like [38] remains one of the
most cited mathematical publications ever and has motivated the 10-year-long project of writing its suc-
cessor [78]. However, can the mathematics produced “by computer” be considered as true mathematics?
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More specifically, whereas it is nowadays well established that the computer helps in discovering and
observing new mathematical phenomenons, can the mathematical statements produced with the aid of
the computer and the mathematical results computed by it be accepted as valid mathematics, that is,
as having the status of mathematical proofs? Beyond the reported weaknesses or controversial design
choices of mainstream computer-algebra systems, the issue is more of an epistemological nature. It will
not find its solution even in the advent of the ultimate computer-algebra system: the social process of
peer-reviewing just falls short of evaluating the results produced by computers, as reported by Th. Hales
[65] after the publication of his proof of the Kepler Conjecture about sphere packing.

A natural answer to this deadlock is to move to an alternative kind of mathematical software and to use
a proof assistant to check the correctness of the desired properties or formulas. The success of large-scale
formalization projects, like the Four-Color Theorem of graph theory [60], the above-mentioned Kepler
Conjecture [65], and the Odd Order Theorem of group theory, have increased the understanding of the
appropriate software-engineering methods for this peculiar kind of programming. For computer algebra,
this legitimates a move to proof assistants now.

The Dynamic Dictionary of Mathematical Functions (DDMF) [41] is an online computer-generated
handbook of mathematical functions that ambitions to serve as a reference for a broad range of applica-
tions. This software was developed by the computer-algebra component of the team as a project of the
MSR–INRIA Joint Centre. It bases on a library for the computer-algebra system Maple, Algolib, whose
development started 20 years ago in project-team Algorithms. As suggested by the constant questioning
of certainty by new potential users, DDMF deserves a formal guarantee of correctness of its content, on
a level that proof assistants can provide. Fortunately, the maturity of special-functions algorithms in
Algolib makes DDMF a stepping stone for such a formalization: it provides a well-understood and unified
algorithmic treatment, without which a formal certification would simply be unreachable.

The formal-proofs component of the team emanates from another project of the MSR–INRIA Joint
Centre, namely the Mathematical Components project (MathComp). Since 2006, the MathComp group
has endeavoured to develop computer-checked libraries of formalized mathematics, using the Coq proof
assistant [84]. The methodological aim of the project was to understand the design methods leading to
successful large-scale formalizations. The work culminated in 2012 with the completion of a formal proof
of the Odd Order Theorem, resulting in the largest corpus of algebraic theories ever machine-checked
with a proof assistant and a whole methodology to effectively combine these components in order to
tackle complex formalizations. In particular, these libraries provide a good number of the many algebraic
objects needed to reason about special functions and their properties, like rational numbers, iterated
sums, polynomials, and a rich hierarchy of algebraic structures.

The present team takes benefit from these recent advances to explore the formal certification of
the results collected in DDMF. The aim of this project is to concentrate the formalization effort on this
delimited area, building on DDMF and the Algolib library, as well as on the Coq system [84] and on the
libraries developed by the MathComp project.

2.2 Use computer algebra but convince users beyond reasonable doubt

The following few opinions on computer algebra are, we believe, typical of computer-algebra users’
doubts and difficulties when using computer-algebra systems:

• Fredrik Johansson, expert in the multi-precision numerical evaluation of special functions and in
fast computer-algebra algorithms, writes on his blog [71]: “Mathematica is great for cross-checking
numerical values, but it’s not unusual to run into bugs, so triple checking is a good habit.” One
answer in the discussion is: “We can claim that Mathematica has [. . . ] an impossible to understand
semantics: If Mathematica’s output is wrong then change the input. If you don’t like the answer,
change the question. That seems to be the philosophy behind.”

• A professor’s advice to students [80] on using Maple: “You may wish to use Maple to check your
homework answers. If you do then keep in mind that Maple sometimes gives the wrong answer,
usually because you asked incorrectly, or because of niceties of analytic continuation. You may even
be bitten by an occasional Maple bug, though that has become fairly unlikely. Even with as powerful
a tool as Maple you will still have to devise your own checks and you will still have to think.”

http://www.msr-inria.inria.fr/news/the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012/
http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
http://www.msr-inria.inria.fr/projects/dynamic-dictionary-of-mathematical-functions/
http://algo.inria.fr/libraries/
http://algo.inria.fr/
http://www.msr-inria.fr/projects/mathematical-components/
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• Jacques Carette, former head of the maths group at Maplesoft, about a bug [74] when asking Maple
to take the limit limit(f(n) * exp(-n), n = infinity) for an undetermined function f: “The
problem is that there is an implicit assumption in the implementation that unknown functions do
not ‘grow too fast’.”

As explained by the expert views above, complaints by computer-algebra users are often due to their
misunderstanding of what a computer-algebra systems is, namely a purely syntactic tool for calculations,
that the user must complement with a semantics. Still, robustness and consistency of computer-algebra
systems are not ensured as of today, and, whatever Zeilberger may provocatively say in his Opinion 94 [91],
a firmer logical foundation is necessary. Indeed, the fact is that many “bugs” in a computer-algebra system
cannot be fixed by just the usual debugging method of tracking down the faulty lines in the code. It is sort
of “by design”: assumptions that too often remain implicit are really needed by the design of symbolic
algorithms and cannot easily be expressed in the programming languages used in computer algebra. A
similar certification initiative has already been undertaken in the domain of numerical computing, in a
successful manner [67, 44]. It is natural to undertake a similar approach for computer algebra.

2.3 Make computer algebra and formal proofs help one another

Some of the mathematical objects that interest our team are still totally untouched by formalization.
When implementing them and their theory inside a proof assistant, we have to deal with the pervasive
discrepancy between the published literature and the actual implementation of computer-algebra algo-
rithms. Interestingly, this forces us to clarify our computer-algebraic view on them, and possibly make us
discover holes lurking in published (human) proofs. We are therefore convinced that the close interaction
of researchers from both fields, which is what we strive to maintain in this team, is a strong asset.

For a concrete example, the core of Zeilberger’s creative telescoping manipulates rational functions up
to simplifications. In summation applications, checking that these simplifications do not hide problem-
atic divisions by 0 is most often left to the reader. In the same vein, in the case of integrals, the published
algorithms do not check the convergence of all integrals, especially in intermediate calculations. Such
checks are again left to the readers. In general, we expect to revisit the existing algorithms to ensure
that they are meaningful for genuine mathematical sequences or functions, and not only for algebraic
idealizations.

Another big challenge in this project originates in the scientific difference between computer algebra
and formal proofs. Computer algebra seeks speed of calculation on concrete instances of algebraic data
structures (polynomials, matrices, etc). For their part, formal proofs manipulate symbolic expressions in
terms of abstract variables understood to represent generic elements of algebraic data structures. In view
of this, a continuous challenge is to develop the right, hybrid thinking attitude that is able to effectively
manage concrete and abstract values simultaneously, alternatively computing and proving with them.

2.4 Experimental mathematics with special functions

Applications in combinatorics and mathematical physics frequently involve equations of so high orders
and so large sizes, that computing or even storing all their coefficients is impossible on existing computers.
Making this tractable is an extraordinary challenge. The approach we believe in is to design algorithms
of good—ideally quasi-optimal—complexity in order to extract precisely the required data from the
equations, while avoiding the computationally intractable task of completely expanding them into an
explicit representation.

Typical applications with expected high impact are the automatic discovery and algorithmic proof of
results in combinatorics and mathematical physics for which human proofs are currently unattainable.

2.5 Research axes

The implementation of certified symbolic computations on special functions in the Coq proof assistant
requires both investigating new formalization techniques and renewing the traditional computer-algebra
viewpoint on these standard objects. Large mathematical objects typical of computer algebra occur
during formalization, which also requires us to improve the efficiency and ergonomics of Coq. In order
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to feed this interdisciplinary activity with new motivating problems, we additionally pursue a research
activity oriented towards experimental mathematics in application domains that involve special functions.
We expect these applications to pose new algorithmic challenges to computer algebra, which in turn will
deserve a formal-certification effort. Finally, DDMF is the motivation and the showcase of our progress
on the certification of these computations. While striving to provide a formal guarantee of the correctness
of the information it displays, we remain keen on enriching its mathematical content by developing new
computer-algebra algorithms.

2.6 Computer algebra certified by the Coq system

Our formalization effort consists in organizing a cooperation between a computer-algebra system and a
proof assistant. The computer-algebra system is used to produce efficiently algebraic data, which are
later processed by the proof assistant. The success of this cooperation relies on the design of appropriate
libraries of formalized mathematics, including certified implementations of certain computer-algebra
algorithms. On the other side, we expect that scrutinizing the implementation and the output of computer-
algebra algorithms will shed a new light on their semantics and on their correctness proofs, and help
clarifying their documentation.

2.6.1 Libraries of formalized mathematics

The appropriate framework for the study of efficient algorithms for special functions is algebraic. Repre-
senting algebraic theories as Coq formal libraries takes benefit from the methodology emerging from the
success of ambitious projects like the formal proof of a major classification result in finite-group theory
(the Odd Order Theorem) [58].

Yet, a number of the objects we need to formalize in the present context has never been investigated
using any interactive proof assistant, despite being considered as commonplaces in computer algebra. For
instance there is up to our knowledge no available formalization of the theory of non-commutative rings,
of the algorithmic theory of special-functions closures, or of the asymptotic study of special functions. We
expect our future formal libraries to prove broadly reusable in later formalizations of seemingly unrelated
theories.

2.6.2 Manipulation of large algebraic data in a proof assistant

Another peculiarity of the mathematical objects we are going to manipulate with the Coq system is their
size. In order to provide a formal guarantee on the data displayed by DDMF, two related axes of research
have to be pursued. First, efficient algorithms dealing with these large objects have to be programmed and
run in Coq. Recent evolutions of the Coq system to improve the efficiency of its internal computations [39,
42] make this objective reachable. Still, how to combine the aforementioned formalization methodology
with these cutting-edge evolutions of Coq remains one of the prospective aspects of our project. A
second need is to help users interactively manipulate large expressions occurring in their conjectures, an
objective for which little has been done so far. To address this need, we work on improving the ergonomics
of the system in two ways: first, ameliorating the reactivity of Coq in its interaction with the user; second,
designing and implementing extensions of its interface to ease our formalization activity. We expect the
outcome of these lines of research to be useful to a wider audience, interested in manipulating large
formulas on topics possibly unrelated to special functions.

2.6.3 Formal-proof-producing normalization algorithms

Our algorithm certifications inside Coq intend to simulate well-identified components of our Maple pack-
ages, possibly by reproducing them in Coq. It would however not have been judicious to re-implement
them inside Coq in a systematic way. Indeed for a number of its components, the output of the algorithm
is more easily checked than found, like for instance the solving of a linear system. Rather, we delegate
the discovery of the solutions to an external, untrusted oracle like Maple. Trusted computations inside
Coq then formally validate the correctness of the a priori untrusted output. More often than not, this
validation consists in implementing and executing normalization procedures inside Coq. A challenge
of this automation is to make sure they go to scale while remaining efficient, which requires a Coq
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version of non-trivial computer-algebra algorithms. A first, archetypal example we expect to work on is a
non-commutative generalization of the normalization procedure for elements of rings [64].

2.7 Better symbolic computations with special functions

Generally speaking, we design algorithms for manipulating special functions symbolically, whether
univariate or with parameters, and for extracting algorithmically any kind of algebraic and analytic
information from them, notably asymptotic properties. Beyond this, the heart of our research is con-
cerned with parametrised definite summations and integrations. These very expressive operations have
far-ranging applications, for instance, to the computation of integral transforms (Laplace, Fourier) or
to the solution of combinatorial problems expressed via integrals (coefficient extractions, diagonals).
The algorithms that we design for them need to really operate on the level of linear functional systems,
differential and of recurrence. In all cases, we strive to design our algorithms with the constant goal of
good theoretical complexity, and we observe that our algorithms are also fast in practice.

2.7.1 Special-function integration and summation

Our long-term goal is to design fast algorithms for a general method for special-function integration
(creative telescoping), and make them applicable to general special-function inputs. Still, our strategy is
to proceed with simpler, more specific classes first (rational functions, then algebraic functions, hyperex-
ponential functions, D-finite functions, non-D-finite functions; two variables, then many variables); as
well, we isolate analytic questions by first considering types of integration with a more purely algebraic
flavor (constant terms, algebraic residues, diagonals of combinatorics). In particular, we expect to extend
our recent approach [47] to more general classes (algebraic with nested radicals, for example): the idea
is to speed up calculations by making use of an analogue of Hermite reduction that avoids considering
certificates. Homologous problems for summation will be addressed as well.

2.7.2 Applications to experimental mathematics

As a consequence of our complexity-driven approach to algorithms design, the algorithms mentioned in
the previous paragraph are of good complexity. Therefore, they naturally help us deal with applications
that involve equations of high orders and large sizes.

With regard to combinatorics, we expect to advance the algorithmic classification of combinatorial
classes like walks and urns. Here, the goal is to determine if enumerative generating functions are
rational, algebraic, or D-finite, for example. Physical problems whose modelling involves special-function
integrals comprise the study of models of statistical mechanics, like the Ising model for ferro-magnetism,
or questions related to Hamiltonian systems.

Number theory is another promising domain of applications. Here, we attempt an experimental
approach to the automated certification of integrality of the coefficients of mirror maps for Calabi–Yau
manifolds. This could also involve the discovery of new Calabi–Yau operators and the certification of
the existing ones. We also plan to algorithmically discover and certify new recurrences yielding good
approximants needed in irrationality proofs.

It is to be noted that in all of these application domains, we would so far use general algorithms, as
was done in earlier works of ours [46, 50, 48]. To push the scale of applications further, we plan to consider
in each case the specifics of the application domain to tailor our algorithms.

2.8 Interactive and certified mathematical web sites

In continuation of our past project of an encyclopedia, we ambition to both enrich and certify the formulas
about the special functions that we provide online. For each function, our website shows its essential
properties and the mathematical objects attached to it, which are often infinite in nature (numerical
evaluations, asymptotic expansions). An interactive presentation has the advantage of allowing for
adaption to the user’s needs. More advanced content will broaden the encyclopedia:

• the algorithmic discussion of equations with parameters, leading to certified automatic case
analysis based on arithmetic properties of the parameters;

http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
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• lists of summation and integral formulas involving special functions, including validity conditions
on the parameters;

• guaranteed large-precision numerical evaluations.

3 Research program

3.1 Studying special functions by computer algebra

Computer algebra manipulates symbolic representations of exact mathematical objects in a computer, in
order to perform computations and operations like simplifying expressions and solving equations for
“closed-form expressions”. The manipulations are often fundamentally of algebraic nature, even when
the ultimate goal is analytic. The issue of efficiency is a particular one in computer algebra, owing to the
extreme swell of the intermediate values during calculations.

Our view on the domain is that research on the algorithmic manipulation of special functions is
anchored between two paradigms:

• adopting linear differential equations as the right data structure for special functions,

• designing efficient algorithms in a complexity-driven way.

It aims at four kinds of algorithmic goals:

• algorithms combining functions,

• functional equations solving,

• multi-precision numerical evaluations,

• guessing heuristics.

This interacts with three domains of research:

• computer algebra, meant as the search for quasi-optimal algorithms for exact algebraic objects,

• symbolic analysis/algebraic analysis;

• experimental mathematics (combinatorics, mathematical physics, . . . ).

This view is made explicit in the present section.

3.2 Equations as a data structure

Numerous special functions satisfy linear differential and/or recurrence equations. Under a mild technical
condition, the existence of such equations induces a finiteness property that makes the main properties
of the functions decidable. We thus speak of D-finite functions. For example, 60 % of the chapters in the
handbook [38] describe D-finite functions. In addition, the class is closed under a rich set of algebraic
operations. This makes linear functional equations just the right data structure to encode and manipulate
special functions. The power of this representation was observed in the early 1990s [90], leading to
the design of many algorithms in computer algebra. Both on the theoretical and algorithmic sides, the
study of D-finite functions shares much with neighbouring mathematical domains: differential algebra,
D-module theory, differential Galois theory, as well as their counterparts for recurrence equations.

3.3 Algorithms combining functions

Differential/recurrence equations that define special functions can be recombined [90] to define: addi-
tions and products of special functions; compositions of special functions; integrals and sums involving
special functions. Zeilberger’s fast algorithm for obtaining recurrences satisfied by parametrised binomial
sums was developed in the early 1990s already [92]. It is the basis of all modern definite summation and
integration algorithms. The theory was made fully rigorous and algorithmic in later works, mostly by a
group in RISC (Linz, Austria) and by members of the team [79, 87, 53, 51, 52, 72]. The past ÉPI Algorithms
contributed several implementations (gfun [82], Mgfun [53]).
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3.4 Solving functional equations

Encoding special functions as defining linear functional equations postpones some of the difficulty of
the problems to a delayed solving of equations. But at the same time, solving (for special classes of
functions) is a sub-task of many algorithms on special functions, especially so when solving in terms
of polynomial or rational functions. A lot of work has been done in this direction in the 1990s; more
intensively since the 2000s, solving differential and recurrence equations in terms of special functions
has also been investigated.

3.5 Multi-precision numerical evaluation

A major conceptual and algorithmic difference exists for numerical calculations between data structures
that fit on a machine word and data structures of arbitrary length, that is, multi-precision arithmetic.
When multi-precision floating-point numbers became available, early works on the evaluation of special
functions were just promising that “most” digits in the output were correct, and performed by heuristically
increasing precision during intermediate calculations, without intended rigour. The original theory has
evolved in a twofold way since the 1990s: by making computable all constants hidden in asymptotic
approximations, it became possible to guarantee a prescribed absolute precision; by employing state-of-
the-art algorithms on polynomials, matrices, etc, it became possible to have evaluation algorithms in a
time complexity that is linear in the output size, with a constant that is not more than a few units. On the
implementation side, several original works exist, one of which (NumGfun [77]) is used in our DDMF.

3.6 Guessing heuristics

“Differential approximation”, or “Guessing”, is an operation to get an ODE likely to be satisfied by a given
approximate series expansion of an unknown function. This has been used at least since the 1970s and
is a key stone in spectacular applications in experimental mathematics [50]. All this is based on subtle
algorithms for Hermite–Padé approximants [40]. Moreover, guessing can at times be complemented by
proven quantitative results that turn the heuristics into an algorithm [49]. This is a promising algorithmic
approach that deserves more attention than it has received so far.

3.7 Complexity-driven design of algorithms

The main concern of computer algebra has long been to prove the feasibility of a given problem, that
is, to show the existence of an algorithmic solution for it. However, with the advent of faster and faster
computers, complexity results have ceased to be of theoretical interest only. Nowadays, a large track
of works in computer algebra is interested in developing fast algorithms, with time complexity as close
as possible to linear in their output size. After most of the more pervasive objects like integers, polyno-
mials, and matrices have been endowed with fast algorithms for the main operations on them [59], the
community, including ourselves, started to turn its attention to differential and recurrence objects in the
2000s. The subject is still not as developed as in the commutative case, and a major challenge remains to
understand the combinatorics behind summation and integration. On the methodological side, several
paradigms occur repeatedly in fast algorithms: “divide and conquer” to balance calculations, “evaluation
and interpolation” to avoid intermediate swell of data, etc. [45].

3.8 Encyclopedias

Handbooks collecting mathematical properties aim at serving as reference, therefore trusted, documents.
The decision of several authors or maintainers of such knowledge bases to move from paper books [38,
78, 83] to websites and wikis, for instance for special functions or for integer sequences, allows for a more
collaborative effort in proof reading. Another step toward further confidence is to manage to generate the
content of an encyclopedia by computer-algebra programs, as is the case with the Wolfram Functions
Site or DDMF . Yet, due to the lingering doubts about computer-algebra systems, some encyclopedias
propose both cross-checking by different systems and handwritten companion paper proofs of their
content. As of today, there is no encyclopedia certified with formal proofs.

http://dlmf.nist.gov/
http://oeis.org/
http://functions.wolfram.com/
http://functions.wolfram.com/
http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
http://129.81.170.14/~vhm/Table.html
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3.9 Computer algebra and symbolic logic

Several attempts have been made in order to extend existing computer-algebra systems with sym-
bolic manipulations of logical formulas. Yet, these works are more about extending the expressivity
of computer-algebra systems than about improving the standards of correctness and semantics of the
systems. Conversely, several projects have addressed the communication of a proof system with a
computer-algebra system, resulting in an increased automation available in the proof system, to the price
of the uncertainty of the computations performed by this oracle.

3.10 Certifying systems for computer algebra

More ambitious projects have tried to design a new computer-algebra system providing an environment
where the user could both program efficiently and elaborate formal and machine-checked proofs of
correctness, by calling a general-purpose proof assistant like the Coq system. This approach requires a
huge manpower and a daunting effort in order to re-implement a complete computer-algebra system, as
well as the libraries of formal mathematics required by such formal proofs.

3.11 Semantics for computer algebra

The move to machine-checked proofs of the mathematical correctness of the output of computer-alge-
bra implementations demands a prior clarification about the often implicit assumptions on which the
presumably correctly implemented algorithms rely. Interestingly, this preliminary work, which could be
considered as independent from a formal certification project, is seldom precise or even available in the
literature.

3.12 Formal proofs for symbolic components of computer-algebra systems

A number of authors have investigated ways to organize the communication of a chosen computer-
algebra system with a chosen proof assistant in order to certify specific components of the computer-
algebra systems, experimenting various combinations of systems and various formats for mathematical
exchanges. Another line of research consists in the implementation and certification of computer-algebra
algorithms inside the logic [86, 64, 73] or as a proof-automation strategy. Normalization algorithms are
of special interest when they allow to check results possibly obtained by an external computer-algebra
oracle [56]. A discussion about the systematic separation of the search for a solution and the checking of
the solution is already clearly outlined in [70].

3.13 Formal proofs for numerical components of computer-algebra systems

Significant progress has been made in the certification of numerical applications by formal proofs.
Libraries formalizing and implementing floating-point arithmetic as well as large numbers and arbitrary-
precision arithmetic are available. These libraries are used to certify floating-point programs, implemen-
tations of mathematical functions and for applications like hybrid systems.

3.14 Machine-checked proofs of formalized mathematics

To be checked by a machine, a proof needs to be expressed in a constrained, relatively simple formal
language. Proof assistants provide facilities to write proofs in such languages. But, as merely writing, even
in a formal language, does not constitute a formal proof just per se, proof assistants also provide a proof
checker: a small and well-understood piece of software in charge of verifying the correctness of arbitrarily
large proofs. The gap between the low-level formal language a machine can check and the sophistication
of an average page of mathematics is conspicuous and unavoidable. Proof assistants try to bridge this gap
by offering facilities, like notations or automation, to support convenient formalization methodologies.
Indeed, many aspects, from the logical foundation to the user interface, play an important role in the
feasibility of formalized mathematics inside a proof assistant.
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3.15 Logical foundations and proof assistants

While many logical foundations for mathematics have been proposed, studied, and implemented, type
theory is the one that has been more successfully employed to formalize mathematics, to the notable
exception of the Mizar system [75], which is based on set theory. In particular, the calculus of construction
(CoC) [54] and its extension with inductive types (CIC) [55], have been studied for more than 20 years and
been implemented by several independent tools (like Lego, Matita, and Agda). Its reference implemen-
tation, Coq [84], has been used for several large-scale formalizations projects (formal certification of a
compiler back-end; four-color theorem). Improving the type theory underlying the Coq system remains
an active area of research. Other systems based on different type theories do exist and, whilst being more
oriented toward software verification, have been also used to verify results of mainstream mathematics
(prime-number theorem; Kepler conjecture).

3.16 Computations in formal proofs

The most distinguishing feature of CoC is that computation is promoted to the status of rigorous log-
ical argument. Moreover, in its extension CIC, we can recognize the key ingredients of a functional
programming language like inductive types, pattern matching, and recursive functions. Indeed, one
can program effectively inside tools based on CIC like Coq. This possibility has paved the way to many
effective formalization techniques that were essential to the most impressive formalizations made in CIC.

Another milestone in the promotion of the computations-as-proofs feature of Coq has been the
integration of compilation techniques in the system to speed up evaluation. Coq can now run realis-
tic programs in the logic, and hence easily incorporates calculations into proofs that demand heavy
computational steps.

Because of their different choice for the underlying logic, other proof assistants have to simulate
computations outside the formal system, and indeed fewer attempts to formalize mathematical proofs
involving heavy calculations have been made in these tools. The only notable exception, which was
finished in 2014, the Kepler conjecture, required a significant work to optimize the rewriting engine that
simulates evaluation in Isabelle/HOL.

3.17 Large-scale computations for proofs inside the Coq system

Programs run and proved correct inside the logic are especially useful for the conception of automated
decision procedures. To this end, inductive types are used as an internal language for the description of
mathematical objects by their syntax, thus enabling programs to reason and compute by case analysis
and recursion on symbolic expressions.

The output of complex and optimized programs external to the proof assistant can also be stamped
with a formal proof of correctness when their result is easier to check than to find. In that case one can
benefit from their efficiency without compromising the level of confidence on their output at the price of
writing and certify a checker inside the logic. This approach, which has been successfully used in various
contexts, is very relevant to the present research project.

3.18 Relevant contributions from the Mathematical Component libraries

Representing abstract algebra in a proof assistant has been studied for long. The libraries developed by
the MathComp project for the proof of the Odd Order Theorem provide a rather comprehensive hierarchy
of structures; however, they originally feature a large number of instances of structures that they need to
organize. On the methodological side, this hierarchy is an incarnation of an original work [58] based on
various mechanisms, primarily type inference, typically employed in the area of programming languages.
A large amount of information that is implicit in handwritten proofs, and that must become explicit at
formalization time, can be systematically recovered following this methodology.

Small-scale reflection [61] is another methodology promoted by the MathComp project. Its ultimate
goal is to ease formal proofs by systematically dealing with as many bureaucratic steps as possible, by
automated computation. For instance, as opposed to the style advocated by Coq’s standard library,
decidable predicates are systematically represented using computable boolean functions: comparison
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on integers is expressed as program, and to state that a ≤ b one compares the output of this program run
on a and b with tr ue. In many cases, for example when a and b are values, one can prove or disprove the
inequality by pure computation.

The MathComp library was consistently designed after uniform principles of software engineering.
These principles range from simple ones, like naming conventions, to more advanced ones, like generic
programming, resulting in a robust and reusable collection of formal mathematical components. This
large body of formalized mathematics covers a broad panel of algebraic theories, including of course
advanced topics of finite group theory, but also linear algebra, commutative algebra, Galois theory, and
representation theory. We refer the interested reader to the online documentation of these libraries [85],
which represent about 150,000 lines of code and include roughly 4,000 definitions and 13,000 theorems.

Topics not addressed by these libraries and that might be relevant to the present project include
real analysis and differential equations. The most advanced work of formalization on these domains is
available in the HOL-Light system [66, 68, 69], although some existing developments of interest [43, 76]
are also available for Coq. Another aspect of the MathComp libraries that needs improvement, owing to
the size of the data we manipulate, is the connection with efficient data structures and implementations,
which only starts to be explored.

3.19 User interaction with the proof assistant

The user of a proof assistant describes the proof he wants to formalize in the system using a textual
language. Depending on the peculiarities of the formal system and the applicative domain, different
proof languages have been developed. Some proof assistants promote the use of a declarative language,
when the Coq and Matita systems are more oriented toward a procedural style.

The development of the large, consistent body of MathComp libraries has prompted the need to
design an alternative and coherent language extension for the Coq proof assistant [63, 62], enforcing the
robustness of proof scripts to the numerous changes induced by code refactoring and enhancing the
support for the methodology of small-scale reflection.

The development of large libraries is quite a novelty for the Coq system. In particular any long-term
development process requires the iteration of many refactoring steps and very little support is provided
by most proof assistants, with the notable exception of Mizar [81]. For the Coq system, this is an active
area of research.

4 Application domains

4.1 Computer Algebra in Mathematics

Our expertise in computer algebra and complexity-driven design of algebraic algorithms has applications
in various domains, including:

• combinatorics, especially the study of combinatorial walks,

• theoretical computer science, like by the study of automatic sequences,

• number theory, by the analysis of the nature of so-called periods.

5 Highlights of the year

5.1 Refounding the team: towards computer algebra, experimental mathematics,
and interactions

The team has worked on its renewal and has presented a project for a new team, MATHEXP. This new
team will develop and implement symbolic and semi-numerical computational methods to deal with
special functions and numbers in experimental mathematics.
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5.2 ERC project: 10,000 DIGITS

Lairez’s ERC proposal has been retained for funding with a grant of roughly 1.4 million Euro. The project
will focus on the foundations of transcendental methods in numerical nonlinear algebra.

5.3 David P. Robbins Prize

Alin Bostan, of the team, together with Irina Kurkova and Kilian Raschel, will receive the 2022 AMS
David P. Robbins Prize for their paper “A human proof of Gessel’s lattice path conjecture,” published
in Transactions of the American Mathematical Society in 2017. The paper proves highly nontrivial
enumeration results on a family of lattice paths known as Gessel walks.

5.4 Promotion

Alin Bostan was nominated “Directeur de Recherche” in 2021.

6 New results

6.1 Algebraic algorithms on fundamental objects

6.1.1 The art of algorithmic guessing in gfun

The technique of guessing can be very fruitful when dealing with sequences which arise in practice. This
holds true especially when guessing is performed algorithmically and efficiently. The ideal tool for it exists
as a package named gfun in the software Maple. In this submitted paper [36] Sergey Yurkevich explores
and explains some of gfun’s possibilities and illustrates them on two examples from recent mathematical
research by him and his collaborators.

6.1.2 A Sage package for the symbolic-numeric factorization of linear differential operators

Alexandre Goyer presented a SageMath implementation of the symbolic-numeric algorithm introduced
by van der Hoeven in 2007 for factoring linear differential operators whose coefficients are rational
functions [21].

6.1.3 A simple and fast algorithm for computing the N -th term of a linearly recurrent sequence

In [24] Alin Bostan and Ryuhei Mori (Tokyo Institute of Technology, Japan) designed a simple and fast
algorithm for computing the N -th term of a given linearly recurrent sequence. The new algorithm
uses O(M(d) log N ) arithmetic operations, where d is the order of the recurrence, and M(d) denotes
the number of arithmetic operations for computing the product of two polynomials of degree d . The
state-of-the-art algorithm, due to Fiduccia (1985), had the same arithmetic complexity up to a constant
factor. The new algorithm is simpler, faster and obtained by a totally different method. They also discuss
several algorithmic applications, notably to polynomial modular exponentiation (P N mod Q), on which
many other useful algorithms rely, either in computer algebra (e.g., polynomial factoring over finite fields),
or in algorithmic number theory (e.g., primality tests) or in effective algebraic geometry (e.g., counting
points on curves over finite fields).

6.1.4 Fast computation of the N -th term of a q-holonomic sequence and applications

In 1977, Strassen invented a famous baby-step/giant-step algorithm that computes the factorial N ! in
arithmetic complexity quasi-linear in

p
N . In 1988, the Chudnovsky brothers generalized Strassen’s

algorithm to the computation of the N -th term of any holonomic sequence in essentially the same
arithmetic complexity. In [17], Alin Bostan together with his PhD student Sergey Yurkevich designed
q-analogues of these algorithms. They first extend Strassen’s algorithm to the computation of the q-
factorial of N , then Chudnovskys’ algorithm to the computation of the N -th term of any q-holonomic
sequence. Both algorithms work in arithmetic complexity quasi-linear in

p
N ; surprisingly, they are

http://www.ams.org/prizes-awards/paview.cgi?parent_id=16
http://www.ams.org/prizes-awards/paview.cgi?parent_id=16


Project SPECFUN 13

simpler than their analogues in the holonomic case. They provide a detailed cost analysis, in both
arithmetic and bit complexity models. Moreover, they describe various algorithmic consequences,
including the acceleration of polynomial and rational solving of linear q-differential equations, and the
fast evaluation of large classes of polynomials, including a family recently considered by Nogneng and
Schost.

6.1.5 Improved algorithms for left factorial residues

In [11], Alin Bostan together with Vladica Andrejić (University of Belgrade, Serbia) and Milos Tatarevic
(CoinList, Alameda, CA) presented improved algorithms for computing the left factorial residues !p =
0!+1!+·· ·+ (p −1)! mod p. They used these algorithms for the calculation of the residues !p mod p, for
all primes p up to 240. Their results confirm that Kurepa’s left factorial conjecture is still an open problem,
as they show that there are no odd primes p < 240 such that p divides !p. Additionally, they confirmed
that there are no socialist primes p with 5 < p < 240.

6.1.6 Explicit degree bounds for right factors of linear differential operators

If a linear differential operator with rational function coefficients is reducible, its factors may have
coefficients with numerators and denominators of very high degree. When the base field is C, Alin Bostan
together with Bruno Salvy (Inria and ENS Lyon) and Tanguy Rivoal (CNRS and U. Grenoble) gave in [15] a
completely explicit bound for the degrees of the monic right factors in terms of the degree and the order
of the original operator, as well as the largest modulus of the local exponents at all its singularities. As
a consequence, if a differential operator L has rational function coefficients over a number field, they
obtain degree bounds for its monic right factors in terms of the degree, the order and the height of L, and
of the degree of the number field.

6.2 Polynomial systems and geometry

6.2.1 Gröbner bases and critical values: the asymptotic combinatorics of determinantal systems

In [30] Alin Bostan, together with co-authors Jérémy Berthomieu, Andrew Ferguson and Mohab Safey El
Din (all from Sorbonne Université), studied determinantal polynomial systems. These are polynomial
systems involving maximal minors of some given matrix. An important situation where these arise is the
computation of the critical values of a polynomial map restricted to an algebraic set. This leads directly
to a strategy for, among other problems, polynomial optimisation.

Computing Gröbner bases is a classical method for solving polynomial systems in general. For
practical computations, this consists of two main stages. First, a Gröbner basis is computed with respect
to a DRL (degree reverse lexicographic) ordering. Then, a change of ordering algorithm, such as Sparse-
FGLM, designed by Faugère and Mou, is used to find a Gröbner basis of the same system but with respect
to a lexicographic ordering. The complexity of this latter step, in terms of the number of arithmetic
operations in the ground field, is O(mD2), where D is the degree of the ideal generated by the input and
m is the number of non-trivial columns of a certain D ×D matrix.

While asymptotic estimates are known for m in the case of generic polynomial systems, thus far, the
complexity of Sparse-FGLM was unknown for the class of determinantal systems.

By assuming Fröberg’s conjecture, a classical conjecture in commutative algebra, and thus ensuring
that the Hilbert series of generic determinantal ideals have the necessary structure, the authors expand
the work of Moreno-Socías by detailing the structure of the DRL staircase in the determinantal setting.
Then, they study the asymptotics of the quantity m by relating it to the coefficients of these Hilbert series.
Consequently, they arrive at a new bound on the complexity of the Sparse-FGLM algorithm for generic
determinantal systems and, in particular, for generic critical point systems.

The ideal is considered inside the polynomial ring K[x1, . . . , xn], where K is some infinite field, gener-
ated by p generic polynomials of degree d and the maximal minors of a p × (n −1) polynomial matrix
with generic entries of degree d −1. Then, in this setting, for the case d = 2 and for n À p the paper [30]
establishes an exact formula for m in terms of n and p. Moreover, for d ≥ 3, it gives a tight asymptotic
formula, as n →∞, for m in terms of n, p and d .
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6.2.2 Computing the dimension of real algebraic sets

In [25], Pierre Lairez and Mohab Safey El Din (Sorbonne Université) designed a new algorithm for
computing the dimension in a real-algebraic setting. Let V be the set of real common solutions to
F = ( f1, . . . , fs ) in R[x1, . . . , xn] and D be the maximum total degree of the fi ’s. The authors design an
algorithm which on input F computes the dimension of V . Letting L be the evaluation complexity of F
and s = 1, it runs using O∼(

LDn(d+3)+1
)

arithmetic operations in Q and at most Dn(d+1) isolations of real
roots of polynomials of degree at most Dn .

Their algorithm depends on the real geometry of V ; its practical behavior is more governed by the
number of topology changes in the fibers of some well-chosen maps. Hence, the above worst-case
bounds are rarely reached in practice, the factor Dnd being in general much lower on practical examples.
They report on an implementation showing its ability to solve problems which were out of reach of the
state-of-the-art implementations.

6.2.3 An algorithmic approach to Rupert’s problem

A polyhedron P ⊆ R3 has Rupert’s property if a hole can be cut into it, such that a copy of P can pass
through this hole. There are several works investigating this property for some specific polyhedra: for
example, it is known that all 5 Platonic and 9 out of the 13 Archimedean solids admit Rupert’s property. A
commonly believed conjecture states that every convex polyhedron is Rupert. By translating the problem
to the decidability question of emptiness of semi-algebraic sets, Jakob Steininger and Sergey Yurkevich
prove in [35] that Rupert’s problem is algorithmically decidable for polyhedra with algebraic coordinates.
They also design a probabilistic algorithm which can efficiently prove that a given polyhedron is Rupert.
Using this algorithm the authors not only confirm this property for the known Platonic and Archimedean
solids, but also prove it for one of the remaining Archimedean polyhedra and many others. Moreover,
almost all known Nieuwland numbers are significantly improved. Finally, Steininger and Yurkevich
conjecture, based on statistical evidence, that the Rhombicosidodecahedron is in fact not Rupert.

6.3 Applications to special functions and number theory

6.3.1 A hypergeometric proof that Iso is bijective

A short and elementary proof of the main technical result of the recent article “On the uniqueness of
Clifford torus with prescribed isoperimetric ratio” [89] by Thomas Yu and Jingmin Chen has been found
by Alin Bostan and Sergey Yurkevich in [16]. The key of the new proof is an explicit expression of the
central function (Iso, proved to be bijective) as a quotient of Gaussian hypergeometric functions.

6.3.2 On an integral identity

In [14], Alin Bostan together with Fernando Chamizo (Universidad Autónoma de Madrid and ICMAT,
Spain) and Mikael Persson Sundqvist (Lund University, Sweden) gave three elementary proofs of a nice
equality of definite integrals, recently proven by Ekhad, Zeilberger and Zudilin. The equality arises in the
theory of bivariate hypergeometric functions, and has connections with irrationality proofs in number
theory. They furthermore provide a generalization together with an equally elementary proof and discuss
some consequences.

6.3.3 A short proof of a non-vanishing result by Conca, Krattenthaler and Watanabe

In their 2009 paper Regular sequences of symmetric polynomials, Aldo Conca, Christian Krattenthaler
and Junzo Watanabe needed to prove, as an intermediate result, the fact that for any h ≥ 1, the rational
number

bh/3c∑
b=0

(−1)h−b

h −b

(
h −b

2b

)(
2

3

)b

is non-zero, except for h = 3. The proof in their paper (Appendix, pp. 190–199) performs a long and quite
intricate 3-adic analysis. In [12], Alin Bostan proposes a shorter and elementary proof.
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6.4 Applications to combinatorics

6.4.1 Counting walks with large steps in an orthant

In the past fifteen years, the enumeration of lattice walks with steps taken in a prescribed set and
confined to a given cone, especially the first quadrant of the plane, has been intensely studied. As a
result, the generating functions of quadrant walks are now well-understood, provided the allowed steps
are small. In particular, having small steps is crucial for the definition of a certain group of bi-rational
transformations of the plane. It has been proved that this group is finite if and only if the corresponding
generating function is D-finite. This group is also the key to the uniform solution of 19 of the 23 small step
models possessing a finite group. In contrast, almost nothing was known for walks with arbitrary steps.
In [13], Alin Bostan together with Mireille Bousquet-Mélou (CNRS, Bordeaux) and Stephen Melczer (U.
Pennsylvania, Philadelphia, USA), extended the definition of the group, or rather of the associated orbit, to
this general case, and generalized the above uniform solution of small step models. When this approach
works, it invariably yields a D-finite generating function. They applied it to many quadrant problems,
including some infinite families. After developing the general theory, the authors of [13] considered
the 13 110 two-dimensional models with steps in {−2,−1,0,1}2 having at least one −2 coordinate. They
proved that only 240 of them have a finite orbit, and solve 231 of them with their method. The 9 remaining
models are the counterparts of the 4 models of the small step case that resist the uniform solution method
(and which are known to have an algebraic generating function). They conjecture D-finiteness for their
generating functions (but only two of them are likely to be algebraic!), and proved non-D-finiteness for
the 12 870 models with an infinite orbit, except for 16 of them.

6.4.2 The generating function of Kreweras walks with interacting boundaries is not algebraic

Beaton, Owczarek and Xu (2019) studied generating functions of Kreweras walks and of reverse Kreweras
walks in the quarter plane, with interacting boundaries. They proved that for the reverse Kreweras step
set, the generating function is always algebraic, and for the Kreweras step set, the generating function
is always D-finite. However, apart from the particular case where the interactions are symmetric in x
and y , they left open the question of whether the latter one is algebraic. Using computer algebra tools,
Alin Bostan, together with Manuel Kauers and Thibaut Verron (University, Linz, Austria) confirmed [23]
the previous intuition that the generating function of Kreweras walks is not algebraic, apart from the
particular case already identified.

6.4.3 Random walks in orthants and lattice path combinatorics

In the second edition of the book [57], original methods were proposed to determine the invariant
measure of random walks in the quarter plane with small jumps (size 1), the general solution being
obtained via reduction to boundary value problems. Among other things, an important quantity, the
so-called group of the walk, allows to deduce theoretical features about the nature of the solutions. In
particular, when the order of the group is finite and the underlying algebraic curve is of genus 0 or 1,
necessary and sufficient conditions have been given for the solution to be rational, algebraic or D-finite
(i.e. solution of a linear differential equation). In this framework, a number of difficult open problems
related to lattice path combinatorics are currently being explored boundary Alin Bostan, Frédéric Chyzak,
and Guy Fayolle, both from theoretical and computer algebra points of view: concrete computation of the
criteria, utilization of differential Galois theory, genus greater than 1 (i.e., when some jumps are of size
≥ 2), etc. This relates simple product-form stochastic networks (so-called Jackson networks) and explicit
solutions of functional equations for counting lattice walks. Some partial extensions of [33] are under
development.

6.4.4 On some combinatorial sequences associated to invariant theory

In [31], Alin Bostan together with Jordan Tirrell (Washington College, USA), Bruce W. Westbury (U. Texas
at Dallas, USA) and Yi Zhang (Xi’an Jiaotong-Liverpool University, Suzhou, China) study the enumerative
and analytic properties of some sequences constructed using tensor invariant theory. The first family,
containing the so-called octant sequences, is constructed from the exceptional Lie group G2. The second
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family, containing the so-called quadrant sequences, is constructed from the special linear group SL(3).
All sequences are defined as the dimension of the subspace of invariant tensors in the tensor powers of
the corresponding representation. corresponding sequences are related by binomial transforms. The
authors first give combinatorial interpretations for the first octant sequence, T3, based on interpretations
of the sequences in the first family as lattice walks in the plane. They then show that the second octant
sequence E3 is the binomial transform of T3; this result provides an unexpected connection between the
invariant theory of G2 and the combinatorics of set partitions. A third result is a proof (actually three
independent proofs) of a recurrence satisfied by T3 that was conjectured by Mihailovs in the early 2000s.
Similar results are obtained for the sequences of the quadrant sequences. These sequences also have
interpretations as enumerating two-dimensional lattice walks. They are all P-recursive, and recurrence
relations are proved for them. In all cases the associated differential operators are of third order and
have the remarkable property that they can be solved to give closed formulae for the ordinary generating
functions in terms of classical Gaussian hypergeometric functions. Moreover, it is shown that the octant
sequences and the quadrant sequences are related by the branching rules for the inclusion of SL(3) in G2.

6.4.5 Computer algebra in the service of enumerative combinatorics

Alin Bostan gave a plenary invited talk at the conference ISSAC’21. On this occasion, he wrote the
overview article [22] which can be seen as a condensed version of his Habilitation thesis defended in
2017. The main topic is the use of computer algebra tools to explore and to solve a number of difficult
questions in enumerative combinatorics, notably related to the classification of lattice walks. Alin Bostan
gives an overview of recent results on structural properties (e.g., algebraicity versus transcendence) and
on explicit formulas for generating functions of walks with small steps in the quarter plane. In doing
so, he emphasizes the algorithmic nature of the methodology, especially two important paradigms:
“guess-and-prove” and “creative telescoping”.

6.5 Applications to probability

6.5.1 Martin boundary of killed random walks on isoradial graphs

Alin Bostan contributed to an article by C. Boutillier (Sorbonne Université) and K. Raschel (CNRS, Uni-
versité de Tours) [19], devoted to the study of random walks on isoradial graphs. Contrary to the lattice
case, isoradial graphs are not translation invariant, do not admit any group structure and are spatially
non-homogeneous. However, Boutillier and Raschel have been able to obtain analogues of a celebrated
result by Ney and Spitzer (1966) on the so-called Martin kernel (ratio of Green functions started at different
points). Alin Bostan provided in the Appendix two different proofs of the fact that some algebraic power
series arising in this context have non-negative coefficients.

6.5.2 Genus and classification of random walks in the quarter plane

In collaboration with R. Iasnogorodski (SPCPA, Saint-Petersburg), Guy Fayolle analyzes the kernel K (x, y, t )
of the basic functional equation associated with the trivariate counting generating function (CGF) of
walks in the quarter plane. In their paper [20], taking t ∈]0,1[, they provide the conditions on the step set
{pi , j } to decide whether the walks are singular or regular, as defined in [57, Section 2.3]. These conditions
are independent of t ∈]0,1[ and given in terms of step set configurations. They also find the configurations
for the kernel to be of genus 0, knowing that the genus is always ≤ 1. All these conditions are very similar
to the case t = 1 considered in [57]. Their results extend an earlier work, which considers only very special
situations, namely when t ∈]0,1[ is a transcendental number over the field Q(pi , j ).

6.5.3 Reflected Brownian motion in a nonconvex cone

In an ongoing work in collaboration with S. Franceschi (LMO, Paris-Saclay University) and K. Raschel
(CNRS, Tours University), Guy Fayolle states a system of functional equations satisfied by the Laplace
transform of the stationary distribution of a reflected Brownian motion (SRBM) in a two-dimensional
non-convex cone. While the case of convex cones is now reasonably well studied, the framework of
non-convex cones turns out to be more challenging, as shown by similar research carried out in a discrete

https://issac-conference.org/2021/
https://arxiv.org/abs/2004.01035
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setting. They show in particular that the problem can be reduced to a boundary value problem of Rieman–
Hilbert–Carleman type on an hyperbola, for a two-dimensional vector of meromorphic functions. This
seems to be a quite original result.

6.5.4 Persistence probabilities and Mallows-Riordan polynomials

Mallows-Riordan polynomials, sometimes also called inversion polynomials, form a family of polynomials
with integer coefficients appearing in many counting problems in enumerative combinatorics. They
are also connected with the cumulant generating function of the classical log-normal distribution in
probability theory. In [29] Alin Bostan, together with his probabilist co-authors Gerold Alsmeyer (U.
Münster), Kilian Raschel (CNRS, U. Angers) and Thomas Simon (U. Lille), provide a probabilistic interpre-
tation of the Mallows-Riordan polynomials that is not only quite different from the classical connection
with the log-normal distribution, but in fact also rather unexpected. More precisely, they establish exact
formulae in terms of Mallows-Riordan polynomials for the persistence probabilities of a class of order-one
autoregressive processes with symmetric uniform innovations. These exact formulae then lead to precise
asymptotics of the corresponding persistence probabilities. The connection of the Mallows-Riordan
polynomials with the volumes of certain polytopes is also discussed. Two further results provide general
factorizations of AR(1) models with continuous symmetric innovations, one for negative and one for
positive drift. The second factorization extends a classical universal formula of Sparre Andersen for
symmetric random walks.

6.6 Diagonals

6.6.1 On the q-analogue of Pólya’s Theorem

Bostan and Yurkevich answer in [32] a question posed by Michael Aissen in 1979 about the q-analogue
of a classical theorem of George Pólya (1922) on the algebraicity of (generalized) diagonals of bivariate
rational power series. In particular, they prove that the answer to Aissen’s question, in which he considers
q as a variable, is negative in general. Moreover, they show that the answer is positive if and only if q is a
root of unity.

6.6.2 Diagonal representation of algebraic power series: a glimpse behind the scenes

There are many viewpoints on algebraic power series, ranging from the abstract ring-theoretic notion
of Henselization to the very explicit perspective as diagonals of certain rational functions. Denef and
Lipshitz proved in 1987 that any algebraic power series in n variables can be written as a diagonal of
a rational power series in one variable more. Their proof uses a lot of involved theory and machinery
which remains hidden to the reader in the original article. In the work [28], which is based on his master’s
thesis, Sergey Yurkevich explained these tools by motivating while defining them and reproving most of
their interesting parts. Moreover, he provided a new significant improvement on the Artin-Mazur lemma,
proving the existence of a 2-dimensional code of algebraic power series.

6.6.3 On a class of hypergeometric diagonals

In [18], Alin Bostan together with his PhD student Sergey Yurkevich proved that the diagonal of any finite
product of algebraic functions of the form

(1−x1 − . . .−xn)R , R ∈Q,

is a generalized hypergeometric function, and they provided explicit description of its parameters. The
particular case (1−x − y)R /(1−x − y − z) corresponds to the main identity of Abdelaziz, Koutschan and
Maillard in [37, §3.2]. The result in [18] is useful in both directions: on the one hand it shows that Christol’s
conjecture holds true for a large class of hypergeometric functions, on the other hand it allows for a
very explicit and general viewpoint on the diagonals of algebraic functions of the type above. Finally, in
contrast to [37], the new proof is completely elementary and does not require any algorithmic help.



18 Inria Annual Report 2021

6.7 Proceedings of a conference on our topics

6.7.1 Transcendence in Algebra, Combinatorics, Geometry and Number Theory

Alin Bostan together with Kilian Raschel (CNRS, U. Angers) served as editors of the book “Transcendence
in Algebra, Combinatorics, Geometry and Number Theory” [27], published by Springer in the collection
“Proceedings in Mathematics and Statistics”. This proceedings volume gathers together original articles
and survey works that originate from presentations given at the conference Transient Transcendence
in Transylvania, held in Bras, ov, Romania, from May 13th to 17th, 2019. The conference, organized by
Alin Bostan and Kilian Raschel, had gathered international experts from various fields of mathematics
and computer science, with diverse interests and viewpoints on transcendence. The covered topics
are related to algebraic and transcendental aspects of special functions and special numbers arising in
algebra, combinatorics, geometry and number theory. Besides contributions on key topics from invited
speakers, this volume also brings selected papers from attendees.

7 Partnerships and cooperations

7.1 International initiatives

7.1.1 Participation in other International Programs

PhD project of Yurkevich

Title: Integer sequences, algebraic series and differential operators.

Partner Institution(s): • University of Vienna, Austria.

Date/Duration: September 2020 – August 2023

Additionnal info/keywords: The PhD thesis project of Sergey Yurkevich is a cotutelle with the University
of Vienna (Austria). The supervisors are Alin Bostan on the French side and Herwig Hauser on the
Austrian side. The investigation topic covers on the one hand integer sequences naturally arising in
various scientific disciplines such as number theory, combinatorics and physics, and on the other
hand solutions to special kinds of differential equations.

7.2 European initiatives

7.2.1 Horizon Europe

• ERC Starting Grant. Pierre Lairez was awarded an ERC Starting Grant for his project “10000 DIGITS”.
The project will start in 2022.

7.3 National initiatives

7.3.1 ANR

• De rerum natura. This project, set up by the team, was accepted this year and will be funded
until 2023. It gathers over 20 experts from four fields: computer algebra; the Galois theories
of linear functional equations; number theory; combinatorics and probability. Our goal is to
obtain classification algorithms for number theory and combinatorics, particularly so for deciding
irrationality and transcendence. (Permanent members with pm listed: Bostan, Chyzak, Lairez.)

• ∂ifference. This project, led by Olivier Bournez (Lix), started in November 2020. Its objective
is to consider a novel approach in between the two worlds: discrete-oriented computations on
the one side and differential equations on the other side. We aims at providing new insights
on classical complexity theory, computability and logic through this prism and at introducing
new perspectives in algorithmic methods for differential equations solving and computer science
applications. (Permanent members with pm listed: Bostan, Chyzak.)

https://www.springer.com/series/10533
https://specfun.inria.fr/bostan/trans19/
https://specfun.inria.fr/bostan/trans19/
https://specfun.inria.fr/chyzak/DeRerumNatura/
http://www.lix.polytechnique.fr/~bournez/DIFFERENCE/i.php/Main/HomePage
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• Tremplin ERC. Pierre Lairez has been awarded a “tremplin” project by ANR. This will help him
prepare an ERC project submission “10000 Digits, Foundations of transcendental methods in
numerical algebraic geometry”.

7.4 Regional initiatives

• Alin Bostan submitted a PCRI-ANR proposal EAGLE – “Efficient Algorithms for Guessing, Summa-
tion, and InequaLitiEs”. This is a bilateral ANR/FWF project between 2 computer algebra teams
in France and 2 computer algebra teams in Austria. The Austrian co-leader is Manuel Kauers
from Univ. Linz. The goal is to work together on four axes: structured and multivariate guessing,
inequalities and D-finiteness, creative telescoping and applications in combinatorics, number
theory and theoretical physics. The requested funding is of 770,000 euros in total.

• Alin Bostan is co-leader of the Amadeus (Campus France) bilateral project “Integer Sequences
arising in Number Theory, Combinatorics and Physics” between France and Austria. The Austrian
co-leader is Herwig Hauser (U. Vienna, Austria).

8 Dissemination

8.1 Promoting scientific activities

8.1.1 Scientific events: organisation

General chair, scientific chair

• Frédéric Chyzak was General Chair of the International Symposium on Symbolic and Algebraic
Computation in 2021 (ISSAC 2021).

• Alin Bostan is part of the Scientific advisory board of the conference series Effective Methods in
Algebraic Geometry (MEGA).

• Since 2020, for a period of 5 years, Alin Bostan is member of the steering committee of the Journées
Nationales de Calcul Formel (JNCF), the annual meeting of the French computer algebra commu-
nity.

• Alin Bostan is part of the scientific committee of the GDR EFI (“Functional Equations and Interac-
tions”) dependent on the mathematical institute (INSMI) of the CNRS. The goal of this GDR is to
bring together various research communities in France working on functional equations in fields of
computer science and mathematics.

Member of the organizing committees

• Alin Bostan co-organizes, with Lucia Di Vizio, the Séminaire Différentiel between U. Versailles and
Inria Saclay, with a bi-annual frequency.

• Alin Bostan co-organizes, with Lucia Di Vizio and Kilian Raschel the working group Transcendance
et Combinatoire, at Institut Henri Poincaré (Paris), with a weekly frequency.

• Alin Bostan, together with Mohab Safey El Din, Bruno Salvy and Gilles Villard, started organizing a
thematic program “Recent Trends in Computer Algebra (RTCA)”, to be held in 2023 in Paris and
Lyon. The proposal has been accepted, the main funders being IHP (120,000 euros) and Labex
Milyon (60,000 euros).

8.1.2 Scientific events: selection

Member of the conference program committees

• Alin Bostan has served in the program committee of FPSAC’21 (Formal Power Series and Algebraic
Combinatorics).

https://www.issac-conference.org/2021/
https://www-fourier.ujf-grenoble.fr/gdrefi/
http://divizio.joomla.com/seminaires-et-gdt/8-seminaire-differentiel
http://divizio.joomla.com/seminaires-et-gdt/11-groupe-de-travail-autour-des-marches-dans-le-quart-de-plan
http://divizio.joomla.com/seminaires-et-gdt/11-groupe-de-travail-autour-des-marches-dans-le-quart-de-plan
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Reviewer

• Alin Bostan has been a reviewer for ISSAC’21 (International Symposium on Symbolic and Algebraic
Computation), FPSAC’21 (Formal Power Series and Algebraic Combinatorics), MEGA’21 (Méthodes
Effectives en Géométrie Effective) and Maple Conference 2021.

• Sergey Yurkevich has been a reviewer for ISSAC’21 (International Symposium on Symbolic and
Algebraic Computation).

8.1.3 Journal

Member of the editorial boards

• Alin Bostan is on the editorial board of the Journal of Symbolic Computation.

• Alin Bostan is on the editorial board of the Annals of Combinatorics.

• Alin Bostan is on the editorial board of the Maple Transactions.

• Alin Bostan is on the editorial board of the Bulletin of the Transilvania University of Bras, ov, Series
III: Mathematics and Computer Science.

• Frédéric Chyzak is on the editorial board of the Journal of Systems Science and Complexity.

• Guy Fayolle is associate editor of the journal Markov Processes and Related Fields (MPRF).

Editors of special issues

• Frédéric Chyzak is co-editor (with George Labahn, University of Waterloo, Ontario, Canada) of a
special issue in the Journal of Symbolic Computation after the ISSAC 2021 conference.

• Pierre Lairez is co-editor (with Anton Leykin, Georgia Tech) of a special issue in the Journal of
Symbolic Computation after the ISSAC 2020 conference.

Reviewer - reviewing activities

• In 2021, Frédéric Chyzak was reviewer for a special issue after the conference ISSAC 2020 and for
the Journal of Symbolic Computation.

• In 2021, Alin Bostan has been a reviewer for Annals of Combinatorics, Experimental Mathematics,
American Mathematical Monthly, Combinatorial Theory, Glasgow Mathematical Journal, European
Journal of Combinatorics, Journal of Algebraic Combinatorics.

• Guy Fayolle has been a reviewer for Advances in Applied Probability, Markov Processes and Related
Fields, Probability Theory and Related Fields, Queueing Systems: Theory and Applications, European
Journal of Combinatorics, Journal of Statistical Physics, Physica A, Springer Science.

• In 2021, Sergey Yurkevich has been a reviewer for The American Mathematical Monthly, Experi-
mental Mathematics, European Journal of Combinatorics.

8.1.4 Invited talks

• Alin Bostan has been plenary speaker at the international conference ISSAC’21 (46th International
Symposium on Symbolic and Algebraic Computation, Saint Petersburg, Russia).

• Alin Bostan has been invited speaker at the international conference at the international conference
“Lattice Paths, Combinatorics and Interactions”, Marseille, France.

• Alin Bostan gave invited talks at the minisymposium “Generating series and confined lattice walks”
at CanaDAM 2021 (Canada), at the Journée de rentrée de l’EDMH (École doctorale de mathéma-
tiques Hadamard) at IHES and at the École de Jeunes Chercheurs en Informatique Mathématique
2021.

https://issac-conference.org/2021/invited.php
https://conferences.cirm-math.fr/2324.html
https://canadam.math.ca/2021/program/schedule_invited_mini
https://2021.canadam.math.ca
https://www.ihes.fr/rentree-edmh-2021/
https://www.ihes.fr
https://indico.math.cnrs.fr/event/6689
https://indico.math.cnrs.fr/event/6689
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• Sergey Yurkevich gave a talk at the Combinatorics and Arithmetic for Physics: special days CAP21
in IHES.

8.1.5 Scientific expertise

• Guy Fayolle is scientific advisor and associate researcher at the Robotics Laboratory of Mines Paris-
Tech.

8.1.6 Research administration

• Guy Fayolle is a member for Computer System Modeling of the International Federation for Informa-
tion Processing (IFIP WG 7.3).

8.2 Teaching - Supervision - Juries

8.2.1 Teaching

• Bachelor:

– Alexandre Goyer, Mathématiques Générales (LSMA100), 60h, L1, Université de Versailles Saint-
Quentin-en-Yvelines, France.

• Master:

– Alin Bostan, Algorithmes efficaces en calcul formel, 36h, M2, MPRI, France.

– Frédéric Chyzak, Algorithmes efficaces en calcul formel, 36h, M2, MPRI, France. (Also respon-
sible for the course.)

– Pierre Lairez, Algorithmes efficaces en calcul formel, 9h, M2, MPRI, France.

– Pierre Lairez, Competitive programming (INF473A), TD, 40h, M2, École polytechnique, France.

– Pierre Lairez, Les bases de la programmation et de l’algorithmique (INF411), TD, 40h, M1,
École polytechnique, France.

8.2.2 Supervision

• Master interships:

– Alin Bostan and Frédéric Chyzak co-supervised together with Mohab Safey El Din (Sorbonne
U.) the Master thesis of Hadrien Notarantonio on the topic “Calcul formel et systèmes polyno-
miaux pour la combinatoire”.

– Alin Bostan and Pierre Lairez co-supervised together with Bruno Salvy (Inria Lyon) the Master
thesis of Eric Pichon-Pharabod on the topic “Géométrie complexe et asymptotique automa-
tique des sommes binomiales”.

• PhD theses:

– Alin Bostan co-supervises together with Xavier Caruso (CNRS, IMB Bordeaux) the PhD thesis
of Raphaël Pagès on the topic “Algorithms for factoring linear differential operators in positive
characteristic”.

– Alin Bostan co-supervises together with Herwig Hauser (U. Vienna, Austria) the PhD thesis of
Sergey Yurkevich on the topic “Integer Sequences arising in Number Theory, Combinatorics
and Physics”.

– Alin Bostan and Frédéric Chyzak co-supervise together with Mohab Safey El Din (Sorbonne
U.) the PhD thesis of Hadrien Notarantonio on the topic “Geometry-driven algorithms for the
efficient solving of combinatorial functional equations”.

– Frédéric Chyzak co-supervises together with Marc Mezzarobba (CNRS, Lix) the PhD thesis of
Alexandre Goyer on the topic “Symbolic-numeric algorithms in differential algebra”.

https://www-lipn.univ-paris13.fr/~duchamp/Conferences/CAP8_2021.html
https://www.ihes.fr
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-22
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– Pierre Lairez co-supervises together with Pierre Vanhove (CEA, IPhT) the PhD thesis of Eric
Pichon-Pharabod on the topic “Periods in algebraic geometry: computation and application
to Feynman’s integrals”.

8.2.3 Juries

• Frédéric Chyzak was examiner in the PhD jury of Mathilde Chenu, Primitives cryptographiques
résistantes aux ordinateurs quantiques basées sur les isogénies, Institut Polytechnique de Paris,
December 17, 2021.

• Alin Bostan has served as a referee of the PhD thesis of Manfred Buchacher, Algorithms for the
Enumeration of Lattice Walks, U. Linz (Austria), November 8, 2021.

• Alin Bostan has served as the president of the PhD jury of Ali El Hajj, Algorithmes symboliques pour
l’étude et la résolution de systèmes d’équations fonctionnelles linéaires, Limoges Univ., December 17,
2021.

• Alin Bostan has served as a reviewer in the mid-PhD examination of Antonin Leroux, Algèbre de
quaternion et cryptographie à base d’isogénies, Ecole polytechnique.
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