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2 Overall objectives

In this project, we investigate theoretical and numerical mathematical issues concerning heterogeneous
physical systems. The heterogeneities we consider result from the fact that the studied systems involve
subsystems of different physical nature. In this wide class of problems, we study two types of systems:
fluid-structure interaction systems (FSIS) and complex wave systems (CWS). In both situations, one
has to develop specific methods to take the coupling between the subsystems into account.

(FSIS) Fluid-structure interaction systems appear in many applications: medicine (motion of the
blood in veins and arteries), biology (animal locomotion in a fluid, such as swimming fishes or flapping
birds but also locomotion of microorganisms, such as amoebas), civil engineering (design of bridges or any
structure exposed to the wind or the flow of a river), naval architecture (design of boats and submarines,
researching into new propulsion systems for underwater vehicles by imitating the locomotion of aquatic
animals). FSIS can be studied by modeling their motions through Partial Differential Equations (PDE)
and/or Ordinary Differential Equations (ODE), as is classical in fluid mechanics or in solid mechanics.
This leads to the study of difficult nonlinear free boundary problems which have constituted a rich and
active domain of research over the last decades.

(CWS) Complex wave systems are involved in a large number of applications in several areas of science
and engineering: medicine (breast cancer detection, kidney stone destruction, osteoporosis diagnosis,
etc.), telecommunications (in urban or submarine environments, optical fibers, etc.), aeronautics (target
detection, aircraft noise reduction, etc.) and, in the longer term, quantum supercomputers. Direct prob-
lems, that is finding a solution with respect to parameters of the problem, for instance the propagation of
waves with respect to the knowledge of speed of propagation of the medium, most theoretical issues are
now widely understood. However, substantial efforts remain to be undertaken concerning the simulation
of wave propagation in complex media. Such situations include heterogeneous media with strong local
variations of the physical properties (high frequency scattering, multiple scattering media) or quantum
fluids (Bose-Einstein condensates). In the first case for instance, the numerical simulation of such direct
problems is a hard task, as it generally requires solving ill-conditioned possibly indefinite large size
problems, following from space or space-time discretizations of linear or nonlinear evolution PDE set on
unbounded domains. Inverse problems are the converse problem of the direct problems, as they aim to
find properties of the direct problem, for instance the speed of propagation in a medium, with respect
to the solution or a partial observation of the solution. These problems are often ill-posed and many
questions are open at both the theoretical (identifiability, stability and robustness, etc.) and practical
(reconstruction methods, approximation and convergence analysis, numerical algorithms, etc.) levels.

3 Research program

3.1 Control and stabilization of heterogeneous systems

Fluid-Structure Interaction Systems (FSIS) are present in many physical problems and applications. Their
study involves solving several challenging mathematical problems:

• Nonlinearity: One has to deal with a system of nonlinear PDE such as the Navier-Stokes or the
Euler systems;

• Coupling: The corresponding equations couple two systems of different types and the methods
associated with each system need to be suitably combined to solve successfully the full problem;

• Coordinates: The equations for the structure are classically written with Lagrangian coordinates
whereas the equations for the fluid are written with Eulerian coordinates;
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• Free boundary: The fluid domain is moving and its motion depends on the motion of the structure.
The fluid domain is thus an unknown of the problem and one has to solve a free boundary problem.

In order to control such FSIS, one has first to analyze the corresponding system of PDE. The oldest
works on FSIS go back to the pioneering contributions of Thomson, Tait and Kirchhoff in the 19th century
and Lamb in the 20th century, who considered simplified models (potential fluid or Stokes system). The
first mathematical studies in the case of a viscous incompressible fluid modeled by the Navier-Stokes
system and a rigid body whose dynamics is modeled by Newton’s laws appeared much later [118, 112, 91],
and almost all mathematical results on such FSIS have been obtained in the last twenty years.

The most studied FSIS is the problem modeling a rigid body moving in a viscous incompressible
fluid ( [73, 70, 110, 80, 85, 114, 117, 100, 83]). Many other FSIS have been studied as well. Let us mention
[102, 88, 84, 74, 62, 79, 61, 81] for different fluids. The case of deformable structures has also been
considered, either for a fluid inside a moving structure (e.g. blood motion in arteries) or for a moving
deformable structure immersed in a fluid (e.g. fish locomotion). The obtained coupled FSIS is a complex
system and its study raises several difficulties. The main one comes from the fact that we gather two
systems of different nature. Some studies have been performed for approximations of this system: [66,
62, 94, 75, 64]). Without approximations, the only known results [71, 72] were obtained with very strong
assumptions on the regularity of the initial data. Such assumptions are not satisfactory but seem inherent
to this coupling between two systems of different natures. In order to study self-propelled motions
of structures in a fluid, like fish locomotion, one can assume that the deformation of the structure is
prescribed and known, whereas its displacement remains unknown ([107]). This permits to start the
mathematical study of a challenging problem: understanding the locomotion mechanism of aquatic
animals. This is related to control or stabilization problems for FSIS. Some first results in this direction
were obtained in [89, 63, 104].

3.2 Inverse problems for heterogeneous systems

The area of inverse problems covers a large class of theoretical and practical issues which are important
in many applications (see for instance the books of Isakov [90] or Kaltenbacher, Neubauer, and Scherzer
[92]). Roughly speaking, an inverse problem is a problem where one attempts to recover an unknown
property of a given system from its response to an external probing signal. For systems described by
evolution PDE, one can be interested in the reconstruction from partial measurements of the state (initial,
final or current), the inputs (a source term, for instance) or the parameters of the model (a physical
coefficient for example). For stationary or periodic problems (i.e. problems where the time dependency
is given), one can be interested in determining from boundary data a local heterogeneity (shape of an
obstacle, value of a physical coefficient describing the medium, etc.). Such inverse problems are known
to be generally ill-posed and their study raises the following questions:

• Uniqueness. The question here is to know whether the measurements uniquely determine the
unknown quantity to be recovered. This theoretical issue is a preliminary step in the study of any
inverse problem and can be a hard task.

• Stability. When uniqueness is ensured, the question of stability, which is closely related to sensitivity,
deserves special attention. Stability estimates provide an upper bound for the parameter error
given some uncertainty on the data. This issue is closely related to the so-called observability
inequality in systems theory.

• Reconstruction. Inverse problems being usually ill-posed, one needs to develop specific reconstruc-
tion algorithms which are robust to noise, disturbances and discretization. A wide class of methods
is based on optimization techniques.

We can split our research in inverse problems into two classes which both appear in FSIS and CWS:

1. Identification for evolution PDE.

Driven by applications, the identification problem for systems of infinite dimension described
by evolution PDE has seen in the last three decades a fast and significant growth. The unknown
to be recovered can be the (initial/final) state (e.g. state estimation problems [56, 82, 86, 113] for
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the design of feedback controllers), an input (for instance source inverse problems [53, 65, 76])
or a parameter of the system. These problems are generally ill-posed and many regularization
approaches have been developed. Among the different methods used for identification, let us
mention optimization techniques ( [69]), specific one-dimensional techniques (like in [57]) or
observer-based methods as in [97].

In the last few years, we have developed observers to solve initial data inverse problems for a class of
linear systems of infinite dimension. Let us recall that observers, or Luenberger observers [96], have
been introduced in automatic control theory to estimate the state of a dynamical system of finite
dimension from the knowledge of an output (for more references, see for instance [101] or [115]).
Using observers, we have proposed in [103, 87] an iterative algorithm to reconstruct initial data
from partial measurements for some evolution equations. We are deepening our activities in this
direction by considering more general operators or more general sources and the reconstruction of
coefficients for the wave equation. In connection with this problem, we study the stability in the
determination of these coefficients. To achieve this, we use geometrical optics, which is a classical
albeit powerful tool to obtain quantitative stability estimates on some inverse problems with a
geometrical background, see for instance [59, 58].

2. Geometric inverse problems.

We investigate some geometric inverse problems that appear naturally in many applications, like
medical imaging and non destructive testing. A typical problem we have in mind is the following:
given a domainΩ containing an (unknown) local heterogeneity ω, we consider the boundary value
problem of the form 

Lu = 0, (Ω\ω)
u = f , (∂Ω)
Bu = 0, (∂ω)

where L is a given partial differential operator describing the physical phenomenon under consider-
ation (typically a second order differential operator), B the (possibly unknown) operator describing
the boundary condition on the boundary of the heterogeneity and f the exterior source used to
probe the medium. The question is then to recover the shape of ω and/or the boundary operator
B from some measurement Mu on the outer boundary ∂Ω. This setting includes in particular
inverse scattering problems in acoustics and electromagnetics (in this caseΩ is the whole space
and the data are far field measurements) and the inverse problem of detecting solids moving in a
fluid. It also includes, with slight modifications, more general situations of incomplete data (i.e.
measurements on part of the outer boundary) or penetrable inhomogeneities. Our approach to
tackle this type of problems is based on the derivation of a series expansion of the input-to-output
map of the problem (typically the Dirichlet-to-Neumann map of the problem for the Calderón
problem) in terms of the size of the obstacle.

3.3 Numerical analysis and simulation of heterogeneous systems

Within the team, we have developed in the last few years numerical codes for the simulation of FSIS and
CWS. We plan to continue our efforts in this direction.

• In the case of FSIS, our main objective is to provide computational tools for the scientific commu-
nity, essentially to solve academic problems.

• In the case of CWS, our main objective is to build tools general enough to handle industrial
problems. Our strong collaboration with Christophe Geuzaine’s team in Liège (Belgium) makes
this objective credible, through the combination of DDM (Domain Decomposition Methods) and
parallel computing.

Below, we explain in detail the corresponding scientific program.

• Simulation of FSIS: In order to simulate fluid-structure systems, one has to deal with the fact that
the fluid domain is moving and that the two systems for the fluid and for the structure are strongly
coupled. To overcome this free boundary problem, three main families of methods are usually
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applied to numerically compute in an efficient way the solutions of the fluid-structure interaction
systems. The first method consists in suitably displacing the mesh of the fluid domain in order to
follow the displacement and the deformation of the structure. A classical method based on this idea
is the A.L.E. (Arbitrary Lagrangian Eulerian) method: with such a procedure, it is possible to keep a
good precision at the interface between the fluid and the structure. However, such methods are
difficult to apply for large displacements (typically the motion of rigid bodies). The second family
of methods consists in using a fixed mesh for both the fluid and the structure and to simultaneously
compute the velocity field of the fluid with the displacement velocity of the structure. The presence
of the structure is taken into account through the numerical scheme. Finally, the third class of
methods consists in transforming the set of PDEs governing the flow into a system of integral
equations set on the boundary of the immersed structure. The members of SPHINX have already
worked on these three families of numerical methods for FSIS systems with rigid bodies (see e.g.
[108], [93], [109], [105], [106], [98]).

• Simulation of CWS: Solving acoustic or electromagnetic scattering problems can become a tremen-
dously hard task in some specific situations. In the high frequency regime (i.e. for small wavelength),
acoustic (Helmholtz’s equation) or electromagnetic (Maxwell’s equations) scattering problems are
known to be difficult to solve while being crucial for industrial applications (e.g. in aeronautics and
aerospace engineering). Our particularity is to develop new numerical methods based on the hy-
bridization of standard numerical techniques (like algebraic preconditioners, etc.) with approaches
borrowed from asymptotic microlocal analysis. Most particularly, we contribute to building hybrid
algebraic/analytical preconditioners and quasi-optimal Domain Decomposition Methods (DDM)
[60, 77], [78] for highly indefinite linear systems. Corresponding three-dimensional solvers (like
for example GetDDM) will be developed and tested on realistic configurations (e.g. submarines,
complete or parts of an aircraft, etc.) provided by industrial partners (Thales, Airbus). Another
situation where scattering problems can be hard to solve is the one of dense multiple (acoustic,
electromagnetic or elastic) scattering media. Computing waves in such media requires us to take
into account not only the interactions between the incident wave and the scatterers, but also the
effects of the interactions between the scatterers themselves. When the number of scatterers is
very large (and possibly at high frequency [54, 55]), specific deterministic or stochastic numerical
methods and algorithms are needed. We introduce new optimized numerical methods for solving
such complex configurations. Many applications are related to this problem e.g. for osteoporosis
diagnosis where quantitative ultrasound is a recent and promising technique to detect a risk of
fracture. Therefore, numerical simulation of wave propagation in multiple scattering elastic media
in the high frequency regime is a very useful tool for this purpose.

4 Application domains

4.1 Robotic swimmers

Some companies aim at building biomimetic robots that can swim in an aquarium, as toys but also for
medical purposes. An objective of Sphinx is to model and to analyze several models of these robotic
swimmers. For the moment, we focus on the motion of a nanorobot. In that case, the size of the swimmers
leads us to neglect the inertia forces and to only consider the viscosity effects. Such nanorobots could be
used for medical purposes to deliver some medicine or perform small surgical operations. In order to get
a better understanding of such robotic swimmers, we have obtained control results via shape changes
and we have developed simulation tools (see [67, 68, 98, 95]). Among all the important issues, we aim to
consider the following ones:

1. Solve the control problem by limiting the set of admissible deformations.

2. Find the “best” location of the actuators, in the sense of being the closest to the exact optimal
control.

The main tools for this investigation are the 3D codes that we have developed for simulation of fish in a
viscous incompressible fluid (SUSHI3D) or in an inviscid incompressible fluid (SOLEIL).

http://onelab.info/GetDDM/
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4.2 Aeronautics

We will develop robust and efficient solvers for problems arising in aeronautics (or aerospace) like elec-
tromagnetic compatibility and acoustic problems related to noise reduction in an aircraft. Our interest
for these issues is motivated by our close contacts with companies like Airbus or “Thales Systèmes Aéro-
portés”. We will propose new applications needed by these partners and assist them in integrating these
new scientific developments in their home-made solvers. In particular, in collaboration with C. Geuzaine
(Université de Liège), we are building a freely available parallel solver based on Domain Decomposition
Methods that can handle complex engineering simulations, in terms of geometry, discretization methods
as well as physics problems, see here.

5 New software and platforms

5.1 New software

5.1.1 BEC2HPC

Name: Bose-Einstein Condensates : Computation and HPC simulation

Keywords: Bose-Einstein condensates, HPC

Functional Description: Provide a flexible and efficient HPC software to the quantum physics commu-
nity for simulating realistic problems.

URL: https://team.inria.fr/bec2hpc/software/

Contact: Xavier Antoine

6 New results

6.1 Control, stabilization and optimization of heterogeneous systems

Participants: Rémi Buffe, Imene Djebour, Ludovick Gagnon, Julien Lequeurre, Jean-
François Scheid, Takéo Takahashi, Julie Valein, Christophe Zhang.

Control

Controlling coupled systems is a complex issue depending on the coupling conditions and the
equations themselves. Our team has a strong expertise to tackle these kind of problems in the context of
fluid-structure interaction systems. More precisely, we obtained the follwing results.

In [40], Badra and Takahashi consider the controllability of an abstract parabolic system by using
switching controls. More precisely, we show that under general hypotheses, if a parabolic system is
null-controllable for any positive time with N controls, then it is also null-controllable with the property
that at each time, only one of these controls is active. The main difference with previous results in the
literature is that we can handle the case where the main operator of the system is not self-adjoint. We
give several examples to illustrate our result: coupled heat equations with terms of orders 0 and 1, the
Oseen system or the Boussinesq system.

In [42], the authors prove an Hölder type inequality reflecting the unique continuation property at
one time for the heat equation with a potential and Neumann boundary condition. The main feature
of the proof is to overcome the propagation of smallness by a global approach using a refined parabolic
frequency function method. It relies on a Carleman commutator estimate to obtain the logarithmic
convexity property of the frequency function.

In [21], Imene Djebour shows the local null controllability of a fluid-solid interaction system by
using a distributed control located in the fluid. The fluid is modeled by the incompressible Navier-Stokes
system with Navier slip boundary conditions and the rigid body is governed by Newton’s laws. Her main

http://onelab.info/wiki/GetDDM
https://team.inria.fr/bec2hpc/software/
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result yields that one can drive the velocities of the fluid and of the structure to 0 and one can control
exactly the position of the rigid body. One important ingredient of the proof consists in a new Carleman
estimate for a linear fluid-rigid body system with Navier boundary conditions.

In [41], we prove a Lebeau-Robbiano spectral inequality for the Oseen operator in a two dimensional
channel, that is, the linearized Navier-Stokes operator around a laminar flow, with no-slip boundary
conditions. This is done by deriving a proper Carleman estimate by handling the vorticity near the
boundary using two different characteristic sets in the different microlocal regions of the cotangent space.
As a consequence of the spectral inequality, we derive a new estimate of the cost of the control for the
small-time null-controllability.

In [43], we are interested in the controllability of a fluid-structure interaction system where the fluid
is viscous and incompressible and where the structure is elastic and located on a part of the boundary of
the fluid’s domain. In this article, we simplify this system by considering a linearization and by replacing
the wave/plate equation for the structure by a heat equation. We show that the corresponding system
coupling the Stokes equations with a heat equation at its boundary is null-controllable. The proof is
based on Carleman estimates and interpolation inequalities. One of the Carleman estimates corresponds
to the case of Ventcel boundary conditions. This work can be seen as a first step to handle the real system
where the structure is modeled by the wave or the plate equation.

The convergence of numerical controls for the wave equation is investigated for a Galerkin semi-
discretization. The convergence of the numerical approximation for this equation is notoriously difficult
as usual discretization schemes introduce spurious high frequencies. Filtering techniques are known
in the literature for finite element methods. We introduced for the first time in [26] low cost filtering
techniques for Galerkin approximations.

In [45], the controllability properties of the ground state solitary wave is studied for the mass critical
and subcritical focusing Schrödinger equation. Using a fine description of the blow-up profile, Gagnon
proves the local controllability between the ground state with two different scaling in a minimal time.
This result provides insight on the technique needed to disrupt the stability of the ground state to gain
controllability.

In [24], the dynamics of a particle trapped on a network in presence of an external electromagnetic
field is adressed. The controllability of the motion is studied when the intensity of the field changes over
time and plays the role of control. From a mathematical point of view, the dynamics of the particle is
modeled by the so-called bilinear Schrödinger equation defined on a graph representing the network.
The main purpose of this work is to extend the existing theory for bilinear quantum systems on bounded
intervals to the framework of graphs. To this end, we introduce a suitable mathematical setting where to
address the controllability of the equation from a theoretical point of view. More precisely, we determine
assumptions on the network and on the potential field ensuring its global exact controllability in suitable
spaces. Finally, we discuss two applications of our results and their practical implications to two specific
problems involving a star-shaped network and a tadpole graph.

In [52], the controllability properties of a system of m coupled Stokes systems or m coupled Navier-
Stokes systems are studied. The null-controllability of such systems is proved in the case where the
coupling is in a cascade form and when the control acts only on one of the systems. Moreover, we impose
that this control has a vanishing component so that we control a m × N state (corresponding to the
velocities of the fluids) by N −1 distributed scalar controls. The proof of the controllability of the coupled
Stokes system is based on a Carleman estimate for the adjoint system. The local null-controllability of the
coupled Navier-Stokes systems is then obtained by means of the source term method and a Banach fixed
point.

Stabilization

Stabilization of infinite dimensional systems governed by PDE is a challenging problem. In our team,
we have investigated this issue for different kinds of systems (fluid systems and wave systems) using
different techniques.

In [48], Guerrero and Takahashi consider the controllability of a viscous incompressible fluid modeled
by the Navier-Stokes system with a nonlinear viscosity. To prove the controllability to trajectories, we
linearize around a trajectory and the corresponding linear system includes a nonlocal spatial term. Our
main result is a Carleman estimate for the adjoint of this linear system. This estimate yields in a standard
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way the null controllability of the linear system and the local controllability to trajectories. Our method
to obtain the Carleman estimate is completely general and can be adapted to other parabolic systems
when a Carleman estimate is available.

In [22], Imene Djebour, Takéo Takahashi and Julie Valein consider the stabilization of parabolic
systems with a finite-dimensional control subjected to a constant delay. Their main result shows that
the Fattorini-Hautus criterion yields the existence of such a feedback control, as in the case of stabilization
without delay. The proof consists in splitting the system into a finite dimensional unstable part and a
stable infinite-dimensional part and in applying the Artstein transformation on the finite-dimensional
system to remove the delay in the control. Using this abstract result, they can prove new results for the
stabilization of parabolic systems with constant delay: the N -dimensional linear reaction-convection-
diffusion equation with N ≥ 1 and the Oseen system. They also show that this theory can be used
to stabilize nonlinear parabolic systems with input delay: for instance the local feedback distributed
stabilization of the Navier-Stokes system around a stationary state.

The aim of [36] is to study the asymptotic stability of the nonlinear Korteweg-de Vries equation in
the presence of a delayed term in the internal feedback. First, the case where the weight of the term with
delay is smaller than the weight of the term without delay is considered and a semiglobal stability result
for any length is proved. Secondly, the case where the support of the term without delay is not included in
the support of the term with delay is considered. In this case, a local exponential stability result is proved
provided the weight of the delayed term is small enough. These results are illustrated by some numerical
simulations. The above results on the stabilization of delay systems, added to other contributions on the
control and stabilization of PDE constitute the material of the habilitation thesis [116] of Julie Valein,
defended on November 4th 2020.

In [25], Ludovick Gagnon, Pierre Lissy and Swann Marx prove the exponential decay of a degenerate
parabolic equation. The equation has a degeneracy at x = 0, which implies, roughly speaking, that
the solution is “ill-propagated” near x = 0. The boundary controllability of this equation was already
proved in a series of papers using a fine analysis of the spectral properties of the degenerate operator.
The exponential stability proved in [25] is obtained by constructing a boundary feedback law using the
backstepping method with a Fredholm transformation, yielding the exponential decay of the energy of
the solutions. This work exhibits one of the first cases where the Fredholm transformation is used to
deduce the exponential decay whereas the Volterra transformation couldn’t be applied successfully.

In [46], the backstepping method with the Fredholm alternative is thoroughly studied for the Lapla-
cian operator on the torus. A sharp functional setting is presented in this setting and the stabilization of
the heat equation on the torus with two feedback laws is presented as an application.

In [44], Imene Djebour considers a fluid-structure interaction system composed by a three-dimensional
viscous incompressible fluid and an elastic plate located on the upper part of the fluid boundary. The fluid
motion is governed by the Navier-Stokes system whereas the structure displacement satisfies the damped
plate equation. We consider here the Navier slip boundary conditions. The main result of this work is the
feedback stabilization of the strong solutions of the corresponding system around a stationary state
for any exponential decay rate by means of a time delayed control localized on the fixed fluid boundary.
The strategy here is based on the Fattorini-Hautus criterion. Then, the main tool in this work is to show
the unique continuation property of the associate solution to the adjoint system.

Optimization

We have also considered optimization issues for fluid-structure interaction systems.
J.F. Scheid, V. Calesti and I. Lucardesi study an optimal shape problem for an elastic structure im-

mersed in a viscous incompressible fluid. They aim to establish the existence of an optimal elastic
domain associated with an energy-type functional for a Stokes-Elasticity system. They want to find an
optimal reference domain (the domain before deformation) for the elasticity problem that minimizes
an energy-type functional. This problem is concerned with 2D geometry and is an extension of [111]
for a 1D problem. The optimal domain is searched for in a class of admissible open sets defined with a
diffeomorphism of a given domain. The main difficulty lies in the coupling between the Stokes problem
written in a eulerian frame and the linear elasticity problem written in a lagrangian form. The shape
derivative of an energy-type functional has been formally obtained. This will allow us to numerically
determine an optimal elastic domain which minimizes the energy-type functional under consideration.
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The rigorous proof of the derivability of the energy-type functional with respect to the domain is still in
progress.

The article [31] is devoted to the mathematical analysis of a fluid-structure interaction system
where the fluid is compressible and heat conducting and where the structure is deformable and lo-
cated on a part of the boundary of the fluid domain. The fluid motion is modeled by the compressible
Navier-Stokes-Fourier system and the structure displacement is described by a structurally damped plate
equation. Our main results are the existence of strong solutions in an LP −Lq setting for small time or for
small data. Through a change of variables and a fixed point argument, the proof of the main results is
mainly based on the maximal regularity property of the corresponding linear systems. For small time
existence, this property is obtained by decoupling the linear system into several standard linear systems
whereas for global existence and for small data, the maximal regularity property is proved by showing
that the corresponding linear coupled fluid-structure operator is R-sectorial.

In [39], Badra and Takahashi consider a viscous incompressible fluid interacting with an elastic
structure located on a part of its boundary. The fluid motion is modeled by the bi-dimensional Navier-
Stokes system and the structure follows the linear wave equation in dimension 1 in space. Our aim
is to study the linearized system coupling the Stokes system with a wave equation and to show that
the corresponding semigroup is analytic. In particular the linear system satisfies a maximal regularity
property that allows us to deduce the existence and uniqueness of strong solutions for the nonlinear
system. This result can be compared to the case where the elastic structure is a beam equation for which
the corresponding semigroup is only of Gevrey class.

6.2 Direct and inverse problems for heterogeneous systems

Participants: Anthony Gerber-Roth, Alexandre Munnier, Julien Lequeurre,
Karim Ramdani, Jean-Claude Vivalda.

Direct problems

Negative materials are artificially structured composite materials (also known as metamaterials),
whose dielectric permittivity and magnetic permeability are simultaneously negative in some frequency
ranges. K. Ramdani continued his collaboration with R. Bunoiu on the homogenization of composite
materials involving both positive and negative materials. Due to the sign-changing coefficients in the
equations, classical homogenization theory fails, since it is based on uniform energy estimates which
are known only for positive (more precisely constant sign) coefficients. In a joint work with L. Chesnel
and M. Rihani, the authors studied [19] the vector case of Maxwell’es equations. In [20] and [35], both in
collaboration with C. Timofte, two “degenerate” situations are respectively considered : the case of thin
periodic domains and the one of extreme contrasts.

Inverse problems

Alexandre Munnier and Karim Ramdani have obtained a PhD funding from Université de Lorraine to
supervise the PhD of Anthony Gerber-Roth. The thesis is devoted to the investigation of some geometric
inverse problems, and can be seen as a continuation of the work initiated by the two supervisors in
[99] and [8]. In these papers, the authors addressed a particular case of Calderón’s inverse problem in
dimension two, namely the case of a homogeneous background containing a finite number of cavities (i.e.
heterogeneities of infinitely high conductivities). They proposed a non iterative method to reconstruct the
cavities from the knowledge of the Dirichlet-to-Neumann map of the problem. The first contribution of
Anthony Gerber-Roth is to extend the results obtained in [8] in dimension three. This work is in progress.

Besides these static inverse problems, we also investigate estimation issues for time-dependent
problems.

6.3 Numerical analysis and simulation of heterogeneous systems
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Participants: Xavier Antoine, Ismail Badia, David Gasperini, Christophe Geuzaine,
Philippe Marchner, Jean-François Scheid.

Computational acoustics.

Artificial boundary conditions/PML.

New stable PML (Perfectly Matched Layers) have been proposed in [33] for solving the convected
Helmholtz equation for future industrial applications with Siemens (ongoing CIFRE Ph.D. thesis of
Philippe Marchner).

Numerical approximation by volume methods.

In [23], the authors propose a new high precision Iso-Geometric Analysis (IGA) B-Spline approxi-
mation of the high frequency scattering Helmholtz problem, which minimizes the numerical pollution
effects that affect standard Galerkin finite element approaches when combined with HABC.

In the papers [32, 34, 50], we build and evaluate some new absorbing boundary conditions for the
heterogeneous Helmholtz equation, two-dimensional Schrödinger equation in the presence of corners
and the 2D peridynamics equations based on kernel analysis, respectively.

In [51], we develop the numerical analysis of discretization schemes with absorbing boundary condi-
tions for the one-dimensional Schrödinger equation where the Laplacian is replaced by a nonlocal spatial
operator.

Integral equation approximation.

In [12], an extensive review of recent methods for preconditioning fast integral equation solvers is
mainly developed for time-harmonic acoustics, but also for electromagnetic and elastic waves.

In [11], we introduce a coupling algorithm between the integral equation and OSRC methods to solve
scattering problems by non convex obstacles.

In [47], the mathematical analysis of the steepest descent methods is investigated for the acooustic
single-layer integral operator.

Scattering by moving boundaries.

A new frequency domain method has been introduced in [29] during the Ph.D. thesis of D. Gasperini
to solve scattering problems by moving boundaries. This research was done during a contract with the
company IEE (Luxembourg) for modeling the radar detection inside cars at very high frequency.

In [28], we propose an original coupled frequency domain approach for solving by the finite element
method the scattering problem with a moving boundary for two- and three-dimensional problems.

The paper [37] introduces a new OSRC formulaion with phase reduction and approximated by IGA-
NURBS to solve time-harmonic acoustic scattering problems.

In [18], a weak coupling finite element/boundary element method is introduced for solving 3D elec-
tromagnetic scattering problems.

Underwater acoustics.

In [49], we develop an efficient second-order scheme with HABC for the one-dimensional Green-
Naghdi equation that arises in water waves. We propose an adaptive method so that the accuracy of the
scheme is maintained while strongly accelerating the speed-up, in particular because of the presence of a
nonlocal time convolution-type operator involved in the HABC.

Quantum theory.
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In [27], we give an overview of the BEC2HPC parallel solver developed in the BEC2HPC associated
team for computing the stationary states of fast rotating BECs in 2D/3D. In [16], in collaboration with Q.
Tang and J. Shen (Purdue University), we propose some new efficient spectral schemes for the dynamics
of the nonlinear Schrödinger and Gross-Pitaevskii equations.

In [17], X. Antoine and X. Zhao (Wuhan University) introduce some new locally smooth singular
absorption profiles for the spectral numerical solution of the nonlinear Klein-Gordon equation. In
particular, this leads to an accuracy of the scheme that does not depend on the small parameter arising in
the non-relativistic regime. Applications are also given for the rotating Klein Gordon-equation used in
the modeling of the cosmic superfluid in a rotating frame.

Fractional PDE.

In [30], with S. Ji, G. Pang, and J. Zhang, Xavier Antoine is interested in the development and analysis
of artificial boundary conditions for nonlocal Schrödinger equations that are a generalization of some
fractional Schrödinger equations.

In [13, 14], the numerical computation of fractional linear systems involving several matrix power
functions. We propose several gradient methods for solving these very computationally complex prob-
lems, which themselves require the solution to standard Fractional Linear Systems. The convergence
study is developed and numerical experiments are proposed to illustrate and compare the methods.

The authors propose in [15] the construction and implementation of PML operators for the one- and
two-dimensional fractional Laplacian, and some extensions.

In [38], a Schwarz waveform relaxation domain decomposition method has been introduced for
solving space fractional PDE related to Schrödinger and heat equations.

Fluid mechanics.

Chaotic advection in a viscous fluid under an electromagnetic field. J.-F. Scheid, J.-P. Brancher (IECL)
and J. Fontchastagner (GREEN) study the chaotic behavior of trajectories of a dynamical system arising
from a coupling system beetwen Stokes flow and an electromagnetic field. They consider an electrically
conductive viscous fluid crossed by a uniform electric current. The fluid is subjected to a magnetic field
induced by the presence of a set of magnets. The resulting electromagnetic force acts on the conductive
fluid and generates a flow in the fluid. According to a specific arrangement of the magnets surrounding the
fluid, vortices can be generated and the trajectories of the dynamical system associated to the stationary
velocity field in the fluid may have chaotic behavior. The aim of this study is to numerically show the
chaotic behavior of the flow for the proposed disposition of the magnets along the container of the fluid.
The flow in the fluid is governed by the Stokes equations with the Laplace force induced by the electric
current and the magnetic field. An article is in preparation.

7 Bilateral contracts and grants with industry

7.1 Bilateral grants with industry

1. • Company: Siemens

• Duration: 2018 – 2021

• Participants: X. Antoine, C. Geuzaine, P. Marchner

• Abstract: This CIFRE grant funds the PhD thesis of Philippe Marchner, which concerns the
numerical simulation of aeroacoustic problems using domain decomposition methods.

2. • Company: Thales

• Duration: 2018 – 2021

• Participants: X. Antoine, I. Badia, C. Geuzaine

• Abstract: This CIFRE grant funds the PhD thesis of Ismail Badia, which concerns the HPC
simulation by domain decomposition methods of electromagnetic problems.

https://green.univ-lorraine.fr/
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3. • Company: IEE

• Duration: 2018 – 2021

• Participants: X. Antoine, D. Gasperini, C. Geuzaine

• Abstract: This FNR grant funds the PhD thesis of David Gasperini, which concerns the numer-
ical simulation of scattering problems with moving boundaries.

8 Partnerships and cooperations

8.1 International initiatives

8.1.1 Associate Teams in the framework of an Inria International Lab or in the framework of an Inria
International Program

MOUSTIQ

Title: Modelization and control of infectious diseases, wave propagation in heterogeneous media and
nonlinear dispersives equations

Duration: 2022 ->

Coordinator: Felipe Chaves (felipewallison@gmail.com)

Partners:

• Universidade Federale da Paraiba, Brazil

Inria contact: Ludovick Gagnon

Summary: The aim of Moustiq is to include time delay in existing model for the propagation of diseases
such as Zika, Dengue or Chikungunya. Other aspects of the project involve controllability issues of
wave equations with dynamic boundary conditions and of nonlinear dispersive equations.

8.1.2 Inria associate team not involved in an IIL or an international program

BEC2HPC

Title: Bose-Einstein Condensates : Computation and HPC simulation

Duration: 2019 ->

Coordinator: Qinglin TANG (qinglin_tang@163.com)

Partners:

• Sichuan University, Chengdu, China

Inria contact: Xavier Antoine

Summary: The first objective of the associate team is to develop efficient high-order numerical methods
for computing the stationary states and dynamics of Bose-Einstein Condensates (BEC) modeled
by Gross-Pitaevskii Equations (GPEs). A second objective is to implement and validate these new
methods in a HPC environment to simulate large scale 2D and 3D problems in quantum physics.
Finally, a third objective is to provide a flexible and efficient HPC software to the quantum physics
community for simulating realistic problems.
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8.1.3 STIC/MATH/CLIMAT AmSud project

ACIPDE

Title: Analysis, Control and Inverse problems for Partial Differential Equations

Duration: 2020 ->

Coordinators: Takéo Takahashi, Felipe Chaves-Silva (Brazil), Nicolas Carreño (Chile)

Partners:

• Brazil

• Chile

Members of SPHINX: Ludovick Gagnon, Takéo Takahashi, Julie Valein

8.1.4 Participation in other International Programs

LIAFSMA (CNRS International Research Project)

Title: Sino-French International Associated Laboratory for Applied Mathematics

Partner Institution(s):

• CNRS

• École Polytechnique

• Sorbonne Université

• Université de Bordeaux and Institut Polytechnique de Bordeaux

• The Fudan University, China

• The Peking University, China

• The Academy of Mathematics and System Sciences of the Chinese Academy of Sciences,
China

Local coordinator: Xavier Antoine

ANR

1. Project Acronym: ODISSE

Project title: Observer Design for Infinite-dimensional Systems

Coordinator: Vincent Andrieu (LAGEPP, Université de Lyon)

Local coordinator: Karim Ramdani

Duration: 48 months (started on October 1st 2019)

Participants: Ludovick Gagnon, Karim Ramdani, Julie Valein and Jean-Claude Vivalda.

Other partners: LAAS, LAGEPP, Inria-Saclay (M3DISIM)
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Abstract: This ANR project includes 3 work-packages : theoretical aspects of observability and
identifiability; from finite dimensional systems to infinite dimensional systems : Infinite-
dimensional Luenberger observers, Parametric identification and adaptive estimation algo-
rithm, Infinite-dimensional observers for finite-dimensional systems; from infinite dimen-
sional systems to finite dimensional systems : discretization, hierarchical reduction.

2. Project Acronym: TRECOS

Project Title: New TREnds in COntrol and Stabilization

Coordinator: Sylvain Ervedoza (Université de Bordeaux)

Participants: Ludovick Gagnon, Takéo Takahashi, Julie Valein

Duration : 48 months (2021-2024)

Other partners: Institut de Mathématiques de Bordeaux, Sorbonne University, Institut de Mathé-
matiques de Toulouse

Abstract: The goal of this project is to address new directions of research in control theory for
partial differential equations, triggered by models from ecology and biology. In particular,
our projet will deal with the development of new methods which will be applicable in many
applications, from the treatment of cancer cells to the analysis of the thermic efficiency of
buildings, and from control issues for the biological control of pests to cardiovascular fluid
flows. URL: https://www.math.u-bordeaux.fr/~servedoza/index-ANR.html

9 Dissemination

Member of the organizing committees

• Julie Valein was a member of the organizing committee of the conference“PDE, Analysis and
Application”, in honor of Serge Nicaise 60th birthday (Valenciennes, 2–5 November 2021).

Reviewer - reviewing activities

• Members of the team often write reviews for many journals covering the topics investigated in
SPHINX (SIAM Journals, JCP, M3AS, ESAIM COCV,...).

9.0.1 Invited talks

Karim Ramdani and Julie Valein were invited to give a talk in the conference “Control and analysis of PDE
systems” in honor of Marius Tucsnak 60th birthday (Bordeaux, Nov. 29–Dec. 1 2021).

9.0.2 Scientific expertise

• Xavier Antoine is a member of the panel “Applied Mathematics and Statistics” of the Academy of
Finland since February 2020.

9.0.3 Research administration

• David Dos Santos Ferreira was the head of the PDE team of IECL until June 2021. He is also one of
the coordinators of the CNRS GDR (National Research Network) “Analysis of PDE” and the treasurer
of the SMF (French Mathematical Society).

• Ludovick Gagnon is International Deputy of Inria Nancy - Grand Est.

https://www.math.u-bordeaux.fr/~servedoza/index-ANR.html
https://marius60.sciencesconf.org/
https://marius60.sciencesconf.org/
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• Karim Ramdani is, since June 2021, the head of the PDE team of IECL laboratory (the Mathematics
Department of Université de Lorraine). He is also a member (since October 2018) of the Working
Group “Publications” of the “Committee for Open Science” of the French ministry of Higher
Education, Research and Innovation.

• Several members of the team are involved in monitoring committees of PhDs students as well as
the committee attributing PhD funding in IECL laboratory.

• Ludovick Gagnon and Julie Valein are the organizers of the weekly seminar of the PDE team of
the Institut Elie Cartan de Lorraine in Nancy. Rémi Buffe is the organizer of the Groupe de Travail
d’EDP of the Institut Elie Cartan de Lorraine.

9.1 Teaching - Supervision - Juries

9.1.1 Teaching

Except L. Gagnon, K. Ramdani, T. Takahashi and J.-C. Vivalda, SPHINX members have teaching obligations
at “Université de Lorraine” and are teaching at least 192 hours each year. They teach mathematics at
different level (Licence, Master, Engineering school). Many of them have pedagogical responsibilities.

9.1.2 Supervision

The following PhD thesis was defended this year:

• V. Calisti, Synthèse de microstructures par optimisation topologique, et optimisation de forme d’un
problème d’interaction fluide-structure, (started Aug 2018 and defended Dec 2021), supervised by
Jean-François Scheid and Jean-François Ganghoffer.

The following PhD thesis are in progress:

• I. Badia, HPC simulation by domain decomposition methods of electromagnetic problems, (started
in September 2019), supervised by X. Antoine and Ch. Geuzaine.

• C. Bentayaa, Accurate and efficient computational methods for the HPC simulation of Bose-Einstein
Condensates (started in October 2021), supervised by X. Antoine and Q. Tang

• B. Colle, Stabilization and controllability of the Stefan problem (started in October 2021), supervised
by J. Lohéac and T. Takahashi.

• D. Gasperini, Design of a new multi-frequency PDE-based approach for the numerical simulation of
the Doppler effect arising in acoustic and electromagnetism (started in September 2017), supervised
by X. Antoine and C. Geuzaine.

• A. Gerber-Roth, On some geometric inverse problems (started in October 2020), supervised by A.
Munnier and K. Ramdani.

• P. Marchner, Numerical simulation by domain decomposition methods of aeroacoustic problems
(started in September 2019), supervised by X. Antoine and C. Geuzaine.

9.1.3 Juries

• Ludovick Gagnon was member of the PhD thesis jury of G. Vergara-Hermosilla (Université de
Bordeaux, Oct 2021).

• Takéo Takahashi was reviewer of the PhD thesis of G. Vergara-Hermosilla (Université de Bordeaux,
Oct 2021).

• Julie Valein was president of the PhD thesis jury of Alaa Hayek (Université Polytechnique des
Hauts-de-France - Université Libanaise, Fev 2021).

• Julie Valein was reviewer of the PhD thesis jury of Mathias Dus (Université de Toulouse, Jul 2021).
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[2] L. Bălilescu, J. San Martín and T. Takahashi. ‘Fluid-structure interaction system with Coulomb’s
law’. In: SIAM Journal on Mathematical Analysis (2017). URL: https://hal.archives-ouverte
s.fr/hal-01386574.

[3] R. Bunoiu, L. Chesnel, K. Ramdani and M. Rihani. ‘Homogenization of Maxwell’s equations and
related scalar problems with sign-changing coefficients’. In: Annales de la Faculté des Sciences de
Toulouse. Mathématiques. (2020). URL: https://hal.inria.fr/hal-02421312.

[4] N. Burq, D. Dos Santos Ferreira and K. Krupchyk. ‘From semiclassical Strichartz estimates to
uniform Lp resolvent estimates on compact manifolds’. In: Int. Math. Res. Not. IMRN 16 (2018),
pp. 5178–5218. DOI: 10.1093/imrn/rnx042. URL: https://doi.org/10.1093/imrn/rnx042.

[5] L. Gagnon. ‘Lagrangian controllability of the 1-dimensional Korteweg–de Vries equation’. In: SIAM
J. Control Optim. 54.6 (2016), pp. 3152–3173. DOI: 10.1137/140964783. URL: https://doi.org
/10.1137/140964783.

[6] O. Glass, A. Munnier and F. Sueur. ‘Point vortex dynamics as zero-radius limit of the motion of a
rigid body in an irrotational fluid’. In: Inventiones Mathematicae 214.1 (2018), pp. 171–287. DOI:
10.1007/s00222-018-0802-4. URL: https://hal.archives-ouvertes.fr/hal-00950544.

[7] C. Grandmont, M. Hillairet and J. Lequeurre. ‘Existence of local strong solutions to fluid-beam
and fluid-rod interaction systems’. In: Annales de l’Institut Henri Poincaré (C) Non Linear Analysis
36.4 (July 2019), pp. 1105–1149. DOI: 10.1016/j.anihpc.2018.10.006. URL: https://hal.in
ria.fr/hal-01567661.

[8] A. Munnier and K. Ramdani. ‘Calderón cavities inverse problem as a shape-from-moments
problem’. In: Quarterly of Applied Mathematics 76 (2018), pp. 407–435. URL: https://hal.inri
a.fr/hal-01503425.

[9] K. Ramdani, J. Valein and J.-C. Vivalda. ‘Adaptive observer for age-structured population with
spatial diffusion’. In: North-Western European Journal of Mathematics 4 (2018), pp. 39–58. URL:
https://hal.inria.fr/hal-01469488.

[10] J.-F. Scheid and J. Sokolowski. ‘Shape optimization for a fluid-elasticity system’. In: Pure Appl.
Funct. Anal. 3.1 (2018), pp. 193–217.

10.2 Publications of the year

International journals

[11] S. M. Alzahrani, X. Antoine and C. Chniti. ‘A coupling between integral equations and on-surface
radiation conditions for diffraction problems by non convex scatterers’. In: Mathematics 9.18
(2021). DOI: 10.3390/math9182299. URL: https://hal.archives-ouvertes.fr/hal-03327
881.

[12] X. Antoine and M. Darbas. ‘An introduction to operator preconditioning for the fast iterative
integral equation solution of time-harmonic scattering problems’. In: Multiscale Science and
Engineering 3.1 (2021), pp. 1–35. DOI: 10.1007/s42493-021-00057-6. URL: https://hal.arc
hives-ouvertes.fr/hal-02914922.

[13] X. Antoine and E. Lorin. ‘Generalized fractional algebraic linear system solvers’. In: Journal of
Scientific Computing (2021). URL: https://hal.archives-ouvertes.fr/hal-03085997.

[14] X. Antoine and E. Lorin. ‘ODE-based Double-preconditioning for Solving Linear Systems Aαx = b
and f (A)x = b’. In: Numerical Linear Algebra with Applications (2021). DOI: 10.1002/nla.2399.
URL: https://hal.archives-ouvertes.fr/hal-02340590.

https://doi.org/10.1080/00207160.2018.1437911
https://doi.org/10.1080/00207160.2018.1437911
https://doi.org/10.1080/00207160.2018.1437911
https://hal.archives-ouvertes.fr/hal-01386574
https://hal.archives-ouvertes.fr/hal-01386574
https://hal.inria.fr/hal-02421312
https://doi.org/10.1093/imrn/rnx042
https://doi.org/10.1093/imrn/rnx042
https://doi.org/10.1137/140964783
https://doi.org/10.1137/140964783
https://doi.org/10.1137/140964783
https://doi.org/10.1007/s00222-018-0802-4
https://hal.archives-ouvertes.fr/hal-00950544
https://doi.org/10.1016/j.anihpc.2018.10.006
https://hal.inria.fr/hal-01567661
https://hal.inria.fr/hal-01567661
https://hal.inria.fr/hal-01503425
https://hal.inria.fr/hal-01503425
https://hal.inria.fr/hal-01469488
https://doi.org/10.3390/math9182299
https://hal.archives-ouvertes.fr/hal-03327881
https://hal.archives-ouvertes.fr/hal-03327881
https://doi.org/10.1007/s42493-021-00057-6
https://hal.archives-ouvertes.fr/hal-02914922
https://hal.archives-ouvertes.fr/hal-02914922
https://hal.archives-ouvertes.fr/hal-03085997
https://doi.org/10.1002/nla.2399
https://hal.archives-ouvertes.fr/hal-02340590


18 Inria Annual Report 2021

[15] X. Antoine, E. Lorin and Y. Zhang. ‘Derivation and analysis of computational methods for fractional
Laplacian equations with absorbing layers’. In: Numerical Algorithms 87 (2021), pp. 409–444. DOI:
10.1007/s11075-020-00972-z. URL: https://hal.archives-ouvertes.fr/hal-0291506
8.

[16] X. Antoine, J. Shen and Q. Tang. ‘Scalar Auxiliary Variable/Lagrange multiplier based pseudospec-
tral schemes for the dynamics of nonlinear Schrödinger/Gross-Pitaevskii equations’. In: Journal
of Computational Physics 437 (2021), p. 110328. DOI: 10.1016/j.jcp.2021.110328. URL:
https://hal.archives-ouvertes.fr/hal-02940080.

[17] X. Antoine and X. Zhao. ‘Pseudospectral methods with PML for nonlinear Klein-Gordon equations
in classical and non-relativistic regimes’. In: Journal of Computational Physics (2022). URL: https:
//hal.archives-ouvertes.fr/hal-03102303.

[18] I. Badia, B. Caudron, X. Antoine and C. Geuzaine. ‘A well-conditioned weak coupling of boundary
element and high-order finite element methods for time-harmonic electromagnetic scattering by
inhomogeneous objects’. In: SIAM Journal on Scientific Computing (2022). URL: https://hal.a
rchives-ouvertes.fr/hal-03305269.

[19] R. Bunoiu, L. Chesnel, K. Ramdani and M. Rihani. ‘Homogenization of Maxwell’s equations and
related scalar problems with sign-changing coefficients’. In: Annales de la Faculté des Sciences de
Toulouse. Mathématiques. (2022). URL: https://hal.inria.fr/hal-02421312.

[20] R. Bunoiu, K. Ramdani and C. Timofte. ‘T-coercivity for the asymptotic analysis of scalar problems
with sign-changing coefficients in thin periodic domains’. In: Electronic Journal of Differential
Equations 2021.59 (2021), pp. 1–22. URL: https://hal.inria.fr/hal-02974043.

[21] I. A. Djebour. ‘Local null controllability of a fluid-rigid body interaction problem with Navier
slip boundary conditions’. In: ESAIM: Control, Optimisation and Calculus of Variations 27.76
(13th July 2021), p. 46. DOI: 10.1051/cocv/2021071. URL: https://hal.archives-ouvertes
.fr/hal-02454567.

[22] I. A. Djebour, T. Takahashi and J. Valein. ‘Feedback stabilization of parabolic systems with input
delay’. In: Mathematical Control and Related Fields (2022). DOI: 10.3934/mcrf.2021027. URL:
https://hal.archives-ouvertes.fr/hal-02545562.

[23] S. M. Dsouza, T. Khajah, X. Antoine, S. Bordas and S. Natarajan. ‘Non Uniform Rational B-Splines
and Lagrange approximations for time-harmonic acoustic scattering: accuracy and absorbing
boundary conditions’. In: Mathematical and Computer Modelling of Dynamical Systems 27.1
(2021), pp. 290–321. DOI: 10.1080/13873954.2021.1902355. URL: https://hal.archives-o
uvertes.fr/hal-02540572.

[24] A. Duca. ‘Bilinear quantum systems on compact graphs: well-posedness and global exact con-
trollability’. In: Automatica (1st Jan. 2021). DOI: 10.1016/j.automatica.2020.109324. URL:
https://hal.archives-ouvertes.fr/hal-01830297.

[25] L. Gagnon, P. Lissy and S. Marx. ‘A Fredholm transformation for the rapid stabilization of a
degenerate parabolic equation’. In: SIAM Journal on Control and Optimization 59.5 (19th Oct.
2021). DOI: 10.1137/20M1372603. URL: https://hal.archives-ouvertes.fr/hal-029631
60.

[26] L. Gagnon and J. Urquiza. ‘Recovering the uniform boundary observability with spectral Legendre-
Galerkin formulations of the 1-D wave equation’. In: Evolution Equations and Control Theory 10.1
(Mar. 2021), pp. 129–153. DOI: 10.3934/eect.2020054. URL: https://hal.inria.fr/hal-01
958154.

[27] J. Gaidamour, Q. Tang and X. Antoine. ‘BEC2HPC: a HPC spectral solver for nonlinear Schrödinger
and Gross-Pitaevskii equations. Stationary states computation’. In: Computer Physics Communi-
cations 265 (Aug. 2021). DOI: 10.1016/j.cpc.2021.108007. URL: https://hal.archives-ou
vertes.fr/hal-02957115.

https://doi.org/10.1007/s11075-020-00972-z
https://hal.archives-ouvertes.fr/hal-02915068
https://hal.archives-ouvertes.fr/hal-02915068
https://doi.org/10.1016/j.jcp.2021.110328
https://hal.archives-ouvertes.fr/hal-02940080
https://hal.archives-ouvertes.fr/hal-03102303
https://hal.archives-ouvertes.fr/hal-03102303
https://hal.archives-ouvertes.fr/hal-03305269
https://hal.archives-ouvertes.fr/hal-03305269
https://hal.inria.fr/hal-02421312
https://hal.inria.fr/hal-02974043
https://doi.org/10.1051/cocv/2021071
https://hal.archives-ouvertes.fr/hal-02454567
https://hal.archives-ouvertes.fr/hal-02454567
https://doi.org/10.3934/mcrf.2021027
https://hal.archives-ouvertes.fr/hal-02545562
https://doi.org/10.1080/13873954.2021.1902355
https://hal.archives-ouvertes.fr/hal-02540572
https://hal.archives-ouvertes.fr/hal-02540572
https://doi.org/10.1016/j.automatica.2020.109324
https://hal.archives-ouvertes.fr/hal-01830297
https://doi.org/10.1137/20M1372603
https://hal.archives-ouvertes.fr/hal-02963160
https://hal.archives-ouvertes.fr/hal-02963160
https://doi.org/10.3934/eect.2020054
https://hal.inria.fr/hal-01958154
https://hal.inria.fr/hal-01958154
https://doi.org/10.1016/j.cpc.2021.108007
https://hal.archives-ouvertes.fr/hal-02957115
https://hal.archives-ouvertes.fr/hal-02957115


Project SPHINX 19

[28] D. Gasperini, H.-P. Beise, U. Schröeder, X. Antoine and C. Geuzaine. ‘A multi-harmonic finite
element method for scattering problems with small-amplitude boundary deformations’. In: SIAM
Journal on Scientific Computing (2022). URL: https://hal.archives-ouvertes.fr/hal-032
81690.

[29] D. Gasperini, H.-P. P. Beise, U. Schroeder, X. Antoine and C. Geuzaine. ‘A frequency domain method
for scattering problems with moving boundaries’. In: Wave Motion 102 (Apr. 2021), p. 102717. DOI:
10.1016/j.wavemoti.2021.102717. URL: https://hal.archives-ouvertes.fr/hal-025
40554.

[30] S. Ji, G. Pang, X. Antoine and J. Zhang. ‘Artificial boundary conditions for the semi-discretized
one-dimensional nonlocal Schrödinger equation’. In: Journal of Computational Physics 444 (2021),
p. 110575. DOI: 10.1016/j.jcp.2021.110575. URL: https://hal.archives-ouvertes.fr
/hal-02898080.

[31] D. Maity and T. Takahashi. ‘Existence and uniqueness of strong solutions for the system of in-
teraction between a compressible Navier-Stokes-Fourier fluid and a damped plate equation’. In:
Nonlinear Analysis: Real World Applications (2021). DOI: 10.1016/j.nonrwa.2020.103267. URL:
https://hal.archives-ouvertes.fr/hal-02668248.

[32] P. Marchner, X. Antoine, C. Geuzaine and H. Bériot. ‘Construction and Numerical Assessment of
Local Absorbing Boundary Conditions for Heterogeneous Time-Harmonic Acoustic Problems’. In:
SIAM Journal on Applied Mathematics (2022). URL: https://hal.archives-ouvertes.fr/hal
-03196015.

[33] P. Marchner, H. Beriot, X. Antoine and C. Geuzaine. ‘Stable Perfectly Matched Layers with Lorentz
transformation for the convected Helmholtz equation’. In: Journal of Computational Physics
(5th Feb. 2021). DOI: 10.1016/j.jcp.2021.110180. URL: https://hal.archives-ouvertes
.fr/hal-02556182.

[34] G. Pang, Y. Yang, X. Antoine and S. Tang. ‘Stability and convergence analysis of artificial boundary
conditions for the Schrödinger equation on a rectangular domain’. In: Mathematics of Computa-
tion 90.332 (2021), pp. 2731–2756. DOI: 10.1090/mcom/3679. URL: https://hal.archives-ou
vertes.fr/hal-02340837.

[35] K. Ramdani, R. Bunoiu and C. Timofte. ‘T-coercivity for the homogenization of sign-changing
coefficients scalar problems with extreme contrasts’. In: Mathematical Reports (2021). URL: https
://hal.inria.fr/hal-03481978.

[36] J. Valein. ‘On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal
feedback’. In: Mathematical Control and Related Fields (2022). DOI: 10.3934/mcrf.2021039.
URL: https://hal.archives-ouvertes.fr/hal-02020757.

Reports & preprints

[37] X. Antoine and T. Khajah. NURBS-based Isogeometric analysis of standard and phase reduction
On-Surface Radiation Condition formulations for acoustic scattering. 11th Mar. 2021. URL: https:
//hal.archives-ouvertes.fr/hal-03167068.

[38] X. Antoine and E. Lorin. A Schwarz waveform relaxation method for time-dependent space frac-
tional Schrödinger/heat equations. 24th Jan. 2021. URL: https://hal.archives-ouvertes.fr
/hal-03119456.

[39] M. Badra and T. Takahashi. Analyticity of the semigroup associated with a Stokes-wave interaction
system and application to the system of interaction between a viscous incompressible fluid and an
elastic structure. 20th Aug. 2021. URL: https://hal.archives-ouvertes.fr/hal-03323092.

[40] M. Badra and T. Takahashi. Switching controls for parabolic systems. 5th Nov. 2021. URL: https:
//hal.archives-ouvertes.fr/hal-03417266.

[41] R. Buffe and L. Gagnon. Spectral inequality for an Oseen operator in a two dimensional channel.
16th Apr. 2021. URL: https://hal.archives-ouvertes.fr/hal-03200711.

https://hal.archives-ouvertes.fr/hal-03281690
https://hal.archives-ouvertes.fr/hal-03281690
https://doi.org/10.1016/j.wavemoti.2021.102717
https://hal.archives-ouvertes.fr/hal-02540554
https://hal.archives-ouvertes.fr/hal-02540554
https://doi.org/10.1016/j.jcp.2021.110575
https://hal.archives-ouvertes.fr/hal-02898080
https://hal.archives-ouvertes.fr/hal-02898080
https://doi.org/10.1016/j.nonrwa.2020.103267
https://hal.archives-ouvertes.fr/hal-02668248
https://hal.archives-ouvertes.fr/hal-03196015
https://hal.archives-ouvertes.fr/hal-03196015
https://doi.org/10.1016/j.jcp.2021.110180
https://hal.archives-ouvertes.fr/hal-02556182
https://hal.archives-ouvertes.fr/hal-02556182
https://doi.org/10.1090/mcom/3679
https://hal.archives-ouvertes.fr/hal-02340837
https://hal.archives-ouvertes.fr/hal-02340837
https://hal.inria.fr/hal-03481978
https://hal.inria.fr/hal-03481978
https://doi.org/10.3934/mcrf.2021039
https://hal.archives-ouvertes.fr/hal-02020757
https://hal.archives-ouvertes.fr/hal-03167068
https://hal.archives-ouvertes.fr/hal-03167068
https://hal.archives-ouvertes.fr/hal-03119456
https://hal.archives-ouvertes.fr/hal-03119456
https://hal.archives-ouvertes.fr/hal-03323092
https://hal.archives-ouvertes.fr/hal-03417266
https://hal.archives-ouvertes.fr/hal-03417266
https://hal.archives-ouvertes.fr/hal-03200711


20 Inria Annual Report 2021

[42] R. Buffe and K. D. phung. Observation estimate for the heat equations with Neumann boundary
condition via logarithmic convexity. 27th May 2021. URL: https://hal.archives-ouvertes.f
r/hal-03238278.

[43] R. Buffe and T. Takahashi. Controllability of a simplified fluid-structure interaction system. 1st Sept.
2021. URL: https://hal.archives-ouvertes.fr/hal-03331176.

[44] I. A. Djebour. Local boundary feedback stabilization of a fuid-structure interaction problem under
Navier slip boundary conditions with time delay. 7th Sept. 2021. URL: https://hal.archives-o
uvertes.fr/hal-03336567.

[45] L. Gagnon. Ground state solitary waves local controllability for the nonlinear focusing Schrödinger
equation in the mass critical and slighlty mass subcritical regime. 1st Mar. 2021. URL: https://ha
l.archives-ouvertes.fr/hal-03141045.

[46] L. Gagnon, A. Hayat, S. Xiang and C. Zhang. Fredholm transformation on Laplacian and rapid
stabilization for the heat equations. 8th Oct. 2021. URL: https://hal.archives-ouvertes.fr
/hal-03319847.

[47] D. Gasperini, H.-P. Beise, U. Schroeder, X. Antoine and C. Geuzaine. An analysis of the steepest
descent method to efficiently compute the 3D acoustic single-layer operator in the high-frequency
regime. 27th Apr. 2021. URL: https://hal.archives-ouvertes.fr/hal-03209144.

[48] S. Guerrero and T. Takahashi. Controllability to trajectories of a Ladyzhenskaya model for a viscous
incompressible fluid. 13th Feb. 2021. URL: https://hal.archives-ouvertes.fr/hal-031407
09.

[49] G. Pang, S. Ji and X. Antoine. A fast second-order discretization scheme for the linearized Green-
Naghdi system with absorbing boundary conditions. 3rd Feb. 2021. URL: https://hal.archives
-ouvertes.fr/hal-03130074.

[50] G. Pang, S. Ji and X. Antoine. Accurate absorbing boundary conditions for two-dimensional peridy-
namics. 24th Oct. 2021. URL: https://hal.archives-ouvertes.fr/hal-03399896.

[51] G. Pang, S. Ji and X. Antoine. Construction and analysis of discretization schemes for one-dimensional
nonlocal Schrödinger equations with exact absorbing boundary conditions. 8th July 2021. URL:
https://hal.archives-ouvertes.fr/hal-03281252.

[52] T. Takahashi, L. De Teresa and Y. Wu-Zhang. Controllability results for cascade systems of m coupled
N -dimensional Stokes and Navier-Stokes systems by N=1 scalar controls. 24th Aug. 2021. URL:
https://hal.archives-ouvertes.fr/hal-03325287.

10.3 Cited publications

[53] C. Alves, A. L. Silvestre, T. Takahashi and M. Tucsnak. ‘Solving inverse source problems using
observability. Applications to the Euler-Bernoulli plate equation’. In: SIAM J. Control Optim. 48.3
(2009), pp. 1632–1659.

[54] X. Antoine, C. Geuzaine and K. Ramdani. ‘Computational Methods for Multiple Scattering at
High Frequency with Applications to Periodic Structures Calculations’. In: Wave Propagation in
Periodic Media. Progress in Computational Physics, Vol. 1. Bentham, 2010, pp. 73–107.

[55] X. Antoine, K. Ramdani and B. Thierry. ‘Wide Frequency Band Numerical Approaches for Multiple
Scattering Problems by Disks’. In: Journal of Algorithms & Computational Technologies 6.2 (2012),
pp. 241–259.

[56] D. Auroux and J. Blum. ‘A nudging-based data assimilation method : the Back and Forth Nudging
(BFN) algorithm’. In: Nonlin. Proc. Geophys. 15.305-319 (2008).

[57] M. I. Belishev and S. A. Ivanov. ‘Reconstruction of the parameters of a system of connected beams
from dynamic boundary measurements’. In: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst.
Steklov. (POMI) 324.Mat. Vopr. Teor. Rasprostr. Voln. 34 (2005), pp. 20–42, 262.

[58] M. Bellassoued and D. Dos Santos Ferreira. ‘Stability estimates for the anisotropic wave equation
from the Dirichlet-to-Neumann map’. In: Inverse Probl. Imaging 5.4 (2011), pp. 745–773. DOI:
10.3934/ipi.2011.5.745. URL: http://dx.doi.org/10.3934/ipi.2011.5.745.

https://hal.archives-ouvertes.fr/hal-03238278
https://hal.archives-ouvertes.fr/hal-03238278
https://hal.archives-ouvertes.fr/hal-03331176
https://hal.archives-ouvertes.fr/hal-03336567
https://hal.archives-ouvertes.fr/hal-03336567
https://hal.archives-ouvertes.fr/hal-03141045
https://hal.archives-ouvertes.fr/hal-03141045
https://hal.archives-ouvertes.fr/hal-03319847
https://hal.archives-ouvertes.fr/hal-03319847
https://hal.archives-ouvertes.fr/hal-03209144
https://hal.archives-ouvertes.fr/hal-03140709
https://hal.archives-ouvertes.fr/hal-03140709
https://hal.archives-ouvertes.fr/hal-03130074
https://hal.archives-ouvertes.fr/hal-03130074
https://hal.archives-ouvertes.fr/hal-03399896
https://hal.archives-ouvertes.fr/hal-03281252
https://hal.archives-ouvertes.fr/hal-03325287
https://doi.org/10.3934/ipi.2011.5.745
http://dx.doi.org/10.3934/ipi.2011.5.745


Project SPHINX 21

[59] M. Bellassoued and D. D. S. Ferreira. ‘Stable determination of coefficients in the dynamical
anisotropic Schrödinger equation from the Dirichlet-to-Neumann map’. In: Inverse Problems
26.12 (2010), pp. 125010, 30. DOI: 10.1088/0266-5611/26/12/125010. URL: http://dx.doi
.org/10.1088/0266-5611/26/12/125010.

[60] Y. Boubendir, X. Antoine and C. Geuzaine. ‘A Quasi-Optimal Non-Overlapping Domain Decompo-
sition Algorithm for the Helmholtz Equation’. In: Journal of Computational Physics 2.231 (2012),
pp. 262–280.

[61] M. Boulakia and S. Guerrero. ‘Regular solutions of a problem coupling a compressible fluid and
an elastic structure’. In: J. Math. Pures Appl. (9) 94.4 (2010), pp. 341–365. DOI: 10.1016/j.matpur
.2010.04.002. URL: http://dx.doi.org/10.1016/j.matpur.2010.04.002.

[62] M. Boulakia. ‘Existence of weak solutions for an interaction problem between an elastic structure
and a compressible viscous fluid’. In: J. Math. Pures Appl. (9) 84.11 (2005), pp. 1515–1554. DOI:
10.1016/j.matpur.2005.08.004. URL: http://dx.doi.org/10.1016/j.matpur.2005.08
.004.

[63] M. Boulakia and A. Osses. ‘Local null controllability of a two-dimensional fluid-structure interac-
tion problem’. In: ESAIM Control Optim. Calc. Var. 14.1 (2008), pp. 1–42. DOI: 10.1051/cocv:200
7031. URL: http://dx.doi.org/10.1051/cocv:2007031.

[64] M. Boulakia, E. Schwindt and T. Takahashi. ‘Existence of strong solutions for the motion of an
elastic structure in an incompressible viscous fluid’. In: Interfaces Free Bound. 14.3 (2012), pp. 273–
306. DOI: 10.4171/IFB/282. URL: http://dx.doi.org/10.4171/IFB/282.

[65] G. Bruckner and M. Yamamoto. ‘Determination of point wave sources by pointwise observations:
stability and reconstruction’. In: Inverse Problems 16.3 (2000), pp. 723–748.

[66] A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont. ‘Existence of weak solutions for the
unsteady interaction of a viscous fluid with an elastic plate’. In: J. Math. Fluid Mech. 7.3 (2005),
pp. 368–404. DOI: 10.1007/s00021-004-0121-y. URL: http://dx.doi.org/10.1007/s0002
1-004-0121-y.

[67] T. Chambrion and A. Munnier. ‘Generic controllability of 3D swimmers in a perfect fluid’. In:
SIAM J. Control Optim. 50.5 (2012), pp. 2814–2835. DOI: 10.1137/110828654. URL: http://dx
.doi.org/10.1137/110828654.

[68] T. Chambrion and A. Munnier. ‘Locomotion and control of a self-propelled shape-changing body
in a fluid’. In: J. Nonlinear Sci. 21.3 (2011), pp. 325–385. DOI: 10.1007/s00332-010-9084-8. URL:
http://dx.doi.org/10.1007/s00332-010-9084-8.

[69] C. Choi, G. Nakamura and K. Shirota. ‘Variational approach for identifying a coefficient of the
wave equation’. In: Cubo 9.2 (2007), pp. 81–101.

[70] C. Conca, J. San Martín and M. Tucsnak. ‘Existence of solutions for the equations modelling the
motion of a rigid body in a viscous fluid’. In: Comm. Partial Differential Equations 25.5-6 (2000),
pp. 1019–1042. DOI: 10.1080/03605300008821540. URL: http://dx.doi.org/10.1080/0360
5300008821540.

[71] D. Coutand and S. Shkoller. ‘Motion of an elastic solid inside an incompressible viscous fluid’.
In: Arch. Ration. Mech. Anal. 176.1 (2005), pp. 25–102. DOI: 10.1007/s00205-004-0340-7. URL:
http://dx.doi.org/10.1007/s00205-004-0340-7.

[72] D. Coutand and S. Shkoller. ‘The interaction between quasilinear elastodynamics and the Navier-
Stokes equations’. In: Arch. Ration. Mech. Anal. 179.3 (2006), pp. 303–352. DOI: 10.1007/s00205-
005-0385-2. URL: http://dx.doi.org/10.1007/s00205-005-0385-2.

[73] B. Desjardins and M. J. Esteban. ‘Existence of weak solutions for the motion of rigid bodies in a
viscous fluid’. In: Arch. Ration. Mech. Anal. 146.1 (1999), pp. 59–71. DOI: 10.1007/s00205005013
6. URL: http://dx.doi.org/10.1007/s002050050136.

[74] B. Desjardins and M. J. Esteban. ‘On weak solutions for fluid-rigid structure interaction: com-
pressible and incompressible models’. In: Comm. Partial Differential Equations 25.7-8 (2000),
pp. 1399–1413. DOI: 10.1080/03605300008821553. URL: http://dx.doi.org/10.1080/0360
5300008821553.

https://doi.org/10.1088/0266-5611/26/12/125010
http://dx.doi.org/10.1088/0266-5611/26/12/125010
http://dx.doi.org/10.1088/0266-5611/26/12/125010
https://doi.org/10.1016/j.matpur.2010.04.002
https://doi.org/10.1016/j.matpur.2010.04.002
http://dx.doi.org/10.1016/j.matpur.2010.04.002
https://doi.org/10.1016/j.matpur.2005.08.004
http://dx.doi.org/10.1016/j.matpur.2005.08.004
http://dx.doi.org/10.1016/j.matpur.2005.08.004
https://doi.org/10.1051/cocv:2007031
https://doi.org/10.1051/cocv:2007031
http://dx.doi.org/10.1051/cocv:2007031
https://doi.org/10.4171/IFB/282
http://dx.doi.org/10.4171/IFB/282
https://doi.org/10.1007/s00021-004-0121-y
http://dx.doi.org/10.1007/s00021-004-0121-y
http://dx.doi.org/10.1007/s00021-004-0121-y
https://doi.org/10.1137/110828654
http://dx.doi.org/10.1137/110828654
http://dx.doi.org/10.1137/110828654
https://doi.org/10.1007/s00332-010-9084-8
http://dx.doi.org/10.1007/s00332-010-9084-8
https://doi.org/10.1080/03605300008821540
http://dx.doi.org/10.1080/03605300008821540
http://dx.doi.org/10.1080/03605300008821540
https://doi.org/10.1007/s00205-004-0340-7
http://dx.doi.org/10.1007/s00205-004-0340-7
https://doi.org/10.1007/s00205-005-0385-2
https://doi.org/10.1007/s00205-005-0385-2
http://dx.doi.org/10.1007/s00205-005-0385-2
https://doi.org/10.1007/s002050050136
https://doi.org/10.1007/s002050050136
http://dx.doi.org/10.1007/s002050050136
https://doi.org/10.1080/03605300008821553
http://dx.doi.org/10.1080/03605300008821553
http://dx.doi.org/10.1080/03605300008821553


22 Inria Annual Report 2021

[75] B. Desjardins, M. J. Esteban, C. Grandmont and P. Le Tallec. ‘Weak solutions for a fluid-elastic
structure interaction model’. In: Rev. Mat. Complut. 14.2 (2001), pp. 523–538.

[76] A. El Badia and T. Ha-Duong. ‘Determination of point wave sources by boundary measurements’.
In: Inverse Problems 17.4 (2001), pp. 1127–1139.

[77] M. El Bouajaji, X. Antoine and C. Geuzaine. ‘Approximate Local Magnetic-to-Electric Surface
Operators for Time-Harmonic Maxwell’s Equations’. In: Journal of Computational Physics 15.279
(2015), pp. 241–260.

[78] M. El Bouajaji, B. Thierry, X. Antoine and C. Geuzaine. ‘A quasi-optimal domain decomposition
algorithm for the time-harmonic Maxwell’s equations’. In: Journal of Computational Physics 294.1
(2015), pp. 38–57. DOI: 10.1016/j.jcp.2015.03.041. URL: https://hal.archives-ouverte
s.fr/hal-01095566.

[79] E. Feireisl. ‘On the motion of rigid bodies in a viscous compressible fluid’. In: Arch. Ration. Mech.
Anal. 167.4 (2003), pp. 281–308. DOI: 10.1007/s00205-002-0242-5. URL: http://dx.doi.org
/10.1007/s00205-002-0242-5.

[80] E. Feireisl. ‘On the motion of rigid bodies in a viscous incompressible fluid’. In: J. Evol. Equ. 3.3
(2003). Dedicated to Philippe Bénilan, pp. 419–441. DOI: 10.1007/s00028-003-0110-1. URL:
http://dx.doi.org/10.1007/s00028-003-0110-1.
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