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• Hugo Sonnery [Inria, from Apr 2021 until Aug 2021]
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2 Overall objectives

2.1 Presentation

Since its creation in 2003, TAO activities had constantly but slowly evolved, as old problems were being
solved, and new applications arose, bringing new fundamental issues to tackle. But recent abrupt
progresses in Machine Learning (and in particular in Deep Learning) have greatly accelerated these
changes also within the team. It so happened that this change of slope also coincided with some more
practical changes in TAO ecosystem: following Inria 12-years rule, the team definitely ended in December
2016. The new team TAU (for TAckling the Underspecified) has been proposed, and formally created in
July 2019. At the same time important staff changes took place, that also justify even sharper changes in
the team focus. During the year 2018, the second year of this new era for the (remaining) members of the
team, our research topics have now stabilized around a final version of the TAU project.

Following the dramatic changes in TAU staff during the years 2016-2017 (see the 2017 activity report
of the team for the details), the research around continuous optimization has definitely faded out in TAU
(while the research axis on hyperparameter tuning has focused on Machine Learning algorithms), the
Energy application domain has slightly changed direction under Isabelle Guyon’s supervision (Section
4.2), after the completion of the work started by Olivier Teytaud, and a few new directions have emerged,
around the robustness of ML systems (Section 3.1.2). The other research topics have been continued, as
described below.

3 Research program

3.1 Toward Good AI

As discussed by [156], and in the recent collaborative survey paper [71], the topic of ethical AI was non-
existent until 2010, was laughed at in 2016, and became a hot topic in 2017 as the AI disruptivity with
respect to the fabric of life (travel, education, entertainment, social networks, politics, to name a few)

https://raweb.inria.fr/rapportsactivite/RA2017/tau/uid0.html
https://raweb.inria.fr/rapportsactivite/RA2017/tau/uid0.html
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became unavoidable [150], together with its expected impacts on the nature and amount of jobs. As of
now, it seems that the risk of a new AI Winter might arise from legal1 and societal2 issues. While privacy is
now recognized as a civil right in Europe, it is feared that the GAFAM, BATX and others can already capture
a sufficient fraction of human preferences and their dynamics to achieve their commercial and other
goals, and build a Brave New Big Brother (BNBB), a system that is openly beneficial to many, covertly
nudging, and possibly dictatorial).

The ambition of TAU is to mitigate the BNBB risk along several intricated dimensions, and build i)
causal and explainable models; ii) fair data and models; iii) provably robust models.

3.1.1 Causal modeling and biases

Participants: Isabelle Guyon, Michèle Sebag, Philippe Caillou, Paola Tubaro

The extraction of causal models, a long goal of AI [154, 130, 155], became a strategic issue as the
usage of learned models gradually shifted from prediction to prescription in the last years. This evolution,
following Auguste Comte’s vision of science (Savoir pour prévoir, afin de pouvoir) indeed reflects the
exuberant optimism about AI: Knowledge enables Prediction; Prediction enables Control. However,
although predictive models can be based on correlations, prescriptions can only be based on causal
models3.

Among the research applications concerned with causal modeling, predictive modeling or collabora-
tive filtering at TAU are all projects described in section 4.1 (see also Section 3.4), studying the relationships
between: i) the educational background of persons and the job openings (FUI project JobAgile and DataIA
project Vadore); ii) the quality of life at work and the economic performance indicators of the enterprises
(ISN Lidex project Amiqap) [131] ; iii) the nutritional items bought by households (at the level of granular-
ity of the barcode) and their health status, as approximated from their body-mass-index (IRS UPSaclay
Nutriperso); iv) the actual offer of restaurants and their scores on online rating systems. In these projects,
a wealth of data is available (though hardly sufficient for applications ii), iii and iv))) and there is little
doubt that these data reflect the imbalances and biases of the world as is, ranging from gender to racial
to economical prejudices. Preventing the learned models from perpetuating such biases is essential to
deliver an AI endowed with common decency.

In some cases, the bias is known; for instance, the cohorts in the Nutriperso study are more well-off
than the average French population, and the Kantar database includes explicit weights to address this bias
through importance sampling. In other cases, the bias is only guessed; for instance, the companies for
which Secafi data are available hardly correspond to a uniform sample as these data have been gathered
upon the request of the company trade union.

3.1.2 Robustness of Learned Models

Participants: Guillaume Charpiat, Marc Schoenauer, Michèle Sebag

Due to their outstanding performances, deep neural networks and more generally machine learning-
based decision making systems, referred to as MLs in the following, have been raising hopes in the recent
years to achieve breakthroughs in critical systems, ranging from autonomous vehicles to defense. The
main pitfall for such applications lies in the lack of guarantees for MLs robustness.

Specifically, MLs are used when the mainstream software design process does not apply, that is, when
no formal specification of the target software behavior is available and/or when the system is embedded
in an open unpredictable world. The extensive body of knowledge developed to deliver guarantees about
mainstream software − ranging from formal verification, model checking and abstract interpretation
to testing, simulation and monitoring − thus does not directly apply either. Another weakness of MLs

1For instance, the (fictitious) plea challenge proposed to law students in Oct. 2018 considered a chain reaction pileup occurred
among autonomous and humanly operated vehicles on a highway.

2For instance related to information bubbles and nudge [116, 171].
3One can predict that it rains based on the presence of umbrellas in the street; but one cannot induce rainfall by going out with

an umbrella. Likewise, the presence of books/tablets at home and the good scores of children at school are correlated; but offering
books/tablets to all children might fail to improve their scores per se, if both good scores and books are explained by a so-called
confounder variable, like the presence of adults versed in books/tablets at home.
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regards their dependency to the amount and quality of the training data, as their performances are
sensitive to slight perturbations of the data distribution. Such perturbations can occur naturally due to
domain or concept drift (e.g. due to a change in light intensity or a scratch on a camera lens); they can
also result from intentional malicious attacks, a.k.a adversarial examples [172].

These downsides, currently preventing the dissemination of MLs in safety-critical systems (SCS), call
for a considerable amount of research, in order to understand when and to which extent an MLs can be
certified to provide the desired level of guarantees.

Julien Girard’s PhD (CEA scholarship), defended in Dec. 2020 [53], co-supervised by Guillaume
Charpiat and Zakaria Chihani (CEA), is devoted to the extension of abstract interpretation to deep neural
nets, and the formal characterization of the transition kernel from input to output space achieved by
a DNN (robustness by design, coupled with formally assessing the coverage of the training set). This
approach is tightly related to the inspection and opening of black-box models, aimed to characterize the
patterns in the input instances responsible for a decision – another step toward explainability.

3.2 Hybridizing numerical modeling and learning systems

Participants: Michele Alessandro Bucci, Guillaume Charpiat, Cécile Germain, Isabelle Guyon, Marc
Schoenauer, Michèle Sebag

In sciences and engineering, human knowledge is commonly expressed in closed form, through
equations or mechanistic models characterizing how a natural or social phenomenon, or a physical
device, will behave/evolve depending on its environment and external stimuli, under some assumptions
and up to some approximations. The field of numerical engineering, and the simulators based on such
mechanistic models, are at the core of most approaches to understand and analyze the world, from solid
mechanics to computational fluid dynamics, from chemistry to molecular biology, from astronomy to
population dynamics, from epidemiology and information propagation in social networks to economy
and finance.

Most generally, numerical engineering supports the simulation, and when appropriate the opti-
mization and control4 of the phenomenons under study, although several sources of discrepancy might
adversely affect the results, ranging from the underlying assumptions and simplifying hypotheses in the
models, to systematic experiment errors to statistical measurement errors (not to mention numerical
issues). This knowledge and know-how are materialized in millions of lines of code, capitalizing the
expertise of academic and industrial labs. These softwares have been steadily extended over decades,
modeling new and more fine-grained effects through layered extensions, making them increasingly
harder to maintain, extend and master. Another difficulty is that complex systems most often resort to
hybrid (pluridisciplinary) models, as they involve many components interacting along several time and
space scales, hampering their numerical simulation.

At the other extreme, machine learning offers the opportunity to model phenomenons from scratch,
using any available data gathered through experiments or simulations. Recent successes of machine
learning in computer vision, natural language processing and games to name a few, have demonstrated
the power of such agnostic approaches and their efficiency in terms of prediction [134], inverse problem
solving [152], and sequential decision making [175, 97], despite their lack of any "semantic" understanding
of the universe. Even before these successes, Anderson’s claim was that the data deluge [might make] the
scientific method obsolete [79], as if a reasonable option might be to throw away the existing equational
or software bodies of knowledge, and let Machine Learning rediscover all models from scratch. Such a
claim is hampered among others by the fact that not all domains offer a wealth of data, as any academic
involved in an industrial collaboration around data has discovered.

Another approach is considered in TAU, investigating how existing mechanistic models and related
simulators can be partnered with ML algorithms: i) to achieve the same goals with the same methods
with a gain of accuracy or time; ii) to achieve new goals; iii) to achieve the same goals with new methods.

Toward more robust numerical engineering: In domains where satisfying mechanistic models and

4Note that the causal nature of mechanistic models is established from prior knowledge and experimentations.
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simulators are available, ML can contribute to improve their accuracy or usability. A first direction
is to refine or extend the models and simulators to better fit the empirical evidence. The goal is to
finely account for the different biases and uncertainties attached to the available knowledge and data,
distinguishing the different types of known unknowns. Such known unknowns include the model hyper-
parameters (coefficients), the systematic errors due to e.g., experiment imperfections, and the statistical
errors due to e.g., measurement errors. A second approach is based on learning a surrogate model for
the phenomenon under study that incorporate domain knowledge from the mechanistic model (or its
simulation). See Section 8.5 for case studies.

A related direction, typically when considering black-box simulators, aims to learn a model of the
error, or equivalently, a post-processor of the software. The discrepancy between simulated and empirical
results, referred to as reality gap [139], can be tackled in terms of domain adaptation [85, 115]. Specifically,
the source domain here corresponds to the simulated phenomenon, offering a wealth of inexpensive
data, and the target domain corresponds to the actual phenomenon, with rare and expensive data; the
goal is to devise accurate target models using the source data and models.

Extending numerical engineering: ML, using both experimental and numerical data, can also be used to
tackle new goals, that are beyond the current state-of-the-art of standard approaches. Inverse problems
are such goals, identifying the parameters or the initial conditions of phenomenons for which the model
is not differentiable, or amenable to the adjoint state method.

A slightly different kind of inverse problem is that of recovering the ground truth when only noisy
data is available. This problem can be formulated as a search for the simplest model explaining the data.
The question then becomes to formulate and efficiently exploit such a simplicity criterion.

Another goal can be to model the distribution of given quantiles for some system: The challenge is to
exploit available data to train a generative model, aimed at sampling the target quantiles.

Examples tackled in TAU are detailed in Section 8.5. Note that the "Cracking the Glass Problem",
described in Section 8.2.3 is yet another instance of a similar problem.

Data-driven numerical engineering: Finally, ML can also be used to sidestep numerical engineering
limitations in terms of scalability, or to build a simulator emulating the resolution of the (unknown)
mechanistic model from data, or to revisit the formal background.

When the mechanistic model is known and sufficiently accurate, it can be used to train a deep network
on an arbitrary set of (space,time) samples, resulting in a meshless numerical approximation of the model
[167], supporting by construction differentiable programming [136].

When no mechanistic model is sufficiently efficient, the model must be identified from the data only.
Genetic programming has been used to identify systems of ODEs [164], through the identification of
invariant quantities from data, as well as for the direct identification of control commands of nonlinear
complex systems, including some chaotic systems [104]. Another recent approach uses two deep neural
networks, one for the state of the system, the other for the equation itself [157]. The critical issues for both
approaches include the scalability, and the explainability of the resulting models. Such line of research
will benefit from TAU unique mixed expertise in Genetic Programming and Deep Learning.

Finally, in the realm of signal processing (SP), the question is whether and how deep networks can be
used to revisit mainstream feature extraction based on Fourier decomposition, wavelet and scattering
transforms [91]. E. Bartenlian’s PhD (started Oct. 2018), co-supervised by M. Sebag and F. Pascal (Centrale-
Supélec), focusing on musical audio-to-score translation [166], inspects the effects of supervised training,
taking advantage from the fact that convolution masks can be initialized and analyzed in terms of
frequency.

3.3 Learning to learn

According to Ali Rahimi’s test of times award speech at NIPS 17, the current ML algorithms have become
a form of alchemy. Competitive testing and empirical breakthroughs gradually become mandatory for
a contribution to be acknowledged; an increasing part of the community adopts trials and errors as
main scientific methodology, and theory is lagging behind practice. This style of progress is typical of
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technological and engineering revolutions for some; others ask for consolidated and well-understood
theoretical advances, saving the time wasted in trying to build upon hardly reproducible results.

Basically, while practical achievements have often passed the expectations, there exist caveats along
three dimensions. Firstly, excellent performances do not imply that the model has captured what was
to learn, as shown by the phenomenon of adversarial examples. Following Ian Goodfellow, some well-
performing models might be compared to Clever Hans, the horse that was able to solve mathematical
exercizes using non verbal cues from its teacher [128]; it is the purpose of Pillar I. to alleviate the Clever
Hans trap (section 3.1).
Secondly, some major advances, e.g. related to the celebrated adversarial learning [121, 115], establish
proofs of concept more than a sound methodology, where the reproducibility is limited due to i) the
computational power required for training (often beyond reach of academic labs); ii) the numerical
instabilities (witnessed as random seeds happen to be found in the codes); iii) the insufficiently docu-
mented experimental settings. What works, why and when is still a matter of speculation, although better
understanding the limitations of the current state of the art is acknowledged to be a priority. After Ali
Rahimi again, simple experiments, simple theorems are the building blocks that help us understand more
complicated systems. Along this line, [147] propose toy examples to demonstrate and understand the
defaults of convergence of gradient descent adversarial learning.
Thirdly, and most importantly, the reported achievements rely on carefully tuned learning architectures
and hyper-parameters. The sensitivity of the results to the selection and calibration of algorithms has
been identified since the end 80s as a key ML bottleneck, and the field of automatic algorithm selection
and calibration, referred to as AutoML or Auto-? in the following, is at the ML forefront.

TAU aims to contribute to the ML evolution toward a more mature stage along three dimensions.
In the short term, the research done in Auto-? will be pursued (section 3.3.1). In the medium term,
an information theoretic perspective will be adopted to capture the data structure and to calibrate the
learning algorithm depending on the nature and amount of the available data (section 3.3.2). In the longer
term, our goal is to leverage the methodologies forged in statistical physics to understand and control the
trajectories of complex learning systems (section 3.3.3).

3.3.1 Auto-*

Participants: Isabelle Guyon, Marc Schoenauer, Michèle Sebag

The so-called Auto-? task, concerned with selecting a (quasi) optimal algorithm and its hyper-
parameters depending on the problem instance at hand, remained a key issue in ML for the last three
decades [87], as well as in optimization at large [127], including combinatorial optimization and constraint
satisfaction [133, 120] and continuous optimization [82]. This issue, tackled by several European projects
along the decades, governs the knowledge transfer to industry, due to the shortage of data scientists. It
becomes even more crucial as models are more complex and their training requires more computational
resources. This has motivated several international challenges devoted to Auto-ML [126] (see also Section
3.4), including the AutoDL challenge series [140] launched in 20195 (see also Section 8.6).

Several approaches have been used to tackle Auto-? in the literature, and TAU has been particularly
active in several of them. Meta-learning aims to build a surrogate performance model, estimating the
performance of an algorithm configuration on any problem instance characterized from its meta-feature
values [161, 120, 83, 82, 119]. Collaborative filtering, considering that a problem instance "likes better"
an algorithm configuration yielding a better performance, learns to recommend good algorithms to
problem instances [169, 148]. Bayesian optimization proceeds by alternatively building a surrogate model
of algorithm performances on the problem instance at hand, and tackling it [112]. This last approach
currently is the prominent one; as shown in [148], the meta-features developed for AutoML are hardly
relevant, hampering both meta-learning and collaborative filtering. The design of better features is
another long-term research direction, in which TAU has recently been [103], ans still is very active. more
recent approach used in TAU [158] extends the Bayesian Optimization approach with a Multi-Armed
Bandit algorithm to generate the full Machine Learning pipeline, competing with the famed AutoSKLearn
[112] (see Section 8.2.1).

5https://autodl.chalearn.org/neurips2019

https://autodl.chalearn.org/neurips2019
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3.3.2 Information theory: adjusting model complexity and data fitting

Participants: Guillaume Charpiat, Marc Schoenauer, Michèle Sebag

In the 60s, Kolmogorov and Solomonoff provided a well-grounded theory for building (probabilistic)
models best explaining the available data [162, 122], that is, the shortest programs able to generate
these data. Such programs can then be used to generate further data or to answer specific questions
(interpreted as missing values in the data). Deep learning, from this viewpoint, efficiently explores a
space of computation graphs, described from its hyperparameters (network structure) and parameters
(weights). Network training amounts to optimizing these parameters, namely, navigating the space of
computational graphs to find a network, as simple as possible, that explain the past observations well.

This vision is at the core of variational auto-encoders [132], directly optimizing a bound on the
Kolmogorov complexity of the dataset. More generally variational methods provide quantitative criteria
to identify superfluous elements (edges, units) in a neural network, that can potentially be used for
structural optimization of the network (Leonard Blier’s PhD, started Oct. 2018).

The same principles apply to unsupervised learning, aimed to find the maximum amount of structure
hidden in the data, quantified using this information-theoretic criterion.

The known invariances in the data can be exploited to guide the model design (e.g. as translation
invariance leads to convolutional structures, or LSTM is shown to enforce the invariance to time affine
transformations of the data sequence [173]). Scattering transforms exploit similar principles [91]. A
general theory of how to detect unknown invariances in the data, however, is currently lacking.

The view of information theory and Kolmogorov complexity suggests that key program operations
(composition, recursivity, use of predefined routines) should intervene when searching for a good compu-
tation graph. One possible framework for exploring the space of computation graphs with such operations
is that of Genetic Programming. It is interesting to see that evolutionary computation appeared in the last
two years among the best candidates to explore the space of deep learning structures [160, 137]. Other
approaches might proceed by combining simple models into more powerful ones, e.g. using “Context
Tree Weighting” [179] or switch distributions [106]. Another option is to formulate neural architecture
design as a reinforcement learning problem [84]; the value of the building blocks (predefined routines)
might be defined using e.g., Monte-Carlo Tree Search. A key difficulty is the computational cost of
retraining neural nets from scratch upon modifying their architecture; an option might be to use neutral
initializations to support warm-restart.

3.3.3 Analyzing and Learning Complex Systems

Participants: Cyril Furtlehner, Aurélien Decelle, François Landes, Michèle Sebag

Methods and criteria from statistical physics have been widely used in ML. In early days, the capacity of
Hopfield networks (associative memories defined by the attractors of an energy function) was investigated
by using the replica formalism [77]. Restricted Boltzmann machines likewise define a generative model
built upon an energy function trained from the data. Along the same lines, Variational Auto-Encoders
can be interpreted as systems relating the free energy of the distribution, the information about the data
and the entropy (the degree of ignorance about the micro-states of the system) [178]. A key promise of
the statistical physics perspective and the Bayesian view of deep learning is to harness the tremendous
growth of the model size (billions of weights in recent machine translation netwowrks), and make them
sustainable through e.g. posterior drop-out [149], weight quantization and probabilistic binary networks
[144]. Such "informational cooling" of a trained deep network can reduce its size by several orders of
magnitude while preserving its performance.

Statistical physics is among the key expertises of TAU, originally only represented by Cyril Furtlehner,
later strenghtened by Aurélien Decelle’s and François Landes’ arrivals in 2014 and 2018. On-going studies
are conducted along several directions.

Generative models are most often expressed in terms of a Gibbs distributions P [S] = exp(−E [S]),
where energy E involves a sum of building blocks, modelling the interactions among variables. This
formalization makes it natural to use mean-field methods of statistical physics and associated inference
algorithms to both train and exploit such models. The difficulty is to find a good trade-off between the
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richness of the structure and the efficiency of mean-field approaches. One direction of research pursued
in TAU, [113] in the context of traffic forecasting, is to account for the presence of cycles in the interaction
graph, to adapt inference algorithms to such graphs with cycles, while constraining graphs to remain
compatible with mean-field inference.

Another direction, explored in TAO/TAU in the recent years, is based on the definition and exploitation
of self-consistency properties, enforcing principled divide-and-conquer resolutions. In the particular
case of the message-passing Affinity Propagation algorithm for instance [182], self-consistency imposes
the invariance of the solution when handled at different scales, thus enabling to characterize the critical
value of the penalty and other hyper-parameters in closed form (in the case of simple data distributions)
or empirically otherwise [114].

A more recent research direction examines the quantity of information in a (deep) neural net along
the random matrix theory framework [94]. It is addressed in Giancarlo Fissore’s PhD, and is detailed in
Section 8.2.3.

Finally, we note the recent surge in using ML to address fundamental physics problems: from tur-
bulence to high-energy physics and soft matter (with amorphous materials at its core) [72] or atro-
physics/cosmology as well. TAU’s dual expertise in Deep Networks and in statistical physics places it in an
ideal position to significantly contribute to this domain and shape the methods that will be used by the
physics community in the future. In that direction, the PhD thesis of Marion Ullmo and Tony Bonnaire
applying statistical method coming either from deep learning or statistical physics to the task of inferring
the structure of the cosmic web has show great succes with recents results discussed in Section 8.2.3.
François Landes’ recent arrival in the team makes TAU a unique place for such interdisciplinary research,
thanks to his collaborators from the Simons Collaboration Cracking the Glass Problem (gathering 13
statistical physics teams at the international level). This project is detailed in Section 8.2.3.

Independently, François Landes is actively collaborating with statistical physicists (Alberto Rosso,
LPTMS, Univ. Paris-Saclay) and physcists at the frontier with geophysics (Eugenio Lippiello, Second
Univ. of Naples) [138, 73]. A CNRS grant (80Prime) finances a shared PhD (Vincenzo Schimmenti), at the
frontier between seismicity and ML (Alberto Rosso, Marc Schoenauer and François Landes).

3.4 Organisation of Challenges

Participants: Cécile Germain, Isabelle Guyon, Marc Schoenauer, Michèle Sebag

Challenges have been an important drive for Machine Learning research for many years, and TAO
members have played important roles in the organization of many such challenges: Michèle Sebag was
head of the challenge programme in the Pascal European Network of Excellence (2005-2013); Isabelle
Guyon, as mentioned, was the PI of many challenges ranging from causation challenges [124], to Au-
toML [125]. The Higgs challenge [76], most attended ever Kaggle challenge, was jointly organized by TAO
(C. Germain), LAL-IN2P3 (D. Rousseau and B. Kegl) and I. Guyon (not yet at TAO), in collaboration with
CERN and Imperial College.

TAU was also particularly implicated with the ChaLearn Looking At People (LAP) challenge series in
Computer Vision, in collaboration with the University of Barcelona [110] including the Job Candidate
Screening Coopetition [107]; the Real Versus Fake Expressed Emotion Challenge (ICCV 2017) [176];
the Large-scale Continuous Gesture Recognition Challenge (ICCV 2017) [176]; the Large-scale Isolated
Gesture Recognition Challenge (ICCV 2017) [176].

Other challenges have been organized in 2020, or are planned for the near future, detailed in Section
8.6. In particular, many of them now run on the Codalab platform, managed by Isabelle Guyon and
maintained at LISN.

4 Application domains

4.1 Computational Social Sciences

Participants: Philippe Caillou, Isabelle Guyon, Michèle Sebag, Paola Tubaro
Collaboration: Jean-Pierre Nadal (EHESS); Marco Cuturi, Bruno Crépon (ENSAE); Thierry Weil (Mines);
Jean-Luc Bazet (RITM)

https://scglass.uchicago.edu/
http://www.pascal-network.org/
https://www.kaggle.com/c/higgs-boson
https://competitions.codalab.org/competitions/15975
https://competitions.codalab.org/competitions/15975
https://competitions.codalab.org/competitions/16611
https://competitions.codalab.org/competitions/16499
https://competitions.codalab.org/competitions/16491
https://competitions.codalab.org/competitions/16491
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Computational Social Sciences (CSS) studies social and economic phenomena, ranging from techno-
logical innovation to politics, from media to social networks, from human resources to education, from
inequalities to health. It combines perspectives from different scientific disciplines, building upon the
tradition of computer simulation and modeling of complex social systems [117] on the one hand, and
data science on the other hand, fueled by the capacity to collect and analyze massive amounts of digital
data.

The emerging field of CSS raises formidable challenges along three dimensions. Firstly, the definition
of the research questions, the formulation of hypotheses and the validation of the results require a tight
pluridisciplinary interaction and dialogue between researchers from different backgrounds. Secondly, the
development of CSS is a touchstone for ethical AI. On the one hand, CSS gains ground in major, data-rich
private companies; on the other hand, public researchers around the world are engaging in an effort to
use it for the benefit of society as a whole [135]. The key technical difficulties related to data and model
biases, and to self-fulfilling prophecies have been discussed in section 3.1. Thirdly, CSS does not only
regard scientists: it is essential that the civil society participate in the science of society [168].

TAO was involved in CSS for the last five years, and its activities have been strengthened thanks to
P. Tubaro’s and I. Guyon’s expertises respectively in sociology and economics, and in causal modeling.
Details are given in Section 8.3.

4.2 Energy Management

Participants: Isabelle Guyon, Marc Schoenauer, Michèle Sebag
Collaboration: Rémy Clément, Antoine Marot, Patrick Panciatici (RTE), Vincent Renault (Artelys)

Energy Management has been an application domain of choice for TAO since the end 2000s, with
main partners SME Artelys (METIS Ilab INRIA; ADEME project POST; on-going ADEME project NEXT),
RTE (See.4C European challenge; two CIFRE PhDs), and, since Oct. 2019, IFPEN. The goals concern i)
optimal planning over several spatio-temporal scales, from investments on continental Europe/North
Africa grid at the decade scale (POST), to daily planning of local or regional power networks (NEXT); ii)
monitoring and control of the French grid enforcing the prevention of power breaks (RTE); iii) improve-
ment of house-made numerical methods using data-intense learning in all aspects of IFPEN activities (as
described in Section 3.2).

The daily maintainance of power grids requires the building of approximate predictive models on the
top of any given network topology. Deep Networks are natural candidates for such modelling, considering
the size of the French grid (∼ 10000 nodes), but the representation of the topology is a challenge when,
e.g. the RTE goal is to quickly ensure the "n-1" security constraint (the network should remain safe even
if any of the 10000 nodes fails). Existing simulators are too slow to be used in real time, and the size of
actual grids makes it intractable to train surrogate models for all possible (n-1) topologies (see Section 8.4
for more details).

Furthermore, predictive models of local grids are based on the estimated consumption of end-
customers: Linky meters only provide coarse grain information due to privacy issues, and very few
samples of fine-grained consumption are available (from volunteer customers). A first task is to transfer
knowledge from small data to the whole domain of application. A second task is to directly predict the
peaks of consumption based on the user cluster profiles and their representativity (see Section 8.4.2).

4.3 Data-driven Numerical Modeling

Participants: Michele Alessandro Bucci, Guillaume Charpiat, Cécile Germain, Isabelle Guyon, Flora Jay,
Marc Schoenauer, Michèle Sebag

As said (section 3.2), in domains where both first principle-based models and equations, and em-
pirical or simulated data are available, their combined usage can support more accurate modelling
and prediction, and when appropriate, optimization, control and design. This section describes such
applications, with the goal of improving the time-to-design chain through fast interactions between
the simulation, optimization, control and design stages. The expected advances regard: i) the quality
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of the models or simulators (through data assimilation, e.g. coupling first principles and data, or re-
pairing/extending closed-form models); ii) the exploitation of data derived from different distributions
and/or related phenomenons; and, most interestingly, iii) the task of optimal design and the assessment
of the resulting designs.

The proposed approaches are based on generative and adversarial modelling [132, 121], extending
both the generator and the discriminator modules to take advantage of the domain knowledge.

A first challenge regards the design of the model space, and the architecture used to enforce the
known domain properties (symmetries, invariance operators, temporal structures). When appropriate,
data from different distributions (e.g. simulated vs real-world data) will be reconciled, for instance
taking inspiration from real-valued non-volume preserving transformations [100] in order to preserve the
natural interpretation.
Another challenge regards the validation of the models and solutions of the optimal design problems.
The more flexible the models, the more intensive the validation must be, as reminded by Leon Bottou.
Along this way, generative models will be used to support the design of "what if" scenarios, to enhance
anomaly detection and monitoring via refined likelihood criteria.

In the application case of dynamical systems such as fluid mechanics, the goal of incorporating
machine learning into classical simulators is to speed up the simulations. Many possible tracks are
possible for this; for instance one can search to provide better initialization heuristics to solvers (which
make sure that physical constraints are satisfied, and which are responsible of most of the computational
complexity of simulations) at each time step; one can also aim at predicting directly the state at t +100, for
instance, or at learning a representation space where the dynamics are linear (Koopman - von Neumann).
The topic is very active in the deep learning community. To guarantee the quality of the predictions,
concepts such as Lyapunov coefficients (which express the speed at which simulated trajectories diverge
from the true ones) can provide a suitable theoretical framework.

5 Social and environmental responsibility

5.1 Footprint of research activities

Thanks to the pandemia, the impact of our activities regarding carbon footprint have decreased a lot,
from our daily commute that have almost completely disappeared as we all switched to tele-working
to the transformation of all conferences and workshops into virtual events. We all miss the informal
discussions that took place during coffee breaks in the lab as well as during conferences. But when
the pandemia vanishes, after the first moments of joy when actually meeting again physically with our
colleagues, we will have to think of a new model for the way we work: we were indeed discussing before
the pandemia about how to reduce the carbon footpring of the conferences, but now we know that there
exist solutions, even though not perfect.

5.2 Impact of research results

All our work on Energy (see Sections 4.2) is ultimately targeted toward optimizing the distribution of
electricity, be it in planning the investments in the power network by more accurate previsions of user
consumption, or helping the operators of RTE to maintain the French Grid in optimal conditions.

At the outbreak of the covid pandemic in Europe, François Landes got involved in the ICUBAM projet,
which aimed at easing the practitionners’ job, by providing them with real-time (ICU) beds availability
in nearby hospitals. The data was fed by doctors themselves, and they could in return easily picture the
ongoing (un)availability of beds in participating hospitals, thus facilitating the task of patient transfer
[75].
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6 Highlights of the year

6.1 Prestigious publications

• Spotlight paper at ICLR (top 5% submissions) [38]
Herilalaina Rakotoarison, Louisot Milijaona, Andry Rasoanaivo, Michèle Sebag, Marc Schoenauer
Learning Meta-features for AutoML.
International Conference on Learning Representations , 2022 (already visible on OpenReview

6.2 Selective Fundings

TAU secured the following funded research projects (see Section 10 for more details):

• Bilateral collaboration with Fujitsu, "Causal inference in high dimension", Marc Schoenauer and
Michèle Sebag coordinators.

• ANR project RoDAPoG, "Robust Deep learning for Artificial genomics and Population Genetics",
Flora Jay, coordinator.

• ANR project SPEED "Simulating Physical PDEs Efficiently with Deep Learning", Lionel Mathelin
(LIMSI) coordinator.

• Inria Challenge OceanAI, "AI, Data, Models for a Blue Economy", Nayat Sanchez Pi (Inria Chile)
coordinator.

7 New software and platforms

7.1 New software

7.1.1 Codalab

Keywords: Benchmarking, Competition

Functional Description: Challenges in machine learning and data science are competitions running
over several weeks or months to resolve problems using provided datasets or simulated environ-
ments. Challenges can be thought of as crowdsourcing, benchmarking, and communication tools.
They have been used for decades to test and compare competing solutions in machine learning in
a fair and controlled way, to eliminate “inventor-evaluator" bias, and to stimulate the scientific com-
munity while promoting reproducible science. See our news: https://codalab.lisn.upsaclay.fr/highlights.

The new Codalab infrastructure deployed in 2021 includes vast amounts of storage over a dis-
tributed Minio (4 physical servers, each with 12 disks of 16 TB) spread over 2 buildings for robust-
ness, and 20 GPU workers in the backend, thanks for the sponsorship of région Ile-de-France,
ANR, Université Paris-Saclay, CNRS, INRIA, and ChaLearn, to support 50,000 users, organizing or
participating each year to hundreds of competitions.

Some of the areas in which Codalab is used include Computer vision and medical image analysis,
natural language processing, time series prediction, causality, and automatic machine learning.
Codalab has been selected by the Région Ile de France to organize industry-scale challenges.

TAU continues expanding Codalab to accommodate new needs, including teaching. Check recent
student projects: https://saclay.chalearn.org/

News of the Year:
L2RPN The Learning to Run a Power Network competition track in collaboration with RTE France
continues. The ICAPS 2021 competition allowed us to go one step further towards making the grid
control with reinforcement learning more realistic, allowing adversarial attacks. A new open-source
framework Grid2Operate was released.

AutoDL The Automated Deep Learning (AutoDL) challenge series evolved in the direction of
meta learning (https://metalearning.chalearn.org/). We organized a competition fr NwurIPS 2021

https://openreview.net/forum?id=DTkEfj0Ygb8
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sponsored by Google and Microsoft. The results, which will appear in PMLR, indicate that few
shot learning (5 shots, 5 classes) is now within reach of the state of the art for small image object
recognition, but heavily relies on pre-trained backbone networks, trained on large image datasets.

Industry challenges The first Ile de France industry challenge was organized on Codalab, in col-
laboration with Dassault aviation and the results were presented at ICMLA 2021. The goal was to
predict sensor data indicating constrains on the fuselage. Surprisingly conventional methods based
on ensembles of decision trees dominated this task and outperformed deep learnign methods.

World use of the platform In 2021, on average, 50 competitions per month were organized on
Codalab by researchers from all over the world. Codalab is also used in education to organize code
submission homework.

Codabench December 2021: Codabench (beta) is announced at NeurIPS 2021, see https://www.codabench.org/.

URL: http://competitions.codalab.org

Contact: Isabelle Guyon

7.1.2 Cartolabe

Name: Cartolabe

Keyword: Information visualization

Functional Description: The goal of Cartolabe is to build a visual map representing the scientific activity
of an institution/university/domain from published articles and reports. Using the HAL Database,
Cartolabe provides the user with a map of the thematics, authors and articles . ML techniques are
used for dimensionality reduction, cluster and topics identification, visualisation techniques are
used for a scalable 2D representation of the results.

Cartolabe has in particular been applied to the Grand Debat dataset (3M individual propositions
from french Citizen, see https://cartolabe.fr/map/debat). The results were used to test both the
scaling capabilities of Cartolabe and its flexibility to non-scientific and non-english corpuses. We
also Added sub-map capabilities to display the result of a year/lab/word filtering as an online
generated heatmap with only the filtered points to facilitate the exploration. Cartolabe has also
been applied in 2020 to the COVID-19 kaggle publication dataset (Cartolabe-COVID project) to
explore these publications.

URL: http://www.cartolabe.fr/

Publication: hal-02499006

Contact: Philippe Caillou

Participants: Philippe Caillou, Jean Daniel Fekete, Michèle Sebag, Anne-Catherine Letournel

Partners: LRI - Laboratoire de Recherche en Informatique, CNRS

7.2 New platforms

Participants: Guillaume Charpiat, Isabelle Guyon, FLora Jay, Anne-Catherine Letournel, Adrien Pavao,
Théophile Sanchez, Tran Tuan

• CODALAB: In 2021, Codalab’s growth to more than 50 competitions per month has required us
to upgrade the software infrastructure, add new servers, and storage space. The new Codalab
infrastructure in now stable. We have migrated the storage over a distributed Minio (4 physical
servers, each with 12 disks of 16 TB) spread over 2 buildings for robustness, and added 10 more
GPUs to the existing 10 previous ones in the backend. A lot of horsepower to support Industry-
strength challenge. This was made possible with the sponsorship of région Ile-de-France, ANR,
Université Paris-Saclay, CNRS, INRIA, and ChaLearn.

http://competitions.codalab.org
http://www.cartolabe.fr/
https://hal.inria.fr/hal-02499006
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• In 2021, we also rolled out a new version of Codalab in Python 3 will upgraded libraries and better
admin features.

• DNA-DNA: Deep Neural Architectures for DNA. We are releasing an open-source software platform
dedicated to deep learning for population genetics [67].

8 New results

8.1 Toward Good AI

8.1.1 Causal Modeling

Participants: Philippe Caillou, Isabelle Guyon, Michèle Sebag
PhDs: Armand Lacombe
Post-doc: Ksenia Gasnikova, Saumya Jetley
Collaboration: Olivier Allais (INRAE); Jean-Pierre Nadal & Annick Vignes (CAMS, EHESS); David Lopez-
Paz (Facebook).

The causal modelling activity has been continued in 2020 along two directions. The first one con-
cerns the impact of nutrition on health. This study started in the context of the Initiative de Recherche
Stratégique Nutriperso (2016-2018), headed by Louis-George Soler, INRAE, based on the wealth of data
provided by the Kantar panel (170,000 bought products by 10,000 households over Year 2014). The
challenges are manifold. Firstly, the number of potential causes is in the thousands, thus larger by an
order of magnitude compared to most causal modelling studies. Secondly, a "same" product (e.g. "pizza")
has vastly different impacts on health, depending on its composition and (hyper)processing. Lastly, the
data is ridden with hidden confounders (e.g. with no information about smoking or sport habits).

On the one hand, the famed Deconfounder approach [177, 95, 151, 129] has been investigated and
extended to account for the known presence of hidden confounders, as follows. A probabilistic model of
the nutritional products based on Latent Dirichlet Allocation has been used, the factors of which are used
as substitute confounders (SC) to block the effects of the confounders. On the other hand, the innovative
notion of "micro-interventions" has been defined, operating on the basket of products associated to a
household to e.g. replace the products with organic products; or increase the amount of alcohol ingested.
The average treatment effect of the micro-interventions has been assessed conditionally to each SC, after
correction for the biases related to the socio-economic description of the households [33].

Finally, causality is also at the core of TAU participation in the INRIA Challenge OceanIA, that started
in 2021 [47], and will analyze the ocean data fetched by the Tara expedition. Other motivating applications
for causal modeling are described in section 4.1.

8.1.2 Explainability

Participants: Isabelle Guyon, François Landes, Alessandro Leite, Marc Schoenauer, Michèle Sebag
PhD: Roman Bresson
Collaboration: MyDataModels; Thalès

Causal modeling is one particular method to tackle explainability, and TAU has been involved in
other initiatives toward explainable AI systems. Following the LAP (Looking At People) challenges,
Isabelle Guyon and co-organizers have edited a book [159] that presents a snapshot of explainable and
interpretable models in the context of computer vision and machine learning. Along the same line,
they propose an introduction and a complete survey of the state-of-the-art of the explainability and
interpretability mechanisms in the context of first impressions analysis [108]. Other directions in this line
of research include explaining missing data, with applications in computer vision [111].

Another direction is investigated in Roman Bresson’s PhD, co-supervised with Johanne Cohen (LISN-
GALAC), Christophe Labreuche (Thalès) and Eyke Hullermeier (U. Paderborn). The transcription of
hierarchical Choquet models (HCI) into a neural architecture enforcing by design the HCI constraints
of monotonicity and additivity has been proposed, supporting the end-to-end learning of the HCI with
a known hierarchy [74]. A patent (Bresson-Labreuche-Sebag-Cohen) has been filed by Thalès. The
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approach has been extended to achieve the automatic identification of the hierarchy as well; the unicity
of the structure under canonic assumptions is being established [29].

The team is also involved in the proposal for the IPL HyAIAI (Hybrid Approaches for Interpretable AI),
coordinated by the LACODAM team (Rennes) dedicated to the design of hybrid approaches that combine
state of the art numeric models (e.g., deep neural networks) with explainable symbolic models, in order
to be able to integrate high level (domain) constraints in ML models, to give model designers information
on ill-performing parts of the model, to provide understandable explanations on its results. On-going
collaboration with the Multispeech team in Nancy is concerned with the use of background knowledge to
improve the performances of foundational models in NLP [40].

A completely original approach to DNN explainability might arise from the study of structural glasses
(8.2.3), with a parallel to Graph Neural Networks (GNNs), that could become an excellent non-trivial
example for developing explainability protocols.

Genetic Programming [81] is an Evolutionary Computing technique that evolves models as analytical
expressions (Boolean formulae, functions, LISP-like code), that are hopefully easier to understand than
black-box NNs with hundreds of thousands of weights. This idea has been picked up by the European
FET project TRUST-AI (Transparent, Reliable and Unbiased Smart Tool for AI) that started in October
2020. Alessandro Leite joined the project (and the TAU team) in February 2021 on an ARP position. He
supervised Mathurin Videau’s Master thesis dealing with explainable reinforcement learning using GP
[70]. In the mean time, Marc Schoenauer is working together with the startup company MyDataModels
whose lighthouse product is based on an original variant of Genetic Programming [28]. Both approach
are promising just-started or on-going works. Another marginal work on the Evolutionary Computation
side: the revival of the Evolving Objects platform [31].

8.1.3 Robustness of AI Systems

Participants: Guillaume Charpiat, Marc Schoenauer, Michèle Sebag
PhDs: Julien Girard, Roman Bresson
Collaboration: Zakaria Chihani (CEA); Johanne Cohen (LISN-GALAC) and Christophe Labreuche (Thalès);
Eyke Hullermeier (U. Paderborn, Germany).

As said (Section 3.1.2), TAU is considering two directions of research related to the certification of
MLs.

The first direction considers the formal validation of Neural Networks. The topic of provable deep
neural network robustness has raised considerable interest in recent years. Most research in the litera-
ture has focused on adversarial robustness, which studies the robustness of perceptive models in the
neighbourhood of particular samples. However, other works have proved global properties of smaller
neural networks. Yet, formally verifying perception remains uncharted. This is due notably to the lack
of relevant properties to verify, as the distribution of possible inputs cannot be formally specified. With
Julien Girard-Satabin’s PhD thesis, which was defended this year, we had proposed to take advantage
of the simulators often used either to train machine learning models or to check them with statistical
tests, a growing trend in industry. Our formulation [118] allowed us to formally express and verify safety
properties on perception units, covering all cases that could ever be generated by the simulator, to the
difference of statistical tests which cover only seen examples.

To go further and alleviate the computational complexity of formally validating a neural network
(naive complexity: exponential in the number of neurons), we explore different strategies to apply solvers
to sub-problems that are much simpler. We rely on the fact that ReLU networks (the most common type
of modern networks) are actually piecewise-linear, yielding extremely simple problems on each piece [41,
65]. All results obtained are presented in detail in Julien’s PhD [53].

The second direction, already mentioned in the section devoted to explainability, concerns the
indentifiability of the neural net implementing a hierarchical Choquet integral, in the large sample limit.

Another direction, more remotely related to the robustness of AI systems, is concerned with privacy.
Our primary motivation was to contribute to the understanding of the pandemy, with no former col-
laboration with hospitals, and therefore, no access to real data. An approach was developed to achieve
excessively private learning through a differential-privacy compliant access to the only marginals of the
data [42].

https://cordis.europa.eu/project/id/952060/fr
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8.2 Learning to Learn

8.2.1 Auto-*

Participants: Guillaume Charpiat, Isabelle Guyon, Marc Schoenauer, Michèle Sebag
PhDs: Léonard Blier, Guillaume Doquet, Zhengying Liu, Adrien Pavao, Herilalaina Rakotoarison, Hoazhe
Sun, Manon Verbockhaven, Romain Egele
Collaborations: Vincent Renault (SME Artelys); Yann Ollivier (Facebook); Wei-Wei Tu (4Paradigm, Chine);
André Elisseeff (Google Zurich); Prasanna Balaprakash (Argonne National labs),among others (for a full
list see https://autodl.chalearn.org/ and https://metalearning.chalearn.org/)

Auto-? studies at TAU investigate several research directions.
After proposing MOSAIC [158], that extends and adapts Monte-Carlo Tree Search to explore the struc-

tured space of pre-processing + learning algorithm configurations, and performs on par with AutoSklearn,
the winner of Auto-? international competitions in the last few years, Herilalaina Rakotoarison explored
in his PhD an original approach in cooperation with Gwendoline de Bie and Gabriel Peyre (ENS). The
neural learning from distributions proposed by Gwendoline [88] has been extended to achieve equivariant
learning. Formally, the proposed DIDA architecture (Distribution-based Invariant Deep Architecture)
learns from set of samples, regardless of the order of the samples and of their descriptive features. Two
original tasks have been proposed to train a DIDA [62]: detecting whether two set of samples (with
different descriptive features) are extracted from the same overall dataset; ranking two hyper-parameter
configurations of a given classification algorithm) w.r.t. their predictive accuracy on the sample set. On
both tasks, DIDA significantly outperforms the state of the art. Most interestingly, the main limitation
incurred on the latter task (which constitutes a proto-task of AutoML) is the lack of sufficient data. Some
augmentation process based on OpenML [174] was required to solve this latter task.

Follow-up work within Héri’s PHD is concerned with learning meta-features for tabular data to address
the lack of expressiveness of the standard Hand-Crafted ones. The idea is to use Optimal Transport to
align the distribution of the datasets from the training meta-data with that of their best hyperparameter
settings in the space of hyperparameter conigurations. The results will be presented as a spotlight (top
5% submissions) at ICLR 2022 [38].

Heri also contributed to a large benchmarking effort together with Olivier Teytaud, former member of
the team now with Facebook AI Research [20].

In a second direction, with the internship and starting PhD thesis of Manon Verbockhaven, we adopt
a functional analysis viewpoint in order to adapt on the fly the architecture of neural networks that are
being trained. This allows to start training neural networks with very few neurons and layers, and add
them where they are needed, instead of training huge architectures and then pruning them, a common
practice in deep learning, for optimization reasons. For this, we quantify the lack of expressivity of a
neural network being trained, by analyzing the difference between how the backpropagation would like
the activations to change and what the tangent space of the parameters offers as possible activation
variations. We can then localize the lacks of expressivity, and add neurons accordingly. It turns out that
the optimal weights of the added neurons can be computed in closed form.

A last direction of investigation concerns the design of challenges, that contribute to the collective
advance of research in the Auto-? direction. The team has been very active in the series of AutoML [170]
[109] and AutoDL [19], which has been extended to Meta-Learning, with support from Microsoft, Google,
4Paradigm and ChaLearn. An account of the AutoDL challenge series was published following a the
NeurIPS 2020 competition track [143]. Post-challenge analyses were conducted on the Jean-Zay super
computer and the results have been published in TPAMI paper [19]. The results of the first edition of
the few-shot learning competition, accepted in conjunction with a workshop on meta-learning at the
AAAI 2021 conference (with the sponsorship of Microsoft and Google who provided cloud credits), were
published in PMLR [17]. A scaled up version was then accepted to the competition program of NeurIPS
2021, and the analysis is under way. The current main take-away is the importance of learning good
feature representations. Sef-supervised learning seems to be an avenue with great future, allowing to train
reprsentations without costly human labeling. A new challenge accepted as part of the WCCI competition
program 2022 in currently running. Another challenge on Neural Architecture Search (NAS) has been run
together with a workshop at the CVPR 2021 conference. Preliminary results on NAS have been produced
by one of our interns (Romain Egele [32]). Further developments have led to effec tive algorithms to
conduct simultaneously NAS and hyper-parameter selection [64]. More details on challenges are found

https://autodl.chalearn.org/
https://metalearning.chalearn.org/
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in Section 8.6).

8.2.2 Deep Learning: Practical and Theoretical Insights

Participants: Guillaume Charpiat, Isabelle Guyon, Marc Schoenauer, Michèle Sebag
PhDs: Léonard Blier, Zhengying Liu, Adrien Pavao, Haozhe Sun, Romain Egele
Collaboration: Yann Ollivier (Facebook AI Research, Paris)

Although a comprehensive mathematical theory of deep learning is yet to come, theoretical insights
from information theory or from dynamical systems can deliver principled improvements to deep
learning and/or explain the empirical successes of some architectures compared to others.

During his CIFRE PhD with Facebook AI Research Paris, co-supervised by Yann Ollivier (former TAU
member), Léonard Blier has properly formalized the concepts of successor states and multi-goal functions
[58], in particular in the case of continuous state spaces. This allowed him to define unbiased algorithms
with finite variance to learn such ojects, including the continuous case thanks to approximation functions.
In the case of finite environments, new convergence bounds have been obtained for the learning of the
value function. These new algorithms capable of learning successor states in turn lead to define and learn
new representations for the state space.

The AutoDL challenges, co-organized in TAU (in particular by Isabelle Guyon, and by Zhengying Liu
within his PhD), also contribute to a better understanding of Deep Learning. It is interesting to note
that no Neural Architecture Search algorithm was proposed to solve the different challenges in AutoDL
(corresponding to different data types). See section 8.6 for more details.

The meta-learning setting, which was devised for the Auto* challenges was analyzed theroretically
by Zhengying Liu [141]. Assuming the perfect knowledge of the meta-distribution (i.e., in the limit
of a very large number of training tasks), the paper investigates under which conditions algorithm
recommendation can benefit from meta-learning, and thus, in some sense,“defeat” the No-Free-Lunch
theorem. Four meta-predict strategies are analyzed: Random, Mean, Greedy and Optimal. Conditions of
optimality are investigated and experiments conducted on artificial and real data. All results are detailed
in Zhengying’s PhD [54]. Some of the directions outlined in this thesis have been pursued by our intern
Hung Manh Nguyen, in his work on applying Reinforcement Learning to meta-learing from learning
curves [34]. He demostrated that methods such as DDQN can learn policies that choose best suited
algorithms to a given task, in the process of training, without having to wait for DL methods to converge,
a big time-saving achievement. Such methods outperform all baselines, including Bayesian Optimization
(currently the state of the art).

Our new PhD student Haozhe Sun has begun working on the problem of modularity in Deep Learning.
The current trend in Artificial Intelligence (AI) is to heavily rely on systems capable of learning from
examples, such as Deep learning (DL) models, a modern embodiment of artificial neural networks. While
numerous applications have made it to market in recent years (including self-driving cars, automated
assistants, booking services, and chatbots, improvements in search engines, recommendations, and
advertising, and heath-care applications, to name a few) DL models are still notoriously hard to deploy in
new applications. In particular, the require massive numbers of training examples, hours of GPU training,
and highly qualified engineers to hand-tune their architectures. This thesis will contribute to reduce the
barrier of entry in using DL models for new applications, a step towards "democratizing AI".

The angle taken will be to develop new Transfer Learning (TL) approaches, based on modular DL
architectures. Transfer learning encompasses all techniques to speed up learning by capitalizing on
exposure to previous similar tasks. For instance, using pre-trained networks is a key TL tactic used
by winners of the recent AutoDL challenge. The doctoral candidate will push forward the notion of
reusability of pre-trained networks in whole or in part (modularity). Thus far the student has developed
a benchmarking environment called OmniPrint to general problems in TL [50], which lends itself to
exploring combinatorial optimization problems.

Our new PhD student Romain Egele has been working in collaboration with Argonne National Labs
(USA) has been actively working on Neural Architecture Search (NAS). He developed a package called
DeepHyper, allowing users to conduct NAS with genetic algorithms using TensorFlow or PyTorch, the
principal Deep Learning frameworks [32]. His contributions include applying Recurrent Neural Network
Architecture Search for Geophysical Emulation and Scalable Reinforcement-Learning-Based Neural
Architecture Search for Cancer Deep Learning Research.



Project TAU 19

8.2.3 Analyzing and Learning Complex Systems

Participants: Cyril Furtlehner, Aurélien Decelle, François Landes
PhDs: Giancarlo Fissore, Tony Bonnaire, Marion Ullmo
Collaboration: Jacopo Rocchi (LPTMS Paris Sud); the Simons team: Rahul Chako (post-doc), Andrea Liu
(UPenn), David Reichman (Columbia), Giulio Biroli (ENS), Olivier Dauchot (ESPCI).; Clément Vignax
(EPFL); Yufei Han (Symantec), Nabila Aghanim.

Generative models constitute an important piece of unsupervised ML techniques which is still under
rapid developpment. In this context insights from statistical physics are relevent in particular for energy
based models like restricted Boltzmann machines. The information content of a trained restricted
Boltzmann machine (RBM) and its learning dynamics can be analyzed precisely with help of ensemble
averaging techniques [98, 99]. More insight can be obtained by looking at data of low intrinsic dimension,
where exact solutions of the RBM can be obtained [14] thanks to a convex relaxation, along with a
Coulomb interpretation of the model, allowing to detect important shortcommings of standard training
procedures and their possible resolution in views of concrete applications. In particular we have found a
1st order transition mechanisms that may plague the learning in a more advanced part of the learning.
To overcome this problem we have identified two possible solutions. One is based on a theoretical
observation relating the learning process to a regularized linear regression, after considering a convex
relaxation of the model [14]. The other way [30] is to take advantage of out-of-equilibrium phenomena
occuring when training the RBM with Monte Carlo chains that do not converge toward the equilibrium
distribution. In this setting, it is possible to set up a precise dynamical process that will be learned and
which does not need very long equilibration time. When the RBM is trained in that way, by taking the
same dynamics used for the learning regime, when generating new data, we can avoid the problem raised
by the first order transition. From the practical point of view, we have proposed a monitoring procedure
involving a set of metrics [30] to insure a correct and efficient learning. While it is known that training of
RBMs is difficult, our recent findings should help us ensuring to perform this task correctly.

Beside this,a long term project on traffic prediction based on different mean-field methods, sparse
inverse covariances and belief propagation has been wrapped up in [18] with extensive experiments on
real data.

As mentioned earlier, the use of ML to address fundamental physics problems is quickly growing. In
that direction two different directions have been taken. On one hand, the PhD thesis of M. Ullmo and
T. Bonnaire is focusing on dealing with the charactirization of the cosmic web (the baryionic structure
taking place at large scale in our universe) in order to track the so-called missing baryons of the standard
theory. M. Ullmo demonstrated the faisability of using Generative Adversarial Network (GAN) on the
distributions dark matter at cosmological scale (up to hundreds of Mpc) both using data coming from
2D simulation and 3D simulations [26]. In that setting, she also developed a novel building an encoder
capable of inferring the latent structure of the GAN for a given image and showing that many details are
recovered. T. bonnaire on his side worked on designing a new method in order to classifying the structure
of the cosmic web into clusters and filaments, directly from the position of the dark matter galaxies. To
do so, he developed a method based on the Gaussian mixture model with a prior forcing the centers to
"live" on a tree-graph: two centers sharing an edge on this graph benefit from an attractive attraction,
forcing the algorithm to adapt the center’s position taking into account both the density distribution and
the shape of the prior [90],[59, 15]. This method has been further developed for handling in particular
possible outliers and put into a general formalism [16].

On the other hand, it leads to some methodological mistakes from newcomers, that have been
investigated by Rémi Perrier (2 month internship). One example is the domain of glasses (how the
structure of glasses is related to their dynamics), which is one of the major problems in modern theoretical
physics [80]. The idea is to let ML models automatically find the hidden structures (features) that control
the flowing or non-flowing state of matter, discriminating liquid from solid states. These models can then
help identifying "computational order parameters", that would advance the understanding of physical
phenomena [72, 15], on the one hand, and support the development of more complex models, on the
other hand. More generally, attacking the problem of amorphous condensed matter by novel Graph
Neural Networks (GNN) architectures is a very promising lead, regardless of the precise quantity one
may want to predict. Currently GNNs are engineered to deal with molecular systems and/or crystals, but
not to deal with amorphous matter. This second axis is currently being attacked in collaboration with
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Clément Vignac (PhD Student at EPFL), using GNNs, and more recently with a promising M2 internship
(Francesco Pezzicoli). Furthermore, this problem is new to the ML community and it provides an original
non-trivial example for engineering, testing and benchmarking explainability protocols.

Another direction of research related to learning to learn in complex systems has been investigated in
collaboration with Omar Shrit (LISN, ROCS), in order to learn decentralized controllers for a swarm of
quadcopters [39, 48]. The principle consists in alternatively generating data using the Gazebo simulator,
and labelling these data to learn a better controller via supervised learning. The approach is iterated.
The originality lies in using the strength of communication signal to infer the distance among the
quadcopters. The exploitation of the data via ML proves an efficient and robust way to handle the noise
in the communication signal.

8.3 Computational Social Sciences

Computational Social Sciences (CSS) is making significant progress in the study of social and economic
phenomena thank to the combination of social science theories and new insight from data science. While
the simultaneous advent of massive data and unprecedented computational power has opened exciting
new avenues, it has also raised new questions and challenges.

Several studies are being conducted in TAU, about labor (labor markets, the labor of human an-
notators for AI data, quality of life and economic performance), about nutrition (health, food, and
socio-demographic issues), around Cartolabe, a platform for scientific information system and visual
querying and around GAMA, a multi-agent based simulation platform.

8.3.1 Labor Studies

Participants: Philippe Caillou, Isabelle Guyon, Michèle Sebag, Paola Tubaro
PhDs: Guillaume Bied, Armand Lacombe, Elinor Wahal, Assia Wirth
Post-Docs: Saumya Jetley
Engineers: Raphael Jaiswal, Victor Alfonso Naya
Collaboration: Jean-Pierre Nadal (EHESS); Marco Cuturi, Bruno Crépon (ENSAE); Antonio Casilli, Ulrich
Laitenberger (Telecom Paris); Odile Chagny (IRES); Francesca Musiani, Mélanie Dulong de Rosnay
(CNRS); José Luis Molina (Universitat Autònoma de Barcelona); Antonio Ortega (Universitat de València);
Julian Posada (University of Toronto)

A first area of activity of TAU in Computational Social Sciences is the study of labor, from the func-
tioning of the job market, to the rise of new, atypical forms of work in the networked society of internet
platforms, and the quality of life at work.

Job markets Two projects deal with the domain of job markets and machine learning. The DATAIA
project Vadore, in collaboration with ENSAE and Pôle Emploi, has two goals. First, to improve the
recommendation of jobs for applicants (and the recommendation of applicants to job offers). The main
originalities in this project are: i) to use both machine learning and optimal transport to improve the
recommendation by learning a matching function for past hiring, and then to apply optimal transport-like
bias to tackle market congestion (e.g. to avoid assigning many applicants to a same job offer); ii) to use
randomized test on micro-markets (AB testing) in collaboration with Pôle Emploi to test the global impact
of the algorithms. First results on past data have been published about congestion avoidance algorithms
[43] and about the economic analysis of the recommandation results [46].

The JobAgile project, BPI-PIA contract, coll. EHESS, Dataiku and Qapa, deals with low salary interim
job recommendations. A main difference with the Vadore project relies on the high reactivity of the
Qapa and Dataiku startups: i) to actually implement AB-testing; ii) to explore related functionalities,
typically the recommendation of formations; iii) to propose a visual querying of the job market, using the
Cartolabe framework (below).

The human labor behind AI
We look at data "micro-workers" who perform essential, yet marginalized and poorly paid tasks

such as labeling objects in a photograph, translating or transcribing short texts, or recording utterances.
Micro-workers are recruited through specialist intermediaries across supply chains that span the globe
and reproduce inherited North-South outsourcing relationships [21]. Further observed inequalities are
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gender-based [24]. Despite the opportunity to telework, the COVID-19 pandemic has adversely affected
these workers, widening the gap that separates them from the formally employed [23]. Current work
extends this research to look at the demand for these non-standard forms of labor that emanate from
companies, notably in France and Germany [56].

The possibility to use micro-work for research purposes (for example, in online surveys and experi-
ments) raises specific ethical issues [51] that add to the rising number of challenges in today’s science
[25] and requires adapted responses at all stages of research, from data collection to analysis and even
dissemination of results [22].

8.3.2 Health, food, and socio-demographic relationships

Participants: Philippe Caillou, Michèle Sebag, Paola Tubaro
PhD: Armand Lacombe
Post-doc: Ksenia Gasnikova, Saumya Jetley
Collaboration: Louis-Georges Soler, Olivier Allais (INRA); Jean-Pierre Nadal, Annick Vignes (CAMS,
EHESS)

Another area of activity concerns the relationships between eating practices, socio-demographic
features and health, and its links with causal learning (see also Section 8.1.1), that has been continued in
2020.

The study about the impact of nutrition on health started in the context of the Initiative de Recherche
Stratégique Nutriperso (2016-2018), headed by Louis-George Soler, INRAE, based on the wealth of data
provided by the Kantar panel (170,000 bought products by 10,000 households over Year 2014). The
challenges are manifold. Firstly, the number of potential causes is in the thousands, thus larger by an
order of magnitude compared to most causal modelling studies. Secondly, a "same" product (e.g. "pizza")
has vastly different impacts on health, depending on its composition and (hyper)processing. Lastly, the
data is ridden with hidden confounders (e.g. with no information about smoking or sport habits).

On the one hand, the famed Deconfounder approach [177, 95, 151, 129] has been investigated and
extended to account for the known presence of hidden confounders, as follows. A probabilistic model of
the nutritional products based on Latent Dirichlet Allocation has been used, the factors of which are used
as substitute confounders (SC) to block the effects of the confounders. On the other hand, the innovative
notion of "micro-interventions" has been defined, operating on the basket of products associated to a
household to e.g. replace the products with organic products; or increase the amount of alcohol ingested.
The average treatment effect of the micro-interventions has been assessed conditionally to each SC, after
correction for the biases related to the socio-economic description of the households. Submission in
preparation.

8.3.3 Scientific Information System and Visual Querying

Participants: Philippe Caillou, Michèle Sebag
Engineers: Anne-Catherine Letournel, Victor Alfonso Naya
Collaboration: Jean-Daniel Fekete (AVIZ, Inria Saclay)

A third area of activity concerns the 2D visualisation and querying of a corpus of documents. Its initial
motivation was related to scientific organisms, institutes or Universities, using their scientific production
(set of articles, authors, title, abstract) as corpus. The Cartolabe project (see also Section 7) started as an
Inria ADT (coll. TAO and AVIZ, 2015-2017). It received a grant from CNRS (coll. TAU, AVIZ and HCC-LRI,
2018-2019).

The originality of the approach is to rely on the content of the documents (as opposed to, e.g. the
graph of co-authoring and citations). This specificity allowed to extend Cartolabe to various corpora, such
as Wikipedia, Bibliotheque Nationale de France, or the Software Heritage. Cartolabe was also applied in
2019 to the Grand Debat dataset: to support the interactive exploration of the 3 million propositions; and
to check the consistency of the official results of the Grand Debat with the data. Cartolabe has also been
applied in 2020 to the COVID-19 kaggle publication dataset (Cartolabe-COVID project) to explore these
publications.

Among its intended functionalities are: the visual assessment of a domain and its structuration (who is
expert in a scientific domain, how related are the domains); the coverage of an institute expertise relatively
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to the general expertise; the evolution of domains along time (identification of rising topics). A round of
interviews with beta-user scientists has been performed in 2019-2020. Cartolabe usage raises questions
at the crossroad of human-centered computing, data visualization and machine learning: i) how to deal
with stressed items (the 2D projection of the item similarities poorly reflects their similarities in the high
dimensional document space; ii) how to customize the similarity and exploit the users’ feedback about
relevant neighborhoods. A statement of the current state of the project was published in 2021 [12].

8.3.4 Multi-Agent based simulation framework for social science

Participants: Philippe Caillou
Collaboration: Patrick Taillandier (INRA), Alexis Drogoul and Nicolas Marilleau (IRD), Arnaud Grignard
(MediaLab, MIT), Benoit Gaudou (Université Toulouse 1)

Since 2008, P. Caillou contributes to the development of the GAMA platform, a multi-agent based
simulation framework. Its evolution is driven by the research projects using it, which makes it very well
suited for social sciences studies and simulations.

The focus of the development team in 2020 was on the stability of the platform and on the documen-
tation to provide a stable and well documented framework to the users.

8.4 Energy Management

8.4.1 Power Grids Management

Participants: Isabelle Guyon, Marc Schoenauer
PhDs: Balthazar Donon, Wenzhuo Liu
Collaboration: Rémi Clément, Patrick Panciatici (RTE)

Our collaboration with RTE, during Benjamin Donnot’s (2016-2019) [101] and Balthazar Donon’s
CIFRE PhDs (to be defended in March 2022), is centered on the maintainance of the national French
Power Grid. In order to maintain the so-called "(n-1) safety" (see Section 4.2), fast simulations of the
electrical flows on the grid are mandatory, that the home-brewed simulator HADES is too slow to provide.
The main difficulty of using Deep Neural Networks surrogate models is that the topology of the grid (a
graph) should be taken into account, and because all topologies cannot be included in the training set,
this requires out-of-sample generalization capabilities of the learned models.

Balthazar Donon developped an approach based on Graph Neural Networks (GNNs). From a Power
Grid perspective, GNNs can be viewed as including the topology in the heart of the structure of the
neural network, and learning some generic transfer function amongst nodes that will perform well on any
topology. His work [102] uses a loss that directly aims to minimize Kirshhoff’s law on all lines. Theoretical
results as well as a generalization of the approach to other optimization problems on graphs are at the
heart of his PhD.

8.4.2 Optimization of Local Grids and the Modeling of Worst-case Scenarios

Participants: Isabelle Guyon, Marc Schoenauer, Michèle Sebag
PhDs: Victor Berger, Herilalaina Rakotoarison
Post-doc: Berna Batu
Collaboration: Vincent Renaut (Artelys), Gabriel Peyré and Gwendoline de Bie (ENS).

One of the goals of the ADEME Next project, in collaboration with SME Artelys (see also Section
4.2), is the sizing and capacity design of regional power grids. Though smaller than the national grid,
regional and urban grids nevertheless raise scaling issues, in particular because many more fine-grained
information must be taken into account for their design and predictive growth.

Regarding the design of such grids, and provided accurate predictions of consumption are available
(see below), off-the-shelf graph optimization algorithms can be used. Berna Batu is gathering different
approaches. Herilalaina Rakotoarison’s PhD tackles the automatic tuning of their parameters (see Section
8.2.1); while the Mosaic algorithm is validated on standard AutoML benchmarks [158], its application to
Artelys’ home optimizer at large Knitro is on-going, and compared to the state-of-the-art in parameter
tuning (confidential deliverable). More details to come in Heri’s PhD to be defended in May 2022.

https://gama-platform.github.io/
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In order to get accurate consumption predictions, V. Berger’s PhD tackles the identification of the peak
of energy consumption, defined as the level of consumption that is reached during at least a given duration
with a given probability, depending on consumers (profiles and contracts) and weather conditions. The
peak identification problem is currently tackled using Monte-Carlo simulations based on consumer
profile- and weather-dependent individual models, at a high computational cost. The challenge is to
exploit individual models to train a generative model, aimed to sampling the collective consumption
distribution in the quantiles with highest peak consumption. The concept of Compositional Variational
Auto-Encoder was proposed: it is amenable to multi-ensemblist operations (addition or subtraction of
elements in the composition), enabled by the invariance and generality of the whole framework w.r.t.
respectively, the order and number of the elements. It has been first tested on synthetic problems [86].
The corresponding approach has been extended to study the trade-off between the optimization of
the reconstruction loss and the latent compression of VAEs, both theoretically and numerically, and to
fine-tune generative models [57]. All these results are detailed in Victor’s PhD [52], defended in November
2021.

8.5 Data-driven Numerical Modelling

8.5.1 Space Weather Forecasting

Participants: Cyril Furtlehner, Michèle Sebag
Post-doc: Olivier Bui
Collaboration: Jannis Teunissen (CWI)

Space Weather is broadly defined as the study of the relationships between the variable conditions on
the Sun and the space environment surrounding Earth. Aside from its scientific interest from the point of
view of fundamental space physics phenomena, Space Weather plays an increasingly important role on
our technology-dependent society. In particular, it focuses on events that can affect the performance and
reliability of space-borne and ground-based technological systems, such as satellite and electric networks
that can be damaged by an enhanced flux of energetic particles interacting with electronic circuits.6

Since 2016, in the context of the Inria-CWI partnership, a collaboration between TAU and the Multi-
scale Dynamics Group of CWI aims to long-term Space Weather forecasting. The goal is to take advantage
of the data produced everyday by satellites surveying the sun and the magnetosphere, and more particu-
larly to relate solar images and the quantities (e.g., electron flux, proton flux, solar wind speed) measured
on the L1 libration point between the Earth and the Sun (about 1,500,000 km and 1 hour time forward of
Earth). A challenge is to formulate such goals in terms of supervised learning problem, while the "labels"
associated to solar images are recorded at L1 (thus with a varying and unknown time lag). In essence,
while typical ML models aim to answer the question What, our goal here is to answer both questions
What and When. This project has been articulated around Mandar Chandorkar’s Phd thesis [93] which
has been defended this year in Eindhoven. The continuation of this collaboration is inseured by the hiring
of Olivier Bui as a post-doc who’s work has consisting in extending preliminary results on solar wind
forecasting based on auto-encoded solar magnetograms on a longer period of data corresponding to 2
solar cycles. Negative results have incited us to dig more into physical models of solar wind propagation
and try to combine them with ML models in a systematic way.

8.5.2 Genomic Data and Population Genetics

Participants: Guillaume Charpiat, Flora Jay, Aurélien Decelle, Cyril Furtlehner
PhD: Théophile Sanchez, Jérémy Guez
PostDoc: Jean Cury, Burak Yelmen
Collaboration: Bioinfo Team (LRI), Estonian Biocentre (Institute of Genomics, Tartu, Estonia), UNAM
(Mexico), U Brown (USA), U Cornell (USA), TIMC-IMAG (Grenoble), MNHN (Paris), Pasteur Institute
(Paris)

Thanks to the constant improvement of DNA sequencing technology, large quantities of genetic data
should greatly enhance our knowledge about evolution and in particular the past history of a population.

6After a recent survey conducted by the insurance company Lloyd’s, an extreme Space Weather event could produce up to $2.6
trillion in financial damage.

https://projects.cwi.nl/mlspaceweather/
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This history can be reconstructed over the past thousands of years, by inference from present-day
individuals: by comparing their DNA, identifying shared genetic mutations or motifs, their frequency,
and their correlations at different genomic scales. Still, the best way to extract information from large
genomic data remains an open problem; currently, it mostly relies on drastic dimensionality reduction,
considering a few well-studied population genetics features.

For the past decades, simulation-based likelihood-free inference methods have enabled researchers
to address numerous population genetics problems. As the richness and amount of simulated and real
genetic data keep increasing, the field has a strong opportunity to tackle tasks that current methods hardly
solve. However, high data dimensionality forces most methods to summarize large genomic datasets into
a relatively small number of handcrafted features (summary statistics).In [163], we propose an alternative
to summary statistics, based on the automatic extraction of relevant information using deep learning
techniques. Specifically, we design artificial neural networks (ANNs) that take as input single nucleotide
polymorphic sites (SNPs) found in individuals sampled from a single population and infer the past
effective population size history. First, we provide guidelines to construct artificial neural networks that
comply with the intrinsic properties of SNP data such as invariance to permutation of haplotypes, long
scale interactions between SNPs and variable genomic length. Thanks to a Bayesian hyperparameter
optimization procedure, we evaluate the performance of multiple networks and compare them to well
established methods like Approximate Bayesian Computation (ABC). Even without the expert knowledge
of summary statistics, our approach compares fairly well to an ABC based on handcrafted features.
Furthermore we show that combining deep learning and ABC can improve performance while taking
advantage of both frameworks. Later, we experimented with other types of permutation invariance, based
on similar architectures, and achieved a significative performance gain with respect to the state of the art,
including w.r.t. ABC on summary statistics (20% gap), which means that we extract information from raw
data that is not present in summary statistics. The question is now how to express this information in a
human-friendly way.

In the short-term these architectures can be used for demographic inference or selection inference
in bacterial populations (ongoing work with a postdoctoral researcher, J Cury, collab: Pasteur Institute,
for ancient DNA: UNAM and U Brown); the longer-term goal is to integrate them in various systems
handling genetic data or other biological sequence data. Regarding the bacterial populations, we already
implemented a flexible simulator that will allow researchers to investigate complex evolutionary scenarios
(e.g. dynamics of antibiotic resistance in 2D space through time) with realistic biological processes
(bacterial recombination), which was impossible before (collab. U Cornell, MNHN) [13].

In collaboration with the Institute of Genomics of Tartu, we leveraged two types of generative neural
networks (Generative Adversarial Networks and Restricted Boltzmann Machines) to learn the high
dimensional distributions of real genomic datasets and create artificial genomes [27]. These artificial
genomes retain important characteristics of the real genomes (genetic allele frequencies and linkage,
hidden population structure, ...) without copying them and have the potential to be valuable assets in
future genetic studies by providing anonymous substitutes for private databases (such as the ones hold
by companies or public institutes like the Institute of Genomics of Tartu. Ongoing work concerns scaling
up to the full genome and developing new privacy scores.

We released dnadna, a flexible open-source python-based software for deep learning inference in
population genetics7. It is task-agnostic and aims at facilitating the development, reproducibility, dis-
semination, and reusability of neural networks designed for genetic polymorphism data. dnadna defines
multiple user-friendly workflows[67].

8.5.3 Privacy and synthetic data generation

Participants: Isabelle Guyon
PhD: Adrien Pavao
Collaboration: Kristin Bennett and Joe Pedersen (RPI, NY, USA), Wei-Wei Tu (4Paradigm, Chine), Pablo.Piantanida
(Centrale-Supelec)

Collecting and distributing actual medical data is costly and greatly restrained by laws protecting
patients’ health and privacy. While beneficial, these laws severely limit access to medical data thus

7https://gitlab.com/mlgenetics/dnadna

https://gitlab.com/mlgenetics/dnadna


Project TAU 25

stagnating innovation and limiting research and educational opportunities. The process of obfuscation
of medical data is costly and time consuming with high penalties for accidental release. Thus, we have
engaged in developing and using realistic simulated medical data in research and in teaching. In [181] we
develop metrics for measuring the quality of synthetic health data for both education and research. We
use novel and existing metrics to capture a synthetic dataset’s resemblance, privacy, utility and footprint.
Using these metrics, we develop an end-to-end workflow based on our generative adversarial network
(GAN) method, HealthGAN, that creates privacy preserving synthetic health data. Our workflow meets
privacy specifications of our data partner: (1) the HealthGAN is trained inside a secure environment; (2)
the HealthGAN model is used outside of the secure environment by external users to generate synthetic
data. In [180] we put the HealthGAN methodology that we developed in the previous paper to work in a
practical setting. We reproduce the research outcomes obtained on two previously published studies,
which used private health data, using synthetic data generated with a method that we developed, called
HealthGAN. We demonstrate the value of our methodology for generating and evaluating the quality and
privacy of synthetic health data. The dataset are from OptumLabs R Data Warehouse (OLDW). The OLDW
is accessed within a secure environment and doesn’t allow exporting of patient level data of any type of
data, real or synthetic, therefore the HealthGAN exports a privacy-preserving generator model instead.
The studies examine questions related to comorbidites of Autism Spectrum Disorder (ASD) using medical
records of children with ASD and matched patients without ASD. HealthGAN generates high quality
synthetic data that produce similar results while preserving patient privacy. In [96], we extend existing
time-series generative models to generate medical data, which is challenging due to this influence of
patient covariates. We propose a workflow wherein we leverage existing generative models to generate
such data. We demonstrate this approach by generating synthetic versions of several time-series datasets
where static covariates influence the temporal values.

While theoretical criteria of privacy preservation, such as “differencial privacy” are important to gain
insights into how to protect privacy, they are often impractical, because they put forward pessimistic
bounds and impose degrading data and/or model to a point that hampers utility. Additionally, for all
practical purposes, data owners seek to obtain guarantees that no privite information is leaked in the
form of an empirical statistical test, rather than a more elusive theoretical guarantee. To that end, we
have set to work on evaluating the effectiveness of privacy protection agains specific attacks, such as
membership inference or attribute inference. We devised an evaluation apparatus called “LTU-attacker”
[37], in collaboration with Kristin Bennett, Joe Pedersen, and Wei-Wei Tu and with 2 interns (Rafel
Monos-Gomez and Jiangna Huang) have obtained interesting preliminary results demonstrating lack of
privacy preservation of most scikit-learn algorithms under membership inference attacks. New directions
currently explored in collabotation with Pablo Piantanida include defining a degree of “privacy exposure”
of particular individual involving information theoretic arguments.

With Master student Alice Lacan, we have been investigating the modelization of the Covid-19
epidemic propogation using compartimental models, following earlier work by former master student
Martin Cepeda. A group of students including Alice entered the "Pandemic response" XPrize and qualified
for the final phase. This work was follwed by a paper on estimating uncertainty in time series, in
application to prediciting the evolution of the number of Covid cases presented at the BayLearn 2022
conference[45]. Alice was invited to give a presentation of this work at the WIDS 2023 conference.

8.5.4 Sampling molecular conformations

Participants: Guillaume Charpiat
PhD: Loris Felardos
Collaboration: Jérôme Hénin (IBPC), Bruno Raffin (InriAlpes)

Numerical simulations on massively parallel architectures, routinely used to study the dynamics of
biomolecules at the atomic scale, produce large amounts of data representing the time trajectories of
molecular configurations, with the goal of exploring and sampling all possible configuration basins of
given molecules. The configuration space is high-dimensional (10,000+), hindering the use of standard
data analytics approaches. The use of advanced data analytics to identify intrinsic configuration patterns
could be transformative for the field.

The high-dimensional data produced by molecular simulations live on low-dimensional manifolds;
the extraction of these manifolds will enable to drive detailed large-scale simulations further in the



26 Inria Annual Report 2021

configuration space. We study how to bypass simulations by directly predicting, given a molecule formula,
its possible configurations. This is done using Graph Neural Networks [105] in a generative way, producing
3D configurations. The goal is to sample all possible configurations, and with the right probability. This
year we studied various normalizing flow architectures as well as varied training criteria suitable for
distributions (Kullback-Leibler divergence in latent or sample space, in one direction or the other one, as
it is not symmetric, but also pairwise distances, optimal transport, etc.). It turns out that mode collapse is
frequently observed in most cases, even on simple tasks. Further analysis identified several causes for
this, from which we built remedies.

8.5.5 Earthquake occurrence prediction

Participants: François Landes, Marc Schoenauer
PhD: Vincenzo Schimmenti
Collaboration: Alberto Rosso (LPTMS)

Earthquakes occur in brittle regions of the Crust typically located at the depth of 5-15 km and
characterized by a solid friction, which is at the origin of the stick-slip behaviour. Their magnitude
distribution displays thecelebrated Gutenberg-Richter law and a significant increase of the seismic rate is
observed after large events (called main shocks). The occurrence of the subsequent earthquakes in the
same region, the aftershocks, obeys well established empirical laws that demand to be understood. A
change in the seismic rate also happens before a main shock, with an excess of small events compared
to the expected rate of aftershocks related to the previous main shock in that region. These additional
events are defined as foreshocks of the coming main shock, however they are scarce so that defininig
them is a very difficult task. For this reason their statistical fingerprint, so important for human secutiry,
remains elusive. In this project we combine the techiniques of Statistical Physics and Machine Learning
to determine the complex spatio-temporal patterns of the events produce by the dyanamics of the fault.
In particular we plan to understand the structure of the short sequence of foreshocks, and their potential
impact for human applications.

The treatment of rare events by Machine Learning is a challenging yet rapidly evolving domain. At
TAU we have a great expertise in data modeling, in particular we are currently working on space weather
forecast, a supervised task where, like in seismicity, extreme and rare events are crucial. Bayesian models
and Restricted Boltzman Machines (RBMs) have been built to model these weather forecast data. These
techniques, inspired from statistical physics, are both based on a probabilistic description of latent
variables (i.e. unobserved variables) and have great expressiveness, allowing the modelling of a large
span of data correlations. This kind of models can be extended to study spatially resolved earthquakes,
the latent variable here being the local stress within the fault and in the ductile regions. Our goal is to
characterize the statistical properties of a sequence of events (foreshocks, main shock and aftershocks)
and predict its following history. We will first study the sequences obtained from simulations of the
physical model [73]. We will answer the following question: given a short sequence of foreshocks, can we
predict the future of the sequence? How big will be the main shock? When will it occur? In a second step
we will use also the data coming from real sequences, where events are unlabeled. These sequences are
public and available (The most accurate catalog is for Southern California, a catalog with 1.81 million
earthquakes. It is available at https://scedc.caltech.edu/research-tools/QTMcatalog.html). Concretely,
the data consists in the earthquakes’ magnitude, occurrence time and hypocenter locations.

Two parallel directions are being explored, with our PhD Student, Vincenzo Schimmenti:

• The available data can be used to tune the parameters of the new model to improve its accuracy
and generalization properties. We will adjust the parameters of the elastic and friction coefficients
in order to produce earthquakes with realistic magnitudes. This will allow us to have information
about the physical condition in the fault and in the ductile regions.

• We will use our understanding of foreshocks statistics to perform classification of earthquakes
with respect to their nature: foreshock, main shock or after shock, and alignment (assignment
of the earthquake to a sequence). These labels are known in the synthetic data and unknown in
the catalogs, so this would be an instance of semi-supervised learning. Our final goal is real data
completion: presented with an incomplete catalog, the machine is asked to complete it with the
missing points.

https://scedc.caltech.edu/research-tools/QTMcatalog.html
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8.5.6 Reduced order model correction

Partecipants: Michele Alessandro Bucci, Marc Schoenauer
PhD: Emmanuel Menier
Collaboration: Mouadh Yagoubi (IRT-SystemX)

Numerical simulations of fluid dynamics in industrial applications require the spatial discretization of
complex 3D geometries with consequent demanding computational operations for the PDE integration.
The computational cost is mitigated by the formulation of Reduced Order Models (ROMs) aiming at
describing the flow dynamics in a low dimensional feature space. The Galerkin projection of the driving
equations onto a meaningful orthonormal basis speeds up the numerical simulations but introduces
numerical errors linked to the underrepresentation of dissipative mechanisms.

Deep Neural Networks can be trained to compensate missing information in the projection basis.
By exploiting the projection operation, the ROM correction consists in a forcing term in the reduced
dynamical system which has to i) recover the information living in the subspace orthonormal to the
projection one ii) ensure that its dynamic is dissipative. A constrained optimization is then employed to
minimize the ROM errors but also to ensure the reconstruction and the dissipative nature of the forcing.
We tested this solution on benchmarked cases where it is well known that transient dynamics are poorly
represented by ROMs. The results [69] show how the correction term improves the prediction while
preserving the guarantees of the ROM.

8.5.7 Active Learning for chaotic systems

Participants: Michele Alessandro Bucci
Collaboration: Lionel Mathelin (LISN), Onofrio Semeraro (LISN), Sergio Chibbaro (UPMC), Alexander
Allauzen (ESPCI)

The inference of a data driven model aiming at reproducing chaotic systems is challenging even
for the most performing Neural Network architectures. According to the ergodic theory, the amount of
data required to converge the invariant measure of a chaotic system goes exponentially with its intrinsic
dimension. It follows that for learning the dynamics of a turbulent flow, the computing resources in the
world would not be enough to store the necessary data. To circumvent such limitations we generally
introduce constraints in the optimization stage in order to preserve physical invariants, when they are
known.

In [92] we compared model quality when trained with and without ergodic time series generated
by the Lorenz systems (i.e. the chaotic system related to the “butterfly effect”). The ergodic dataset is
composed of one long trajectory (27000 time steps), whereas the non ergodic one is composed by 9
short trajectories (9000 time steps each) randomly initialized on the chaotic attractor. Despite the same
amount of points, it turns out that the non-ergodic dataset led to biased models. Short trajectories do not
ensure statistical knowledge of the phase space. Exploiting the structure of the phase space, 9 trajectories
(9000 time steps) emanated from the 3 fix points of the Lorenz systems have been used to generate a
new dataset. The fix points and their unstable directions define the skeleton of the phase space. The
trajectories emanated from them allow to reduce the entropy of the dataset without introducing bias in
the learned models. A dataset incorporating the dynamics around the fix points, not only allows to obtain
more robust models with respect to the initialization of the NN parameters but also allows to reduce
the size of the dataset by 60% without affecting the quality of the models. Recent work [60] analyzes the
amount of data that is sufficient for a priori guaranteeing a faithful model of the physical system.

8.5.8 Control of fluid dynamics with reinforcement learning

Participants: Michele Alessandro Bucci
Collaboration: Lionel Mathelin (LISN), Onofrio Semeraro (LISN), Thibaut Guegan (PPrime), Laurent
Cordier (PPrime)

The control of fluid dynamics is an active research area given the implications of aerodynamic forces
in the transport and energy field. Being able to delay the laminar-to-turbulent transition, stabilize
unsteady mechanisms or reduce the pressure forces of an object moving in a fluid, would allow for more
ecological vehicles or more efficient wind turbines. For quadratic objective functions and for conditions
in which the linearized Navier Stokes equation is a good approximation of the fluid dynamics around
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the target state, optimal control theory provides the necessary tools (e.g. Riccati equation, direct-adjoint
optimization) to recover a robust control policy. In the case of non-linearizable systems, non-quadratic
cost functions or in the absence of a model, these tools are no longer valid. Reinforcement learning
algorithms allow us to solve the optimal problem even if the model is not available. The control problem,
with an infinite time horizon, can be decomposed into local optimal problems if the system is completely
observed and its dynamics is Markovian. The solution of the Bellman equation ensure the optimality of
the policy if the phase space of the system has been fully explored [165].

We applied actor-critic algorithms (TD3) to control a benchmarked flow configuration: the PinBall
case [123], [44]. In the PinBall case, the flow impacting on three cylinders arranged at the vertices of
an equilateral triangle generates an unstable wake that causes high aerodynamic forces. Allowing the
cylinders to rotate, the RL algorithm provides a control policy capable of reducing the drag by 60%
compared to the uncontrolled case. We have also shown how partial observation of the flow velocity field
through sensors is not a limiting factor if a temporal state embedding is considered. By reducing the
number of sensors and increasing the size of the state with past observations, the efficiency of the policy
is not degraded.

8.6 Challenges

Participants: Cécile Germain, Isabelle Guyon, Adrien Pavao, Anne-Catherine Letournel, Marc Schoe-
nauer, Michèle Sebag
PhD: Zhengying Liu, Balthazar Donon, Adrien Pavao, Haozhe Sun, Romain Egele
Engineer: Sébastien Tréguer.
Collaborations: D. Rousseau (LAL), André Elisseeff (Google Zurich), Jean-Roch Vilmant (CERN), Antoine
Marot and Benjamin Donnot (RTE), Kristin Bennett (RPI), Magali Richard (Université de Grenoble),
Wei-Wei Tu (4Paradigm, Chine), Sergio Escalera (U. Barcelona, Espagne).

The TAU group uses challenges (scientific competitions) as a means of stimulating research in machine
learning and engage a diverse community of engineers, researchers, and students to learn and contribute
advancing the state-of-the-art. The TAU group is community lead of the open-source Codalab platform
(see Section 7), hosted by Université Paris-Saclay. The project had grown in 2019 and includes now an
engineer dedicated full time to administering the platform and developing challenges (Adrien Pavao),
financed by a new project just starting with the Région Ile-de-France. This project will also receive the
support of the Chaire Nationale d’Intelligence Artificielle of Isabelle Guyon for the next four years.

Our doctoral student Adrien Pavao has set to work on the theoretical rationalization of judging
competitions. A first work he published mode ties between this problem and the theory of social choice
[36]. This is applicable, in particular to judging multi-task or multi-objective challenges: each task or
objective can be thought of as a “judge” voting towards determining a winner. He devised novel empirical
criteria to assess the quality of ranking functions, including the generalization to new tasks and the
stability under judge or candidate perturbation and conducted empirical comparisons on 5 competitions
and benchmarks. While prior theoretical analyses indicate that no single ranking function satisfies all
desired theoretical properties, our empirical study reveals that the classical "average rank" method (often
used in practice to judge competitions) fares well. However, some pairwise comparison methods can get
better empirical results.

Following the highly successful ChaLearn AutoML Challenges (NIPS 2015 – ICML 2016 [125] – PKDD
2018 [126]), a series of challenges on the theme of AutoDL [140] was run in 2019 (see http://autodl.cha
learn.org, addressing the problem of tuning the hyperparameters of Deep Neural Networks, including
the topology of the network itself. Co-sponsored by Google Zurich, it required participants to upload their
code on the Codalab platform. The series included two challenges in computer vision called AutoCV
and AutoCV2, to promote automatic machine learning for image and video processing, in collaboration
with University of Barcelona [142]. It also included challenges in speech processing (AutoSpeech),
text processing (AutoNLP), weakly supervised learning (AutoWeakly) and times series (AutoSeries), co-
organized with 4Paradigm. It culminated with launching the AutoDL challenge combining multiple
modalities (presently on-going). The winners of each challenge open-sourced their code. GPU cloud
resources were donated by Google. AutoDL was an official NeurIPS 2020 competition. The challenge
series is continuing beyouns AutoDL, with the AutoGraph challenge that was organized for KDD 2020
https://www.automl.ai/competitions/3 and the newly started Meta-Learning challenge series

http://autodl.chalearn.org
http://autodl.chalearn.org
https://www.automl.ai/competitions/3
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https://metalearning.chalearn.org/, whose first edition took place in conjuction with AAAI 2021.
A new challenge on automated reinforcement learning (AutoRL) is currently under design.

A new challenge series in Reinforcement Learning was started with the company RTE France, one
the theme “Learning to run a power network” [146] (L2RPN, http://l2rpn.chalearn.org). The
goal is to test the potential of Reinforcement Learning to solve a real world problem of great practical
importance: controlling electricity transportation in smart grids while keeping people and equipment
safe. The first edition was run in Spring 2019 and was part of the official selection of the IJCNN 2019
conference. It ran on the Codalab platform coupled with the open source PyPower simulator of power
grids interfaced with the Opengym RL framework, developed by OpenAI. In this gamified environment,
the participants had to create a proper controller of a small grid of 14 nodes. Not all of them used RL, but
some combinations of RL and human expertise proved to be competitive. In 2020, we launched a new
edition of the challenge with a more powerful simulator rendering the grid more realistic and capable
of simulating a 118-node grid within our computational constraints. This competition was accepted
as part of the official program of NeurIPS 2020 [145].While first competitions aimed at demonstrating
the feasibility of applying Reinforcement Learning for controlling electrical flows on a power grid, the
NeurIPS competition introduced a realistically-sized grid environment along with two fundamental real-
life properties of power grid systems to reconsider while shifting towards a sustainable world: robustness
and adaptability. The analysis paper is under review. Last but not least, within the European project
TAILOR, the TAU team is responsible for organizing challenges, and a further edition of the L2RPN dealing
with changing topology is being co-organized with RTE and TAILOR challenge task force.

The COMETH project (EIT Health) aims to run a series of challenges to promote and encourage
innovations in data analysis and personalized medicine. Université de Grenoble organized a challenge
on the newly developed Codabench platform (https://www.codabench.org/). The challenge gathered
transdisciplinary instructors (researchers and professors), students, and health professionals (clinicians).
The COMETH project aimed at creating benchmarks permitting practitionners to gain access to advanced
algorithms provided by machine learning researchers. We developped a WebApp, which interfaces
Codabench with a simplified interface designed for Physicians and which makes robot submissions to
Codabench on their behalf. As a synergistic activity, TAU is also engaged in a collaboration with the
Rensselaer Polytechnic Institute (RPI, New-York, USA) to use challenges in the classroom, as part of their
health-informatics curriculum.

We have also shared our expertise (and made our challenge platform Codalab available) to support two
other NeurIPS challenges: The Black Box Optimization for Machine Learning challenge https://bbochallenge.com/,
which was then used as paart of a class of optimization of the M2 AI of université Paris-Saclay; and the
Predicting Generalization in Deep Learning challenge https://sites.google.com/view/pgdl2020. The latter
case is remarkable: Google research selected our platform Codalab to run their challenge, despite the
fact that they bought a competing commercial platform (Kaggle). Codalab was also choosen for the
second phase of the TrackML challenge, in collaboration with LHC experiments. The goal was to build an
algorithm that quickly reconstructs particle tracks from 3D points left in the silicon detectors [78]. Recent
work [55] indicates that the specific issue of extremely poorly separated classes should be addressed
through a combination dataset-level inference and iterative refinement of the particle selection.

The Paris Ile-de-France project also took off this year. Codalab and the TAU team were selected to
organize the industry machine learning challenge seris of the Paris REgion. Adrien Pavao, who was the
project leader, organized with Dassault aviation a project of “jumeau numerique”, aiming at performing
predictive maintenance on airplanes. The Paris Region offered 500K Euros to the winner, a startup, which
would then collaborate with Dassault to productize the solution. The challenge took place from February
2021 to May 2021. The results have indicated that, on such problems of time series regression, ensembles
of decision trees such as XGBoost dominate over DL methods. This result, which came somewhat as a
surprise, mais stem from the massive amount of data that had to be processed. Despite the significant
compute power made avaliable (10 GPUs for 2 days), search for optimal architectures was difficult. Results
of detailed analyses conducted by a consortium of organizers and participants have been published
[35]. This challenge has demonstrated that Codalab is now “industry grade”, and has paved the way
to organizing other AI for Industry challenges. We have currently in preparation a challenge targeting
carbon-neutrality by 2025, in collaboration with RTE-France under way.

It is important to introduce challenges in ML teaching. This has been done (and is on-going) in I.
Guyon’s Master courses [153] : some assignments to Master students are to design small challenges,

https://metalearning.chalearn.org/
http://l2rpn.chalearn.org
https://www.codabench.org/
https://bbochallenge.com/
https://sites.google.com/view/pgdl2020
http://saclay.chalearn.org/
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which are then given to other students in labs, and both types of students seem to love it. Codalab has also
been used to implement reinforcement learning homework in the form of challenges by Victor Berger
and Heri Rakotoarison for the class of Michèle Sebag. New directions being explored by students in 2021
include takling fairness and bias in data.

In terms of dissemination, a collaborative book “AI competitions and benchmarks: The science
behind the contests ” written by expert challenge organizers is under way and will appear in the Springer
series on challenges in machine learning, see http://www.chalearn.org/books.html.

9 Bilateral contracts and grants with industry

9.1 Bilateral contracts with industry

TAU continues its policy about technology transfer, accepting any informal meeting following industrial
requests for discussion (and we are happy to be often solicited), and deciding about the follow-up based
upon the originality, feasibility and possible impacts of the foreseen research directions, provided they
fit our general canvas. This lead to the following 3 on-going CIFRE PhDs, with the corresponding side-
contracts with the industrial supervisor, one bilateral contract with IFPEN, one recently started bilateral
contract with Fujitsu (within the national "accord-cadre" Inria/Fujitsu), plus at least two new CIFRE
PhDs, one with our long-lasting partner RTE, and one with Ekimetrics company, with whom we have
never worked before), that will start in 2022.

• CIFRE Thalès 2018-2021 (45 kEuros), with Thales Teresis, related to Nizam Makdoud’s CIFRE PhD
Coordinator: Marc Schoenauer and Jérôme Kodjabatchian
Participants: Nizam Makdoud

• CIFRE RTE 2018-2021 (72 kEuros), with Réseau Transport d’Electricité, related to Balthazar Donon’s
CIFRE PhD
Coordinator: Isabelle Guyon and Antoine Marot (RTE)
Participants: Balthazar Donon, Marc Schoenauer

• CIFRE FAIR 2018-2021 (72 kEuros), with Facebook AI Research, related to Leonard Blier’s CIFRE
PhD
Coordinator: Marc Schoenauer and Yann Olliver (Facebook)
Participants: Guillaume Charpiat, Michèle Sebag, Léonard Blier

• IFPEN (Institut Français du Pétrole Energies Nouvelles) 2019-2023 (300 kEuros), to hire an Inria
Starting Research Position (Alessandro Bucci) to work in all topics mentioned in Section 3.2 relevant
to IFPEN activity.
Coordinator: Marc Schoenauer
Participants: Alessandro Bucci, Guillaume Charpiat

• Fujitsu, 2021-2022 (200k€), Causal discovery in high dimensions
Coordinator: Marc Schoenauer
Participants: Shuyu Dong and Michèle Sebag

10 Partnerships and cooperations

10.1 European initiatives

10.1.1 FP7 and H2020 projects

• H2020 RIA TRUST-AI 2020-2024 (475k€) dedicated to building trustworthy explainable AI using
Human-centered Genetic Programming.
Coordinator: Gonçalo Figueira (INESC, Portugal)
Participants: Marc Schoenauer and Alessandro Leite.

http://www.chalearn.org/books.html
http://www.trustai.eu/index.html
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• H2020 ICT48 European network of AI excellence centres TAILOR 2020-2024 (400 k€).
Coordinator: Fredrik Heintz, Linköping U., Sweden.
Participants: Marc Schoenauer (WP2 leader), Isabelle Guyon, and Sébastien Treguer.
Other Inria teams: Lacodam, Multispeech and ex-Orpailleur.

• H2020 ICT48 CSA VISION,
Coordinator Holger Hoos (Leiden U. The Netherlands)
Participants: Marc Schoenauer (Inria PI: Joost Geurst, DPE).

10.2 National initiatives

10.2.1 ANR

• Chaire IA HUMANIA 2020-2024 (600kEuros), Democratizing Artificial Intelligence (Section 8.1).
Coordinator: Isabelle Guyon (TAU)
Participants: Marc Schoenauer, Michèle Sebag, Anne-Catherine Letournel, François Landes.

• HUSH 2020-2023 (348k euros), HUman Supply cHain behind smart technologies.
Coordinator : Antonio A. Casilli (Telecom Paris)
Participants: Paola Tubaro

• SPEED 2021-2024 (49k€) Simulating Physical PDEs Efficiently with Deep Learning
Coordinator: Lionel Mathelin (LIMSI)
Participants: Michele Alessandro Bucci, Gullaume Charpiat, Marc Schoenauer.

• RoDAPoG 2021-2025 (302k€) Robust Deep learning for Artificial genomics and Population Genetics
Coordinator:Flora Jay,
Participants: Cyril Furtlehner, Guillaume Charpiat.

10.2.2 Others

• ADEME NEXT 2017-2021 (675 kEuros). Simulation, calibration, and optimization of regional or
urban power grids (Section 4.2).
ADEME (Agence de l’Environnement et de la Maîtrise de l’Energie)
Coordinator: SME ARTELYS
Participants Isabelle Guyon, Marc Schoenauer, Michèle Sebag, Victor Berger (PhD), Herilalaina
Rakotoarison (PhD), Berna Bakir Batu (Post-doc)

• PIA JobAgile 2018-2021 (379 kEuros) Evidence-based Recommandation pour l’Emploi et la Forma-
tion (Section 8.3.1).
Coordinator: Michèle Sebag and Stéphanie Delestre (Qapa)
Participants: Philippe Caillou, Isabelle Guyon

• BOBCAT The new B-tO-B work intermediaries: comparing business models in the "CollaborATive"
digital economy, 2018-2021 (100k euros), funded by DARES (French Ministry of Labor).
Coordinator : Odile Chagny (IRES)
Participants: Paola Tubaro

• IPL HPC-BigData 2018-2022 (100 kEuros) High Performance Computing and Big Data (Section
8.5.4)
Coordinator: Bruno Raffin (Inria Grenoble)
Participants: Guillaume Charpiat, Loris Felardos (PhD)

• Inria Challenge (formerly IPL) HYAIAI, 2019-2023, HYbrid Approaches for Interpretable Artificial
Intelligence
Coordinator: Elisa Fromont (Lacodam, Inria Rennes)
Participants: Marc Schoenauer and Michèle Sebag

https://tailor-network.eu/
https://cordis.europa.eu/project/id/952070/fr
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• TRIA Le TRavail de l’Intelligence Artificielle : éthique et gouvernance de l’automation, 2020-2021
(131k euros), funded by MITI-CNRS (CNRS mission for interdisciplinary and transverse initiatives)).
Coordinator : Paola Tubaro
Participants: A.A. Casilli (Telecom Paris); I. Vasilescu, L. Lamel, Gilles Adda (CNRS-Limsi); N.
Seghouani (LRI); T. Allard, David Gross-Amblard (Irisa); J.L. Molina (UAB Barcelona); J.A. Ortega
(Univ. València); J. Posada (Univ. Toronto)

• Les vraies voix de l’Intelligence Artificielle, 2021-2023 (29k euros), funded by Maison des Sciences
de l’Homme Paris-Saclay.
Coordinator : Paola Tubaro
Participants: A.A. Casilli (Telecom Paris); I. Vasilescu, L. Lamel, Gilles Adda (CNRS-LISN); J.L. Molina
(UAB Barcelona); J.A. Ortega (Univ. València)

• Inria Challenge OceanAI 2021-2025, AI, Data, Models for a Blue Economy
Coordinator: Nayat Sanchez Pi (Inria Chile)
Participants: Marc Schoenauer, Michèle Sebag and Shiyang Yan

11 Dissemination

11.1 Promoting scientific activities

11.1.1 Scientific events: organisation

Member of the organizing committees

• Marc Schoenauer - Steering Committee, Parallel Problem Solving from Nature (PPSN); Steering
Committee, Learning and Intelligent OptimizatioN (LION).

• Cecile Germain - Steering committee of the Learning to Discover program of Institut Pascal (origi-
nally 2020, postponed to 2022)

• Flora Jay - Organizer of Thematic School “Graph as models in life sciences: Machine learning and
integrative approaches” (supported by Digicosme)

11.1.2 Scientific events: selection

Chair of conference program committees

• Flora Jay, co-chair at Probgen, conference in Probabilistic Modeling In Genomics, Apr 2021

• Marc Schoenauer, Area Chair, ECML/PKDD 2021

• Michele Sebag, Senior Area Chair IJCAI 2021, Area Chair NeurIPS 2021, Area Chair ICML 2021

Reviewer All TAU members are reviewers of the main conferences in their respective fields of expertise.

11.1.3 Journal

Member of the editorial boards

• Isabelle Guyon - Action editor, Journal of Machine Learning Research (JMLR); series editor, Springer
series Challenges in Machine Learning (CiML).

• Marc Schoenauer - Advisory Board, Evolutionary Computation Journal, MIT Press, and Genetic Pro-
gramming and Evolutionary Machines, Springer Verlag; Action editor, Journal of Machine Learning
Research (JMLR); Editorial Board, ACM Transaction on Evolutionary Learning and Optimization
(TELO).

• Michèle Sebag - Editorial Board, Machine Learning, Springer Verlag; ACM Transactions on Evolu-
tionary Learning and Optimization.
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• Paola Tubaro: Sociology, Revue française de sociologie, Journal of Economic Methodology, Lecturas
de Economia.

Reviewer - reviewing activities All members of the team reviewed numerous articles for the most
prestigious journals in their respective fields of expertise.

11.1.4 Invited talks

• Guillaume Charpiat, Input similarity from the neural network perspective, IHES annual workshop
"Journée statistique et informatique de Paris-Saclay", 5 February 2021

• Guillaume Charpiat, Réseaux de neurones profonds pour la segmentation et le recalage d’images
satellitaires, au séminaire "L’intelligence artificielle en cartographie", Maison des Sciences de
l’Homme Val de Loire, projet Veccar, 8 April 2021

• Flora Jay and Aurélien Decelle, Creating artificial human genomes using generative neural networks,
Synthetic Data for Health Symposium (CIFAR, Ivado, MILA), Canada/online, 25 Nov 2021

• Flora Jay, Reconstructing past demography and augmenting the diversity of publicly available
genomes with exchangeable and generative neural networks, GDR BIM, Lyon, 24 Nov 2021

• Flora Jay, Factor analysis of ancient population genomic samples, Ancient DNA symposium Institut
Pasteur, Paris, 4 Nov 2021

• Flora Jay, Generative and exchangeable neural networks for population genetics 14th NICE-seq
Seminar - AI & Genomics- 17 Sept 2021

• Flora Jay, symposium Machine-learning applications in population genetics and phylogenomics,
SMBE congress 4-8 July 2021

• Flora Jay, mini-symposium AI and data science for biology. i-Bio Initiative and SCAI Institute, Paris
23 June 2021

• Flora Jay, Neural networks for population genetics: demographic inference and data generation
Probgen conference 14-16 April 2021

• Flora Jay, Seminars at UHPalaeopopgen webminar series (27 Jan 21); Technical University Munich,
Germany (4 Feb 21); Imperial College London (11 Feb 21)

• Marc Schoenauer, Communication about AI: Distinguish real dangers from Irrational fears, Sci-
ence&You, Metz 16 Nov. 2021

• Marc Schoenauer, Explainable Reinforcement Learning with Multi-Objective Genetic Programming
in the TRUST-AI project, DATAIA wkp "Safety and AI", 13 Dec. 2021

• Michele Sebag, Analyser, comprendre le monde: Complémentarité entre apprentissage et visualisa-
tion, with Jean-Daniel Fekete, AFIA-IHM, 11 Mars 2021

• Michele Sebag, Towards causal modeling of nutritional outcomes, Univ. Ulster, June 28, 2021

• Michele Sebag, Causal Modeling & Some Applications, kickoff meeting of the Oceania Challenge,
July 1st, 2021

• Michele Sebag, Synthèse et position, Colloque interdisciplinaire Qu’est-ce qui échappe à l’IA?, LINX,
21 septembre 2021

• Michele Sebag, Extremely privated supervised learning, ERCIM-JST, 8 December 2021

• Paola Tubaro, Networks in the digital organization, keynote, European Social networks Conference
(EUSN 2021), Naples, 9 September 2021
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• Paola Tubaro, Ethical issues of AI, inaugural workshop of the SeCoIA Deal European project, 9
December 2021

• Paola Tubaro, Learners in the loop: The hidden human contribution to artificial intelligence, Resitu-
ating Learning Conference, University of Siegen, 29 October 2021

• Paola Tubaro, La visualisation du réseau personnel, Catholic University of Louvain, 25 June 2021

• Paola Tubaro, El trabajo de la inteligencia artificial, Universitat Autònoma de Barcelona, 30 April
2021

• Paola Tubaro, Algorithmes, inégalités, et les « humains dans la boucle », Académie des technologies,
10 March 2021

11.1.5 Leadership within the scientific community

• Guillaume Charpiat: creation and co-animation of 2 DigiCosme working groups on the Saclay
plateau and beyond: vrAI (verification and robustness of AI) and SNAP (simulations numériques et
apprentissage)

• Isabelle Guyon: Member of the board, NeurIPS; Member of the Board, JEDI, Joint European
Disruptive Initiative; President and co-founder, ChaLearn, non-for-profit organization dedicated
to the organization of challenges.

• Marc Schoenauer: Advisory Board, ACM-SIGEVO, Special Interest Group on Evolutionary Com-
putation; Founding President (since 2015), SPECIES, Society for the Promotion of Evolutionary
Computation In Europe and Surroundings, that organizes the yearly series of conferences EvoStar.

• Michèle Sebag: Executive Committee, Institut de Convergence DataIA; Member of IRSN Scientific
Council.

11.1.6 Scientific expertise

• Guillaume Charpiat: CRCN/IFSP hiring committee at INRIA Saclay

• Guillaume Charpiat: MdC hiring committee at LISN, Paris-Saclay (MCF 1632)

• Guillaume Charpiat: member of the Commission Scientifique (CS) at INRIA Saclay (PhD/post-docs
grant allocations)

• Guillaume Charpiat: Jean Zay (GENCI/IDRIS) committee member for resource allocation (GPU)
demand expertise

• Flora Jay, CR hiring committee, INRAE Toulouse

• Flora Jay, MdC hiring committee, LIX

• Marc Schoenauer, Scientific Advisory Board, BCAM, Bilbao, Spain

• Marc Schoenauer, "Conseil Scientifique", IFPEN

• Marc Schoenauer, "Conseil Scientifique", Mines Paritech

• Marc Schoenauer, "Commission Recherche", Université Paris-Diderot

• Michele Sebag, UDOPIA jury (PhDs)

• Michele Sebag, FNRS (PhDs and Post-docs)

• Michele Sebag, professorship hiring committee, Grenoble Alpes

• Michele Sebag, HCERES LS2N - Laboratoire des sciences du numérique à Nantes, Mai 2021

https://nips.cc/Conferences/2020/Board
https://www.jedi.foundation/
https://www.jedi.foundation/
http://www.chalearn.org/
http://sigevo.org
http://sigevo.org
http://species-society.org/
http://species-society.org/
https://www.dataia.eu/linstitut/le-comite-executif
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• Paola Tubaro, MdC hiring committee, University of Lille

• Paola Tubaro, professorship hiring committee, Sorbonne Université

• Paola Tubaro, associate professorship hiring committee, University of Greenwich (UK)

• Paola Tubaro, assistant professorship hiring committee, University of Insubria (IT)

11.1.7 Research administration

• Guillaume Charpiat: head of the Data Science department at LISN, Université Paris-Saclay

• Michele Sebag, elected member of Lab. Council, LISN, Université Paris-Saclay

• Paola Tubaro, member of Local Committee of Institut Pascal, Université Paris-Saclay

11.2 Teaching - Supervision - Juries

11.2.1 Teaching

• Licence : Philippe Caillou, Computer Science for students in Accounting and Management, 192h,
L1, IUT Sceaux, Univ. Paris Sud.

• Licence : François Landes, Mathematics for Computer Scientists, 51h, L2, Univ. Paris-Sud.

• Licence : François Landes, Introduction to Statistical Learning, 88h, L2, Univ. Paris-Sud.

• Licence : Isabelle Guyon: Introduction to Data Science, L1, Univ. Paris-Sud.

• Licence : Isabelle Guyon, Project: Resolution of mini-challenges (created by M2 students), L2, Univ.
Paris-Sud.

• Master : François Landes, Machine Learning, 34h, M1 Polytech, U. Paris-sud.

• Master : François Landes, A first look inside the ML black box, 25h, M1 Recherche (AI track), U.
Paris-Sud.

• Master : Machine Learning, 28h, M2 Univ. Paris-sud, physics department

• Master : Guillaume Charpiat, Deep Learning in Practice, 21h, M2 Recherche, Centrale-Supelec +
MVA.

• Master : Guillaume Charpiat, Graphical Models: Discrete Inference and Learning, 9h, M2 Recherche,
Centrale-Supelec + MVA.

• Master : Guillaume Charpiat, Information Theory, 14h, M1 IA Paris-Sud.

• Diplôme universitaire: Guillaume Charpiat, Introduction au Deep Learning, 1h30, DU IA, CHU
Lille.

• Master : Isabelle Guyon, Project: Creation of mini-challenges, M2, Univ. Paris-Sud.

• Master : Michèle Sebag, Deep Learning, 4h; Reinforcement Learning, 12h; M2 Recherche, U.
Paris-Sud.

• Master : Paola Tubaro, Sociology of social networks, 24h, M2, EHESS/ENS.

• Master : Paola Tubaro, Social and economic network science, 24h, M2, ENSAE.

• Master: Paola Tubaro, Ethics of social and digital data, 12h, Université de Toulouse Jean Jaurès

• Master : Flora Jay, Population genetics inference, 11h, M2, U PSaclay.

• Master : Flora Jay, Machine Learning in Genomics, 6h, M2, PSL.
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• Master : Isabelle Guyon, Coordination du M1 et M2 [AI], U PSaclay.

• Master : Isabelle Guyon, M1 [AI] project A class (challenge organization)

• Master : Isabelle Guyon, M2 [AI] Advanced Optimization and Automated Machine Learning.

• INRIA-DFKI summer school on AI: Guillaume Charpiat, Formal verification of deep learning: theory
and practice, July 23rd.

• INRIA-DFKI summer school on AI: Michele Sebag, Causal Learning, July 2021 (3h).

• Fall school : Flora Jay, Inference using full genome data, 7h, TUM, Germany.

11.2.2 Supervision

• PhD - Victor BERGER, Variational Anytime Simulator, 13/10/2021, Michèle Sebag

• PhD - Tony BONNAIRE, Reconstruction de la toile cosmique, 16/10/2021, Nabila Aghanim (Institut
d’Astrophysique Spatiale) and Aurélien Decelle (thèse de l’IAS [89])

• PhD - Julien GIRARD, Vérification et validation des techniques d’apprentissage automatique, 9/11/2021,
Zakarian Chihani (CEA) and Guillaume Charpiat

• PhD - Zhengying LIU, Automation du design des reseaux de neurones profonds, 9/11/2021, Isabelle
Guyon and Michèle Sebag

• PhD in progress - Guillaume BIED, Valorisation des Données pour la Recherche d’Emploi, 1/10/2019,
Bruno Crepon (CREST-ENSAE) and Philippe Caillou

• PhD in progress - Leonard BLIER, Vers une architecture stable pour les systèmes d’apprentissage par
renforcement, 1/09/2018, Yann Ollivier (Facebook AI Research, Paris) and Marc Schoenauer

• PhD in progress - Balthazar DONON, Deep Statistical Solvers and Power Systems Applications,
1/10/2018, Isabelle Guyon, Marc Schoenauer, and Rémy Clément (RTE)

• PhD in progress - Loris FELARDOS, Neural networks for molecular dynamics simulations, 1/10/2018,
Guillaume Charpiat, Jérôme Hénin (IBPC) and Bruno Raffin (InriAlpes)

• PhD in progress - Giancarlo FISSORE, Statistical physics analysis of generative models, 1/10/2017,
Aurélien Decelle and Cyril Furtlehner

• PhD in progress - Jérémy GUEZ , Statistical inference of cultural transmission of reproductive success,
1/10/2019, Evelyne Heyer (MNHN) and Flora Jay

• PhD in progress - Armand LACOMBE, Recommandation de Formations: Application de l’apprentissage
causal dans le domaine des ressources humaines, 1/10/2019, Michele Sebag and Philippe Caillou

• PhD in progress - Wenzhuo LIU, Machine Learning for Numerical Simulation of PDEs, from
1/11/2019, Mouadh Yagoubi (IRT SystemX) and Marc Schoenauer

• PhD in progress - Emmanuel MENIER, Complementary Deep Reduced Order Model, from 1/9/2020,
Michele Alessandro Bucci and Marc Schoenauer

• PhD in progress - Mathieu NASTORG, Machine Learning enhanced resolution of Navier-Stokes
equations on general unstructured grids, 4/1/2021, Guillaume Charpiat and Michele Alessandro
Bucci.

• PhD in progress - Adrien PAVAO, Theory and practice of challenge organization, from 1/03/2020,
Isabelle Guyon.

• PhD in progress - Herilalaina RAKOTOARISON, Automatic Algorithm Configuration for Power Grid
Optimization, 1/10/2017, Marc Schoenauer and Michèle Sebag
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• PhD in progress - Théophile SANCHEZ, Reconstructing the past: deep learning for population
genetics, 1/10/2017, Guillaume Charpiat and Flora Jay

• PhD in progress - Vincenzo SCHIMMENTI, Eartquake Predictions: Machine Learned Features using
Expert Models Simulations, from 1/11/2020, François Landes and Alberto Rosso (LPTMS)

• PhD in progress - Marion ULLMO, Reconstruction de la toile cosmique, from 1/10/2018, Nabila
Aghanim (Institut d’Astrophysique Spatiale) and Aurélien Decelle

• PhD - Elinor WAHAL, Micro-work for AI in health applications, from 1/1/2020 (renounced 30/11/2021),
Paola Tubaro

• PhD in progress - Assia Wirth, Coloniality of the production of facial recognition technologies, started
01/04/2021, Paola Tubaro

11.2.3 Juries

• Flora Jay: PhD, E Kerdoncuff (Sorbonne Université) Méthodes d’inférence démographique récente
utilisant les polymorphismes et leur liaison génétique ; PhD, K Shimagaki (Sciences Sorbonne
Université) Advanced statistical modeling and variable selection for protein sequences ; PhD, R
Menegaux (PSL Université, Mines ParisTech) Continuous embeddings for large-scale machine
learning with DNA sequences

• Marc Schoenauer, PhD Cornero Maceda, LIMSI ; PhD Filipe Guerreiro Assunção, U. Coimbra,
Portugal ; PhD committee Kaitlin Mailhe, Université Toulouse 1 Capitole

• Michele Sebag, HdR Philippe Esling, IRCAM ; PhD Luciano di Palma, LIX ; PhD Jean-Baptiste
Gouray, Univ. d’Artois

• Paola Tubaro: PhD, A. Bouadjo-Boulic (Université Toulouse I Capitole), Génération multi-agents de
réseaux sociaux

• Paola Tubaro: PhD, N. Révai (Université de Strasbourg), The dynamics of teachers’ professional
knowledge in social networks

11.3 Popularization

11.3.1 Internal or external Inria responsibilities

• Marc Schoenauer, Deputy Research Director in charge of AI

• Marc Schoenauer, sherpa for Inria as pilot institution of the PEPR-IA (together with CEA and CNRS)

11.3.2 Articles and contents

• Flora Jay, entretien radiophonique, Génomique et IA : les liaisons fructueuses, La méthode scien-
tifique, France Culture, 12 Jan 2021

• Flora Jay, entretien, Sur la piste des génomes artificiels, par Sebastián Escalón, Journal du CNRS,
22/11/2021

• Une intelligence artificielle fabrique de l’ADN pour la première fois par Sofia Gavilan, Sciences et
Vie, 22/02/2021

• La première intelligence artificielle capable de créer des génomes humains par Camille Gaubert,
Sciences et Avenir, 12/02/2021

• Michèle Sebag, vidéo, exposition sur l’intelligence artificielle (Institut Henri Poincaré, Maison des
Mathématiques et de l’Informatique de Lyon), 17 juin 2021
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11.3.3 Interventions

• Flora Jay, intervention à l’école d’été de Paris-Saclay filles en science à destination de collégiennes
et lycéennes, 22 et 29 Jun 2021
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