
2021
ACTIVITY REPORT

Project-Team

WHISPER

RESEARCH CENTRE

Paris

IN PARTNERSHIP WITH:

CNRS, Sorbonne Université (UPMC)

Well Honed Infrastructure Software for
Programming Environments and
Runtimes

IN COLLABORATION WITH: Laboratoire d’informatique de Paris 6 (LIP6)

DOMAIN

Networks, Systems and Services,
Distributed Computing

THEME

Distributed Systems and middleware

Contents

Project-Team WHISPER 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 2

3 Research program 3
3.1 Program analysis . 3
3.2 Domain Specific Languages . 4
3.3 Research direction: Tools for improving legacy infrastructure software 4
3.4 Research direction: developing infrastructure software using Domain Specific Languages . 5

4 Application domains 5
4.1 Linux . 5
4.2 Device Drivers . 6

5 Social and environmental responsibility 6
5.1 Impact of research results . 6

6 Highlights of the year 6
6.1 Awards . 6

7 New software and platforms 7
7.1 New software . 7

7.1.1 Coccinelle . 7
7.1.2 Prequel . 7

8 New results 7
8.1 Software engineering for infrastructure software . 7

8.1.1 Transformation rule inference . 8
8.1.2 Refactoring of HPC code . 8

8.2 Scalability . 9
8.3 Virtualization . 9
8.4 Real-time systems . 10

9 Bilateral contracts and grants with industry 11
9.1 Bilateral contracts with industry . 11
9.2 Bilateral grants with industry . 11

10 Partnerships and cooperations 12
10.1 International initiatives . 12

10.1.1 Inria associate team not involved in an IIL or an international program 12
10.2 National initiatives . 12

10.2.1 ANR . 12

11 Dissemination 13
11.1 Promoting scientific activities . 13

11.1.1 Scientific events: organisation . 13
11.1.2 Scientific events: selection . 14
11.1.3 Journal . 14
11.1.4 Invited talks . 14
11.1.5 Leadership within the scientific community . 14
11.1.6 Scientific expertise . 14
11.1.7 Supervision . 14
11.1.8 Juries . 15

12 Scientific production 15
12.1 Major publications . 15
12.2 Publications of the year . 15
12.3 Cited publications . 16

Project WHISPER 1

Project-Team WHISPER

Creation of the Project-Team: 2015 December 01

Keywords

Computer sciences and digital sciences

A1. – Architectures, systems and networks

A1.1.1. – Multicore, Manycore

A1.1.3. – Memory models

A1.1.13. – Virtualization

A2.1.6. – Concurrent programming

A2.1.10. – Domain-specific languages

A2.2.1. – Static analysis

A2.2.5. – Run-time systems

A2.2.8. – Code generation

A2.3.1. – Embedded systems

A2.3.3. – Real-time systems

A2.4. – Formal method for verification, reliability, certification

A2.4.3. – Proofs

A2.5. – Software engineering

A2.5.4. – Software Maintenance & Evolution

A2.6.1. – Operating systems

A2.6.2. – Middleware

A2.6.3. – Virtual machines

Other research topics and application domains

B5. – Industry of the future

B5.2.1. – Road vehicles

B5.2.3. – Aviation

B5.2.4. – Aerospace

B6.1. – Software industry

B6.1.1. – Software engineering

B6.1.2. – Software evolution, maintenance

B6.3.3. – Network Management

B6.5. – Information systems

B6.6. – Embedded systems

https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2021/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Inria Annual Report 2021

1 Team members, visitors, external collaborators

Research Scientists

• Gilles Muller [Team leader, Inria, Senior Researcher, HDR]

• Julia Lawall [Team leader, Inria, Senior Researcher, HDR]

PhD Students

• Yoann Ghigoff [Orange Labs]

• Josselin Giet [École Normale Supérieure de Paris]

• Pierre Nigron [Inria]

Technical Staff

• Jeremie Dautheribes [Inria, Engineer, until May 2021]

• Corentin De Souza [Inria, Engineer, until Jul 2021]

• Rehan Malak [Inria, Engineer, until Nov 2021]

• Thierry Martinez [Inria, Engineer]

• Himadri Pandya [Inria, Engineer, until Nov 2021, PhD student from Dec 2021]

Administrative Assistants

• Christine Anocq [Inria]

• Nelly Maloisel [Inria]

2 Overall objectives

The focus of Whisper is on how to develop (new) and improve (existing) infrastructure software. Infrastruc-
ture software (also called systems software) is the software that underlies all computing. Such software
allows applications to access resources and provides essential services such as memory management,
synchronization and inter-process interactions. Starting bottom-up from the hardware, examples include
virtual machine hypervisors, operating systems, managed runtime environments, standard libraries, and
browsers, which amount to the new operating system layer for Internet applications. For such software,
efficiency and correctness are fundamental. Any overhead will impact the performance of all supported
applications. Any failure will prevent the supported applications from running correctly. Since computing
now pervades our society, with few paper backup solutions, correctness of software at all levels is critical.
Formal methods are increasingly being applied to operating systems code in the research community
[32, 37, 64]. Still, such efforts require a huge amount of manpower and a high degree of expertise which
makes this work difficult to replicate in standard infrastructure-software development.

In terms of methodology, Whisper is at the interface of the domains of operating systems, software
engineering and programming languages. Our approach is to combine the study of problems in the
development of real-world infrastructure software with concepts in programming language design and
implementation, e.g., of domain-specific languages, and knowledge of low-level system behavior. A focus
of our work is on providing support for legacy code, while taking the needs and competences of ordinary
system developers into account.

We aim at providing solutions that can be easily learned and adopted by system developers in the
short term. Such solutions can be tools, such as Coccinelle [1, 7, 8] for transforming C programs, or
domain-specific languages such as Devil [4], Bossa [6] and Ipanema [3] for designing drivers and kernel
schedulers. Due to the small size of the team, Whisper mainly targets operating system kernels and

Project WHISPER 3

runtimes for programming languages. We put an emphasis on achieving measurable improvements
in performance and safety in practice, and on feeding these improvements back to the infrastructure
software developer community.

3 Research program

3.1 Program analysis

A fundamental goal of the research in the Whisper team is to elicit and exploit the knowledge found in
existing code. To do this in a way that scales to a large code base, systematic methods are needed to
infer code properties. We may build on either static [27, 28, 29] or dynamic analysis [45, 47, 50]. Static
analysis consists of approximating the behavior of the source code from the source code alone, while
dynamic analysis draws conclusions from observations of sample executions, typically of test cases.
While dynamic analysis can be more accurate, because it has access to information about actual program
behavior, obtaining adequate test cases is difficult. This difficulty is compounded for infrastructure
software, where many, often obscure, cases must be handled, and external effects such as timing can have
a significant impact. Thus, we expect to primarily use static analyses. Static analyses come in a range
of flavors, varying in the extent to which the analysis is sound, i.e., the extent to which the results are
guaranteed to reflect possible run-time behaviors.

One form of sound static analysis is abstract interpretation [28]. In abstract interpretation, atomic
terms are interpreted as sound abstractions of their values, and operators are interpreted as functions that
soundly manipulate these abstract values. The analysis is then performed by interpreting the program in
a compositional manner using these abstracted values and operators. Alternatively, dataflow analysis
[36] iteratively infers connections between variable definitions and uses, in terms of local transition rules
that describe how various kinds of program constructs may impact variable values. Schmidt has explored
the relationship between abstract interpretation and dataflow analysis [58]. More recently, more general
forms of symbolic execution [27] have emerged as a means of understanding complex code. In symbolic
execution, concrete values are used when available, and these are complemented by constraints that are
inferred from terms for which only partial information is available. Reasoning about these constraints is
then used to prune infeasible paths, and obtain more precise results. A number of works apply symbolic
execution to operating systems code [24, 25].

While sound approaches are guaranteed to give correct results, they typically do not scale to the
very diverse code bases that are prevalent in infrastructure software. An important insight of Engler et
al. [31] was that valuable information could be obtained even when sacrificing soundness, and that
sacrificing soundness could make it possible to treat software at the scales of the kernels of the Linux or
BSD operating systems. Indeed, for certain types of problems, on certain code bases, that may mostly
follow certain coding conventions, it may mostly be safe to e.g., ignore the effects of aliases, assume that
variable values are unchanged by calls to unanalyzed functions, etc. Real code has to be understood by
developers and thus cannot be too complicated, so such simplifying assumptions are likely to hold in
practice. Nevertheless, approaches that sacrifice soundness also require the user to manually validate
the results. Still, it is likely to be much more efficient for the user to perform a potentially complex
manual analysis in a specific case, rather than to implement all possible required analyses and apply
them everywhere in the code base. A refinement of unsound analysis is the CEGAR approach [26], in
which a highly approximate analysis is complemented by a sound analysis that checks the individual
reports of the approximate analysis, and then any errors in reasoning detected by the sound analysis are
used to refine the approximate analysis. The CEGAR approach has been applied effectively on device
driver code in tools developed at Microsoft [21]. The environment in which the driver executes, however,
is still represented by possibly unsound approximations.

Going further in the direction of sacrificing soundness for scalability, the software engineering com-
munity has recently explored a number of approaches to code understanding based on techniques
developed in the areas of natural language understanding, data mining, and information retrieval. These
approaches view code, as well as other software-reated artifacts, such as documentation and postings on
mailing lists, as bags of words structured in various ways. Statistical methods are then used to collect
words or phrases that seem to be highly correlated, independently of the semantics of the program

4 Inria Annual Report 2021

constructs that connect them. The obliviousness to program semantics can lead to many false positives
(invalid conclusions) [42], but can also highlight trends that are not apparent at the low level of individ-
ual program statements. We have previously explored combining such statistical methods with more
traditional static analysis in identifying faults in the usage of constants in Linux kernel code [40].

3.2 Domain Specific Languages

Writing low-level infrastructure code is tedious and difficult, and verifying it is even more so. To produce
non-trivial programs, we could benefit from moving up the abstraction stack to enable both programming
and proving as quickly as possible. Domain-specific languages (DSLs), also known as little languages, are
a means to that end [5] [48].

Traditional approach. Using little languages to aid in software development is a tried-and-trusted
technique [60] by which programmers can express high-level ideas about the system at hand and avoid
writing large quantities of formulaic C boilerplate.

This approach is typified by the Devil language for hardware access [4]. An OS programmer describes
the register set of a hardware device in the high-level Devil language, which is then compiled into a library
providing C functions to read and write values from the device registers. In doing so, Devil frees the
programmer from having to write extensive bit-manipulation macros or inline functions to map between
the values the OS code deals with, and the bit-representation used by the hardware: Devil generates code
to do this automatically.

However, DSLs are not restricted to being “stub” compilers from declarative specifications. The
Bossa language [6] is a prime example of a DSL involving imperative code (syntactically close to C) while
offering a high-level of abstraction. This design of Bossa enables the developer to implement new process
scheduling policies at a level of abstraction tailored to the application domain.

Conceptually, a DSL both abstracts away low-level details and justifies the abstraction by its semantics.
In principle, it reduces development time by allowing the programmer to focus on high-level abstractions.
The programmer needs to write less code, in a language with syntax and type checks adapted to the
problem at hand, thus reducing the likelihood of errors.

Certifying DSLs. While automated and interactive software verification tools are progressively being
applied to larger and larger programs, we have not yet reached the point where large-scale, legacy
software – such as the Linux kernel – could formally be proved “correct”. DSLs enable a pragmatic
approach, by which one could realistically strengthen a large legacy software by first narrowing down its
critical component(s) and then focus verification efforts onto these components.

3.3 Research direction: Tools for improving legacy infrastructure software

A cornerstone of our work on legacy infrastructure software is the Coccinelle program matching and
transformation tool for C code. Coccinelle has been in continuous development since 2005. Today,
Coccinelle is extensively used in the context of Linux kernel development, as well as in the development
of other software, such as wine, python, kvm, git, and systemd. Currently, Coccinelle is a mature software
project, and no research is being conducted on Coccinelle itself. Instead, we leverage Coccinelle in other
research projects [22, 23, 49, 51, 56, 57, 59, 46, 41], both for code exploration, to better understand at a
large scale problems in Linux development, and as an essential component in tools that require program
matching and transformation. The continuing development and use of Coccinelle is also a source of
visibility in the Linux kernel developer community. We submitted the first patches to the Linux kernel
based on Coccinelle in 2007. Since then, almost 9000 patches have been accepted into the Linux kernel
based on the use of Coccinelle, including thousands by over 400 developers from outside our research
group.

Our recent work has focused on driver porting. Specifically, we have considered the problem of porting
a Linux device driver across versions, particularly backporting, in which a modern driver needs to be
used by a client who, typically for reasons of stability, is not able to update their Linux kernel to the most
recent version. When multiple drivers need to be backported, they typically need many common changes,
suggesting that Coccinelle could be applicable. Using Coccinelle, however, requires writing backporting

Project WHISPER 5

transformation rules. In order to more fully automate the backporting (or symmetrically forward porting)
process, these rules should be generated automatically. We have carried out a preliminary study in this
direction with David Lo of Singapore Management University; this work, published at ICSME 2016 [62], is
limited to a port from one version to the next one, in the case where the amount of change required is
limited to a single line of code. Whisper has been awarded an ANR PRCI grant (completed in 2021) to
collaborate with the group of David Lo on scaling up the rule inference process and proposing a fully
automatic porting solution.

3.4 Research direction: developing infrastructure software using Domain Specific
Languages

We wish to pursue a declarative approach to developing infrastructure software. Indeed, there exists a
significant gap between the high-level objectives of these systems and their implementation in low-level,
imperative programming languages. To bridge that gap, we propose an approach based on domain-
specific languages (DSLs). By abstracting away boilerplate code, DSLs increase the productivity of systems
programmers. By providing a more declarative language, DSLs reduce the complexity of code, thus the
likelihood of bugs.

Traditionally, systems are built by accretion of several, independent DSLs. For example, one might
use Devil [4] to interact with devices, Bossa [6] to implement the scheduling policies. However, much
effort is duplicated in implementing the back-ends of the individual DSLs. Our long term goal is to design
a unified framework for developing and composing DSLs. By providing a single conceptual framework,
we hope to amortize the development cost of a myriad of DSLs through a principled approach to reusing
and composing them.

Beyond the software engineering aspects, a unified platform brings us closer to the implementation of
mechanically-verified DSLs. A key benefit would be to provide – by construction – a formal, mechanized
semantics to the DSLs thus developed. Such a semantics would offer a foundation on which to base
further verification efforts, while allowing interaction with non-verified code. We advocate a methodology
based on incremental, piece-wise verification. While building fully-certified systems from the top-down
is a worthwhile endeavor [37], we wish to explore a bottom-up approach by which one focuses first and
foremost on crucial subsystems and their associated properties.

Our current work on DSLs focuses on the design of domain-specific languages for domains where
there is a critical need for code correctness, and corresponding methodologies for proving properties of
the run-time behavior of the system.

4 Application domains

4.1 Linux

Linux is an open-source operating system that is used in settings ranging from embedded systems to
supercomputers. The most recent release of the Linux kernel, v5.15, comprises over 20 million lines of
code, and supports 30 different families of CPU architectures, around 50 file systems, and thousands of
device drivers. Linux is also in a rapid stage of development, with new versions being released roughly
every 2.5 months. Recent versions have each incorporated around 13,500 commits, from around 1500
developers. These developers have a wide range of expertise, with some providing hundreds of patches per
release, while others have contributed only one. Overall, the Linux kernel is critical software, but software
in which the quality of the developed source code is highly variable. These features, combined with the
fact that the Linux community is open to contributions and to the use of tools, make the Linux kernel an
attractive target for software researchers. Tools that result from research can be directly integrated into
the development of real software, where it can have a high, visible impact.

Starting from the work of Engler et al. [30], numerous research tools have been applied to the Linux
kernel, typically for finding bugs [29, 44, 52, 61] or for computing software metrics [34, 63]. In our
work, we have studied generic C bugs in Linux code [8], bugs in function protocol usage [38, 39], issues
related to the processing of bug reports [55] and crash dumps [33], and the problem of backporting [51,
62], illustrating the variety of issues that can be explored on this code base. Unique among research

6 Inria Annual Report 2021

groups working in this area, we have furthermore developed numerous contacts in the Linux developer
community. These contacts provide insights into the problems actually faced by developers and serve as
a means of validating the practical relevance of our work.

4.2 Device Drivers

Device drivers are essential to modern computing, to provide applications with access, via the operating
system, to physical devices such as keyboards, disks, networks, and cameras. Development of new
computing paradigms, such as the internet of things, is hampered because device driver development is
challenging and error-prone, requiring a high level of expertise in both the targeted OS and the specific
device. Furthermore, implementing just one driver is often not sufficient; today’s computing landscape is
characterized by a number of OSes, e.g., Linux, Windows, MacOS, BSD and many real time OSes, and
each is found in a wide range of variants and versions. All of these factors make the development, porting,
backporting, and maintenance of device drivers a critical problem for device manufacturers, industry
that requires specific devices, and even for ordinary users.

The last twenty years have seen a number of approaches directed towards easing device driver
development. Réveillère, who was supervised by G. Muller, proposes Devil [4], a domain-specific language
for describing the low-level interface of a device. Chipounov et al. propose RevNic, [25] a template-based
approach for porting device drivers from one OS to another. Ryzhyk et al. propose Termite, [53, 54] an
approach for synthesizing device driver code from a specification of an OS and a device. Currently, these
approaches have been successfully applied to only a small number of toy drivers. Indeed, Kadav and Swift
[35] observe that these approaches make assumptions that are not satisfied by many drivers; for example,
the assumption that a driver involves little computation other than the direct interaction between the
OS and the device. At the same time, a number of tools have been developed for finding bugs in driver
code. These tools include SDV [21], Coverity [30], CP-Miner, [43] PR-Miner [44], and Coccinelle [7]. These
approaches, however, focus on analyzing existing code, and do not provide guidelines on structuring
drivers.

In summary, there is still a need for a methodology that first helps the developer understand the
software architecture of drivers for commonly used operating systems, and then provides tools for the
maintenance of existing drivers.

5 Social and environmental responsibility

5.1 Impact of research results

Environmental responsability The Whisper team is actively pursuing research on process scheduling
for the Linux kernel. A current area of interest is concentrating threads on fewer cores in a multicore
setting, in order to both reduce the execution time and to increase the number of cores that can enter a
deep idle state, thus reducing energy consumption. A first work in this direction was published at USENIX
ATC 2020. We are continuing to work in this area as part of our collaboration with Oracle (Section 9.1).

6 Highlights of the year

6.1 Awards

• Reda Gouicem’s 2020 PhD thesis on "Thread Scheduling in Multi-core Operating Systems", super-
vised by Gilles Muller and Julien Sopena was recognized (accessit) as part of the Prix de Thèse du
GDR RSD/ASF 2021 (link).

• Gilles Muller received the Senior researcher prize of the GDR RSD/ASF for 2021 (link)

https://gdr-rsd.cnrs.fr/node/53
http://www.sigops-france.fr/2021/07/PrixChercheur

Project WHISPER 7

7 New software and platforms

We continue to maintain our tools for searching and transforming C code and for searching in the
development history of C code projects.

7.1 New software

7.1.1 Coccinelle

Keywords: Code quality, Evolution, Infrastructure software

Functional Description: Coccinelle is a tool for code search and transformation for C programs. It has
been extensively used for bug finding and evolutions in Linux kernel code.

URL: http://coccinelle.lip6.fr

Contact: Julia Lawall

Participants: Gilles Muller, Julia Lawall, Nicolas Palix, Rene Rydhof Hansen, Thierry Martinez

Partners: LIP6, IRILL

7.1.2 Prequel

Keywords: Code search, Git

Scientific Description: The commit history of a code base such as the Linux kernel is a gold mine of
information on how evolutions should be made, how bugs should be fixed, etc. Nevertheless, the
high volume of commits available and the rudimentary filtering tools provided mean that it is often
necessary to wade through a lot of irrelevant information before finding example commits that
can help with a specific software development problem. To address this issue, we propose Prequel
(Patch Query Language), which brings the descriptive power of code matching to the problem of
querying a commit history.

Functional Description: Prequel is a tool for searching for complex patterns in the commits of software
managed using git.

URL: http://prequel-pql.gforge.inria.fr/

Contact: Julia Lawall

Participants: Gilles Muller, Julia Lawall

Partners: LIP6, IRILL

8 New results

8.1 Software engineering for infrastructure software

Our main work in this area has been on the problem of inferring transformation rules from change
examples for the purpose of fully automating large-scale evolutions in infrastructure software. This
work has been carried out in collaboration with David Lo and Lingxiao Jiang of Singapore Management
University, in the context of the ANR ITrans project. We also have further explored the use of Coccinelle
for HPC code, with Michele Martone of the Leibniz Supercomputing Centre.

http://coccinelle.lip6.fr
http://prequel-pql.gforge.inria.fr/

8 Inria Annual Report 2021

8.1.1 Transformation rule inference

Participants: Julia Lawall, Gilles Muller, David Lo (Singapore Management Univer-
sity), Lingxiao Jiang (Singapore Management University), Abhik Roy-
choudhury (National University of Singapore), Gregory Duck (National
University of Singapore).

This year marked the end of our ANR project ITrans (Section 10.2) in collaboration with David
Lo and Lingxiao Jiang at Singapore Management University. To round out the project, we published
some final work on transformation rule inference for Android and for Python software using machine-
learning libraries. The paper "AndroEvolve: Automated Update for Android Deprecated-API Usages"
[13], published in the ICSE 2021 demo track, utilizes data flow analysis to solve the problem of out-
of-method-boundary variables and variable denormalization to remove temporary variables, in order
to produce a more natural updated program. The paper "Characterization and Automatic Updates of
Deprecated Machine-Learning API Usages" [14], published at ICSME 2021, presents a tool to automate
deprecated machine-learning (ML) API usage updates. We first present an empirical study to better
understand how updates of deprecated ML API usages in Python can be done. The study involves a
dataset of 112 deprecated APIs from Scikit-Learn, TensorFlow, and PyTorch. Guided by the findings of
our empirical study, we propose MLCatchUp, a tool to automate the updates of Python deprecated API
usages, that automatically infers the API migration transformation through comparison of the deprecated
and updated API signatures. These transformations are expressed in a Domain Specific Language (DSL).
We evaluate MLCatchUp using a dataset containing 267 files with 551 API usages that we collected
from public GitHub repositories. In our dataset, MLCatchUp can detect deprecated API usages with
perfect accuracy, and update them correctly for 80.6% of the cases. We further improve the accuracy
of MLCatchUp in performing updates by allowing it to accept an additional user input that specifies
the transformation constraints in the DSL for context-dependent API migration. Using this addition,
MLCatchUp can make correct updates for 90.7% of the cases. Finally, the paper "MLCatchUp: Automated
Update of Deprecated Machine-Learning APIs in Python" [15], also at ICSME 2021, presents a demo of
the MLCatchUp work.

Beyond the ITrans project, we have worked with Abhik Roychoudhury and Gregory Duck of the
National University of Singapore on the problem of backporting bug fixes to older versions of the Linux
kernel. Whenever a bug or vulnerability is detected in the Linux kernel, the kernel developers will endeav-
our to fix it by introducing a patch into the mainline version of the Linux kernel source tree. However,
many users run older “stable” versions of Linux, meaning that the patch should also be “backported”
to one or more of these older kernel versions. This process is error-prone and there is usually a long
delay in publishing the backported patch. We have targeted this problem in the paper "Automated patch
backporting in Linux (experience paper)" [18], published at ISSTA 2021. Based on an empirical study,
we show that around 8% of all commits submitted to Linux mainline are backported to older versions,
but often more than one month elapses before the backport is available. Hence, we propose a patch
backporting technique that can automatically transfer patches from the mainline version of Linux into
older stable versions. Our approach first synthesizes a partial transformation rule based on a Linux
mainline patch. This rule can then be generalized by analysing the alignment between the mainline and
target versions. The generalized rule is then applied to the target version to produce a backported patch.
We have implemented our transformation technique in a tool called FixMorph and evaluated it on 350
Linux mainline patches. FixMorph correctly backports 75.1% of them. Compared to existing techniques,
FixMorph improves both the precision and recall. Apart from automation of software maintenance tasks,
patch backporting helps in reducing the exposure to known security vulnerabilities in stable versions of
the Linux kernel.

Two years after it was accepted and made available in "early access", the paper "PatchNet: Hierarchical
Deep Learning-Based Stable Patch Identification for the Linux Kernel" [10] has finally appeared in IEEE
TSE.

8.1.2 Refactoring of HPC code

Project WHISPER 9

Participants: Julia Lawall, Michele Martone (Leibniz Supercomputing Centre).

With Michele Martone of the Leibniz Supercomputing Centre in Munich, we have been investigating
the application of Coccinelle to HPC code, specifically for converting from the Arrays of Structures to
the Structures of Arrays representation. We published an overview of this work, targeting the Gadget
software, simulating large-scale structure (galaxies and clusters) formation, in the paper "Refactoring
for Performance with Semantic Patching: Case Study with Recipes" [16], presented at the C2PO 2021
workshop.

8.2 Scalability

Participants: Gilles Muller, Yoann Ghigoff, Kahina Lazri (Orange Labs),
Julien Sopena (Delys).

In-memory key-value stores are critical components that help scale large internet services by providing
low-latency access to popular data. Memcached, one of the most popular key-value stores, suffers from
performance limitations inherent to the Linux networking stack and fails to achieve high performance
when using high-speed network interfaces. While the Linux network stack can be bypassed using DPDK
based solutions, such approaches require a complete redesign of the software stack and induce high CPU
utilization even when client load is low.

To overcome these limitations, in the paper "BMC: Accelerating Memcached using Safe In-kernel
Caching and Pre-stack Processing", presented at NSDI 2021 [12], we present BMC, an in-kernel cache
for Memcached that serves requests before the execution of the standard network stack. Requests to the
BMC cache are treated as part of the NIC interrupts, which allows performance to scale with the number
of cores serving the NIC queues. To ensure safety, BMC is implemented using eBPF. Despite the safety
constraints of eBPF, we show that it is possible to implement a complex cache service. Because BMC
runs on commodity hardware and requires modification of neither the Linux kernel nor the Memcached
application, it can be widely deployed on existing systems. BMC optimizes the processing time of
Facebook-like small-size requests. On this target workload, our evaluations show that BMC improves
throughput by up to 18x compared to the vanilla Memcached application and up to 6x compared to an
optimized version of Memcached that uses the SO_REUSEPORT socket flag. In addition, our results also
show that BMC has negligible overhead and does not deteriorate throughput when treating non-target
workloads.

This work was done as part of the PhD of Yoann Ghigoff in collaboration with Orange Labs (Section
9.1).

8.3 Virtualization

Participants: Gilles Muller, Alain Tchana (ENS Lyon), Antonio Barbalace (University
of Edinburgh).

Microservices. Nowadays, Cloud and Edge applications are deployed as a set of several small units
communicating with each other - the microservice model. Moreover, each unit - a microservice, may
be implemented as a virtual machine, container, function, etc., spanning the different Cloud and Edge
service models including IaaS, PaaS, FaaS. A microservice is instantiated upon the reception of a request
(e.g., an http packet or a trigger), and a rack-level or data-center-level scheduler decides the placement
for such a unit of execution considering, for example, data locality and load balancing. Different units, as
well as multiple instances of the same unit, may be running on a single server at the same time.

When multiple microservices are running on the same server, some may be busy-waiting - i.e., waiting
for events (or requests) sent by other units. However, these "idle" units are consuming CPU time that

10 Inria Annual Report 2021

could be used by other running units or cloud utility functions on the server (e.g., monitoring daemons).
In a controlled experiment, we observe that units can spend up to 20% - 55% of their CPU time waiting,
thus a great amount of CPU time is wasted; these values significantly grow when overcommitting CPU
resources (i.e., units’ CPU reservations exceed server CPU capacity), where we observe up to 69% – 75%.
This is a result of the lack of information/context about what is running in each unit from the server CPU
scheduler perspective.

In the vision paper "Tell me when you are sleepy and what may wake you up!" [17], published at SoCC
2021, we first provide evidence of the problem and discuss several research questions. Then, we propose
an handful of solutions worth exploring that consist in revisiting hypervisor and host OS scheduler
designs to reduce the CPU time wasted on idle units. Our proposal leverages the concepts of informed
scheduling, and monitoring for internal and external events. Based on the aforementioned solutions, we
propose our initial implementation on Linux/KVM.

Paging. Nested/Extended Page Table (EPT) is the current hardware solution for virtualizing memory in
virtualized systems. It induces a significant performance overhead due to the 2D page walk it requires,
thus incurring 24 memory accesses on a TLB miss (instead of the 4 memory accesses in a native system).
This 2D page walk comes from the utilization of paging for managing virtual machine (VM) memory.
In the paper "(No)Compromis: paging virtualization is not a fatality" [19], at VEE 2021, we show that
paging is not necessary in the hypervisor. Our solution Compromis, a novel Memory Management Unit,
uses direct segments for VM memory management combined with paging for VM’s processes. This is
the first time that a direct segment based solution is shown to be applicable to the entire VM memory
while keeping applications unchanged. Relying on the 310 studied datacenter traces, the paper shows
that it is possible to provision up to 99.99% of the VMs using a single memory segment. The paper
presents a systematic methodology for implementing Compromis in the hardware, the hypervisor and
the datacenter scheduler. Evaluation results show that Compromis outperforms the two popular memory
virtualization solutions: shadow paging and EPT by up to 30% and 370% respectively.

Security. The vulnerability window of a hypervisor regarding a given security flaw is the time between
the identification of the flaw and the integration of a correction/patch in the running hypervisor. Most
vulnerability windows, regardless of severity, are long enough (several days) that attackers have time to
perform exploits. Nevertheless, the number of critical vulnerabilities per year is low enough to allow an
exceptional solution. In the paper "Mitigating vulnerability windows with hypervisor transplant" [20],
presented at EuroSys 2021, we introduce hypervisor transplant, a solution for addressing the vulnerability
window of critical flaws. It involves temporarily replacing the current datacenter hypervisor (e.g., Xen)
which is subject to a critical security flaw, by a different hypervisor (e.g., KVM) which is not subject to the
same vulnerability.

We build HyperTP, a generic framework that combines in a unified way two approaches: in-place
server micro-reboot-based hypervisor transplant (noted InPlaceTP) and live VM migration-based hy-
pervisor transplant (noted MigrationTP). We describe the implementation of HyperTP and its extension
for transplanting Xen with KVM and vice versa. We also show that HyperTP is easy to integrate with the
OpenStack cloud computing platform. Our evaluation results show that HyperTP delivers satisfactory
performance: (1) MigrationTP takes the same time and impacts virtual machines (VMs) with the same
performance degradation as normal live migration. (2) the downtime imposed by InPlaceTP on VMs is in
the same order of magnitude (1.7 seconds for a VM with 1 vCPU and 1 GB of RAM) as in-place upgrade of
homogeneous hypervisors based on server micro-reboot.

8.4 Real-time systems

Participants: Gilles Muller, Isabelle Puaut (Inria Rennes).

Modern processors raise a challenge for WCET estimation, since detailed knowledge of the processor
microarchitecture is not available. In the paper "WE-HML: hybrid WCET estimation using machine

Project WHISPER 11

learning for architectures with caches", published at RTCSA 2021 [11], we propose a novel hybrid WCET
estimation technique, WE-HML, in which the longest path is estimated using static techniques, whereas
machine learning (ML) is used to determine the WCET of basic blocks. In contrast to existing literature
using ML techniques for WCET estimation, WE-HML (i) operates on binary code for improved precision
of learning, as compared to the related techniques operating at source code or intermediate code level;
(ii) trains the ML algorithms on a large set of automatically generated programs for improved quality of
learning; (iii) proposes a technique to take into account data caches. Experiments on an ARM Cortex-A53
processor show that for all benchmarks, WCET estimates obtained by WE-HML are larger than all possible
execution times. Moreover, the cache modeling technique of WE-HML allows an improvement of 65
percent on average of WCET estimates compared to its cache-agnostic equivalent.

9 Bilateral contracts and grants with industry

9.1 Bilateral contracts with industry

Orange Labs, 2019-2022, 30 000 euros.

Participants: Gilles Muller, Yoann Ghigoff, Julien Sopena (Delys), Kahina Lazri (Or-
ange Labs).

The purpose of this contract is to design application-specific proxies so as to speed up network
services. The PhD of Yoann Ghigoff is supported by a CIFRE fellowship as part of this contract. Some
results from this project are described in Section 8.2.

DGA-Inria, 2019-2022, 60 000 euros.

Participants: Pierre Nigron, Pierre-Evariste Dagand (CNRS).

The purpose of this PhD grant is to develop a high-performance, certified packet processing system.
The PhD of Pierre Nigron is supported by this grant.

9.2 Bilateral grants with industry

Oracle, 2020-2021, 100 000 dollar gift.

Participants: Gilles Muller, Julia Lawall, Jean-Pierre Lozi (Oracle).

Operating system schedulers are often a performance bottleneck on multicore architectures because
in order to scale, schedulers cannot make optimal decisions and instead have to rely on heuristics.
Detecting that performance degradation comes from the scheduler level is extremely difficult because
the issue has not been recognized until recently, and with traditional profilers, both the application and
the scheduler can affect the monitored metrics in the same way.

The first objective of this project was to produce a profiler that makes it possible to find out whether a
bottleneck during application runtime is caused by the application itself, by suboptimal OS scheduler
behavior, or by a combination of the two. Such a profiler should enable understanding, analyzing and
classifying performance bottlenecks that are caused by schedulers, to help the user understand the root
cause of the performance issue. Following this, the second objective of this project is to use the profiler to

12 Inria Annual Report 2021

better understand which kinds of workloads suffer from poor scheduling, and to propose new algorithms,
heuristics and/or a new scheduler design that will improve the situation. Finally, the third objective is to
devise a methodology that makes it possible to track scheduling bottlenecks in a specific workload using
the profiler, to understand them, and to fix them either at the application or at the scheduler level. We
believe that the combination of these three contributions will make it possible to fully harness the power
of multicore architectures for any workload.

As part of this project, we have already identified frequency scaling and the “fork/wait” paradigm as a
source of inefficiency in modern multicore machines. The design of a scheduler, Smove, to address this
issue was published at USENIX ATC 2020. Subsequently, we have continued to study the impact of core
frequency on application performance, using our developed scheduler tracing tools.

10 Partnerships and cooperations

10.1 International initiatives

10.1.1 Inria associate team not involved in an IIL or an international program

CSG

Title: Proving Concurrent Multi-Core Operating Systems

Duration: 2019 -> 2022

Coordinator: Willy Zwaenepoel (willy.zwaenepoel@sydney.edu.au)

Partners:

• University of Sydney

Inria contact: Gilles Muller, Julia Lawall

Summary: The goal of this project is to cooperate on the development of proved multicore schedulers.
Building on our design of a DSL (Ipanema) for expressing scheduling policies, we are working
on (i) Better understanding of what should the best scheduler for a given multicore application,
(ii) Proving the correctness of the C code generated from the DSL policy and of the Ipanema
abstract machine, (iii) Extending the Ipanema DSL to the domain of I/O request scheduling [3],
(iv) Designing a provable complete concurrent kernel. This project has resulted in a publication at
EuroSys 2020, and intersects with the delegation of Virginia Aponte (2019-2020), our collaboration
with Oracle, and our ANR VeriAmos project, with Antique and the University of Grenoble.

10.2 National initiatives

10.2.1 ANR

ITrans

Participants: Julia Lawall (PI), Gilles Muller, Lucas Serrano, Van-Anh Nguyen,
David Lo (Singapore Management University (PI)), Lingxiao Jiang (Sin-
gapore Management University).

• Awarded in 2016, duration 2017 - 2021

• Members: LIP6 (Whisper), Singapore Management University

• Funding: ANR PRCI, 287,820 euros.

Project WHISPER 13

• Objectives:

Large, real-world software must continually change, to keep up with evolving requirements, fix bugs,
and improve performance, maintainability, and security. This rate of change can pose difficulties
for clients, whose code cannot always evolve at the same rate. This project targets the problems
of forward porting, where one software component has to catch up to a code base with which it
needs to interact, and back porting, in which it is desired to use a more modern component in
a context where it is necessary to continue to use a legacy code base, focusing on the context of
Linux device drivers. In this project, we take a history-guided source-code transformation-based
approach, which automatically traverses the history of the changes made to a software system, to
find where changes in the code to be ported are required, gathers examples of the required changes,
and generates change rules to incrementally back port or forward port the code. The developed
tool Spinfer, published at USENIX ATC 2020 [9], is able to infer transformation rules from sets of
examples of a wide range of Linux kernel changes. This is a critical building block in developing a
technique to back and forward port drivers for the Linux operating system to various earlier and
later kernel versions with high accuracy while requiring minimal developer effort.

VeriAmos

Participants: Xavier REival (Antique (PI)), Nicolas Palix (UGA (Erods)), Gilles Muller,
Julia Lawall, Rehan Malak.

• Awarded in 2018, duration 2018 - 2022

• Members: Inria (Antique, Whisper), UGA (Erods)

• Funding: ANR, 121,739 euros.

• Objectives:

General-purpose Operating Systems, such as Linux, are increasingly used to support high-level
functionalities in the safety-critical embedded systems industry with usage in automotive, medical
and cyber-physical systems. However, it is well known that general purpose OSes suffer from bugs.
In the embedded systems context, bugs may have critical consequences, even affecting human
life. Recently, some major advances have been done in verifying OS kernels, mostly employing
interactive theorem-proving techniques. These works rely on the formalization of the programming
language semantics, and of the implementation of a software component, but require significant
human intervention to supply the main proof arguments. The VeriAmos project is attacking this
problem by building on recent advances in the design of domain-specific languages and static
analyzers for systems code. We are investigating whether the restricted expressiveness and the
higher level of abstraction provided by the use of a DSL will make it possible to design static
analyzers that can statically and fully automatically verify important classes of semantic properties
on OS code, while retaining adequate performance of the OS service. As a specific use-case, the
project targets I/O scheduling components.

11 Dissemination

11.1 Promoting scientific activities

11.1.1 Scientific events: organisation

General chair, scientific chair

• Julia Lawall: Organizer of the 20th meeting of the IFIP WG 2.11 (Program generation), Feb 2021
(link)

https://wiki.hh.se/wg211/index.php/WG211/M20Schedule

14 Inria Annual Report 2021

Member of the organizing committees

• Gilles Muller is president of the steering committee of Compas

• Julia Lawall is a member of the steering committee of ASE (since 2019)

11.1.2 Scientific events: selection

Chair of conference program committees

• Julia Lawall: Chair of the Doctoral workshop at ICSME 2021, with Ferdian Thung

Reviewer

• Gilles Muller: NSDI 2021

• Julia Lawall: SOSP 2021, ICSE 2021, ECOOP 2021, EuroSys 2021, FSE 2021 (Visions and reflections
track, Doctoral symposium), Benevol 2021

11.1.3 Journal

Member of the editorial boards

• Julia Lawall: Member of the editorial board of Science of Computer Programming, since 2008.

Reviewer - reviewing activities

• Julia Lawall has reviewed articles for journals such as Science of Computer Programming and IEEE
Transactions on Software Engineering.

11.1.4 Invited talks

• Julia Lawall, PEPM 2021, "Program Manipulation of C Code: From Partial Evaluation to Semantic
Patches for the Linux Kernel" (video)

11.1.5 Leadership within the scientific community

• Julia Lawall is the chair of the ASF/RSD prize committee (responsable for the PhD prize, junior
researcher prize, and senior researcher prize) with Xavier Lagrange, 2021-2023.

11.1.6 Scientific expertise

• Gilles Muller: Vice-president of ANR committee 25.

11.1.7 Supervision

• Gilles Muller: supervisor of the PhD of Yoann Ghigoff (Jun 2019 - May 2022), with Julien Sopena
(Delys) and Kahina Lazri (Orange)

• Gilles Muller: co-supervisor of the PhD of Josselin Giet (Sep 2020 - Aug 2023), with Xavier Rival
(Antique)

• Julia Lawall: supervisor of the PhD of Himadri Pandya (Dec 2021 - Nov 2024)

https://www.youtube.com/watch?v=kaJOj_LErQo

Project WHISPER 15

11.1.8 Juries

• Julia Lawall: PhD jury member for Quentin Dufour, University of Rennes, February 2021

• Julia Lawall: PhD jury member for Nicolas Jeannerod, University of Paris, April 2021

• Julia Lawall: PhD jury member for Frederic Recoules, Université Grenoble Alpes, September 2021

• Julia Lawall: HDR jury member for Mathieu Acher, University of Rennes, November 2021

• Julia Lawall: PhD reporter for Hugo Martin, University of Rennes, December 2021

12 Scientific production

12.1 Major publications

[1] J. Brunel, D. Doligez, R. R. Hansen, J. L. Lawall and G. Muller. ‘A foundation for flow-based program
matching using temporal logic and model checking’. In: POPL. Savannah, GA, USA: ACM, Jan. 2009,
pp. 114–126.

[2] L. Burgy, L. Réveillère, J. L. Lawall and G. Muller. ‘Zebu: A Language-Based Approach for Network
Protocol Message Processing’. In: IEEE Trans. Software Eng. 37.4 (2011), pp. 575–591.

[3] B. Lepers, R. Gouicem, D. Carver, J.-P. Lozi, N. Palix, M.-V. Aponte, W. Zwaenepoel, J. Sopena, J.
Lawall and G. Muller. ‘Provable Multicore Schedulers with Ipanema: Application to Work Conserva-
tion’. In: Eurosys 2020 - European Conference on Computer Systems. Heraklion / Virtual, Greece,
27th Apr. 2020. DOI: 10.1145/3342195.3387544. URL: https://hal.inria.fr/hal-02554342.

[4] F. Mérillon, L. Réveillère, C. Consel, R. Marlet and G. Muller. ‘Devil: An IDL for hardware program-
ming’. In: Proceedings of the Fourth Symposium on Operating Systems Design and Implementation
(OSDI). San Diego, California: USENIX Association, Oct. 2000, pp. 17–30.

[5] G. Muller, C. Consel, R. Marlet, L. P. Barreto, F. Mérillon and L. Réveillère. ‘Towards Robust OSes
for Appliances: A New Approach Based on Domain-specific Languages’. In: Proceedings of the 9th
Workshop on ACM SIGOPS European Workshop: Beyond the PC: New Challenges for the Operating
System. Kolding, Denmark, 2000, pp. 19–24.

[6] G. Muller, J. L. Lawall and H. Duchesne. ‘A Framework for Simplifying the Development of Kernel
Schedulers: Design and Performance Evaluation’. In: HASE - High Assurance Systems Engineering
Conference. Heidelberg, Germany: IEEE, Oct. 2005, pp. 56–65.

[7] Y. Padioleau, J. L. Lawall, R. R. Hansen and G. Muller. ‘Documenting and Automating Collateral
Evolutions in Linux Device Drivers’. In: EuroSys. Glasgow, Scotland, Mar. 2008, pp. 247–260.

[8] N. Palix, G. Thomas, S. Saha, C. Calvès, J. L. Lawall and G. Muller. ‘Faults in Linux 2.6’. In: ACM
Transactions on Computer Systems 32.2 (June 2014), 4:1–4:40.

[9] L. Serrano, V.-A. Nguyen, F. Thung, L. Jiang, D. Lo, J. Lawall and G. Muller. ‘SPINFER: Inferring
Semantic Patches for the Linux Kernel’. In: USENIX Annual Technical Conference. Boston / Virtual,
United States, 15th July 2020. URL: https://hal.inria.fr/hal-02906912.

12.2 Publications of the year

International journals

[10] T. Hoang, J. Lawall, Y. Tian, R. J. Oentaryo and D. Lo. ‘PatchNet: Hierarchical Deep Learning-Based
Stable Patch Identification for the Linux Kernel’. In: IEEE Transactions on Software Engineering
47.11 (Nov. 2021), pp. 2471–2486. DOI: 10.1109/TSE.2019.2952614. URL: https://hal.inria
.fr/hal-02373994.

https://doi.org/10.1145/3342195.3387544
https://hal.inria.fr/hal-02554342
https://hal.inria.fr/hal-02906912
https://doi.org/10.1109/TSE.2019.2952614
https://hal.inria.fr/hal-02373994
https://hal.inria.fr/hal-02373994

16 Inria Annual Report 2021

International peer-reviewed conferences

[11] A. N. Amalou, I. Puaut and G. Muller. ‘WE-HML: hybrid WCET estimation using machine learning
for architectures with caches’. In: RTCSA 2021 - 27th IEEE International Conference on Embedded
Real-Time Computing Systems and Applications. Online Virtual Conference, France: IEEE, 18th Aug.
2021, pp. 1–10. URL: https://hal.inria.fr/hal-03280177.

[12] Y. Ghigoff, J. Sopena, K. Lazri, A. Blin and G. Muller. ‘BMC: Accelerating Memcached using Safe
In-kernel Caching and Pre-stack Processing’. In: NSDI’21 - 18th USENIX Symposium on Networked
Systems Design and Implementation. Virtual event, United States: USENIX Association, 12th Apr.
2021, pp. 487–501. URL: https://hal.inria.fr/hal-03361644.

[13] S. Haryono, F. Thung, D. Lo, L. Jiang, J. Lawall, H. Jin Kang, L. Serrano and G. Muller. ‘AndroEvolve:
Automated Update for Android Deprecated-API Usages’. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion). 2021 IEEE/ACM
43rd International Conference on Software Engineering. Madrid / Virtual, Spain: IEEE, 25th May
2021, pp. 1–4. DOI: 10.1109/ICSE-Companion52605.2021.00021. URL: https://hal.inria.f
r/hal-03504710.

[14] S. A. Haryono, F. Thung, D. Lo, J. Lawall and L. Jiang. ‘Characterization and Automatic Updates of
Deprecated Machine-Learning API Usages’. In: ICSME 2021 - IEEE International Conference on
Software Maintenance and Evolution. Luxembourg City / Virtual, Luxembourg, 29th Sept. 2021.
DOI: 10.1109/ICSME52107.2021.00019. URL: https://hal.inria.fr/hal-03361379.

[15] S. A. Haryono, F. Thung, D. Lo, J. Lawall and L. Jiang. ‘MLCatchUp: Automated Update of Deprecated
Machine-Learning APIs in Python’. In: ICSME 2021 - 37th IEEE International Conference on
Software Maintenance and Evolution. Luxembourg City / Virtual, Luxembourg, 27th Sept. 2021.
DOI: 10.1109/ICSME52107.2021.00061. URL: https://hal.inria.fr/hal-03361370.

[16] M. Martone and J. Lawall. ‘Refactoring for Performance with Semantic Patching: Case Study with
Recipes’. In: C3PO’21: Compiler-assisted Correctness Checking and Performance Optimization for
HPC (ISC workshop). virtual, Germany, 13th Nov. 2021, pp. 226–232. DOI: 10.1007/978-3-030-9
0539-2_15. URL: https://hal.inria.fr/hal-03266521.

[17] D. Mvondo, A. Barbalace, A. Tchana and G. Muller. ‘Tell me when you are sleepy and what may
wake you up!’ In: SoCC 2021 - ACM Symposium on Cloud Computing. Seattle WA USA, United
States: ACM, 1st Nov. 2021, pp. 562–569. DOI: 10.1145/3472883.3487013. URL: https://hal.a
rchives-ouvertes.fr/hal-03503825.

[18] R. Shariffdeen, X. Gao, G. J. Duck, S. H. Tan, J. Lawall and A. Roychoudhury. ‘Automated Patch
Backporting in Linux (Experience Paper)’. In: ISSTA 2021: Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis. Aarhus (virtual), Denmark, 11th July
2021. DOI: 10.1145/3460319.3464821. URL: https://hal.inria.fr/hal-03359062.

[19] B. Teabe Djomgwe, P. Yuhala, A. Tchana, F. Hermenier, D. Hagimont and G. Muller. ‘(No)Compromis:
Paging Virtualization Is Not a Fatality’. In: à paraître. VEE 2021 - 17th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments. Détroit, Michigan / Virtual, United
States, 16th Apr. 2021, pp. 1–12. URL: https://hal.archives-ouvertes.fr/hal-03183858.

[20] D. N. Tu, B. Teabe Djomgwe, A. Tchana, G. Muller and D. Hagimont. ‘Mitigating vulnerability win-
dows with hypervisor transplant’. In: EuroSys ’21: Proceedings of the Sixteenth European Conference
on Computer Systems. EuroSys 2021 - European Conference on Computer Systems. Edinburgh /
Virtual, United Kingdom: Association for Computing Machinery, 2021, pp. 1–14. DOI: 10.1145/34
47786.3456235. URL: https://hal.archives-ouvertes.fr/hal-03183856.

12.3 Cited publications

[21] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K. Rajamani
and A. Ustuner. ‘Thorough Static Analysis of Device Drivers’. In: EuroSys. 2006, pp. 73–85.

[22] T. F. Bissyandé, L. Réveillère, J. L. Lawall, Y.-D. Bromberg and G. Muller. ‘Implementing an Embed-
ded Compiler using Program Transformation Rules’. In: Software: Practice and Experience 45.2 (Feb.
2015), pp. 177–196. URL: https://hal.archives-ouvertes.fr/hal-00844536.

https://hal.inria.fr/hal-03280177
https://hal.inria.fr/hal-03361644
https://doi.org/10.1109/ICSE-Companion52605.2021.00021
https://hal.inria.fr/hal-03504710
https://hal.inria.fr/hal-03504710
https://doi.org/10.1109/ICSME52107.2021.00019
https://hal.inria.fr/hal-03361379
https://doi.org/10.1109/ICSME52107.2021.00061
https://hal.inria.fr/hal-03361370
https://doi.org/10.1007/978-3-030-90539-2_15
https://doi.org/10.1007/978-3-030-90539-2_15
https://hal.inria.fr/hal-03266521
https://doi.org/10.1145/3472883.3487013
https://hal.archives-ouvertes.fr/hal-03503825
https://hal.archives-ouvertes.fr/hal-03503825
https://doi.org/10.1145/3460319.3464821
https://hal.inria.fr/hal-03359062
https://hal.archives-ouvertes.fr/hal-03183858
https://doi.org/10.1145/3447786.3456235
https://doi.org/10.1145/3447786.3456235
https://hal.archives-ouvertes.fr/hal-03183856
https://hal.archives-ouvertes.fr/hal-00844536

Project WHISPER 17

[23] T. F. Bissyandé, L. Réveillère, J. L. Lawall and G. Muller. ‘Ahead of Time Static Analysis for Automatic
Generation of Debugging Interfaces to the Linux Kernel’. In: Automated Software Engineering (May
2014), pp. 1–39. DOI: 10.1007/s10515-014-0152-4. URL: https://hal.archives-ouvertes
.fr/hal-00992283.

[24] C. Cadar, D. Dunbar and D. R. Engler. ‘KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs’. In: OSDI. 2008, pp. 209–224.

[25] V. Chipounov and G. Candea. ‘Reverse Engineering of Binary Device Drivers with RevNIC’. In:
EuroSys. 2010, pp. 167–180.

[26] E. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith. ‘Counterexample-guided abstraction refinement
for symbolic model checking’. In: J. ACM 50.5 (2003), pp. 752–794.

[27] L. A. Clarke. ‘A system to generate test data and symbolically execute programs’. In: IEEE Transac-
tions on Software Engineering 2.3 (1976), pp. 215–222.

[28] P. Cousot and R. Cousot. ‘Abstract Interpretation: Past, Present and Future’. In: CSL-LICS. 2014,
2:1–2:10.

[29] I. Dillig, T. Dillig and A. Aiken. ‘Sound, complete and scalable path-sensitive analysis’. In: PLDI.
June 2008, pp. 270–280.

[30] D. R. Engler, B. Chelf, A. Chou and S. Hallem. ‘Checking System Rules Using System-Specific,
Programmer-Written Compiler Extensions’. In: OSDI. 2000, pp. 1–16.

[31] D. R. Engler, D. Y. Chen, A. Chou and B. Chelf. ‘Bugs as Deviant Behavior: A General Approach to
Inferring Errors in Systems Code’. In: SOSP. 2001, pp. 57–72.

[32] L. Gu, A. Vaynberg, B. Ford, Z. Shao and D. Costanzo. ‘CertiKOS: A Certified Kernel for Secure Cloud
Computing’. In: Proceedings of the Second Asia-Pacific Workshop on Systems (APSys). 2011, 3:1–3:5.

[33] L. Guo, J. L. Lawall and G. Muller. ‘Oops! Where did that code snippet come from?’ In: 11th Working
Conference on Mining Software Repositories, MSR. Hyderabad, India: ACM, May 2014, pp. 52–61.

[34] A. Israeli and D. G. Feitelson. ‘The Linux kernel as a case study in software evolution’. In: Journal of
Systems and Software 83.3 (2010), pp. 485–501.

[35] A. Kadav and M. M. Swift. ‘Understanding modern device drivers’. In: ASPLOS. 2012, pp. 87–98.

[36] G. A. Kildall. ‘A Unified Approach to Global Program Optimization’. In: POPL. 1973, pp. 194–206.

[37] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch and S. Winwood. ‘seL4: formal verification of an OS
kernel’. In: SOSP. 2009, pp. 207–220.

[38] J. L. Lawall, J. Brunel, N. Palix, R. R. Hansen, H. Stuart and G. Muller. ‘WYSIWIB: Exploiting fine-
grained program structure in a scriptable API-usage protocol-finding process’. In: Software, Practice
Experience 43.1 (2013), pp. 67–92.

[39] J. L. Lawall, B. Laurie, R. R. Hansen, N. Palix and G. Muller. ‘Finding Error Handling Bugs in OpenSSL
using Coccinelle’. In: Proceeding of the 8th European Dependable Computing Conference (EDCC).
Valencia, Spain, Apr. 2010, pp. 191–196.

[40] J. L. Lawall and D. Lo. ‘An automated approach for finding variable-constant pairing bugs’. In: 25th
IEEE/ACM International Conference on Automated Software Engineering. Antwerp, Belgium, Sept.
2010, pp. 103–112.

[41] J. L. Lawall, D. Palinski, L. Gnirke and G. Muller. ‘Fast and Precise Retrieval of Forward and Back
Porting Information for Linux Device Drivers’. In: 2017 USENIX Annual Technical Conference. Santa
Clara, CA, United States, July 2017, p. 12. URL: https://hal.inria.fr/hal-01556589.

[42] C. Le Goues and W. Weimer. ‘Specification Mining with Few False Positives’. In: TACAS. Vol. 5505.
Lecture Notes in Computer Science. York, UK, Mar. 2009, pp. 292–306.

[43] Z. Li, S. Lu, S. Myagmar and Y. Zhou. ‘CP-Miner: A Tool for Finding Copy-paste and Related Bugs in
Operating System Code’. In: OSDI. 2004, pp. 289–302.

https://doi.org/10.1007/s10515-014-0152-4
https://hal.archives-ouvertes.fr/hal-00992283
https://hal.archives-ouvertes.fr/hal-00992283
https://hal.inria.fr/hal-01556589

18 Inria Annual Report 2021

[44] Z. Li and Y. Zhou. ‘PR-Miner: automatically extracting implicit programming rules and detecting
violations in large software code’. In: Proceedings of the 10th European Software Engineering
Conference. 2005, pp. 306–315.

[45] D. Lo and S.-C. Khoo. ‘SMArTIC: towards building an accurate, robust and scalable specification
miner’. In: FSE. 2006, pp. 265–275.

[46] J.-P. Lozi, F. David, G. Thomas, J. L. Lawall and G. Muller. ‘Fast and Portable Locking for Multicore
Architectures’. In: ACM Transactions on Computer Systems (Jan. 2016). DOI: 10.1145/2845079.
URL: https://hal.inria.fr/hal-01252167.

[47] S. Lu, S. Park and Y. Zhou. ‘Finding Atomicity-Violation Bugs through Unserializable Interleaving
Testing’. In: IEEE Transactions on Software Engineering 38.4 (2012), pp. 844–860.

[48] M. Mernik, J. Heering and A. M. Sloane. ‘When and How to Develop Domain-specific Languages’.
In: ACM Comput. Surv. 37.4 (Dec. 2005), pp. 316–344. URL: http://dx.doi.org/10.1145/11188
90.1118892.

[49] M. C. Olesen, R. R. Hansen, J. L. Lawall and N. Palix. ‘Coccinelle: Tool support for automated CERT
C Secure Coding Standard certification’. In: Science of Computer Programming. Special Issue on
Selected Contributions from the Open Source Software Certification (OpenCert) Workshops 91.B
(Oct. 2014), pp. 141–160. URL: https://hal.inria.fr/hal-01096185.

[50] T. Reps, T. Ball, M. Das and J. Larus. ‘The Use of Program Profiling for Software Maintenance with
Applications to the Year 2000 Problem’. In: ESEC/FSE. 1997, pp. 432–449.

[51] L. R. Rodriguez and J. L. Lawall. ‘Increasing Automation in the Backporting of Linux Drivers Using
Coccinelle’. In: 11th European Dependable Computing Conference - Dependability in Practice. 11th
European Dependable Computing Conference - Dependability in Practice. Paris, France, Nov. 2015.
URL: https://hal.inria.fr/hal-01213912.

[52] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. ‘Error
propagation analysis for file systems’. In: PLDI. Dublin, Ireland: ACM, June 2009, pp. 270–280.

[53] L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur and G. Heiser. ‘Automatic device driver synthesis with
Termite’. In: SOSP. 2009, pp. 73–86.

[54] L. Ryzhyk, A. Walker, J. Keys, A. Legg, A. Raghunath, M. Stumm and M. Vij. ‘User-Guided Device
Driver Synthesis’. In: OSDI. 2014, pp. 661–676.

[55] R. Saha, J. L. Lawall, S. Khurshid and D. E. Perry. ‘On the Effectiveness of Information Retrieval
based Bug Localization for C Programs’. In: International Conference on Software Maintenance and
Evolution (ICSME). Victoria, BC, Canada, Sept. 2014.

[56] R. k. Saha, J. L. Lawall, S. Khurshid and D. E. Perry. ‘On the Effectiveness of Information Retrieval
Based Bug Localization for C Programs’. In: ICSME 2014 - 30th International Conference on Software
Maintenance and Evolution. IEEE. Victoria, Canada, Sept. 2014, pp. 161–170. DOI: 10.1109/ICSME.
2014.38. URL: https://hal.inria.fr/hal-01086082.

[57] S. Saha, J.-P. Lozi, G. Thomas, J. L. Lawall and G. Muller. ‘Hector: Detecting resource-release omis-
sion faults in error-handling code for systems software’. In: DSN 2013 - 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE/IFIP. Budapest, Hun-
gary: IEEE Computer Society, June 2013, pp. 1–12. DOI: 10.1109/DSN.2013.6575307. URL:
https://hal.inria.fr/hal-00918079.

[58] D. A. Schmidt. ‘Data Flow Analysis is Model Checking of Abstract Interpretations’. In: POPL. 1998,
pp. 38–48.

[59] P. Senna Tschudin, J. L. Lawall and G. Muller. ‘3L: Learning Linux Logging’. In: BElgian-NEtherlands
software eVOLution seminar (BENEVOL 2015). Lille, France, Dec. 2015. URL: https://hal.inria
.fr/hal-01239980.

[60] M. Shapiro. ‘Purpose-built languages’. In: Commun. ACM 52.4 (2009), pp. 36–41.

[61] R. Tartler, D. Lohmann, J. Sincero and W. Schröder-Preikschat. ‘Feature consistency in compile-
time-configurable system software: facing the Linux 10,000 feature problem’. In: EuroSys. 2011,
pp. 47–60.

https://doi.org/10.1145/2845079
https://hal.inria.fr/hal-01252167
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.1145/1118890.1118892
https://hal.inria.fr/hal-01096185
https://hal.inria.fr/hal-01213912
https://doi.org/10.1109/ICSME.2014.38
https://doi.org/10.1109/ICSME.2014.38
https://hal.inria.fr/hal-01086082
https://doi.org/10.1109/DSN.2013.6575307
https://hal.inria.fr/hal-00918079
https://hal.inria.fr/hal-01239980
https://hal.inria.fr/hal-01239980

Project WHISPER 19

[62] F. Thung, D. X. B. Le, D. Lo and J. L. Lawall. ‘Recommending Code Changes for Automatic Backport-
ing of Linux Device Drivers’. In: 32nd IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE. Raleigh, North Carolina, United States, Oct. 2016. URL: https://hal.in
ria.fr/hal-01355859.

[63] W. Wang and M. Godfrey. ‘A Study of Cloning in the Linux SCSI Drivers’. In: Source Code Analysis
and Manipulation (SCAM). IEEE, 2011.

[64] J. Yang and C. Hawblitzel. ‘Safe to the Last Instruction: Automated Verification of a Type-safe
Operating System’. In: PLDI. 2010, pp. 99–110.

https://hal.inria.fr/hal-01355859
https://hal.inria.fr/hal-01355859

	Project-Team WHISPER
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Program analysis
	Domain Specific Languages
	Research direction: Tools for improving legacy infrastructure software
	Research direction: developing infrastructure software using Domain Specific Languages

	Application domains
	Linux
	Device Drivers

	Social and environmental responsibility
	Impact of research results

	Highlights of the year
	Awards

	New software and platforms
	New software
	Coccinelle
	Prequel

	New results
	Software engineering for infrastructure software
	Transformation rule inference
	Refactoring of HPC code

	Scalability
	Virtualization
	Real-time systems

	Bilateral contracts and grants with industry
	Bilateral contracts with industry
	Bilateral grants with industry

	Partnerships and cooperations
	International initiatives
	Inria associate team not involved in an IIL or an international program

	National initiatives
	ANR

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks
	Leadership within the scientific community
	Scientific expertise
	Supervision
	Juries

	Scientific production
	Major publications
	Publications of the year
	Cited publications

