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2 Overall objectives

Context
SAE International1 recently unveiled a new visual chart [88] that is designed to define the six levels of
driving automation, from SAE Level 0 (no automation) to SAE Level 5 (full vehicle autonomy). It serves as
the industry’s most-cited reference for automated-vehicle (AV) capabilities.

Fully autonomous cars (Level 5 of automation according to SAE J3016), which can work everywhere
in all conditions, are not yet on the roads. Nevertheless, major advances are making vehicle automation
a reality. Systems exist on serial vehicles with Level 2/2+ (assisted driving) and even Level 3 (high
automation, driving only upon system request) since 2021 on privately owned vehicles as well as on
public transport driverless vehicles are offered to passengers and goods around the world. Recent
demonstrators (automated shuttles and robotaxis) have the merit of proving the feasibility of automated
driving as a solution for improving mobility, comfort, safety and energy efficiency.

Current regulation (UN 157 – adopted in June 2020 and voted by 60 countries) allows today vehicles to
drive in L3 up to 60 km/h on carriageway roads. Original Equipment Manufacturers (OEMs) are pushing
for the extension of this regulation up to 130 km/h including automated lane changes. To allow that
(L3/L4 on the highway), many challenges are still to be taken up; technical challenges of course, but
also non-technical challenges which are not the easiest to deal with (legal, liability, ethical, monopoly,
acceptance, economical. . . ) and that are not in the scope of this document even though some intersect
with some technical considerations [77, 95, 119].

In this context, the official ambition of France was previously recalled by the President of France,
who reaffirmed his willingness to deploy these solutions, to extend transport services based on the
autonomous vehicle by 2021 whenever this is possible.

For public transportation, on-road experiments are conducted around the world in specific Opera-
tional Design Domains (ODDs) and first commercial services are being deployed. For example, in Russia,
Yandex has launched the first commercial service in Europe in 2019 in the city of Innopolis and Waymo.
One ride-hailing service using highly automated vehicles in the Phoenix metropolitan area (US). These
systems are operating in geofenced controlled environments due to the lack of technology maturity that
are able to deal with all road types (missing lines, construction areas, reckless road users behaviour like
scooters, etc.).

Therefore, the development of alternative solutions at a large scale needs other scientific foundations
and technological breakthroughs. Car makers, suppliers, infrastructure operators and academics across

1The Society of Automotive Engineers (SAE) : www.sae.org
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the world are working today on ways to make driving safer, more comfortable, more efficient and more
inclusive through automation, and the race is on to bring the technology to the mass market.

In this context Inria and Valeo are internationally distinguished players especially thanks to their
R&D activities on automated unmanned vehicles, Cybercars and more generally on the development of
advanced intelligent sensors-based decision systems.

Motivation

Partners in numerous collaborative research projects and bilateral projects, Inria and Valeo have also
collaborated in the supervision of doctoral and post-doctoral students. Many Inria researchers have
also joined Valeo’s R&D teams for several years. Finally, numerous technology transfer actions and joint
patent applications have taken place. Motivated by this very strong collaboration for over 15 years, Inria
and Valeo wanted to formalize this synergy by strengthening their links, both in the fields of research and
technology transfer.
What could be better than to create a joint research team to share the same visions on mobility and
transport automation? And what could be better than working together upstream on breakthrough
research topics? This naturally resulted in the creation of a joint research team: the ASTRA team. This
team brings together talents from three entities: the former RITS team at Inria (Paris), members of the
DAR team at Valeo (Créteil) and members at Valeo.ai (Paris). Beyond the strategic vision assumed by the
management of these three entities, the France Relance national plan was an important incentive for the
creation of this unusual joint entity.

3 Research program

Today, there are still many challenges facing the development and deployment of autonomous vehicles to
reach an exploitable and commercially viable solution. This is due equally to technical and non-technical
challenges. In particular, the challenges include aspects related to the performance of the systems, their
efficiency, their integrability and their costs, not to mention the legal, social and ethical aspects.

A classic robust autonomous navigation architecture should take into account additional aspects
related to real-time implementation, functional redundancy, durability, certification and purely technical
aspects related to the design and development of functional bricks as well.

As part of this project-team we focus mainly on developments related to automated sensor-based
navigation. The other aspects are be dealt with in the framework of collaborations and exchanges with
other academic, industrial and institutional partners. Therefore, we focus on four research topics that are
central to autonomous navigation and a major focus point for the scientific and technical communities.
These components are: perception and understanding of the scene, decision systems and vehicle control,
cooperative driving and system modeling. These components are linked one another through a complex
but straightforward architecture depicted in Fig. 1.

Obviously, the ability to perceive and understand the scene is the starting point of any navigation archi-
tecture since it represents the first step of processing sensory data, capturing the world state, and creating
the internal digital representations of the decision system. The latter relies on these representations, on
the ego vehicle localization and the positions of other road users and on contextual data to build decision
schemes which include maneuvers planning and trajectory generation. The control-command loop is
then responsible of the execution of the trajectories by the generation of control laws that control the
vehicle’s actuators.

All these modules interact as shown in Fig. 1 and ensure an autonomous but individual navigation
of a vehicle. However, it is important to study the behavior of these vehicles and their performance
when the penetration rate (i.e., their ratio to total traffic) of these vehicles becomes critical. It is also
very interesting to study the interactions between these vehicles and their potential cooperation. This is
called cooperative driving; it can only take place in the presence of connectivity. The latter also ensures
interaction and cooperation between autonomous vehicles and infrastructure. The benefits of this type
of cooperation are significant, both in terms of the individual performance of each vehicle but also of the
overall performance of the vehicle fleet and traffic in general.
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Figure 1: Automated Driving Functional Architecture

3.1 Research Axis 1: Vision and 3D Perception for Scene Understanding

Navigation for mobile robotics requires a robust understanding of the environment from 2D or 3D sensors.
Recent learning-based vision algorithms are now able to operate in highly cluttered environments, and
tasks which were considered challenging — such as semantic segmentation or object detection — are soon
to be solved to a certain extent. Still, the classical supervision paradigm, which relies on large annotated
datasets, cannot encompass in practice all outdoor conditions and scenarios. There is therefore a need
both to relax the requirement of massive annotations and to extend the perception capability to situations
unseen or rarely seen in the training data.

To that aim, in this research axis, we investigate several broad topics. First, we transversely investigate
learning with less supervision with applications to various perception tasks. Focusing on outdoor
vision, we conduct research relying on data-driven or physics-guided paradigms to hallucinate complex
lighting/weather conditions and compensate for missing data in the training sets. Because mobile
robots evolve in the physical world we also investigate how vision algorithms can provide in-depth 3D
understanding of the scene from images and/or LiDAR scans.

To evaluate our research as well as to foster reproducibility, we rely on relevant recent public datasets
(nuScenes [48], Waymo Open [139], Woodscapes [150], SemanticKITTI [39], CADCD [126], etc.) and
intend to openly share our research results.

3.1.1 Learning with less supervision

It is now widely accepted that supervised learning is a long-term dead end for computer vision. It relies
on costly human- biased annotations, which will soon be unbearable with regard to the ever-increasing
size of datasets, trying to cover data diversity. To circumvent the need for labels, strategies have been
developed where a trained model is either (almost) directly applicable to unseen conditions (i.e., zero-
/few-shot learning) or finetuned on a target domain (i.e., domain adaptation). On the need of data, we
investigate automatic generation of data with Generative Adversarial Networks (GANs). Following recent
work from the group members [91],[6],[142, 143, 129, 128, 148, 118], we contribute to these research
directions, investigating the remaining scientific locks that are detailed below.

Regarding zero-shot learning, we observe that current methods are limited by the low amount of
geometric information featured in the embeddings that are used as auxiliary information; we therefore
boost this geometric information in the embeddings, for example by jointly using text and images. As for
few-shot learning, we use high-contrast dictionary-based approaches where generalization is controlled
by the level of sparsity. We are also interested in category-agnostic models that can operate on (e.g.,
detect, segment) arbitrary objects, or that can adapt online to information retrieved from databases of
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rare objects. We build upon recent progress in representation learning to enforce separable features
representations [92] while enforcing orthogonality of features [141]. Besides, we investigate both zero-
and few-shot learning in the context of a complete perception pipeline, instead of focusing on individual
vision tasks as commonly done. In both cases, we will also investigate the use of multiple views and
multiple modalities (using both images and LiDAR scans).

Concerning domain adaptation, common unsupervised strategy exploits resemblance between a
source and a target domain using a self-supervised signal (e.g., pseudo labels [102]) to discover statistics in
the target domain. However, when the domain gap is too big, the model adaptation leads to sub-optimal
minima [151, 50]. To accommodate bigger domain gaps, we investigate the discovery of new statistics
with the support of several modalities (e.g., both 2D and 3D), for a variety of tasks (e.g., semantics, depth
and normal estimation). Regarding representation learning, we focus on disentangling latent space
representations, working towards domain-invariant features by enforcing orthogonality of the domain
features while enabling the discovery of exclusive task/domain features. We study bridging zero-/few-shot
to the domain adaptation paradigm, investigating the open domain adaptation setting that accounts for
novel unseen domains such as [110, 45].

Finally, to relax the need of training data we investigate automatic data generation with image-to-
image (i2i) translations and style-transfer techniques, which both can help training in self-supervision
settings [40, 128, 101]. We observe that GANs commonly lack diversity and controllability in the generated
data. To that aim, we study multi-domain setups [53] and automatic discovery of domain attributes [84]
to foster controllable latent representations. We fight the lack of diversity in the generated datasets [40]
with continuous [145] and multi-modal [128] strategies. Besides standard metrics, we also evaluate the
quality of our generated data by training proxy vision tasks.

3.1.2 Vision in complex conditions

The wide variety and continual physical nature of physics prevent any dataset to encompass all lighting
and weather conditions. Most outdoor datasets account exclusively for data recorded in clear weather
daytime while only a handful of them include adverse conditions. In fact, regardless of the recording
complexity some conditions are unlikely to be included in any dataset due to their inherent rarity (e.g.,
snow storm at sunset). Because they lead to drastically varying appearances we focus here on changing
weathers, seasons and lighting conditions; with the complimentary goals to improve robustness of vision
algorithms and to automatically assess failures cases.

Rather than agnostic data-driven models, we study training with a priori knowledge, with the ultimate
goal to get representations invariant to these conditions. To compensate for the scarcity of data as well as
to generalize training to unseen conditions, we rely on physics-guided learning to ease and accommodate
the discovery of statistics. We rely here on physical guidance to discover the continuous underlying
manifold where data lives [11]. Using physical models to guide the training helps vision algorithms
to accommodate better to partial or imbalanced distribution in the training set, as well as to better
extrapolate to unseen conditions. We are focusing on invariant representations that can improve both
the image translation setup and proxy vision tasks (segmentation, objects, etc.); relying on prior works
from group members [11], [131], [14, 12].

Sometimes, weather conditions go even beyond the sensing capabilities of sensors, e.g., sun glare or
very dark scenes can reduce dramatically the perception of standard cameras. In such cases, robustness is
difficult to attain and the system should rather trigger an alert or fail gracefully. Unseen weather conditions
encountered at runtime can be regarded as a dataset/distribution shift and can be addressed with
predictive uncertainty estimation methods [123]. Through a Bayesian lens we study and devise strategies
for automatic assessment and detection of dataset drifts by leveraging approximate ensembles [112, 34,
67], observer networks [59, 85], and complementary information from other sensors [41]. We rely on
prior findings and works from group members [59, 67, 66],[14], [131].

On application, we evaluate robustness of the proposed methods on core vision tasks of recent adverse
weather datasets [135, 152, 139, 48, 41].
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3.1.3 3D scene understanding

Robots still commonly lack the natural ability of humans to estimate the fine-grained geometry of a scene
while understanding object interactions and reasoning beyond their field of view. To provide accurate
geometry, 3D active sensors such as LiDARs are commonly used in autonomous driving [89], but they only
provide a sparse sensing of the scene. In this third topic, we seek a fine-grained geometrical/semantics
3D understanding of the scene with or without 3D sensing, while also relying on frugal supervision. This
topic benefits from prior work of group members [130, 43, 42, 91],[13],[90, 149, 96, 49].

Building up on recent methods [43, 42, 140, 108, 79] that efficiently convolve point clouds, we look
forward at improving 3D tasks (detection, segmentation, etc.) relying on contextual priors. Furthermore,
we address 3D generative tasks like point cloud up-sampling, completion and generation, as well as
surface reconstruction, which provides important navigation cues for robotics, and can also assist the
human driver in augmented reality scenarios, particularly in adverse conditions. Temporally consecutive
point clouds will also be leveraged to disambiguate occlusions and provide denser scene sensing [130, 49].
Regarding richer scene representations, we study the intertwined relation of geometry and semantics [137]
through the semantic scene completion task [13],[133, 132], which gained growing interest lately [39].

Another line of study is the interaction between modalities of different nature like for scene under-
standing, in particular the complementarity of 2D images and 3D scans. We study how multi-modal
features can jointly improve performance of core tasks, but also how it can lead to improving the perfor-
mance of single modalities by exploiting cross-modal features as self-supervision [91],[6].

Besides the use of 3D devices, we also investigate 3D understanding from 2D images. As they originate
from passive sensors, images carry less obvious geometrical cues but humans are still able to estimate
depth and understand 3D from a photograph, heavily reasoning on learned priors. We study here chal-
lenging tasks like scene reconstruction or 6-DOF localization, which can be conveniently self-supervised
from either 3D sensing or sequential data.

3.2 Research Axis 2: Localization & Mapping

Vehicle localization and environmental mapping are pillars of the perception task for an autonomous
vehicle. While vehicle localization ensures the global positioning of the vehicle in its environment and
local positioning with regard to the road and to the close road features, environment mapping contributes
in building a useful internal representation that is exploited by the decision system.

Inria and Valeo teams have been working - separately and jointly - on the localization and mapping
solutions for over the past 15 years. Many algorithms have been developed and showed their effectiveness
in terms of accuracy, precision and safety expectations for autonomous driving. However, the integrity,
safety, data size and costs are still challenging points that ASTRA wants to address.

3.2.1 Localization and Map Integrity

Many localization methods were developed mainly based on Particle Filter and GraphSLAM together
with a point cloud representation of the environment. These solutions mainly focus on the accuracy and
precision requirements of the pose estimations. Yet, the integrity of localization and integrity of maps
used for localization are critical to ensure a safe use of the localization system for autonomous driving.
State-of-the-art methods on localization integrity usually proceed by: 1. employing Fault Detection and
Isolation algorithms (FDI) to remove outliers from input data. 2. computing Protection Levels (PL) to
qualify the integrity zone [99] [83] [100] or by calculating the Protection Levels (without FDI) such as in
[105] [36]. Maps integrity is highly related to the feasibility to find a distinctive matching when using the
map for localization. Indeed the map can be explored by an algorithm that aims to identify the zones or
sections that represent a potential ambiguity for matching algorithms such as in [86].

3.2.2 Online Alignment of Multiple Map Layers

A wide diversity of maps that are dedicated to vehicle’s localization are nowadays available. These maps
are different from each other regarding different key localization features. The most important aspects
may be: the structure of the representation (e.g., grid, graph etc.), the underlying theory to represent the
information of the environment (e.g., occupancy probabilities, landmarks, etc), and the sensor used to
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collect information (LiDAR, camera, etc). Map providers, such as Here and TomTom, usually provide
maps with different layers to encode different information that are relevant to ADS features (Road model,
lanes, and road features). Valeo, having the advantage of being the leader of automotive LiDAR sensor,
wants to enhance his ADS solutions arsenal as a map provider by providing a map service based on the
laser point clouds and potentially other information layers that are relevant to ADS. For this purpose it is
important to find correspondences and align different map layers with other maps from maps providers.
This subject is addressed by considering semantic information that can be extracted from heterogeneous
sensors and maps data such as in [9] and [10].

3.2.3 Georeferencing of maps without RTK GNSS and IMU

Highly accurate maps that are used for AD localization are usually built using a very expensive Fusion box
that includes a very precise RTK_GPS receiver and a first grade IMU. These solutions for map building are
very expensive and require deployment of RTK bases in the environment to receive the corrections which
imply extra cost. The idea of this subject is to be able to use available sensors (such as standard GNSS,
IMU, CAN, LiDAR, Camera) and possibly maps from other providers to build a highly accurate (in the
global reference) map using point clouds. Different inputs from sensors and maps can be considered
together with an asynchronous fusion method to build an accurate estimation [11]. The method to
achieve this goal constitutes the subject of this study.

3.3 Research Axis 3: Decision making, motion Planning & vehicle Control

Decision-making, maneuver and motion planning, and vehicle control are extremely vital components
of the intelligent vehicle. These modules act as a bridge, connecting the perception subsystem of the
environment and the bottom-level control subsystem in charge of the execution of the motion. We
address these issues covering various strategies of designing the decision-making, trajectory planning,
and tracking control, as well as shared driving of the human-automation to adapt to different levels of the
automated driving system accounting with the driver profile.

The challenges related to decision making and path planning are mainly related to four distinct
elements:

1. Errors and uncertainties introduced by the perception subsystems

2. Environment static and dynamic occlusions

3. Lack of understanding and prediction of other road users behaviors

4. Simultaneous consideration of several constraints related to: vehicles dynamics, energy consump-
tion, passengers comfort, offense to driving rule. . .

Different approaches are investigated in the state of the art addressing one or several issues but, to
our knowledge, none are capable of addressing all of them simultaneously. More specifically in most
approaches decision and planning are dealt separately or in a way that favors one of them. Approaches
based on Markov decision process (MPD, POMDP,. . . ), path-speed profiles, ontologies, artificial potential
fields coupled to MPC controllers are able to show interesting results in dedicated environments or in
specific situations, however most of them do not tackle properly specific issues such as intention and
behavior predictions, interactions or multi-criteria real time optimal maneuver decision.

While continuing the investigation of end-to-end driving approaches based (inverse-)reinforcement
learning decision-making approaches, we keep on improving current path-planning methods already
developed by both teams at RITS and DAR: Reachable Interaction Sets [38], Artificial Potentials Fields
(coupled to MPC control) which are designed for obstacle avoidance, as well as traditional path planning
methods. Optimal methods based on the convex optimization and cubic splines are investigated at DAR
to design optimized and robust trajectories. More specifically, we are mainly focusing on the following
three scientific topics (detailed in the next sections):

• Maneuvers and trajectories prediction of surrounding road users

• Schemes for ego-vehicle actions and maneuvers decision making and motion planning

• Motion planning and trajectories generation
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3.3.1 Maneuver and trajectory prediction

To achieve a safe and comfortable driving, an autonomous driving system must have an accurate knowl-
edge of the future motions of all other traffic agents surrounding the autonomous vehicle, such as cars,
pedestrians, cyclists, etc. Motion prediction is thus a key task in autonomous vehicles. Several methods
of motion prediction have been studied in the literature. Lefèvre et al [103] propose their classification in
three levels with an increasing degree of abstraction: Physics-based models, Maneuver-based models
and interaction-based models.

• Physics-based motion models. They consider that the motion of vehicles only depends on the laws
of physics. The future motion is predicted using dynamic and kinematic models linking some
control inputs car properties and external conditions. These models are limited to short term
prediction and are unable to anticipate any change in the motion of the car caused by the execution
of a particular maneuver.

• Maneuver-based motion models. They consider that the future motion of a vehicle also depends
on the maneuver that the driver intends to perform. The future motion of a vehicle on the road
network corresponds to a series of maneuvers executed independently from the other vehicles.
These models are Unadaptable to different road layouts.

• Interaction-aware motion models. They take into account the inter-dependencies between vehicles’
maneuvers. These models require computing all the potential trajectories of the vehicles which is
computationally expensive and no compatible with real-time risk assessment. Valeo has filed a
patent to overcome this issue [146]. This patented method is being developed in order to be tested
in the automated driving prototypes.

Fig. 2 shows a comparison of the different models including their challenges and the used algo-
rithms.

Figure 2: Motion prediction models comparison

Valeo has considered these categories in its development of the automated driving prototypes
Cruise4U and Drive4U. The physical-based model is used in situations when their is no knowledge
about the route geometry (for example in a big roundabout without lanes), the maneuver-based in
highway and urban environment when the road topology is available from HD Map or valeo Drive4U
Locate map.

In the few last years, machine learning based algorithms and particularly deep learning are used in
order to solve the limits of the current prediction methods. Human motion trajectory prediction has
been addressed in the literature [44, 134]. A large amount of naturalistic road user trajectories in different
contexts (highways [57, 58, 93] or urban [48, 51]) needed to train and evaluate deep learning methods
are now available. Our first works [10],[117],[9],[115], taking as input the track history of a target vehicle
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and of its surrounding moving road users, obtained accurate prediction results of the target vehicle
motion on highways and an extension [116], including the static scene structure, has been proposed for
an urban context. Valeo is involved in this research area with activities in prediction of other road users
and ego-vehicle trajectory. Different approaches have been implemented and tested in simulation and
on test cars [47, 46].

However, work has still to be done in this domain in terms of performance, robustness and gener-
alization before being used in real autonomous driving applications. In fact, the behavior of a human
driver depends also on the contextual knowledge of the environment (speed limits, traffic density, day
of the week, visibility, road equipment, driver’s country, etc.) and on its goal [154]. We plan to include
these contextual cues in a prediction method, which should also compute multiple plausible trajectories
representing the driver’s diverse possible behaviors, give uncertainties estimations on the predictions,
carry out multi-agents trajectory forecasts and should be usable in any environment. It will necessitate
the use of a more complete dataset [153] composed of various driving scenarios collected from different
countries, which may be completed by our own dataset collected with the help of Valeo if necessary. This
work will be done in collaboration with Itheri Yahiaoui from Reims University and within the starting
PhD thesis of Amina Ghoul funded by the SAMBA project.

3.3.2 Ego-vehicle actions and maneuvers decision making

The most important component of an autonomous vehicle navigation system is the decision system that
elaborates the coming tactical actions and maneuvers to be executed. The selection of the optimal ma-
neuver should be the result of relevant and simultaneous consideration of several factors. These factors
are mainly: safety and risk assessment, respect of the dynamic constraints of the vehicle and its control-
lability, uncertainties related to the perception outputs, nearby uncertain interactions with/between
close road users, and finally the criterion related to the navigation objectives such as journey duration
minimization, driver/passenger comfort, fuel/energy consumption minimization, respect of driving
rules, etc. The latter being expressed in terms of kinematics constraints.

In the literature, there are very few approaches describing unified decision architectures capable of
taking into account all of the considerations mentioned above. Most approaches are developing planning
schemes which separate motion generation and decision making. In these approaches, motion planning
(including reactive planning) usually exploits geometry, configuration spaces and other optimization
techniques. Decision making schemes rely on AI logic based approaches such as rule based [122],
decision trees [55, 106], Finite Set Machines [155], Bayesian Networks and Markov Decision Processes
like approaches (MDP, POMDP. . . ), AI heuristics algorithms (SVM’s and evolutionary methods) or AI
approximate reasoning methods (fuzzy logic) and Artificial Neural Networks (CNN’s, Reinforcement
Learning. . . ) [107, 144, 52]. In [56] propose an architecture that provides an optimization of the motion
generation using the decision making function as the evaluation function, the aggregation of fuzzy logic
and belief theory allowing decision making on heterogeneous criteria and uncertain data.

In the coming period we will work on unified architectures, that tackles simultaneously decision
making and motion planning. Very likely, we will focus on deep learning techniques based on reinforce-
ment learning and inverse reinforcement learning where we deem a (dense) reward function that is
suitable for a large class of behavioural planning tasks. More generally, we will investigate model-free and
model-based approaches where some interesting approaches have already been initiated and showed
interesting results such as in [104]. In particular, in order to better evaluate safety costs, we will take as
input the output of the maneuvers and trajectories prediction system described in the previous section,
which has the advantage to better estimate the road users trajectories thanks to attention mechanisms
that encode interactions and behaviors. This work is done within the PhD of Yacine Ben Ameur funded
by the SAMBA project.

3.3.3 Trajectory planning

State of the art on motion planning techniques have been mainly focusing on methods generating the
geometric path first, and then applying a speed profile to the generated path. To mention just a few, this
approach has been tackled by the following methods (or combinations): interpolating curve-based [76,
75], graph-search based [109], sampling-based [94] and optimization-based [80].
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From the motion planning point of view, the inclusion of human factors is a key element for increasing
the acceptance of the automated vehicle behavior and for providing a more human-like response. For
that purpose, the use of data from real drivers should be envisaged to better define the motion constraints
in dynamic environments, allowing to adapt the trajectories to any specific road scenario (intersections,
roundabouts, merging, overtaking, lane driving, etc). For instance, motion constraints such as longitudi-
nal and lateral accelerations as well as jerks should be properly taken into account in the generation of a
human-like speed-profile, as introduced in [35].

Furthermore, the inclusion of driving factors such as energy consumption or the traffic occupancy
should be considered in the multi-criteria optimization for better adapting to any driving situation.
This would help to reduce the driving time (such as the commute time) or even reduce the energetic
consumption and the stress of both driver and car passengers by reducing the traffic jams and the
corresponding repetitive acceleration and braking maneuvers.

Finally, this planning module must fit to the time constraints for its execution in real-time to ensure
safety. Thus, a complete and rapid motion planning approach is needed; it should consider the functional
safety to generate real-time collision-free trajectories considering the different interactions with the
surrounding vehicles to be tracked by the control. For that purpose, works presented at [37] will be
extended in order to consider the interaction among the several surrounding road users as one and not
as individual interactions, investigating the risk assessment metric that is the most appropriate for each
specific scenario.

3.3.4 Robust control of automated vehicles

In order to execute safely a planned trajectory or a reactive maneuver, it is essential that the vehicle
executes these trajectories taking into account the vehicle dynamics while ensuring safe, stable and
comfortable maneuvers. A tremendous effort was deployed the last 10 years by the team partners in
the area of motion planning and intelligent control. Seven PhD thesis were dedicated to the important
problem of path and motion planning as well as on corresponding control-command. All are addressing
the navigation of autonomous vehicles in structured but complex environments. Harsh configurations
such as intersections and roundabouts need specific planning approaches taking into account the
geometry and the topology of the places, but also the dynamic and kinematic constraints of each ego-
vehicle and as the safety and comfort constraints.

Previously, RITS team (Inria) also implemented specific control algorithms dedicated to specific road
maneuvers such as overtaking [124] and parking maneuvers [125]. Control laws were designed with the
theoretical proof of stability and optimality. Very interesting results were obtained in two major domains,
mainly related to the controllability and stability of dynamic complex systems which are key aspects
when it comes to design intelligent control algorithms for vehicles:

• Plug&Play control for highly non-linear systems: Stability analysis of autonomous vehicles. The
developed Plug&Play control is able to provide stability responses for autonomous vehicles under
uncontrolled circumstances, including modifications on the input/output sensors. Former RITS
team was among the very first to investigate these theories for automotive applications. They were
Investigated in the PhD thesis of Mr. F. Navas [121] and I. Mahtout [111]. The approach deals with:
the reconfiguration of existing controllers whenever changes are introduced in the system (gain
scheduling), online closed loop identification of the vehicle and its components, and Automatic
control reconfiguration to achieve optimal performance [120][8].

• Fractional Calculus for Cooperative Car Following Control A Car-Following gap regulation controller
using fractional order calculus, has been developed and has been proven to yield a more accurate
description of real processes and ensure string stability of the platoons or the vehicles involved
in a Cooperative Autonomous Cruise Control [63]. In an effort to combine fractional calculus
robust control with plug&play control, a multi-model adaptive control (MMAC) algorithm based on
Youla-Kucera (YK) theory to deal with heterogeneity in cooperative adaptive cruise control (CACC)
systems was proposed[64].

ASTRA will evolve by introducing intelligent cooperation between vehicles and, at the same time,
autonomously driving the vehicle in a human driver way (increasing driver acceptability) but with
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the safety and accuracy of optimized control algorithms. To achieve this, we will rely on the existing
approaches developed so far but no further research will be conducted in the lifetime of the joint
team. This is mainly due to the absence of a senior researcher at ASTRA capable of carrying this topic
independently at a high level. This also motivates the team to seek to recruit a new confirmed researcher
in the field of the control of dynamic systems, a crucial domain for a team willing to develop and deploy
advanced control architectures on real mobile platforms. In the meanwhile it would be very interesting
to envisage collaborations with other Inria teams working on similar topics. A perfect example is DISCO
team (Inria Saclay Research Center, head: Mrs. Catherine Bonnet). Among others, the research interests
of DISCO cover: the realization and reduction of infinite-dimensional systems, Robust H∞ and BIBO
parametrization and stabilization of infinite-dimensional systems, stabilization by finite-dimensional
controllers (PID control), delay systems and fractional systems.

This research direction comprises a big interaction with the research axis: Large scale modeling and
deployment of mobility systems in Smart Cities. The former will be essential when developing control
algorithms that rely on a very small communication delay for getting a stable latency, designing stable
systems. The latter will serve to analyze the effect over the traffic flow from a developed algorithm,
moving from the validation of a proposed controller in a limited number of vehicles to a its study from a
macroscopic perspective.

3.4 Research Axis 4: Large scale modeling and deployment of mobility systems in
Smart Cities

While axes 1 to 3 deal with subjects related to the on-board intelligence of an “individual” intelligent
vehicle and its autonomous navigation, axis 4 intervenes when it comes to many communicating, au-
tonomous or automated vehicles but also when it comes to the cooperation with the static environment
(infrastructure). The latter may contain and integrate: roadside and monitoring sensors (Cooperative Per-
ception Services), signaling, communication infrastructures, cloud... The research concerns in particular
the deployment of equipped vehicles on a large scale in a road or urban environment.

The research objectives are twofold.

• First, the focus is on the modeling of systems comprising a large number of vehicles, often seen as
random entities.
The methodology is mainly to explore the links between large random systems and statistical
physics. This approach proves very powerful, both for macroscopic (fleet management [62]) and
microscopic (car-level description of traffic, formation of jams [69, 136, 74, 73]) analysis. The general
setting is mathematical modelling of large systems (typically in the so-called thermodynamical
limit), without any a priori restriction: networks, random graphs, etc. One often aims at establishing
a classification based on criteria of a twofold nature: quantitative (performance, throughput, etc)
and qualitative (stability, asymptotic behavior, phase transition, complexity).

• The second objective concerns the cooperation of these communicating entities in order to address
the efficiency and safety of mobility. This cooperation takes several forms. Direct or indirect com-
munications (V2X) are dedicated to maneuver coordination, taming and improving traffic efficiency
(cf. section 4.4.2), platooning, safety critical distributed coordination (cf. 4.4.3)... Crowdsourcing
is another aspect that could be used for traffic modeling and prediction (cf. 4.4.1), environment
augmented mapping, or global vehicles localization. A Phd student will be hired this year to work
on this precise subject (cf. 4.5).

Beside this core methodology, other past activities of interest include discrete event simulation [54,
98] and resource allocation for ITS [97, 81, 82].

Finally, axis 4 does not represent a structural unit like the other axes. Its objective is to deal with
the problem of scaling, deployment and multi-vehicle cooperation in a global and systemic way. On
the substance, methods and theories of modeling will be investigated and the design of secure telecom-
munication systems will be elaborated. These models and systems are intended to be implemented in
more global systems and architectures. They will interact with the other axes through these architectures
and will respond in a targeted way to needs; for example, whenever a need for probabilistic modeling is
expressed (e.g. section 4.5).
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3.4.1 Traffic prediction in urban settings: detecting extreme events

A probabilistic forecasting method that can provide predictions of urban traffic at city level, accurate at
short term and meaningful for a horizon of up to several hours, has been devised in the team [72, 68, 71,
113, 114, 70][3], in collaboration with C. Furtlehner (TAU, Inria Saclay). It is designed to leverage spatial
and temporal dependency and can deal with missing data, both for training and running the model. The
method consists in learning a sparse Gaussian copula of traffic variables, compatible with the Gaussian
belief propagation algorithm. Results of tests performed on three urban datasets show a very good ability
to predict flow variables and reasonably good performances on speed variables.

When investigating the output of the model, some rare but large errors are noticeable. It turns out
that this corresponds to detectors which, for a long period, send values completely at odds with the ones
observed during training. These badly behaving detectors may either correspond to corrupted ones,
or to drastic changes of the traffic conditions on the corresponding segment, because of road work or
accidents for instance.

One way of examining these events has been proposed in [87], and we plan to investigate whether it
can be used to improve models. Separating sensor failure from extremal events is even more important,
and this is what we plan to investigate in a PhD thesis, by careful analysis of the correlation structure of
the model.

3.4.2 Taming highway traffic using cooperative automated vehicles

Several authors [65, 60, 147, 78] have suggested that it is possible to use a small proportion of automated
vehicles to regulate highway traffic. These studies are set in a traffic regime which exhibits string instability,
which means in terms of transfer function that any excitation of a frequency below a certain limit is
amplified. We are interested here in a slightly different setting, where reaction time is taken into account
for human drivers. We have shown [17] that the introduction of this delay involves a non rational transfer
function, implying in particular that the system is not always stable. We have proposed a complete
self-contained proof of stability conditions, based on classical complex analysis. Moreover, we bring to
light a phase transition with a new propagation regime, named partial string stability, situated between
string stability and string instability.

With these foundations established, the next steps are to devise a traffic stabilization scheme by
means of a fleet of cooperative automated vehicles. However, contrary to the work in [65], our approach
is based on a car-following model with reaction-time delay, rather than on a first order fluid model. The
continuation of these studies will concern shock wave analysis and adequate traffic-stabilizing control
strategies.

3.4.3 Crowdsourced mapping

The deployment of intelligent and connected vehicles, equipped with increasingly sophisticated equip-
ment, and capable of sharing accurate positions and trajectories, is expected to lead to a substantial
improvement of road safety and traffic efficiency. Nevertheless, in order to guarantee accurate positioning
in all conditions, including in dense zones where GNSS signals can get degraded by multi-path effects, it
is expected that sensory equipped vehicles will need to use precise maps of the environment to support
their localization algorithms. Crowdsourced mapping represents a cost-effective solution to this problem,
consisting in making use of measurements retrieved by multiple production vehicles equipped with
standard sensors in order to build an accurate map of landmarks and maintain it up-to-date in realistic,
long-term scenarios. Existing SoA crowdsourced mapping solutions rely on triangulation optimization
or graph-based optimization where trade-offs between the map quality and computational scalability
are still to be investigated. We propose to extend the work of [138] to improve scalability. One possible
approach is to rely on a Gaussian Belief algorithm to estimate and update the position of landmarks and
of the the vehicles, along with their corresponding uncertainties.

3.4.4 Cooperative automated driving involving V2X communications

Automated driving in a complex shared road requires cooperation among road entities in terms of
cooperative control, cooperative perception, and cooperative path planning. This poses new research
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Figure 3: Valeo Automated Driving roadmap

challenges that did not exist in the domain of vehicular communications e.g., communications for
cooperative automated driving and intention-aware communications. Based on our experiences and
know-how on mobile telecommunications, networking, and robotics domains, the ASTRA team will
conduct research activities within the following domains:

• Safety critical V2V communications.

• Safety critical distributed coordination.

• Safety and performance guided V2X communication and data processing

• Vehicles’ behaviors and intention-aware communications

4 Application domains

The aim of the project team is to tackle the challenges and provide breakthrough solutions for the
autonomous and connected mobility. It covers the improvement of the safety, the availability and the
performances of ADAS “Advanced Driver Assistance Systems” and the L3 automated systems (Traffic Jam
Pilot and Highway Pilot) for privately owned vehicles as well as L4 automated systems including Robotaxi
and automated transportation systems like autonomous shuttles. Enabled by 5G and the V2X connectivity
in general, the extension to cooperative Automated driving and the Smart city will also be considered.
There are more and more cities and highways equipping their infrastructures with sensors that can
enable extended and shared perception. During the project, the developed solutions are tested for these
applications. Valeo Automated Driving roadmap is addressing them through 3 programs. Cruise4U
Program for multiple carriageway/highways, Drive4U for Urban environment including autonomous
shuttles and eDeliver4U for last mile delivery as shown in Fig. 3.

The Cruise4U and Drive4U programs allowed to Valeo to perform open roads experiments around
the world with more than 200,000 km accumulated in real conditions with plenty of use cases.

Fig. 4 shows a part of the Cruise4U experiments, while Fig. 5 shows world premieres: Drive4U open
road experiments with only Valeo serial production sensors operating in Paris, Las Vegas and Tokyo.

A dedicated Automated Driving platform for the project team is under discussion in order to allow
quick and easy integration, tests and validations of the Joint team developments.

5 Highlights of the year

• This year was the last year of activity for our dear colleague Anne Verroust-Blondet who retired
at the end of the calendar year. We salute an inspiring and admirable colleague with a rich and
fruitful professional life. This departure is an even more pressing opportunity to recruit at least
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Figure 4: Cruise4U Program field testings

Figure 5: Drive4U Urban Pilot Program
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one new researcher in the team, in order to ensure scientific continuity and even to reinforce the
supervising team. The profile sought is that of a talented young researcher in the field of AI, capable
of collaborating with the members of the team while developing striking scientific activities in
rupture with the existing ones.

• Raoul de Charette defended his Habilitation à diriger les recherches “Vision for Scene Understand-
ing” [29] on Jan 25, 2022.

• Fabio Pizzati and Raoul de Charette received the best paper award of VISAPP 2022 for “Leveraging
Local Domains for Image-to-Image Translation” [23] .

• The Inria members of ASTRA team team wish to highlight that its 2022 production was affected by
the current Inria situation. Administrative malfunctions and new processes (e.g. hiring restrictions)
inevitably led to an overload of the support services, both at the Inria and team level, which
impacted our ability to recruit talented scientists, manage projects, etc. More generally, we are, to
say the least, puzzled by what seems to be a shift in some missions of the institute. The subsequent
rising tensions between parties altered our working conditions. We hope that clear direction and
lighter and less stringent rules will allow team members to refocus on their original scientific
mission.

6 New software and platforms

New softwares

MonoScene Monocular 3D Semantic Scene Completion

• Url: MonoScene

• Contribution: leader

• Software Family: research

• Audience: community

• Evolution and maintenance: basic

• Duration of the Development: ≥ 1

SceneRF Self-Supervised Monocular 3D Scene Reconstruction with Radiance Fields

• Url: SceneRF

• Contribution: leader

• Software Family: research

• Audience: community

• Evolution and maintenance: basic

• Duration of the Development: ≥ 1

PODA Prompt-driven Zero-shot Domain adaptation

• Url: PODA

• Contribution: leader

• Software Family: research

• Audience: community

• Evolution and maintenance: basic

https://github.com/astra-vision/MonoScene
https://github.com/astra-vision/SceneRF
https://github.com/astra-vision/PODA
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• Duration of the Development: ≥ 1

ManiFest Few-shot image translation method working on unstructured environments

• Url: ManiFest

• Contribution: leader

• Software Family: research

• Audience: community

• Evolution and maintenance: basic

• Duration of the Development: ≥ 1

DenseMTL Cross-task Attention Mechanism for Dense Multi-task Learning

• Url: DenseMTL

• Contribution: leader

• Software Family: research

• Audience: community

• Evolution and maintenance: basic

• Duration of the Development: ≥ 1

COARSE3D Class-Prototypes for Contrastive Learning in Weakly-Supervised 3D Point Cloud Segmenta-
tion

• Url: COARSE3D

• Contribution: leader

• Software Family: research

• Audience: community

• Evolution and maintenance: basic

• Duration of the Development: ≥ 1

6.1 New software

6.2 New platforms

Participants: Paulo Resende, Benazouz BRADAI, Gaëtan Le Gall, Fawzi Nashashibi.

The creation of the team has resulted in the strengthening ofthe experimental side of the team which
has always had among its objectives the validation of work on real instrumented platforms. The creation
of the team has resulted in the strengthening of the experimental side of the team which has always had
among its objectives the validation of work on real instrumented platforms. Thus, the team is equipped
with at least four road vehicles (Cruise4U and Drive4U from Valeo, a C1 and a Zoé from Inria), 3 shuttles
(2 Cybus from Inria and a NAVYA from Valeo) and 2 Cybercars (Inria) ( 6.2).

https://github.com/astra-vision/ManiFest
https://github.com/astra-vision/DenseMTL
https://github.com/astra-vision/COARSE3D
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Figure 6: ASTRA automated prototypes: Drive4U (left), Inria electric vehicles (right)
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7 New results

7.1 Learning vision with less supervision

Participants: Andrei Bursuc, Anh-Quan Cao, Raoul de Charette, Mohammad Fahes,
Ivan Lopes, Patrick Pérez, Tuan-Hung Vu.

Supervision is an evident bottleneck for computer vision in the real-word. In this research axis we
have explored new paradigms for relaxing the need of human supervision. We explored the use of multi-
modal inputs (here, image and 3D data) to discover statistical correlations between 2D and 3D which
we have shown is beneficial for a wide variety of transfer learning scenarios in semantic segmentation,
leading to a T-PAMI publication [20]. Multi-tasks learning, where a single network solves tasks of different
natures, also alleviate supervision burdens because it lowers the need of task-specific architecture. In
that sense, we proposed a novel task-exchange mechanism which helps knowledge distillation [26], and
demonstrates state-of-the-art results on several datasets. To reduce the amount of supervision, in the 3D
axis, we employed constrative learning to build rich and compact representations of semantic classes
for 3D semantic segmentation which led to [25], and demonstrated performance to full-supervision
(i.e., 100% labels) using only 0.01% labels. Finally, in the latest months we have explored interaction
of language and vision models to perform zero-shot adaptation from textual prompt which drives the
adaptation of the image features and our experiments show exciting state-of-the-art results [32].

7.2 Vision in complex conditions

Participants: Raoul de Charette, Fabio Pizzati.

Because the physical world is a continuum, encompassing all conditions in a single dataset is impos-
sible. In this direction, and also related to weakly supervised algorithms, we investigated how human-
informed knowledge can benefit source-to-target transfer learning, for example to perform on adverse
lighting/weather conditions unseen during training. With minimal geometric human-guidance and a
patch-wise learning, we demonstrated state-of-the-art results on multiple scenarios [23], which was re-
warded Best Paper Award at VISAPP 2022. In a separate work, we also investigated the realistic translation
of images (image-to-image translation or, i2i) using of a subsidiary domain, which we call anchor, to
learn i2i from only few-shots. In particular, this was applied to the complex day-to-night, or clear-to-
rain translations [27]. When target domain includes ‘occlusions’ such as raindrop in clear-to-rain, the
translations lack realism, and as a continuation of prior works we explored the use of physics models
to disentangle visual representations and obtain realistic and controllable translations with GANs [33]
(journal submission). In this axis, most results were within the thesis of Fabio Pizzati [127] (defended on
Nov 29th 2022).

7.3 3D scene understanding

Participants: Anh-Quan Cao, Raoul de Charette.

Mobile robots require a holistic understanding of the scene, in particular of its geometry. In this
research axis, we investigated how 3D perception is improved. Correlated to the weakly-supervised axis,
we explored the learning of compact feature representations with just a tiny split of the complete labels
in the context of 3D semantic segmentation of point cloud [25]. An other important aspect, is the ability
to complete the scene geometry and semantics beyond the inevitable scene occlusions. We studied
how complete 3D scene semantics can be extracted from a single 2D image, in particular by proposing
a new 2D-3D network bridging strategy, leading to MonoScene – the first monocular semantic scene
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Figure 7: Motion Planner module generating trajectory for avoidance of static obstacles from point cloud
integrated into eDeliver4U delivery vehicle

completion method – published in [22]. Inspired by these results, in our work, SceneRF, we studied 3D
scene reconstruction from a monocular image but this time without any human supervision – building
on Neural Radiance Fields (NeRF) to hallucinate novel depth views of a scene from image sequences,
leading to [31].

7.4 Trust Management Framework for Misbehavior Detection in Collective Percep-
tion Services

Participants: Jiahao Zhang, Fawzi Nashashibi.

This work has been conducted in collaboration with external partners from IRT-SystemX Insti-
tute: Ines Ben-Jemaa and Francesca Bassi.

Cooperative Intelligent Transportation System (C-ITS) is a new technology that aims to reduce traffic
accidents and improve road safety. The technology relies on wireless communications in the form of
safety messages. Collective Perception Messages (CPM) enable vehicles to share their perceived objects
with their neighbors in V2X network. These perception data extend local vehicles’ perception and con-
sequently improve road safety awareness. However, attacks on perception data are challenging and
require advanced and efficient misbehavior detection mechanism especially in specific road scenarios
where contradictory information need to be analyzed. In this work, we introduce a trust management
framework [28] to detect misbehaving nodes through transmitted CPM messages. Our framework is
based on trust assessment built through several processing steps. It addresses conflict situation when
contradictory data are received using the Subjective Logic mechanism. The results show that our solution
is effective in detecting misbehaving nodes based on their attributed trust scores. In addition, we show
the impact of our solution and some CPM configuration parameters on safety services and especially on
risk anticipation in intersection scenarios. As a future work, we plan to evaluate our solution taking into
consideration more advanced parameters such as perception uncertainty and more complex attacks on
new road scenarios.

7.5 Motion planning and prediction

Participants: Nelson De Moura, Fernando Garrido, Paulo Resende.
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Guided by the findings in the recent survey of some team members [19], we have investigated dynamic
motion planner as well as studied generation of speed profiles in a path-speed decoupled fashion. With
the PostDoc Nelson De Moura (started in Aug. 2022), we also studied: 1) interaction-aware motion
predictions with behavior clustering, 2) high-level decision making with Partially Observable Markov
Decision Process (POMDP). Initial results on the inD datasets, using k-means clustering, show emergence
of category-specific patterns, which could be later employed for fine-grained prediction of traffic users.
Some of the results led to experiments on Valeo prototypes (eDeliver4U) on test sites, as show in 7.

7.6 Control and Human Factors

Participants: Nelson De Moura, Tiago Rocha.

Following prior member works [119, 61], we studied a risk prediction system to evaluate the trade-
off between ethical aspects and fuel-efficiency improvements in platooning systems. Leveraging the
harm concept from [119], an MDP approach is used to adjust dynamically controllers during platooning
operation.

7.7 Risk-averse reinforcement learning algorithm for autonomous driving

Participants: Yacine Ben Ameur, Fawzi Nashashibi, Anne Verroust-Blondet.

In a different effort to contribute to autonomous vehicles decision making, a new Reinforcement
Learning-based approach has been investigated using surrogate-based optimization to prioritize safety
by maximizing performance in worst-case scenarios. The approach is compared to the commonly used
risk-neutral PPO algorithm and shows improved results in avoiding collisions while still managing to
navigate dense traffic. The algorithm uses a quantile utility network to predict the sum of rewards and
compute the gradient w.r.t. policy parameters. Policy parameters and observed utility are stored in a
replay buffer and used to train the utility network. This risk-averse approach is a step forward in ensuring
the safety of autonomous vehicles. This work has been recently submitted for publication in IEEE ARSO
conference.

7.8 A Lightweight Goal-Based model for Trajectory Prediction

Participants: Amina Ghoul, Kaouther Messaoud, Itheri Yahiaoui, Anne Verroust-
Blondet, Fawzi Nashashibi.

Predicting the future motion of a dynamic agent knowing its past trajectory is crucial in many fields
such as advanced surveillance systems and autonomous vehicles. However this task is challenging as it
depends on various factors such as the agent’s intention, the static environment around the agent, the
interaction with other agents and its kinematics. Because of these uncertainties, future motion of agents
are inherently multimodal. We present a lightweight goal-based model for multimodal, probabilistic
trajectory prediction for urban driving. Previous conditioned-on-goal methods have used map infor-
mation in order to establish a set of potential goals and then complete the corresponding full trajectory
for each goal. We instead propose two original representations, based on the agent’s states and its kine-
matics, to extract the potential goals. We conduct a comparative study between the two representations.
We also evaluate our approach on the nuScenes dataset, and show that it outperforms a wide array of
state-of-the-art methods. The results can be found at the ITSC 2022 Conference [24].

7.9 Stability and String Stability of Car-following Models with Reaction-time Delay
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Participants: Guy Fayolle, Jean-Marc Lasgouttes.

In [17], in collaboration and C. Flores (Institute of Transportation Studies, UCB), we investigate
the transfer function emanating from the linearization of a car-following model for human drivers,
when taking into account their reaction time, which is known to be a cause of the stop-and-go traffic
phenomenon. This leads to a non rational transfer function, implying nontrivial stability conditions
which are explicitly given. They are in particular satisfied whenever string stability holds. It is also shown
how this reaction time can introduce a regime of partial string stability, where the transfer function
modulus remains smaller than 1, up to some critical frequency. Conditions are explored in the parameter
space discriminating between 3 different regimes (stability, string stability, partial string stability).

7.10 Reflected brownian motion in a non convex cone

Participant: Guy Fayolle.

In collaboration with S. Franceschi (LMO, Paris-Saclay University) and K Raschel (CNRS, Tours University),
we study the stationary reflected Brownian motion in a non-convex wedge, which, compared to its convex
analogue model, has been much rarely analyzed in the probabilistic literature. Two approaches are
proposed.

1. In [15], we prove that the stationary distribution can be found by solving a two dimensional
vector boundary value problem (BVP) on a single curve (an hyperbola) for the associated Laplace
transforms. The reduction to this kind of vector BVP seems to be quite new in the literature. As a
matter of comparison, one single boundary condition is sufficient in the convex case. When the
parameters of the model (drift, reflection angles and covariance matrix) are symmetric with respect
to the bisector line of the cone, the model is reducible to a standard reflected Brownian motion in
a convex cone. Finally, we construct a one-parameter family of distributions, which surprisingly
provides, for any wedge (convex or not), one particular example of stationary distribution of a
reflected Brownian motion.

2. In [16], the main result is to show that the stationary distribution can indeed be obtained by solving
a boundary value problem of the same kind as the one encountered in the quarter plane, up to
various dualities and symmetries. The idea is to start from Fourier (and not Laplace) transforms,
allowing to get a functional equation for a single function of two complex variables.

7.11 Random walks in orthants and lattice path combinatorics

Participant: Guy Fayolle.

In the revised version of the second edition of the book [2] (see also ), original methods were proposed
to determine the invariant measure of random walks in the quarter plane with small jumps (size 1),
the general solution being obtained via reduction to boundary value problems. Among other things,
an important quantity, the so-called group of the walk, allows to deduce theoretical features about the
nature of the solutions. In particular, when the order of the group is finite and the underlying algebraic
curve is of genus 0 or 1, necessary and sufficient conditions have been given for the solution to be
rational, algebraic or D-finite (i.e. satisfying a linear differential equation). In this framework, number
of difficult open problems related to lattice path combinatorics are currently being explored, both from
theoretical and computer algebra points of view: concrete computation of the criteria, utilization of
differential Galois theory, genus greater than 1 (i.e. when some jumps are of size ≥ 2), etc. A recent
topic (mentioned in 2019) deals with the connections between simple product-form stochastic networks

https://dx.doi.org/10.1007/978-3-319-50930-3_12
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(so-called Jackson networks) and explicit solutions of functional equations for counting lattice walks.
Some partial extensions of are still under development.

8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

Participants: Fawzi Nashashibi, Anne Verroust-Blondet.

Valeo Group: a very strong partnership is ongoing between Valeo and Inria. Several bilateral contracts
were signed to conduct joint works on Driving Assistance, some of which Valeo is funding. This joint
research includes:

• Several CIFRE like PhD thesis are under construction between Valeo and Inria.
Mr. Karim ESSALMI will join ASTRA in 2023 as a new PhD student working on Maneuver decision
and Motion planning. Another PhD student will be working on Localization. A third student student
will be working in the vision group within ASTRA.

• Othe PhD students and post-docs are jointly funded by Valeo and Inria while Mr. Nelson de Moura
is hired as a 2-years post-doc thanks to the national Plan de relance Programme.

• Valeo is currently a major financing partner of the “GAT” international Chaire/JointLab in which
Inria is a partner. The other partners are: UC Berkeley, Shanghai Jiao-Tong University, EPFL,
IFSTTAR, Stellantis and SAFRAN.

• Technology transfer is also a major collaboration topic between ASTRA and Valeo as well as the
development of a road automated prototype.

• Finally, Inria and Valeo are partners of the French project SAMBA (Sécurité Active et MoBilités
Autonomes) including SAFRAN Group, Inria Paris, TwinswHeel, Soben, Stanley Robotics and
EXPLEO.

9 Partnerships and cooperations

Participants: Yacine Ben Ameur, Ahn-Quan Cao, Raoul de Charette, Amina Ghoul,
Yvan Lopes, Kathia Melbouci, Fawzi Nashashibi, Anne Verroust-
Blondet.

9.1 International initiatives

9.1.1 Participation in other International Programs

Samuel de Champlain Québec-France collaboration program: “Vision par ordinateur en conditions
difficiles”, 2018-2022, cooperation between Raoul de Charette and Jean-François Lalonde from Université
Laval.

9.2 National initiatives

9.2.1 ANR

SIGHT

• Title: viSIon throuGH weaTher

https://hal.inria.fr/hal-02415746
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• Instrument: ANR JCJC

• Duration: January 2021- December 2024

• Coordinator: Raoul de Charette

• Partners: Inria Paris, Université Laval, Mines ParisTech

• Inria contact: Raoul de Charette

• Abstract: SIGHT investigates invariant algorithms for complex weather conditions (rain, snow, hail).
The project leverages un-/self-supervised algorithms with physic-guidance to model physically
realistic weather, and learn weather-invariant features to improve vision algorithms.

9.2.2 ADEME – Bpifrance

SAMBA

• Title: Sécurité Active et MoBilités Autonomes (SAMBA2022)

• Instrument: Plan de soutien R&D automobile France

• Duration: September 2020 – January 2023

Grant: 902 302 €

• Partners: Valeo Group, SAFRAN Group, Inria Paris, TwinwHeel, Soben, Stanley Robotics, EXPLEO.

• Inria contact: Fawzi Nashashibi

• Abstract: The project aims to design active safety and autonomous mobility solutions that are
affordable and can be deployed quickly, particularly on private vehicles. Technological solutions
for new mobility services are proposed.

9.2.3 AMI – EquipEx+

TIRREX

• Inria is a major partner and beneficiary of the new EquipEx+ national initiative TIRREX (Infrastruc-
ture technologique pour la recherche d’excellence en robotique). RASTRA is an active participant
of the “Autonomous Land Robotics” axis.

• Project start: Dec. 18, 2021

• Kick-off: Jan. 14, 2022

9.2.4 Competitivity Clusters

NextMove (prev. MOV’EO): we are particularly involved in several technical committees like the DAS
SMI (Systèmes de Mobilité Intelligents), for example.

Vedecom (IEED): main Inria contributor and active participant to the CD2 domain dedicated to
automated driving.

SystemX Institute : close partnership, with the jointly supervised PhD thesis of Jiahao Zhang.
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10 Dissemination

Participants: Patrick Pérez, Raoul de Charette, Guy Fayolle, Jean-Marc Lasgouttes,
Gérard Le Lann, Fawzi Nashashibi, Fabio Pizzati, Patrick Pérez,
Tiago Rocha Gonçalves, Anne Verroust-Blondet, Tuan-Hung Vu,
Itheri Yahiaoui.

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

General chair, scientific chair

• Raoul de Charette, Fabio Pizzati, Patrick Pérez, Tuan-Hung Vu and Andrei Bursuc organized a
Workshop on “Weakly Supervised Computer Vision” at the Deep Learning Indaba summer school,
Tunis, Tunisia. Aug. 25th 2022. Approx. 80 participants.

Member of the organizing committees

• Raoul de Charette organized the ASTRA-vision group-retreat, Les Molières, France. Oct. 14-15th

2022.

• Raoul de Charette organized an Inria/Valeo.ai workshop, Paris, France. July 13th 2022.

10.1.2 Scientific events: selection

Member of the conference program committees

• Fawzi Nashashibi was a member of program committee of SMART 2022, IEEE ICCP 2022, MT-ITS
2023, PSIVT 2022 and VEHITS 2022.

• Anne Verroust-Blondet was a member of the program committee of CGI 2022.

Reviewer

• Raoul de Charette: CVPR, IROS, WACV, BMVC, MAIS.

• Fernando Garrido: ITSC, IV.

• Jean-Marc Lasgouttes: IV.

• Fawzi Nashashibi: regular reviewer of the following conferences: IEEE ICRA, IEEE/ISJ IROS, IEEE IV,
IEEE ITSC, IEEE ICARCV, IEEE ICVES, ROBOVIS, VEHITS.

• Tiago Rocha Gonçalves: IEEE ICC, IFAC AAC, IEEE VTC.

• Anne Verroust-Blondet: ICRA, ITSC, IV.

• Tuan-Hung Vu: CVPR, NeurIPS.

10.1.3 Journal

Member of the editorial boards

• Guy Fayolle: associate editor of the journal Markov Processes and Related Fields.

• Fawzi Nashashibi: Associate editor of the journals IEEE Transactions on Intelligent Vehicles (T-IV),
IEEE Transactions on Intelligent Transportation Systems (T-ITS); guest Editor of the IEEE Sensors
journal. Special Issue on “The Application of Sensors in Autonomous Vehicles”.

• Anne Verroust-Blondet: associate editor of the journal The Visual Computer.

https://wscv-indaba.github.io/
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Reviewer - reviewing activities

• Guy Fayolle: reviewed several papers and books submitted for publication in some majors journals,
e.g. Transactions of the American Mathematical Society, Markov Processes and Related Fields, Journal
of Statistical Physics, Physica A, etc.

• Fernando Garrido: IEEE Transactions on Vehicular Technologies.

• Jean-Marc Lasgouttes: IEEE Transactions on Intelligent Transportation Systems, Physica A.

• Raoul de Charette was Associate Editor of International Conference on Intelligent Robots and
Systems (IROS) 2022.

• Fawzi Nashashibi: Regular Associate Editor of IEEE-ICRA, IEEE-IROS, IEEE-IV, IEEE-ITSC, IEEE
ICARCV, Transportation research Part C, Sensors

• Fawzi Nashashibi: regular reviewer of: IEEE Transactions on ITS, IEEE Transactions on IV, IEEE
Transactions on Image Processing, IEEE Transactions on Robotics, IEEE Transactions on Vehicular
Technologies, IEEE Transactions on Instrumentation and Measurement, Sensors, Transportation
Research Part C, TRB. . .

• Tiago Rocha Gonçalves: IEEE Transactions on Intelligent Transportation Systems, IEEE Transactions
on Vehicular Technology.

• Anne Verroust-Blondet: IEEE Transactions on Intelligent Vehicles.

• Tuan-Hung Vu: T-PAMI, IJCV.

10.1.4 Invited talks

• Raoul de Charette: talk at the Deep Learning Indaba workshop on Francophone Artificial Intelli-
gence, Tunis, Tunisia. Aug. 28th 2022

• Raoul de Charette: talk at the CVPR Workshop on Vision For All Seasons, New Orleans, USA. June
22th 2022

• Raoul de Charette: talk at Université Laval, Quebec city, Canada. June 14th 2022

• Raoul de Charette: talk at “30 min of science”, Inria, Paris, France. June 2nd 2022

• Guy Fayolle: presentation of the article [17] at the LAREMA (Laboratoire Angevin de Recherche en
Mathématiques), UMR CNRS 6093.

• Tiago Rocha Gonçalves: talk on “Robust control of platooning systems over imperfect wireless
channels” at Labex DigiCosme C2-SyDiC (Contrôle et Certification de Performance de Systèmes
Distribués Communicants), May 20, 2022.

10.1.5 Scientific expertise

• Guy Fayolle is a member of the MATHEXP team (Centre Inria de Saclay)

• Guy Fayolle is scientific advisor and associate researcher at the Robotics Laboratory of Mines
ParisTech.

• Guy Fayolle is a member of the working group IFIP WG 7.3.

• Jean-Marc Lasgouttes: member of the Commission d’Évaluation of Inria.

• Jean-Marc Lasgouttes: member of the CRCN recruiting commissions of Inria research centers of
Bordeaux.
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• Fawzi Nashashibi: scientific reviewer of a FNR project (Luxembourg) under the CORE 2022 Pro-
gramme.

• Fawzi Nashashibi: represents Inria at the Board of Governors of the VEDECOM Institute and at the
Board of Governors of NextMove Competitiveness cluster.

• Fawzi Nashashibi: member of the international Automated Highway Board Committee of the TRB
conference (AHB30).

• Fawzi Nashashibi: member of the Global Partnership on AI’s (GPAI) working group on Innovation
and Commercialization.

• Fawzi Nashashibi: member of the SMI (Intelligent Mobility Systems) Working Group (NextMove).

• Fawzi Nashashibi: reviewer at the European Commission for Horizon Europe projects.

• Anne Verroust-Blondet is a reviewer for a FET-Open project (Horizon Europe programme for
research and innovation).

10.1.6 Research administration

• Jean-Marc Lasgouttes: member of the Comité Technique Inria, of the Comité National Hygiène
Sécurité et Conditions de Travail and of the Comité Local Hygiène Sécurité et Conditions de Travail
of Inria Paris.

• Raoul de Charette is Principal Investigator of ANR JCJC SIGHT on Vision Through Weather.

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Mastère : Raoul de Charette, “Scene Understanding with Computer Vision”, 20h, post master, Mines
ParisTech, France.

• Seminar: Fernando Garrido, Paulo Resende, “decision-making and planning for automated driving”,
16 hours, Valeo Créteil, France.

• Engineering: Fernando Garrido, Paulo Resende, “decision-making and planning for automated
driving”, 24 hours, École d’ingénieurs ESME Sudria, France.

• Engineering: Fernando Garrido, Paulo Resende, “decision-making and planning for autoamted
driving”, 24 hours, Institut Supérieur de l’Automobile et des Transports (ISAT) à Nevers, France.

• Mastère: Jean-Marc Lasgouttes, “Introduction au Boosting”, 10.5h, Mastère Spécialisé Expert en
sciences des données, INSA-Rouen, France.

• Engineering, 2nd year: Fawzi Nashashibi, “Image synthesis and 3D Infographics”, 12h, M2, INT
Télécom SudParis, IMA4503 “Virtual and augmented reality for autonomy”.

• Master: Fawzi Nashashibi, “Perception and Image processing for Mobile Autonomous Systems”,
12h, M2, University of Evry.

• Engineering, 2nd year: Tiago Rocha Gonçalves, “Véhicule intelligent et communicant,”, 6h (TP),
CentraleSupélec, France.
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10.2.2 Supervision

• PhD in progress: Yacine Ben Ameur, UPMC Sorbonne University, “Trajectories planning and
decision systems for autonomous vehicle navigation in complex environments”, October 2021,
supervisor Fawzi Nashashibi, co-supervisor: Anne Verroust-Blondet.

• PhD in progress: Ahn Quan Cao, PSL Research University, “Unsupervised 3D scene understanding
from image(s)”, March 2021, supervisor: Raoul de Charette.

• PhD in progress: Mohammad Fahes, Mines-ParisTech, “Crowdsourced Unsupervised Learning in
Adverse Conditions”, October 2022, supervisor: Raoul de Charette, co-supervisors: Tuan-Hung Vu,
Andrei Bursuc, Patrick Pérez.

• PhD in progress: Amina Ghoul, UPMC Sorbonne University, “Trajectory prediction in an urban
environment”, May 2021, supervisor Fawzi Nashashibi, co-supervisors: Anne Verroust-Blondet,
Itheri Yahiaoui.

• PhD in progress: Ivan Lopes, PSL Research University, “Physic-guided learning for vision in adverse
weather conditions”, November 2021, supervisor: Raoul de Charette.

• PhD in progress: Noël Nadal, “Cartographie et localisation crowdsourcées pour la conduite au-
tonome en environnement urbain”, October 2022, co-supervisors: Fawzi Nashashibi and Jean-Marc
Lasgouttes.

• PhD: Fabio Pizzati, “Style transfer and domain adaptation for semantic segmentation”, PSL Research
University and University of Bologna, November 2022, co-supervisors: Andrea Prati and Raoul de
Charette.

• PhD: Renaud Poncelet, “Navigation autonome en présence d’obstacles fortement dynamiques au
mouvement incertain”, UPMC Sorbonne University, December 2022, supervisor: Anne Verroust-
Blondet, co-supervisor: Fawzi Nashashibi.

• PhD in progress: Jiahao Zhang, "Misbehavior detection for collective perception in Intelligent
Transportation System", October 2021, UPMC Sorbonne University, supervisor Fawzi Nashashibi,
co-supervisor: Ines Ben Jemaa.

10.2.3 Juries

• Raoul de Charette: reviewer of PhD thesis of Michaël Ramamonjisoa, “3D Scene Reconstruction
from Images”, Ecole Nationale des Ponts et Chaussées, Nov. 22nd 2022.

• Raoul de Charette: reviewer of mid-term PhD for Antonin Vobecky, “Weakly supervised learning
for visual recognition in the autonomous driving context”, Czech Technical University in Prague,
March 31st 2022.

• Raoul de Charette: member of the researcher recruitment committee, Telecom Paris, France. May
11th 2022.

• Fawzi Nashashibi: president in the jury of the HdR thesis of Redouane Khemmar, “Contribution à la
perception d’environnement pour la smart mobilité”, ESIGELEC-Normandie Université, November
28, 2022, Saint-Etienne du Rouvray.

• Fawzi Nashashibi: reviewer in the jury of the HdR thesis of Nicolas Rivière, “Interactions matière-
rayonnement et nouveaux concepts d’imageurs laser 3D”, ONERA-Université de Toulouse, Novem-
ber 16, 2022, Toulouse.

• Fawzi Nashashibi: examiner in the jury of the HdR thesis of Raoul de Charette, “Vision for Scene
Understanding”, Inria-Sorbonne Université, January 25, 2022, Paris.
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• Fawzi Nashashibi: president in the jury of the PhD thesis of Alexis Stoven-Dubois, “Robust Crowd-
sourced Mapping for Landmark-based Vehicle Localization”, VEDECOM-Université Clermont
Auvergne, March 2, 2022, Versailles.

• Fawzi Nashashibi: president of the jury of the PhD thesis of Mr. Robin Condat, “Contribution to
the improvement of the robustness of perception systems based on multimodal neural networks”,
LITIS-Normandie Université, July 8, 2022, Saint-Etienne du Rouvray.

• Fawzi Nashashibi: reviewer in the jury of the PhD thesis of Mr. Hussam Atoui, “Switching/Interpolating
LPV Control based on Youla-Kucera Parameterization: Application to Autonomous Vehicles”, Greno-
ble INP-Université Grenoble Alpes, October 20, 2022, Grenoble.

• Fawzi Nashashibi: reviewer in the jury of the PhD thesis of Mr. Tristan Klempka, “Prédiction de
déplacements de véhicules connectés en interaction pour la caractérisation de situations à risques”,
LAAS-Université de Toulouse, November 14, 2022, Toulouse.

• Fawzi Nashashibi: reviewer in the jury of the PHD thesis of Mrs. Andra Petrovai, “Deep Learning-
based Visual Perception for Autonomous Driving”, Technical University of Cluj-Napoca, December
20, 2022, Cluj (Romania).

• Anne Verroust-Blondet: jury member of the PhD thesis of Paul Guelorget, “Apprentissage actif pour
la détection d’objets d’intérêt opérationnel dans les contenus multimédia”, December 2022, Institut
Polytechnique de Paris.

• Anne Verroust-Blondet: jury member of the PhD thesis of Yanis Marchand, “Scaling up and evaluat-
ing surface reconstruction from point clouds of open scenes”, November 2022, Université Gustave
Eiffel.

• Tuan-Hung Vu: reviewer of PhD thesis of Antoine Saporta, “Domain Adaptation for Urban Scene
Segmentation”, Sorbonne Université, April 14th 2022.

10.3 Popularization

10.3.1 Education

• Raoul de Charette: “Introduction à l’intelligence artificielle”, 10h, primary school, Puck et Ribam-
belle, Castelnau-le-Lez, France.

10.3.2 Interventions

• Raoul de Charette: “Nvidia introduit les modèles Transformer dans l’auto”, Industrie & Technologies.
November 2022 (journalist: Frédéric Monflier)

• Raoul de Charette, Fawzi Nashashibi: “Voitures autonomes: est-ce bien raisonnable de les faire
rouler ?”, Epsiloon. July 2022 (journalist: Muriel Valin)

• Fawzi Nashashibi: “Voitures autonomes sur les routes françaises cet été : révolution ou désillusion”,
Challenges. July 2022 (journalist: Quentin Halbout).

• Fawzi Nashashibi: public presentation during the NUMOK Festival in Paris “Les nouvelles mobilités
du 21ème siècles et leurs enjeux”, Bibliothèque Arthur Rimbaud, April 15, 2022, Paris.

11 Scientific production

11.1 Major publications

[1] Z. Alsayed, G. Bresson, A. Verroust-Blondet and F. Nashashibi. ‘2D SLAM Correction Prediction
in Large Scale Urban Environments’. In: ICRA 2018 - International Conference on Robotics and
Automation 2018. Brisbane, Australia, 21st May 2018. URL: https://hal.inria.fr/hal-01829
091.

https://hal.inria.fr/hal-01829091
https://hal.inria.fr/hal-01829091
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[2] G. Fayolle, R. Iasnogorodski and V. A. Malyshev. Random Walks in the Quarter Plane: Algebraic
Methods, Boundary Value Problems, Applications to Queueing Systems and Analytic Combinatorics.
Vol. 40. Probability Theory and Stochastic Modelling. Springer International Publishing, 8th Feb.
2017, p. 255. DOI: 10.1007/978-3-319-50930-3. URL: https://hal.inria.fr/hal-016519
19.

[3] C. Furtlehner, J.-M. Lasgouttes, A. Attanasi, M. Pezzulla and G. Gentile. ‘Short-term Forecast-
ing of Urban Traffic using Spatio-Temporal Markov Field’. In: IEEE Transactions on Intelligent
Transportation Systems 23.8 (2022), pp. 10858–10867. DOI: 10.1109/TITS.2021.3096798. URL:
https://hal.inria.fr/hal-03285664.

[4] D. González Bautista, J. Pérez, V. Milanés and F. Nashashibi. ‘A Review of Motion Planning Tech-
niques for Automated Vehicles’. In: IEEE Transactions on Intelligent Transportation Systems
(1st Apr. 2016). DOI: 10.1109/TITS.2015.2498841. URL: https://hal.inria.fr/hal-
01397924.

[5] S. S. Halder, J.-F. Lalonde and R. de Charette. ‘Physics-Based Rendering for Improving Robustness
to Rain’. In: ICCV 2019 - International Conference on Computer Vision. Seoul, South Korea,
27th Oct. 2019. URL: https://hal.inria.fr/hal-02385436.

[6] M. Jaritz, T.-H. Vu, R. de Charette, E. Wirbel and P. Pérez. ‘Cross-Modal Learning for Domain
Adaptation in 3D Semantic Segmentation’. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 45.2 (17th Mar. 2022), pp. 1533–1544. DOI: 10.1109/TPAMI.2022.3159589. URL:
https://hal.inria.fr/hal-03945378.

[7] G. Le Lann. Cyberphysical Constructs and Concepts for Fully Automated Networked Vehicles. RR-
9297. INRIA Paris-Rocquencourt, 16th Oct. 2019. URL: https://hal.inria.fr/hal-02318242.

[8] I. Mahtout, F. Navas, V. Milanés and F. Nashashibi. ‘Advances in Youla-Kucera parametrization: A
Review’. In: Annual Reviews in Control (3rd June 2020). DOI: 10.1016/j.arcontrol.2020.04.0
15. URL: https://hal.inria.fr/hal-02748393.

[9] K. Messaoud, I. Yahiaoui, A. Verroust-Blondet and F. Nashashibi. ‘Attention Based Vehicle Tra-
jectory Prediction’. In: IEEE Transactions on Intelligent Vehicles 6.1 (2021), pp. 175–185. DOI:
10.1109/TIV.2020.2991952. URL: https://hal.inria.fr/hal-02543967.

[10] K. Messaoud, I. Yahiaoui, A. Verroust-Blondet and F. Nashashibi. ‘Non-local Social Pooling for
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