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2 Overall objectives

CAGE’s activities take place in the field of mathematical control theory, with applications in several
directions: control of quantum mechanical systems, stability and stabilization, in particular in presence
of uncertain dynamics, optimal control, and geometric models for vision. Although control theory is
nowadays a mature discipline, it is still the subject of intensive research because of its crucial role in a
vast array of applications. Our focus is on the analytical and geometrical aspects of control applications.

At the core of the scientific activity of the team is the geometric control approach, that is, a distinctive
viewpoint issued in particular from (elementary) differential geometry, to tackle questions of controllabil-
ity, motion planning, stability, and optimal control. The emphasis of such a geometric approach is in
intrinsic properties, and it is particularly well adapted to study nonlinear and nonholonomic phenomena
[89, 65]. The geometric control approach has historically been associated with the development of
finite-dimensional control theory. However, its impact in the study of distributed parameter control
systems and, in particular, systems of controlled partial differential equations has been growing in the
last decades, complementing analytical and numerical approaches by providing dynamical, qualitative,
and intrinsic insight [81]. CAGE has the ambition to be at the core of this development.

One of the features of the geometric control approach is its capability of exploiting symmetries
and intrinsic structures of control systems. Symmetries and intrinsic structures (e.g., Lagrangian or
Hamiltonian structures) can be used to characterize minimizing trajectories, prove regularity properties,
and describe invariants. The geometric theory of quantum control, in particular, exploits the rich
geometric structure encoded in the Schrödinger equation to design adapted control schemes and to
characterize their qualitative properties.

3 Research program

3.1 Research domain

Our contributions are in the area of mathematical control theory, which is to say that we are interested
in the analytical and geometrical aspects of control applications. In this approach, a control system
is modeled by a system of equations (of many possible types: ordinary differential equations, partial
differential equations, stochastic differential equations, difference equations,. . . ), possibly not explicitly
known in all its components, which are studied in order to establish qualitative and quantitative properties
concerning the actuation of the system through the control.

Motion planning is, in this respect, a cornerstone property: it denotes the design and validation of
algorithms for identifying a control law steering the system from a given initial state to (or close to) a
target one. Initial and target positions can be replaced by sets of admissible initial and final states as, for
instance, in the motion planning task towards a desired periodic solution. Many specifications can be
added to the pure motion planning task, such as robustness to external or endogenous disturbances,
obstacle avoidance or penalization criteria. A more abstract notion is that of controllability, which
denotes the property of a system for which any two states can be connected by a trajectory corresponding
to an admissible control law. In mathematical terms, this translates into the surjectivity of the so-called
end-point map, which associates with a control and an initial state the final point of the corresponding
trajectory. The analytical and topological properties of endpoint maps are therefore crucial in analyzing
the properties of control systems.

One of the most important additional objective which can be associated with a motion planning task
is optimal control, which corresponds to the minimization of a cost (or, equivalently, the maximization
of a gain) [117]. Optimal control theory is clearly deeply interconnected with calculus of variations,
even if the non-interchangeable nature of the time-variable results in some important specific features,
such as the occurrence of abnormal extremals [93]. Research in optimal control encompasses different
aspects, from numerical methods to dynamic programming and non-smooth analysis, from regularity of
minimizers to high order optimality conditions and curvature-like invariants.

Another domain of control theory with countless applications is stabilization. The goal in this case
is to make the system converge towards an equilibrium or some more general safety region. The main
difference with respect to motion planning is that here the control law is constructed in feedback form.
One of the most important properties in this context is that of robustness, i.e., the performance of the
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stabilization protocol in presence of disturbances or modeling uncertainties. A powerful framework which
has been developed to take into account uncertainties and exogenous non-autonomous disturbances is
that of hybrid and switched systems [104, 94, 110]. The central tool in the stability analysis of control
systems is that of control Lyapunov function. Other relevant techniques are based on algebraic criteria
or dynamical systems. One of the most important stability property which is studied in the context of
control system is input-to-state stability [108], which measures how sensitive the system is to an external
excitation.

One of the areas where control applications have nowadays the most impressive developments is in
the field of biomedicine and neurosciences. Improvements both in modeling and in the capability of
finely actuating biological systems have concurred in increasing the popularity of these subjects. Notable
advances concern, in particular, identification and control for biochemical networks [102] and models
for neural activity [86]. Therapy analysis from the point of view of optimal control has also attracted a
great attention [106].

Biological models are not the only one in which stochastic processes play an important role. Stock-
markets and energy grids are two major examples where optimal control techniques are applied in the
non-deterministic setting. Sophisticated mathematical tools have been developed since several decades
to allow for such extensions. Many theoretical advances have also been required for dealing with complex
systems whose description is based on distributed parameters representation and partial differential
equations. Functional analysis, in particular, is a crucial tool to tackle the control of such systems [114].

Let us conclude this section by mentioning another challenging application domain for control
theory: the decision by the European Union to fund a flagship devoted to the development of quantum
technologies is a symptom of the role that quantum applications are going to play in tomorrow’s society.
Quantum control is one of the bricks of quantum engineering, and presents many peculiarities with
respect to standard control theory, as a consequence of the specific properties of the systems described
by the laws of quantum physics. Particularly important for technological applications is the capability
of inducing and reproducing coherent state superpositions and entanglement in a fast, reliable, and
efficient way [87].

3.2 Scientific foundations

At the core of the scientific activity of the team is the geometric control approach. One of the features
of the geometric control approach is its capability of exploiting symmetries and intrinsic structures of
control systems. Symmetries and intrinsic structures can be used to characterize minimizing trajectories,
prove regularity properties and describe invariants. An egregious example is given by mechanical systems,
which inherently exhibit Lagrangian/Hamiltonian structures which are naturally expressed using the
language of symplectic geometry [77]. The geometric theory of quantum control, in particular, exploits
the rich geometric structure encoded in the Schrödinger equation to engineer adapted control schemes
and to characterize their qualitative properties. The Lie–Galerkin technique that we proposed starting in
[78] builds on this premises in order to provide powerful tests for the controllability of quantum systems
defined on infinite-dimensional Hilbert spaces.

Although the focus of geometric control theory is on qualitative properties, its impact can also
be disruptive when it is used in combination with quantitative analytical tools, in which case it can
dramatically improve the computational efficiency. This is the case in particular in optimal control.
Classical optimal control techniques (in particular, Pontryagin Maximum Principle, conjugate point
theory, associated numerical methods) can be significantly improved by combining them with powerful
modern techniques of geometric optimal control, of the theory of numerical continuation, or of dynamical
system theory [113, 105]. Geometric optimal control allows the development of general techniques,
applying to wide classes of nonlinear optimal control problems, that can be used to characterize the
behavior of optimal trajectories and in particular to establish regularity properties for them and for the
cost function. Hence, geometric optimal control can be used to obtain powerful optimal syntheses results
and to provide deep geometric insights into many applied problems. Numerical optimal control methods
with geometric insight are in particular important to handle subtle situations such as rigid optimal paths
and, more generally, optimal syntheses exhibiting abnormal minimizers.

Optimal control is not the only area where the geometric approach has a great impact. Let us mention,
for instance, motion planning, where different geometric approaches have been developed: those based
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on the Lie algebra associated with the control system [98, 95], those based on the differentiation of
nonlinear flows such as the return method [82, 83], and those exploiting the differential flatness of the
system [85].

Geometric control theory is not only a powerful framework to investigate control systems, but also a
useful tool to model and study phenomena that are not a priori control-related. Two occurrences of this
property play an important role in the activities of CAGE:

• geometric control theory as a tool to investigate properties of mathematical structures;

• geometric control theory as a modeling tool for neurophysical phenomena and for synthesizing
biomimetic algorithms based on such models.

Examples of the first type, concern, for instance, hypoelliptic heat kernels [64] or shape optimization
[68]. Examples of the second type are inactivation principles in human motricity [70] or neurogeometrical
models for image representation of the primary visual cortex in mammals [75].

A particularly relevant class of control systems, both from the point of view of theory and applications,
is characterized by the linearity of the controlled vector field with respect to the control parameters. When
the controls are unconstrained in norm, this means that the admissible velocities form a distribution in
the tangent bundle to the state manifold. If the distribution is equipped with a point-dependent quadratic
form (encoding the cost of the control), the resulting geometrical structure is said to be sub-Riemannian.
Sub-Riemannian geometry appears as the underlying geometry of nonlinear control systems: in a similar
way as the linearization of a control system provides local informations which are readable using the
Euclidean metric scale, sub-Riemannian geometry provides an adapted non-isotropic class of lenses
which are often much more informative. As such, its study is fundamental for control design. The
importance of sub-Riemannian geometry goes beyond control theory and it is an active field of research
both in differential geometry [97], geometric measure theory [66] and hypoelliptic operator theory [71].

4 Application domains

4.1 First axis: Quantum control

Quantum control is one of the bricks of quantum engineering, since manipulation of quantum mechani-
cal systems is ubiquitous in applications such as quantum computation, quantum cryptography, and
quantum sensing (in particular, imaging by nuclear magnetic resonance).

Quantum control presents many peculiarities with respect to standard control theory, as a conse-
quence of the specific properties of the systems described by the laws of quantum physics. Particularly
important for technological applications is the capability of inducing and reproducing coherent state
superpositions and entanglement in a fast, reliable, and efficient way. The efficiency of the control action
has a dramatic impact on the quality of the coherence and the robustness of the required manipulation.
Minimal time constraints and interaction of time scales are important factors for characterizing the effi-
ciency of a quantum control strategy. CAGE works for the improvement of quantum control paradigms,
especially for what concerns quantum systems evolving in infinite-dimensional Hilbert spaces. The
controllability of quantum system is a well-established topic when the state space is finite-dimensional
[84], thanks to general controllability methods for left-invariant control systems on compact Lie groups
[76, 90]. When the state space is infinite-dimensional, it is known that in general the bilinear Schrödinger
equation is not exactly controllable [115]. The Lie–Galerkin technique [78] combines finite-dimensional
geometric control techniques and the distributed parameter framework in order to provide the most
powerful available tests for the approximate controllability of quantum systems defined on infinite-
dimensional Hilbert spaces. Another important technique to the development of which we contribute is
adiabatic quantum control. Adiabatic approximation theory and, in particular, adiabatic evolution [99,
111, 118] is well-known to improve the robustness of the control strategy and is strongly related to time
scales analysis. The advantage of the adiabatic control is that it is constructive and produces control laws
which are both smooth and robust to parameter uncertainty [119, 92, 74].
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4.2 Second axis: Stability and stabilization

A control application with a long history and still very challenging open problems is stabilization. For
infinite-dimensional systems, in particular nonlinear ones, the richness of the possible functional analyt-
ical frameworks makes feedback stabilization a challenging and active domain of research. Of particular
interest are the different types of stabilization that may be obtained: exponential, polynomial, finite-time,
. . . Another important aspect of stabilization concerns control of systems with uncertain dynamics, i.e.,
with dynamics including possibly non-autonomous parameters whose value and dependence on time
cannot be anticipated. Robustification, i.e., offsetting uncertainties by suitably designing the control
strategy, is a widespread task in automatic control theory, showing up in many applicative domains such
as electric circuits or aerospace motion planning. If dynamics are not only subject to static uncertainty,
but may also change as time goes, the problem of controlling the system can be recast within the the-
ory of switched and hybrid systems, both in a deterministic and in a probabilistic setting. Switched
and hybrid systems constitute a broad framework for the description of the heterogeneous systems in
which continuous dynamics (typically pertaining to physical quantities) interact with discrete/logical
components. The development of the switched and hybrid paradigm has been motivated by a broad
range of applications, including automotive and transportation industry [107], energy management [100]
and congestion control [96]. Even if both controllability [109] and observability [91] of switched and
hybrid systems raise several important research issues, the central role in their study is played by uniform
stability and stabilizabilization [94, 110]. Uniformity is considered with respect to all signals in a given
class, and it is well-known that stability of switched systems depends not only on the dynamics of each
subsystem but also on the properties of the considered class of switching signals. In many situations
it is interesting for modeling purposes to specify the features of the switched system by introducing
constrained switching rules. A typical constraint is that each mode is activated for at least a fixed min-
imal amount of time, called the dwell-time. Our approach to constrained switching is based on the
idea of relating the analytical properties of the classes of constrained switching laws (shift-invariance,
compactness, closure under concatenation, . . . ) to the stability behavior of the corresponding switched
systems. One can introduce probabilistic uncertainties by endowing the classes of admissible signals
with suitable probability measures. The interest of this approach is that probabilistic stability analysis
filters out highly ‘exceptional’ worst-case trajectories. Although less explicitly characterized from a dy-
namical viewpoint than its deterministic counterpart, the probabilistic notion of uniform exponential
stability can be studied using several reformulations of Lyapunov exponents proposed in the literature
[69, 80, 116].

4.3 Third axis: Motion planning and optimal control

Geometric optimal control allows the development of general techniques, applying to wide classes of
nonlinear optimal control problems, that can be used to characterize the behavior of optimal trajectories
and in particular to establish regularity properties for them and for the cost function. Hence, geometric
optimal control can be used to obtain powerful optimal syntheses results and to provide deep geometric
insights into many applied problems. Geometric optimal control methods are in particular important to
handle subtle situations such as rigid optimal paths and, more generally, optimal syntheses exhibiting
abnormal minimizers.

Although the focus of geometric control theory is on qualitative properties, its impact can also be dis-
ruptive when it is used in combination with quantitative analytical tools, in which case it can dramatically
improve the computational efficiency. This is the case in particular in optimal control. Classical optimal
control techniques (in particular, Pontryagin Maximum Principle, conjugate point theory, associated
numerical methods) can be significantly improved by combining them with powerful modern techniques
of geometric optimal control, of the theory of numerical continuation, or of dynamical system theory
[113, 105]. Applications of optimal control theory considered by CAGE concern, in particular, motion
planning problems for aerospace (atmospheric re-entry, orbit transfer, low cost interplanetary space
missions, . . . ) [72, 112].
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4.4 Fourth axis: Geometric models for vision and sub-Riemannian geometry

Geometric control theory is not only a powerful framework to investigate control systems, but also
a useful tool to model and study phenomena that are not a priori control-related. In particular, we
use control theory to investigate the properties of sub-Riemannian structures, both for the sake of
mathematical understanding and as a modeling tool for image and sound perception and processing .
We recall that sub-Riemannian geometry is a geometric framework which is used to measure distances
in nonholonomic contexts and which has a natural and powerful optimal control interpretation in terms
control-linear systems with quadratic cost. Sub-Riemannian geometry, and in particular the theory of
their associated (hypoelliptic) diffusive processes, plays a crucial role in the neurogeometrical model
of the primary visual cortex due to Petitot, Citti and Sarti, based on the functional architecture first
described by Hubel and Wiesel [88, 101, 79, 103]. Such a model can be used as a powerful paradigm
for bio-inspired image processing, as already illustrated in the literature [75, 73]. Our contributions
to geometry of vision are based not only on this approach, but also on another geometric and sub-
Riemannian framework for vision, based on pattern matching in the group of diffeomorphisms. In
this case admissible diffeomorphisms correspond to deformations which are generated by vector fields
satisfying a set of nonholonomic constraints. A sub-Riemannian metric on the infinite-dimensional
group of diffeomorphisms is induced by a length on the tangent distribution of admissible velocities
[67]. Nonholonomic constraints can be especially useful to describe distortions of sets of interconnected
objects (e.g., motions of organs in medical imaging).

5 New software and platforms

5.1 New software

5.1.1 Stellacode

Keywords: Plasma physics, Stellarator, Inverse problem, Magnetic fusion, Electromagnetics, Shape
optimization

Functional Description: The goal of Stellacode is to optimize the Coil Winding Surface of a stellarator.
What does this means and what for? A stellarator is a nuclear fusion reactor which produces energy
from the fusion of nuclei in a very hot plasma. The confinement of this plasma is a very complicated
task and a stellarator is able to achieve it thanks to a complex set of non-planar supraconductor
coils lying on the so-called "Coil Winding Surface". Stellacode is able to perform efficiently the
shape optimization of this surface, taking into account both plasma confinement figures of merit
and engineering costs.

Publication: hal-03472623

Contact: Rémi Robin

5.1.2 Astus2

Name: Astus2

Keyword: Optimal control

Functional Description: Confidentiel

Contact: Emmanuel Trélat

5.1.3 IMODAL

Name: Implicit Modular Deformations Analysis Library

Keywords: Registration, Optimal control

https://hal.inria.fr/hal-03472623
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Functional Description: IMODAL is a python librairy allowing to register shapes (curves, meshes, im-
ages) with structured large deformations. The structures are incorporated via deformation modules
which generate vector fields of particular, chosen types. They can be defined explicitly (generating
local scalings or rotations for instance) or implicitly from constraints. In addition, it is possible to
combine them so that a complex structure can be easily defined as the superimposition of simple
ones. Trajectories of such modular vector fields can then be integrated to build modular large
deformations. Their parameters can be optimized to register observed shapes and analyzed.

Contact: Barbara Gris

6 New results

6.1 Quantum control: new results

Let us list here our new results in quantum control theory.

• In [35], we present a quantum optimal control problem which exhibits a chattering phenomenon.
This is the first instance of such a process in quantum control. Using the Pontryagin Maximum
Principle and a general procedure due to V. F. Borisov and M. I. Zelikin, we characterize the local
optimal synthesis, which is then globalized by a suitable numerical algorithm. We illustrate the im-
portance of detecting chattering phenomena because of their impact on the efficiency of numerical
optimization procedures. The article is also part of the Ph.D. thesis [42] of Rémi Robin.

• In [12], we study up to which extent we can apply adiabatic control strategies to a quantum control
model obtained by rotating wave approximation. In particular, we show that, under suitable
assumptions on the asymptotic regime between the parameters characterizing the rotating wave
and the adiabatic approximations, the induced flow converges to the one obtained by considering
the two approximations separately and by combining them formally in cascade. As a consequence,
we propose explicit control laws which can be used to induce desired populations transfers, robustly
with respect to parameter dispersions in the controlled Hamiltonian.

• Quantum optimal control, a toolbox for devising and implementing the shapes of external fields that
accomplish given tasks in the operation of a quantum device in the best way possible, has evolved
into one of the cornerstones for enabling quantum technologies. The last few years have seen a
rapid evolution and expansion of the field. We review in [24] recent progress in our understanding
of the controllability of open quantum systems and in the development and application of quantum
control techniques to quantum technologies. We also address key challenges and sketch a roadmap
for future developments.

• In [25], we prove complete controllability for rotational states of an asymmetric top molecule
belonging to degenerate values of the orientational quantum number M. Based on this insight,
we construct a pulse sequence that energetically separates population initially distributed over
degenerate M-states, as a precursor for orientational purification. Introducing the concept of
enantio-selective controllability, we determine the conditions for complete enantiomer-specific
population transfer in chiral molecules and construct pulse sequences realizing this transfer
for population initially distributed over degenerate M-states. This degeneracy presently limits
enantiomer-selectivity for any initial state except the rotational ground state. Our work thus shows
how to overcome an important obstacle towards separating, with electric fields only, left-handed
from right-handed molecules in a racemic mixture.

• In the physics literature it is common to see the rotating wave approximation and the adiabatic
approximation used "in cascade" to justify the use of chirped pulses for two-level quantum systems
driven by one external field, in particular when the resonance frequency of the system is not
known precisely. Both approximations need relatively long time and are essentially based on
averaging theory of dynamical systems. Unfortunately, the two approximations cannot be done
independently since, in a sense, the two time scales interact. The purpose of [34] is to study how
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the cascade of the two approximations can be justified and how large becomes the final time as the
fidelity goes to one, while preserving the robustness of the adiabatic strategy. Our first result, based
on high-order averaging techniques, gives a precise quantification of the uncertainty interval of
the resonance frequency for which the population inversion works. As a byproduct of this result,
we prove that it is possible to control an ensemble of spin systems by a single real-valued control,
providing a non-trivial extension of a celebrated result of ensemble controllability with two controls
by Khaneja and Li. The article is also part of the Ph.D. thesis [42] of Rémi Robin.

• In [19], we study, in the semiclassical sense, the global approximate controllability in small time
of the quantum density and quantum momentum of the 1-D semiclassical cubic Schrödinger
equation with two controls between two states with positive quantum densities. We first con-
trol the asymptotic expansions of the zeroth and first order of the physical observables via the
Agrachev–Sarychev method. Then we conclude the proof through techniques of semiclassical
approximation of the nonlinear Schrödinger equation.

• In [55], we establish some properties of quantum limits on a product manifold, proving for instance
that, under appropriate assumptions, the quantum limits on the product of manifolds are absolutely
continuous if the quantum limits on each manifolds are absolutely continuous. On a product
of Riemannian manifolds satisfying the minimal multiplicity property, we prove that a periodic
geodesic can never be charged by a quantum limit.

• In [32] we present an analytical approach to construct the Lie algebra of finite-dimensional subsys-
tems of the driven asymmetric top rotor. Each rotational level is degenerate due to the isotropy of
space, and the degeneracy increases with rotational excitation. For a given rotational excitation, we
determine the nested commutators between drift and drive Hamiltonians using a graph represen-
tation. We then generate the Lie algebra for subsystems with arbitrary rotational excitation using
an inductive argument.

6.2 Stability and stabilization: new results

Let us list here our new results about stability and stabilization of control and hybrid systems.

• The paper [53] concerns some spectral properties of the scalar dynamical system defined by a linear
delay-differential equation with two positive delays. More precisely, the existing links between
the delays and the maximal multiplicity of the characteristic roots are explored, as well as the
dominance of such roots compared with the spectrum localization. As a by-product of the analysis,
the pole placement issue is revisited with more emphasis on the role of the delays as control
parameters in defining a partial pole placement guaranteeing the closed-loop stability with an
appropriate decay rate of the corresponding dynamical system.

• In [15], we consider finite and infinite-dimensional first-order consensus systems with timecon-
stant interaction coefficients. For symmetric coefficients, convergence to consensus is classically
established by proving, for instance, that the usual variance is an exponentially decreasing Lya-
punov function. We investigate here the convergence to consensus in the non-symmetric case: we
identify a positive weight which allows to define a weighted mean corresponding to the consen-
sus, and obtain exponential convergence towards consensus. Moreover, we compute the sharp
exponential decay rate.

• In [17], we recall some general properties of extremal and Barabanov norms and we give a necessary
and sufficient condition for a finite-dimensional continuoustime linear switched system to admit a
Barabanov norm.

• In the paper [48], we consider the problem of determining the stability properties, and in particular
assessing the exponential stability, of a singularly perturbed linear switching system. One of the
challenges of this problem arises from the intricate interplay between the small parameter of
singular perturbation and the rate of switching, as both tend to zero. Our approach consists
in characterizing suitable auxiliary linear systems that provide lower and upper bounds for the
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asymptotics of the maximal Lyapunov exponent of the linear switching system as the parameter of
the singular perturbation tends to zero.

• The proceeding [38] presents some results on the uniform exponential stability of singularly per-
turbed linear systems undergoing switching. In absence of dwell-time constraints, the switching
parameter can evolve on the same time scale as the fast variables, or even faster. We investigate the
effect of switching laws evolving at a time scale comparable with the fast variables, describing the
corresponding asymptotic effect on the slow variable. Based on this analysis, we propose stability
criteria for the overall system, uniform for small values of the parameter of singular perturbation.

• In the article [18], we study the so-called water tank system. In this system, the behavior of water
contained in a 1-D tank is modelled by Saint-Venant equations, with a scalar distributed control.
It is well-known that the linearized systems around uniform steady-states are not controllable,
the uncontrollable part being of infinite dimension. Here we will focus on the linearized systems
around non-uniform steady states, corresponding to a constant acceleration of the tank. We prove
that these systems are controllable in Sobolev spaces, using the moments method and perturbative
spectral estimates. Then, for steady states corresponding to small enough accelerations, we design
an explicit Proportional Integral feedback law (obtained thanks to a well-chosen dynamic extension
of the system) that stabilizes these systems exponentially with arbitrarily large decay rate. Our
design relies on feedback equivalence/backstepping.

• The paper [43] deals with stability of linear periodic time-varying difference delay systems, i.e.
dynamical systems where a finite dimensional signal at a certain time is given as a linear time-
varying function of its values at a finite number of delayed times. We give a necessary and sufficient
condition for exponential stability, that is a generalisation of the one by Henry and Hale in the
1970s. It has a control theoretic interpretation in terms of the harmonic transfer function (HTF) of
a corresponding linear control system.

• Adaptive control using the σ-modification provides an easily implementable way to stabilize
systems with uncertain or fluctuating parameters. Motivated by a specific application from neu-
roscience, we extend in [31] this methodology to nonlinear time-delay systems ruled by globally
Lipschitz dynamics. In order to make the result more handy in practice, we provide an explicit
construction of a Lyapunov–Krasovskii functional (LKF) with linear bounds and strict dissipation
rate based on the knowledge of an LKF with quadratic bounds and point-wise dissipation rate.
When applied to a model of neuronal populations involved in Parkinson’s disease, the benefits with
respect to a pure proportional stabilization scheme are discussed through numerical simulations.

• The paper [26] is concerned with the Proportional Integral (PI) regulation control of the left Neu-
mann trace of a one-dimensional semilinear wave equation. The control input is selected as the
right Neumann trace. The control design goes as follows. First, a preliminary (classical) velocity
feedback is applied in order to shift all but a finite number of the eivenvalues of the underlying
unbounded operator into the open left half-plane. We then leverage on the projection of the system
trajectories into an adequate Riesz basis to obtain a truncated model of the system capturing the
remaining unstable modes. Local stability of the resulting closed-loop infinite-dimensional system
composed of the semilinear wave equation, the preliminary velocity feedback, and the PI controller,
is obtained through the study of an adequate Lyapunov function. Finally, an estimate assessing the
set point tracking performance of the left Neumann trace is derived.

• In [14], we investigate the asymptotic formation of consensus for several classes of time-dependent
cooperative graphon dynamics. After motivating the use of this type of macroscopic models to
describe multi-agent systems, we adapt the classical notion of scrambling coefficient to this setting,
leverage it to establish sufficient conditions ensuring the exponential convergence to consen-
sus with respect to the L∞-norm topology. We then shift our attention to consensus formation
expressed in terms of the L2-norm, and prove three different consensus result for symmetric, bal-
anced and strongly connected topologies, which involve a suitable generalisation of the notion of
algebraic connectivity to this infinite-dimensional framework. We then show that, just as in the
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finite-dimensional setting, the notion of algebraic connectivity that we propose encodes informa-
tion about the connectivity properties of the underlying interaction topology. We finally use the
corresponding results to shed some light on the relation between L2 and L∞ -consensus formation,
and illustrate our contributions by a series of numerical simulations.

• In [44], we consider the problem of boundary feedback control of single-input-single-output (SISO)
one-dimensional linear hyperbolic systems when sensing and actuation are anti-located. The
main issue of the output feedback stabilization is that it requires dynamic control laws that include
delayed values of the output (directly or through state observers) which may not be robust to
infinitesimal uncertainties on the characteristic velocities. The purpose of this paper is to highlight
some features of this problem by addressing the feedback stabilization of an unstable open-loop
system which is made up of two interconnected transport equations and provided with anti-located
boundary sensing and actuation. The main contribution is to show that the robustness of the
control against delay uncertainties is recovered as soon as an arbitrary small diffusion is present in
the system. Our analysis also reveals that the effect of diffusion on stability is far from being an
obvious issue by exhibiting an alternative simple example where the presence of diffusion has a
destabilizing effect instead.

• In [22], we deal with infinite-dimensional nonlinear forward complete dynamical systems which
are subject to external disturbances. We first extend the well-known Datko lemma to the framework
of the considered class of systems. Thanks to this generalization, we provide characterizations
of the uniform (with respect to disturbances) local, semi-global, and global exponential stability,
through the existence of coercive and non-coercive Lyapunov functionals. The importance of the
obtained results is underlined through some applications concerning 1) exponential stability of
nonlinear retarded systems with piecewise constant delays, 2) exponential stability preservation
under sampling for semilinear control switching systems, and 3) the link between input-to-state
stability and exponential stability of semilinear switching systems.

• Hyperbolic systems in one dimensional space are frequently used in modeling of many physical
systems. In our recent works, we introduced time independent feedbacks leading to the finite
stabilization for the optimal time of homogeneous linear and quasilinear hyperbolic systems.
In [63], we present Lyapunov’s functions for these feedbacks and use estimates for Lyapunov’s
functions to rediscover the finite stabilization results.

• In [57] we discuss the notion of universality for classes of candidate common Lyapunov functions of
linear switched systems. On the one hand, we prove that a family of absolutely homogeneous func-
tions is universal as soon as it approximates arbitrarily well every convex absolutely homogeneous
function for the C 0 topology of the unit sphere. On the other hand, we prove several obstructions
for a class to be universal, showing, in particular, that families of piecewise-polynomial continuous
functions whose construction involves at most l polynomials of degree at most m (for given positive
integers l ,m) cannot be universal.

• Consider a non-autonomous continuous-time linear system in which the time-dependent matrix
determining the dynamics is piecewise constant and takes finitely many values A1, . . . , AN . Our
article [49] studies the equality cases between the maximal Lyapunov exponent associated with
the set of matrices {A1, . . . , AN }, on the one hand, and the corresponding ones for piecewise deter-
ministic Markov processes with modes A1, . . . , AN , on the other hand. A fundamental step in this
study consists in establishing a result of independent interest, namely, that any sequence of Markov
processes associated with the matrices A1, . . . , AN converges, up to extracting a subsequence, to a
Markov process associated with a suitable convex combination of those matrices.

6.3 Motion planning and optimal control: new results

Let us list here our new results on controllability and motion planning algorithms, including optimal
control, beyond the quantum control framework.
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• In [56], we consider a nonlinear system of two parabolic equations, with a distributed control in
the first equation and an odd coupling term in the second one. We prove that the nonlinear system
is smalltime locally null-controllable. The main difficulty is that the linearized system is not null-
controllable. To overcome this obstacle, we extend in a nonlinear setting the strategy introduced
by one of the authors that consists in constructing odd controls for the linear heat equation.
The proof relies on three main steps. First, we obtain from the classical L 2 parabolic Carleman
estimate, conjugated with maximal regularity results, a weighted L p observability inequality for
the nonhomogeneous heat equation. Secondly, we perform a duality argument, close to the well-
known Hilbert Uniqueness Method in a reflexive Banach setting, to prove that the heat equation
perturbed by a source term is null-controllable thanks to odd controls. Finally, the nonlinearity is
handled with a Schauder fixed-point argument.

• In [16], self-organization and control around flocks and mills is studied for second-order swarm-
ing systems involving self-propulsion and potential terms. It is shown that through the action
of constrained control, is it possible to control any initial configuration to a flock or a mill. The
proof builds on an appropriate combination of several arguments: LaSalle invariance principle and
Lyapunov-like decreasing functionals, control linearization techniques, and quasi-static deforma-
tions. A stability analysis of the second-order system guides the design of feedback laws for the
stabilization to flock and mills, which are also assessed computationally.

• In [62], we focus on turnpike phenomenom, which stipulates that the solution of an optimal control
problem in large time, remains essentially close to a steady-state of the dynamics, itself being the
optimal solution of an associated static optimal control problem. Under general assumptions, it is
known that not only the optimal state and the optimal control, but also the adjoint state coming
from the application of the Pontryagin maximum principle, are exponentially close to a steady-state,
except at the beginning and at the end of the time frame. In such results, the turnpike set is a
singleton, which is a steady-state. In this paper, we establish a turnpike result for finite-dimensional
optimal control problems in which some of the coordinates evolve in a monotone way, and some
others are partial steady-states of the dynamics. We prove that the discrepancy between the optimal
trajectory and the turnpike set is then linear, but not exponential: we thus speak of a linear turnpike
theorem.

• In [23], given any measurable subset ω of a closed Riemannian manifold and given any T > 0,
defining l T (ω) ∈ [0,1] as the smallest average time over [0,T ] spent by all geodesic rays in ω, our
first main result, which is of geometric nature, states that, under regularity assumptions, 1/2 is
the maximal possible discrepancy of l T when taking the closure. Our second main result is of
probabilistic nature: considering a regular checkerboard on the flat two-dimensional torus made
of n2 square white cells, constructing random subsets ωn

ε by darkening cells randomly with a
probability ε, we prove that the random law l T (ωn

ε ) converges in probability to ε as n →+∞. We
discuss the consequences in terms of observability of the wave equation, that is related to the
controllability of the wave equation by the well-known H.U.M. method.

• The work [20] studies the reachable space of infinite dimensional control systems which are null
controllable in any positive time, the typical example being the heat equation controlled from the
boundary or from an arbitrary open set. The focus is on the robustness of the reachable space with
respect to linear or nonlinear perturbations of the generator. More precisely, our first main results
asserts that this space is invariant under perturbations which are small (in an appropriate sense).
A second main result asserts the invariance of the reachable space with respect to perturbations
which are compact (again in an appropriate sense), provided that a Hautus type condition is
satisfied. Moreover, our methods give precise information on the behavior of the reachable space
when the generator is perturbed by a class of nonlinear operators. When applied to the classical
heat equation, our results provide detailed information on the reachable space when the generator
is perturbed by a small potential or by a class of non local operators, and in particular in one space
dimension, we deduce from our analysis that the reachable space for perturbations of the 1-d heat
equation is a space of holomorphic functions. We also show how our approach leads to reachability
results for a class of semi-linear parabolic equations.
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• In [46], we survey on numerics for finite-dimensional nonlinear optimal control. The chapter is
written as a guide to practitioners who wish to get rapidly acquainted with the main numerical
methods used to efficiently solve an optimal control problem. We consider throughout two classical
examples, quite simple but representative enough to be complexified and generalized to other
problems: the Zermelo and the Goddard problems. We provide their solving codes that are available
on the web and make the point on the most up-to-date and efficient methods existing nowadays. We
range on direct and indirect methods, on Hamilton-Jacobi approaches and we end with optimistic
planning. Our examples illustrate the pros and cons of the methods and we also show how those
various approaches can be combined in view of augmenting the efficiency of the numerical solving.

• The article [40] follows and complements where we have established the turnpike property for
some optimal shape design problems. Considering linear parabolic partial differential equations
where the shapes to be optimized acts as a source term, we want to minimize a quadratic criterion.
Existence of optimal shapes is proved under some appropriate assumptions. We prove and provide
numerical evidence of the turnpike phenomenon for those optimal shapes, meaning that the ex-
tremal time-varying optimal solution remains essentially stationary; actually, it remains essentially
close to the optimal solution of an associated static problem.

• In [59], we consider the internal control of linear parabolic equations through on-off shape controls,
i.e., controls of the form M(t)1ω(t ) with M(t) ≥ 0 and ω(t) with a prescribed maximal measure.
We establish small-time approximate controllability towards all possible final states allowed by
the comparison principle with nonnegative controls. We manage to build controls with constant
amplitude M(t ) = M . In contrast, if the moving control setω(t ) is confined to evolve in some region
of the whole domain, we prove that approximate controllability fails to hold for small times. The
method of proof is constructive. Using Fenchel-Rockafellar duality and the bathtub principle, the
on-off shape control is obtained as the bang-bang solution of an optimal control problem, which
we design by relaxing the constraints. Our optimal control approach is outlined in a rather general
form for linear constrained control problems, paving the way for generalisations and applications
to other PDEs and constraints.

• The article [29] revisits the optimal control problem with maximum cost with the objective to
provide different equivalent reformulations suitable to numerical methods. We propose two
reformulations in terms of extended Mayer problems with constraint, and another one in terms
of a differential inclusion with upper-semi continuous right member but without constraint. For
this last one we also propose an approximation scheme of the optimal value from below. These
approaches are illustrated and discussed on several examples.

• In [28], we give the explicit solution of the optimal control problem which consists in minimizing
the epidemic peak in the SIR model when the control is an attenuation factor of the infectious rate,
subject to a L 1 constraint on the control which represents a budget constraint. The optimal strategy
is given as a feedback control which consists in a singular arc maintaining the infected population
at a constant level until the immunity threshold is reached, and no intervention outside the singular
arc. We discuss and compare this strategy with the one that minimizes the peak when fixing the
duration of a single intervention, as already proposed in the literature. Numerical simulations
illustrate the benefits of the proposed control.

• In [33], we are interested in the design of stellarators, devices for the production of controlled nu-
clear fusion reactions alternative to tokamaks. The confinement of the plasma is entirely achieved
by a helical magnetic field created by the complex arrangement of coils fed by high currents around
a toroidal domain. Such coils describe a surface called "coil winding surface" (CWS). In this paper,
we model the design of the CWS as a shape optimization problem, so that the cost functional
reflects both optimal plasma confinement properties, through a least square discrepancy, and also
manufacturability, thanks to geometrical terms involving the lateral surface or the curvature of the
CWS. We completely analyze the resulting problem: on the one hand, we establish the existence
of an optimal shape, prove the shape differentiability of the criterion, and provide the expression
of the differential in a workable form. On the other hand, we propose a numerical method and
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perform simulations of optimal stellarator shapes. We discuss the efficiency of our approach with
respect to the literature in this area. The article is also part of the Ph.D. thesis [42] of Rémi Robin.

• During the Covid-19 pandemic a key role is played by vaccination to combat the virus. There are
many possible policies for prioritizing vaccines, and different criteria for optimization: minimize
death, time to herd immunity, functioning of the health system. Using an age-structured population
compartmental finite-dimensional optimal control model, our results in [27] suggest that the eldest
to youngest vaccination policy is optimal to minimize deaths. Our model includes the possible
infection of vaccinated populations. We apply our model to real-life data from the US Census for
New Jersey and Florida, which have a significantly different population structure. We also provide
various estimates of the number of lives saved by optimizing the vaccine schedule and compared
to no vaccination.

• In the proceeding [37], we deal with combining direct and indirect methods to have the best of
both worlds is an efficient method to solve numerically optimal control problems. A direct solver
will typically provide information on the structure of the optimal control, allowing an educated
guess for indirect shooting. The control toolbox ct offers such possibilities and is presented on
two examples. The first example has a bang-singular solution and is solved by chaining direct
and indirect solvers. The second one consists in computing conjugate and cut loci on an ellipsoid
of revolution, which is performed using a more advanced combination of indirect methods with
differential continuation.

• The work [58] tackles the Open Pit planning problem in an optimal control framework. We study
the optimality conditions for the so-called continuous formulation using Pontryagin’s Maximum
Principle, and introduce a new, semicontinuous formulation that can handle the optimization
of a 2D mine profile. Numerical simulations are provided for several test cases, including global
optimization for the 1D Final Open Pit, and first results for the 2D Sequential Open Pit. Results
indicate a good consistency between the different approaches, and with the theoretical optimality
conditions.

• In [39], we survey the main numerical techniques for finite-dimensional nonlinear optimal control.
The chapter is written as a guide to practitioners who wish to get rapidly acquainted with the main
numerical methods used to efficiently solve an optimal control problem. We consider two classical
examples, simple but significant enough to be enriched and generalized to other settings: Zermelo
and Goddard problems. We provide sample of the codes used to solve them and make these codes
available online. We discuss direct and indirect methods, Hamilton-Jacobi approach, ending with
optimistic planning. The examples illustrate the pros and cons of each method, and we show
how these approaches can be combined into powerful tools for the numerical solution of optimal
control problems for ordinary differential equations.

• In [51], we consider the small-time local controllability property of a water tank modeled by 1D
Saint-Venant equations, where the control is the acceleration of the tank. It is known from the work
of Dubois et al. that the linearized system is not controllable. Moreover, concerning the linearized
system, they showed that a traveling time * is necessary to bring the tank from one position to
another for which the water is still at the beginning and at the end. Concerning the nonlinear
system, Coron showed that local controllability around equilibrium states holds for a time large
enough. In this paper, we show that for the local controllability of the nonlinear system around the
equilibrium states, the necessary time is at least 2 * even for the tank being still at the beginning
and at the end. The key point of the proof is a coercivity property for the quadratic approximation
of the water-tank system.

• In the paper [54], we prove the small-time global null-controllability of forward (resp. backward)
semilinear stochastic parabolic equations with globally Lipschitz nonlinearities in the drift and
diffusion terms (resp. in the drift term). In particular, we solve the open question posed by S.
Tang and X. Zhang, in 2009. We propose a new twist on a classical strategy for controlling linear
stochastic systems. By employing a new refined Carleman estimate, we obtain a controllability
result in a weighted space for a linear system with source terms. The main novelty here is that
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the Carleman parameters are made explicit and are then used in a Banach fixed point method.
This allows to circumvent the well-known problem of the lack of compactness embeddings for the
solutions spaces arising in the study of controllability problems for stochastic PDEs.

• It has been proved by Zuazua in the nineties that the internally controlled semilinear 1D wave
equation ∂t t y −∂xx y + g (y) = f 1ω, with Dirichlet boundary conditions, is exactly controllable in
H 1

0 (0,1)×L2(0,1) with controls f ∈ L2((0,1)× (0,1)), for any nonempty open subset ω of (0,1) and
T large enough, assuming that g ∈C 1(R) does not grow faster than β log2(|x|) at infinity for some
β> 0 small enough. The proof, based on the Leray-Schauder fixed point theorem, is however not
constructive. In [30], we design a constructive proof and algorithm for the exact controllability of
semilinear 1D wave equations. Assuming that g does not grow faster than β log2(|x|) at infinity for
someβ> 0 small enough and that g is uniformly Hölder continuous onRwith exponent s ∈ [0,1], we
design a least-squares algorithm yielding an explicit sequence converging to a controlled solution
for the semilinear equation, at least with order 1+ s after a finite number of iterations.

• The goal of the article [52] is to obtain observability estimates for non-homogeneous elliptic
equations in the presence of a potential, posed on a smooth bounded domainΩ in R2 and observed
from a non-empty open subset ω ⊂Ω. More precisely, for V ∈ L∞(Ω;R), our main result shows
that, whenΩ⊂R2 has a finite number of holes, the observability constant of the elliptic operator

−∆+V , with domain H 2(Ω)∩H 1
0 (Ω), is of the form C exp

(
C‖V ‖1/2

L∞(Ω) log1/2 (‖V ‖L∞(Ω)
))

where C

is a positive constant depending only on Ω and ω. Our methodology of proof is crucially based
on the one recently developed by Logunov, Malinnikova, Nadirashvili, and Nazarov, in the context
of the Landis conjecture on exponential decay of solutions to homogeneous elliptic equations in
the plane R2. The main difference and additional difficulty compared to Logunov, Malinnikova,
Nadirashvili, and Nazarov is that the zero set of the solutions to elliptic equations with source term
can be very intricate and should be dealt with carefully. As a consequence of these new observability
estimates, we obtain new results concerning control of semi-linear elliptic equations in the spirit
of Fernández-Cara, Zuazua’s open problem concerning small-time global null-controllability of
slightly super-linear heat equations.

• Magnetic confinement devices for nuclear fusion can be large and expensive. Compact stellarators
are promising candidates for costreduction, but introduce new difficulties: confinement in smaller
volumes requires higher magnetic field, which calls for higher coil-currents and ultimately causes
higher Laplace forces on the coils-if everything else remains the same. This motivates the inclusion
of force reduction in stellarator coil optimization. In the present paper [36] we consider a coil
winding surface, we prove that there is a natural and rigorous way to define the Laplace force
(despite the magnetic field discontinuity across the current-sheet), we provide examples of cost
associated (peak force, surface-integral of the force squared) and discuss easy generalizations to
parallel and normal force-components, as these will be subject to different engineering constraints.
Such costs can then be easily added to the figure of merit in any multi-objective stellarator coil
optimization code. We demonstrate this for a generalization of the REGCOIL code [1], which we
rewrote in python, and provide numerical examples for the NCSX (now QUASAR) design. We
present results for various definitions of the cost function, including peak force reductions by up to
40%, and outline future work for further reduction. The article is also part of the Ph.D. thesis [42] of
Rémi Robin.

• In [61], we study the small-time global null controllability of the generalized Burgers’ equations
yt +γ|y |γ−1 yx − yxx = u(t) on the segment [0,1]. The scalar control u(t) is uniform in space and
plays a role similar to the pressure in higher dimension. We set a right Dirichlet boundary condition
y(t ,1) = 0, and allow a left boundary control y(t ,0) = v(t ). Under the assumption γ> 3/2 we prove
that the system is small-time global null controllable. Our proof relies on the return method and a
careful analysis of the shape and dissipation of a boundary layer. The article is also part of the Ph.D.
thesis [42] of Rémi Robin.

• The paper [47] deals with the controllability of finite-dimensional linear difference delay equations,
i.e., dynamics for which the state at a given time t is obtained as a linear combination of the
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control evaluated at time t and of the state evaluated at finitely many previous instants of time
t −Λ1, . . . , t −ΛN . Based on the realization theory developed by Y. Yamamoto for general infinite-
dimensional dynamical systems, we obtain necessary and sufficient conditions, expressed in the
frequency domain, for the approximate controllability in finite time in Lq spaces, q ∈ [1,+∞). We
also provide a necessary condition for L1 exact controllability, which can be seen as the closure of
the L1 approximate controllability criterion. Furthermore, we provide an explicit upper bound on
the minimal times of approximate and exact controllability, given by d max{Λ1, . . . ,ΛN }, where d is
the dimension of the state space.

• The article [60] deals with the existence of hypersurfaces minimizing general shape functionals
under certain geometric constraints. We consider as admissible shapes orientable hypersurfaces
satis- fying a so-called reach condition, also known as the uniform ball property, which ensures C 1,1

regularity of the hypersurface. In this paper, we revisit and generalise the results of Guo et al and,
J. Dalphin. We provide a simpler framework and more concise proofs of some of the results con-
tained in these references and extend them to a new class of problems involving PDEs. Indeed, by
using the signed distance introduced by Delfour and Zolesio, we avoid the intensive and technical
use of local maps, as was the case in the above references. Our approach, originally developed
to solve an existence problem in a recent work by the same authors dedicated to optimal shape
issues for Plasma Physics, can be easily extended to costs involving different mathematical objects
associated with the domain, such as solutions of elliptic equations on the hypersurface. The article
is also part of the Ph.D. thesis [42] of Rémi Robin.

6.4 Geometric models for vision and sub-Riemannian geometry: new results

Let us list here our new results in the geometry of vision axis and, more generally, on hypoelliptic diffusion
and sub-Riemannian geometry.

• In [50], we study spectral properties of sub-Riemannian Laplacians, which are hypoelliptic oper-
ators. The main objective is to obtain quantum ergodicity results, what we have achieved in the
3D contact case. In the general case we study the small-time asymptotics of sub-Riemannian heat
kernels. We prove that they are given by the nilpotentized heat kernel. In the equiregular case, we
infer the local and microlocal Weyl law, putting in light the Weyl measure in sR geometry. This
measure coincides with the Popp measure in low dimension but differs from it in general. We prove
that spectral concentration occurs on the shief generated by Lie brackets of length r-1, where r is
the degree of nonholonomy. In the singular case, like Martinet or Grushin, the situation is more
involved but we obtain small-time asymptotic expansions of the heat kernel and the Weyl law in
some cases. Finally, we give the Weyl law in the general singular case, under the assumption that
the singular set is stratifiable.

• Given a surface S in a 3D contact sub-Riemannian manifold M, we investigate in [13] the metric
structure induced on S by M, in the sense of length spaces. First, we define a coefficient at charac-
teristic points that determines locally the characteristic foliation of S. Next, we identify some global
conditions for the induced distance to be finite. In particular, we prove that the induced distance is
finite for surfaces with the topology of a sphere embedded in a tight coorientable distribution, with
isolated characteristic points.

• In [21], we study the isoperimetric problem for anisotropic left-invariant perimeter measures on
R3, endowed with the Heisenberg group structure. The perimeter is associated with a left-invariant
norm φ on the horizontal distribution. We first prove a representation formula for the φ-perimeter
of regular sets and, assuming some regularity on φ and on its dual norm φ∗, we deduce a foliation
property by sub-Finsler geodesics of C2-smooth surfaces with constant φ-curvature. We then prove
that the characteristic set of C2-smooth surfaces that are locally extremal for the isoperimetric
problem is made of isolated points and horizontal curves satisfying a suitable differential equation.
Based on such a characterization, we characterize C2-smooth φ-isoperimetric sets as the sub-
Finsler analogue of Pansu’s bubbles. We also show, under suitable regularity properties on φ,
that such sub-Finsler candidate isoperimetric sets are indeed C2-smooth. By an approximation
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procedure, we finally prove a conditional minimality property for the candidate solutions in the
general case (including the case where φ is crystalline).

7 Bilateral contracts and grants with industry

Participants: Emmanuel Trélat, Aymeric Nayet, Veljko Askovic, Georgy Scholten.

7.1 Bilateral contracts with industry

Contract CIFRE with ArianeGroup (les Mureaux), 2019–2022, funding the thesis of A. Nayet. Participants :
M. Cerf (ArianeGroup), E. Trélat (coordinator). A new contract will start in 2023

Contract with MBDA (Palaiseau), 2021–2023. Subject: “Contrôle optimal pour la planification de
trajectoires et l’estimation des ensembles accessibles". Pariticpants: V. Askovic (MBDA & CAGE), E. Trélat
(coordinator).

7.2 Bilateral grants with industry

Grant by AFOSR (Air Force Office of Scientific Research), 2020–2023. Participants : Mohab Safey El Din
(LIP6), E. Trélat.

8 Partnerships and cooperations

8.1 International research visitors

8.1.1 Visits of international scientists

Inria International Chair Andrei Agrachev visited CAGE, in the framework of his Inria International
Chair, in November and December 2022.

Other international visits to the team Riccardo Adami visited CAGE and the LJLL in November and
December 2022.

8.1.2 Visits to international teams

Research stays abroad
Jean-Michel Coron visited the École Polytechnique Fédérale de Lausanne in June 2022

8.2 National initiatives

The Inria Exploratory Action “StellaCage” is supporting since Spring 2020 a collaboration between CAGE,
Yannick Privat (Inria team TONUS), and the startup Renaissance Fusion, based in Grenoble.

StellaCage approaches the problem of designing better stellarators (yielding better confinement, with
simpler coils, capable of higher fields) by combining geometrical properties of magnetic field lines from
the control perspective with shape optimization techniques.

8.2.1 ANR

• ANR TRECOS, for New Trends in Control and Stabilization: Constraints and non-local terms, coordi-
nated by Sylvain Ervedoza, University of Bordeaux. The ANR started in 2021 and runs up to 2024.
TRECOS’ focus is on control theory for partial differential equations, and in particular models from
ecology and biology.
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• ANR QUACO, for QUAntum COntrol: PDE systems and MRI applications, coordinated by Thomas
Chambrion, started in 2017 and will run until mid 2023 (after extension granted by ANR). Other
partners: Burgundy University. QUACO aims at contributing to quantum control theory in two
directions: improving the comprehension of the dynamical properties of controlled quantum
systems in infinite-dimensional state spaces, and improve the efficiency of control algorithms for
MRI.

8.3 Regional initiatives

Barbara Gris is the PI of a Bourse Emergence(s) by the Ville de Paris.

9 Dissemination

9.1 Promoting scientific activities

9.1.1 Scientific events: organisation

• Ugo Boscain, Jean-Michel Coron, Kévin Le Balc’h, Mario Sigalotti, and Emmanuel Trélat are mem-
bers of the scientific committee of the Groupe de Travail Contrôle.

• Jean-Michel Coron and Emmanuel Trélat were co-organizers and members of the scientific com-
mittee of the “Congrès pour honorer la mémoire de Roland Glowinski”, Sorbonne Université, July
2022.

• Kévin Le Balc’h was co-organizer of a thematic session on control of parabolic equations at the
conference “IX Partial differential equations, optimal design and numerics”, Benasque, Spain,
August 2022.

• Emmanuel Trélat was member of the scientific and organization committee of the Workshop
“Round mean field crowd opinion cells”, Rome, Italy, September 2022

• Emmanuel Trélat was organizer of the conference Horizon Maths 2022 “Maths et gravitation”,
Sorbonne Université, December 2022.

9.1.2 Journal

Member of the editorial boards

• Ugo Boscain is Associate editor of SIAM Journal of Control and Optimization

• Ugo Boscain is Managing editor of Journal of Dynamical and Control Systems

• Jean-Michel Coron is Editor-in-chief of Comptes Rendus Mathématique

• Jean-Michel Coron is Associate editor of Journal of Evolution Equations

• Jean-Michel Coron is Associate editor of Asymptotic Analysis

• Jean-Michel Coron is Associate editor of ESAIM: Control, Optimisation and Calculus of Variations

• Jean-Michel Coron is Associate editor of Applied Mathematics Research Express

• Jean-Michel Coron is Associate editor of Advances in Differential Equations

• Jean-Michel Coron is Associate editor of Mathematics of Control, Signals, and Systems

• Jean-Michel Coron is Associate editor of Annales de l’IHP, Analyse non linéaire

• Mario Sigalotti is Associate editor of ESAIM: Control, Optimisation and Calculus of Variations

• Mario Sigalotti is Associate editor of Journal on Dynamical and Control Systems
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• Emmanuel Trélat is Editor-in-chief of ESAIM: Control, Optimisation and Calculus of Variations

• Emmanuel Trélat is Associate editor of SIAM Review

• Emmanuel Trélat is Associate editor of Systems & Control Letters

• Emmanuel Trélat is Associate editor of Journal on Dynamical and Control Systems

• Emmanuel Trélat is Associate editor of Bollettino dell’Unione Matematica Italiana

• Emmanuel Trélat is Associate editor of ESAIM: Mathematical Modelling and Numerical Analysis

• Emmanuel Trélat is Editor of BCAM Springer Briefs

• Emmanuel Trélat is Associate editor of IEEE Transactions on Automatic Control

• Emmanuel Trélat is Associate editor of Journal of Optimization Theory and Applications

• Emmanuel Trélat is Associate editor of Mathematical Control & Related Fields

• Emmanuel Trélat is Associate editor of Mathematics of Control, Signals, and Systems

• Emmanuel Trélat is Associate editor of Optimal Control Applications and Methods

• Emmanuel Trélat is Associate editor of Advances in Continuous and Discrete Models: Theory and
Modern Applications

9.1.3 Invited talks

• Ugo Boscain was invited speaker at the Mini-Workshop “Zero-Range and Point-Like Singular
Perturbations: For a Spillover to Analysis, PDE and Differential Geometry”, Oberfolfach, Germany.

• Ugo Boscain was invited speaker at the conference “Analysis and Control of (bi)linear PDEs”, Rome,
Italy.

• Ugo Boscain was invited speaker at the AMS-SMF-EMS Joint international meeting, Grenoble.

• Ugo Boscain was invited speaker at the Workshop on “Optimal Control Theory”, Rouen.

• Jean-Michel Coron was invited speaker at the Isaac Newton Institute.

• Jean-Michel Coron was invited speaker at the Conference on Analysis of Partial Differential Equa-
tions.

• Jean-Michel Coron was invited speaker at 2022 MS101 Nonlocal Conservation Laws (visio).

• Jean-Michel Coron was invited speaker at EPFL, Switzerland.

• Jean-Michel Coron was invited speaker at the conference Analysis and Control of (bi)linear PDEs,
Rome, Italy.

• Jean-Michel Coron was invited speaker at the Séminaire AMAC: EDP-AIRSEA-CVGI.

• Jean-Michel Coron was invited speaker at ICoCTA 2022, Chengdu (visio).

• Jean-Michel Coron was invited speaker at the conference Contrôle des EDPs : approches en mathé-
matique et en automatique, GDR MACs and H-Code conference d’inauguration de la Fédération de
Mathématiques de CentraleSupélec, Gif-sur-Yvette.

• Jean-Michel Coron was plenary speaker at the conference ICSC 2022, Marseille.

• Barbara Gris was invited speaker at SIAM conference on Imaging Science (visio).

• Barbara Gris was invited speaker at the conference “Geometry, Topology and Statistics in Data
Sciences”, IHP, Paris.
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• Kévin Le Balc’h was invited speaker at Séminaire d’analyse, Nantes.

• Kévin Le Balc’h was invited speaker at Séminaire d’EDP, Rennes.

• Kévin Le Balc’h was invited speaker at Séminaire d’analyse, Bordeaux.

• Kévin Le Balc’h was invited speaker at Seminario de EDP e Matematica Aplicada, online.

• Kévin Le Balc’h was invited speaker at Séminaire d’EDP et d’analyse numérique, Sevilla, Spain.

• Kévin Le Balc’h was invited speaker at Séminaire du Laboratoire de Mathématiques Appliquées de
Compiègne, Compiègne.

• Kévin Le Balc’h was invited speaker at Workshop of the ANR Trecos, Marseille.

• Kévin Le Balc’h was invited speaker at the confernece IX Partial differential equations, optimal
design and numerics, Benasque, Spain.

• Kévin Le Balc’h was invited speaker at the Workshop Inverse Problems and Related Fields, Marseille.

• Mario Sigalotti was invited speaker at the Workshop on optimal control theory, Rouen, June 2022.

• Mario Sigalotti was invited speaker at the FAU DCN-AvH Seminar, Erlangen, Germany, November
2022.

• Mario Sigalotti was invited speaker at the LJLL-Day, November 2022.

• Mario Sigalotti was invited speaker at the Workshop “Mathematics for Quantum Technologies”,
Nice, March 2022.

• Emmanuel Trélat was plenary speaker at SMAI Mode, Limoges, June 2022.

• Emmanuel Trélat was invited speaker at Séminaire de Mathématiques Appliquées du Collège de
Franc, March 2022.

• Emmanuel Trélat was invited speaker at Colloquium du Centre Inria Paris, January 2022.

• Emmanuel Trélat was invited speaker at the Workshop on control problems, Dortmund (online),
October 2022.

• Emmanuel Trélat was invited speaker at the workshop “Round meanfield crowd-opinion-cells",
Rome, Italy, September 2022.

• Emmanuel Trélat was invited speaker at the workshop “Analysis and Control of (bi)linear PDEs",
Rome, Italy, September 2022.

• Emmanuel Trélat was invited speaker at the Workshop on optimal control theory, Rouen, June
2022.

• Emmanuel Trélat was invited speaker at the online geometric analysis seminar, IIT Bombay, De-
cember 2022.

• Emmanuel Trélat was invited speaker at the RTE seminar, Les Cle‘s de la re‘ussite, November 2022.

• Emmanuel Trélat was invited speaker at the online analysis and applied mathematics seminar,
WMU (Michigan), November 2022.

• Emmanuel Trélat was invited speaker at the local seminar at Institut Fourier, Grenoble, November
2022.

• Emmanuel Trélat was invited speaker at the local seminar at Orle‘ans, October 2022.

• Emmanuel Trélat was invited speaker at the local seminar at Konstanz, May 2022.

• Emmanuel Trélat was invited speaker at the Virtual Informal Systems Seminar, McGill, January
2022.
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9.1.4 Leadership within the scientific community

Emmanuel Trélat is Head of the Laboratoire Jacques-Louis Lions (LJLL).

9.1.5 Scientific expertise

• Emmanuel Trélat is member of the conseil scientifique de la Fédération de Mathématiques de
CentraleSupelec.

• Emmanuel Trélat is member of the Advisory Board of the Department of Data Science, FAU (Erlan-
gen), Germany.

9.1.6 Research administration

• Emmanuel Trélat is member of the Bureau de comité des équipes-projets, Inria Paris center.

9.2 Teaching - Supervision - Juries

9.2.1 Teaching

• Ugo Boscain thought “Quantum Geometric Control” to PhD students at Politecnico di Torino, Italy.

• Ugo Boscain and Mario Sigalotti thought “Geometric control theory” to M2 students at Sorbonne
Université.

• Ugo Boscain thought “Automatic control with applications in robotics and in quantum engineering”
at Ecole Polytechnique.

• Ugo Boscain thought “Diffusion in almost-Riemannian Geometry” to PhD students at 42nd Winter
School on Geometry and Physics, Srni, Czech Republic.

• Kévin Le Balc’h thought Encadrement de leçons d’agrégation externe de mathématiques to M2
students at Sorbonne Université.

• Kévin Le Balc’h thought “calcul différentiel et d’optimisation” to L3 students at Sorbonne Université.

• Mario Sigalotti thought “Équations d’évolution, stabilité et contrôle” to M1 students at Sorbonne
Université

• Emmanuel Trélat thought “Contrôle en dimension finie et infinie” to M2 students at Sorbonne
Université

• Emmanuel Trélat thought “Optimisation numérique et sciences des données” to M1 students at
Sorbonne Université

9.2.2 Supervision

• PhD: Emilio Molina, “Application of optimal control techniques to natural systems management”,
September 2022. Supervisors: Héctor Ramirez (Santiago, Chile), Pierre Martinon, and Mario
Sigalotti.

• PhD: Aymeric Nayet, “Improvement of a trajectory optimization software for future Ariana missions”,
June 2022. Supervisor: Emmanuel Trélat.

• PhD: Rémi Robin, “Control and Optimization of Physical Systems: Quantum Dynamics and Mag-
netic Confinement in Stellarators”, September 2022. Supervisors: Ugo Boscain and Mario Sigalotti.

• PhD in progress: Kala Agbo Bidi, “Robust pest control strategies”. Supervisors: Luis Almeida and
Jean-Michel Coron.
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• PhD in progress: Veljko Askovic, “Planification de trajectoires par HJB & PMP”, started in 2020.
Supervisors: Emmanuel Trélat and Hasnaa Zidani (INSA, Rouen).

• PhD in progress: Liangying Chen, “Sensitivity, Verification and Conjugate Times in Stochastic
Optimal Control”, started in 2021. Supervisors: Emmanuel Trélat and Xu Zhang (Chengdu, China).

• PhD in progress: Ruikang Liang, “The quantum speed limit in Quantum Control”, started in 2022.
Supervisors: Ugo Boscain and Mario Sigalotti.

• PhD in progress: Robin Roussel, “Magnetic field lines and confinement in stellarators: a Hamilto-
nian perspective”, started in 2021. Supervisors: Ugo Boscain and Mario Sigalotti.

9.2.3 Juries

• Ugo Boscain was member of the PhD jury of T. Schmoderer, Insa de Rouen.

• Ugo Boscain was referee and member of the HDR jury of N. Amini, LSS, CentraleSupélec, Saclay.

• Jean-Michel Coron was member of the PhD jury of L. Guan, Gipsa-LAB, Grenoble.

• Jean-Michel Coron was member of the PhD jury of I. Darghoum, Metz.

• Barbara Gris was member of the PhD jury of P-L. Antonsanti, Université de Paris.

• Mario Sigalotti was referee and member of the PhD jury of A. Scagliotti, SISSA, Trieste, Italy.

• Mario Sigalotti was referee and member of the PhD jury of M. Bournissou, École Normale Supérieure
de Rennes.

• Mario Sigalotti was referee and member of the PhD jury of R. Manriquez, Université Paris-Saclay.

• Mario Sigalotti was member of the PhD jury of S. Farinelli, SISSA, Trieste, Italy.

• Mario Sigalotti was member of the PhD jury of N. Vanspranghe, Université Grenoble Alpes.

• Mario Sigalotti was member of the PhD jury of A. Nayet, Sorbonne Université.

• Emmanuel Trélat was member of the HDR jury of M. Laleg, Univiversité Paris-Saclay.

• Emmanuel Trélat was member of the HDR jury of C. Bertucci, École polytechnique.

• Emmanuel Trélat was president of the HDR jury of F. Di Meglio, École des Mines de Paris.

• Emmanuel Trélat was referee and member of the PhD jury of B. Danhane, Université de Lorraine.

• Emmanuel Trélat was president of the PhD jury of E. Berthier, ENS Ulm.

• Emmanuel Trélat was member of the PhD jury of E. Molina, University of Chili and Sorbone
Université.

• Emmanuel Trélat was referee and member of the PhD jury of R. Manriquez, Université Paris-Saclay.

9.3 Popularization

9.3.1 Articles and contents

E. Trélat, Les courants de gravité : un ticket gratuit pour l’exploration spatiale, La Recherche 569 (2022).

9.3.2 Education

Mario Sigalotti participated to Fête de la science 2022 at the École polyvalente publique d’application
Enfants d’Izieu, Paris.
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9.3.3 Interventions

Mario Sigalotti spoke about “Fusion nucléaire par confinement magnétique : quelques questions mathé-
matiques autour des stellarators” at the Demi-heure de science of the Paris Inria Research Center, February
2022.
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