
2022
ACTIVITY REPORT

Project-Team

CORSE

RESEARCH CENTRE

Inria Center
at Université Grenoble Alpes

IN PARTNERSHIP WITH:

Université de Grenoble Alpes

compiler optimization and run-time
systems

IN COLLABORATION WITH: Laboratoire d’Informatique de Grenoble
(LIG)

DOMAIN

Algorithmics, Programming, Software
and Architecture

THEME

Architecture, Languages and Compilation

Contents

Project-Team CORSE 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3

3 Research program 3
3.1 Scientific Foundations . 3
3.2 Main Research Directions . 3

4 Application domains 4
4.1 Transfer . 4

5 Social and environmental responsibility 4
5.1 Footprint of research activities . 4
5.2 Impacting research directions for environment . 4
5.3 Impacting usage . 4

6 Highlights of the year 5

7 New software and platforms 6
7.1 New software . 6

7.1.1 Pipedream . 6
7.1.2 IOLB . 6
7.1.3 IOOpt . 7
7.1.4 PALMED . 7
7.1.5 BISM . 7
7.1.6 TTiLE . 7
7.1.7 EasyTracker . 8

8 New results 8
8.1 Performance Debugging and Compiler Optimization . 8

8.1.1 Hybrid Performance Modeling and Schedule Optimization for Tensor Computations 9
8.1.2 Automatic Resource Characterization and Performance Feedback 9

8.2 Runtime Monitoring, Verification, and Enforcement . 9
8.2.1 Runtime Verification . 10
8.2.2 Runtime Enforcement . 11
8.2.3 Capturing program models with BISM . 12
8.2.4 Monitoring and Verification of BPMN Processes . 12

8.3 Teaching of Algorithms, Programming, Debugging, and Automata 13
8.3.1 Easytracker : A generic library for controlling and inspecting program execution and

state . 13
8.3.2 Agdbentures: A game to learn to debug in autonomy 13

9 Partnerships and cooperations 14
9.1 International initiatives . 14

9.1.1 Inria associate team not involved in an IIL or an international program 14
9.2 International research visitors . 14

9.2.1 Visits to international teams . 14
9.3 European initiatives . 15

9.3.1 H2020 projects . 15
9.4 National initiatives . 16
9.5 Regional initiatives . 18

10 Dissemination 18
10.1 Promoting scientific activities . 18

10.1.1 Scientific events . 18
10.1.2 Journal . 19
10.1.3 Leadership within the scientific community . 19

10.2 Teaching - Supervision - Juries . 19
10.2.1 Teaching . 19
10.2.2 Supervision . 20
10.2.3 Juries . 21

10.3 Popularization . 21
10.3.1 Internal or external Inria responsibilities . 21
10.3.2 Interventions . 21

11 Scientific production 21
11.1 Publications of the year . 21

Project CORSE 1

Project-Team CORSE

Creation of the Project-Team: 2016 July 01

Keywords

Computer sciences and digital sciences

A1.1.1. – Multicore, Manycore

A1.1.2. – Hardware accelerators (GPGPU, FPGA, etc.)

A1.1.3. – Memory models

A1.1.4. – High performance computing

A1.1.12. – Non-conventional architectures

A1.6. – Green Computing

A2.1.6. – Concurrent programming

A2.1.7. – Distributed programming

A2.1.8. – Aspect-oriented programming

A2.1.10. – Domain-specific languages

A2.2. – Compilation

A2.2.1. – Static analysis

A2.2.2. – Memory models

A2.2.3. – Memory management

A2.2.4. – Parallel architectures

A2.2.5. – Run-time systems

A2.2.6. – GPGPU, FPGA...

A2.2.8. – Code generation

A2.2.9. – Security by compilation

A2.3.2. – Cyber-physical systems

A4.4. – Security of equipment and software

A7.1. – Algorithms

Other research topics and application domains

B4.5. – Energy consumption

B5.3. – Nanotechnology

B6.1.2. – Software evolution, maintenance

B6.6. – Embedded systems

B6.7. – Computer Industry (harware, equipments...)

B9.1. – Education

https://radar.inria.fr/keywords/2022/computing
https://radar.inria.fr/keywords/2022/other

2 Inria Annual Report 2022

1 Team members, visitors, external collaborators

Research Scientists

• Fabrice Rastello [Team leader, INRIA, Senior Researcher, HDR]

• Guillaume Iooss [INRIA, Researcher]

Faculty Members

• Florent Bouchez-Tichadou [UGA, Associate Professor]

• François Broquedis [GRENOBLE INP, Associate Professor]

• Ylies Falcone [UGA, Associate Professor]

• Manuel Selva [GRENOBLE INP, Associate Professor]

Post-Doctoral Fellows

• Hugo Brunie [INRIA, until Sep 2022]

• Victor Roussanaly [INRIA, until Jun 2022]

• Mariana Vargas [INRIA, until Sep 2022]

PhD Students

• Theo Barollet [INRIA]

• Theophile Bastian [UGA]

• Nicolas Derumigny [UGA, International joint supervision with the USA]

• Florian Gallay [UGA, from Oct 2022]

• Nihel Kaboubi [ORANGE LABS]

• Marius Monnier [UGA, until Feb 2022, abdication of responsibility]

• Auguste Olivry [UGA, until Aug 2022]

• Chukri Soueidi [INRIA]

• Nicolas Tollenaere [UGA, ATER, until Mar 2022]

Technical Staff

• Christophe Guillon [INRIA]

• Valentin Trophime-Gilotte [INRIA, Engineer, from Nov 2022]

Administrative Assistant

• Maria Immaculada Presseguer [INRIA]

Project CORSE 3

2 Overall objectives

Languages, compilers, and run-time systems are some of the most important components to bridge the
gap between applications and hardware. With the continuously increasing power of computers, expecta-
tions are evolving, with more and more ambitious, computational intensive and complex applications.
As desktop PCs are becoming a niche and servers mainstream, three categories of computing impose
themselves for the next decade: mobile, cloud, and super-computing. Thus diversity, heterogeneity
(even on a single chip) and thus also hardware virtualization is putting more and more pressure both
on compilers and run-time systems. However, because of the energy wall, architectures are becoming
more and more complex and parallelism ubiquitous at every level. Unfortunately, the memory-CPU
gap continues to increase and energy consumption remains an important issue for future platforms. To
address the challenge of performance and energy consumption raised by silicon companies, compilers
and run-time systems must evolve and, in particular, interact, taking into account the complexity of the
target architecture.

The overall objective of CORSE is to address this challenge by combining static and dynamic compila-
tion techniques, with more interactive embedding of programs and compiler environment in the run-time
system.

3 Research program

3.1 Scientific Foundations

One of the characteristics of CORSE is to base our researches on diverse advanced mathematical tools.
Compiler optimization requires the usage of the several tools around discrete mathematics: combinatorial
optimization, algorithmic, and graph theory. The aim of CORSE is to tackle optimization not only
for general purpose but also for domain specific applications. In addition to run-time and compiler
techniques for program instrumentation, hybrid analysis and compilation advances will be mainly based
on polynomial and linear algebra.

The other specificity of CORSE is to address technical challenges related to compiler technology,
run-time systems, and hardware characteristics. This implies mastering the details of each. This is
especially important as any optimization is based on a reasonably accurate model. Compiler expertise
will be used in modeling applications (e.g. through automatic analysis of memory and computational
complexity); Run-time expertise will be used in modeling the concurrent activities and overhead due to
contention (including memory management); Hardware expertise will be extensively used in modeling
physical resources and hardware mechanisms (including synchronization, pipelines, etc.).

The core foundation of the team is related to the combination of static and dynamic techniques, of
compilation, and run-time systems. We believe this to be essential in addressing high-performance and
low energy challenges in the context of new important changes shown by current application, software,
and architecture trends.

3.2 Main Research Directions

Our project is structured along three main directions. The first direction belongs to the area of program
analysis and optimization. This direction breaks down into:

• Performance debugging, binary instrumentation, automatic characterization and simulation of
architectures

• Loop scheduling, data locality, I/O complexity

• Compiler design, hybrid compilation, domain-specific intermediate representations

The second direction belongs to the area of runtime monitoring, verification, and enforcement.
This direction breaks into:

• Instrumentation for Java programs for performance and security

4 Inria Annual Report 2022

• Monitoring of learning-enabled components using geometrical shape abstraction

• Decentralization of the monitoring process for multi-threaded and distributed systems

• Predictive monitoring of business processes

The third direction belongs to the area of teaching and tutoring of programming. This direction
breaks into:

• Visualisation tools for teaching of programming

• Tools and education of debugging

• Problem based learning. Generation. Recommandation

4 Application domains

4.1 Transfer

The main industrial sector related to the research activities of CORSE is the one of semi-conductor
(programmable architectures spanning from embedded systems to servers). Obviously any computing
application which has the objective of exploiting as much as possible the resources (in terms of high-
performance but also low energy consumption) of the host architecture is intended to take advantage of
advances in compiler and run-time technology. These applications are based over numerical kernels
(linear algebra, FFT, convolution. . .) that can be adapted on a large spectrum of architectures. More
specifically, an important activity concerns the optimization of machine learning applications for some
high-performance accelerators. Members of CORSE already maintain fruitful and strong collaborations
with several companies such as STMICROELECTRONICS, ATOS/BULL, ORANGE, KALRAY.

5 Social and environmental responsibility

5.1 Footprint of research activities

As expected, after the COVID pandemia, team members kept travel activities quite low compared to
before the pandemia.Whenever long distance meetings (such as conference PC) could be done virtually,
travel have been avoided. Also, team members try to better use existing hardware instead of replacing
them (buying new ones).

5.2 Impacting research directions for environment

Because of takeback effect, improving efficiency does not necessarily improve environmental impact. It
is thus crucial to think how our community can have actual impact on sustainable computing, that is,
influence better design ("R" friendly) and better usage (consume less) of our compute resources. For this
purpose, we organize panels with the objective of sensitize our community to this important problem. We
expect some of our future research projects to address the challenge of sustainable computing without
just focusing on energy efficiency but by considering the global systemic impact as much as possible
instead.

5.3 Impacting usage

The main two challenges of sustainable computing are:

1. Decrease usage: While the actual environmental impact of our usage is already not that clear to
experts like us (need for open data), it is even less clear for users and developers. It is thus our
responsibility to expose estimations of resource usage (and associated environmental impact) to
the developers. Performance debugging tools should evolve to provide meaningful metrics and
make it accessible to none-experts.

Project CORSE 5

2. Increase the lifetime of hardware (that is, Reuse, Repair, Re...): The need for supporting the develop-
ment of simple, open-source, commons, low-impact (not necessarily low-tech) hardware/software
solutions is becoming critical but not sufficient. We also need to provide the microscope and the
tool-box so that a majority (including sometimes the end-user) can repare or repurpose and device.

Compiler analysis, programming infrastructure, hardware modeling, teaching tools, HIM, etc. are at the
heart of those challenges.

6 Highlights of the year

After humongous efforts, the SSA book is finally available. Twelve years were necessary to give birth to
this book, composed of 24 chapters and written by 31 authors.

It provides readers with a single-source reference to static-single assignment (SSA)-based compiler
design. It is the first (and up to now only) book that covers in a deep and comprhensive way how an
optimizing compiler can be designed using the SSA form. After introducing vanilla SSA and its main
properties, the authors describe several compiler analyses and optimizations under this form. They
illustrate how compiler design can be made simpler and more efficient, thanks to the SSA form. This
book also serves as a valuable text/reference for lecturers, making the teaching of compilers simpler and
more effective. Coverage also includes advanced topics, such as code generation, aliasing, predication
and more, making this book a valuable reference for advanced students and practicing engineers.

• Provides the first, single-source reference to the widely adopted, static-single assignment (SSA)
form of compiler design;

• Offers readers state-of-the-art, advanced compiler optimization techniques

• Includes contributions by subject experts from globally recognized compiler research centers and
engineering practitioners at companies such as Google, Facebook, IBM, and Amazon;

• Employs a textbook style of presentation throughout, with coherent and uniform structure, se-
quence, terminology, and notations;

• Offers valuable content both for lecturers (such as vanilla SSA, construction, destruction, prop-
agation, liveness) and advanced compiler developers (including if-conversion, code-selection,
hardware compilation, scalar evolution, register allocation, Gated-SSA, Psi-SSA, Hashed-SSA, Array-
SSA, SSI).

https://link.springer.com/book/10.1007/978-3-030-80515-9

6 Inria Annual Report 2022

7 New software and platforms

7.1 New software

7.1.1 Pipedream

Name: Pipedream

Keywords: Performance analysis, CPU, Reverse engineering

Scientific Description: Pipedream reverse engineers the following performance characteristics: (1) In-
struction latency – The number of cycles an instruction requires to execute. (2) Peak micro-op
retirement rate – How many fused micro-ops the CPU can retire per cycle. (3) Micro-fusion – The
number of fused micro-ops an instruction decomposes into. (4) Micro-op decomposition and
micro-op port usage – The list of unfused micro-ops every instruction decomposes into and the list
of execution ports every one of these micro-ops can execute on.

The first step of the reverse engineering process consists of generating a number of microbench-
marks. Pipedream then runs these benchmark, measuring their performance using hardware
counters. The latency, throughput, and micro-fusion of different instructions can then be read
directly from these measurements.

The process of finding port mappings, i.e. micro-op decompositions and micro-op port usage,
however, is more involved. For this purpose, we have defined a variation of the maximum flow
problem which we call the "instruction flow problem". We have developed a linear program (LP)
formulation of the instruction flow problem which can be used to calculate the peak IPC and
micro-operations per cycle (MPC) a benchmark kernel can theoretically achieve with a given port
mapping. The actual port mapping of the underlying hardware is then determined by finding the
mapping for which the throughput predicted by instruction flow best matches the actual measured
IPC and MPC.

Functional Description: Pipedream is a tool for measuring specific performance characteristics of CPUs
It is used to build the performance model of another tool called Gus (https://gitlab.inria.fr/nderumig/gus).
Pipedream finds measured performance characteristics such as the throughput and latency of
instructions by running a large set of automatically generated microbenchmarks. The tool can also
find port mappings, a model of part of the CPU instruction scheduler, by analysing performance
measurements of specially crafted microkernels using a LP solver. We have used it to produce a
port mapping for the Intel Skylake CPU architecture. Pipedream is able to find the port mappings
for some instructions for which existing approaches fall back to manual analysis.

URL: https://gitlab.inria.fr/fgruber/pipedream

Contact: Nicolas Derumigny

7.1.2 IOLB

Keywords: Complexity, Polyhedral compilation, Performance analysis

Functional Description: IOLB computes a symbolic lower bound on the I/O, or data movement, com-
plexity of a computer program, that is the amount of data that needs to be moved between cache
and main memory to perform its computation. The input is a C program, and the output is a
mathematical formula that depends on program parameters (array sizes...) and cache size.

URL: https://gitlab.inria.fr/CORSE/iolb

Publications: hal-02421026, hal-02910961

Contact: Auguste Olivry

https://gitlab.inria.fr/fgruber/pipedream
https://gitlab.inria.fr/CORSE/iolb
https://hal.inria.fr/hal-02421026
https://hal.inria.fr/hal-02910961

Project CORSE 7

7.1.3 IOOpt

Keywords: I/O, Polyhedral compilation

Functional Description: IOOpt takes as input an abstract representation of a tileable program. The
tool generates a tractable set of relevant permutations of the tiling loops, and a symbolic I/O
cost expression for each of them. It then uses a non linear problem optimizer to find the best
permutations and corresponding tile sizes for a given value of machine parameters (cache sizes
and bandwidths at each level). IOOop can also be used to find an upper bound on the I/O cost of a
program, for a given tiling scheme.

Publication: hal-03200539

Contact: Auguste Olivry

7.1.4 PALMED

Keywords: CPU, Performance measure, Performance analysis, Reverse engineering

Functional Description: PALMED computes a bipartite graph assembly instructions <-> abstract re-
sources that may be used for performance prediction, targeting static analysis tools and compilers.
Internally, PALMED uses PIPEDREAM as a framework for microbenchmarking code generation,
and use gurobi to find a first small graph. Then, PALMED deduces from the found resources and
the microbenchmarks that saturates them a mapping of every supported instruction.

URL: https://gitlab.inria.fr/nderumig/palmed

Contact: Nicolas Derumigny

7.1.5 BISM

Name: BISM: Bytecode-level Instrumentation for Software Monitoring

Keywords: Java, Bytecode, Instrumentation, Control Flow

Functional Description: BISM (Bytecode-level Instrumentation for Software Monitoring) is a lightweight
Java bytecode instrumentation tool which features an expressive high-level control-flow-aware
instrumentation language. The language follows the aspect-oriented programming paradigm by
adopting the joinpoint model, advice inlining, and separate instrumentation mechanisms. BISM
provides joinpoints ranging from bytecode instruction to method execution, access to comprehen-
sive context information, and instrumentation methods. BISM runs in two modes: build-time and
load-time.

URL: https://gitlab.inria.fr/bism/bism-public

Publication: hal-03081265

Contact: Ylies Falcone

Participants: Chukri Soueidi, Ylies Falcone, Ali Kassem

7.1.6 TTiLE

Keywords: Deep learning, Optimization, HPC

Functional Description: TTiLE is a code generation tool for tensor operators present in CNNs such as
tensor contraction and convolution. It takes as input: 1. a kernel specification, that is, a fonctionnal
description of the operator (iteration space, tensors, single assignment description of the computa-
tion), 2. an optimization scheme that describes the layered structure of the generated code. The
scheme "language" allows to express loop permutation, loop tiling, vectorization, unrolling, pack-
ing (which consists in using temporary buffers making cache access better behaved) and branching.

https://hal.inria.fr/hal-03200539
https://gitlab.inria.fr/nderumig/palmed
https://gitlab.inria.fr/bism/bism-public
https://hal.inria.fr/hal-03081265

8 Inria Annual Report 2022

Indeed, as opposed to existing schemes that rely on partial tiles, TTile can create non-perfectly
nested loops to combine several "micro-kernels" (micro-kernel stands for the innermost part of
the loop nest that is fully unrolled, register promoted and vectorized here). Using a specialized
search strategy that combines operational research on analytical performance model and native
execution time measurement, TTile outperforms current highly optimized libraries such as Intel
oneDNN and Intel MKL.

URL: https://gitlab.inria.fr/CORSE/ttile

Publication: hal-03149553

Contact: Guillaume Iooss

7.1.7 EasyTracker

Keywords: Monitoring, Debug, Visualization, Teaching of programming

Scientific Description: Learning to program involves building a mental representation of how a machine
executes instructions and stores information in memory. To help students, teachers often use
visual representations to illustrate executions of programs or particular concepts in their lectures.
EasyTracker is a library that assists teachers of programming courses in building tools that generate
representations tuned to their needs from actual programs. At its core, EasyTracker provides ways
of controlling the execution and inspecting the state of programs. The control and inspection are
driven and customized through a Python interface. The controlled program itself can be written
either in Python or in any GDB supported language like C.

Functional Description: EasyTracker is intended for computer science teaching. It encapsulates the
execution control and monitoring of another program written in Python or any compiled language
supported by GDB. It can pause execution at interest points described in a high level language
(variable modified or return of recursive functions for example).

URL: https://gitlab.inria.fr/CORSE/easytracker/

Contact: Theo Barollet

Participants: Theo Barollet, Manuel Selva, François Broquedis, Florent Bouchez, Fabrice Rastello

8 New results

8.1 Performance Debugging and Compiler Optimization

Participants: Fabrice Rastello, Guillaume Iooss, Christophe Guillon, Nico-
las Derumigny, Théophile Bastian, Nicolas Tollenaere (Inria CORSE),
Fabian Gruber (ARM), Albert Cohen (Google, France), P. Sadayap-
pan (OSU, USA), Louis-Noël Pouchet (CSU, USA), Atanas Roun-
tev (OSU, USA).

Our current efforts with regard to code optimization follows two directions.

1. The first consists in improving compiler optimization techniques by considering pattern specific
applications such as those that fit into the polyhedral framework or more restrictively those re-
lated to machine learning. In this context we developed a new compiler scheme for optimizing
computational kernels of DNNs [1] (Section 8.1.1).

2. The second consists in generating dynamic analysis based performance debugging tools. For
that purpose we: 1. developed a tool for automatically characterizing CPU resources [4] and,
2. extended a binary translator (QEMU) to perform an abstract simulation based sensitivity analysis
(Section 8.1.2).

https://gitlab.inria.fr/CORSE/ttile
https://hal.inria.fr/hal-03149553
https://gitlab.inria.fr/CORSE/easytracker/

Project CORSE 9

8.1.1 Hybrid Performance Modeling and Schedule Optimization for Tensor Computations

Tensor computation such as Sparse Matrix Multi-vector multiplication, Sampled Dense Dense Matrix
Multiplication, Dense Matrix Multiplication, Tensor Contraction, Convolution are important kernels
used in many domains like Fluid Dynamics, Data Analytics, Economic Modelling, and Machine Learning.
Developing highly optimized code for such kernels requires the combination of highly tuned regis-
ter/instruction level micro-kernels and appropriate multi-level tiling. In this context we developed an
hybrid (analytical/statistical) performance-based optimization scheme along with a code generator for
DNNs.

Addressing the problem of automatic generation of optimized operators raises two challenges: The
first is associated to the design of a domain specific code generation framework able to output high-
quality binary code. The second is to carefully bound the search space and choose an optimizing
objective function that neither leads to yet another combinatorial optimizing problem, nor leads to
a too approximate performance objective. This work tackles those two challenges by: 1. revisiting
the usual belief that packing should enable stride-1 accesses at every level allowing to make packing
optional; 2. highlighting the importance of considering the packing decision and shape as being part of
the optimization problem; 3. revisiting the usual belief that register spilling should be avoided if possible
allowing to consider other (more packing friendly) micro-kernels as good candidates; 4. revisiting the
misleading intuition that convolution dimensions should be brought at the innermost level allowing
more freedom for memory reuse at outer-dimensions; 5. showing that the optimization problem can be
decoupled into: finding a small set of good micro-kernels candidates using an exhaustive search; finding
a good schedule (loop tiling/permutation) and associated packing using operational research; finding the
best tiles sizes using auto-tuning; 6. designing a single-pass micro-kernel generation algorithm, to emit
code for any choice of register blocking dimensions, unrolling factor, and packing decisions; 7. designing
a lowering scheme for abstract iterators, compatible with diverse packing and tiling strategies thrifty with
integer arithmetic and loop control usage; 8. designing a packing algorithm compatible with various
choices of transposition and subviews; 9. implementing a code generator based on these algorithms,
driven by a simple and modular configuration language.

Part of this work lead to a paper that has been accepted for publication at ACM TACO [1] and that will
be presented at HiPEAC 2023.

8.1.2 Automatic Resource Characterization and Performance Feedback

Performance modeling is a critical component for program optimizations, assisting compilers as well as
developers in predicting the performance of code variations ahead of time. Performance models can be
obtained through different approaches that span from precise and complex simulation of a hardware
description (Zesto, GEM5, PTLSim) to application level analytical formulations. An interesting approach
for modeling the CPU of modern pipelined, super-scalar, out-of-order processors trades simulation time
with accuracy by separately characterizing both latency and throughput of instructions. This approach
is suitable both for optimizing compilers, but also for hand-tuning critical kernels written in assembler
(see Section 8.1.1). It is used by performance-analysis tools such as CQA, Intel IACA, OSACA, MIAMI
or llvm-mca. Cycle-approximate simulators such as ZSim or MCsimA can also take advantage of such
an instruction characterization. In this context, we developed two tools: PALMED and GUS (see new
software section).

This work has been done in the context of the European project CPS4EU (see Section 9.3.1).

8.2 Runtime Monitoring, Verification, and Enforcement

Participants: Yliès Falcone, Florian Gallay, Irman Faqrizal, Chukri Soueidi,
Hamzah Al-Qadasi, Ahang Zuo, Victor Roussanaly, Gwen Salaün, Sad-
dek Bensalem, Marius Bozga, Hosein Nazarpour, Camilo Rocha, Fran-
cisco Durán, Antoine Rollet, Saumya Shankar, Srinivas Pinisetty, De-
nis Furian, Shaun Azzopardi, Gerardo Schneider, Angel Contreras,
Antoine El-Hokayem.

10 Inria Annual Report 2022

This section overviews our ongoing efforts on the topics of runtime monitoring, verification, and
enforcement. More specifically, our work can be categorized into the following topics:

• runtime verification, where we define applied work on the decentralized verification of smart
homes and for the relatively new programming language Kotlin as well as theoretical work on the
decentralized verification of timed properties;

• runtime enforcement, where we apply enforcement to IEC 61499 applications, we define en-
forcement mechanism with bounded memory and a benchmark tool for decentralized runtime
enforcement.

• instrumentation, where we define an instrumentation approaches to capture conservative models
of Java programs for runtime verification;

• analysis of business process, where we apply modeling, probabilistic model checking as well as
combined static and dynamic approaches for such processes.

8.2.1 Runtime Verification

Bringing runtime verification home: a case study on the hierarchical monitoring of smart homes
using decentralized specifications.
We use runtime verification (RV) to check various specifications in a smart apartment. The specifications
can be broken down into three types: behavioral correctness of the apartment sensors, detection of
specific user activities (known as activities of daily living), and composition of specifications of the
previous types. The context of the smart apartment provides us with a complex system with a large
number of components with two different hierarchies to group specifications and sensors: geographically
within the same room, floor or globally in the apartment, and logically following the different types of
specifications. We leverage a recent approach to decentralized RV of decentralized specifications, where
monitors have their own specifications and communicate together to verify more general specifications.
We leverage the hierarchies, modularity and re-use afforded by decentralized specifications to: (1) scale
beyond existing centralized RV techniques, and (2) greatly reduce computation and communication
costs.

Runtime Verification of Kotlin Coroutines.
Kotlin was introduced to Android as the recommended language for development. One of the unique
functionalities of Kotlin is that of co-routines, which are lightweight tasks that can run concurrently
inside threads. Programming using co-routines is difficult, among other things, because they can move
between threads and behave unexpectedly. We introduce runtime verification in Kotlin. We provide a
language to write properties and produce runtime monitors tailored to verify Kotlin co-routines. We
identify, formalize and runtime verify seven properties about common runtime errors that are not easily
identifiable by static analysis. To demonstrate the acceptability of the technique in real applications, we
apply our framework to an in-house Android app and micro-benchmarks and measure the execution
time and memory overheads.

This work has been published in RV [10].

Decentralized Runtime Verification of Timed Regular Expressions.
Ensuring the correctness of distributed cyber-physical systems can be done at runtime by monitoring
properties over their behavior. In a decentralized setting, such behavior consists of multiple local traces,
each offering an incomplete view of the system events to the local monitors, as opposed to the standard
centralized setting with a unique global trace. We introduce the first monitoring framework for timed
properties described by timed regular expressions over a distributed network of monitors. First, we define
functions to rewrite expressions according to partial knowledge for both the centralized and decentralized
cases. Then, we define decentralized algorithms for monitors to evaluate properties using these functions,
as well as proofs of soundness and eventual completeness of said algorithms. Finally, we implement
and evaluate our framework on synthetic timed regular expressions, giving insights on the cost of the
centralized and decentralized settings and when to best use each of them.

Project CORSE 11

Residual Runtime Verification via Reachability Analysis.
In this work, we leverage static verification to reduce monitoring overhead when runtime verifying a
property. We present a sound and efficient analysis to statically find safe execution paths in the control
flow at the intra-procedural level of programs. Such paths are guaranteed to preserve the monitored
property and thus can be ignored at runtime. Our analysis guides an instrumentation tool to select
program points that should be observed at runtime. The monitor is left to perform residual runtime
verification for parts of the program that the analysis could not statically prove safe. Our approach
does not depend on dataflow analysis, thus separating the task of residual analysis from static analysis;
allowing for seamless integration with many RV frameworks and development pipelines. We implement
our approach within BISM, which is a recent tool for bytecode-level instrumentation of Java programs.
Our experiments on the DaCapo benchmark show a reduction in instrumentation points by a factor of
2.5 on average (reaching 9), and accordingly, a reduction in the number of runtime events by a factor of
1.8 on average (reaching 6).

This work has been published in VSTT [6].

8.2.2 Runtime Enforcement

DECENT: A Benchmark for Decentralized Enforcement.
DECENT is a benchmark for evaluating decentralized enforcement. It implements two enforcement
algorithms that differ in their strategy for correcting the execution: the first one explores all alternatives to
perform a globally optimal correction, while the second follows an incremental strategy based on locally
optimal choices. Decent allows comparing these algorithms with a centralized enforcement algorithm in
terms of computational metrics and metrics for decentralized monitoring such as the number and size of
messages or the required computation on each component. Our experiments show that (i) the number
of messages sent and the internal memory usage is much smaller with decentralized algorithms (ii) the
locally optimal algorithm performs closely to the globally optimal one.

This work has been published in RV [11].

Bounded-Memory Runtime Enforcement.
Runtime Enforcement (RE) is a monitoring technique to ensure that a system obeys a set of formal
requirements (properties). RE employs an enforcer (a safety wrapper for the system) which modifies the
(untrustworthy) output by performing actions such as delaying (by storing/buffering) and suppressing
events, when needed. In this work, to handle practical applications with memory constraints, we propose
a new RE paradigm where the memory of the enforcer is bounded/finite. Besides the property to be
enforced, the user specifies a bound on the enforcer memory. Bounding the memory poses various
challenges such as how to handle the situation when the memory is full, how to optimally discard
events from the buffer to accommodate new events and let the enforcer continue operating. We define
the bounded-memory RE problem and develop a framework for any regular property. The proposed
framework is implemented and its performance evaluated via some examples from application scenarios
indicates that the enforcer has reasonable execution time overhead.

Runtime Enforcement for IEC 61499 Applications.
Industrial automation is a complex process involving various stakeholders. The international standard
IEC 61499 helps to specify distributed automation using a generic architectural model, targeting the
technical development of the automation. However, analyzing the correctness of IEC 61499 models re-
mains a challenge because of their informal semantics and distributed logic. We propose new verification
techniques for IEC 61499 applications. These techniques rely on the concept of runtime enforcement,
which can be applied to systems for preventing bad behaviors from happening. The main idea of our
approach is to integrate an enforcer in the application for allowing it to respect specific properties when
executing. The techniques begin with the definition of a property. The language of this property supports
features such as discarding and replacing events. Next, this property is used to synthesize an enforcer
in the form of a function block. Finally, the synthesized enforcer is integrated into the application. Our
approach is illustrated on a realistic example and fully automated.

This work has been published in SEFM [8].

12 Inria Annual Report 2022

8.2.3 Capturing program models with BISM

In this work, we present an extension of the Java bytecode instrumentation tool BISM that captures and
prepares a model that abstracts the program behavior at the intra-procedural level. We analyze program
methods we are interested in monitoring and construct a control-flow graph automaton where the states
represent actions of the program that produce events. Directed towards monitoring general behavioral
properties at runtime, the resulting model is presented for the users to write static analyzers and combine
both static and runtime verification.

8.2.4 Monitoring and Verification of BPMN Processes

WEASY: A Tool for Modeling Optimized BPMN Processes.
Business Process Model and Notation (BPMN) is a standard modeling language for workflow-based
processes. Building an optimized process with this language is not easy for non-expert users due to the
lack of support at design time. This work presents a lightweight modeling tool to support such users in
building optimized processes. First, the user defines the tasks involved in the process and possibly gives
a partial order between tasks. The tool then generates an abstract graph, which serves as a simplified
version of the process being specified. Next, the user can refine this graph using the minimum and
maximum execution time of the whole graph computed by the tool. Once the user is satisfied with a
specific abstract graph, the tool synthesizes a BPMN process corresponding to that graph. Our tool is
called WEASY and is available as an open-source web application.

Probabilistic Model Checking of BPMN Processes at Runtime.
Business Process Model and Notation (BPMN) is a standard business process modeling language that
allows users to describe a set of structured tasks, which results in a service or product. Before running
a BPMN process, the user often has no clear idea of the probability of executing some task or specific
combination of tasks. This is, however, of prime importance for adjusting resources associated with tasks
and thus optimizing costs. In this work, we define an approach to perform probabilistic model checking
of BPMN models at runtime. To do so, we first transform the BPMN model into a Labeled Transition
System (LTS). Then, by analyzing the execution traces obtained when running multiple instances of the
process, we can compute the probability of executing each transition in the LTS model, and thus generate
a Probabilistic Transition System (PTS). Finally, we perform probabilistic model checking for verifying
that the PTS model satisfies a given probabilistic property. This verification loop is applied periodically to
update the results according to the execution of the process instances. All these steps are implemented in
a tool chain, which was applied successfully to several realistic BPMN processes.

This work has been published in iFM [9].

From Static to Dynamic Analysis and Allocation of Resources for BPMN Processes.
Business process optimization is a strategic activity in organizations because of its potential to increase
profit margins and reduce operational costs. One of the main challenges in this context is concerned with
the problem of optimizing the allocation and sharing of resources. In this work, processes are described
using the BPMN notation extended with an explicit description of execution time and resources associated
with tasks, and can be concurrently executed multiple times. First, a simulation-based approach for
computing certain metrics of interest, such as average execution time or resource usage, is presented.
This approach applies off-line and is static in the sense that the number of resources does not evolve over
the time of the simulation. In a second step, an alternative approach is presented, which works online,
thus requiring the instrumentation of an existing platform for retrieving information of interest during
the processes’ execution. This second approach is dynamic because the number of resource replicas is
updated over the time of the execution. This work aims at stressing pros and cons of both approaches,
and at showing how they complement each other.

This work has been published in WRLA [5].

Probabilistic Analysis of Industrial IoT Applications.
Business Process Model and Notation (BPMN) is a standard business process modeling language that
allows users to describe a set of structured tasks, which results in a service or product. Before running

Project CORSE 13

a BPMN process, the user often has no clear idea of the probability of executing some task or specific
combination of tasks. This is, however, of prime importance for adjusting resources associated with tasks
and thus optimizing costs. In this work, we define an approach to perform probabilistic model checking
of BPMN models at runtime. To do so, we first transform the BPMN model into a Labeled Transition
System (LTS). Then, by analyzing the execution traces obtained when running multiple instances of the
process, we can compute the probability of executing each transition in the LTS model, and thus generate
a Probabilistic Transition System (PTS). Finally, we perform probabilistic model checking for verifying
that the PTS model satisfies a given probabilistic property. This verification loop is applied periodically to
update the results according to the execution of the process instances. All these steps are implemented in
a tool chain, which was applied successfully to several realistic BPMN processes.

This work has been published in [7].

8.3 Teaching of Algorithms, Programming, Debugging, and Automata

Participants: Théo Barollet, Florent Bouchez Tichadou, Manuel Selva, François Bro-
quedis, Fabrice Rastello.

This domain is a new axis of the CORSE team. Our goal here is to combine our expertise in compilation
and teaching to help teachers and learners in computer science fields such as programming, algorithms,
data structures, automata, debugging, or more generally computing literacy. This axis is derived into two
projects: Easytracker, which is a library that helps building tools to visualize program execution and data
structures; and Agdbentures, a game that helps learners to gain skills in debugging, which is based on
EasyTracker.

8.3.1 Easytracker : A generic library for controlling and inspecting program execution and state

Learning to program involves building a mental representation of how a machine executes instructions
and stores information in memory. To help students, teachers often use visual representations to illustrate
executions of programs or particular concepts in their lectures. As a famous example, references/pointers
are very often represented with arrows pointing to objects or memory locations. While these visual
representations are most of the time hand-drawn, they nowadays tend to be supplemented by tool-
generated ones. These tools have the advantage of being usable by learners, empowering them with
the ability of validating their own understanding of the concept the tool aims at representing. However,
building such a tool from scratch requires a lot of effort and a high level of technical expertize, and the
ones that already exist are difficult to adapt to different contexts. In this work we developped EasyTracker,
a library that assists teachers of programming courses in building tools that generate representations
tuned to their needs from actual programs. At its core, EasyTracker provides ways of controlling the
execution and inspecting the state of programs. The control and inspection are driven and customized
through a Python interface. The controlled program itself can be written either in Python or in any
GDB supported language like C. This work showcases two tools built on EasyTracker which are used
in a teaching context to explain the notions of stack and heap, and to visualize recursion as well as
Agdbentures, presented in the next section, a game prototype to help students learn debugging.

This work has been submitted for publication at ACM ITICSE 2023.

8.3.2 Agdbentures: A game to learn to debug in autonomy

Debugging is an important task in software development and can be the source of a lot of frustration
and time consumption. However, it is not often taught explicitly in computer science curricula even at
university level. For these reasons, we developped Agdbentures, a debug practicing game where “levels”
consist of programs containing bugs that the learner needs to debug to advance in the game.

In Agdbentures, the level programs are executed using Easytracker, which allows us to present a live
visual representation of the program state during execution in the form of a 2D RPG-like world. For
instance, the “player_x” and “player_y” variables in the level code are inspected at runtime and used to
place a character representing the player on a graphical 2D map. The interest is three-fold: First, this

14 Inria Annual Report 2022

makes the game appealing as the player/learner is plunged into a “real” game; Second, it showcases the
importance of having information on the state of the program being executed in order to be able to do
debugging; Third, it separates completely the graphical code, which can be very complex and is hidden
from players, from the level code which is given to players: this allows us to simplify the source code so
novice programmers won’t be rebuked. The levels share a common codebase that is increasing in size
and complexity as the player advances in the game. It initially only controls the main character position,
then more features are added such has interactive objects, NPCs (non playable characters), level logic
(activating levers, collecting items...). This allows the player to get familiar with the codebase over time
so we can present more difficult bugs which could arise in real life development. It also allows us to
create “fun” levels where bugs have interesting or amusing effects on the visual representation, and where
finding the solution (fixing the bugs) is rewarding.

Although there is currently only about ten levels, the first experiments we conducted are very encour-
aging about the engagement of students at the L2 university level. All where eager to participate and
declared they would really like to continue playing Agdbentures on their own with more levels.

This work has been done in the context of the AI4HI Inria exploratory project and has been submitted
for publication at ACM ITICSE 2023.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Inria associate team not involved in an IIL or an international program

RV4IoT

Title: Runtime Verification for the Internet of Things

Duration: 2022 -> 2025

Coordinator: Sylvain Hallé (shalle@acm.org)

Partners:

• Université du Québec à Chicoutimi Chicoutimi (Canada)

Inria contact: Ylies Falcone

Summary: The goal of the associate team is to develop theories, formal techniques and tools based on
runtime verification for the detection of security issues on connected objects, and the mitigation of
potential attacks through runtime enforcement mechanisms.

9.2 International research visitors

9.2.1 Visits to international teams

Research stays abroad

Fabrice Rastello

Visited institution: Colorado State University (CSU)

Country: USA

Dates: July-August 2022

Context of the visit: Collaboration on optimization of sparse computation

Mobility program/type of mobility: research stay

Project CORSE 15

Chukri Soueidi

Visited institution: Université du Québec à Chicoutimi

Country: Canada

Dates: 30 Oct to 1 December

Context of the visit: The main purpose of this visit was to collaborate on the tool support of the RV4IoT
team. Mainly, Chukri’s objective was to connect the BISM and BeepBeep tool to form a complete
monitoring solution.

Mobility program/type of mobility: RV4IoT

9.3 European initiatives

9.3.1 H2020 projects

CPS4EU (CPS4EU project on cordis.europa.eu)

Title: Cyber Physical Systems for Europe

Duration: From July 1, 2019 to September 30, 2022

Partners:

• KALRAY SA (KALRAY), France

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),
France

• UNIVERSITA DEGLI STUDI DI SALERNO, Italy

• UNIVERSITE DE LORRAINE (UL), France

• SCHNEIDER ELECTRIC FRANCE SAS (SEF), France

• ASSOCIATION JESSICA FRANCE (JESSICA FRANCE), France

• M3 SYSTEMS SAS (M3S), France

• TRUMPF WERKZEUGMASCHINEN SE + COKG (TRUMPF), Germany

• GREENWAVES TECHNOLOGIES (GREENWAVES TECHNOLOGIES), France

• ACS PLUS GMBH (ACS), Germany

• COMMISSARIAT A L’ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (CEA), France

• WIKA MOBILE CONTROL GMBH & CO KG (WIKA), Germany

• VALEO VISION SAS (Valeo Vision), France

• VALEO VISION SAS (Valeo Vision), France

• TECHNISCHE UNIVERSITAT CLAUSTHAL (TUC), Germany

• BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM (BUDAPEST UNIVERSITY OF
TECHNOLOGY AND ECONOMICS), Hungary

• EUROTECH SPA (EUROTECH), Italy

• VALEO COMFORT AND DRIVING ASSISTANCE (Valeo Comfort And Driving Assistance),
France

• VALEO COMFORT AND DRIVING ASSISTANCE (Valeo Comfort And Driving Assistance),
France

• FUNDACION CENTRO DE TECNOLOGIAS DE INTERACCION VISUAL Y COMUNICACIONES
VICOMTECH (VICOM), Spain

• ARCURE SA (ARCURE), France

https://dx.doi.org/10.3030/826276

16 Inria Annual Report 2022

• UNIVERSITE GRENOBLE ALPES (UGA), France

• EMBEDDED FRANCE (EMBEDDED FRANCE), France

• VSORA (VSORA), France

• YUMAIN (GST), France

• INTERNET OF TRUST, France

• INSTITUTO TECNOLOGICO DE INFORMATICA (ITI), Spain

• LEONARDO - SOCIETA PER AZIONI (LEONARDO), Italy

• RTE RESEAU DE TRANSPORT D’ELECTRICITE, France

• SHERPA ENGINEERING SA (SHERPA), France

• UNIVERSITAET AUGSBURG (UAU), Germany

• THALES (THALES), France

• PROVE&RUN (Prove & Run), France

• EMMTRIX TECHNOLOGIES GMBH (EMMTRIX), Germany

• CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS (CNRS), France

• ACOEM FRANCE SAS (ACOEM), France

• CENTRALESUPELEC (CentraleSupélec), France

• SPINSPLIT MUSZAKI KUTATO FEJLESZTOKFT (SPINSPLIT TECHNICAL RESEARCH AND
DEVELOPMENT LLC), Hungary

• ANSYS FRANCE SAS (ANSYS), France

• AIRLANE TECHNOLOGIES (AIRLANE), France

• SEQUANS COMMUNICATIONS SA (SEQ), France

• ETH LAB SRL (ETH LAB), Italy

• SYSNAV SAS (SYSNAV), France

Inria contact: Eric RUTTEN

Coordinator: Philippe Gougeon, VALEO VISION SAS

Summary: Cyber Physical Systems (CPS) represent key drivers for the innovation capacity of European
industries, large and small, generating sustainable economic growth and supporting meaningful
jobs for citizens. The ultimate objective of CPS4EU is to strengthen the CPS value chain by cre-
ating world class European SMEs and by providing CPS technologies that in turn will sustain the
leadership of the large European groups in key economy sectors and, in this way will stimulate
innovative products to support the massive digitization increasingly integrated into our everyday
environment.

9.4 National initiatives

ANR SEVERITAS

Title: Secure and Verifiable Test and Assessment System (SEVERITAS)

Duration: May 2021 – April 2025

Coordinator: Ylies Falcone

Partners: • Laboratoire d’Informatique de Grenoble (LIG)

• Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes (LIMOS)

• University of Luxembourg / Interdisciplianary Center for Security, Reliability and Trust
(SnT/UL)

Project CORSE 17

• Laboratoire lorrain de recherche en informatique et ses applications (LORIA)

CORSE contact: Ylies Falcone

Summary: SEVERITAS advances information socio-technical security for Electronic Test and Assessment
Systems (e-TAS). These systems measure skills and performances in education and training. They
improve management, reduce time-to-assessment, reach larger audiences, but they do not always
provide security by design. This project recognizes that the security aspects for e-TAS are still mostly
unexplored. We fill these gaps by studying current and other to-be-defined security properties. We
develop automated tools to advance the formal verification of security and show how to validating
e- TAS security. rigorously. We also develop new secure, transparent, verifiable and lawful e-TAS
procedures and protocols. We also deploy novel run-time monitoring strategies to reduce frauds
and study the user experience about processes to foster e-TAS usable security. And thanks to
connections with players in the business of e-TAS, such as OASYS, this project will contribute to the
development of secure e-TAS.

OTPaaS

Title: Développement et renforcement de la filière française et européenne du Cloud (OTPaaS)

Duration: October 2021 – September 2024

Coordinator: P. Betinelli

CORSE contact: Fabrice Rastello

CORSE participants: Fabrice Rastello, Christophe Guillon

Partners: Agileo, Atos, Captronic, Duliprint, IMT, MDM, Prosyst, SE, Soben, Tridimeo, Solem, CEA, Valeo

INRIA Partners: DataMove

Summary: The OTPaaS project targets massive digitization by offering a suitable cloud for scanning
that is compatible with Gaia-X and easy to use by companies including SMEs. The consortium
brings together national technology providers and users from major groups and SMEs/ETIs, with
strong support from major French research institutes. The platform OTPaaS will be validated by 6
demonstrators and followed by ambitious industrialization programs.

ES3CAP

Title: Embedded Smart Safe Secure Computing Autonomous Platform

CORSE contact: Fabrice Rastello

CORSE participants: Fabrice Rastello, Nicolas Tolenaere

Duration: July 2018 - February 2022

INRIA Partners: AOSTE, PARKAS, CHROMA

Other Partners: Renault-Nissan, EasyMile, Safran E&D, MBDA, ANSYS/ESterel Technologies, Kronno-
Safe, Prove & Run, Kalray, Prophesee, CEA

Summary: The objective of ES3CAP is to develop a tool-chain that targets multi- and many-core ar-
chitectures for critical systems. In particular it should address the different challenges related to
making existing critical systems solutions (heterogeneous, decentralized, single-core, single-task)
match the industrial constraints targeted by KALRAY’s MPPA (MPPA, high-performance, real-time,
safety, security). Considered applications are autonomous driving, drones, avionics, and defense.
CORSE is involved in the optimization of machine learning algorithms for many-core architectures.

18 Inria Annual Report 2022

9.5 Regional initiatives

MOAP

Title: Modélisation, optimisation et analyse prédictive des processus métiers

CORSE contact: Yliès Falcone

CORSE participants: Yliès Falcone

Duration: October 2020 - September 2023

INRIA Partners: CONVECS

Other Partners: SOITEC

Summary: La modélisation et l’optimisation des processus dans les entreprises sont un enjeu économique
majeur. En effet, minimiser des temps de traitement, ajuster l’utilisation des ressources ou éviter
des situations de blocage ou d’attente permettraient de réduire les coûts de fonctionnement de
l’entreprise. L’objectif du projet MOAP est de fournir des techniques afin de calculer automatique-
ment un ensemble de métriques permettant de quantifier l’efficacité des processus déployés dans
l’entreprise, et d’ensuite utiliser ces mesures pour les améliorer. La première contribution du projet
MOAP consiste à proposer un langage de modélisation suffisamment expressif pour modéliser les
processus métiers dans l’industrie du futur, soit par extension de langages existants soit en pro-
posant des langages dédiés. Nous proposerons ensuite des techniques automatisées d’analyse afin
de générer plusieurs métriques qui vont permettre dans un second temps d’optimiser les processus
suivant différents critères (temps d’exécution, utilisation des ressources, coûts d’infrastructure,
etc.). Nous envisageons aussi de mettre en place des techniques de monitoring prédictif qui
permettront à l’entreprise d’observer et raisonner sur les traces d’exécutions afin d’améliorer le
fonctionnement des-dits processus sans forcément disposer de leur modèles. Ces solutions seront
implementées dans un outil qui sera validé sur les processus existants au sein de l’entreprise Soitec.

10 Dissemination

10.1 Promoting scientific activities

10.1.1 Scientific events

Member of the Conference Steering Committee

• Fabrice Rastello: Steering Committee Chair of ACM/IEEE CGO till March 2022.

• Fabrice Rastello: Member of the steering Committee of ACM/IEEE CGO.

• Yliès Falcone: Member of the Steering Committee of the Runtime Verification conference.

• Yliès Falcone: Member of the Steering Committee of Software Verification and Testing track at the
Symposium on Applied Computing.

Member of the conference program committees

• Guillaume Iooss: IMPACT 2023

• Fabrice Rastello: IEEE IPDPS 2023

• Yliès Falcone: RV 2022

• Yliès Falcone: NFM 2022

Project CORSE 19

Reviewer

• Guillaume Iooss: CFW

• Manuel Selva: ACM ITiCSE

• François Broquedis: ACM ITiCSE

10.1.2 Journal

Reviewer - reviewing activities

• Guillaume Iooss: ACM TOPLAS, ACM TOCS, ACM TECS.

10.1.3 Leadership within the scientific community

• Fabrice Rastello: deputy scientific director of Inria Grenoble Rhône-Alpes (DSA) since Sept 2022

• Fabrice Rastello: scientific council of Inria Grenoble Rhône-Alpes (CoS)

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• License 3: François Broquedis, Imperative programming using Python, 60 hours, Grenoble Institute
of Technology (Ensimag)

• License 3: François Broquedis, Introduction to UNIX, 20 hours, Grenoble Institute of Technology
(Ensimag)

• License 3: François Broquedis, C programming, 100 hours, Grenoble Institute of Technology
(Ensimag)

• Master 1: François Broquedis, Object-Oriented Programming, 40 hours, Grenoble Institute of
Technology (Ensimag)

• Master 1: François Broquedis, Operating Systems Development Project, 20 hours, Grenoble Institute
of Technology (Phelma)

• François Broquedis is in charge of the first year study at Ensimag

• Master: Florent Bouchez Tichadou, Algorithmic Problem Solving, 41 hours, M1 MoSIG.

• Licence: Florent Bouchez Tichadou, Algorithms languages and programming, 103 hours, L2 UGA.

• Master: Florent Bouchez Tichadou, remise à niveau d’agents de la SNCF en reconversion, 60 hours,
UGA.

• DIU EIL, Florent Bouchez Tichadou, formation des enseignants du secondaire suite à la réforme
du Baccalauréat. Bloc Algorithmique. 30 hours, UGA.

• Master 1: Yliès Falcone, Programming Language Semantics and Compiler Design, MoSIG and
Master informatique, 45 hours

• License: Yliès Falcone, Languages and Automata, Univ. Grenoble Alpes, 45 hours

• Master: Yliès Falcone, is responsible for the two above courses.

• License 3: Manuel Selva, Imperative programming using Python, 118 hours, Grenoble Institute of
Technology (Ensimag)

• License 3: Manuel Selva is responsible for the above course.

20 Inria Annual Report 2022

• License 3: Manuel Selva, Introduction to UNIX, 13 hours, Grenoble Institute of Technology (En-
simag)

• License 3: Manuel Selva, Assembly programming, 15 hours, Grenoble Institute of Technology
(Ensimag)

• License 3: Manuel Selva, C programming, 25 hours, Grenoble Institute of Technology (Ensimag)

• Master 1: Manuel Selva, Concurrent programming, 15 hours, Grenoble Institute of Technology
(Ensimag)

• License 2: Guillaume Iooss, Algorithms languages and imperative programming (TD/TP), 31.5
hours, DLST, UGA UFR IM2AG

• Licence 2: Marius Monnier, INF302: Languages and automata, 24 hours, DLST (UGA)

• Master 1: Auguste Olivry, Algorithmic Problem Solving, 41 hours, UGA UFR IM2AG / Grenoble INP
Ensimag

• License 2: Auguste Olivry, Algorithms languages and imperative programming (TP), 18 hours, DLST,
UGA UFR IM2AG

• Licence 2, Nicolas Tollenaere, Algorithms languages and imperative programming (TD/TP), 36
hours, DLST, UGA UFR IM2AG

• Licence 2, Nicolas Derumigny, Algorithms languages and imperative programming (TD/TP), 42
hours, DLST, UGA UFR IM2AG

• License 2: Theo Barollet, Algorithms languages and imperative programming (TD-TP), 33 hours,
UGA

• Master 1: Theo Barollet, Compilation Project, 18h, UGA

10.2.2 Supervision

• PhD: Auguste Olivry, Automatic derivation of I/O complexity bounds for affine programs, advised
by Fabrice Rastello, defended in June 2022.

• PhD: Nicolas Tollenaere, Decoupling the optimization space of tensor computation for a better
understanding of performance on Intel CPU, advised by Fabrice Rastello and Guillaume Iooss,
defended in Dec 2022.

• PhD in progress: Florian Gallay, Decentralized Runtime Enforcement, October 2022, advised by
Yliès Falcone.

• PhD in progress: Théophile Bastian, Performance study: identifying bottlenecks by means of
sensitivity analysis, September 2021, advised by Fabrice Rastello.

• PhD in progress: Nicolas Derumigny, Automatic generation of performance models for heteroge-
neous architectures, September 2019, advised by Fabrice Rastello.

• PhD in progress: Théo Barollet, Problem-based learning: automatic generation and recommenda-
tion of programming exercises, September 2019, advised by Florent Bouchez Tichadou and Fabrice
Rastello.

• PhD in progress: Chukri Soueidi, Instrumentation, Runtime Verification and Enforcement for
Multithreaded Programs, October 2020, advised by Yliès Falcone.

• Licence 2 internship: Clément Correnoz, 2 months, "Integration of EasyTracker in client/server
architecture to have visualisation tools running in a browser", advised by Manuel Selva.

• Licence 3 internship: Benjamin Priour, 2 months, "Add support for multi threaded programs in
EasyTracker", advised by Manuel Selva.

Project CORSE 21

10.2.3 Juries

Fabrice Rastello

• Nicolas Tollenaere–Grenoble, Jury, Dec 2022, "Decoupling the optimization space of tensor compu-
tation for a better understanding of performance on Intel CPU".

• Auguste Olivry–Grenoble, Jury, June 2022, "Automatic derivation of I/O complexity bounds for
affine programs".

• Marcos Horro Varela–Coruna, Reviewer, April 2022, "Manycore Architectures and SIMD Optimiza-
tions for High Performance Computing".

Guillaume Iooss

• Maksim Berezov–Paris,Jury, Dec 2022, "L’automatisation des optimisations source-à -source de
programmes en utilisant des techniques de Machine Learning".

• Auguste Olivry–Grenoble, Jury, June 2022, "Automatic derivation of I/O complexity bounds for
affine programs".

10.3 Popularization

10.3.1 Internal or external Inria responsibilities

• Fabrice Rastello: scientific council of CEA-EDF-Inria summer schools

10.3.2 Interventions

• Guillaume Iooss: Presentation of our work on the automatic lower bound derivation of data
movement to the L3 promotion from ENS Lyon, on March 2022.

11 Scientific production

11.1 Publications of the year

International journals

[1] N. Tollenaere, G. Iooss, S. Pouget, H. Brunie, C. Guillon, A. Cohen, P. Sadayappan and F. Rastello.
‘Autotuning Convolutions is Easier Than You Think’. In: ACM Transactions on Architecture and
Code Optimization (8th Nov. 2022), pp. 1–23. DOI: 10.1145/3570641. URL: https://hal.inria
.fr/hal-03844272.

International peer-reviewed conferences

[2] H. Al Qadasi, C. Wu, Y. Falcone and S. Bensalem. ‘DeepAbstraction: 2-Level Prioritization for
Unlabeled Test Inputs in Deep Neural Networks’. In: AITest 2022 - IEEE 4th International Conference
On Artificial Intelligence Testing. San Francisco, United States: IEEE, 15th Aug. 2022, pp. 1–8. URL:
https://hal.inria.fr/hal-03911812.

[3] A. Contreras, Y. Falcone, G. Salaün and A. Zuo. ‘WEASY: A Tool for Modelling Optimised BPMN
Processes’. In: FACS 2022 - 18th International Conference on Formal Aspects of Component Soft-
ware. Oslo / Online, Norway, 10th Nov. 2022. DOI: 10.1007/978- 3- 031- 20872- 0_7. URL:
https://hal.inria.fr/hal-03848350.

[4] N. Derumigny, T. Bastian, F. Gruber, G. Iooss, C. Guillon, L.-N. Pouchet and F. Rastello. ‘PALMED:
Throughput Characterization for Superscalar Architectures’. In: CGO 2022 - International Sym-
posium on Code Generation and Optimization. Seoul, South Korea, 2nd Apr. 2022, pp. 1–12. URL:
https://hal.inria.fr/hal-03531740.

https://doi.org/10.1145/3570641
https://hal.inria.fr/hal-03844272
https://hal.inria.fr/hal-03844272
https://hal.inria.fr/hal-03911812
https://doi.org/10.1007/978-3-031-20872-0_7
https://hal.inria.fr/hal-03848350
https://hal.inria.fr/hal-03531740

22 Inria Annual Report 2022

[5] F. Durán, Y. Falcone, C. Rocha, G. Salaün and A. Zuo. ‘From Static to Dynamic Analysis and Alloca-
tion of Resources for BPMN Processes’. In: WRLA 2022 - 14th International Workshop on Rewriting
Logic and its Applications. Munich, Germany, 2nd Apr. 2022, pp. 1–18. DOI: 10.1007/978-3-031-
12441-9_1. URL: https://hal.inria.fr/hal-03766148.

[6] Y. Falcone. ‘Residual Runtime Verification via Reachability Analysis’. In: VSTTE 2022 - 14th Interna-
tional Conference on Verified Software: Theories, Tools, and Experiments. Trento, Italy, 17th Oct.
2022, pp. 1–19. URL: https://hal.inria.fr/hal-03911820.

[7] Y. Falcone, I. Faqrizal and G. Salaün. ‘Probabilistic Analysis of Industrial IoT Applications’. In: IoT
2022 -The 12th International Conference on the Internet of Things. Delft, Netherlands, 7th Nov.
2022. URL: https://hal.inria.fr/hal-03848674.

[8] Y. Falcone, I. Faqrizal and G. Salaün. ‘Runtime Enforcement for IEC 61499 Applications’. In: SEFM
2022 - 20th International Conference on Software Engineering and Formal Methods. Berlin, Ger-
many, 28th Sept. 2022, pp. 1–17. DOI: 10.1007/978-3-031-17108-6_22. URL: https://hal.in
ria.fr/hal-03766095.

[9] Y. Falcone, G. Salaün and A. Zuo. ‘Probabilistic Model Checking of BPMN Processes at Runtime’. In:
iFM 2022 - International Conference on integrated Formal Methods. Lugano, Switzerland, 7th June
2022, pp. 1–17. DOI: 10.1007/978-3-031-07727-2_11. URL: https://hal.inria.fr/hal-03
665305.

[10] D. Furian, S. Azzopardi, Y. Falcone and G. Schneider. ‘Runtime Verification of Kotlin Coroutines’.
In: RV 2022 - 22nd International Conference on Runtime Verification. Tbilisi, Georgia, 28th Sept.
2022, pp. 1–19. URL: https://hal.inria.fr/hal-03911794.

[11] F. Gallay and Y. Falcone. ‘DECENT: A Benchmark for Decentralized Enforcement’. In: RV 2022 -
22nd International Conference on Runtime Verification. Tblisi, Georgia, 28th Sept. 2022, pp. 1–11.
URL: https://hal.inria.fr/hal-03911798.

[12] G. Iooss, A. Cohen, D. Potop-Butucaru, M. Pouzet, V. Bregeon, J. Souyris and P. Baufreton. ‘Poly-
hedral Scheduling and Relaxation of Synchronous Reactive Systems’. In: IMPACT 2022 - 12th
International Workshop on Polyhedral Compilation Techniques. Budapest, Hungary, 20th June
2022, pp. 1–12. URL: https://hal.inria.fr/hal-03901645.

[13] V. Roussanaly and Y. Falcone. ‘Decentralised Runtime Verification of Timed Regular Expressions’.
In: TIME 2022 - 29th International Symposium on Temporal Representation and Reasoning. Online,
France, 7th Nov. 2022, pp. 1–18. DOI: 10.4230/LIPIcs...12. URL: https://hal.inria.fr/hal
-03911668.

[14] C. Soueidi and Y. Falcone. ‘Capturing program models with BISM’. In: SAC 2022 - 37th ACM
Symposium on Applied Computing - Software Verification and Testing Track. Brno (Virtuel), Czech
Republic, 25th Apr. 2022. DOI: 10.1145/3477314.3507239. URL: https://hal.inria.fr/hal-
03911682.

Conferences without proceedings

[15] S. Shankar, A. Rollet, S. Pinisetty and Y. Falcone. ‘Bounded-Memory Runtime Enforcement’. In:
SPIN 2022 - 28th International Symposium on Model Checking of Software. Vol. 13255. Lecture
Notes in Computer Science. Chicago, United States: Springer International Publishing, 23rd Aug.
2022, pp. 114–133. DOI: 10.1007/978-3-031-15077-7_7. URL: https://hal.archives-ouver
tes.fr/hal-03758964.

[16] M. Vargas Vieyra. ‘Robust Estimation of Laplacian Constrained Gaussian Graphical Models with
Trimmed Non-convex Regularization’. In: PODS 2022 - Workshop on Principles of Distribution
Shift. Baltimore, United States, 2022, pp. 1–8. URL: https://hal.inria.fr/hal-03697993.

Doctoral dissertations and habilitation theses

[17] A. Olivry. ‘Automatic derivation of I/O complexity bounds for affine programs’. Université Grenoble
Alpes [2020-....], 8th June 2022. URL: https://theses.hal.science/tel-03877029.

https://doi.org/10.1007/978-3-031-12441-9_1
https://doi.org/10.1007/978-3-031-12441-9_1
https://hal.inria.fr/hal-03766148
https://hal.inria.fr/hal-03911820
https://hal.inria.fr/hal-03848674
https://doi.org/10.1007/978-3-031-17108-6_22
https://hal.inria.fr/hal-03766095
https://hal.inria.fr/hal-03766095
https://doi.org/10.1007/978-3-031-07727-2_11
https://hal.inria.fr/hal-03665305
https://hal.inria.fr/hal-03665305
https://hal.inria.fr/hal-03911794
https://hal.inria.fr/hal-03911798
https://hal.inria.fr/hal-03901645
https://doi.org/10.4230/LIPIcs...12
https://hal.inria.fr/hal-03911668
https://hal.inria.fr/hal-03911668
https://doi.org/10.1145/3477314.3507239
https://hal.inria.fr/hal-03911682
https://hal.inria.fr/hal-03911682
https://doi.org/10.1007/978-3-031-15077-7_7
https://hal.archives-ouvertes.fr/hal-03758964
https://hal.archives-ouvertes.fr/hal-03758964
https://hal.inria.fr/hal-03697993
https://theses.hal.science/tel-03877029

Project CORSE 23

Reports & preprints

[18] N. Derumigny, T. Bastian, F. Gruber, G. Iooss, C. Guillon, L.-N. Pouchet and F. Rastello. PALMED:
Throughput Characterization for Superscalar Architectures - Extended Version. 18th Jan. 2022. URL:
https://hal.inria.fr/hal-03114933.

[19] C. Soueidi, M. Monnier, A. Kassem and Y. Falcone. Efficient and Expressive Bytecode-Level Instru-
mentation for Java Programs. 2nd June 2021. URL: https://hal.inria.fr/hal-03533152.

https://hal.inria.fr/hal-03114933
https://hal.inria.fr/hal-03533152

	Project-Team CORSE
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Scientific Foundations
	Main Research Directions

	Application domains
	Transfer

	Social and environmental responsibility
	Footprint of research activities
	Impacting research directions for environment
	Impacting usage

	Highlights of the year
	New software and platforms
	New software
	Pipedream
	IOLB
	IOOpt
	PALMED
	BISM
	TTiLE
	EasyTracker

	New results
	Performance Debugging and Compiler Optimization
	Hybrid Performance Modeling and Schedule Optimization for Tensor Computations
	Automatic Resource Characterization and Performance Feedback

	Runtime Monitoring, Verification, and Enforcement
	Runtime Verification
	Runtime Enforcement
	Capturing program models with BISM
	Monitoring and Verification of BPMN Processes

	Teaching of Algorithms, Programming, Debugging, and Automata
	Easytracker : A generic library for controlling and inspecting program execution and state
	Agdbentures: A game to learn to debug in autonomy

	Partnerships and cooperations
	International initiatives
	Inria associate team not involved in an IIL or an international program

	International research visitors
	Visits to international teams

	European initiatives
	H2020 projects

	National initiatives
	Regional initiatives

	Dissemination
	Promoting scientific activities
	Scientific events
	Journal
	Leadership within the scientific community

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Internal or external Inria responsibilities
	Interventions

	Scientific production
	Publications of the year

