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2 Overall objectives

2.1 Broad context

One of the principal objectives of Machine Learning (ML) is to automatically discover using past data
some underlying structure behind a data generating process in order either to explain past observations
or, perhaps more importantly, to make predictions and/or to optimize decisions made on future instances.
The area of ML has exploded over the past decade and has had a tremendous impact in many application
domains such as computer vision or bioinformatics.

Most of the current ML literature focuses on the case of a single agent (an algorithm) trying to
complete some learning task based on gathered data that follows an exogenous distribution independent
of the algorithm. One of the key assumptions is that this data has sufficient “regularity” for classical
techniques to work. This classical paradigm of “a single agent learning on nice data”, however, is no longer
adequate for many practical and crucial tasks that imply users (who own the gathered data) and/or other
(learning) agents that are also trying to optimize their own objectives simultaneously, in a competitive
or conflicting way. This is the case, for instance, in most learning tasks related to Internet applications
(content recommendation/ranking, ad auctions, fraud detection, etc.). Moreover, as such learning tasks
rely on users’ personal data and as their outcome affect users in return, it is no longer sufficient to focus on
optimizing prediction performance metrics—it becomes crucial to consider societal and ethical aspects
such as fairness or privacy.

The field of single agent ML builds on techniques from domains such as statistics, optimization,
or functional analysis. When different agents are involved, a strategic aspect inherent in game theory
enters the picture. Indeed, interactions—either positive or negative—between rational entities (firms,
single user at home, algorithms, etc.) foster individual strategic behavior such as hiding information,
misleading other agents, free-riding, etc. Unfortunately, this selfishness degrades the quality of the data or
of the predictions, prevents efficient learning and overall may diminish the social welfare. These strategic
aspects, together with the decentralized nature of decision making in a multi-agent environment, also
make it harder to build algorithms that meet fairness and privacy constraints.

The overarching objective of FAIRPLAY is to create algorithms that learn for and with users—and
techniques to analyze them—, that is to create procedures able to perform classical learning tasks (pre-
diction, decision, explanation) when the data is generated or provided by strategic agents, possibly in the
presence of other competing learning agents, while respecting the fairness and privacy of the involved
users. To that end, we will naturally rely on multi-agent models where the different agents may be either
agents generating or providing data, or agents learning in a way that interacts with other agents; and we
will put a special focus on societal and ethical aspects, in particular fairness and privacy. Note that in
FAIRPLAY, we focus on the technical challenges inherent to formalizing mathematically and respecting
ethical properties such as non-discrimination or privacy, often seen as constraints in the learning proce-
dure. Nevertheless, throughout the team’s life, we will reflect on these mathematical definitions for the
particular applications studied, in particular their philosophical roots and legal interpretation, through
interactions with HSS researchers and with legal specialists (from Criteo).

2.1.1 Multi-agent systems

Any company developing and implementing ML algorithms is in fact one agent within a large network of
users and other firms. Assuming that the data is i.i.d. and can be treated irrespectively of the environment
response—as is done in the classical ML paradigm—might be a good first approximation, but should be
overcome. Users, clients, suppliers, and competitors are adaptive and change their behavior depending
on each other’s interactions. The future of many ML companies—such as Criteo—will consist in creating
platforms matching the demand (created by their users) to the offer (proposed by their clients), under
the system constraints (imposed by suppliers and competitors). Each of these agents have different,
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conflicting interests that should be taken into account in the model, which naturally becomes a multi-
agent model.

Each agent in a multi-agent system may be modeled as having their own utility function ui that can
depend on the action of other agents. Then, there are two main types of objectives: individual or collective
[89]. If each agent is making their own decision, then they can be modeled as each optimizing their own
individual utility (which may include personal benefit as well as other considerations such as altruism
where appropriate) unilaterally and in a decentralized way. This is why a mechanism providing correct
incentives to agents is often necessary. At the other extreme, social welfare is the collective objective
defined as the cumulative sum of utilities of all agents. To optimize it, it is almost always necessary
to consider a centralized optimization or learning protocol. A key question in multi-agent systems
is to apprehend the “social cost” of letting agents optimize their own utility by choosing unilaterally
their decision compared to the one maximizing social welfare; this is often measured by the “price of
anarchy”/“price of stability” [98]: the ratio of the maximum social welfare to the (worst/best) social
welfare when agents optimize individually.

The natural language to model and study multi-agent systems is game theory—see below for a list
of tools and techniques on which FAIRPLAY relies, game theory being the first of them. Multi-agent
systems have been studied in the past; but not with a focus on learning systems where agents are either
learning or providing data, which is our focus in FAIRPLAY and leads to a blend of game theory and
learning techniques. We note here again that, wherever appropriate, we shall reflect (in part together
with colleagues from HSS) on the soundness of the utility framework for the considered applications.

2.1.2 Societal aspects and ethics

There are several important ethical aspects that must be investigated in multi-agent systems involving
users either as data providers or as individuals affected by the ML agent decision (or both).

Fairness and Discrimination When ML decisions directly affect humans, it is important to ensure
that they do not violate fairness principles, be they based on ethical or legal grounds. As ML made
its way in many areas of decision making, it was unfortunately repeatedly observed that it can lead to
discrimination (regardless of whether or not it is intentional) based on gender, race, age, or other sensitive
attributes. This was observed in online targeted advertisement [83, 109, 23, 67, 83, 25], but also in many
other applications such as hiring [54], data-driven healthcare [61], or justice [84]. Biases also have the
unfortunate tendency to reinforce. An operating multi-agent learning system should be able in the long
run to get rid by itself of inherent population biases, that is, be fair amongst users irrespective of the
improperly constructed dataset.

The mathematical formulation of fairness has been debated in recent works. Although a few initial
works proposed a notion of individual fairness, which mandates that “similar individuals” receive “similar
outcomes” [56], this notion was quickly found unpractical because it relies on a metric to define closeness
that makes the definition somewhat arbitrary. Most of the works then focused on notions of group fairness,
which mandate equality of outcome “on average” across different groups defined by sensitive attributes
(e.g., race, gender, religious belief, etc.). Most of the works on group fairness focus on the classification
problem (e.g., classifying whether a job applicant is good or not for the job) where each data example
(Xi ,Yi ) contains a set of features Xi and a true label Yi ∈ {0,1} and the goal is to make a prediction Ŷi

based on the features Xi that has a high probability to be equal to the true label. Assuming that there is a
single sensitive attribute si that can take two values a or b, this defines two groups: those for whom si = a
and those for whom si = b. There are several different concepts of group fairness that can be considered;
we shall especially focus on demographic parity (DP), which prescribes P (Ŷi = 1|si = a) = P (Ŷi = 1|si = b)
and equal opportunity (EO) [68], which mandates that P (Ŷi = 1|si = a,Yi = 1) = P (Ŷi = 1|si = b,Yi = 1).

The fair classification literature proposed, for each of these fairness notions, ways to train fair classi-
fiers based on three main ideas: pre-processing [117], in-processing [115, 116, 112], and post-processing
[68]. All of these works, however, focus on idealized situations where a single decision-maker has access
to ground truth data with the sensitive features and labels in order to train classifiers that respect fairness
constraints. We use similar group fairness definitions and extend them (in particular through causal-
ity), but our goal is to go further in terms of algorithms by modeling practical scenarios with multiple
decision-makers and incomplete information (in particular lack of ground truth on the labels).
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Privacy vs. Incentives ML algorithms, in particular in Internet applications, often rely on users’ personal
information (whether it is directly their personal data or indirectly some hidden “type” – gender, ethnicity,
behaviors, etc.). Nevertheless, users may be willing to provide their personal information if it increases
their utility. This brings a number of key questions. First, how can we learn while protecting users’ privacy
(and how should privacy even be defined)? Second, finding the right balance between those two a-priori
incompatible concepts is challenging; how much (and even simply how) should an agent be compensated
for providing useful and accurate data?

Differential privacy is the most widely used private learning framework [55, 57, 104] and ensures that
the output of an algorithm does not significantly depend on a single element of the whole dataset. These
privacy constraints are often too strong for economic applications (as illustrated before, it is sometimes
optimal to disclose some private information). f -divergence privacy costs have thus been proposed in
recent literature as a promising alternative [47]. These f -divergences, such as Kullback-Leibler, are also
used by economists to measure the cost of information from a Bayesian perspective, as in the rational
inattention literature [108, 91, 86]. It was only recently that this approach was considered to measure
“privacy losses” in economic mechanisms [58]. In this model, the mechanism designer has some prior
belief on the unobserved and private information. After observing the player’s action, this belief is
updated and the cost of information corresponds to the KL between the prior and posterior distributions
of this private information.

This privacy concept can be refined up to a single user level, into the so-called local differential privacy.
Informally speaking, the algorithm output can also depend on a single user data that still must be kept
private. Estimation are actually sometimes more challenging under this constraint, i.e., estimation rates
degrade [105, 42, 43] but is sometimes more adapted to handle user-generated data [63].

Interestingly, we note that the notions of privacy and fairness are somewhat incompatible. This will
motivate Theme 2 developed in our research program.

2.2 A large variety of tools and techniques

Analyzing multi-agent learning systems with ethical constraints will require us to use, develop, and merge
several different theoretical tools and techniques. We describe the main ones here. Note that although
FAIRPLAY is motivated by practical use-cases and applications, part of the team’s objectives is to improve
those tools as necessary to tackle the problems studied.

Game theory and economics Game theory [62] is the natural mathematical tool to model multiple
interacting decision-makers (called players). A game is defined by a set of players, a set of possible actions
for each player, and a payoff function for each player that can depend on the actions of all the players
(that is the distinguishing feature of a game compared to an optimization problem). The most standard
solution concept is the so-called Nash equilibrium, which is defined as a strategy profile (i.e., a collection
of possibly randomized action for each player) such that each player is at best response (i.e., has the
maximum payoff given the others’ strategies). It is a “static” (one-shot) solution concept, but there also
exist dynamic solution concepts for repeated games [46, 93].

Online and reinforcement learning [39] In online learning (a.k.a. multi-armed bandit [40, 100]), data
is gathered and treated on the fly. For instance, consider an online binary classification problem. Some
unlabelled data X t ∈ Rd is observed, and the agent predicts its label Yt ; let us denote Ŷt ∈ ±1 the
prediction. The agent potentially observes the loss 1{Yt 6= Ŷt } and then receives another new unlabeled
data example X t+1. In that specific problem, the typical learning objective is to perform asymptotically as
good as the best classifier f ∗ in some given class F , i.e., such that the loss

∑T
t=11{Yt 6= Ŷt } is o(T )-close to

max f ∈F
∑T

t=11{Yt 6= f (X t )}; the difference between those terms is called regret. The more general model
with an underlying state of the world St ∈S that evolves at each step following some Markov Decision
Process (MDP, i.e., the transition matrix from St to St+1 depend on the actions of the agent) and impacts
the loss function is called reinforcement learning (RL). RL is an incredibly powerful learning technique,
provided enough data are available since learning is usually quite slow. This is why the recent successes
involve settings with heavy simulations (like games) or well-understood physical systems (like robots).

These techniques will be central to our approach as we aim to model problems where ground truth
data is not available upfront and problems involving sequential decision making. There have been some
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successful first results in that direction. For instance, there are applications (e.g., cognitive radio) where
several agents (users) aim at finding a matching with resources (the different bandwidth). They can do
that by “probing” the resources, estimating their preferences and trying to find some stable matchings
[37, 85].

Online algorithms [35] and theoretical computer science Online algorithms are closely related to
online learning with a major twist. In online learning, the agent has “0-look ahead”; for instance, in the
online binary classification example, the loss at stage t was 1{Yt 6= Ŷt } but Yt was not known in advance.
The comparison class, on the other hand, was the empirical performance of a given set of classifiers.
In online algorithms, the agents have “1-look ahead”; in the classification example, this means that Yt

is known before choosing Ŷt . But the overall objective is obviously no longer the minimisation of the
empirical error, but the minimisation of this error plus the total number of changes (say). The comparison
class is then larger, namely a subset of admissible (or the whole set) sequences of prediction {±1}T . The
typical and relevant example of online problem relevant for Criteo that will be investigated is the matching
problem: agents and resources arrive sequentially and must be, if possible, paired together as fast as
possible (and as successfully as possible). Variants of these problems include the optimal stopping time
question (when/how make a final decision) such as prophet inequalities and related questions [52],

Optimal transport [110] Optimal transport is a quite old problem introduced by Monge where an
agent aims at moving a pile of sand to fill a hole at the smallest possible price. Formally speaking,
given two probability measures µ and ν on some space X , the optimal transport problem consist in
finding (if it exists, otherwise the problem can be relaxed) a transport map T : X →X that minimizes∫
X c(x,T (x))dµ(x) for some cost function c : X 2 →R, under the constraint that T ]µ= ν, where T ]µ is the

push-forward measure of µ by T . Interestingly, when µ and ν are empirical measures, i.e., µ= 1
N

∑
n=1δxn

and ν = 1
N

∑
n=1δyn , a transport map is nothing more than a matching between {xn} and {yn} that

minimizes the cost
∑

n c(xn ,T (xn)).
Recently, optimal transport gained a lot of interest in the ML community [99] thanks to its application

to images and to new techniques to compute approximate matchings in a tractable way [102]. Even more
unexpected applications of optimal transport have been discovered: to protect privacy [38], fairness
[31], etc. Those connections are promising, but only primitive for the moment. For instance, consider
the problem of matching students to schools. The unfairness level of a school can be measured as the
Wasserstein distance between the distribution of the students within that school compared to the overall
distribution of students. Then the matching algorithms could have a constraint of minimizing the sum of
(or its maximum) unfairness levels; alternatively, we could aim at designing mechanisms giving incentives
to schools to be fair in their allocation (or at least in their list preferences), typically by paying a higher fee
if the unfairness level is high.

2.3 General objectives

The overarching objective of FAIRPLAY of to create algorithms to learn for and with users—and tech-
niques to analyze them—, through the study of multi-agent learning systems where the agents can be
cooperatively or competitively learning agents, or agents providing or generating data, while guaran-
teeing that fairness and privacy constraints are satisfied for the involved users. We detail this global
objective into a number of more specific ones.

Objective 1: Developing fair and private mechanisms

Our first objective is to incorporate ethical aspects of fairness and privacy in mechanisms used
in typical problems occurring in Internet applications, in particular auctions, matching, and
recommendation. We will focus on social welfare and consider realistic cases with multiple agents
and sequential learning that occur in practice due to sequential decision making. Our objective is
both to construct models to analyze the problem, to devise algorithms that respect the constraints
at stake, and to evaluate the different trade-offs in standard notions of utility introduced by ethical
constraints.
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Objective 2: Developing multi-agent statistics and learning

Data is now acquired, treated and/or generated by a whole network of agents interacting with the
environment. There are also often multiple agents learning either collaboratively or competitively.
Our second objective is to build a new set of tools to perform statistics and learning tasks in
such environments. To this end, we aim at modeling these situations as multi-agent systems and
at studying the dynamics and equilibrium of these complex game-theoretic situations between
multiple learning algorithms and data providers.

Objective 3: Improving the theoretical state of the art

Research must rely on theoretical, proven guarantees. We develop new results for the techniques
introduced before, such as prophet inequalities, (online) matchings, bandits and RL, etc.

Objective 4: Proposing practical solutions and enhancing transfer from research to industry

Our last scientific objective is to apply and implement theoretical works and results to practical
cases. This will be a crucial component of the project as we focus on transfer within Criteo.

Objective 5: Scientific Publications

We aim at publishing our results in top-tier machine learning conferences (NeurIPS, ICML, COLT,
ICLR, etc.) and in top-tier game theory journals (Games and Economic Behavior, Mathematics of
OR, etc.). We will also target conferences at the junction of those fields (EC, WINE, WebConf, etc.)
as well as conferences specifically on security and privacy (IEEE S&P, NDSS, CSS, PETS, etc.) and
on fairness (FAccT, AIES).

All the five objectives are interlaced. For instance, fairness and privacy constraints are important
in Objective 2 whereas the multi-agent aspect is also important in Objective 1. Objectives 4 and 5 are
transversal and present in all the first three objectives.

3 Research program

To reach the objectives laid out above, we organize the research in three themes. The first one focuses
on developing fair mechanisms. The second one considers private mechanisms, and in particular
considers the challenge of reconciling fairness and privacy—which are often conflicting notions. The
last theme, somewhat transverse to the first two, consists in leveraging/incorporating structure in all
those problems in order to speed up learning. Of course, all themes share common points on both
the problems/applications considered and the methods and tools used to tackle them; hence there are
cross-fertilization between the different themes.

3.1 Theme 1: Developing fair mechanisms for auctions and matching problems

3.1.1 Fairness in auction-based systems

Online ads platforms are nowadays used to advertise not just products, but also opportunities such as
jobs, houses, or financial services. This makes it crucial for such platforms to respect fairness criteria (be
it only for legal reasons), as an unfair ad system would deprive a part of the population of some potentially
interesting opportunities. Despite this pressing need, there is currently no technical solution in place
to provably prevent discriminations. One of the main challenge is that ad impression decisions are the
outcome of an auction mechanism that involves bidding decisions of multiple self-interested agents
controlling only a small part of the process, while group fairness notions are defined on the outcome of a
large number of impressions. We propose to investigate two mechanisms to guarantee fairness in such
a complex auction-based system (note that we focus on online ad auctions but the work has broader
applicability).

Advertiser-centric (or bidder-centric) fairness We first focus on advertiser-centric fairness, i.e., the
advertiser of a third-party needs to make sure that the reached audience is fair independently of
the ad auction platform. A key difficulty is that the advertiser does not control the final decision
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for each ad impression, which depends on the bids of other advertisers competing in the same
auction and on the platform’s mechanism. Hence, it is necessary that the advertiser keeps track of
the auctions won for each of the groups and dynamically adjusts its bids in order to maintain the
required balance.

A first difficulty is to model the behavior of other advertisers. We can first use a mean-field games
approach similar to [71] that approximates the other bidders by an (unknown) distribution and
checks equilibrium consistency; this makes sense if there are many bidders. We can also leverage
refined mean-field approximations [65] to provide better approximations for smaller numbers
of advertisers. Then a second difficulty is to find an optimal bidding policy that enforces the
fairness constraint. We can investigate two approaches. One is based on an MDP (Markov Decision
Process) that encodes the current fairness level and imposes a hard constraint. The second is based
on modeling the problem as a contextual bandit problem. We note that in addition to fairness
constraints, privacy constraints may complicate the optimal solution finding.

Platform-centric (or auction-centric) fairness We also consider the problem from the platform’s per-
spective, i.e., we assume that it is the platform’s responsibility to enforce the fairness constraint. We
also focus here on demographic parity. To make the solution practical, we do not consider modi-
fication of the auction mechanism, instead we consider a given mechanism and let the platform
adapt dynamically the bids of each advertiser to achieve the fairness guarantee. This approach
would be similar to the pacing multipliers used by some platforms [51, 50], but using different
multipliers for the different groups (i.e., different values of the sensitive attribute).

Following recent theoretical work on auction fairness [44, 70, 48] (which assumes that the targeted
population of all ads is known in advance along with all their characteristics), we can formulate
fairness as a constraint in an optimization problem for each advertiser. We study fairness in this
static auction problem in which the auction mechanism is fixed (e.g., to second price). We then
move to the online setting in which users (but also advertisers) are dynamic and in which decisions
must be taken online, which we approach through dynamic adjustment of pacing multipliers.

3.1.2 Fairness in matching and selection problems

In this second part, we study fairness in selection and matching problems such as hiring or college
admission. The selection problem corresponds to any situation in which one needs to select (i.e., assign a
binary label to) data examples or individuals but with a constraint on the number of maximum number of
positive labels. There are many applications of selection problems such as police checks, loan approvals,
or medical screening. The matching problem can be seen as the more general variant with multiple
selectors. Again, a particular focus is put here on cases involving repeated selection/matching problems
and multiple decision makers.

Fair repeated multistage selection In our work [59], we identified that a key source of discrimination
in (static) selection problems is differential variance, i.e., the fact that one has quality estimates
that have different variances for different groups. In practice, however, the selection problem is
often ran repeatedly (e.g., at each hiring campaign) and with partial (and increasing) information
to exploit for making decisions.

Here, we consider the repeated multistage selection problem, where at each round a multistage
selection problem is solved. A key aspect is that, at the end of a round, one learns extra information
about the candidates that were selected—hence one can refine (i.e., decrease the variance of)
the quality estimate for the groups in which more candidates were selected. We will first rethink
fairness constraints in this type of repeated decision making problems. Then we will both study the
discrimination that come out of natural (e.g., greedy) procedure as well as design (near) optimal
ones for the constraints at stake. We also investigate how the constraints affect the selection utility.

Multiple decision-makers Next, we investigate cases with multiple decision-makers. We propose two
cases in particular. The first one is the simple two-stage selection problem but where the decision-
maker doing the first-stage selection is different from the decision-maker doing the second-stage
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selection. This is a typical case for instance for recruiting agencies that propose sublists of candi-
dates to different firms that wish to hire. The second case is when multiple-decision makers are
trying to make a selection simultaneously—a typical example of this being the college admission
problem (or faculty recruitment). We intend to model it as a game between the different colleges
and to study both static solutions as well as dynamic solutions with sequential learning, again
modeling it as a bandit problem and looking for regret-minimizing algorithms under fairness
constraints. A number of important questions arise here: if each college makes its selection in-
dependently and strategically (but based on quality estimates with variances that differ amongst
groups), how does it affect the “global fairness” metrics (meaning in aggregate across the different
colleges) and the “local fairness” metrics (meaning for an individual college)? What changes if there
is a central admission system (such as Parcoursup)? And in this later case, how to handle fairness
on the side of colleges (i.e., treat each college fairly in some sense)?

Fair matching with incentives in two-sided platforms We will study specifically the case of a platform
matching demand on one side to offer on the other side, with fairness constraints on each side.
This is the case for instance in online job markets (or crowdsourcing). This is similar to the previous
case but, in addition, here there is an extra incentives problem: companies need to give the right
incentives to job applicants to accept the jobs; while the platform doing the match needs to ensure
fairness on both sides (job applicants and companies). This gives rise to a complicated interplay
between learning and incentives that we will tackle again in the repeated setting.

We finally mention that, in many of these matching problems, there is an important time compo-
nent: each agent needs to be matched “as soon as possible”, yielding a trade-off between the delay
to be matched and the quality of the match. There is also a problem of participation incentives;
that is how the matching algorithm used affect the behavior of the participants in the matching
“market” (participation or not, information revelation, etc.). In the long-term, we will incorporate
these aspects in the above models.

Throughout the work in this theme, we will also consider a question transverse and present in all the
models above: how can we handle multidimensional fairness, that is, where there are multiple sensitive
attributes and consequently an exponential number of sub-groups defined by all intersections; this
combinatorial is challenging and, for the moment, still exploratory.

3.2 Theme 2: Reconciling, and enforcing privacy with fairness

In the previous theme, we implicitly assumed that we know the users’ group, i.e., their sensitive attributes
such as gender, age, or ethnicity. In practice, one of the key question when implementing fairness mecha-
nisms is how to measure/control fairness metrics without having access to these protected attributes.
This question relates to the link between privacy and fairness and the trade-off between them (as fairness
requires data and privacy tends to protect it) [103, 53].

A first option to solve this problem would be (when it is possible) to build proxies [66, 106] for protected
attributes using available information (e.g., websites visited or products bought) and to measure or control
for fairness using those in place of the protected attributes. As the accuracy of these proxies cannot be
assessed, however, they cannot be used for any type of “public certification”—that is, for a company
to show reasonable fairness guarantees to clients (e.g., as a commercial argument), or (even less) to
regulators. Moreover, in many cases, the entity responsible for fairness should not be accessing sensitive
information, even through proxies, for privacy reasons.

In FAIRPLAY, we investigate a different means of certifying fairness of decisions without having
access to sensitive attributes, by partnering with a trusted third-party that collects protected attributes
(that could for instance be a regulator or a public entity, such as Nielsen, say). We distinguish two cases:

1. If the third-party and the company share a common identifier of users, then computing the fairness
metric without leaking information to each other will boil down to a problem of secure multi-party
computation (SMC). In such a case, there could be a need to be able to learn, which opens the topic
of learning and privacy under SMC. This scenario, however, is likely not the most realistic one as
having a common identifier requires a deep technical integration.
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2. If the third-party and the company do not share a common identifier of users, but there are
common features that they both observe [74], then it is possible only to partially identify the joint
distribution. With additional structural assumptions on the distribution, however, it could be
identified accurately enough to estimate biases and fairness metrics. This becomes a distribution
identification problem and brings a number of questions such as: how to do the distribution
identification? how to optimally query data from the third party to train fair algorithms with high
utility? etc. An important point to keep in mind in such a study is that it is likely that the third party
user-base is different from that of the company. It will therefore be key to handle the covariate shift
from one distribution to the other while estimating biases.

This distribution identification problem will be important in the context of privacy, even indepen-
dently of fairness issues. Indeed, in the near future, most learning will happen in a privacy-preserving
setting (for instance, because of the Chrome privacy sandbox). This will require new learning schemes
(different from e.g., Empirical Risk Minimization) as samples from the usual joint distribution (X ,Y ) of
samples/labels will no longer be observed. Only aggregated data—e.g., (empirical) marginals of the form
E [Y |X2 = 4, X7 = “lemonde.fr”]—will be observed, with a limited budget of requests. This also brings
questions such as how to mix it with ERM on some parts of the traffic, what is the (certainly adaptive
or active) optimal strategy to query the marginals, etc. This problem will be further complicated by the
fact that privacy (for instance through the variety of consents) will be heterogeneous: all features are not
available all the time. This is therefore strongly related to learning with missing features and imputation
[73].

In relation to the above problems, a key question is to determine what is the most appropriate
definition of fairness to consider. Recall that it is well-known that usual fairness metrics are not compatible
[78]. Moreover, in online advertising, fairness can be measured at multiple different levels: at the level of
bids, at the level of audience reached, at the level of clicking users, etc. Fairness at the level of bids does
not imply fairness of the audience reached (see Theme 1); yet external auditors would measure which ad
is displayed—as was done for some ad platforms [107]—hence in terms of public image, that would be the
appropriate level to define fairness. Intimately, the above problem relates to the question of measuring
what is the relevant audience of an ad, which would define the label if one were to use the EO fairness
notion. This label is typically not available. We can explore three ways to overcome this issue. The first is
to find a sequential way to learn the label through users clicking on ads. The second and third options are
to focus in a first step on individual fairness, or on counterfactual fairness [81], which has many possible
different level of assumptions and was popularized in 2020 [82]. The notion of counterfactual is key
in causality [101]. A model is said counterfactually fair if its prediction does not change (too much) by
intervening on the sensitive attribute. Several works already propose ways of designing models that are
counterfactually fair [77, 114, 113]. This seems to be quite an interesting, but challenging direction to
follow.

Finally, an alternative direction would be to purse modeling the trade-off between privacy and fairness.
For instance, in some game theoretic models, users can choose the quantity of data that they reveal [64,
38], so that the objective functions integrate different levels of fairness/privacy. Then those models model
should be studied both in terms of equilibrium and in the online setup, with the objective of identifying
how the strategic privacy considerations affect the fairness-utility tradeoff.

3.3 Theme 3: Exploiting structure in online algorithms and learning problems

Our last research direction is somewhat transverse, with possible application to improving algorithms
in the first three themes. We explore how the underlying structure can be exploited, in the online and
learning problems considered before, to improve performance. Note that, in all these problems, we
will incorporate the fairness and privacy aspects even if they are somewhat transverse to the structure
considered.1 The following sections are illustrating examples on how hidden structure can be leveraged
in specific examples.

1One may worry that the structure added adds biases. This is typically fine because we control for fairness on the output directly,
but this may lead to a degradation of the benefit of adding structure.
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3.3.1 Leveraging structure in online matching

Finding large matchings in graphs is a longstanding problem with a rich history and many practical and
theoretical applications [92, 69, 29, 28]. Recall that given a graph G = (V ,E )—where V is a set of vertices
and E is a set of edges—, a matching M ⊂ E is a subset of edges such that each vertex belongs to at
most one edge e ∈M . In that context, a perfect matching M is a matching where each vertex v ∈ V is
associated to an edge e ∈M , and a maximum matching is a matching of maximum size (one can also
consider weights on edges). Here, we study an online setting, which is more adequate in applications such
as Internet advertising where ad impressions must be assigned to available ad slots [92, 41]. Consider a
bipartite graph, where V =U ∪V is the union of two disjoints sets. Nodes u ∈U are known beforehand,
whereas nodes v ∈V are discovered one at a time, along with the edges they belong to, and must be either
immediately matched to an available (i.e., unmatched yet) vertex u ∈U or discarded. Online bipartite
matching is relevant in two-sided markets besides ad allocations such as assigning tasks to workers [69].

A natural measure for the quality of an online matching algorithm is the “competitive ratio” (CR):
the ratio between the size of the created matching to the size of the optimal one [92]. The seminal work
[76] introduced an optimal algorithm for the adversarial case [32], that guarantees a CR of 1− 1

e ; but
focusing on a pessimistic worst-case. In practice, some relevant knowledge (either given a priori or
learned during the process) on the underlying structure of the problem can be leveraged. The focus
then shifted to models taking into account some type of stochasticity in the arrival model, mostly for
the i.i.d. model where arriving vertices v ∈ V are drawn from a fixed distribution D [72, 30, 60, 75, 87,
88]. The classical approach consists in optimizing the CR over the distribution D. Even in this seemingly
optimistic framework, however, it is now known that there is no hope for a CR of more than 0.823 [88].
Moreover, this generally leads to very large linear programs (LP).

A more recent approach restricts the distribution D over which the problem is optimized to classes of
graphs with an underlying stochastic structure. The benefit of this approach is two-fold: it gives hope for
higher competitive ratios, and for simpler algorithms. Experiments also proved that complex algorithms
optimized on D fared no better than simple greedy heuristics on “real-life” graphs [36]. A few results
along these lines show that is a promising path. For instance, [41] studied the problem on graphs where
each vertex has degree at least d and found a competitive ratio of 1− (1−1/d)d . On d-regular graphs,
[49] designed a 1−O(

√
logd/

p
d) competitive algorithm. [90] showed that greedy algorithms were highly

efficient on Erdös-Renyi random graphs, with a competitive ratio of 0.837 in the worst case. [27] showed
that in a specific market with two types of matching agents, the behavior of the matching algorithm
varies with the homogeneity of the market. Our goal here is to go beyond the independence assumption
underlying all these works.

Introducing correlation and inhomogeneity We will start by deriving and studying optimal online
matching strategies on widely studied classes of graphs that present simple inhomongeneity
or correlation structures (which are often present in applications). The stochastic block model [24]
is often used to generate graphs with an underlying community structure. It presents a simple corre-
lation structure: two vertices in the same community are more likely to have a common neighbors
than two vertices in different communities. Another focus point will be a generalized version of the
Erdös-Renyi model, where the inplace vertices u ∈U are divided into sets si , where u ∈ si generates
an edge with probability pi = ci

n . These two settings should give us a better understanding of how
heterogeneity and correlation affect the matching performance.

Deriving the competitive ratio implies to study the asymptotic size of maximum matchings in
random graphs. Two methods are usually used. The first and constructive one is the study of the
Karp-Sipser algorithm on the graph [33]. The second one involves the rich theory of graph weak
local convergence [34]. A straightforward application of the methods, however, requires the graph
to have independence properties; adapting them to graphs with a correlation structure will require
new ideas.

Configuration models and random geometric graphs A configuration model is described as follows (in
the bi-partite case). Each vertex u ∈U has a number of half-edges drawn for the same distribution
πU and each vertex v ∈ V has a number of half-edges drawn from πV (with the assumption that
the expected total numbers of half edges from U and V are the same). Then a vertex v ∈ V that
arrives in the sequential fashion has its half-edges “completed” by a (still free) half-edge of U . This
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is a standard way of creating random graphs with (almost) fixed distribution of degrees. Here the
question would simply be the competitive ratio of some greedy algorithm, whether the distributions
πU and πV are known beforehand or learned on the fly. An interesting variant of this problem
would be to assume the existence of a (hidden or not) geometric graph. Each u ∈U is drawn i.i.d in
Rd (say a Gaussian centered at 0) and similarly for v ∈ V . Then there is an edge between u and v
with a probability depending on the distance between them. Here again, interesting variants can
be explored depending on whether the distribution is known or not, and whether the locations of u
and/or v are observed or not.

Learning while matching In practical applications, the full stochastic structure of the graphs may not be
known beforehand. This begs the question: what will happen to the performance of the algorithms
if the graph parameters are learned while matching? In the generalized Erdös-Renyi graph, this
will correspond to learning the probability of generating edges. For the stochastic block model, the
matching algorithm will have to perform online community detection.

3.3.2 Exploiting side-information in sequential learning

We end with an open direction that may be relevant to many of the problems considered above: how to
use side-information to speed-up learning. In many sequential learning problems where one receives
feedback for each action taken, it is actually possible to deduce, for free, extra information from the
known structure of the problem. However, how to incorporate that information in the learning process is
often unclear. We describe it through two examples.

One-sided feedback in auctions In online ad auctions, the advertisers’ strategy is to bid in a compact
set of possible bids. After placing a bid, the advertiser learns whether they won the auction or
not; but even if they do not observe the bids of other advertisers, they can deduce for free some
extra information: if they win they learn that they would have won with any higher bid and if
they loose they learn that they would have lost with any lower bid [111, 45]. We will investigate
how to incorporate this extra information in RL procedures devised in Theme 1. One option is by
leveraging the Kaplan-Meier estimator.

Side-information in dynamic resource allocation problems and matching Generalizing the idea above,
one can observe side-information in many other problems [26]. Typically, in resource allocation
problems (e.g., how to allocate a budget of ad impressions), one can leverage a monotony property:
one would not have gained more by allocating less. Similarly, in matching with unknown weights,
it is often possible upon doing a particular match to learn the weight of other potential pairs.

4 Application domains

4.1 Typical problems and use-cases

In FAIRPLAY, we focus mainly on problems involving learning that relate to Internet applications. We
will tackle generic problems (in particular auctions and matching) with different applications in mind,
in particular some applications in the context of Criteo’s business but also others. A crucial property of
those applications is the aforementioned ethical concerns, namely fairness and/or privacy. The team was
shaped and motivated by several such use-cases, from more practical (with possible short or middle term
applications in particular in Criteo products) to more theoretical and exploratory ones. We describe first
here the main types of generic problems and use-cases considered in this context.

Auctions [80] There are many different types of auctions that an agent can use to sell one or several
items in her possession to n potential buyers. This is the typical way in which spots to place ads are sold
to potential advertisers. In case of a single item, the seller ask buyers to bid bi ∈ [0,1] on the item and the
winner of the item is designating via an “allocation rule” that maps bids b ∈ [0,1]n to a winner in {0, . . . ,n}
(0 refers to the no winner case). Then the payment rule p : [0,1]n → [0,1]n indicates the amount of money
that each bidder must pay to the seller. Auctions are specific cases of a broader family of “mechanisms”.
Knowing the allocation and payment rules, bidders have incentives to bid strategically. Different auctions
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(or rules) end up with different revenue to the seller, who can choose the optimal rules. This is rather
standard in economics, but these interactions become way more intricate when repeated over time (as in
the online ad market [96]), when several items are sold at the same time (for instance in bundles), when
the buyers have partial information about the actual value of the item [111] and/or reciprocally when the
seller does not know the value distributions of the buyer. In that case, she might be tempted to try to learn
them from the previous bids in order to design the optimal mechanism. Knowing this, the bidders have
incentives to long term strategic behaviors, ending up in a quite complicated game between learning
algorithms [97]. This setting of interacting algorithms is actually of interest by itself, irrespectively of ad
auctions. It is noteworthy also that traditional auction mechanisms do not guarantee any fairness notion
and that the literature on fixing that (for applications where it matters) is only nascent [44, 95, 48, 70].

Matching [79, 94] A matching is nothing more than a bi-partite graph between some agents (patients,
doctors, students) and some resources (respectively, organs, hospital, schools). The objective is to figure
out what is the “optimal” matching for a given criterion. Interestingly, there are two different—and
mostly unrelated yet—concepts of “good matching”. The first one is called “stable” in the sense that each
agent expresses preferences over resources (and vice-versa) and be such that no couple (agent-resource)
that are un-paired would prefer to be paired together than with their current paired resource/agent.
In the other concept of matching, agents and resources are described by some features (say vectors in
Rd , denoted by an for agents and rm for resources) and pairing an to rm incurs a cost of c(an ,rm), for
some a given function c : (Rd )2 → [0,1]. The objective is then to minimize the total cost of the matching∑

n c(an ,rσ(n)), where σ(n) is the resource allocated to agent n.
Matching is used is many different applications such as university admission (e.g., in Parcoursup).

Notice that strategic interactions arise in matching if agents or resources can disclose their prefer-
ences/features to each other. Learning is also present as soon as not everything is known, e.g., the
preferences or costs. Many applications of matching (again, such as college admission) are typical ex-
amples where fairness and privacy are of utmost importance. Finally, matching is also at the basis of
several Internet applications and Criteo products, for instance to solve the problem of matching a given
ad budget to fixed ad slots.

Ethical notions in those use-cases In both problems, individual users are involved and there is a clear
need to consider fairness and privacy. However, the precise motivation and instantiation of these notions
depends on the specific use-case. In fact, it is often part of the research question to decide which are the
most relevant fairness and privacy notions, as mentioned in Section 2.1. We will throughout the team’s
life put an important focus on this question, as well as on the question of the impact of the chosen notion
on performance.

4.2 Application areas

In FAIRPLAY, we consider both applications to Criteo use-cases (online advertisement) and other applica-
tions (with other appropriate partners).

4.2.1 Online advertisement

Online advertising offers an application area for all of the research themes of FAIRPLAY; which we
investigate primarily with Criteo.

First, online advertising is a typical application of online auctions and we consider applications of
the work on auctions to Criteo use-cases, in particular the work on advertiser-centric fairness where the
advertiser is Criteo. From a practical point of view, privacy will have to be enforced in such applications.
For instance, when information is provided to advertisers to define audiences or to visualize the per-
formance of their campaigns (insights) there is a possibility of leaking sensitive information on users.
In particular, excellent proxies on protected attributes should probably not be leaked to advertisers, or
transformed before (e.g., with the differential privacy techniques). This is therefore also an application of
the fairness-vs-privacy research thread.

Note that, even before considering those questions, the first very important theoretical question is to
determine what is the more appropriate definition of fairness (as there are, as mentioned above, many
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different variations) in those applications. We recall that it is well-known that usual fairness metrics
are not compatible [78]. Moreover, in online advertising, fairness can be measured in term of bidding
and recommendation or in term of what ads are actually displayed. Being fair on bidding does not
lead to fairness in ads displaying [95], mainly because of the other advertising actors. While fairness
in bidding and/or recommendation seem the most important because they only rely on our models,
external auditors can easily get data on which ads we display.

We will also investigate applications of fair matching techniques to online advertsing and to Criteo
matching products—namely retargeting (personalized ads displayed on a website) and retail media
(sponsored products on a merchant website). Indeed, one of Criteo major products, retail media can be
cast as an online matching problem. On a given e-commerce website (say, target), several advertisers—
currently brands—are running campaigns so that their products are “sponsored” or “boosted”, i.e., they
appear higher on the list of results of a given query. The budgets (from a Criteo perspective) must be
cleared (daily, monthly or annually). This constraint is easy thanks to the high traffic, but the main issue
is that, without control/pacing/matching in times, the budget is depleted after only a few hours on a
relatively low quality traffic (i.e., users that generate few conversions hence a small ROI for the advertisers).
The question is therefore whether an individual user should be matched or not to boosted/sponsored
products at a given time so that the ROI of the advertisers is maximized, the campaign budget is depleted
and the retailer does not suffer too much from this active corruption of its organic results. Those are
three different and concurrent objectives (for respectively the advertisers, Criteo and the retailers) that
must be somehow conciliated. This problem (and more generally this type of problems) offers a rich
application area to the FAIRPLAY research program. Indeed, it is crucial to ensure that fairness and
privacy are respected. On the other hand, users, clicks, conversion arrival are not “worst case”. They
rather follow some complicated—but certainly learnable—process; which allows applying our results on
exploiting structure.

4.2.2 “Physical matching”

We investigate a number of other applications of matching: assignment of daycare slots to kids, mutation
of professors to different academies, assignment of kidneys to patients, assignment of job applicants
to jobs. In all these applications, there are crucial constraints of fairness that complicate the matching.
We leverage existing partnership with the CNAF, the French Ministry of Education and the Agence de la
biomédecine in Paris for the first three applications; for the last we will consolidate a nascent partnership
with Pole Emploi and LinkedIn.

5 Highlights of the year

The team was officially created on March 1st, 2022. This led a joint press release broadcasted on the side
of both Criteo and Inria as the team is the first (and main, for now) element of the broader Inria-Criteo
collaboration.

6 New results

6.1 Matching, allocation, and auctions from a game theory perspective

Participants: Vianney Perchet, Julien Combe, Clément Calauzènes.

A vast part of the Internet economy is powered by advertising, much of which is sold at auction. A
key question for sellers is how to optimize the auction mechanism they use. Bidders, conversely, try to
optimize their bidding strategy. Incentive compatible auctions are a sweet spot: theory predicts that it is
in the bidders’ interest to bid their values, making it relatively easy for them to bid optimally. However, as
they learn bidders’ value distributions, sellers can progressively optimize their mechanism and extract
more revenue from bidders. In [5], we show that, in sharp contrast with most results in the academic

https://www.inria.fr/sites/default/files/2022-04/2203_CP-Criteo-Inria.pdf
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literature, bidders should not be bidding their value in incentive compatible auctions when there is no
commitment from the seller about using a fixed auction. We provide a mix of theoretical and numerical
results and practical methods that can easily be deployed in practice.

In [15], we describe an efficient algorithm to compute solutions for the general two-player Blotto game
on n battlefields with heterogeneous values. While explicit constructions for such solutions have been
limited to specific, largely symmetric or homogeneous, setups, this algorithmic resolution covers the most
general situation to date: value-asymmetric game with asymmetric budget. The proposed algorithm rests
on recent theoretical advances regarding Sinkhorn iterations for matrix and tensor scaling. An important
case which had been out of reach of previous attempts is that of heterogeneous but symmetric battlefield
values with asymmetric budget. In this case, the Blotto game is constant-sum so optimal solutions exist,
and our algorithm samples from an ε-optimal solution in time Õ(n2 + ε−4), independently of budgets
and battlefield values. In the case of asymmetric values where optimal solutions need not exist but Nash
equilibria do, our algorithm samples from an ε-Nash equilibrium with similar complexity but where
implicit constants depend on various parameters of the game such as battlefield values.

In [2], we investigate the problem of reallocation with priorities where one has to assign objects or
positions to individuals. Agents can have an initial ownership over an object. Each object has a priority
ordering over the agents. In this framework, there is no mechanism that is both individually rational (IR)
and stable, i.e. has no blocking pairs. Given this impossibility, an alternative approach is to compare
mechanisms based on the blocking pairs they generate. A mechanism has minimal envy within a set of
mechanisms if there is no other mechanism in the set that always leads to a set of blocking pairs included
in the one of the former mechanism. Our main result shows that the modified Deferred Acceptance
mechanism (Guillen and Kesten in Int Econ Rev 53(3):1027–1046, 2012), is a minimal envy mechanism in
the set of IR and strategy-proof mechanisms. We also show that an extension of the Top Trading Cycle
(Karakaya et al. in J Econ Theory 184:104948, 2019) mechanism is a minimal envy mechanism in the set of
IR, strategy-proof and Pareto-efficient mechanisms. These two results extend the existing ones in school
choice.

In the interdiscplinary paper [3], we discuss (in french) the perspectives of the new bioethics law from
2021, which opens up new ways of cross-donation of kidneys.

6.2 Online learning

Participants: Patrick Loiseau, Vianney Perchet.

In [4], we describe an approximate dynamic programming (ADP) approach to compute approxima-
tions of the optimal strategies and of the minimal losses that can be guaranteed in discounted repeated
games with vector-valued losses. Among other applications, such vector-valued games prominently arise
in the analysis of worst-case regret in repeated decision making in unknown environments, also known as
the adversarial online learning framework. At the core of our approach is a characterization of the lower
Pareto frontier of the set of expected losses that a player can guarantee in these games as the unique fixed
point of a set-valued dynamic programming operator. When applied to the problem of worst-case regret
minimization with discounted losses, our approach yields algorithms that achieve markedly improved
performance bounds compared with off-the-shelf online learning algorithms like Hedge. These results
thus suggest the significant potential of ADP-based approaches in adversarial online learning.

The workhorse of machine learning is stochastic gradient descent. To access stochastic gradients, it is
common to consider iteratively input/output pairs of a training dataset. Interestingly, it appears that one
does not need full supervision to access stochastic gradients, which is the main motivation of this paper.
After formalizing the "active labeling" problem, which focuses on active learning with partial supervision,
we provide in [7] a streaming technique that provably minimizes the ratio of generalization error over the
number of samples. We illustrate our technique in depth for robust regression.

Potential buyers of a product or service, before making their decisions, tend to read reviews written
by previous consumers. In [6], we consider Bayesian consumers with heterogeneous preferences, who
sequentially decide whether to buy an item of unknown quality, based on previous buyers’ reviews. The
quality is multi-dimensional and may occasionally vary over time; the reviews are also multi-dimensional.
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In the simple uni-dimensional and static setting, beliefs about the quality are known to converge to its
true value. Our paper extends this result in several ways. First, a multi-dimensional quality is considered,
second, rates of convergence are provided, third, a dynamical Markovian model with varying quality is
studied. In this dynamical setting the cost of learning is shown to be small.

6.3 Privacy

Participants: Vianney Perchet, Patrick Loiseau.

Strategic information is valuable either by remaining private (for instance if it is sensitive) or, on the
other hand, by being used publicly to increase some utility. These two objectives are antagonistic and
leaking this information by taking full advantage of it might be more rewarding than concealing it. Unlike
classical solutions that focus on the first point, in [1], we consider instead agents that optimize a natural
trade-off between both objectives. We formalize this as an optimization problem where the objective
mapping is regularized by the amount of information revealed to the adversary (measured as a divergence
between the prior and posterior on the private knowledge). Quite surprisingly, when combined with
the entropic regularization, the Sinkhorn loss naturally emerges in the optimization objective, making it
efficiently solvable via better adapted optimization schemes. We empirically compare these different
techniques on a toy example and apply them to preserve some privacy in online repeated auctions.

Contextual bandit algorithms are widely used in domains where it is desirable to provide a person-
alized service by leveraging contextual information, that may contain sensitive information that needs
to be protected. Inspired by this scenario, we study in [10] the contextual linear bandit problem with
differential privacy (DP) constraints. While the literature has focused on either centralized (joint DP) or
local (local DP) privacy, we consider the shuffle model of privacy and we show that is possible to achieve
a privacy/utility trade-off between JDP and LDP. By leveraging shuffling from privacy and batching from
bandits, we present an algorithm with regret bound Õ(T 2/3/ε1/3), while guaranteeing both central (joint)
and local privacy. Our result shows that it is possible to obtain a trade-off between JDP and LDP by
leveraging the shuffle model while preserving local privacy.

Contextual bandit is a general framework for online learning in sequential decision-making problems
that has found application in a wide range of domains, including recommendation systems, online adver-
tising, and clinical trials. A critical aspect of bandit methods is that they require to observe the contexts
–i.e., individual or group-level data– and rewards in order to solve the sequential problem. The large
deployment in industrial applications has increased interest in methods that preserve the users’ privacy.
In [11], we introduce a privacy-preserving bandit framework based on homomorphic encryptionwhich
allows computations using encrypted data. The algorithm only observes encrypted information (contexts
and rewards) and has no ability to decrypt it. Leveraging the properties of homomorphic encryption,
we show that despite the complexity of the setting, it is possible to solve linear contextual bandits over
encrypted data with a Õ(d

p
T ) regret bound in any linear contextual bandit problem, while keeping data

encrypted.
In [16], we consider the problem of linear regression from strategic data sources with a public good

component, i.e., when data is provided by strategic agents who seek to minimize an individual provision
cost for increasing their data’s precision while benefiting from the model’s overall precision. In contrast
to previous works, our model tackles the case where there is uncertainty on the attributes characterizing
the agents’ data – a critical aspect of the problem when the number of agents is large. We provide a
characterization of the game’s equilibrium, which reveals an interesting connection with optimal design.
Subsequently, we focus on the asymptotic behavior of the covariance of the linear regression parameters
estimated via generalized least squares as the number of data sources becomes large. We provide upper
and lower bounds for this covariance matrix and we show that, when the agents’ provision costs are
superlinear, the model’s covariance converges to zero but at a slower rate relative to virtually all learning
problems with exogenous data. On the other hand, if the agents’ provision costs are linear, this covariance
fails to converge. This shows that even the basic property of consistency of generalized least squares
estimators is compromised when the data sources are strategic.
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6.4 Fairness

Participants: Patrick Loiseau.

To better understand discriminations and the effect of affirmative actions in selection problems (e.g.,
college admission or hiring), a recent line of research proposed a model based on differential variance.
This model assumes that the decision-maker has a noisy estimate of each candidate’s quality and puts
forward the difference in the noise variances between different demographic groups as a key factor to
explain discrimination. The literature on differential variance, however, does not consider the strategic
behavior of candidates who can react to the selection procedure to improve their outcome, which is
well-known to happen in many domains. In [9], we study how the strategic aspect affects fairness in
selection problems. We propose to model selection problems with strategic candidates as a contest game:
A population of rational candidates compete by choosing an effort level to increase their quality. They
incur a cost-of-effort but get a (random) quality whose expectation equals the chosen effort. A Bayesian
decision-maker observes a noisy estimate of the quality of each candidate (with differential variance)
and selects the fraction α of best candidates based on their posterior expected quality; each selected
candidate receives a reward S. We characterize the (unique) equilibrium of this game in the different
parameters’ regimes, both when the decision-maker is unconstrained and when they are constrained to
respect the fairness notion of demographic parity. Our results reveal important impacts of the strategic
behavior on the discrimination observed at equilibrium and allow us to understand the effect of imposing
demographic parity in this context. In particular, we find that, in many cases, the results contrast with
the non-strategic setting. We also find that, when the cost-of-effort depends on the demographic group
(which is reasonable in many cases), then it entirely governs the observed discrimination (i.e., the noise
becomes a second-order effect that does not have any impact on discrimination). Finally we find that
imposing demographic parity can sometimes increase the quality of the selection at equilibrium; which
surprisingly contrasts with the optimality of the Bayesian decision-maker in the non-strategic case. Our
results give a new perspective on fairness in selection problems, relevant in many domains where strategic
behavior is a reality.

In recent years, it has become clear that rankings delivered in many areas need not only be useful to
the users but also respect fairness of exposure for the item producers.We consider the problem of finding
ranking policies that achieve a Pareto-optimal tradeoff between these two aspects. Several methods
were proposed to solve it; for instance a popular one is to use linear programming with a Birkhoffvon
Neumann decomposition. These methods, however, are based on a classical Position Based exposure
Model (PBM), which assumes independence between the items (hence the exposure only depends on
the rank). In many applications, this assumption is unrealistic and the community increasingly moves
towards considering other models that include dependences, such as the Dynamic Bayesian Network
(DBN) exposure model. For such models, computing (exact) optimal fair ranking policies remains an
open question. In [13], we answer this question by leveraging a new geometrical method based on the
so-called expohedron proposed recently for the PBM (Kletti et al., WSDM’22).We lay out the structure
of a new geometrical object (the DBN-expohedron), and propose for it a Carathéodory decomposition
algorithm of complexity O(n3), where n is the number of documents to rank. Such an algorithm enables
expressing any feasible expected exposure vector as a distribution over at most n rankings; furthermore
we show that we can compute the whole set of Pareto-optimal expected exposure vectors with the same
complexity O(n3). Our work constitutes the first exact algorithm able to efficiently find a Pareto-optimal
distribution of rankings. It is applicable to a broad range of fairness notions, including classical notions
of meritocratic and demographic fairness. We empirically evaluate our method on the TREC2020 and
MSLR datasets and compare it to several baselines in terms of Paretooptimality and speed.

Statistical discrimination results when a decision-maker observes an imperfect estimate of the quality
of each candidate dependent on which demographic group they belong to. Prior literature is limited to
simple selection problems with a single decision-maker. In [8], we initiate the study of statistical discrimi-
nation in matching, where multiple decision-makers are simultaneously facing selection problems from
the same pool of candidates (e.g., colleges admitting students). We propose a model where two colleges
observe noisy estimates of each candidate’s quality. The estimation noise controls a new key feature of
the problem, namely the correlation between the estimates of the two colleges: if the noise is high, the
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correlation is low and vice-versa. We consider stable matchings in an infinite population of students. We
show that a lower correlation (i.e., higher estimation noise) for one of the groups worsens the outcome
for all groups. Further, the probability that a candidate is assigned to their first choice is independent of
their group. In contrast, the probability that a candidate is assigned to a college at all depends on their
group, revealing the presence of discrimination coming from the correlation effect alone. Somewhat
counter-intuitively the group that is subjected to more noise is better off.

Discrimination in machine learning often arises along multiple dimensions (a.k.a. protected at-
tributes); it is then desirable to ensure intersectional fairness-i.e., that no subgroup is discriminated
against. It is known that ensuring marginal fairness for every dimension independently is not sufficient
in general. Due to the exponential number of subgroups, however, directly measuring intersectional
fairness from data is impossible. In [14], our primary goal is to understand in detail the relationship
between marginal and intersectional fairness through statistical analysis. We first identify a set of suf-
ficient conditions under which an exact relationship can be obtained. Then, we prove bounds (easily
computable through marginal fairness and other meaningful statistical quantities) in highprobability on
intersectional fairness in the general case. Beyond their descriptive value, we show that these theoretical
bounds can be leveraged to derive a heuristic improving the approximation and bounds of intersectional
fairness by choosing, in a relevant manner, protected attributes for which we describe intersectional
subgroups. Finally, we test the performance of our approximations and bounds on real and synthetic
data-sets.

7 Partnerships and cooperations

7.1 International research visitors

7.1.1 Visits of international scientists

Other international visits to the team

A. Rohde

Status Professor

Institution of origin: Freiburg University

Country: Germany

Dates: Octobre 23-27, 2022

Context of the visit: Seminar talk and discussions

7.1.2 Visits to international teams

Research stays abroad

Cristina Butucea

Visited institution: Nottingham University

Country: UK

Dates: July 3-8, 2022

Context of the visit: Research, discussions
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7.2 National initiatives
FairPlay (ANR JCJC)

Participants: Patrick Loiseau.

Title: FairPlay: Fair algorithms via game theory and sequential learning

Partner Institution(s): • Inria

Date/Duration: 2021-2025 (4 years)

Additionnal info/keywords: ANR JCJC project, 245k euros. Fairness, matching, auctions.

Explainable and Responsible AI (MIAI chair)

Participants: Patrick Loiseau.

Title: Explainable and Responsible AI chair of the MIAI @ Grenoble Alpes institute

Partner Institution(s): • Univ. Grenoble Alpes

Date/Duration: 2019-2023 (4 years)

Additionnal info/keywords: Chair of the MIAI @ Grenoble Alpes institute co-held by Patrick Loiseau.
Fairness, privacy.

BOLD (ANR)

Participants: Vianney Perchet.

Title: BOLD: Beyond Online Learning for Better Decisions

Partner Institution(s): • Crest, Genes

Date/Duration: 2019-2024 (4.5 years)

Additionnal info/keywords: ANR project, 270k euros. online learning, optimization, bandits.

8 Dissemination

8.1 Promoting scientific activities

8.1.1 Scientific events: organisation

General chair, scientific chair

Participants: Vianney Perchet.

Title: Hi!Paris Symposium: Hi! PARIS Symposium on AI and Society

Partner Institution(s): • Crest, Genes

Date/Duration: June 2022
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Member of the organizing committees

Participants: Vianney Perchet.

Title: ALT: Algorithmic Learning Theory

Partner Institution(s): • Crest, Genes

Date/Duration: April 2022

Participants: Cristina Butucea.

Title: Meetings in Mathematical Statistics, Luminy, Marseille

Partner Institution(s): • Crest, Genes; Ecole Centrale Marseille, CIRM

Date/Duration: December 2022

8.1.2 Scientific events: selection

Member of the conference program committees

Patrick Loiseau: ICML, ECML-PKDD, The Web Conf, DE

Vianney Perchet: NeurIPS, ICLR, ICML, COLT, ALT, IJCAI

8.1.3 Journal

Member of the editorial boards

Vianney Perchet: Operation Resarch, Operation Research Letters, Journal of Machine Learning Research,
Journal of Dynamics and Games, SIAM data-science

Cristina Butucea: Annals of Statistics, Bernoulli

Reviewer - reviewing activities

Patrick Loiseau: Lato Sensu : Revue de la Société de philosophie des sciences, IEEE Open Journal of the
Communications Society, Games and Economics Behavior, Statistics and Probability Letters

Julien Combe: Econometrica, Management Science, American Economic Review, Journal of Political
Economicy, Games and Economic Behavior, Operations Research Forum, Theoretical Economics,
Revue d’Economie Politique

Vianney Perchet: Annals of Statistics, Mathematics of Operation Research, Journal of the ACM

Matthieu Lerasle Annals of statistics, Journal of the European Mathematical Society, Probability and Re-
lated Fields, Journal of Machine Learning Research, Journal of the American Statistical Association.
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8.1.4 Invited talks

Vianney Perchet: IP Paris Optimization Meeting, Statistical inference and convex optimization, FILO-
FOCS 2022, Dynamic Matching and Queueing Workshop, Summer Research Institute 2022 Learning:
Optimization and Stochastics, Economics and Computation, Thirty-ninth International Conference
on Machine Learning, Journees MAS 2022, Learning in Luminy Workshop, Statistic Seminar of
Sorbonne University,

Julien Combe: Boston College Micro seminar (online), Lausanne Matching and Market Design Workshop
2022 at University of Lausanne, 12th Conference Economic Design at University of Padova, EEA-
ESEM 2022 at University of Bocconi, 2022 Transatlantic Theory Workshop at Kellog Business School,
Stanford GSB theory seminar

Matthieu Lerasle Journées Statistiques du Sud, Journées ALEA, Colloquium Université Rouen, Séminaire
Université du Luxembourg, Séminaire Geneva School of Economics and Management.

Cristina Butucea Université Paul Sabatier Toulouse, Collegio Carlo Alberto Torino, IMS London, ICSA
2021 postponed to 2022 (visio) Conference Xian University China, Inverse Problems: From experi-
mental data to models and back University of Potsdam, Workshop Mathematical Statistics in the
Information Age Rostock.

Hugo Richard Séminaire Laboratoire Jean Kuntzmann (Grenoble).

8.1.5 Scientific expertise

Vianney Perchet: Expert for the Tenure committee of Tufts University

Patrick Loiseau: External expert for the evaluation of startups to enter in incubator Agoranov, Expert for
the F.R.S.-FNRS, Belgium

Cristina Butucea: Reviewer for tenure committee Hamburg University, hiring committee Professor
Université de Toulouse

8.2 Teaching - Supervision - Juries

8.2.1 Supervision

Patrick Loiseau: PhD students: Rémi Castera, Mathieu Molina, Till Kletti, Vitalii Emelianov; postdocs:
Felipe Garrido Lucero, Simon Finster

Vianney Perchet: PhD students: Sasila Ilandarideva, Flore Sentenac, Corentin Odic, Come Fiegel, Maria
Cherifa, Mathieu Molina, Ziyad Benomar, Mike Liu, Hafedh El Ferchichi. postdocs: Felipe Garrido
Lucero, Hugo Richard, Nadav Merlis

Matthieu Lerasle PhD Students: Clara Carlier, Hugo Chardon, Hafedh El Ferchichi.

Cristina Butucea PhD students: Clément Hardy, Nayel Bettache, Postdoc: Y. Issartel

8.2.2 Juries

Patrick Loiseau: PhD jury V. Grari (reviewer), mid-term Omar Boufous, Carlos Pinzon

Vianney Perchet: PhD jury: J. Achddou (reviewer), D. Beaudry, A. Bismuth, C.-S. Gauthier (reviewer), H.
Dakdouk (reviewer), S. Gaucher, F. Hu, G. Rizk, P. Muller, HDR jury: A. Simonetto (reviewer)

Matthieu Lerasle PhD Jury: S. Arradi-Alaoui (reviewer), J. Cheng. HDR Jury: P. Mozharovskyi, A, Sabourin
(internal reviewer).

Cristina Butucea PhD Jury: O. Collier; HDR Jury (reviewer) N. Verzelen
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8.3 Teaching

ENSAE: Advanced Machine Learning (Vianney Perchet) Third year, lectures

Theoretical Foundations of Machine Learning (Vianney Perchet) Second year, lectures

Stopping time and online algorithms (Vianney Perchet) Third year, lectures

Statistics (Matthieu Lerasle) 1st and second year

Nonparametric Statistics (Cristina Butucea) 3rd year, M2

Mathematical Foundations of Probabilities (Cristina Butucea) 1st year

Ecole Polytechnique: INF421: design and analysis of algorithms (Patrick Loiseau). Second-year level,
PCs.

INF581: Advanced Machine Learning and Autonomous Agents (Patrick Loiseau). Third-year/M1
level, lectures and labs.

ECO301: Advanced microeconomics (Julien Combe). Third-year bachelor of science in Mathe-
matics and Economics, Lecture and tutorials.

MIE65: Advanced Microeconomics : design and study of markets (Julien Combe). M2 PhD track
level, lecture.

ECO361: Introduction to economics (Julien Combe). First-year cycle polytechnicien, PCs

MAP433: Statistics (Matthieu Lerasle). First-year cycle polytechnicien, PCs.

MAP576: Learning Theory (Matthieu Lerasle). Second-year cycle polytechnicien, Lecture.

Université Paris-Saclay: High Dimensional Probability (Matthieu Lerasle). Master 2

ENPC: High Dimensional statistics (Hugo Richard). Third-year/M1 level, Lectures and labs.

PSL: Introduction to machine learning (Hugo Richard). L3 level, Lectures and labs.

9 Scientific production

9.1 Publications of the year

International journals
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ce/hal-03951419.
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51678.
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International peer-reviewed conferences

[6] E. Boursier, V. Perchet and M. Scarsini. ‘Social Learning in Non-Stationary Environments’. In:
alt2022 - 33rd International Conference on Algorithmic Learning Theory. Paris, France, 2022. URL:
https://hal.science/hal-03089798.

[7] V. Cabannes, F. S. Bach, V. Perchet and A. Rudi. ‘Active Labeling: Streaming Stochastic Gradients’.
In: NeurIPS 2022 - 36th Conference on Neural Information Processing Systems. New Orleans,
United States, 28th Nov. 2022. URL: https://hal.inria.fr/hal-03806666.

[8] R. Castera, P. Loiseau and B. Pradelski. ‘Statistical Discrimination in Stable Matchings’. In: ACM
Conference on Economics and Computation (EC’22). Boulder, Colorado, United States, 11th July
2022. DOI: 10.1145/3490486.3538364. URL: https://hal.science/hal-03672270.

[9] V. Emelianov, N. Gast and P. Loiseau. ‘Fairness in Selection Problems with Strategic Candidates’.
In: EC 2022 - ACM Conference on Economics and Computation. Boulder, Colorado, United States:
ACM, 11th July 2022, pp. 1–29. DOI: 10.1145/3490486.3538287. URL: https://hal.inria.fr
/hal-03677966.

[10] E. Garcelon, K. Chaudhuri, V. Perchet and M. Pirotta. ‘Privacy Amplification via Shuffling for Linear
Contextual Bandits’. In: The 33rd International Conference on Algorithmic Learning Theory. Paris,
France, 11th Dec. 2021. URL: https://hal.science/hal-03951300.

[11] E. Garcelon, V. Perchet and M. Pirotta. ‘Encrypted Linear Contextual Bandit’. In: 25th International
Conference on Artificial Intelligence and Statistics. Valence, Spain, 2022. URL: https://hal.sci
ence/hal-03951440.

[12] E. Gkiouzepi, A. Andreou, O. Goga and P. Loiseau. ‘Collaborative Ad Transparency: Promises and
Limitations’. In: 44th IEEE Symposium on Security and Privacy. San Francisco, United States, 2023.
URL: https://hal.inria.fr/hal-03916393.

[13] T. Kletti, J.-M. Renders and P. Loiseau. ‘Pareto-Optimal Fairness-Utility Amortizations in Rankings
with a DBN Exposure Model’. In: SIGIR 2022 - 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval. Madrid, Spain: ACM, 11th July 2022, pp. 1–12.
DOI: 10.1145/3477495.3532036. URL: https://hal.inria.fr/hal-03691743.

[14] M. Molina and P. Loiseau. ‘Bounding and Approximating Intersectional Fairness through Marginal
Fairness’. In: NeurIPS 2022 - 36th Conference on Neural Information Processing Systems. New
Orleans, United States, 28th Nov. 2022, pp. 1–32. URL: https://hal.inria.fr/hal-03827777.

[15] V. Perchet, P. Rigollet and T. L. Gouic. ‘An algorithmic solution to the Blotto game using multi-
marginal couplings’. In: The Twenty-Third ACM Conference on Economics and Computation.
Boulder (CO), France, 11th July 2022. URL: https://hal.inria.fr/hal-03941399.

[16] B. Roussillon, N. Gast, P. Loiseau and P. Mertikopoulos. ‘Asymptotic Degradation of Linear Re-
gression Estimates with Strategic Data Sources’. In: ALT 2022 - 33rd International Conference on
Algorithmic Learning Theory. Paris, France, 29th Mar. 2022, pp. 1–31. URL: https://hal.univ-g
renoble-alpes.fr/hal-03593516.

Reports & preprints

[17] E. Boursier and V. Perchet. A survey on multi-player bandits. 29th Nov. 2022. URL: https://hal.i
nria.fr/hal-03941302.

[18] C. Butucea, J.-F. Delmas, A. Dutfoy and C. Hardy. OFF-THE-GRID LEARNING OF SPARSE MIX-
TURES FROM A CONTINUOUS DICTIONARY. 28th June 2022. URL: https://hal.science/hal
-03707465.

[19] C. Butucea, J.-F. Delmas, A. Dutfoy and C. Hardy. OFF-THE-GRID PREDICTION AND TESTING
FOR MIXTURES OF TRANSLATED FEATURES. 2nd Dec. 2022. URL: https://hal.science/hal-
03880134.

[20] C. Butucea, J.-F. Delmas, A. Dutfoy and C. Hardy. SIMULTANEOUS OFF-THE-GRID LEARNING OF
MIXTURES ISSUED FROM A CONTINUOUS DICTIONARY. 26th Oct. 2022. URL: https://hal.sc
ience/hal-03831208.

https://hal.science/hal-03089798
https://hal.inria.fr/hal-03806666
https://doi.org/10.1145/3490486.3538364
https://hal.science/hal-03672270
https://doi.org/10.1145/3490486.3538287
https://hal.inria.fr/hal-03677966
https://hal.inria.fr/hal-03677966
https://hal.science/hal-03951300
https://hal.science/hal-03951440
https://hal.science/hal-03951440
https://hal.inria.fr/hal-03916393
https://doi.org/10.1145/3477495.3532036
https://hal.inria.fr/hal-03691743
https://hal.inria.fr/hal-03827777
https://hal.inria.fr/hal-03941399
https://hal.univ-grenoble-alpes.fr/hal-03593516
https://hal.univ-grenoble-alpes.fr/hal-03593516
https://hal.inria.fr/hal-03941302
https://hal.inria.fr/hal-03941302
https://hal.science/hal-03707465
https://hal.science/hal-03707465
https://hal.science/hal-03880134
https://hal.science/hal-03880134
https://hal.science/hal-03831208
https://hal.science/hal-03831208


24 Inria Annual Report 2022

[21] C. Fiegel, P. Ménard, T. Kozuno, R. Munos, V. Perchet and M. Valko. Adapting to game trees in
zero-sum imperfect information games. 23rd Dec. 2022. URL: https://hal.inria.fr/hal-039
41364.

[22] H. Richard, F. Sentenac, C. Odic, M. Molina and V. Perchet. Static Scheduling with Predictions
Learned through Efficient Exploration. 31st May 2022. URL: https://hal.inria.fr/hal-0394
1374.

9.2 Cited publications

[23] ‘24 CFR § 100.75 - Discriminatory advertisements, statements and notices.’ https://www.law.c
ornell.edu/cfr/text/24/100.75.

[24] E. Abbe. ‘Community detection and stochastic block models: recent developments’. In: The
Journal of Machine Learning Research 18.1 (2017), pp. 6446–6531.

[25] M. Ali, P. Sapiezynski, M. Bogen, A. Korolova, A. Mislove and A. Rieke. ‘Discrimination through
optimization: How Facebook’s ad delivery can lead to skewed outcomes’. In: CSCW. 2019.

[26] N. Alon, N. Cesa-Bianchi, O. Dekel and T. Koren. ‘Online learning with feedback graphs: Beyond
bandits’. In: Annual Conference on Learning Theory. Vol. 40. Microtome Publishing. 2015.

[27] I. Ashlagi, M. Burq, P. Jaillet and V. Manshadi. ‘On matching and thickness in heterogeneous
dynamic markets’. In: Operations Research 67.4 (2019), pp. 927–949.

[28] I. Ashlagi, P. Jaillet and V. H. Manshadi. Kidney Exchange in Dynamic Sparse Heterogenous Pools.
2013. arXiv: 1301.3509 [cs.DS].

[29] P. Awasthi and T. Sandholm. ‘Online stochastic optimization in the large: Application to kidney
exchange’. In: Twenty-First International Joint Conference on Artificial Intelligence. 2009.

[30] B. Bahmani and M. Kapralov. ‘Improved bounds for online stochastic matching’. In: European
Symposium on Algorithms. Springer. 2010, pp. 170–181.

[31] E. del Barrio, F. Gamboa, P. Gordaliza and J.-M. Loubes. ‘Obtaining fairness using optimal transport
theory’. In: arXiv:1806.03195. 2018, pp. 1–25.

[32] B. Birnbaum and C. Mathieu. ‘On-line bipartite matching made simple’. In: Acm Sigact News 39.1
(2008), pp. 80–87.

[33] B. Bollobas and G. Brightwell. ‘The width of random graph orders’. In: The Mathematical Scientist
20 (Jan. 1995).

[34] C. Bordenave, M. Lelarge and J. Salez. Matchings on infinite graphs. 2011. arXiv: 1102.0712
[math.PR].

[35] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University
Presss, 1998.

[36] A. Borodin, C. Karavasilis and D. Pankratov. An Experimental Study of Algorithms for Online
Bipartite Matching. 2018. arXiv: 1808.04863 [cs.DS].

[37] E. Boursier and V. Perchet. ‘SIC-MMAB: Synchronisation Involves Communication in Multiplayer
Multi-Armed Bandits’. In: arXiv:1809.08151. 2018, pp. 1–31.

[38] E. Boursier and V. Perchet. ‘Utility/Privacy Trade-off through the lens of Optimal Transport’. In:
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics.
Ed. by S. Chiappa and R. Calandra. Vol. 108. Proceedings of Machine Learning Research. Online:
PMLR, Aug. 2020, pp. 591–601.

[39] S. Bubeck and N. Cesa-Bianchi. ‘Regret Analysis of Stochastic and Nonstochastic Multi-armed
Bandit Problems’. In: Machine Learning 5.1 (2012), pp. 1–122.

[40] S. Bubeck, V. Perchet and P. Rigollet. ‘Bounded regret in stochastic multi-armed bandits’. In:
Journal of Machine Learning Research: Workshop and Conference Proceedings (COLT) 30 (2013),
pp. 122–134.

https://hal.inria.fr/hal-03941364
https://hal.inria.fr/hal-03941364
https://hal.inria.fr/hal-03941374
https://hal.inria.fr/hal-03941374
https://www.law.cornell.edu/cfr/text/24/100.75
https://www.law.cornell.edu/cfr/text/24/100.75
https://arxiv.org/abs/1301.3509
https://arxiv.org/abs/1102.0712
https://arxiv.org/abs/1102.0712
https://arxiv.org/abs/1808.04863


Project FAIRPLAY 25

[41] N. Buchbinder, K. Jain and J. ( Naor. ‘Online Primal-Dual Algorithms for Maximizing Ad-Auctions
Revenue’. In: Algorithms – ESA 2007. Ed. by L. Arge, M. Hoffmann and E. Welzl. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 253–264.

[42] C. Butucea, A. Dubois, M. Kroll, A. Saumard et al. ‘Local differential privacy: Elbow effect in optimal
density estimation and adaptation over Besov ellipsoids’. In: Bernoulli 26.3 (2020), pp. 1727–1764.

[43] C. Butucea, A. Rohde and L. Steinberger. ‘Interactive versus non-interactive locally, differentially
private estimation: Two elbows for the quadratic functional’. In: Annals of Stats (2023). to appear.

[44] L. E. Celis, A. Mehrotra and N. K. Vishnoi. ‘Toward Controlling Discrimination in Online Ad
Auctions’. In: ICML. 2019.

[45] N. Cesa-Bianchi, C. Gentile and Y. Mansour. ‘Regret minimization for reserve prices in second-
price auctions’. In: Proceedings of SODA 2013. 2013.

[46] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006.

[47] K. Chaudhuri, J. Imola and A. Machanavajjhala. ‘Capacity bounded differential privacy’. In: Ad-
vances in Neural Information Processing Systems. 2019, pp. 3469–3478.

[48] S. Chawla and M. Jagadeesan. Fairness in ad auctions through inverse proportionality. arXiv:2003.13966.
2020.

[49] I. R. Cohen and D. Wajc. ‘Randomized online matching in regular graphs’. In: Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2018, pp. 960–979.

[50] V. Conitzer, C. Kroer, D. Panigrahi, O. Schrijvers, E. Sodomka, N. E. Stier-Moses and C. Wilkens.
‘Pacing equilibrium in first-price auction markets’. In: EC. 2019.

[51] V. Conitzer, C. Kroer, E. Sodomka and N. E. Stier-Moses. ‘Multiplicative pacing equilibria in auction
markets’. In: WINE. 2018.

[52] J. Correa, P. Dütting, F. Fischer and K. Schewior. ‘Prophet inequalities for iid random variables
from an unknown distribution’. In: Proceedings of the 2019 ACM Conference on Economics and
Computation. 2019, pp. 3–17.

[53] R. Cummings, V. Gupta, D. Kimpara and J. Morgenstern. ‘On the Compatibility of Privacy and
Fairness’. In: FairUMAP. 2019.

[54] J. Dastin. Amazon scraps secret AI recruiting tool that showed bias against women. Reuters, https:
//www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scr
aps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G.
2018.

[55] C. Dwork. ‘Differential privacy’. In: Encyclopedia of Cryptography and Security (2011), pp. 338–340.

[56] C. Dwork, M. Hardt, T. Pitassi, O. Reingold and R. Zemel. ‘Fairness through awareness’. In: ITCS.
2012.

[57] C. Dwork, F. McSherry, K. Nissim and A. Smith. ‘Calibrating noise to sensitivity in private data
analysis’. In: Theory of cryptography conference. Springer. 2006, pp. 265–284.

[58] R. Eilat, K. Eliaz and X. Mu. Optimal Privacy-Constrained Mechanisms. Tech. rep. C.E.P.R. Discus-
sion Papers, 2019.

[59] V. Emelianov, N. Gast, K. P. Gummadi and P. Loiseau. ‘On the Effect of Positive Discrimination on
Multistage Selection Problems in the Presence of Implicit Variance’. In: EC. 2020.

[60] J. Feldman, A. Mehta, V. Mirrokni and S. Muthukrishnan. Online Stochastic Matching: Beating
1-1/e. 2009. arXiv: 0905.4100 [cs.DS].

[61] K. Ferryman and M. Pitcan. Fairness in Precision Medicine. Tech. rep. Data & Society, 2018.

[62] D. Fudenberg and J. Tirole. Game Theory. MIT press, 1991.

[63] E. Garcelon, V. Perchet, C. Pike-Burke and M. Pirotta. ‘Local Differentially Private Regret Minimiza-
tion in Reinforcement Learning’. In: arXiv preprint arXiv:2010.07778 (2020).

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://arxiv.org/abs/0905.4100


26 Inria Annual Report 2022

[64] N. Gast, S. Ioannidis, P. Loiseau and B. Roussillon. ‘Linear Regression from Strategic Data Sources’.
In: ACM Transactions on Economics and Computation 8.2 (May 2020), 10:1–10:24.

[65] N. Gast and B. Van Houdt. ‘A Refined Mean Field Approximation’. In: SIGMETRICS. 2017.

[66] M. Gupta, A. Cotter, M. M. Fard and S. Wang. ‘Proxy fairness’. In: arXiv preprint arXiv:1806.11212
(2018).

[67] A. Hannák, C. Wagner, D. Garcia, A. Mislove, M. Strohmaier and C. Wilson. ‘Bias in online freelance
marketplaces: Evidence from taskrabbit and fiverr’. In: CSCW. 2017.

[68] M. Hardt, E. Price and N. Srebro. ‘Equality of Opportunity in Supervised Learning’. In: NIPS. 2016.

[69] C.-J. Ho and J. W. Vaughan. ‘Online task assignment in crowdsourcing markets’. In: Twenty-sixth
AAAI conference on artificial intelligence. 2012.

[70] C. Ilvento, M. Jagadeesan and S. Chawla. ‘Multi-Category Fairness in Sponsored Search Auctions’.
In: FAT*. 2020.

[71] K. Iyer, R. Johari and M. Sundararajan. ‘Mean field equilibria of dynamic auctions with learning’.
In: Management Science 60.12 (2014), pp. 2949–2970.

[72] P. Jaillet and X. Lu. ‘Online stochastic matching: New algorithms with better bounds’. In: Mathe-
matics of Operations Research 39.3 (2014), pp. 624–646.

[73] J. Josse, N. Prost, E. Scornet and G. Varoquaux. ‘On the consistency of supervised learning with
missing values’. In: arXiv preprint arXiv:1902.06931 (2019).

[74] N. Kallus, X. Mao and A. Zhou. ‘Assessing algorithmic fairness with unobserved protected class
using data combination’. In: arXiv preprint arXiv:1906.00285 (2019).

[75] C. Karande, A. Mehta and P. Tripathi. ‘Online bipartite matching with unknown distributions’. In:
Proceedings of the forty-third annual ACM symposium on Theory of computing. 2011, pp. 587–596.

[76] R. M. Karp, U. V. Vazirani and V. V. Vazirani. ‘An optimal algorithm for on-line bipartite matching’.
In: Proceedings of the twenty-second annual ACM symposium on Theory of computing. 1990,
pp. 352–358.

[77] N. Kilbertus, M. R. Carulla, G. Parascandolo, M. Hardt, D. Janzing and B. Schölkopf. ‘Avoiding
discrimination through causal reasoning’. In: Advances in Neural Information Processing Systems.
2017, pp. 656–666.

[78] J. S. Kim, J. Chen and A. Talwalkar. ‘Model-Agnostic Characterization of Fairness Trade-offs’. In:
arXiv preprint arXiv:2004.03424 (2020).

[79] D. Knuth. Stable Marriage and Its Relation to Other Combinatorial Problems: An Introduction
to the Mathematical Analysis of Algorithms. English translation, (CRM Proceedings and Lecture
Notes), American Mathematical Society, 1996.

[80] V. Krishna. Auction Theory. 1st ed. Elsevier, 2009.

[81] M. J. Kusner, J. Loftus, C. Russell and R. Silva. ‘Counterfactual fairness’. In: Advances in neural
information processing systems. 2017, pp. 4066–4076.

[82] M. J. Kusner and J. R. Loftus. The long road to fairer algorithms. 2020.

[83] A. Lambrecht and C. Tucker. ‘Algorithmic Bias? An Empirical Study of Apparent Gender-Based
Discrimination in the Display of STEM Career Ads’. In: Management Science (2019).

[84] J. Larson, S. Mattu, L. Kirchner and J. Angwin. How We Analyzed the COMPAS Recidivism Algorithm.
ProPublica, https://www.propublica.org/article/how-we-analyzed-the-compas-rec
idivism-algorithm. 2016.

[85] L. Liu, H. Mania and M. I. Jordan. ‘Competing Bandits in Matching Markets’. In: arXiv:1906.05363.
2019, pp. 1–15.

[86] B. Maćkowiak and M. Wiederholt. ‘Business cycle dynamics under rational inattention’. In: The
Review of Economic Studies 82.4 (2015), pp. 1502–1532.

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm


Project FAIRPLAY 27

[87] M. Mahdian and Q. Yan. ‘Online bipartite matching with random arrivals: an approach based on
strongly factor-revealing lps’. In: Proceedings of the forty-third annual ACM symposium on Theory
of computing. 2011, pp. 597–606.

[88] V. H. Manshadi, S. O. Gharan and A. Saberi. ‘Online stochastic matching: Online actions based on
offline statistics’. In: Mathematics of Operations Research 37.4 (2012), pp. 559–573.

[89] A. Mas-Colell, M. Whinston and J. Green. Microeconomic Theory. New York: Oxford University
Press, 1995.

[90] A. Mastin and P. Jaillet. ‘Greedy online bipartite matching on random graphs’. In: arXiv preprint
arXiv:1307.2536 (2013).
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