
2022
ACTIVITY REPORT

Team

FOCUS

RESEARCH CENTRE

Inria Center
at Université Côte d’Azur

IN PARTNERSHIP WITH:

Université de Bologne (Italie)

Foundations of Component-based
Ubiquitous Systems
Inria teams are typically groups of researchers working on the definition of a common

project, and objectives, with the goal to arrive at the creation of a project-team. Such

project-teams may include other partners (universities or research institutions)

IN COLLABORATION WITH: Dipartimento di Informatica - Scienza e
Ingegneria (DISI), Universita’ di Bologna

DOMAIN

Networks, Systems and Services,
Distributed Computing

THEME

Distributed programming and Software
engineering

Contents

Team FOCUS 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3

3 Research program 3
3.1 Foundations 1: Models . 3
3.2 Foundations 2: Foundational calculi and interaction . 3
3.3 Foundations 3: Type systems and logics . 4
3.4 Foundations 4: Implicit computational complexity . 4

4 Application domains 4
4.1 Ubiquitous Systems . 4
4.2 Service Oriented Computing and Cloud Computing . 4

5 Highlights of the year 5
5.1 Awards . 5

6 New software and platforms 5
6.1 New software . 5

6.1.1 JOLIE . 5
6.1.2 NightSplitter . 6
6.1.3 CauDEr . 6
6.1.4 SUNNY-AS . 7
6.1.5 eco-imp . 7
6.1.6 PRISM+ . 7
6.1.7 Tquery . 8
6.1.8 APP . 8
6.1.9 Choral . 9
6.1.10 Corinne . 10

7 New results 10
7.1 Service-oriented and Cloud Computing . 10
7.2 Models for Reliability . 12
7.3 Quantitative Analysis . 12

7.3.1 Randomized and Quantum Programs: Termination and Complexity 13
7.3.2 Differential Semantics of Programming Languages . 14
7.3.3 On the Space Consumption of Functional Programs 14

7.4 Qualitative semantics . 14
7.4.1 Unifying semantics . 15
7.4.2 Type-based techniques . 15
7.4.3 Coinduction . 15

7.5 Computer Science Education . 15
7.5.1 Cryptography Education . 16

8 Bilateral contracts and grants with industry 16
8.1 Bilateral contracts with industry . 16

9 Partnerships and cooperations 16
9.1 International initiatives . 16

9.1.1 Associate Teams in the framework of an Inria International Lab or in the framework
of an Inria International Program . 16

9.2 International research visitors . 17
9.2.1 Visits of international scientists . 17

9.2.2 Visits to international teams . 17
9.3 European initiatives . 18

9.3.1 H2020 projects . 18
9.4 National initiatives . 19

9.4.1 DCore . 19
9.4.2 PROGRAMme . 19
9.4.3 PPS . 19

10 Dissemination 19
10.1 Promoting scientific activities . 19

10.1.1 Scientific events: organisation . 19
10.1.2 Journal . 20
10.1.3 Leadership within the scientific community . 21

10.2 Teaching - Supervision - Juries . 21
10.2.1 Teaching . 21
10.2.2 Supervision . 22
10.2.3 Juries . 23

10.3 Popularization . 23
10.3.1 Internal or external Inria responsibilities . 23
10.3.2 Education . 23

11 Scientific production 23
11.1 Major publications . 23
11.2 Publications of the year . 24
11.3 Other . 27
11.4 Cited publications . 27

Project FOCUS 1

Team FOCUS

Creation of the Team: 2022 June 22

Keywords

Computer sciences and digital sciences

A1. – Architectures, systems and networks

A1.3. – Distributed Systems

A1.4. – Ubiquitous Systems

A2.1.1. – Semantics of programming languages

A2.1.6. – Concurrent programming

A2.1.7. – Distributed programming

A2.4.3. – Proofs

Other research topics and application domains

B6.1. – Software industry

B6.3. – Network functions

B6.4. – Internet of things

B9.5.1. – Computer science

https://radar.inria.fr/keywords/2022/computing
https://radar.inria.fr/keywords/2022/other

2 Inria Annual Report 2022

1 Team members, visitors, external collaborators

Research Scientists

• Martin Avanzini [INRIA, Researcher]

• Saverio Giallorenzo [UNIV BOLOGNE]

Faculty Members

• Davide Sangiorgi [Team leader, UNIV BOLOGNE, Professor]

• Mario Bravetti [UNIV BOLOGNE, Professor]

• Ugo Dal Lago [UNIV BOLOGNE, Professor]

• Maurizio Gabbrielli [UNIV BOLOGNE, Professor]

• Ivan Lanese [UNIV BOLOGNE, Associate Professor]

• Cosimo Laneve [UNIV BOLOGNE, Professor]

• Simone Martini [UNIV BOLOGNE, Professor, HDR]

• Gianluigi Zavattaro [UNIV BOLOGNE, Professor]

Post-Doctoral Fellows

• Francesco Gavazzo [UNIV BOLOGNE, until Jun 2022]

• Michael Lodi [UNIV BOLOGNE]

• Paolo Pistone [UNIV BOLOGNE, until Jul 2022]

• Ken Sakayori [UNIV BOLOGNE]

• Riccardo Treglia [UNIV BOLOGNE]

• Gabriele Vanoni [INRIA, from Sep 2022]

• Stefano Zingaro [UNIV BOLOGNE]

PhD Students

• Melissa Antonelli [UNIV BOLOGNE]

• Andrea Colledan [UNIV BOLOGNE]

• Enguerrand Prebet [ENS DE LYON]

• Adele Veschetti [UNIV BOLOGNE]

Administrative Assistant

• Christine Claux [INRIA]

External Collaborators

• Claudio Guidi [Italiana Software]

• Daniel Hirschkoff [ENS DE LYON]

• Fabrizio Montesi [University of Southern Denmark]

Project FOCUS 3

2 Overall objectives

Ubiquitous Computing refers to the situation in which computing facilities are embedded or integrated
into everyday objects and activities. Networks are large-scale, including both hardware devices and
software agents. The systems are highly mobile and dynamic: programs or devices may move and often
execute in networks owned and operated by others; new devices or software pieces may be added; the
operating environment or the software requirements may change. The systems are also heterogeneous
and open: the pieces that form a system may be quite different from each other, built by different people
or industries, even using different infrastructures or programming languages; the constituents of a system
only have a partial knowledge of the overall system, and may only know, or be aware of, a subset of the
entities that operate on the system.

A prominent recent phenomenon in Computer Science is the emerging of interaction and com-
munication as key architectural and programming concepts. This is especially visible in ubiquitous
systems. Complex distributed systems are being thought of and designed as structured composition of
computational units, usually referred to as components. These components are supposed to interact with
each other and such interactions are supposed to be orchestrated into conversations and dialogues. In
the remainder, we will write CBUS for Component-Based Ubiquitous Systems.

In CBUS, the systems are complex. In the same way as for complex systems in other disciplines, such
as physics, economics, biology, in CBUS theories are needed that allow us to understand the systems, to
design or program them, and to analyze them.

Focus investigates the semantic foundations for CBUS. The foundations are intended as instrumental
to formalizing and verifying important computational properties of the systems, as well as to proposing
linguistic constructs for them. Prototypes are developed to test the implementability and usability of the
models and the techniques. Throughout our work, ‘interaction’ and ‘component’ are central concepts.

The members of the project have a solid experience in algebraic and logical models of computation,
and related techniques, and this is the basis for our study of ubiquitous systems. The use of foundational
models inevitably leads to opportunities for developing the foundational models themselves, with
particular interest for issues of expressiveness and for the transplant of concepts or techniques from a
model to another one.

3 Research program

3.1 Foundations 1: Models

The objective of Focus is to develop concepts, techniques, and possibly also tools, that may contribute to
the analysis and synthesis of CBUS. Fundamental to these activities is modeling. Therefore designing,
developing and studying computational models appropriate for CBUS is a central activity of the project.
The models are used to formalise and verify important computational properties of the systems, as well
as to propose new linguistic constructs.

The models we study are in the process calculi (e.g., the π-calculus) and λ-calculus tradition. Such
models, with their emphasis on algebra, address properly compositionality—a central property in our
approach to problems. Accordingly, the techniques we employ are mainly operational techniques based
on notions of behavioural equivalence, and techniques based on algebra, mathematical logics, and type
theory.

3.2 Foundations 2: Foundational calculi and interaction

Modern distributed systems have witnessed a clear shift towards interaction and conversations as basic
building blocks for software architects and programmers. The systems are made by components, that
are supposed to interact and carry out dialogues in order to achieve some predefined goal; Web services
are a good example of this. Process calculi are models that have been designed precisely with the goal of
understanding interaction and composition. The theory and tools that have been developed on top of
process calculi can set a basis with which CBUS challenges can be tackled. Indeed, industrial proposals of
languages for Web services such as BPEL are strongly inspired by process calculi, notably the π-calculus.

4 Inria Annual Report 2022

3.3 Foundations 3: Type systems and logics

Type systems and logics for reasoning on computations are among the most successful outcomes in
the history of the research in λ-calculus and (more recently) in process calculi. Type systems can also
represent a powerful means of specifying dialogues among components of CBUS. For instance—again
referring to Web services—current languages for specifying interactions only express basic connectivity,
ignoring causality and timing aspects (e.g., an intended order on the messages), and the alternative is to
use Turing Complete languages that are however undecidable. Types can come in handy here: they can
express causality and order information on messages [48, 46, 49], while remaining decidable systems.

3.4 Foundations 4: Implicit computational complexity

A number of elegant and powerful results have been obtained in implicit computational complexity con-
cerning the λ-calculus, where ideas from Linear Logics enable a fine-grained control over computations.
This experience can be profitable when tackling issues of CBUS related to resource consumption, such as
resource allocation, access to resources, certification of bounds on resource consumption (e.g., ensuring
that a service will answer to a request in time polynomial with respect to the size of the input data).

4 Application domains

4.1 Ubiquitous Systems

The main application domain for Focus are ubiquitous systems, i.e. systems whose distinctive features are:
mobility, high dynamicity, heterogeneity, variable availability (the availability of services offered by the
constituent parts of a system may fluctuate, and similarly the guarantees offered by single components
may not be the same all the time), open-endedness, complexity (the systems are made by a large number
of components, with sophisticated architectural structures). In Focus we are particularly interested in the
following aspects.

• Linguistic primitives for programming dialogues among components.

• Contracts expressing the functionalities offered by components.

• Adaptability and evolvability of the behaviour of components.

• Verification of properties of component systems.

• Bounds on component resource consumption (e.g., time and space consumed).

4.2 Service Oriented Computing and Cloud Computing

Today the component-based methodology often refers to Service Oriented Computing. This is a special-
ized form of component-based approach. According to W3C, a service-oriented architecture is “a set of
components which can be invoked, and whose interface descriptions can be published and discovered”.
In the early days of Service Oriented Computing, the term “services” was strictly related to that of Web
Services. Nowadays, it has a much broader meaning as exemplified by the XaaS (everything as a service)
paradigm: based on modern virtualization technologies, Cloud computing offers the possibility to build
sophisticated service systems on virtualized infrastructures accessible from everywhere and from any
kind of computing device. Such infrastructures are usually examples of sophisticated service oriented
architectures that, differently from traditional service systems, should also be capable to elastically adapt
on demand to the user requests.

Project FOCUS 5

5 Highlights of the year

5.1 Awards

• The paper “Session types revisited”[47], co-authored by D. Sangiorgi, has received the “10 Year
Most Influential Paper Award”, which is awarded each year to the paper from the PPDP proceedings
10 years earlier, and intended to “recognize the authors contribution to PPDP’s influence in the
area of declarative programming”.

• I. Lanese received the ESOP’22 “distinguished reviewer award”.

• The paper [10], co-authored by G. Vanoni and U. Dal Lago, received the distinguished paper award
at ICFP’22.

6 New software and platforms

6.1 New software

6.1.1 JOLIE

Name: Java Orchestration Language Interpreter Engine

Keyword: Microservices

Scientific Description: Jolie enforces a strict separation of concerns between behaviour, describing
the logic of the application, and deployment, describing the communication capabilities. The
behaviour is defined using the typical constructs of structured sequential programming, communi-
cation primitives, and operators to deal with concurrency (parallel composition and input choice).
Jolie communication primitives comprise two modalities of interaction typical of Service-Oriented
Architectures (SOAs), namely one-way (sends an asynchronous message) and request-response
(sends a message and waits for an answer). A main feature of the Jolie language is that it allows one
to switch among many communication media and data protocols in a simple, uniform way. Since it
targets the field of SOAs, Jolie supports the main communication media (TCP/IP sockets, Bluetooth
L2CAP, Java RMI, and Unix local sockets) and data protocols (HTTP, JSON-RPC, XML-RPC, SOAP
and their respective SSL versions) from this area.

Functional Description: Jolie is a language for programming service-oriented and microservice appli-
cations. It directly supports service-oriented abstractions such as service, port, and session. Jolie
allows to program a service behaviour, possibly obtained by composing existing services, and
supports the main communication protocols and data formats used in service-oriented architec-
tures. Differently from other service-oriented programming languages such as WS-BPEL, Jolie is
based on a user-friendly Java-like syntax (more readable than the verbose XML syntax of WS-BPEL).
Moreover, the kernel of Jolie is equipped with a formal operational semantics. Jolie is used to
provide proof of concepts around Focus activities.

Release Contributions: There are many fixes to the HTTP extension, improvements to the embedding
engine for Javascript programs, and improvements to the support tools jolie2java and wsdl2jolie.

News of the Year: In 2022 Jolie saw 4 minor releases (1.10.7, 1.10.10, 1.10.12, 1.10.13) and the transition
to the alpha and beta major release 1.11.0. The new major release includes many extensions, com-
prising both the language and its runtime. One main language extension regards the introduction
of a new functional notation for operations. This is syntactic sugar for request-response operations
so that they behave similarly to functions. For example, instead of writing ‘contains@StringUtils(
...)(resp), if (resp){ ... }‘ one can write ‘if(contains@StringUtils(...)){ ... }‘, removing the need
for the bypass variable ‘resp‘ and resulting in a more concise and easier-to-follow logic. Runtime
extensions include advanced, programmer-friendly error messages. This is both from the point
of view of error visualisation (e.g., tracing of the flow of faults among services, modulation of the
amount of detail the runtime provides on these) and of suggestions to fix errors (e.g., by reporting

6 Inria Annual Report 2022

possible spelling mistakes and their possible fixes). Other runtime updates regarded the transition
of more pieces of the standard library from the old module system (‘include‘) to the new one (‘from
... import ...‘). Minor releases mainly regarded optimisations (e.g., releasing unused cache memory)
or fixing bugs in the runtime or in extensions. Further effort has been put also into the development
of the Jolie Package Manager (jpm). Extensions regarded the inclusion of templates to quickly
kickstart new Jolie projects and more integrated support for Docker development environments.

URL: http://www.jolie-lang.org/

Contact: Saverio Giallorenzo

Participants: Claudio Guidi, Fabrizio Montesi, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese,
Stefano Zingaro

6.1.2 NightSplitter

Keyword: Constraint-based programming

Functional Description: Nightsplitter deals with the group preference optimization problem. We pro-
pose to split users into subgroups trying to optimize members’ satisfaction as much as possible. In
a large city with a huge volume of activity information, designing subgroup activities and avoiding
time conflict is a challenging task. Currently, the Demo is available only for restaurant and movie
activities in the city of Paris.

URL: http://cs.unibo.it/t.liu/nightsplitter/

Contact: Maurizio Gabbrielli

6.1.3 CauDEr

Name: Causal-consistent Debugger for Erlang

Keywords: Debug, Reversible computing

Scientific Description: The CauDEr reversible debugger for Erlang is based on the theory of causal-
consistent reversibility, which states that any action can be undone provided that its consequences,
if any, are undone beforehand. This theory relies on a causal semantics for the target language,
and can be used even if different processes have different notions of time. Replay is based on
causal-consistent replay, which allows one to replay any future action, together with all and only its
causes.

Functional Description: CauDEr is a debugger allowing one to explore the execution of concurrent and
distributed Erlang programs both forward and backward. Notably, when going backward, any
action can be undone provided that its consequences, if any, are undone beforehand. The debugger
also provides commands to automatically find relevant past actions (e.g., send of a given message)
and undo them, including their consequences. Forward computation can be driven by a log taken
from a computation in the standard Erlang/OTP environment. An action in the log can be selected
and replayed together with all and only its causes. The debugger enables one to find a bug by
following the causality links from the visible misbehaviour to the bug.

News of the Year: In 2022 the development focused on the integration of imperative primitives to manage
maps of atoms to pids. We plan to integrate it into CauDEr in early 2023. Apart from this we did
basic maintenance.

URL: https://github.com/mistupv/cauder

Publications: hal-03005383v1, hal-01912894v1, hal-02313745v1

Contact: Ivan Lanese

Participant: Ivan Lanese

Partner: Universitat Politècnica de València

http://www.jolie-lang.org/
http://cs.unibo.it/t.liu/nightsplitter/
https://github.com/mistupv/cauder
https://hal.inria.fr/hal-03005383v1
https://hal.inria.fr/hal-01912894v1
https://hal.inria.fr/hal-02313745v1

Project FOCUS 7

6.1.4 SUNNY-AS

Name: SUNNY FOR ALGORITHM SELECTION

Keywords: Optimisation, Machine learning

Functional Description: SUNNY-AS is a portfolio solver derived from SUNNY-CP for Algorithm Selection
Problems (ASLIB). The goal of SUNNY-AS is to provide a flexible, configurable, and usable portfolio
solver that can be set up and executed just like a regular individual solver.

URL: https://github.com/lteu/oasc

Contact: Maurizio Gabbrielli

6.1.5 eco-imp

Name: Expected Cost Analysis for Imperative Programs

Keywords: Software Verification, Automation, Runtime Complexity Analysis, Randomized algorithms

Functional Description: Eco-imp is a cost analyser for probabilistic and non-deterministic imperative
programs. Particularly, it features dedicated support for sampling from distributions, and can
thereby accurately reason about the average case complexity of randomized algorithms, in a
fully automatic fashion. The tool is based on an adaptation of the ert-calculus of Kaminski et al.,
extended to the more general setting of cost analysis where the programmer is free to specify a
(non-uniform) cost measure on programs. The main distinctive feature of eco-imp, though, is the
combination of this calculus with an expected value analysis. This provides the glue to analyse
program components in complete independence, that is, the analysis is modular and thus scalable.
As a consequence, confirmed by our experiments, eco-imp runs on average orders of magnitude
faster than comparable tools: execution times of several seconds become milliseconds.

News of the Year: In 2022, the tool has seen a major overhaul in its inference machinery so as to account
for recursive procedures. It has also been extended from a reasoning tool about costs to general
expectations.

URL: http://www-sop.inria.fr/members/Martin.Avanzini/software/eco-imp/

Publication: hal-03013544

Contact: Martin Avanzini

6.1.6 PRISM+

Keyword: Stochastic process

Functional Description: PRISM is a probabilistic model checker, a tool for formal modelling and analysis
of systems that exhibit random or probabilistic behaviour. We extend the language in order to
model the Bitcoin system. The tool now supports three dynamic data types: block, ledger and list.
As a consequence, it is now possible to perform simulations and analyse transient probabilities, i.e.
probabilities that are dependent on time, for the Bitcoin protocol. It has been used to understand
how the system changes during the execution and to analyse the probabilities of reaching an
inconsistent state in different settings.

URL: https://github.com/adeleveschetti/bitcoin-analysis

Contact: Adele Veschetti

https://github.com/lteu/oasc
http://www-sop.inria.fr/members/Martin.Avanzini/software/eco-imp/
https://hal.inria.fr/hal-03013544
https://github.com/adeleveschetti/bitcoin-analysis

8 Inria Annual Report 2022

6.1.7 Tquery

Keywords: Ephemeral Data, Microservices, Big data, Querying

Scientific Description: The adoption of edge/fog systems and the introduction of privacy-preserving
regulations compel the usage of tools for expressing complex data queries in an ephemeral way—
ensuring the queried data does not persist.

Database engines partially address this need, as they provide domain-specific languages for query-
ing data. Unfortunately, using a database in an ephemeral setting has inessential issues related
to throughput bottlenecks, scalability, dependency management, and security (e.g., query injec-
tion). Moreover, databases can impose specific data structures and data formats, which can hinder
the development of microservice architectures that integrate heterogeneous systems and handle
semi-structured data.

Tquery is the first query framework designed for ephemeral data handling in microservices. Tquery
joins the benefits of a technology-agnostic, microservice-oriented programming language, Jolie,
and of one of the most widely-used query languages for semi-structured data in microservices, the
MongoDB aggregation framework. With Tquery, users express in a terse syntax how to collect data
from heterogeneous sources and how to query it in local memory, defining pipelines of high-level
operators. The development of Tquery follows a "cleanroom software engineering process", based
on the definition of a theory for querying semi-structured data compatible with Jolie and inspired
by a consistent variant of the key operators of the MongoDB aggregation framework.

Functional Description: Tquery is a query framework integrated into the Jolie language for the data
handling/querying of Jolie trees.

Tquery is based on a tree-based instantiation (language and semantics) of MQuery, a formalisation
of a sound fragment of the Aggregation Framework, the query language of the most popular
document-oriented database: MongoDB.

Tree-shaped documents are the main format in which data flows within modern digital systems -
e.g., eHealth, the Internet-of-Things, and Edge Computing. Tquery is particularly suited to develop
real-time, ephemeral scenarios, where data shall not persist in the system.

Release Contributions: first release

News of the Year: In 2022, Tquery transitioned from the 0.x to the 1.x version. This marked the passage
from the "research" to the "development" stage of the library. Indeed, the main effort dedicated to
the transition has been the optimisation of the query engine, to maximise its performance and the
implementation of a thorough test suite to compare Tquery with alternatives, first of all, MongoDB.

URL: https://github.com/jolie/tquery

Contact: Saverio Giallorenzo

Partner: University of Southern Denmark

6.1.8 APP

Name: Allocation Priority Policies

Keywords: Serverless, Scheduling, Cloud computing, Optimisation

Scientific Description: APP addresses the problem of function execution scheduling, i.e., how to sched-
ule the execution of Serverless functions to optimise their performance against some user-defined
goals, by specifying policies that inform the scheduling of function execution.

Functional Description: Serverless computing is a Cloud development paradigm where developers
write and compose stateless functions, abstracting from their deployment and scaling.

https://github.com/jolie/tquery

Project FOCUS 9

APP is a declarative language of Allocation Priority Policies to specify policies that inform the
scheduling of Serverless function execution to optimise their performance against some user-
defined goals.

APP is currently implemented as a prototype extension of the Serverless Apache OpenWhisk
platform.

Release Contributions: first release

News of the Year: In 2022, work on APP mainly regarded the formalisation of the language, both to
formally reason on its semantics (e.g., on the complexity of schedulings) and to provide a standard,
non-ambiguous definition of policy behaviours. This initiated a beneficial revision process that
helped us consolidate APP into a more consistent language — which also lead to refinements of its
runtime — and gave us useful insights for its evolution.

URL: https://github.com/giusdp/openwhisk

Contact: Saverio Giallorenzo

6.1.9 Choral

Keywords: Choreographic Programming, Compilation, Modularity, Distributed programming

Scientific Description: In essence, Choral developers program a choreography with the simplicity of
a sequential program. Then, through the Choral compiler, they obtain a set of programs that
implement the roles acting in the distributed system. The generated programs coordinate in a
decentralised way and they faithfully follow the specification from their source choreography, avoid-
ing possible incompatibilities arising from discordant manual implementations. Programmers can
use or distribute the single implementations of each role to their customers with a higher level of
confidence in their reliability. Moreover, they can reliably compose different Choral(-compiled)
programs, to mix different protocols and build the topology that they need.

Choral currently interoperates with Java (and it is planned to support also other programming
languages) at three levels: 1) its syntax is a direct extension of Java (if you know Java, Choral is just a
step away), 2) Choral code can reuse Java libraries, 3) the libraries generated by Choral are in pure
Java with APIs that the programmer controls, and that can be used inside of other Java projects
directly.

Functional Description: Choral is a language for the programming of choreographies. A choreography is
a multiparty protocol that defines how some roles (the proverbial Alice, Bob, etc.) should coordinate
with each other to do something together.

Choral is designed to help developers program distributed authentication protocols, cryptographic
protocols, business processes, parallel algorithms, or any other protocol for concurrent and dis-
tributed systems. At the press of a button, the Choral compiler translates a choreography into a
library for each role. Developers can use the generated libraries to make sure that their programs
(like a client, or a service) follow the choreography correctly. Choral makes sure that the generated
libraries are compliant implementations of the source choreography.

Release Contributions: First release

News of the Year: In 2022, Choral moved to version 0.1.1. While this is a minor release, it includes many
quality-of-life improvements for developers that use the language. These comprise: a revision of
the class system of the Choral runtime library into a more consistent set of elements that users
can combine (e.g., channels, data structures, etc), the extension of the Choral runtime, mainly
importing frequently-used libraries from the Java standard library, better reporting of compilation
errors, with additional information on how to fix bugs in Choral classes. The release also includes a
consolidation of the codebase and minor bug fixes. 2022 saw also the implementation of a fairly big
use-case distributed system in Choral (a clone of Twitter), which suggested some of the extensions
and helped us spot the bugs mentioned above.

https://github.com/giusdp/openwhisk

10 Inria Annual Report 2022

URL: https://www.choral-lang.org/

Contact: Saverio Giallorenzo

Participants: Saverio Giallorenzo, Fabrizio Montesi

Partner: University of Southern Denmark

6.1.10 Corinne

Keywords: Choreography automata, Communicating finite state machines

Scientific Description: Corinne relies on the theory of choreography automata, which is described in:

Franco Barbanera, Ivan Lanese, Emilio Tuosto: Choreography Automata. COORDINATION 2020:
86-106

Franco Barbanera, Ivan Lanese, Emilio Tuosto: Composition of choreography automata. CoRR
abs/2107.06727 (2021)

Functional Description: Choreography automata (c-automata) are finite state automata whose transi-
tions are labelled with interactions of the form A -> B : m, representing a communication in which
participant A sends a message (of type) m to participant B, and participant B receives it. Corinne
allows one to display c-automata represented in the dot format, and:

- project them on communicating finite state machines representing the behaviour of single partici-
pants

- compute a product c-automaton corresponding to the concurrent execution of two c-automata

- synchronize two participants of a c-automaton transforming them into couple gateways

- check well-formedness conditions ensuring that the system of participants obtained via projection
behaves well

News of the Year: In 2022 Corinne was not further developed.

URL: https://github.com/lanese/corinne-3

Publication: hal-03468190

Contact: Ivan Lanese

Partner: Gran Sasso Science Institute

7 New results

7.1 Service-oriented and Cloud Computing

Participants: Mario Bravetti, Saverio Giallorenzo, Ivan Lanese, Gianluigi Zavattaro.

In Service-Oriented Computing (SOC), systems made of interacting and collaborating components
are specified by describing the “local behaviour” of each of them (i.e., the way one component may
interact with the others), and/or the “global behaviour” of the system (i.e., the expected interaction
protocols that should take place within the system).

From the language perspective, the programming of “local” and “global” behaviours have been
respectively addressed with orchestration and choreography languages. Regarding applications, where
usually SOC meets Cloud Computing, we find two state-of-the-art architectural styles. Microservices are a
revisitation of service-orientated architectures where fine-grained, loosely coupled, independent services
help developers assemble reusable, flexible, and scalable architectures. Serverless is a programming
style and deployment technique where users program Cloud applications in terms of stateless functions,
which execute and scale in proportion to inbound requests.

https://www.choral-lang.org/
https://github.com/lanese/corinne-3
https://hal.inria.fr/hal-03468190

Project FOCUS 11

Foundations of Orchestration and Choreography

Communication is an essential element of modern software, yet programming and analysing communi-
cating systems are difficult tasks. In [25] we tackle the lack of compositional mechanisms that preserve
relevant communication properties. This belongs in a strand of work hinged on the usage of sets of
communicating components modelled as finite-state machines. We propose a composition mechanism
based on gateways that, under some suitable compatibility conditions, guarantees deadlock freedom.
Previous work focussed on (a)synchronous symmetric communications (where sender and receiver play
the same part in determining which message to exchange). In [25] we provide the same guarantees
for the synchronous asymmetric case (where senders decide independently which message should be
exchanged).

We also worked on formalisations of choreographic languages. In [24] we introduce a metamodel
dubbed formal choreographic languages. Our main motivation is to establish a framework for the
comparison and generalisation of standard constructions and properties from the literature. Formal
choreographic languages capture existing formalisms for message-passing systems; we detail the cases of
multiparty session types and choreography automata. Unlike many other models, formal choreographic
languages can naturally model systems exhibiting non-regular behaviour. We also worked on the mod-
elling of real business processes taken from the official documentation of European customs business
process models, using a formal choreographic approach [29].

In [35] we extend the theory of choreography automata by equipping communications with asser-
tions on the values that can be communicated, enabling a design-by-contract approach. We provide a
toolchain allowing the generation of APIs for TypeScript web programming. Programs communicating
via the generated APIs follow, by construction, the prescribed communication pattern and are free from
communication errors such as deadlocks.

Microservices, Serverless, and Cloud Deployment

The service-oriented programming language Jolie is a long-standing project within Focus. In [36] we study
the usage of model-driven engineering languages to produce Jolie APIs. This allows us to implement a
synthesiser that, given a data model (specified in the LEMMA modelling framework), can produce the
interfaces of the corresponding data types and service interfaces (APIs) in Jolie. Another work related
to Jolie is Tquery [18], the first query framework designed for ephemeral data handling (where queried
data must not persist in the system) in microservices. We first formalise the theory for querying semi-
structured data compatible with Jolie and we implement it into a Jolie library. We both present a use case
of a medical algorithm to exemplify the usage of the library and report microbenchmarks that show that,
for ephemeral data handling, Tquery outperforms the use of a database (e.g., MongoDB).

Looking more generally at Cloud deployment, we worked on both microservices and serverless.
In [14] we conducted a systematic review of the relationship between microservices and security,

collecting 290 relevant publications (at the time, the largest curated dataset on the topic). We developed
our analysis both by looking at publication metadata—charting publication outlets, communities, ap-
proaches, and tackled issues—and through 20 research questions, used to aggregate the literature and
spot gaps left open. These results allowed us to summarise our conclusions in the form of a call for action
to address the main open challenges of the field.

In previous work, Focus members developed “global scaling”, a microservices deployment technique
that, given a functional specification of a microservice architecture, orchestrates the scaling of all its
components, avoiding cascading slowdowns typical of uncoordinated, mainstream autoscaling. In [43]
we propose a proactive version of global scaling, implemented using data analytics, able to anticipate
future scaling actions. This eliminates inefficiencies of the original, reactive version of global scaling. We
also present a hybrid variant that mixes reactive and proactive scaling. From our benchmarks, proactive
global scaling consistently outperforms reactive, while the hybrid solution is the best-performing one.

Besides scaling techniques, we also worked on adaptability. In [12, 23] we focussed on workload or-
chestration, and we presented the SEAWALL platform, which enables heterogeneous data acquisition and
low-latency processing for Industry 4.0. SEAWALL is developed within the homonymous project founded
by the Italian BIREX industrial consortium. SEAWALL architecture features cutting-edge technologies
(such as Kubernetes, ISTIO, KubeEdge, W3C WoT) to support the seamless orchestration of workloads

12 Inria Annual Report 2022

among the nodes of a cloud-edge continuum in QoS-aware scenarios where the latency requirement of
anomaly detection must be continuously assessed. We present the industrial use case from the SEAWALL
project and the cloud/edge microservice architecture. In [28] we discuss possible trade-offs and chal-
lenges of adopting autonomic adaptability, following a MAPE-K approach, to help software architects
build adaptable microservice-based systems.

Finally, in [40] we worked on serverless function scheduling. Indeed, state-of-the-art serverless
platforms use hardcoded scheduling policies that are unaware of the possible topological constraints
of functions. Considering these constraints when scheduling functions leads to sensible performance
improvements, e.g., minimising loading times or data-access latencies. To address this problem, we
present and implement (as an extension of the OpenWhisk serverless platform) a declarative language for
defining serverless scheduling policies to express constraints on topologies of schedulers and execution
nodes.

7.2 Models for Reliability

Participants: Ivan Lanese.

Reversibility We have continued the study of reversibility started in the past years. As usual, our efforts
target concurrent systems and follow the causal-consistent reversibility approach, where any action can
be undone provided that its consequences, if any, are undone beforehand. We tackled both theoretical
questions and practical applications in the area of debugging of concurrent Erlang programs.

From a theoretical point of view, we considered the impact of time on causal-consistent reversibil-
ity [27]. More precisely, we defined a causal-consistent reversible extension of the Temporal Process
Language by Hennessy and Regan, a CCS with discrete time and a timeout operator. We proved that our
extension satisfies the properties expected from a causal-consistent reversible calculus and we showed
that it can also be interpreted as an extension of reversible CCS (in particular CCSK from Ulidowski and
Phillips) with time.

Reversible debugging of concurrent systems can be tackled using causal-consistent debugging, which
exploits causal-consistent reversibility to explore a concurrent execution backward following causality
links from a visible misbehavior towards the bug causing it. In the past we exploited this idea to build
CauDEr, a Causal-consistent Debugger for Erlang. We extended CauDEr to support the primitives used in
Erlang to manage a shared map associating process identifiers to names [38]. Notably, these primitives
are imperative, while the core of Erlang is functional. We also showcased the application of CauDEr to find
a concurrency bug in a small case study in a form accessible to programmers with no previous knowledge
of reversibility [45]. Finally, to bridge the gap between the theoretical foundations of causal-consistent
reversibility and CauDEr, we developped a generator able to take a semantics in Maude (following a
pre-defined structure) and automatically generating its causal-consistent extension [34]. We applied it to
a semantics of Erlang we defined. The resulting executable causal-consistent semantics can be used as
an oracle against which one can test CauDEr behavior, while being in a direct match with the theoretical
foundations of Erlang and reversibility.

7.3 Quantitative Analysis

Participants: Melissa Antonelli, Martin Avanzini, Ugo Dal Lago, Gabriele Vanoni,
Paolo Pistone, Francesco Gavazzo.

In Focus, we are interested in studying probabilistic higher-order programming languages and, more
generally, the fundamental properties of probabilistic computation when placed in an interactive scenario,
for instance the one of concurrent systems.

One of the most basic but nevertheless desirable properties of programs is of course termination.
Termination can be seen as a minimal guarantee about the time complexity of the underlying program.

Project FOCUS 13

When probabilistic choice comes into play, termination can be defined by stipulating that a program
is terminating if its probability of convergence is 1, this way giving rise to the notion of almost sure
termination. Termination, already undecidable for deterministic (universal) programming languages,
remains so in the presence of probabilistic choice, becoming provably harder. A stronger notion of
termination is the one embodied in positive almost sure termination, which asks the average runtime of
the underlying program to be finite. If the average computation time is not only finite, but also suitably
limited (for example by a polynomial function), one moves towards a notion of bounded average runtime
complexity. Over the recent years, the Focus team has established various formal systems for reasoning
about (positive) almost sure termination and average runtime complexity, and has even established
methodologies for deriving average runtime bounds in a fully automated manner. This trend continued
in 2022.

In addition to the analysis of complexity, which can be seen as a property of individual programs,
Focus has also been interested, for some years now, in the study of relational properties of programs.
More specifically, we are interested in how to evaluate the differences between behaviours of distinct
programs, going beyond the concept of program equivalence, but also beyond that of metrics. In this way,
approximate correct program transformations can be justified, while it also becomes possible to give a
measure of how close a program is to a certain specification.

Below we describe the results obtained by Focus this year, dividing them into several strands.

7.3.1 Randomized and Quantum Programs: Termination and Complexity

In FoCUS, we are interested in studying notions of termination and resource analysis for non-standard
computing paradigms, like those induced by the presence of randomized and quantum effects. Noticeably,
some of the contributions along these lines in 2022 have to do with the Curry-Howard correspondence.

In [31], a system of session types is introduced as induced by a Curry-Howard correspondence
applied to bounded linear logic, suitably extended with probabilistic choice operators and ground types.
The resulting system satisfies some expected properties, like subject reduction and progress, but also
unexpected ones, like a polynomial bound on the time needed to reduce processes. This makes the
system not only capable to characterize notions of efficiency in a randomized setting but also suitable for
modeling experiments and proofs from the so-called computational model of cryptography.

We also showed that an intuitionistic version of counting propositional logic (itself introduced and
studied within FoCUS in 2021) corresponds, in the sense of Curry and Howard, to an expressive type
system for the probabilistic event λ-calculus, a vehicle calculus in which both call-by-name and call-
by-value evaluation of discrete randomized functional programs can be simulated. In this context,
proofs (respectively, types) do not guarantee that validity (respectively, termination) holds, but reveal
the underlying probability. We also showed how to obtain a system precisely capturing the probabilistic
behavior of λ-terms, by endowing the type system with an intersection operator [21].

We also looked at the nature of time in the context of security protocols. Timed cryptography refers
to cryptographic primitives designed to meet their security goals only for a short (polynomial) amount
of time, and has not been dealt with in the symbolic model, so far. We introduced a timed extension
of the applied π-calculus, a common formalism to specify cryptographic protocols, and developed a
logic for timed hyperproperties capturing many properties of interest, such as timeliness or time-limited
indistinguishability. On the automation side, we mechanise proofs of timed safety properties by relying
on the Tamarin tool as a backend [26].

Additionally, we achieved major improvements in the study of relational reasoning for higher-order
continuous probabilistic programs, viz. higher-order programs sampling from continuous distributions.
In [13], in fact, we have isolated a set of natural conditions on the expressive power of a programming
language to guarantee full abstraction of bisimulation-based equivalences, viz. event and applicative
bisimilarity, this way solving an open problem in the context of higher-order probabilistic reasoning.

Finally, we have also investigated to which extent techniques for reasoning about time (in expectation)
and termination extends from classical, probabilistic programs to quantum programs. Specifically, in
[22] we introduce a new kind of expectation transformer for a mixed classical-quantum programming
language. This semantic approach relies on a new notion of a cost structure, which we introduce and
which can be seen as a specialisation of the Kegelspitzen of Keimel and Plotkin. Along the analysis of
several quantum algorithms within this new framework, we have shown that our calculus is both sound

14 Inria Annual Report 2022

and adequate with respect to the operational semantics endowed on our quantum language.

7.3.2 Differential Semantics of Programming Languages

Program semantics is traditionally concerned with program equivalence, in which all pairs of programs
which are not equivalent are treated the same, and simply dubbed as incomparable. In recent years,
various forms of program metrics have been introduced such that the distance between non-equivalent
programs is measured as a not necessarily numerical quantity.

By letting the underlying quantale vary as the type of the compared programs become more complex,
the recently introduced framework of differential logical relations allows for a new contextual form of
reasoning. We showed [16] that all this can be generalised to effectful higher-order programs, in which
not only the values, but also the effects computations produce can be appropriately distanced in a
principled way. We show that the resulting framework is flexible, allowing various forms of effects to be
handled, and that it provides compact and informative judgments about program differences. Moreover,
we have introduced [30] a new general categorical construction that allows one to extract differential
logical relations from traditional ones, and used such a construction to prove new correctness results for
operationally-defined (pure and effectful) differential logical relations.

Mardare et al.’s quantitative algebras represent a novel and nice way of generalizing equational logic
to a notion of distance. We explored the possibility of extending quantitative algebras to the structures
which naturally emerge from Combinatory Logic and the λ-calculus [32]. First of all, we showed that
the framework is indeed applicable to those structures, and give soundness and completeness results.
Then, we proved some negative results clearly delineating to which extent categories of metric spaces can
be models of such theories. Finally, we gave several examples of non-trivial higher-order quantitative
algebras.

Sometimes, the quantitative aspects are in the language itself. This is the case for graded modal
types systems and coeffects, which are becoming a standard formalism to deal with context-dependent,
usage-sensitive computations, especially when combined with computational effects. We developed [15]
a general theory and calculus of program relations for higher-order languages with combined effects and
coeffects. The relational calculus builds upon the novel notion of a corelator (or comonadic lax extension)
to handle coeffects relationally. Inside such a calculus, we define three notions of effectful and coeffectful
program refinements: contextual approximation, logical preorder, and applicative similarity. We prove
that all of them are precongruences, thus sound.

7.3.3 On the Space Consumption of Functional Programs

While the amount of time a functional program necessitates when evaluated can be taken as the number
of reduction steps the underlying abstract machine or rewriting mechanism performs, the same cannot be
said about space. What is a proper notion of working space for a functional program? We introduced [20] a
new reasonable space cost model for the λ-calculus, based on a variant over the Krivine abstract machine.
For the first time, this cost model is able to accommodate logarithmic space. Moreover, we study the
time behavior of our machine and show how to transport our results to the call-by-value λ-calculus. We
also designed [10] a new system of multi types (a variant of intersection types) and extract from multi
type derivations the space used by the KAM, capturing into a type system the space complexity of the
underlying abstract machine.

7.4 Qualitative semantics

Participants: Mario Bravetti, Daniel Hirschkoff, Ken Sakayori, Davide Sangiorgi.

In this area during the past year our efforts have gone in 3 main directions: unifying semantics;
coinductive proof techniques; type-based techniques.

Project FOCUS 15

7.4.1 Unifying semantics

This direction has to with comparing, and possibly unifying two major approaches to the semantics of
higher-order languages. One is the operational approach stemming from process calculi (such as the
π-calculus), whereby an expressive algebraic model, rooted on the notion of process, is used to give
semantics, by means of embedding, of the source language into the model. The other is the denotational
approach stemming from game semantics, whereby the semantics of the language makes use of category
theory. In [37], we establish a tight connection between existing process-calculus semantics and game
semantics for both call-by-name and call-by-value λ-calculus. These connections allow us to transfer
results and techniques between the process model and the game model.

In other works, we investigate the kind of models that pure process calculi such as π-calculus allow us
to obtain in the case of functions, notably the λ-calculus. In [17] we consider the π-calculus encoding of
call-by-value λ-calculus. We show that the equivalence on λ-terms induced by the encoding coincides
with Lassen’s eager normal-form bisimilarity, extended to handle η-equality. A crucial technical ingredient
in the proofs is the recently-introduced technique of unique solutions of equations, further developed
in the paper. We have continued work initiated in previous years where we try to tune existing proof
techniques for pure process calculi so to be able to give sound, and possibly also complete, semantics
to languages including references. In particular, [41] exhibit and proves a fully abstract encoding of a
call-by-value λ-calculus with references, into the π-calculus. The encoding is then used to derive proof
techniques for the source language stemming from the target language. These and other results are
summarised in Prebet’s PhD thesis [44].

7.4.2 Type-based techniques

In [11] we report on a tool that verifies Java source code with respect to typestates. A typestate defines
the object’s states, the methods that can be called in each state, and the states resulting from the calls.
The tool statically verifies that when a Java program runs: sequences of method calls obey to object’s
protocols; objects’ protocols are completed; null-pointer exceptions are not raised; subclasses’ instances
respect the protocol of their superclasses.

The paper [33] is a retrospection on our earlier work on session types, where we show that session types
are encodable into standard π-types, relying on linear and variant types. Besides being an expressivity
result, the encoding: (i) removes the redundancies in the syntax and semantics (when session types and
session processes are added to the syntax of standard π-calculus, and (ii) the properties of session types
are derived as straightforward corollaries, exploiting the corresponding properties of standard π-types.

7.4.3 Coinduction

There exist a rich and well-developed theory of enhancements of the coinduction proof method, widely
used on behavioural relations such as bisimilarity. In [19], we study how to develop an analogous theory
for inductive behaviour relations, i.e., relations defined from inductive observables. Similarly to the
coinductive setting, our theory makes use of (semi)-progressions of the form R->F(R), where R is a
relation on processes and F is a function on relations, meaning that there is an appropriate match on
the transitions that the processes in R can perform in which the process derivatives are in F(R). For a
given preorder, an enhancement corresponds to a sound function, i.e., one for which R->F(R) implies
that R is contained in the preorder; and similarly for equivalences. We isolate a subclass of sound
functions that contains non-trivial functions and enjoys closure properties with respect to desirable
function constructors, so to be able to derive sophisticated sound functions (and hence sophisticated
proof techniques) from simpler ones. We test our enhancements on a few non-trivial examples.

7.5 Computer Science Education

Participants: Maurizio Gabbrielli, Michael Lodi, Simone Martini.

16 Inria Annual Report 2022

7.5.1 Cryptography Education

We have designed and tested activities to teach the basic concepts of cryptography to high school
students, creating both digital environments that simulate unplugged activities (for distance learning)
and task-specific block-based programming languages in order to learn by manipulating computational
objects [39]. The course focuses on the big ideas of cryptography, and the introduction of a cryptosystem
is motivated by overcoming the limitations of the previous one.

We also designed and tested an interdisciplinary training module on cryptography [42] for prospective
STEM teachers that leveraged some “boundary objects” between Math and CS (e.g., adjacency matrices,
graphs, computational complexity, factoring) in an important social context (the debate on the benefits
and risks of end-to-end cryptography). The module proved useful in making students mobilize concepts,
methods, and practices of the two disciplines and making them move between semiotic representations
of the interdisciplinary objects involved.

8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

SEAWALL (SEAmless loW latency cLoud pLatforms) is an industrial project financed by the Italian
Ministry of Industry and Economical Development dedicated to the digital innovation of manufacturing
companies. In particular, methods and techniques have been investigated in order to manage the
development of cloud applications having low-latency constraints. The proposed solution is based on a
platform, deployed on the edge-cloud continuum, in which latency-critical tasks are dynamically and
automatically moved from cloud to edge and vice-versa. In this way, automatic workload mobility can be
managed at run time following user desiderata constraints and preferences.

SEAWALL is coordinated by a company in Bologna (Poggipolini). M. Gabbrielli is coordinating the
University of Bologna unit. The industrial partners are Aetna, Bonfiglioli Riduttori, IMA, Sacmi, Philip
Morris, Siemens, CDM, and Digital River. The project started in July 2020, and ended in January 2022.

Ranflood Giallorenzo co-leads a three-year project collaboration, called “Ranflood”, started in July
2021, between the “Regional Environmental Protection and Energy Agency” of Emilia-Romagna (ARPAE
Emilia-Romagna) and the “Department of Computer Science and Engineering” (DISI) at the University of
Bologna. The collaboration regards the development of techniques and software to combat the spread of
malware by exploiting resource contention.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Associate Teams in the framework of an Inria International Lab or in the framework of an
Inria International Program

TCPro3

Title: Termination and Complexity Properties of Probabilistic Programs

Duration: 2019 →
Coordinator: Romain Péchoux (Inria project team Mocqua)

Partners: Inria project team Mocqua, Inria Nancy Grand-Est; University of Innsbruck (Austria)

Inria contact: Romain Péchoux

Summary: Probabilistic languages consist in higher-order functional, imperative languages, and reduc-
tion systems with sampling and conditioning primitive instructions. While deep theoretical results
have been established on the semantic properties of such languages, applications of termination

Project FOCUS 17

and complexity analysis are restricted to academic examples so far. The associate team TCPro3 has
the aim to contribute to the field by developing methods for reasoning on quantitative properties
of probabilistic programs and models. Extensions of these methods on quantum programs will be
studied.

9.2 International research visitors

9.2.1 Visits of international scientists

Guilhem Jaber

Status researcher (maitre de conference)

Institution of origin: Université de Nantes

Country: France

Dates: 7–9 November 2022

Context of the visit: collaboration on semantics of higher-order languages

Mobility program/type of mobility: research stay

Bruce Kapron

Status: Full Professor

Institution of origin: University of Victoria, British Columbia.

Country: Canada

Dates: 4 February 2022–1 April 2022

Context of the visit: ISA Visiting Fellows

Mobility program/type of mobility: Sabbatical

Georg Moser

Status researcher

Institution of origin: University of Innsbruck

Country: Austria

Dates: 28 August–9 September 2022

Context of the visit: collaboration on automation of average case complexity analysis

Mobility program/type of mobility: research stay

9.2.2 Visits to international teams

Martin Avanzini

Visited institution: University of Innsbruck

Country: Austria

Dates: 9 – 21. April 2022

Context of the visit: collaboration with G. Moser on automated average case complexity analysis

Mobility program/type of mobility: research stay

18 Inria Annual Report 2022

Martin Avanzini

Visited institution: University of Innsbruck

Country: Austria

Dates: 26 October – 6. November 2022

Context of the visit: collaboration with G. Moser on probabilistic complexity analysis and TCPro3 annual
meeting

Mobility program/type of mobility: research stay

Simone Martini

Visited institution: Institut d’histoire et de philosophie des sciences et des techniques (IHPST), Paris

Country: France

Dates: November 6th–13th, 2022

Context of the visit: Bilateral research on a formal theory of algorithms, partially funded by INdAM
(Istututo Nazionale di Alta Matematica)

Mobility program/type of mobility: research stay

Davide Sangiorgi

Visited institution: ENS Lyon

Country: France

Dates: 26–29 September 2022

Context of the visit: collaboration on proof techniques for process models with D. Hirschkoff

Mobility program/type of mobility: research stay

9.3 European initiatives

9.3.1 H2020 projects

BEHAPI (Behavioural Application Program Interfaces) is an European Project H2020-MSCA-RISE-
2017, running in the period March 2018 — February 2024. The topic of the project is behavioural types,
as a suite of technologies that formalise the intended usage of API interfaces. Indeed, currently APIs are
typically flat structures, i.e. sets of service/method signatures specifying the expected service parameters
and the kind of results one should expect in return. However, correct API usage also requires the individual
services to be invoked in a specific order. Despite its importance, the latter information is either often
omitted, or stated informally via textual descriptions. The expected benefits of behavioural types include
guarantees such as service compliance, deadlock freedom, dynamic adaptation in the presence of failure,
load balancing etc. The project aims to bring the existing prototype tools based on these technologies to
mainstream programming languages and development frameworks used in industry.

Participants: Mario Bravetti, Maurizio Gabbrielli, Ivan Lanese, Cosimo Laneve, Ste-
fano Zingaro, Davide Sangriorgi, Gianluigi Zavattaro.

Project FOCUS 19

9.4 National initiatives

9.4.1 DCore

DCore (Causal debugging for concurrent systems) is an ANR project that started on March 2019 and that
will end in March 2024.

The overall objective of the project is to develop a semantically well-founded, novel form of concurrent
debugging, which we call “causal debugging”. Causal debugging will comprise and integrate two main
engines: (i) a reversible execution engine that allows programmers to backtrack and replay a concurrent
or distributed program execution and (ii) a causal analysis engine that allows programmers to analyze
concurrent executions to understand why some desired program properties could be violated.

Participants: Ivan Lanese.

9.4.2 PROGRAMme

PROGRAMme (What is a program? Historical and philosophical perspectives) is an ANR project started
on October 2017 and that will finish on October 2023 (extension of one year granted);

The aim of this project is to develop a coherent analysis and pluralistic understanding of “computer
program” and its implications to theory and practice.

Participants: Simone Martini.

9.4.3 PPS

PPS (Probabilistic Programming Semantics) is an ANR PCR project that started on January 2020 and that
will finish on July 2024.

Probabilities are essential in Computer Science. Many algorithms use probabilistic choices for
efficiency or convenience and probabilistic algorithms are crucial in communicating systems. Recently,
probabilistic programming, and more specifically, functional probabilistic programming, has shown
crucial in various works in Bayesian inference and Machine Learning. Motivated by the rising impact
of such probabilistic languages, the aim of this project is to develop formal methods for probabilistic
computing (semantics, type systems, logical frameworks for program verification, abstract machines etc.)
to systematize the analysis and certification of functional probabilistic programs.

Participants: Martin Avanzini, Ugo Dal Lago, Davide Sangiorgi, Gabriele Vanoni.

10 Dissemination

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

General chair, scientific chair

• IFIP Int. Conference on Formal Techniques for Distributed Objects, Components and Systems (I.
Lanese, chair of steering committee)

20 Inria Annual Report 2022

Member of conference steering committees

• Conference on Reversible Computation (I. Lanese)

• Interaction and Concurrency Experience (I. Lanese)

• International Federated Conference on Distributed Computing Techniques (I. Lanese)

• Concurrency Theory (D. Sangiorgi)

Member of the conference program committees

• 12th International Workshop on Computing with Terms and Graphs (TERMGRAPH) 2022 (M.
Avanzini)

• Workshop on Interaction and Concurrency Experience (ICE) 2022 (S. Giallorenzo)

• Agility with Microservices Programming 2022 workshop co-located with International Conference
on Agile Software Development (XP) 2022 (S. Giallorenzo)

• European Conference and Service-Oriented and Cloud Computing (ESOCC) 2022 (S. Giallorenzo)

• International Conference on Fundamental Approaches to Software Engineering (FASE) 2022 Arte-
fact Evaluation Committee (S. Giallorenzo)

• 50th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL) 2020 (U. Dal
Lago)

• 26th International Conference on Foundations of Software Science and Computation Structures
(FoSSaCS) 2022 (U. Dal Lago)

• 27th ACM SIGPLAN International Conference on Functional Programming (ICFP) 2022 (U. Dal
Lago)

• Agility with Microservices Programming workshop (S. Giallorenzo)

• 31st European Symposium on Programming (ESOP) 2022 (I. Lanese)

• 14th Conference on Reversible Computation (RC) 2022 (I. Lanese)

• 18th International Conference on Formal Aspects of Component Software (FACS) 2022 (I. Lanese)

• 24th International Conference on Coordination Models and Languages (COORDINATION) 2022 (I.
Lanese)

• 15th Interaction and Concurrency Experience (ICE) 2022 (I. Lanese)

• 16th IFIP WG 1.3 Workshop on Coalgebraic Methods in Computer Science (CMCS) 2022 (D. San-
giorgi)

• 33rd International Conference on Concurrency Theory (Concur) 2022 (D. Sangiorgi)

10.1.2 Journal

Member of the editorial boards

• Journal of Universal Computer Science (M. Bravetti)

• Electronics Journal, section Computer Science and Engineering (M. Bravetti)

• Logical Methods in Computer Science (U. Dal Lago)

• Mathematical Structures in Computer Science (U. Dal Lago)

Project FOCUS 21

• Acta Informatica (U. Dal Lago)

• Acta Informatica (D. Sangiorgi)

• Distributed Computing (D. Sangiorgi)

• RAIRO – Theoretical Informatics and Applications (D. Sangiorgi)

• Foundations and Trends in Programming Languages (D. Sangiorgi)

• SN Computer Science (D. Sangiorgi)

10.1.3 Leadership within the scientific community

• The “Microservices Community” is a European-based, international, non-profit organisation
purposed to promote he development of microservices by bridging research, education, and
innovation within and between businesses, universities, organisations and individuals. Members
of Focus have played active roles in the Community since its inception in 2019. The organisation
includes members from the Innopolis University (Russia), the Dortmund University of Applied
Sciences and Arts (Germany), SINTEF and the University of Oslo (Norway), the University of
Pisa and the University of Sassari (Italy), WSO2 (U.S.A.), and the Zurich University of Applied
Sciences (Swiss). Montesi is the president of the organisation, Guidi is a board member, Lanese
and Giallorenzo are respectively part of the research and communication Community groups.

• I. Lanese is chair of the IFIP (International Federation for Information Processing) WG6.1 on
Architectures and Protocols for Distributed Systems.

• U. Dal Lago is a member of the scientific councils of the Italian Chapter of the EATCS, and of the
Italian Association on Logic and its Applications.

• U. Dal Lago is involved since September 1st in an Italian National initiative called CN HPC, namely
a new research center about high-performance computing. U. Dal Lago is responsible for topics
related to quantum computing inside the University of Bologna.

• S. Martini is a member of the Council of the Commission on History and Philosophy of Computing,
an organism of the International Union for History and Philosophy of Science, 2017-2023.

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Martin Avanzini

– “Advanced Logic”, 17 hours, Université Côte d’Azur, France.

– “Probabilistic Rewriting”, 6 hours, International Summer School on Rewriting, Tiblisi, Georgia

• Mario Bravetti

– “Linguaggi, Compilatori e Modelli Computazionali”, 120 hours, 1st year Master, University of
Bologna, Italy.

– “Programming, Algorithms and Data Structures” module of “Programming and Computer
Architectures”, 36 hours, 1st year Master, University of Bologna, Italy.

• Saverio Giallorenzo

– “Programming Languages”, 30 hours, 2nd year Bachelor, University of Bologna, Italy.

– “Social Network Analysis”, 30 hours, 2nd year Master, University of Bologna, Italy.

• Ugo Dal Lago

22 Inria Annual Report 2022

– “Optimization”, 36 hours, 2nd year, University of Bologna, Italy.

– “Cryptography”, 40 hours, 2nd year Master, University of Bologna, Italy.

– “Languages and Algorithms for AI: Machine Learning Theory”, 32 hours, 1st year Master,
University of Bologna, Italy.

• Ivan Lanese

– “Architettura degli Elaboratori”, 34 hours, 1st year, University of Bologna, Italy.

– “Computational Methods for Bioinformatics”, 58 hours, 1st year Master, University of Bologna,
Italy.

• Michael Lodi

– “Computer Science Education”, 26 hours, 2nd year Master, University of Bologna, Italy.

• Simone Martini

– “Programmazione”, 82 hours, 1st year, University of Bologna, Italy.

– “Languages and Algorithms for Artificial Intelligence, module 1”, 25 hours, 1st year Master,
University of Bologna, Italy.

• Davide Sangiorgi

– “Operating Systems”, 110 hours, 2nd year undergraduate program, University of Bologna,
Italy.

– “Computer abilities”, 16 hours, 2nd year Master in Medicine, University of Bologna, Italy.

• Gianluigi Zavattaro

– “Algoritmi e Strutture di Dati”, 70 hours, Bachelor in Computer Science, University of Bologna,
Italy.

– “Scalable and Cloud Programming”, 50 hours, Master in Computer Science, University of
Bologna, Italy.

– “Architectures and Platforms for Artificial Intelligence”, 24 hours, Master in Artificial Intelli-
gence, University of Bologna, Italy.

10.2.2 Supervision

Below are the details on the PhD students in Focus: starting date, topic or provisional title of the thesis,
supervisor(s).

• Melissa Antonelli, November 2019. “Probabilistic Arithmetic and Almost-sure Termination”. Super-
visor Ugo Dal Lago.

• Andrea Colledan, November 2021. “Complexity Analysis of Quantum Functional Programs”. Super-
visor: Ugo Dal Lago.

• Davide Davoli, October 2020, “Complexity Analysis of Higher-Order Randomized and Crypto-
graphic Definitions”. Supervisor: Tamara Rezk (INDES); Co-Supervisors: Martin Avanzini and Ugo
Dal Lago.

• Enguerrand Prebet, September 2019, “The pi-calculus model of programming languages”. Supervi-
sors Daniel Hirschkoff and Davide Sangiorgi.

Project FOCUS 23

10.2.3 Juries

• S. Martini has been member of the PhD evaluation committee of Alice Martin, supervisors Stéphane
Conversy and Mathieu Magnaudet, ISAE-SUPAERO, Institut Supérieur de l’Aéronautique et de
l’Espace, Toulouse.

• M. Lodi has been both external reviewer for the thesis and member of the PhD evaluation committee
of Emanuele Scapin, supervisor Alberto Policriti, co-supervisor Claudio Mirolo, Università degli
Studi di Udine, Italy.

10.3 Popularization

10.3.1 Internal or external Inria responsibilities

• M. Avanzini is member of the "comite NICE"

10.3.2 Education

Michael Lodi and Simone Martini have carried out extended work of scientific popularization, including
the following.

• They are members of the technical committee of Olimpiadi del Problem Solving (at Italian Ministry
of Education); this involves preparation of material and supervision and jury during the finals.

• S. Martini gave the lecture “Perché scrivere codice è importante, per tutti”, Software Heritage
event–Bologna Big Code Lab, March 2022.

11 Scientific production

11.1 Major publications

[1] M. Bravetti and G. Zavattaro. ‘A Foundational Theory of Contracts for Multi-party Service Composi-
tion’. In: Fundam. Inform. 89.4 (2008), pp. 451–478.

[2] N. Busi, M. Gabbrielli and G. Zavattaro. ‘On the expressive power of recursion, replication and
iteration in process calculi’. In: Mathematical Structures in Computer Science 19.6 (2009), pp. 1191–
1222.

[3] P. Coppola and S. Martini. ‘Optimizing optimal reduction: A type inference algorithm for elementary
affine logic’. In: ACM Trans. Comput. Log. 7.2 (2006), pp. 219–260.

[4] M. Gabbrielli and S. Martini. Programming Languages: Principles and Paradigms. Springer, 2010.

[5] D. Hirschkoff, É. Lozes and D. Sangiorgi. ‘On the Expressiveness of the Ambient Logic’. In: Logical
Methods in Computer Science 2.2 (2006).

[6] U. D. Lago and M. Gaboardi. ‘Linear Dependent Types and Relative Completeness’. In: Proceedings
of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011. IEEE Computer
Society, 2011, pp. 133–142.

[7] I. Lanese, C. A. Mezzina and J.-B. Stefani. ‘Reversibility in the higher-order π-calculus’. In: Theor.
Comput. Sci. 625 (2016), pp. 25–84. DOI: 10.1016/j.tcs.2016.02.019. URL: https://doi.org
/10.1016/j.tcs.2016.02.019.

[8] F. Montesi, C. Guidi and G. Zavattaro. ‘Composing Services with JOLIE’. In: Fifth IEEE European
Conference on Web Services (ECOWS 2007). 2007, pp. 13–22.

[9] D. Sangiorgi. An introduction to Bisimulation and Coinduction. Cambridge University Press, 2012.

http://www.olimpiadiproblemsolving.com/
https://doi.org/10.1016/j.tcs.2016.02.019
https://doi.org/10.1016/j.tcs.2016.02.019
https://doi.org/10.1016/j.tcs.2016.02.019

24 Inria Annual Report 2022

11.2 Publications of the year

International journals

[10] B. Accattoli, U. Dal Lago and G. Vanoni. ‘Multi types and reasonable space’. In: Proceedings of the
ACM on Programming Languages 6.ICFP (29th Aug. 2022), pp. 799–825. DOI: 10.1145/3547650.
URL: https://hal.inria.fr/hal-03912436.

[11] L. Bacchiani, M. Bravetti, M. Giunti, J. Mota and A. Ravara. ‘A Java typestate checker supporting
inheritance’. In: Science of Computer Programming 221 (Sept. 2022), p. 102844. DOI: 10.1016/j.s
cico.2022.102844. URL: https://hal.inria.fr/hal-03930280.

[12] L. Bacchiani, G. de Palma, L. Sciullo, M. Bravetti, M. Di Felice, M. Gabbrielli, G. Zavattaro and
R. Della Penna. ‘Low-Latency Anomaly Detection on the Edge-Cloud Continuum for Industry
4.0 Applications: the SEAWALL Case Study’. In: IEEE Internet of Things Magazine 5.3 (Sept. 2022),
pp. 32–37. DOI: 10.1109/IOTM.001.2200120. URL: https://hal.inria.fr/hal-03916067.

[13] G. Barthe, R. Crubillé, U. Dal Lago and F. Gavazzo. ‘On Feller continuity and full abstraction’. In:
Proceedings of the ACM on Programming Languages 6.ICFP (29th Aug. 2022), pp. 826–854. DOI:
10.1145/3547651. URL: https://hal.inria.fr/hal-03923488.

[14] D. Berardi, S. Giallorenzo, J. Mauro, A. Melis, F. Montesi and M. Prandini. ‘Microservice security: a
systematic literature review’. In: PeerJ Computer Science 7 (2022), e779. DOI: 10.7717/peerj-cs
.779. URL: https://hal.inria.fr/hal-03915125.

[15] U. Dal Lago and F. Gavazzo. ‘A relational theory of effects and coeffects’. In: Proceedings of the
ACM on Programming Languages 6.POPL (16th Jan. 2022), pp. 1–28. DOI: 10.1145/3498692. URL:
https://hal.inria.fr/hal-03923470.

[16] U. Dal Lago and F. Gavazzo. ‘Effectful program distancing’. In: Proceedings of the ACM on Program-
ming Languages 6.POPL (16th Jan. 2022), pp. 1–30. DOI: 10.1145/3498680. URL: https://hal.i
nria.fr/hal-03923478.

[17] A. Durier, D. Hirschkoff and D. Sangiorgi. ‘Eager Functions as Processes (long version)’. In: Theoret-
ical Computer Science (2022). DOI: 10.1016/j.tcs.2022.01.043. URL: https://hal.archive
s-ouvertes.fr/hal-03466150.

[18] S. Giallorenzo, F. Montesi, L. Safina and S. P. Zingaro. ‘Ephemeral data handling in microservices
with Tquery’. In: PeerJ Computer Science 8 (2022), e1037. DOI: 10.7717/peerj-cs.1037. URL:
https://hal.inria.fr/hal-03915136.

[19] D. Sangiorgi. ‘From enhanced coinduction towards enhanced induction’. In: Proceedings of the
ACM on Programming Languages 6.POPL (16th Jan. 2022), pp. 1–29. DOI: 10.1145/3498679. URL:
https://hal.inria.fr/hal-03922092.

International peer-reviewed conferences

[20] B. Accattoli, U. Dal Lago and G. Vanoni. ‘Reasonable Space for the λ-Calculus, Logarithmically’. In:
LICS 2022 - 37th Annual ACM/IEEE Symposium on Logic in Computer Science. Haifa, Israel: ACM,
2nd Aug. 2022, pp. 1–13. DOI: 10.1145/3531130.3533362. URL: https://hal.inria.fr/hal-
03912449.

[21] M. Antonelli, U. Dal Lago and P. Pistone. ‘Curry and Howard Meet Borel’. In: LICS 2022 - 37th
Annual ACM/IEEE Symposium on Logic in Computer Science. Haifa, Israel: IEEE, 2nd Aug. 2022.
DOI: 10.1145/3531130.3533361. URL: https://hal.inria.fr/hal-03921650.

[22] M. Avanzini, G. Moser, R. Péchoux, S. Perdrix and V. Zamdzhiev. ‘Quantum Expectation Transform-
ers for Cost Analysis’. In: Symposium on Logic In Computer Science LICS ’22. Haifa, Israel, 2nd Aug.
2022. URL: https://hal.inria.fr/hal-03540366.

[23] L. Bacchiani, G. de Palma, L. Sciullo, M. Bravetti, M. Di Felice, M. Gabbrielli, G. Zavattaro, R. Della
Penna, C. Iorizzo, A. Livaldi, L. Magnotta and M. Orsini. ‘SEAWALL: Seamless Low Latency Cloud
Platforms for the Industry 4.0’. In: CIoT 2022 - 5th Conference on Cloud and Internet of Things.
Marrakech, Morocco: IEEE, 28th Mar. 2022, pp. 90–91. DOI: 10.1109/CIoT53061.2022.9766643.
URL: https://hal.inria.fr/hal-03916073.

https://doi.org/10.1145/3547650
https://hal.inria.fr/hal-03912436
https://doi.org/10.1016/j.scico.2022.102844
https://doi.org/10.1016/j.scico.2022.102844
https://hal.inria.fr/hal-03930280
https://doi.org/10.1109/IOTM.001.2200120
https://hal.inria.fr/hal-03916067
https://doi.org/10.1145/3547651
https://hal.inria.fr/hal-03923488
https://doi.org/10.7717/peerj-cs.779
https://doi.org/10.7717/peerj-cs.779
https://hal.inria.fr/hal-03915125
https://doi.org/10.1145/3498692
https://hal.inria.fr/hal-03923470
https://doi.org/10.1145/3498680
https://hal.inria.fr/hal-03923478
https://hal.inria.fr/hal-03923478
https://doi.org/10.1016/j.tcs.2022.01.043
https://hal.archives-ouvertes.fr/hal-03466150
https://hal.archives-ouvertes.fr/hal-03466150
https://doi.org/10.7717/peerj-cs.1037
https://hal.inria.fr/hal-03915136
https://doi.org/10.1145/3498679
https://hal.inria.fr/hal-03922092
https://doi.org/10.1145/3531130.3533362
https://hal.inria.fr/hal-03912449
https://hal.inria.fr/hal-03912449
https://doi.org/10.1145/3531130.3533361
https://hal.inria.fr/hal-03921650
https://hal.inria.fr/hal-03540366
https://doi.org/10.1109/CIoT53061.2022.9766643
https://hal.inria.fr/hal-03916073

Project FOCUS 25

[24] F. Barbanera, I. Lanese and E. Tuosto. ‘Formal Choreographic Languages’. In: Coordination Models
and Languages : 24th IFIP WG 6.1 International Conference, COORDINATION 2022, Held as Part of
the 17th International Federated Conference on Distributed Computing Techniques, DisCoTec 2022,
Lucca, Italy, June 13-17, 2022, Proceedings. COORDINATION 2022 - 24th International Conference
on Coordination Models and Languages. Vol. LNCS - 13271. Lecture Notes in Computer Science.
Lucca, Italy: Springer International Publishing, 14th June 2022, pp. 121–139. DOI: 10.1007/978-3-
031-08143-9_8. URL: https://hal.inria.fr/hal-03917266.

[25] F. Barbanera, I. Lanese and E. Tuosto. ‘On Composing Communicating Systems’. In: ICE 2022 -
15th Interaction and Concurrency Experience. Vol. 365. Lucca, Italy, 9th Aug. 2022, pp. 53–68. DOI:
10.4204/EPTCS.365.4. URL: https://hal.inria.fr/hal-03915946.

[26] G. Barthe, U. Dal Lago, G. Malavolta and I. Rakotonirina. ‘Tidy: Symbolic Verification of Timed
Cryptographic Protocols’. In: CCS 2022 - 2022 ACM SIGSAC Conference on Computer and Commu-
nications Security. Los Angeles, CA, United States: ACM, 7th Nov. 2022, pp. 263–276. DOI: 10.1145
/3548606.3559343. URL: https://hal.inria.fr/hal-03921822.

[27] L. Bocchi, I. Lanese, C. A. Mezzina and S. Yuen. ‘The Reversible Temporal Process Language’. In: For-
mal Techniques for Distributed Objects, Components, and Systems :42nd IFIP WG 6.1 International
Conference, FORTE 2022, Held as Part of the 17th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2022, Lucca, Italy, June 13–17, 2022, Proceedings. FORTE 2022 -
42nd IFIP WG 6.1 International Conference on Formal Techniques for Distributed Objects, Compo-
nents, and Systems. Vol. LNCS-13273. Lecture Notes in Computer Science. Lucca, Italy: Springer
International Publishing, 12th June 2022, pp. 31–49. DOI: 10.1007/978-3-031-08679-3_3. URL:
https://hal.inria.fr/hal-03917240.

[28] A. Bucchiarone, C. Guidi, I. Lanese, N. Bencomo and J. Spillner. ‘A MAPE-K Approach to Autonomic
Microservices’. In: ICSA-C 2022 - IEEE 19th International Conference on Software Architecture
Companion. Honolulu, United States: IEEE, Mar. 2022, pp. 100–103. DOI: 10.1109/ICSA-C54293
.2022.00025. URL: https://hal.inria.fr/hal-03916224.

[29] A. Coto, F. Barbanera, I. Lanese, D. Rossi and E. Tuosto. ‘On Formal Choreographic Modelling: A
Case Study in EU Business Processes’. In: Leveraging Applications of Formal Methods, Verification
and Validation. Adaptation and Learning : 11th International Symposium, ISoLA 2022, Rhodes,
Greece, October 22–30, 2022, Proceedings, Part III. Leveraging Applications of Formal Methods,
Verification and Validation. Vol. LNCS13701. Lecture Notes in Computer Science. Rhodes (Grèce),
Greece: Springer International Publishing, 17th Oct. 2022, pp. 205–219. DOI: 10.1007/978-3-031
-19849-6_13. URL: https://hal.inria.fr/hal-03915950.

[30] F. Dagnino and F. Gavazzo. ‘A Fibrational Tale of Operational Logical Relations’. In: FSCD 2022 -
7th International Conference on Formal Structures for Computation and Deduction. Haifa (Israël),
Israel, 2nd Aug. 2022. DOI: 10.4230/LIPIcs.FSCD.2022.3. URL: https://hal.science/hal-0
3933446.

[31] U. Dal Lago and G. Giusti. ‘On Session Typing, Probabilistic Polynomial Time, and Cryptographic
Experiments’. In: CONCUR 2022 - 33rd International Conference on Concurrency Theory. Warsaw,
Poland, 12th Sept. 2022. URL: https://hal.inria.fr/hal-03921809.

[32] U. Dal Lago, F. Honsell, M. Lenisa and P. Pistone. ‘On Quantitative Algebraic Higher-Order Theories’.
In: FSCD 2022 - 7th International Conference on Formal Structures for Computation and Deduction.
Haifa, Israel, 2nd Aug. 2022. URL: https://hal.inria.fr/hal-03921800.

[33] O. Dardha, E. Giachino and D. Sangiorgi. ‘Session Types Revisited: A Decade Later’. In: PPDP 2022
/ 24th International Symposium on Principles and Practice of Declarative Programming. Tbilisi,
Georgia: ACM, 20th Sept. 2022, pp. 1–4. DOI: 10.1145/3551357.3556676. URL: https://hal.in
ria.fr/hal-03922188.

https://doi.org/10.1007/978-3-031-08143-9_8
https://doi.org/10.1007/978-3-031-08143-9_8
https://hal.inria.fr/hal-03917266
https://doi.org/10.4204/EPTCS.365.4
https://hal.inria.fr/hal-03915946
https://doi.org/10.1145/3548606.3559343
https://doi.org/10.1145/3548606.3559343
https://hal.inria.fr/hal-03921822
https://doi.org/10.1007/978-3-031-08679-3_3
https://hal.inria.fr/hal-03917240
https://doi.org/10.1109/ICSA-C54293.2022.00025
https://doi.org/10.1109/ICSA-C54293.2022.00025
https://hal.inria.fr/hal-03916224
https://doi.org/10.1007/978-3-031-19849-6_13
https://doi.org/10.1007/978-3-031-19849-6_13
https://hal.inria.fr/hal-03915950
https://doi.org/10.4230/LIPIcs.FSCD.2022.3
https://hal.science/hal-03933446
https://hal.science/hal-03933446
https://hal.inria.fr/hal-03921809
https://hal.inria.fr/hal-03921800
https://doi.org/10.1145/3551357.3556676
https://hal.inria.fr/hal-03922188
https://hal.inria.fr/hal-03922188

26 Inria Annual Report 2022

[34] G. Fabbretti, I. Lanese and J.-B. Stefani. ‘Generation of a Reversible Semantics for Erlang in Maude’.
In: Formal Methods and Software Engineering : 23rd International Conference on Formal Engi-
neering Methods, ICFEM 2022, Madrid, Spain, October 24–27, 2022, Proceedings. ICFEM 2022 -
23rd International Conference on Formal Engineering Methods. Vol. LNCS13478. Lecture Notes in
Computer Science. Madrid, Spain: Springer International Publishing, 10th Oct. 2022, pp. 106–122.
DOI: 10.1007/978-3-031-17244-1_7. URL: https://hal.inria.fr/hal-03916227.

[35] L. Gheri, I. Lanese, N. Sayers, E. Tuosto and N. Yoshida. ‘Design-By-Contract for Flexible Multiparty
Session Protocols’. In: ECOOP 2022 - European Conference on Object-Oriented Programming.
Vol. 222. Berlin (DE), Germany, 6th June 2022. DOI: 10.4230/LIPIcs.ECOOP.2022.8. URL:
https://hal.inria.fr/hal-03917259.

[36] S. Giallorenzo, F. Montesi, M. Peressotti and F. Rademacher. ‘Model-Driven Generation of Microser-
vice Interfaces: From LEMMA Domain Models to Jolie APIs’. In: 24th IFIP WG 6.1 International
Conference, 17th International Federated Conference on Distributed Computing Techniques (Dis-
CoTec 2022). Vol. 13271. Lecture Notes in Computer Science. Lucca, Italy: Springer International
Publishing, 14th June 2022, pp. 223–240. DOI: 10.1007/978-3-031-08143-9_13. URL: https:
//hal.inria.fr/hal-03915132.

[37] G. Jaber and D. Sangiorgi. ‘Games, mobile processes, Dfunctions’. In: CSL 2022 - 30th EACSL Annual
Conference on Computer Science Logic. Göttingen, Germany, 2022, pp. 1–35. URL: https://hal
.archives-ouvertes.fr/hal-03407123.

[38] P. Lami, I. Lanese, J.-B. Stefani, C. Sacerdoti Coen and G. Fabbretti. ‘Reversibility in Erlang: Impera-
tive Constructs’. In: Reversible Computation : 14th International Conference, RC 2022, Urbino, Italy,
July 5–6, 2022, Proceedings. RC 2022 - 14th International Conference on Reversible Computation.
Vol. LNCS-13354. Lecture Notes in Computer Science. Urbino, Italy: Springer International Publish-
ing, 28th June 2022, pp. 187–203. DOI: 10.1007/978-3-031-09005-9_13. URL: https://hal.in
ria.fr/hal-03915947.

[39] M. Lodi, M. Sbaraglia and S. Martini. ‘Cryptography in Grade 10: Core Ideas with Snap! and Un-
plugged’. In: ITiCSE ’22: Proceedings of the 27th ACM Conference on on Innovation and Technology
in Computer Science Education Vol. 1. ITiCSE 2022 - Innovation and Technology in Computer
Science Education. Vol. 1. Dublin, Ireland: Association for Computing Machinery, 7th July 2022,
pp. 456–462. DOI: 10.1145/3502718.3524767. URL: https://hal.inria.fr/hal-03916819.

[40] G. de Palma, S. Giallorenzo, J. Mauro, M. Trentin and G. Zavattaro. ‘A Declarative Approach to
Topology-Aware Serverless Function-Execution Scheduling’. In: 2022 IEEE (Institute of Electrical
and Electronics Engineers) International Conference on Web Services (ICWS). Barcelona, Spain:
IEEE, 11th July 2022, pp. 337–342. DOI: 10.1109/ICWS55610.2022.00056. URL: https://hal.i
nria.fr/hal-03915134.

[41] E. Prebet. ‘Functions and References in the Pi-Calculus: Full Abstraction and Proof Techniques’. In:
ICALP 2022 - 49th International Colloquium on Automata, Languages, and Programming. Paris,
France, 4th July 2022. DOI: 10.4230/LIPIcs.ICALP.2022.114. URL: https://hal.science/ha
l-03920025.

Conferences without proceedings

[42] E.-I. Bartzia, S. Modeste, M. Lodi, M. Sbaraglia and V. Durand-Guerrier. ‘Conception et organi-
sation d’une situation didactique en cryptographie’. In: Didapro 9 – DidaSTIC – 9ème colloque
francophone de didactique de l’informatique. Le Mans, France, 18th May 2022. URL: https://hal
.inria.fr/hal-03916810.

Scientific book chapters

[43] L. Bacchiani, M. Bravetti, M. Gabbrielli, S. Giallorenzo, G. Zavattaro and S. P. Zingaro. ‘Proactive-
Reactive Global Scaling, with Analytics’. In: Service-Oriented Computing. Vol. 13740. Lecture Notes
in Computer Science. Springer Nature Switzerland, 22nd Nov. 2022, pp. 237–254. DOI: 10.1007/97
8-3-031-20984-0_16. URL: https://hal.inria.fr/hal-03915139.

https://doi.org/10.1007/978-3-031-17244-1_7
https://hal.inria.fr/hal-03916227
https://doi.org/10.4230/LIPIcs.ECOOP.2022.8
https://hal.inria.fr/hal-03917259
https://doi.org/10.1007/978-3-031-08143-9_13
https://hal.inria.fr/hal-03915132
https://hal.inria.fr/hal-03915132
https://hal.archives-ouvertes.fr/hal-03407123
https://hal.archives-ouvertes.fr/hal-03407123
https://doi.org/10.1007/978-3-031-09005-9_13
https://hal.inria.fr/hal-03915947
https://hal.inria.fr/hal-03915947
https://doi.org/10.1145/3502718.3524767
https://hal.inria.fr/hal-03916819
https://doi.org/10.1109/ICWS55610.2022.00056
https://hal.inria.fr/hal-03915134
https://hal.inria.fr/hal-03915134
https://doi.org/10.4230/LIPIcs.ICALP.2022.114
https://hal.science/hal-03920025
https://hal.science/hal-03920025
https://hal.inria.fr/hal-03916810
https://hal.inria.fr/hal-03916810
https://doi.org/10.1007/978-3-031-20984-0_16
https://doi.org/10.1007/978-3-031-20984-0_16
https://hal.inria.fr/hal-03915139

Project FOCUS 27

Doctoral dissertations and habilitation theses

[44] E. Prebet. ‘Typed Behavioural Equivalences in the Pi-Calculus’. Ecole normale supérieure de lyon -
ENS LYON; Università degli studi (Bologne, Italie), 27th Sept. 2022. URL: https://hal.archives-
ouvertes.fr/tel-03920089.

11.3 Other

Scientific popularization

[45] I. Lanese, U. Schultz and I. Ulidowski. ‘Reversible Computing in Debugging of Erlang Programs’.
In: IT Professional 24.1 (1st Jan. 2022), pp. 74–80. DOI: 10.1109/MITP.2021.3117920. URL:
https://hal.inria.fr/hal-03917301.

11.4 Cited publications

[46] M. Carbone, K. Honda and N. Yoshida. ‘A Calculus of Global Interaction based on Session Types’.
In: Electr. Notes Theor. Comput. Sci. 171.3 (2007), pp. 127–151.

[47] O. Dardha, E. Giachino and D. Sangiorgi. ‘Session types revisited’. In: Principles and Practice
of Declarative Programming, PPDP’12, Leuven, Belgium - September 19 - 21, 2012. Ed. by D. D.
Schreye, G. Janssens and A. King. ACM, 2012, pp. 139–150. DOI: 10.1145/2370776.2370794. URL:
https://doi.org/10.1145/2370776.2370794.

[48] A. Igarashi and N. Kobayashi. ‘Resource usage analysis’. In: POPL conference. ACM Press, 2002,
pp. 331–342.

[49] N. Kobayashi and D. Sangiorgi. ‘A hybrid type system for lock-freedom of mobile processes’. In:
ACM Trans. Program. Lang. Syst. 32.5 (2010).

https://hal.archives-ouvertes.fr/tel-03920089
https://hal.archives-ouvertes.fr/tel-03920089
https://doi.org/10.1109/MITP.2021.3117920
https://hal.inria.fr/hal-03917301
https://doi.org/10.1145/2370776.2370794
https://doi.org/10.1145/2370776.2370794

	Team FOCUS
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Foundations 1: Models
	Foundations 2: Foundational calculi and interaction
	Foundations 3: Type systems and logics
	Foundations 4: Implicit computational complexity

	Application domains
	Ubiquitous Systems
	Service Oriented Computing and Cloud Computing

	Highlights of the year
	Awards

	New software and platforms
	New software
	JOLIE
	NightSplitter
	CauDEr
	SUNNY-AS
	eco-imp
	PRISM+
	Tquery
	APP
	Choral
	Corinne

	New results
	Service-oriented and Cloud Computing
	Models for Reliability
	Quantitative Analysis
	Randomized and Quantum Programs: Termination and Complexity
	Differential Semantics of Programming Languages
	On the Space Consumption of Functional Programs

	Qualitative semantics
	Unifying semantics
	Type-based techniques
	Coinduction

	Computer Science Education
	Cryptography Education

	Bilateral contracts and grants with industry
	Bilateral contracts with industry

	Partnerships and cooperations
	International initiatives
	 Associate Teams in the framework of an Inria International Lab or in the framework of an Inria International Program

	International research visitors
	Visits of international scientists
	Visits to international teams

	European initiatives
	H2020 projects

	National initiatives
	DCore
	PROGRAMme
	PPS

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Journal
	Leadership within the scientific community

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Internal or external Inria responsibilities
	Education

	Scientific production
	Major publications
	Publications of the year
	Other
	Cited publications

