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2 Overall objectives

Starting in the eighties, the emerging computational geometry community has put a lot of effort into
designing and analyzing algorithms for geometric problems. The most commonly used framework was to
study the worst-case theoretical complexity of geometric problems involving linear objects (points, lines,
polyhedra. . . ) in Euclidean spaces. This so-called classical computational geometry has some known
limitations:

• Objects: dealing with objects only defined by linear equations.

• Ambient space: considering only Euclidean spaces.

• Complexity: worst-case complexities often do not capture realistic behaviour.

• Dimension: complexities are often exponential in the dimension.

• Robustness: ignoring degeneracies and rounding errors.

Even if these limitations have already got some attention from the community [42], a quick look at
the proceedings of the flagship conference SoCG1 shows that these topics still need a big effort.

It should be stressed that, in this document, the notion of certified algorithms is to be understood
with respect to robustness issues. In other words, certification does not refer to programs that are proven
correct with the help of mechanical proof assistants such as Coq, but to algorithms that are proven correct
on paper even in the presence of degeneracies and computer-induced numerical rounding errors.

We address several of the above limitations:

• Non-linear computational geometry. Curved objects are ubiquitous in the world we live in. However,
despite this ubiquity and decades of research in several communities, curved objects are far from being
robustly and efficiently manipulated by geometric algorithms. Our work on, for instance, quadric
intersections and certified drawing of plane curves has proven that dramatic improvements can be
accomplished when the right mathematics and computer science concepts are put into motion. In this
direction, many problems are fundamental and solutions have potential industrial impact in Computer
Aided Design and Robotics for instance. Intersecting NURBS (Non-uniform rational basis splines) and
meshing singular surfaces in a certified manner are important examples of such problems.

• Non-Euclidean computational geometry. Triangulations are central geometric data structures in
many areas of science and engineering. Traditionally, their study has been limited to the Euclidean setting.
Needs for triangulations in non-Euclidean settings have emerged in many areas dealing with objects
whose sizes range from the nuclear to the astrophysical scale, and both in academia and in industry. It
has become timely to extend the traditional focus on Rd of computational geometry and encompass
non-Euclidean spaces.

• Probability in computational geometry. The design of efficient algorithms is driven by the analysis
of their complexity. Traditionally, worst-case input and sometimes uniform distributions are considered
and many results in these settings have had a great influence on the domain. Nowadays, it is necessary to
be more subtle and to prove new results in between these two extreme settings. For instance, smoothed
analysis, which was introduced for the simplex algorithm and which we applied successfully to convex
hulls, proves that such promising alternatives exist.

•Discrete geometric structures. Many geometric algorithms work, explicitly or implicitly, over discrete
structures such as graphs, hypergraphs, lattices that are induced by the geometric input data. For example,
convex hulls or straight-line graph drawing are essentially based on orientation predicates, and therefore
operate on the so-called order type of the input point set. Order types are a subclass of oriented matroids

1Symposium on Computational Geometry. www.computational-geometry.org/.

http://www.computational-geometry.org/
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Figure 1: Two views of the Whitney umbrella (on the left, the “stick” of the umbrella, i.e., the negative
z-axis, is missing). Right picture from [Wikipedia], left picture from [Lachaud et al.].

that remains poorly understood: for instance, we do not even know how to sample this space with
reasonable bias. One of our goals is to contribute to the development of these foundations by better
understanding these discrete geometric structures.

3 Research program

3.1 Non-linear computational geometry

As mentioned above, curved objects are ubiquitous in real world problems and in computer science
and, despite this fact, there are very few problems on curved objects that admit robust and efficient
algorithmic solutions without first discretizing the curved objects into meshes. Meshing curved objects
induces a loss of accuracy which is sometimes not an issue but which can also be most problematic
depending on the application. In addition, discretization induces a combinatorial explosion which could
cause a loss in efficiency compared to a direct solution on the curved objects (as our work on quadrics
has demonstrated with flying colors [48, 49, 50, 52, 57]). But it is also crucial to know that even the process
of computing meshes that approximate curved objects is far from being resolved. As a matter of fact there
is no algorithm capable of computing in practice meshes with certified topology of even rather simple
singular (that is auto-intersecting) 3D surfaces, due to the high constants in the theoretical complexity
and the difficulty of handling degenerate cases. Part of the difficulty comes from the unintuitive fact that
the structure of an algebraic object can be quite complicated, as depicted in the Whitney umbrella (see
Figure 1), the surface with equation x2 = y2z whose origin (the “special” point of the surface) is a vertex
of the arrangement induced by the surface while the singular locus is simply the whole z-axis. Even in 2D,
meshing an algebraic curve with the correct topology, that is in other words producing a correct drawing
of the curve (without knowing where the domain of interest is), is a very difficult problem on which we
have recently made important contributions [35, 36, 58].

Thus producing practical, robust, and efficient algorithmic solutions to geometric problems on curved
objects is a challenge on all and even the most basic problems. The basicness and fundamentality of
the two problems we mentioned above on the intersection of 3D quadrics and on the drawing in a
topologically certified way of plane algebraic curves show rather well that the domain is still in its infancy.
And it should be stressed that these two sets of results were not anecdotal but flagship results produced
during the lifetime of the VEGAS team (the team preceding GAMBLE).

There are many problems in this theme that are expected to have high long-term impacts. Intersecting
NURBS (Non-uniform rational basis splines) in a certified way is an important problem in computer-
aided design and manufacturing. As hinted above, meshing objects in a certified way is important when
topology matters. The 2D case, that is essentially drawing plane curves with the correct topology, is a
fundamental problem with far-reaching applications in research or R&D. Notice that on such elementary
problems it is often difficult to predict the reach of the applications; as an example, we were astonished by
the scope of the applications of our software on 3D quadric intersection2 which was used by researchers

2QI: web.

https://en.wikipedia.org/wiki/Whitney_umbrella
http://www.lama.univ-savoie.fr/~lachaud/Research/Digital-surfaces-and-singular-surfaces/body.html
http://gamble.loria.fr/qi/
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Figure 2: Left: 3D mesh of a gyroid (triply periodic surface) [61]. Right: Simulation of a periodic Delaunay
triangulation of the hyperbolic plane [31].

in, for instance, photochemistry, computer vision, statistics and mathematics.

3.2 Non-Euclidean computational geometry

Triangulations, in particular Delaunay triangulations, in the Euclidean space Rd have been extensively
studied throughout the 20th century and they are still a very active research topic. Their mathematical
properties are now well understood, many algorithms to construct them have been proposed and
analyzed (see the book of Aurenhammer et al. [29]). Some members of GAMBLE have been contributing
to these algorithmic advances (see, e.g. [34, 68, 45, 33]); they have also contributed robust and efficient
triangulation packages through the state-of-the-art Computational Geometry Algorithms Library CGAL

whose impact extends far beyond computational geometry. Application fields include particle physics,
fluid dynamics, shape matching, image processing, geometry processing, computer graphics, computer
vision, shape reconstruction, mesh generation, virtual worlds, geophysics, and medical imaging.3

It is fair to say that little has been done on non-Euclidean spaces, in spite of the large number of
questions raised by application domains. Needs for simulations or modeling in a variety of domains4

ranging from the infinitely small (nuclear matter, nano-structures, biological data) to the infinitely
large (astrophysics) have led us to consider 3D periodic Delaunay triangulations, which can be seen as
Delaunay triangulations of the 3D flat torus, i.e., the quotient of R3 under the action of some group of
translations [40]. This work has already yielded a fruitful collaboration with astrophysicists [53, 69] and
new collaborations with physicists are emerging. To the best of our knowledge, our CGAL package [39]
is the only publicly available software that computes Delaunay triangulations of a 3D flat torus, in the
special case where the domain is cubic. This case, although restrictive, is already useful.5 We have also
generalized this algorithm to the case of general d-dimensional compact flat manifolds [41]. As far as
non-compact manifolds are concerned, past approaches, limited to the two-dimensional case, have
stayed theoretical [60].

Interestingly, even for the simple case of triangulations on the sphere, the software packages that are
currently available are far from offering satisfactory solutions in terms of robustness and efficiency [38].

Moreover, while our solution for computing triangulations in hyperbolic spaces can be considered
as ultimate [31], the case of hyperbolic manifolds has hardly been explored. Hyperbolic manifolds are
quotients of a hyperbolic space by some group of hyperbolic isometries. Their triangulations can be seen
as hyperbolic periodic triangulations. Periodic hyperbolic triangulations and meshes appear for instance
in geometric modeling [64], neuromathematics [43], or physics [65]. Even the case of the Bolza surface (a
surface of genus 2, whose fundamental domain is the regular octagon in the hyperbolic plane) shows
mathematical difficulties [32, 55].

3See Projects using CGAL for details.
4See CGAL Prospective Workshop on Geometric Computing in Periodic Spaces, Subdivide and Tile: Triangulating

spaces for understanding the world, Computational geometry in non-Euclidean spaces, Shape Up 2015 : Exercises in
Materials Geometry and Topology

5See examples at Projects using CGAL

http://www.cgal.org/
http://www.cgal.org/projects.html
http://www.loria.fr/~teillaud/PeriodicSpacesWorkshop/
https://www.lorentzcenter.nl/subdivide-and-tiletriangulating-spaces-for-understanding-the-world.html
https://www.lorentzcenter.nl/subdivide-and-tiletriangulating-spaces-for-understanding-the-world.html
https://members.loria.fr/monique.teillaud/other-geometries/
http://gerdschroeder-turk.org/2015/06/17/shape-up-2015-exercises-in-materials-geometry-and-topology/
http://gerdschroeder-turk.org/2015/06/17/shape-up-2015-exercises-in-materials-geometry-and-topology/
http://www.cgal.org/projects.html
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3.3 Probability in computational geometry

In most computational geometry papers, algorithms are analyzed in the worst-case setting. This often
yields too pessimistic complexities that arise only in pathological situations that are unlikely to occur in
practice. On the other hand, probabilistic geometry provides analyses with great precision [62, 63, 37],
but using hypotheses with much more randomness than in most realistic situations. We are developing
new algorithmic designs improving state-of-the-art performance in random settings that are not overly
simplified and that can thus reflect many realistic situations.

Sixteen years ago, smooth analysis was introduced by Spielman and Teng analyzing the simplex
algorithm by averaging on some noise on the data [67] (and they won the Gödel prize). In essence, this
analysis smoothes the complexity around worst-case situations, thus avoiding pathological scenarios
but without considering unrealistic randomness. In that sense, this method makes a bridge between
full randomness and worst case situations by tuning the noise intensity. The analysis of computational
geometry algorithms within this framework is still embryonic. To illustrate the difficulty of the problem,
we started working in 2009 on the smooth analysis of the size of the convex hull of a point set, arguably the
simplest computational geometry data structure; then, only one very rough result from 2004 existed [44]
and we only obtained in 2015 breakthrough results, but still not definitive [47, 46, 51].

Another example of a problem of different flavor concerns Delaunay triangulations, which are rather
ubiquitous in computational geometry. When Delaunay triangulations are computed for reconstructing
meshes from point clouds coming from 3D scanners, the worst-case scenario is, again, too pessimistic
and the full randomness hypothesis is clearly not adapted. Some results exist for “good samplings of
generic surfaces” [28] but the big result that everybody wishes for is an analysis for random samples
(without the extra assumptions hidden in the “good” sampling) of possibly non-generic surfaces.

Trade-offs between full randomness and worst case may also appear in other forms such as dependent
distributions, or random distributions conditioned to be in some special configurations. In particular,
simulating geometric distributions with repulsive properties, such as the determinantal point process, is
currently out of reach for more than a few hundred points [54]. Yet it has practical applications in physics
to simulate particules with repulsion such as electrons [59], to simulate the distribution of network
antennas [30], or in machine learning [56].

3.4 Discrete geometric structures

Our work on discrete geometric structures develops in several directions, each one probing a different
type of structure. Although these objects appear unrelated at first sight, they can be tackled by the same
set of probabilistic and topological tools.

A first research topic is the study of Order types. Order types are combinatorial encodings of finite
(planar) point sets, recording for each triple of points the orientation (clockwise or counterclockwise) of
the triangle they form. This already determines properties such as convex hulls or half-space depths, and
the behaviour of algorithms based on orientation predicates. These properties for all (infinitely many)
n-point sets can be studied through the finitely many order types of size n. Yet, this finite space is poorly
understood: its estimated size leaves an exponential margin of error, no method is known to sample it
without concentrating on a vanishingly small corner, the effect of pattern exclusion or VC dimension-type
restrictions are unknown. These are all directions we actively investigate.

A second research topic is the study of Embedded graphs and simplicial complexes. Many topological
structures can be effectively discretized, for instance combinatorial maps record homotopy classes of
embedded graphs and simplicial complexes represent a large class of topological spaces. This raises
many structural and algorithmic questions on these discrete structures; for example, given a closed walk
in an embedded graph, can we find a cycle of the graph homotopic to that walk? (The complexity status of
that problem is unknown.) Going in the other direction, some purely discrete structures can be given an
associated topological space that reveals some of their properties (e.g. the Nerve theorem for intersection
patterns). An open problem is for instance to obtain fractional Helly theorems for set systems of bounded
topological complexity.

Another research topic is that of Sparse inclusion-exclusion formulas. For any family of sets A1, A2, . . . , An ,
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by the principle of inclusion-exclusion we have

1⋃n
i=1 Ai

= ∑
I⊆{1,2,...,n}

(−1)|I |+11⋂i∈I Ai (1)

where 1X is the indicator function of X . This formula is universal (it applies to any family of sets) but
its number of summands grows exponentially with the number n of sets. When the sets are balls, the
formula remains true if the summation is restricted to the regular triangulation; we proved that similar
simplifications are possible whenever the Venn diagram of the Ai is sparse. There is much room for
improvements, both for general set systems and for specific geometric settings. Another interesting
problem is to combine these simplifications with the inclusion-exclusion algorithms developed, for
instance, for graph coloring.

4 Application domains

Many domains of science can benefit from the results developed by GAMBLE. Curves and surfaces are
ubiquitous in all sciences to understand and interpret raw data as well as experimental results. Still, the
non-linear problems we address are rather basic and fundamental, and it is often difficult to predict the
impact of solutions in that area. The short-term industrial impact is likely to be small because, on basic
problems, industries have used ad hoc solutions for decades and have thus got used to it.

The example of our work on quadric intersection is typical: even though we were fully convinced that
intersecting 3D quadrics is such an elementary/fundamental problem that it ought to be useful, we were
the first to be astonished by the scope of the applications of our software 6 (which was the first and still is
the only one —to our knowledge— to compute robustly and efficiently the intersection of 3D quadrics)
which has been used by researchers in, for instance, photochemistry, computer vision, statistics, and
mathematics. Our work on certified drawing of plane (algebraic) curves falls in the same category. It
seems obvious that it is widely useful to be able to draw curves correctly (recall also that part of the
problem is to determine where to look in the plane) but it is quite hard to come up with specific examples
of fields where this is relevant. A contrario, we know that certified meshing is critical in mechanical-
design applications in robotics, which is a non-obvious application field. There, the singularities of
a manipulator often have degrees higher than 10 and meshing the singular locus in a certified way is
currently out of reach. As a result, researchers in robotics can only build physical prototypes for validating,
or not, the approximate solutions given by non-certified numerical algorithms.

The fact that several of our pieces of software for computing non-Euclidean triangulations had already
been requested by users long before they become public in CGAL is a good sign for their wide future
impact. This will not come as a surprise, since most of the questions that we have been studying followed
from discussions with researchers outside computer science and pure mathematics. Such researchers are
either users of our algorithms and software, or we meet them in workshops. Let us only mention a few
names here. Rien van de Weijgaert [53, 69] (astrophysicist, Groningen, NL) and Michael Schindler [66]
(theoretical physicist, ENSPCI, CNRS, France) used our software for 3D periodic weighted triangulations.
Stephen Hyde and Vanessa Robins (applied mathematics and physics at Australian National University)
used our package for 3D periodic meshing. Olivier Faugeras (neuromathematics, INRIA Sophia Antipolis)
had come to us and mentioned his needs for good meshes of the Bolza surface [43] before we started to
study them. Such contacts are very important both to get feedback about our research and to help us
choose problems that are relevant for applications. These problems are at the same time challenging from
the mathematical and algorithmic points of view. Note that our research and our software are generic,
i.e., we are studying fundamental geometric questions, which do not depend on any specific application.
This recipe has made the sucess of the CGAL library.

Probabilistic models for geometric data are widely used to model various situations ranging from
cell phone distribution to quantum mechanics. The impact of our work on probabilistic distributions
is twofold. On the one hand, our studies of properties of geometric objects built on such distributions
will yield a better understanding of the above phenomena and has potential impact in many scientific
domains. On the other hand, our work on simulations of probabilistic distributions will be used by other
teams, more maths oriented, to study these distributions.

6QI: web.

http://gamble.loria.fr/qi/
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5 Highlights of the year

The poisonous atmosphere maintained by the management of Inria towards the researchers creates an
unhealthy climate not favourable to the "serene and efficient research" that is advocated by the COP.

6 New software and platforms

6.1 New software

6.1.1 earoots

Name: Ehrlich-Aberth Roots

Keywords: Root, Complex number, Univariate polynomial

Functional Description: It uses Ehrlich-Aberth method to find polynomial complex roots in double
precision. The code has been written to benefit from auto-vectorization.

News of the Year: This software is used by the hefroots software and is integrated in the commercial
software Maple 2023.

URL: https://gitlab.inria.fr/gmoro/earoots

Contact: Guillaume Moroz

Participant: Guillaume Moroz

6.1.2 hefroots

Name: Hyperbolic, Elliptic and Flat ROOT Solver

Keywords: Polynomial equations, Complex number

Scientific Description: This software for solving polynomial equations is based on a recent result which
consists in approximating a polynomial of large degree by a piecewise polynomial function on the
complex plane.

Functional Description: This software takes as input a file containing the coefficients of a univariate
polynomial and returns the list of its complex roots.

News of the Year: Integration work has been done for Maplesoft’s commercial computer algebra software.
Hefroots will be used to find the complex roots of a polynomial in Maple 2023.

URL: https://gitlab.inria.fr/gmoro/hefpoly

Publication: hal-03249123

Authors: Guillaume Moroz, Rémi Imbach

Contact: Guillaume Moroz

6.1.3 FCA2V

Name: Fast Certified Algebraic Variety Visualization

Keywords: Algebraic curve, Discrete Cosine Transform

Functional Description: FCA2V computes a drawing of high resolution of a plane curve defined by a
bivariate polynomial equation. It uses a non-uniform grid based on the Chebyshev nodes to take
advantage of multipoint evaluation techniques via the Discrete Cosine Transform.

URL: https://gitlab.inria.fr/nherathm/certified2dvisualization

https://gitlab.inria.fr/gmoro/earoots
https://gitlab.inria.fr/gmoro/hefpoly
https://hal.inria.fr/hal-03249123
https://gitlab.inria.fr/nherathm/certified2dvisualization
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Publication: hal-03788409

Author: Nuwan Herath Mudiyanselage

Contact: Nuwan Herath Mudiyanselage

7 New results

7.1 Non-Linear Computational Geometry

Participants: Laurent Dupont, Nuwan Herath Mudiyanselage, Sylvain Lazard, Guil-
laume Moroz, Marc Pouget.

7.1.1 Fast High-Resolution Drawing of Algebraic Curves

We address the problem of computing a drawing of high resolution of a plane curve defined by a bivariate
polynomial equation P (x, y) = 0. Given a grid of fixed resolution, a drawing is a subset of pixels. Our goal
is to compute an approximate drawing that (i) contains all the parts of the curve that intersect the pixel
edges, (ii) excludes a pixel when the evaluation of P with interval arithmetic on each of its four edges is
far from zero.

One of the challenges for computing drawings on a high-resolution grid is to minimize the complexity
due to the evaluation of the input polynomial. Most state-of-the-art approaches focus on bounding the
number of independent evaluations. Using state-of-the-art Computer Algebra techniques, we design
new algorithms that amortize the evaluations and improve the complexity for computing such drawings.

Our main contribution is to use a non-uniform grid based on the Chebyshev nodes to take advantage
of multipoint evaluation techniques via the Discrete Cosine Transform. We propose two new algorithms
that compute drawings and compare them experimentally on several classes of high degree polynomials.
Notably, one of those approaches is faster than state-of-the-art drawing software. [18].

7.1.2 New data structure for univariate polynomial approximation and applications to root isola-
tion, numerical multipoint evaluation, and other problems

We present a new data structure to approximate accurately and efficiently a polynomial f of degree d
given as a list of coefficients fi . Its properties allow us to improve the state-of-the-art bounds on the bit
complexity for the problems of root isolation and approximate multipoint evaluation. This data structure
also leads to a new geometric criterion to detect ill-conditioned polynomials, implying notably that the
standard condition number of the zeros of a polynomial is at least exponential in the number of roots of
modulus less than 1/2 or greater than 2.

Given a polynomial f of degree d with ‖ f ‖1 =∑ | fi | ≤ 2τ for τ≥ 1, isolating all its complex roots or
evaluating it at d points can be done with a quasi-linear number of arithmetic operations. However,
considering the bit complexity, the state-of-the-art algorithms require at least d 3/2 bit operations even
for well-conditioned polynomials and when the accuracy required is low. Given a positive integer m, we
can compute our new data structure and evaluate f at d points in the unit disk with an absolute error
less than 2−m in Õ(d(τ+m)) bit operations, where Õ(·) means that we omit logarithmic factors. We also
show that if κ is the absolute condition number of the zeros of f , then we can isolate all the roots of f in
Õ(d(τ+ logκ)) bit operations. Moreover, our algorithms are simple to implement. For approximating
the complex roots of a polynomial, we implemented a small prototype in Python/NumPy that is an order
of magnitude faster than the state-of-the-art solver MPSolve for high degree polynomials with random
coefficients. This result was presented in 2022 at the FOCS 2021 conference [20].

7.2 Non-Euclidean Computational Geometry

https://hal.inria.fr/hal-03788409
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Participants: Vincent Despré, Loïc Dubois, Benedikt Kolbe, Alba Marina Málaga
Sabogal, Monique Teillaud.

7.2.1 Computing a Dirichlet domain for a hyperbolic surface

The goal of this paper is to exhibit and analyze an algorithm that takes a given closed orientable hyperbolic
surface and outputs an explicit Dirichlet domain. The input is a fundamental polygon with side pairings.
While grounded in topological considerations, the algorithm makes key use of the geometry of the surface.
We introduce data structures that reflect this interplay between geometry and topology and show that
the algorithm finishes in polynomial time, in terms of the initial perimeter length and the genus of the
surface [27].

In collaboration with Benedikt Kolbe (now at University of Bonn) and Hugo Parlier (University of
Luxembourg).

7.3 Probabilistic Analysis of Geometric Data Structures and Algorithms

Participants: Olivier Devillers, Charles Duménil.

7.3.1 Expected Size of the 3-Dimensional Delaunay Triangulation of Random Points on a Surface

We proved that the size of the Delaunay triangulation of set of points X drawn on a surface with a random
distribution is linear. The Delaunay triangulation, is a geometrical object that appeared recurrently
in the scientific history. In dimension 2, the Delaunay triangulation is the set of triangles for which
the circumscribing circle does not contain other points of X . This definition is generalizable in higher
dimensions. Today, the Delaunay triangulation is one the most studied structures in computational
geometry. For the 2 dimensional case, we know that the size of the Delaunay triangulation remains linear
in terms of the number of points. In 3 dimension, it is not anymore the case. The size of the 3D-Delaunay
triangulation can range from linear to quadratic. This size depends on how the points are distributed in
R3. On a surface, the size of the Delaunay triangulation will depend both on the surface and on how they
are distributed on this surface. To model points, we choose to use a Poisson point process since it verifies
properties of homogeneity and independence that are convenient for the computations. In order to prove
the expected O(n logn) bound for the uniform sample distributed on a cylinder, Devillers et al. remarked
that the intersection of the cylinder with a sphere passing though two points p and q on the cylinder
always contains a specific triangle drawn on the cylinder. That leads them to study a 2-dimensional graph
in which two points are neighbors if there exists such a triangle that does not contain other data points.
Such a graph has expected size O(n logn), and this is how they obtain the O(n logn) bound. Thus, we
define a kind of empty region graphs, we formalize a method to compute lower and upper bounds on
their expected size, and give tight results for such graphs. As Attali et al. pointed out, the intersection
of a sphere with a generic surface has almost an elliptic shape, aligned with the curvature directions of
the surface. This leads us to study a particular empty region graph for which the regions are axis-aligned
ellipses. We prove, that if the involved ellipses have an aspect ratio ranging from b to 1, with 0 < b < 1,
then the expected number of neighbors of any point in the graph is O(logb). We use these results on
empty-region graph to treat the case of the oblate spheroid first and prove that the Delaunay triangulation
has linear size in this case. Then we extend these results to any generic surface since at the first order, any
surface behave locally as a spheroid [22].

7.4 Discrete Geometric structures

Participants: Xavier Goaoc.
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7.4.1 Convex Hulls of Random Order Types

We establish the following two main results on order types of points in general position in the plane
(realizable simple planar order types, realizable uniform acyclic oriented matroids of rank 3):

(a) The number of extreme points in an n-point order type, chosen uniformly at random from all such
order types, is on average 4+o(1). For labeled order types, this number has average 4−8/(n2−n+2)
and variance at most 3.

(b) The (labeled) order types read off a set of n points sampled independently from the uniform
measure on a convex planar domain, smooth or polygonal, or from a Gaussian distribution are
concentrated, i.e. such sampling typically encounters only a vanishingly small fraction of all order
types of the given size.

Result (a) generalizes to arbitrary dimension d for labeled order types with the average number of
extreme points 2d +o(1) and constant variance. We also discuss to what extent our methods generalize
to the abstract setting of uniform acyclic oriented matroids. Moreover, our methods allow to show the
following relative of the Erdős-Szekeres theorem: for any fixed k, as n → ∞, a proportion 1−O(1/n)
of the n-point simple order types contain a triangle enclosing a convex k-chain over an edge. For the
unlabeled case in (a), we prove that for any antipodal, finite subset of the 2-dimensional sphere, the group
of orientation preserving bijections is cyclic, dihedral or one of A4, S4 or A5 (and each case is possible).
These are the finite subgroups of SO(3) and our proof follows the lines of their characterization by Felix
Klein.

[15]. In collaboration with Emo Welzl (ETH Zürich)

7.4.2 The Topology of the set of line Transversals

We prove that for any set F of n ≥ 2 pairwise disjoint open convex set in R3, the connected components of
the set of lines intersecting every member of F are contractible. The same result holds for directed lines.
[25].

In collaboration with Otfried Cheong and Andreas Holmsen (KAIST)

7.4.3 No weak epsilon nets for lines and convex sets in space

We prove that there exist no weak ε-nets of constant size for lines and convex sets in Rd . [24].
In collaboration with Otfried Cheong and Andreas Holmsen (KAIST)

7.5 Miscellaneous

Participant: Florent Koechlin.

7.5.1 New Analytic Techniques for Proving the Inherent Ambiguity of Context-Free Languages.

This article extends the work of Flajolet on the relation between generating series and inherent ambiguity.
We first propose an analytic criterion to prove the infinite inherent ambiguity of some context-free
languages, and apply it to give a purely combinatorial proof of the infinite ambiguity of Shamir’s language.
Then we show how Ginsburg and Ullian’s criterion on unambiguous bounded languages translates into a
useful criterion on generating series, which generalises and simplifies the proof of the recent criterion of
Makarov. We then propose a new criterion based on generating series to prove the inherent ambiguity
of languages with interlacing patterns, like {anbm ap bq |n 6= p or m 6= q, with n,m, p, q ∈N}. We illustrate
the applicability of these two criteria on many examples [19].
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8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

8.1.1 WATERLOO MAPLE INC.

Participants: Laurent Dupont, Sylvain Lazard, Guillaume Moroz, Marc Pouget,
Rémi Imbach.

Company: WATERLOO MAPLE INC.
Duration: 2 years, renewable
Participants: GAMBLE and OURAGAN Inria teams

Abstract: A renewable two-years licence and cooperation agreement was signed on April 1st, 2018
between WATERLOO MAPLE INC., Ontario, Canada (represented by Laurent Bernardin, its Executive Vice
President Products and Solutions) and Inria. On the Inria side, this contract involves the teams GAMBLE

and OURAGAN (Paris), and it is coordinated by Fabrice Rouillier (OURAGAN).
F. Rouillier and GAMBLE are the developers of the ISOTOP software for the computation of topology of

curves. The transfer of a version of ISOTOP to WATERLOO MAPLE INC. should be done on the long run.
This contract was amended last year to include the new software HEFROOTS for the isolation of the

complex roots of a univariate polynomial. The transfer of HEFROOTS to WATERLOO MAPLE INC. started at
the end of 2021 with the help of the independent contractor Rémi Imbach. Rémi Imbach was then hired
for one year by Inria through the ADT program and HEFROOTS will be included in Maple 2023.

8.1.2 GEOMETRYFACTORY

Participants: Monique Teillaud.

Company: GEOMETRYFACTORY

Duration: permanent
Participants: INRIA and GEOMETRYFACTORY

Abstract: CGAL packages developed in GAMBLE are commercialized by GEOMETRYFACTORY.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Inria associate team not involved in an Inria International Lab or an international program

FIP

Participants: Xavier Goaoc, Florent Koechlin.

Title: Finite point sets and Intersection Patterns

Duration: Jan 2021 -> Dec 2023

Coordinator: Andreas Holmsen (andreash@kaist.edu)

Partners:

• Korea Advanced Institute of Science and Technology Daejeon (Corée du Sud)

Inria contact: Xavier Goaoc
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Summary: This project tackles two families of problems in discrete and computational geometry, dealing
respectively with finite point sets and to intersection patterns of geometric set systems. The two PI
already collaborate on one family of problems and have worked independently on the other. The
goal of the associate team is to broaden this two-person collaboration, and help the emergence of
new research groups.

Project website: members.loria.fr/Xavier.Goaoc/fip.html.

9.1.2 ANR PRCI

ANR SoS

Participants: Vincent Despré, Loïc Dubois, Camille Lanuel, Alba Malaga,
Monique Teillaud.

Title: Structures on Surfaces

Duration: 4 years + 1 year Covid’19 extension

Starting date: April 1st, 2018

Coordinator: Monique Teillaud

Partners:

• Gamble project-team, Inria.

• LIGM (Laboratoire d’Informatique Gaspard Monge), Université Gustave Eiffel. Local Coordi-
nator: Éric Colin de Verdière.

• RMATH (Mathematics Research Unit), University of Luxembourg. National Coordinator:
Hugo Parlier.

Inria contact: Monique Teillaud

Summary: SoS is co-funded by ANR (ANR-17-CE40-0033) and FNR (INTER/ANR/16/11554412/SoS) as a
PRCI (Projet de Recherche Collaborative Internationale).

The central theme of this project is the study of geometric and combinatorial structures related to
surfaces and their moduli. Even though they work on common themes, there is a real gap between
communities working in geometric topology and computational geometry and SoS aims to create
a long-lasting bridge between them. Beyond a common interest, techniques from both ends are
relevant and the potential gain in perspective from long-term collaborations is truly thrilling.

In particular, SoS aims to extend the scope of computational geometry, a field at the interface
between mathematics and computer science that develops algorithms for geometric problems, to
a variety of unexplored contexts. During the last two decades, research in computational geometry
has gained wide impact through CGAL, the Computational Geometry Algorithms Library. In parallel,
the needs for non-Euclidean geometries are arising, e.g., in geometric modeling, neuromathematics,
or physics. Our goal is to develop computational geometry for some of these non-Euclidean spaces
and make these developments readily available for users in academia and industry.

To reach this aim, SoS follows an interdisciplinary approach, gathering researchers whose expertise
cover a large range of mathematics, algorithms and software. A mathematical study of the objects
considered is performed, together with the design of algorithms when applicable. Algorithms are
analyzed both in theory and in practice after prototype implementations, which are improved
whenever it makes sense to target longer-term integration into CGAL.

Our main objects of study are Delaunay triangulations and circle patterns on surfaces, polyhedral
geometry, and systems of disjoint curves and graphs on surfaces.

Project website: sos.loria.fr.

https://members.loria.fr/Xavier.Goaoc/fip.html
https://sos.loria.fr/
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Other international visits to the team

Boris Bukh

Status professor

Institution of origin: Carneggie Mellon University

Country: USA

Dates: July 3-12

Context of the visit: Collaboration with X. Goaoc

Mobility program/type of mobility: research stay

Justin Dallant

Status PhD student

Institution of origin: Université Libre de Bruxelles

Country: Belgique

Dates: September 20-22, and November 15h-December 16th

Context of the visit: Collaboration with X. Goaoc and F. Koechlin

Mobility program/type of mobility: research stay (Bourse de mobilité de doctorants et de post doctor-
ants (BE>FR) pour les anciens lauréats PHC TOURNESOL)

9.1.3 Visits to international teams

Research stays abroad

• X. Goaoc and F. Koechlin visited the group of A. Holsmen in KAIST (South Korea) for 3 and 4 weeks,
respectively.

9.2 National initiatives

9.2.1 ANR PRC

ANR Aspag

Participants: Olivier Devillers, Charles Duménil, Xavier Goaoc, Sylvain Lazard, Guil-
laume Moroz, Ji Won Park, Marc Pouget.

Title: Analyse et Simulation Probabilistes d’Algorithmes Géométriques

Duration: 4 years + 1 year Covid’19 extension

Starting date: January 1st, 2018

Coordinator: Olivier Devillers

Partners:

• Gamble project-team, Inria.

• Labri (Laboratoire Bordelais de Recherche en Informatique), Université de Bordeaux. Local
Coordinator: Philippe Duchon.
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• Laboratoire de Mathématiques Raphaël Salem, Université de Rouen. Local Coordinator:
Pierre Calka.

• LAMA (Laboratoire d’Analyse et de Mathématiques Appliquées), Université Paris-Est Marne-
la-Vallée. Local Coordinator: Matthieu Fradelizi

Inria contact: Olivier Devillers

Summary: The ASPAG projet is funded by ANR under number ANR-17-CE40-0017 .

The analysis and processing of geometric data has become routine in a variety of human activities
ranging from computer-aided design in manufacturing to the tracking of animal trajectories in
ecology or geographic information systems in GPS navigation devices. Geometric algorithms and
probabilistic geometric models are crucial to the treatment of all this geometric data, yet the current
available knowledge is in various ways much too limited: many models are far from matching real
data, and the analyses are not always relevant in practical contexts. One of the reasons for this state
of affairs is that the breadth of expertise required is spread among different scientific communities
(computational geometry, analysis of algorithms and stochastic geometry) that historically had very
little interaction. The Aspag project brings together experts of these communities to address the
problem of geometric data. We will more specifically work on the following three interdependent
directions.

(1) Dependent point sets: One of the main issues of most models is the core assumption that the
data points are independent and follow the same underlying distribution. Although this may be
relevant in some contexts, the independence assumption is too strong for many applications.

(2) Simulation of geometric structures: The phenomena studied in (1) involve intricate random
geometric structures subject to new models or constraints. A natural first step would be to build up
our understanding and identify plausible conjectures through simulation. Perhaps surprisingly,
the tools for an effective simulation of such complex geometric systems still need to be developed.

(3) Understanding geometric algorithms: the analysis of algorithms is an essential step in assessing
the strengths and weaknesses of algorithmic principles, and is crucial to guide the choices made
when designing a complex data processing pipeline. Any analysis must strike a balance between
realism and tractability; the current analyses of many geometric algorithms are notoriously un-
realistic. Aside from the purely scientific objectives, one of the main goals of Aspag is to bring
the communities closer in the long term. As a consequence, the funding of the project is crucial
to ensure that the members of the consortium will be able to interact on a very regular basis, a
necessary condition for significant progress on the above challenges.

Project website: members.loria.fr/Olivier.Devillers/aspag/.

ANR MinMax

Participant: Xavier Goaoc.

Title: MIN-MAX

Duration: 4 years

Starting date: January 1st, 2019

Coordinator: Stéphane Sabourau (Université Paris-Est Créteil)

Partners:

• Université Paris Est Créteil, Laboratoire d’Analyse et de Mathématiques Appliquées (LAMA).
Local coordinator: Stéphane Sabourau

https://members.loria.fr/Olivier.Devillers/aspag/
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• Université de Tours, Institut Denis Poisson. Local coordinator: Laurent Mazet. This node in-
cludes two participants from Nancy, Benoît Daniel (IECL) and Xavier Goaoc (Loria, GAMBLE).

Inria contact: Xavier Goaoc

Summary: The MinMax projet is funded by ANR under number ANR-19-CE40-0014

This collaborative research project aims to bring together researchers from various areas – namely,
geometry and topology, minimal surface theory and geometric analysis, and computational ge-
ometry and algorithms – to work on a precise theme around min-max constructions and waist
estimates.

Project website: perso.math.u-pem.fr/sabourau.stephane/min-max/min-max.html

10 Dissemination

Participants: Vincent Despré, Olivier Devillers, Laurent Dupont, Alba Malaga, Syl-
vain Lazard, Guillaume Moroz, Marc Pouget, Monique Teillaud.

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

General chair, scientific chair Monique Teillaud coordinated the organization of the workshop Struc-
tures on Surfaces (CIRM, Marseille, May 2-6), which gathered more than 60 participants.

Seminar David Eppstein (University of California, Irvine, USA) was invited to give a talk in the framework
of the (virtual) SoS seminar.

10.1.2 Scientific events: selection

Chair of conference program committees Xavier Goaoc was co-chair of SoCG’2022, the flagship con-
ference of compuational geometry.

Member of the conference program committees Monique Teillaud was a member of the program
committee of EuroCG, the 38th European Workshop of Computational Geometry (Perugia, Italy, March
14-16). She was also a member of the committee for the Young Researchers Forum of CGWeek, the
Computational Geometry Week (Berlin, Germany, June 7–10).

Reviewer All members of the team are regular reviewers for the conferences of our field, namely Sympo-
sium on Computational Geometry (SoCG), European Symposium on Algorithms (ESA), Symposium on
Discrete Algorithms (SODA), International Symposium on Symbolic and Algebraic Computation (ISSAC),
etc.

10.1.3 Journal

Member of the editorial boards Monique Teillaud is a managing editor of JoCG, Journal of Computa-
tional Geometry.

Reviewer - reviewing activities All members of the team are regular reviewers for the journals of our
field, namely Discrete and Computational Geometry (DCG), Journal of Computational Geometry (JoCG),
International Journal on Computational Geometry and Applications (IJCGA), Journal on Symbolic Com-
putations (JSC), SIAM Journal on Computing (SICOMP), Mathematics in Computer Science (MCS),
etc.

https://perso.math.u-pem.fr/sabourau.stephane/min-max/min-max.html
https://sos.loria.fr/2022-CIRM-Workshop/
https://sos.loria.fr/2022-CIRM-Workshop/
https://sos.loria.fr/#seminar
https://eurocg2022.unipg.it/
https://www.inf.fu-berlin.de/inst/ag-ti/socg22/yrf.html
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10.1.4 Software Project

Member of the Editorial Boards Marc Pouget and Monique Teillaud are members of the CGAL editorial
board.

10.1.5 Invited talks

Monique Teillaud was invited to give a (virtual) talk at the NYC Geometry Seminar “Flipping Geometric
Triangulations on Hyperbolic Surfaces”.

10.1.6 Research administration

Team members are involved in various committees managing the scientific life of the lab or at a national
level.

Local

• INRIA Comission Information et Édition Scientifique (L.Dupont),

• Fédération Charles Hermite (X. Goaoc),

• INRIA Comité de centre (X. Goaoc),

• LORIA Conseil scientifique (S. Lazard),

• LORIA department chair (S. Lazard),

• UL Prof hiring committee (chair, S. Lazard),

• Two identical UL and Sorbonne Paris Nord Univ. associate Prof hiring committees (chair, S. Lazard)
in the context of an exchange of positions,

• INRIA hiring commitee (X. Goaoc),

• INRIA PhD and postdoc hiring committee (chair, S. Lazard),

• École doctorale IAEM (S. Lazard),

• INRIA Comité des utilisateurs des moyens informatiques (chair, G. Moroz),

• INRIA Commission de développement technologique (G. Moroz),

• CLHSCT (G. Moroz),

• Agos (M. Pouget),

• LORIA Conseil de laboratoire (M. Teillaud),

• Co-organization of “Tutotechno” (M. Teillaud).

National

• INRIA Mission Jeunes Chercheurs (chair, S. Lazard).

https://geometrynyc.wixsite.com/home/seminar-previous-years
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10.2 Teaching - Supervision - Juries

10.2.1 Teaching Committees

• V. Despré: Head of the Engineer diploma speciality SIR, Systèmes d’Information et Réseaux, Poly-
tech Nancy, Université de Lorraine.

• L. Dupont is the secretary of Commission Pédagogique Nationale Carrières Sociales / Information-
Communication / Métiers du Multimédia et de l’Internet (2017-2022).

• L. Dupont represents the Commission Pédagogique Nationale Carrières Sociales / Information-
Communication / Métiers du Multimédia et de l’Internet at the national working group on D.U.T/B.U.T
reform

• L. Dupont: Head of the Bachelor diploma Licence Professionnelle Animateur, Facilitateur de
Tiers-lieux Eco-Responsables, Université de Lorraine,

• L. Dupont: Responsible of fablab "Charlylab" of I.U.T. Nancy-Charlemagne,

• X. Goaoc is the chair of the computer science department of l’École des Mine

• X. Goaoc is a member of the Conseil d’administration de l’École des Mine

10.2.2 Teaching

• Master: V. Despré, Algorithmique distribuée, 48h, M1, Polytech Nancy, France.

• Master: O. Devillers & X. Goaoc, Modèles d’environnements, planification de trajectoires, 18h, M2
AVR, Université de Lorraine, France (web).

• Licence: L. Dupont, Web development, 45h, L1, Université de Lorraine, France.

• Licence: L. Dupont, Web development, 150h, L2, Université de Lorraine, France.

• Licence: L. Dupont Web development and Social networks 70h L3, Université de Lorraine, France.

• Licence: L. Dupont, 3D printing and CAO 40h, L3, Université de Lorraine, France.

• Licence : X. Goaoc, Algorithms and complexity, 57 HETD, L3, École des Mines de Nancy, France.

• Master: X. Goaoc, Computer architecture, 32 HETD, M1, École des Mines de Nancy Nancy, France.

• Master: X. Goaoc, Introduction to blockchains, 52 HETD, M1, École des Mines de Nancy + Polytech
Nancy, France.

• Licence: A. Málaga, Information systems and databases, 86h, L1, Université de Lorraine, France.

• Licence: A. Málaga, Content Management Systems, 40h, L1, Université de Lorraine, France.

• Master: M. Pouget, Introduction to computational geometry, 10.5h, M2, École Nationale Supérieure
de Géologie, France.

• Licence : G. Moroz, Programmation et structures de données, 20 HETD, L3, École des Mines de
Nancy, France.

https://members.loria.fr/Olivier.Devillers/master/
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10.2.3 Supervision

• PhD: Charles Duménil, Expected Size of the 3-Dimensional Delaunay Triangulation of Random
Points on a Surface, defended may 2022, supervised by Olivier Devillers.

• PhD in progress: Loïc Dubois, Untangling graphs on surfaces, started in Oct. 2021, supervised by
Vincent Despré and Éric Colin de Verdière (Marne la Vallée).

• PhD in progress: Nuwan Herath, Fast algorithm for the visualization of surfaces, started in Nov.
2019, supervised by Sylvain Lazard, Guillaume Moroz and Marc Pouget.

• PhD in progress: Camille Lanuel, A toolbox for hyperbolic surfaces, started in Oct. 2021, supervised
by Vincent Despré and Monique Teillaud.

• PhD in progress: Léo Valque, Rounding 3D meshes, started in Sept. 2020, supervised by Sylvain
Lazard.

• Master internship M2: Léo Kulinski, Meshing singular surfaces, Mars - June 2022, MPRI, supervised
by Gquillaume Moroz and Marc Pouget.

10.2.4 Juries

• X. Goaoc was on the reading and defense committees of the Habilitation à diriger les recherches
d’Arnaud de Mesmay.

• S. Lazard was on the PhD defense committee (chair) of Matthieu Zins.

10.3 Popularization

• O. Devillers presented research carreer in several different classes in highschool within the Chiche
program.

• G. Moroz is a member of the Mathematics Olympiads committee of the Nancy-Metz academy.

• L. Dupont presented mixed reality software for autistic people in collaboration with the association
J. B. Thiery.

• A. Malaga gave a presentation "polyhedra" in primary school in Thionville within the program «
Regards de géomètres

• A. Malaga, L. Valque, L. Kulinski, and F. Koechlin animated a booth at the "salon de Culture et Jeux
mathématiques"
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