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2 Overall objectives
Historical context. Geometry has been a unifying formalism for science: predictive models of
the world around us have often been derived using geometric notions which formalize observable
symmetries and experimental invariants. Tools such as differential geometry and tensor calculus
quickly became invaluable in describing the complexity of natural phenomena and mechanical
systems through concise equations, condensing local and global properties into simple relations
between measurable quantities. Today, geometry (be it Euclidean or not) is at the core of many
current physical theories: general relativity, electromagnetism (E&M), gauge theory, quantum
mechanics, as well as solid and fluid mechanics, all have strong underlying structures that are
best described and elucidated through geometric notions like differential forms, curvatures, vector
bundles, connections, and covariant derivative. Geometry also creeps up in unexpected fields such
as number theory and functional analysis, offering new insights and even breakthroughs, e.g., the
use of algebraic geometry to address Fermat’s last theorem.

Geometry in Digital Sciences. In sharp contrast, the role of geometry was mostly ignored
at the inception of computer science. Yet, it has now become clear that digital sciences are imbued
with an overwhelming amount of fundamentally geometric and topological concepts. Some are
rather obvious, when dealing with the modeling of Euclidean shapes in computer graphics or the
analysis of images in computer vision for instance; some are more subtle, such as the “manifold
hypothesis” underlying a number of supervised or unsupervised learning techniques; and some are
only nascent, such as the fields of Information Geometry (basically, the geometry used to understand
probability distributions), Geometric Statistics (new statistical methodology for non-Euclidean
entities), and Topological Data Analysis (where algebraic topology is used as a tool to enhance
data analysis pipelines). In fact, even the discretization of physical theories needed to offer fast
numerical simulation has brought geometry back to the forefront after it was understood that
the loss of numerical fidelity in standard numerical methods is due to a fundamental failure to
preserve geometric or topological structures of the underlying continuous models: partial differential
equations (PDEs) modeling our physical world are typically encoding invariants and structures that
are independent of the choice of coordinates used to express the equations and the tensors involved
in them; but invariance to the choice of basis is often lost during discretization, as numerical
approximations will in general not capture, let alone preserve, the key geometric structures that
exist in the continuous case. Seeing these numerical issues through the lens of geometry is thus not
just of academic interest: failure to maintain geometric invariants has serious consequences for the
accuracy and stability of solutions.

Rationale. Given the unusual reach of geometry and its rich literature, there is an opportunity
to assemble a team of experts in geometry and its vernacular, to help broadly impact digital science
and technology. We thus propose the creation of a new project-team whose core scientific
mission is to use geometry as a bedrock for the development of numerical tools and
algorithms: we wish to exploit the properties of infinite-dimensional and finite-dimensional spaces
that are related with distance, shape, size, and relative position, and bringing them to bear on
computational discretizations and algorithms for analysis, processing, and simulation. Adhering
to geometric structures and invariants as a guiding principle for computations is a rich source of
both theoretical and practical challenges, allowing to combine concepts and results from different
areas of geometry broadly construed to produce new computational tools with solid mathematical
foundations. While our team will be very focused in terms of the mathematical foundations and
tools upon which it builds, it will also be very broad in terms of applications given the pervasiveness
of geometry in sciences and technology. This makes for an unusual, yet powerful scientific setup that
will facilitate interdisciplinary projects through the common use of geometric foundations and their
specialized terminology. It will also allow us to contribute sporadically to pure and computational
mathematics when appropriate in order to push our scientific mission forward.

Positioning. We see GeomeriX as first and foremost Inria Saclay’s graphics team, but with
wider objectives afforded by the broad relevance of geometry. It is worth noting that graphics has
evolved to the point where it often intersects with applied mathematics, machine learning, vision,
and computational science in some of its efforts, and GeomeriX intends to continue this trend.
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Objectives. Our project-team’s overall scientific objective is to contribute, through a geometric
perspective, both foundational and practical methods for geometric data processing. In particular,
we seek the development of predictive computational tools by drawing from the many facets of
geometry and topology: whether it be discrete geometry, basic differential geometry or exterior
calculus, symplectic geometry, persistent homology or sheaf theory, optimal transport, Riemannian
or conformal geometry, these topics of geometry inform and guide both our discretizations and
algorithmic designs towards computing. Note that we do not plan to merely adapt and exploit
geometric concepts and understanding for numerical purposes, as our focus on digital data may
even result in contributions to these mathematical fields, extending the current body of knowledge.
While we intentionally leave the range of our mathematical foundations open so as not to restrict
our potential team-wide explorations, we concentrate our research on four concrete themes,
which we believe can be most significantly impacted by a geometric approach to
developing new numerical tools:

1© Euclidean shape processing: from computer graphics to geometry processing and vision,
the analysis and manipulation of low-dimensional shapes (2D and 3D) is an important
endeavor with applications covering a wide range of areas from entertainment and classical
computer-aided design, to reverse engineering and biomedical engineering. Our project-team
intends to lead efforts in this competitive field, with key contributions in shape matching,
geometric analysis, and discrete calculus on meshes.

2© Simulation: traditional finite-element treatments of various physical models have had
tremendous success. Recently, a number of geometric integrators have upended the field,
either through structure-preserving integration which offers improved statistical predictability
by respecting the geometric properties of the exact flow of the differential equations, or
through novel discretizations of the state space. We intend to continue introducing novel
integration methods for increasingly complex multiphysics systems, as well as exploiting the
use of learning methods to accelerate simulation.

3© Dynamical systems: we intend to leverage the geometric nature of dynamical systems to
investigate and promote high-dimensional data analysis for dynamics: the study of dynamical
systems from a limited number of observations of the state of a given system (for example,
time series or a sparse set of trajectories) offers a unique opportunity to develop scalable
computational tools to detect or characterize unusual features and coherent structures.
Meanwhile, the study of dynamical systems from a combinatorial point of view opens up the
possibility of characterizing their invariant sets and assessing their stability.

4© Data science: finally, we are intent on exploring the underlying role of geometry in machine
learning and statistical analysis. This role has been put forward in the recent years, with
the emergence of approaches such as geometric deep learning or topological data analysis,
whose aim is to leverage the underlying geometry or topology of the data to enhance the
performance, robustness, or explainability of the methods used for their analysis. We
will pursue investigations toward this goal, concentrating our efforts on topics related to
explainable feature design, geometric feature learning, geometry-driven learning, and geometry
for categorical and mixed data types.

Evidently, our research efforts may at times lie across multiple of these themes given our multi-
disciplinary objectives, and it is our hope that we will all eventually participate in the four themes.

3 Research program
Below we introduce the details of our four research themes, in four separate subsections. In each
subsection, we first present the scientific focus and research objectives of the corresponding theme,
then we detail the research topics we intend to address and how we plan to leverage topology
and geometry for each one of them. For each theme, we list the most likely contributors, and
organize the various subtopics within each theme from short to long-term goals, based on our
current expectations and focus.
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3.1 Geometry for Euclidean shape processing
Euclidean space is the default setting of classical geometry in two or three dimensions. Shapes in 3D
space are of particular interest as they represent the typical objects we interact with. Geometry
processing is an area of research focusing on these low-dimensional shapes in Euclidean space,
with the goal to design algorithms, data structures, as well as analysis tools for their digital
acquisition, reconstruction, analysis, manipulation, synthesis, classification, transmission, and
animation. Digital shapes are typically discretized through either point clouds, triangle meshes, or
polygonal meshes for surfaces, and through tetrahedron or polytopal meshes for volumes. Analyzing
and manipulating these digital representations already involve fundamental difficulties in terms of
efficiency, scalability, and robustness to arbitrary sampling, for which computational geometry and
computer graphics have generated a number of key algorithms. Simple surface meshes in 3D also
offer a simple context in which to define discrete notions of basic topological properties (quantities
preserved through arbitrary stretching, such as Euler characteristic, genus, Betti numbers, etc) and
relevant geometric properties (normal, curvatures, covariant derivatives, parallel transport, etc).
Yet the digital counterpart of the low-dimensional case of Euclidean geometry is far from being
settled or complete: it remains obviously relevant in a number of scientific fields on which we plan
to focus. A few research directions of particular interest are described below.

Operator-based methods for shape analysis We plan to develop novel approaches for repre-
senting and manipulating geometric concepts as linear functional operators. Specifically we will
focus on tools for shape matching, design and analysis of differential quantities such as vector fields
or cross fields, shape deformation and shape comparison, where functional approaches have recently
been shown to provide a natural and discretization-agnostic representation [98, 31, 32, 108]. This
“functional” point of view is classical in many scientific areas, including dynamical systems (where
the pullback with respect to a map is closely related to the Koopman or composition operator,
allowing the study ergodicity or mixing property of non-linear maps through the spectral properties
of a linear operator), differential geometry (where vector fields are often defined by their action
on real-valued functions) and representation theory among others. However, it has only recently
been adopted in geometry processing with tremendous and constantly growing potential in both
axiomatic or even learning-based approaches [86, 76, 59]. We will continue developing efficient
and robust algorithms by considering shapes as functional spaces and by representing various
geometric operations as linear operators acting on appropriate real-valued functions. In addition
to the efficiency and robustness of methods obtained by considering this linear operator point of
view of geometry processing and dynamical systems, another very significant advantage of these
techniques is that they allow to express many different geometric operations in a common language.
This means, for example, that it makes it easy to define the pushforward of a vector field with
respect to a map by simply considering a composition of appropriate discrete operators. Despite
the significant recent success of tools within this area, especially related to the functional map
framework [99], there does not exist a unified coherent theoretical framework in which different
geometric concepts can be represented and manipulated via their functional equivalents. Our
main long-term goal therefore would be to establish a novel field within geometry processing by
creating both a computational framework and a coherent theoretical formalism in which all of the
different basic geometric operations can be expressed, and thus in which different concepts can
“communicate” with one another. We believe that such a formalism and associated computational
tools, already quite well developed, will not only greatly extend the scope of applicability of many
existing geometry processing pipelines, but will also help expand this language to novel concepts,
and ultimately help pave the way towards representation-agnostic geometric data manipulation.

Discrete metrics and applications. While three-dimensional shapes are often encoded via
their Euclidean embedding, numerous research efforts have focused on studying and discretizing their
intrinsic metric. Regge calculus [106], an early approach to numerical relativity without coordinates,
proposed the use of edge lengths to encode a piecewise-Euclidean metric per simplex, from which the
Riemann curvature tensor can be easily computed to derive local areas or curvatures. This early work
led to a series of alternative metric representations: tip angles, for instance, are known to encode
the intrinsic geometry of a triangle mesh up to a scaling, while local measurements (an angle [107]
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or a length cross-ratio [89] per edge) later formed the basis of circle patterns [35, 81] as well as
conformal representations [113]; the discrete Laplace-Beltrami cotan formula [102] also determines
the edge lengths of a triangle mesh (and thus its discrete metric) up to a global scaling [125]. More
recently, generalized notions of metrics were proposed; for instance, [73] presented a characterization
of an augmented discrete metric resulting from the orthogonal primal-dual structure of weighted
triangulations. Common to many of these various metric characterizations is the existence of convex
energies which allow to efficiently compute these metrics from various boundary conditions. We
intend to investigate the discrete treatment of metric for low-dimensional manifolds as a counterpart
to the discretization of antisymmetric tensors (differential forms), which is far less studied — and
a discrete theory unifying symmetric and anti-symmetric tensors remains elusive despite recent
advances [72]. Moreover, the metric of a surface is known in the continuous realm to induce Hodge
stars and a canonical torsion-free Levi-Civita connection (or parallel transport), but this picture
is far less clear for discrete manifolds, even if the construction of arbitrary-order discrete Hodge
stars and metric connections are well understood by now. A few research directions on generalized
metrics seem particularly interesting due to their likelihood of resulting in novel algorithmic and
computational frameworks:

• Metric-dependent meshing: Given a set of metric-based operators, optimized mesh structures
can be designed to offer optimal accuracy akin to Hodge-star mesh optimization for the
augmented weighted metric proposed in [95]. Another interesting research question is the
existence and construction of intrinsic Delaunay triangulation, the most common discrete
shape representation, with respect to a particular metric [36].

• Metric-aware sampling: Metric-dependent descriptors such as the pair correlation function
are particularly efficient in characterizing statistical properties of point distributions for
texture synthesis [60]. Extending this framework to arbitrary non-flat domains through
Multi-Dimensional Scaling (MDS) seem particularly promising.

• Shape characterization: Highly convoluted embeddings like the cortical surface of the brain
and its functional connectivity graph are naturally hyperbolic in nature [41]. However,
investigating a link between cortical folding and the volumetric fiber bundle structure from
a pure geometric viewpoint through a hyperbolic metric characterization has surprisingly
not be done in brain analysis, despite striking visual similarities between brain folding and
geometric realizations of the hyperbolic plane (see [118] and Taimin, a’s crochet model). We are
hoping that this intrinsic metric characterization can be investigated through recent discrete
hyperbolic parametrization tools [68], which may also lead to other shape classification
techniques in more general contexts.

• Piecewise-linear maps: We also wish to study the classification of the deformation of a triangle
mesh through its induced metric change in the embedding space. Developing an approach to
decompose such a diffeomorphic piecewise-linear map into canonical geometric transformations
through either linear algebra or convex minimization could offer new discrete equivalences
for conformal, equiareal, and curvature-preserving maps between triangulations, with direct
applications to mesh parameterization and more general processing of discrete meshes.

• Geodesic abstractions: curve-network representations [71] based on a few geodesics to describe
a shape provide a compact encoding of surfaces. While it is increasingly useful for artistic
depictions, we also want to study its relevance as a compact compression scheme from which
the shape and its metric can be derived with controllable precision.

• Metric-dependent cage: Finally, we also want to understand how to define optimized metric-
dependent cages for intuitive & expressive deformation and animation of complex shapes [116],
and how these cages can be understood as polygonal or polyhedral cells to locally simplify a
simplicial complex.

Discrete differential and tensor calculus. When working on low-dimensional spaces, the use
of meshes (as opposed to just point clouds) pays dividends as it allows for the development of
discrete versions of Exterior Calculus (see DEC [55] or FEEC [29]), where k-dimensional integrals
can be directly evaluated in k-cells, and differentiation can formally achieved through the boundary
operator: the concept of chains and cochains from algebraic topology forms the basis of a discrete
analog of Cartan’s exterior calculus of differential forms, providing crucial numerical tools such
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as a discrete de Rham cohomology and a discrete Helmholtz-Hodge decomposition that precisely
mimick their continuous counterparts. Moreover, finite elements of arbitrary order can be associated
with these discrete forms through subdivision [70] to provide a powerful Isogeometric Analysis
(IGA). Recent developments [87, 69] have offered also a discrete approach to tangent vector
fields. While DEC encodes vector fields as 1-forms, processing tangent vectors and, more generally,
directional fields sampled at vertices of discrete surfaces requires the development of discrete (metric)
connections [52, 87] (which can be seen as discrete equivalent to the Christoffel symbols) to handle
the non-linearity of non-flat domains. From these connections can be derived the usual continuous
notions of covariant derivatives or Killing operator, and these discrete operators demonstrate the
same intimate link between geometry and topology as exemplified by the hairy ball theorem (Hopf
index theorem). While these operators apply equally well on discrete three-manifolds, much remains
to do: properly defining the notion of curvature matrix-valued 2-form or torsion vector-valued 2-form
in 3D and checking that these definitions provide consistent Bianchi identities (i.e., there exists
an exterior covariant derivative satisfying fundamental geometric and topological properties) is an
exciting research direction. Not only will it allow to deal with the line singularities in hexahedral
meshing robustly, but it will also provide a Bochner Laplacian (also called the vector Laplacian) in
3D devoid of the type of spurious modes that discrete Laplacians over flat domains can introduce if
one does not enforce a proper discrete deRham complex. Such a tensor calculus for three-manifolds
may allow us to explore possible applications in the context of general relativity in the longer
term. Finally, the design of simplicial or cell meshes that guarantee accurate computations while
approximating a given domain well remains an important endeavor for practical applications.

3.2 Geometry for simulation
Mathematical models of the evolution in time of mechanical systems generally involve systems
of differential equations. Simulating a physical system consists in figuring out how to move the
system forward in time from a set of initial conditions, allowing the computation of an actual
trajectory through classical methods such as fourth-order Runge-Kutta or Newmark schemes.
However, a geometric — instead of a traditional numerical-analytic — approach to the problem of
time integration is particularly pertinent [74]: the very essence of a mechanical system is indeed
characterized by its symmetries and invariants (e.g., momenta), thus preserving these geometric
notions into the discrete computational setting is of paramount importance if one wants discrete
time integration to properly capture the underlying continuous motion. Considering mechanics from
a variational point of view goes back to Euler, Lagrange and Hamilton [62], and Poincaré famously
stated that geometry and physics are “indissociable”. The variational principle most important
for continuous mechanics is due to Hamilton, and is often called Hamilton’s principle or the
least action principle: it states that a dynamical system always finds an optimal course from one
position to another. One consequence is that we can recast the traditional way of thinking about
an object accelerating in response to applied forces, into a geometric viewpoint: the path followed
by the object between two space-time positions has optimal geometric properties, analogous to
the notion of geodesics on curved surfaces. This point of view is equivalent to Newton’s laws in
the context of classical mechanics, but is broad enough to encompass physical models ranging
to E&M and quantum mechanics [92]. While the idea of discretizing variational formulations of
mechanics is standard for elliptic problems using Galerkin Finite Element methods for instance, only
recently did it get used to derive variational time-stepping algorithms for mechanical systems [91].
These variational integrators have been shown to be remarkably versatile, powerful, and general for
simulations of physical phenomena when compared to traditional numerical time stepping methods:
the symplectic character of variational integrators guarantees good statistical predictability through
accurate preservation of the geometric properties of the exact flow of the differential equations. We
endeavor to continue contributing to this particular application of geometry and extend it further,
as we foresee a number of interesting scientific developments and industrial applications.

State-space discretization of statistical physics. Kinetic equations are used to describe a
variety of phenomena in various scientific fields, ranging from rarefied gas dynamics and plasma
physics to biology and socio-economics, and appear naturally when one considers a statistical
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description of a large particle system evolving in time. In incompressible fluid simulation, kinetic
solvers based on the lattice Boltzmann method (LBM) have generated growing interest due to
their use of the Boltzmann transport equation and to its unusual state-space discretization based
on a computationally-efficient lattice [111]: compared to macroscopic solvers directly integrating
Navier-Stokes equations, LBM totally bypasses the difficult issue of discretizing advection to high
order, and absence of global pressure solves makes for extremely efficient parallel implementations,
which are now surpassing alternative discretizations [84]. However, the numerical treatment of
the collision operator of the Boltmann equation has not reached maturity; most surprising is the
complete absence of geometric approaches to deal with Boltzmann equations. One should be able
to formulate a variational approach to LBM based on Hamilton’s principle to derive a systematic
integrator with guaranteed accuracy and structure-preserving properties. Moreover, while dealing
with isothermal and incompressible flows is a good starting point, the kinetic standpoint of fluid
dynamics is not theoretically restricted to this case: far more complex physical systems, from
compressible flow (with shocks), to thermal conductivity, to even acoustics for example, can
be handled; but far less is known on how to handle these more involved cases computationally,
because no systematic numerical approach to handle Boltzmann equations is known. Success in
our geometric approach to LBM should offer a much better handle to deal with these difficult
cases: between new Hermite regularization tools [37, 51] and the recent introduction of variational
integrators for non-equilibrium thermodynamical systems mentioned above should provide the
necessary theoretical foundations to establish a geometric solver for this generalized case.

Learning-aided simulation. Computational physics is experiencing a tectonic shift as data-
driven approaches are quickly becoming mainstream. While we do not adhere to the idea being
floated that numerical integration could be simply “learned” to improve current solvers, the fact
is that many machine learning tools may have profound influence in practical applications using
simulation. Long standing problems such as the design of perfectly matched layers (PML, an
artificial absorbing layer for transport equations used to reduce the domain of simulation without
suffering from reflected waves [49]) or flux limiters in high resolution schemes [120] (to avoid
the spurious oscillations (wiggles) that would otherwise occur due to shocks or sharp changes)
could be found through training, and applied at very low numerical cost. We are curious to see
if geometry can help design better architectures or approaches for this type of learning-aided
simulation, by helping with better loss functions (with soft constraints) or better architectures (to
enforce hard constraints) that account for the importance of structure preservation. Learning the
highly non-linear and chaotic dynamics of fluids is also an interesting direction: we believe that one
can infer predictive high-frequency details of a turbulent flow from a low-resolution simulation as
it is an attractive alternative to non-linear turbulence modeling, extending the computationally-
expensive Reynolds-Averaged Navier-Stokes (RANS [27]), Large-Eddy Simulation (LES [79]), or
Detached-Eddy Simulation (DES [112]) models used in CFD. Many other learning efforts in the
domain of simulation are being explored, in particular towards the goal of allowing real-time design
of shapes that satisfy some physical properties, such as lowest drag for improved aerodynamics or
highest stiffness for a light cantilever.

Geometric integration of physical systems and multiphysics. Although the use of geo-
metric integrators for differential equations in computational physics has recently brought off many
numerical improvements, the large body of knowledge in differential geometric mechanics remains
vastly under-utilized in discrete mechanics. Many mechanical systems require geometric objects
such as diffeomorphisms, vector fields, or (principal) connections for which no structure-preserving
discretization exists. Hydrodynamics, for instance, has well established and rich differential ge-
ometric foundations, but rare are the numerical methods that take advantage of this rich body
of knowledge as yet. Yet, satisfying a form of “particle relabeling” symmetry [92] on a discrete
level could directly enforce Kelvin’s circulation theorem, a momentum preservation as impor-
tant as angular momentum preservation for rigid bodies. Relativity is another example, albeit
much more involved, where structure-preserving numerics would strongly impact the scientific
community: having discretizations automatically enforcing Bianchi’s identities would not only
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simplify the numerical procedures involved in gravitational theory (as spectral accuracy would no
longer be required to avoid spurious modes), but could in fact result in conservation of energy and
angular momentum. Moreover, multiphysics (coupled mechanical systems involving more than
one simultaneously occurring physical field) can be consistently described through constrained
variational principles: a simple, yet already interesting example is the case of the equations of
motion for the garden hose, where rod dynamics coupled with fluid motion was only fully modeled
(along with its nonlinear solutions of traveling-wave type) a few years back [104] through such
a geometric treatment. Now that a variational formulation of nonequilibrium thermodynamics
extending Hamilton’s principle to include irreversible processes has been proposed [66], we are
particularly interested in advancing further the arsenal of computational methods for physical
simulation.

3.3 Geometry for dynamical systems

Dynamical systems – whether physical, biological, chemical, or social – are ubiquitous in nature, and
their study deals with the concept of change, rate of change, rate of rate of change, etc. Dynamical
systems are often better elucidated and modeled through topology and geometry. Whether we
consider a continuous-time dynamical system (flow) or discrete-time dynamical system (map),
the geometric theory of dynamical systems studies phase portraits: on the state-space manifold
(a geometric model for the set of all possible states of the system), the global behavior of the
dynamical system is determined by a cellular structure of basins enclosed by separatrices, each
basin being dominated by a different specific behavior or fate. A system’s trajectories on the
state-space manifold determine velocity vectors by differentiation; conversely, velocity vectors
determine trajectories by integration. Bifurcations can also be understood as geometric models for
the controlled change of one system into another, while the rate of divergence of trajectories in phase
space measures a system’s stability. Given this overwhelming relevance of geometry in dynamical
systems, we intend to dedicate some of our activities to develop geometry-based computational
tools to study time series and dynamical systems: while classic dynamical systems theory has
established solid foundations to study structures in steady and time-periodic flows and maps, new
tools are needed to analyze the complexity of time series or aperiodic large-scale flows from sampled
trajectories, and to automatically generate a simplified skeleton of the overall dynamics of a system
from input data. We discuss a few directions we are interested in further impacting next.

Time series. Geometric methods play an important part in the study of time series. Of particular
interest are time-delay embeddings, which are generically able to capture the underlying state
space and dynamics from which the time series data have been acquired, by the Takens embedding
theorem [115]. Such embeddings transform discrete time series into point clouds in Euclidean space,
so that the underlying geometry of the point cloud reflects the geometry of the phase space the
data originate from. By doing so, questions related to the seasonality or anomalous behavior of
the time series are naturally reformulated into questions about the geometry or topology of their
embeddings [101]. Beside this approach, other more direct methods apply geometric or topological
tools in the original physical or frequency domain, which, despite its simplicity, has proven to be
relevant in various contexts [54, 58]. A common thread to all these developments is their restriction
to numerical time series, including (but not restricted to) data for which geometry plays an obvious
role—e.g. inertial or gyroscopic sensor data. With potential medical applications in mind, one
of our main long-term goals will be to adapt and extend these approaches to handle categorical
data, in connection to the item Geometry for categorical and mixed data types in the Geometry
for data science theme. We also plan to find principled methods to tuning the various parameters
involved in the techniques, e.g. the window size in time-delay embeddings: we will seek to optimize
or learn these parameters automatically, in connection to the item Geometry-driven learning in the
Geometry for data science theme. We will also seek to make these parameters adaptive, e.g. using
time-varying window sizes in time-delay embeddings of irregular time series, in order to obtain
more accurate data representations and improved learning performance.
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Coherent structures. Another interesting area in need of new numerical methods concerns
coherent structures, i.e., persisting features of a flow over long periods that tend to favor or inhibit
material transport between distinct flow regions. While there is no universally agreed-upon definition
for coherent structures (there exist ergodicity-based [40], observer-based [93], and probabilistic [64]
approaches to their definition), most variants and associated computational methods assume a fine
knowledge of the Eulerian velocity field in space and time to deduce a good approximation of the
flow. However, flows are often known only as a set of sparse particle trajectories in time (an example
is the trajectory of buoys in the ocean). Such a sparse sampling of the dynamical system does
not lend itself well to a geometric analysis of transport, so topological methods have recently been
proposed to extract structures from a sparse set of trajectories by measuring their entanglement [117,
28, 124] based on the theory of braid groups, a classical area of topology. Coherent regions can then
be defined as containing particles that possibly mix with other particles within the region itself but
do not mix with particles outside the region; the set of trajectories arising from the particles within
a coherent region forms a coherent bundle. Even if the use of braid groups offers sound foundations
and numerical tools for the definition of coherent structures in 2D, there has been only limited
efforts in developing practical and scalable computational tools for the efficient analysis of flow
structures in 3D, offering a clear opportunity for us to try new geometric insights.

Invariant sets. Much of the theory of dynamical systems revolves around the existence and
structure of invariant sets, which by definition are subsets of the state space that are invariant
under the action of the dynamics. Invariant sets come in many different forms (stationary solutions,
periodic orbits, connecting orbits, chaotic invariant sets, etc), and their structure can be very
complicated and can undergo drastic changes under perturbations of the system, thus making their
study difficult. This is all the more true in practical applications, where the systems are only known
through space and/or time discretizations. Conley index theory [50] overcomes these issues by
restricting the focus to invariant sets that admit an isolating neighborhood, and by introducing a
topological invariant—the Conley index—that characterizes whether such isolated invariant sets
are attracting, repelling, or saddle-like. It is defined as the homotopy type of a pair of compact
subsets of the neighborhood, and it is proven to be independent of the choice of neighborhood—thus
characterizing the invariant set itself. We are interested in the study of invariant sets in the discrete
space and continuous time setting, where the space is typically described by a simplicial complex
and the dynamics by a combinatorial vector (or multivector) field. Building upon Forman’s seminal
work in combinatorial dynamical systems [61], recent advances [33, 85] have shown that isolated
invariant sets and their Conley indices can be properly defined even in this setting, and that they
can be related to the dynamics of some upper semicontinuous acyclic multivalued map defined
on the geometric realization of the simplicial complex; in simpler terms, not only can Conley
index theory be adapted to the combinatorial setting, but it also connects to its classical analog in
the underlying space. Two important questions for applications arise from this line of work: (1)
how to compute the invariant sets and their Conley indices (including choosing relevant isolating
neighboroods) efficiently? (2) how do they behave under perturbations of the input vector field or
simplicial complex? These questions have just started to be addressed [56, 57], mostly through
the lens of single-parameter topological persistence theory, developed in the context of topological
data analysis. We intend to push this direction further, notably using multi-parameter persistence
theory to cope with some of the key difficulties such as the choice of isolating neighborhoods.

3.4 Geometry for data science
The last decade has seen the advent of machine learning (ML), and in particular deep learning
(DL), in a large variety of fields, including some directly connected to geometry. For instance,
DL-based approaches have become increasingly popular in geometry processing [105] due to their
ability to outperform state-of-the-art, domain-specific methods by leveraging the ever-increasing
amounts of available labeled data. On the downside, DL approaches suffer from a general lack of
explainability. Moreover, their performances can be disappointing on small data due to their large
numbers of parameters; this is especially true with end-to-end learning pipelines, which tend to
require humongous amounts of training data to learn the right data representation. Finally, DL is
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by essence tied to Euclidean data representations, and as such it requires intermediate transforms in
order to be applicable to non-Euclidean data types such as graphs or probability measures. Because
of these limitations, we are seeing a rise of geometric and topological methods for data science
in general, and for ML and DL in particular, whose aim is to help address the aforementioned
challenges as well as others. For instance, geometric deep learning [38] tries to generalize deep
neural models to non-Euclidean domains. This includes for instance using information geometry to
apply deep neural models in probability spaces. Topological data analysis (TDA) [97] is another
popular approach to enhance ML and DL methods. It contributes to data science in at least
three different ways: first, by providing data mining tools that can help users uncover hidden
structures in data; second, by providing generic descriptors for geometric data that can be turned
into features for ML and DL with provable stability properties; third, by integrating itself deeply
into existing ML methods or DL architectures to enhance their performances or to analyze their
behavior [46, 88]. Other contributions of geometry to data science at large include: the use of
Forman’s Ricci curvature and its corresponding Ricci flow in networks, to understand the networks’
properties and growth [121]; the application of the Hodge-Hemholtz decomposition to statistical
ranking problems with sparse response data, with theoretical connections to both PageRank and
LASSO [78]; the use of Reeb graphs or Morse-Smale complexes in statistical inference [48] as well
as in data visualization [119]. These important developments reinforce our argument that geometry
and topology have their role to play in the elaboration of the next-generation data analysis tools.
We plan to focus on a few research directions related to these developments, which are of particular
interest in our view.

Deep learning for large-scale 3D geometric data analysis. We first propose to develop
efficient algorithms and mathematical tools for analyzing large geometric data collections using Deep
Learning techniques. This includes 3D shapes represented as triangle or quad meshes, volumetric
data, point clouds possibly embedded in high-dimensions, and graphs representing geometric (e.g.
proximity) data. Our project is motivated by the fact that large annotated collections of geometric
models have recently become available [45, 123], and that machine learning algorithms applied to
such collections have shown promising initial results, both for data analysis as well as synthesis. We
believe that these results can be significantly extended by building on recent advances in geometry
processing, optimization and learning. Our ultimate goal is to design novel deep learning techniques
capable both of handling geometric data directly and of combining and integrating different data
sources into a unified analysis pipeline. A key challenge in this project is the fact that geometric
data can come in a myriad different representations, such as point clouds and meshes among others,
with variable sampling and discretization. Furthermore, geometric shapes can undergo both rigid
and non-rigid deformations. Unfortunately, most existing deep learning approaches focus only
on a particular type of representations and deformation classes (e.g., considering purely extrinsic
or purely intrinsic methods). Instead we propose to place special focus on designing learning
techniques capable of handing diverse multimodal data sources undergoing arbitrary deformations,
in a coherent theoretical and practical framework. Moreover we propose to develop novel powerful
interactive tools for analysis and annotation, to help harness user input, and also provide better
mechanisms for exploration of variability in the data [108, 100].

Explainable geometric and topological features for data. Another of our goals is to design
geometric and topological features that can capture richer content from the data, while maintaining
the robustness and stability properties that the existing features enjoy. If we can make our features
rich enough so that they characterize the input data (or their underlying geometric structures,
assuming such structures exist) completely, then we will be able to leverage them in the context of
explainable AI, to compute pre-images with guarantees on the corresponding interpretations. In
cases where our features cannot completely describe the data, we will study the geometry of the
fibers of the feature extraction step, in order to quantify the discrepancy that may appear between
different interpretations of the same feature. We envision two complementary approaches for this:

• The first approach relies on feature aggregation. In the context of TDA for instance, one
may consider using multiple filtrations (or filter functions on a fixed simplicial complex),
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computing their corresponding topological descriptors, then aggregating these descriptors
together to form a feature vector.

• The second approach relies on more elaborate geometric and topological tools to design
the features. The idea is to encode the joint effect of multiple geometric and topological
constructions on the data, in a more integrated way than just by aggregating the corresponding
features. By encoding more complex effects, we hope to extract a richer content using smaller
constructions.

Research on the first approach in TDA started with [53, 67], who proved that, in the special case
where the data are sampled from some subanalytic compact sets in Euclidean space Rn, the compact
sets themselves are fully described by the aggregated features obtained by orthogonal projections
onto lines. This follows from a more fundamental result on the invertibility of the Radon transforms
of constructible functions [110], to which the above aggregated features belong. This initial result
has sparked a thriving new direction of research, exploring larger and larger classes of compact
sets [77, 90, 96]. Many important questions arise from this line of work, some of which have been
partially addressed, including: what kind of stability or robustness properties do these aggregated
features enjoy? Can the size of the collection of filter functions used be reduced, to become finite
and (more importantly) independent of the compact set under consideration? Can the aggregated
features be computed efficiently? Can non-Euclidean compact sets, such as manifolds or length
spaces, be considered as well, with similar guarantees?

The second approach is related to the development of multi-parameter persistence [42], which is
undeniably the most widely open and long-standing research topic in TDA today. The core challenge
is to define computationally tractable algebraic invariants that can capture as much of the joint
structure of multiple topological constructions as possible. The notorious difficulty of this question
comes from the fact that the algebraic objects underlying multi-parameter topological constructions
are significantly more complicated than the ones underlying single-parameter constructions. The
question also connects to notoriously hard problems in other areas of pure mathematics, such
as the classification of isomorphism classes of indecomposable poset representations in quiver
representation theory for instance. It can benefit from these connections, as mathematical tools that
have been developed for those problems can be imported into the TDA literature—several promising
such imports have been made in the recent past, including from representation theory [34] and
from sheaf theory [80]. In turn, mathematical and algorithmic advances made in multi-parameter
persistence may benefit these other areas of mathematics as well. This is clearly a high-risk and
long-term research topic, but if successful, it may eventually have an enormous impact on TDA
and related areas.

Geometric feature learning. Geometry and topology have played a key role in the design of
feature extraction pipelines for certain types of data. The numerous existing geometric features
for geometry processing (shape contexts [63], differential and integral invariants [103], heat or
wave kernel signatures [30, 114], etc.) are a sign of the importance of this topic for the computer
graphics community. Meanwhile, the TDA community has developed generic feature extraction
pipelines, based on combinatorial constructions and their algebraic invariants, which have proven to
be useful in a variety of application domains [97]. All these approaches are, however, handcrafted,
with hyperparameters being tuned via manual, grid, or random search. Our goal is to make
these approaches transition from a paradigm of feature engineering to that of feature learning, in
order to set up end-to-end learning pipelines for improved performances and adaptability. Two
complementary directions are considered:

• designing piecewise-smooth variants of the existing pipelines, with a fine control over the
underlying stratification. This will make it possible to apply variational optimization methods,
typically stochastic (sub-)gradient descent, and to optimize the gradient sampling steps for
improved convergence rates.

• designing novel pipelines based on a combination of geometric/topological tools and deep
learning, in order to get the best out of both worlds.
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Research in the first direction is still in its infancy. Promising theoretical advances were made
recently, towards understanding the piecewise differentiability of the basic topological persistence
operator in full generality [83], as well as towards optimizing its parameters using classical stochastic
gradient descent [43]. Can the knowledge gained in these studies about the underlying stratification
of the operator be leveraged to optimize the gradient sampling step and thus improve the convergence
rates? Can these results be extended to more advanced pipelines, such as the one for Mapper or for
zigzags and multi-parameter persistence?

The idea behind the second direction is to integrate topological or geometric layers into neural
network architectures such as auto-encoders or GANs for feature extraction — the challenge being
to determine how to do it in the appropriate way, so that we can make the most of this combination.
This question connects to the research topic Geometry-driven learning described further down in
this section.

Geometry-driven learning. Most of the contributions of geometry and topology to machine
learning until recently have been to the design of pre-processing steps (e.g. feature extraction) to
enhance the performances of the learning pipeline. There is now a thriving effort of the community
toward integrating geometric and/or topological computations deeper into the core of the pipeline.
This includes for instance: ToMATo [46], which integrates a TDA-based feedback loop into density
based algorithms to improve their stability and robustness; topological regularizers [47, 75], which
add topology-based regularization terms to the loss in supervised statistical learning; topological
layers [44, 65, 82], which are meant to be incorporated into neural networks. Meanwhile, geometry
and topology have been used to analyze the behavior of neural networks [109, 39]. This exciting line
of work is just emerging, and our intent is to push this direction further, in particular to address
the following important questions:

• How can we generalize the use of topological layers in neural networks? This question
is connected to the differentiability of the TDA pipeline, addressed in the research topic
Geometric feature learning. Inded, generalizing the current (nascent) framework for differential
calculus and optimization with the TDA pipeline will be key to designing both generic and
effective topological layers. Another more practical aspect of the question is to evaluate the
contribution of topological layers as initial or intermediate layers, depending on the neural
network architecture that they are combined with and on the data they are applied to.

• The same question arises for topological regularizers, with similar theoretical and practical
challenges.

• The development of richer families of geometric and topological descriptors, undertaken in the
item Richer geometric and topological features for data, will eventually lead to the question of
generalizing the current differentiable framework to these new descriptors, in order to make
them as widely applicable as the current descriptors, and also to the practical question of
determining how to best combine them with existing loss functions, regularizers, or neural
network architectures.

• The aforementioned contributions and research directions concern mostly supervised learning.
Can we contribute as well to unsupervised learning problems, including clustering (as ToMATo
does already for density-based clustering), dimensionality reduction, or unsupervised feature
learning? This question connects also to the research topic Geometric feature learning
described previously. One direction we may explore is the design of geometric or topological
layers to be inserted in unsupervised neural network architectures such as auto-encoders or
GANs.

• Finally, as TDA is concerned primarily with topology, an obvious (yet still wide open) question
to ask is whether it can contribute to the current effort towards generating neural network
architectures automatically.

Geometry for categorical and mixed data types. Categorical data types are notoriously
hard to deal with in the context of ML and AI. Indeed, most of the existing ML toolbox has been
designed specifically to work with numerical variables, usually sitting in some vector or metric space.
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By contrast, spaces of categorical data do not naturally come equipped with a linear structure
nor a metric. More importantly, these spaces are discrete by nature, so choices of metrics or
(dis-)similarity measures can be scarce, with limited effects on the learning efficiency. To make
things worse, categorical variables are often mixed with numerical variables, and choosing a proper
weighting for them is a challenge in its own right. Meanwhile, categorical variables play an important
part in many applications: for instance, in precision medicine, where the monitoring of patients
relies on collected longitudinal data that include not only numerical variables such as temperature
or blood pressure, but also categorical variables such as illness antecedents or symptoms lists. Thus,
handling categorical and mixed data types represents an important challenge today. Unfortunately,
with very few exceptions [122], it has been mostly overlooked so far in the development of topological
methods for ML and AI, so our goal will be to help fix this situation. The standard approach for
handling categorical variables is to define a proper vector representation, then to apply—either
off-the-shelf or with minor adaptations—an analysis method designed for numerical variables to
the new data representation. A prototypical instance of this approach is Multiple Correspondance
Analysis for dimensionality reduction [26], which applies classical PCA to the one-hot encoding
matrix of the input data. A variant of the approach replaces the vector representation by a suitable
metric or (dis-)similarity measure on the initial categorical variables or on some transformed version
of those. For instance, in clustering, one can define a metric on the input data, e.g. Jaccard or
Hamming distance, then apply a hierarchical bottom-up clustering algorithm such as single-linkage
to the resulting distance matrix. This variant seems quite appropriate for geometric or topological
methods, since the latter typically work with metric or (dis-)similarity spaces. The challenge is to
determine with which metrics or (dis-)similarity measures, and on which data types, geometric or
topological methods will be provably better.

A more refined version of the approach learns the new data representation instead of engineering
it, which is particularly relevant when end-to-end learning pipelines are sought for. The methods are
usually taylored to a specific data type, for instance word2vec [94] computes word embeddings for
text data using a two-layer neural network. Our developments in the research topic Geometry-driven
learning will make it possible to combine TDA layers with such networks, and thus to benefit from
the most recent advances on representation learning for these data types. The challenge will be to
understand when and how to make the most of this combination.

4 Application domains
Our work aims at a wide range of applications covering 3D shape analysis and processing, simulation,
and data science in general. While we typically focus on contributions that are of a fundamental,
mathematical and algorithmic nature, we seek collaborations with academics and industrial from
applied fields, who can use our tools on practical and concrete problems. Here are a few examples
of collaborations:

• In the context of 3D geometry processing, we collaborate with Dassault Systèmes for a) the
PhD of Lucas Brifault on the design of novel geometric representations for shapes through
measure theory and b) the PhD of Mariem Mezghanni on the design of physical simulation
layers for 3D modeling.

• In the context of personalized medicine, we collaborate with statisticians and medical doctors
to incorporate our geometric and topological features into learning pipelines to design better
dynamic treatment regimens (AEx PreMediT).

• In a collaboration with the French Ministry of Defense, we seek to develop tools to analyze
multimodal time series data in order to predict the appearance of G-LOCs among fighter jet
pilots in training or in operation (PhD of Julie Mordacq).

Beside these few illustrative examples, GeomeriX also maintains regular collaborations with
Sanofi, EDF, Danone R&D, Immersion Tools, as well as with several key players in the world-wide
tech industry, including Ansys, Adobe Research, Disney/Pixar, NVidia.
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5 Highlights of the year
5.1 Awards

• P. Memari won a Best Paper award at JFIG in November 2022.

• M. Ovsjanikov received a Best Paper award for 3DV 2022, and one of his students received
a Best Thesis award from the GdR IG-RV.

• M. Desbrun won a Best Paper award at JFIG 2022.

5.2 Nominations
• S. Oudot is a CAS fellow at the Norwegian Academy of Science and Letters for the academic

year 2022-2023.

6 New results
We list our new results for each of the four themes that our team is articulated around.

6.1 Geometry for Euclidean shape processing
6.1.1 Point-Pattern Synthesis using Gabor and Random Filters

Participants: Pooran Memari.

In collaboration with Xingchang Huang, Hans-Peter Seidel, and Gurprit Singh (MPI Saarbrücken).

Point pattern synthesis requires capturing both local and non-local correlations from a given
exemplar. Neural networks have shown remarkable success in such tasks for both point-pattern
and texture synthesis. In this work [14], we show that more traditional Gabor transform-based
features—together with convolutional filters—can perform even better, making the pipeline versatile
compared to previous approaches. The resulting pipeline better captures both the local and
non-local structures, does not require any specific data set training and can easily extend to handle
multi-class and multi-attribute point patterns, e.g., disk and other element distributions. Our
method outperforms state-of-the-art synthesis methods on a large variety of point patterns in terms
of both qualitative and quantitative measures over different applications.

6.1.2 Fast and Robust Planar Cutting of Arbitrary Domains

Participants: Mathieu Desbrun.

In collaboration with Prof. Jin Huang, Zhejiang University, PRC.

Given a complex three-dimensional domain delimited by a closed and non-degenerate input
triangle mesh without any self-intersection, a common geometry processing task consists in cutting
up the domain into cells through a set of planar cuts, creating a “cut-cell mesh”, i.e., a volumetric
decomposition of the domain amenable to visualization (e.g., exploded views), animation (e.g.,
virtual surgery), or simulation (finite volume computations). A large number of methods have
proposed either efficient or robust solutions, sometimes restricting the cuts to form a regular
or adaptive grid for simplicity; yet, none can guarantee both properties, severely limiting their

https://cas.oslo.no/fellows/steve-oudot-article5520-828.html
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usefulness in practice. At the core of the difficulty is the determination of topological relationships
among large numbers of vertices, edges, faces and cells in order to assemble a proper cut-cell mesh:
while exact geometric computations provide a robust solution to this issue, their high computational
cost has prompted a number of faster solutions based on, e.g., local floating-point angle sorting
to significantly accelerate the process — but losing robustness in doing so. In this paper [13]
entitled Topocut: Fast and Robust Planar Cutting of Arbitrary Domains, we introduce a new
approach to planar cutting of 3D domains that substitutes topological inference for numerical
ordering through a novel mesh data structure, and revert to exact numerical evaluations only in
the few rare cases where it is strictly necessary. We show that our novel concept of topological cuts
exploits the inherent structure of cut-cell mesh generation to save computational time while still
guaranteeing exactness for, and robustness to, arbitrary cuts and surface geometry. We demonstrate
the superiority of our approach over state-of-the-art methods on almost 10,000 meshes with a wide
range of geometric and topological complexity. We also provide an open source implementation.

6.2 Geometry for simulation
6.2.1 General Regularized Green’s Functions for Elasticity

Participants: Mathieu Desbrun.

In collaboration with Dr. Jiong CHEN, Telecom.

The fundamental solutions (Green’s functions) of linear elasticity for an infinite and isotropic
media are ubiquitous in interactive graphics applications that cannot afford the computational costs
of volumetric meshing and finite-element simulation. For instance, the recent work of de Goes and
James at ACM SIGGRAPH 2017 leveraged these Green’s functions to formulate sculpting tools
capturing in real-time broad and physically-plausible deformations more intuitively and realistically
than traditional editing brushes. In this paper [21] entitled Go Green: General Regularized Green’s
Functions for Elasticity, we extend this family of Green’s functions by exploiting the anisotropic
behavior of general linear elastic materials, where the relationship between stress and strain in the
material depends on its orientation. While this more general framework prevents the existence of
analytical expressions for its fundamental solutions, we show that a finite sum of spherical harmonics
can be used to decompose a Green’s function, which can be further factorized into directional,
radial, and material-dependent terms. From such a decoupling, we show how to numerically derive
sculpting brushes to generate anisotropic deformation and finely control their falloff profiles in
real-time.

6.2.2 Efficient Kinetic Simulation of Two-Phase Flows

Participants: Mathieu Desbrun, Wei Li.

In collaboration with Prof. Xiaopei Liu, Shanghaitech University, PRC.

Real-life multiphase flows exhibit a number of complex and visually appealing behaviors,
involving bubbling, wetting, splashing, and glugging. However, most state-of-the-art simulation
techniques in graphics can only demonstrate a limited range of multiphase flow phenomena, due
to their inability to handle the real water-air density ratio and to the large amount of numerical
viscosity introduced in the flow simulation and its coupling with the interface. Recently, kinetic-
based methods have achieved success in simulating large density ratios and high Reynolds numbers
efficiently; but their memory overhead, limited stability, and numerically-intensive treatment of

https://doi.org/10.1145/3528223.3530149
https://doi.org/10.1145/3528233.3530726
https://doi.org/10.1145/3528233.3530726
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coupling with immersed solids remain enduring obstacles to their adoption in movie productions.
In this paper [17] entitled Efficient Kinetic Simulation of Two-Phase Flows, we propose a new
kinetic solver to couple the incompressible Navier-Stokes equations with a conservative phase-field
equation which remedies these major practical hurdles. The resulting two-phase immiscible fluid
solver is shown to be efficient due to its massively-parallel nature and GPU implementation, as well
as very versatile and reliable because of its enhanced stability to large density ratios, high Reynolds
numbers, and complex solid boundaries. We highlight the advantages of our solver through various
challenging simulation results that capture intricate and turbulent air-water interaction, including
comparisons to previous work and real footage.

6.3 Geometry for data science
6.3.1 Signed Barcodes for Multi-Parameter Persistence via Rank Decompositions

Participants: Steve Oudot.

In collaboration with Magnus Botnan (VU Amsterdam) and Steffen Oppermann (NTNU).

In this work [20] we introduce the signed barcode, a new visual representation of the global
structure of the rank invariant of a multi-parameter persistence module or, more generally, of
a poset representation. Like its unsigned counterpart in one-parameter persistence, the signed
barcode encodes the rank invariant as a Z-linear combination of rank invariants of indicator modules
supported on segments in the poset. It can also be enriched to encode the generalized rank invariant
as a Z-linear combination of generalized rank invariants in fixed classes of interval modules. In the
paper we develop the theory behind these rank decompositions, showing under what conditions
they exist and are unique - so the signed barcode is canonically defined. We also illustrate the
contribution of the signed barcode to the exploration of multi-parameter persistence modules
through a practical example.

6.3.2 On the bottleneck stability of rank decompositions of multi-parameter persis-
tence modules

Participants: Steve Oudot.

In collaboration with Magnus Botnan (VU Amsterdam), Steffen Oppermann (NTNU), and Luis
Scoccola (Northeastern University).

The notion of rank decomposition of a multi-parameter persistence module was introduced as a
way of constructing complete and discrete representations of the rank invariant of the module. In
particular, the minimal rank decomposition by rectangles of a persistence module, also known as the
generalized persistence diagram, gives a uniquely defined representation of the rank invariant of the
module by a pair of rectangle-decomposable modules. This pair is interpreted as a signed barcode,
with the rectangle summands of the first (resp. second) module playing the role of the positive
(resp. negative) bars. The minimal rank decomposition by rectangles generalizes the concept of
persistence barcode from one-parameter persistence, and, being a discrete invariant, it is amenable
to manipulations on a computer. However, here [25] we show that it is not bottleneck stable under
the natural notion of signed bottleneck matching between signed barcodes. To remedy this, we
turn our focus to the signed barcode induced by the Betti numbers of the module relative to the
so-called rank exact structure, which we prove to be bottleneck stable under signed matchings.
As part of our proof, we obtain two intermediate results of independent interest: we compute the

https://doi.org/10.1145/3528223.3530132
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global dimension of the rank exact structure on the category of finitely presentable multi-parameter
persistence modules, and we prove a bottleneck stability result for hook-decomposable modules,
which are in fact the relative projective modules of the rank exact structure. We also bound the
size of the multigraded Betti numbers relative to the rank exact structure in terms of the usual
multigraded Betti numbers, we prove a universality result for the dissimilarity function induced by
the notion of signed matching, and we compute, in the two-parameter case, the global dimension of
a different exact structure that is related to the upsets of the indexing poset.

6.3.3 On Rectangle-Decomposable 2-Parameter Persistence Modules

Participants: Vadim Lebovici, Steve Oudot.

In collaboration with Magnus Botnan (VU Amsterdam).

In this work [12] we address two questions: (a) can we identify a sensible class of 2-parameter
persistence modules on which the rank invariant is complete? (b) can we determine efficiently
whether a given 2-parameter persistence module belongs to this class? We provide positive
answers to both questions, and our class of interest is that of rectangle-decomposable modules.
Our contributions include: on the one hand, a proof that the rank invariant is complete on
rectangle-decomposable modules, together with an inclusion-exclusion formula for counting the
multiplicities of the summands; on the other hand, algorithms to check whether a module induced in
homology by a bifiltration is rectangle-decomposable, and to decompose it in the affirmative, with a
better complexity than state-of-the-art decomposition methods for general 2-parameter persistence
modules. Our algorithms are backed up by a new structure theorem, whereby a 2-parameter
persistence module is rectangle-decomposable if, and only if, its restrictions to squares are. This
local characterization is key to the efficiency of our algorithms, and it generalizes previous conditions
derived for the smaller class of block-decomposable modules. It also admits an algebraic formulation
that turns out to be a weaker version of the one for block-decomposability. By contrast, we show
that general interval-decomposability does not admit such a local characterization, even when
locality is understood in a broad sense. Our analysis focuses on the case of modules indexed over
finite grids, the more general cases are left as future work.

6.3.4 Hybrid Transforms of Constructible Functions

Participants: Vadim Lebovici.

In this work [15] we introduce a general definition of hybrid transforms for constructible
functions. These are integral transforms combining Lebesgue integration and Euler calculus.
Lebesgue integration gives access to well-studied kernels and to regularity results, while Euler
calculus conveys topological information and allows for compatibility with operations on constructible
functions. We conduct a systematic study of such transforms and introduce two new ones: the
Euler–Fourier and Euler–Laplace transforms. We show that the first has a left inverse and that
the second provides a satisfactory generalization of Govc and Hepworth’s persistent magnitude
to constructible sheaves, in particular to multi-parameter persistent modules. Finally, we prove
index-theoretic formulae expressing a wide class of hybrid transforms as generalized Euler integral
transforms. This yields expectation formulae for transforms of constructible functions associated
with (sub)level-sets persistence of random Gaussian filtrations.

6.3.5 Learning Multi-resolution Functional Maps with Spectral Attention for Robust
Shape Matching
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Participants: Maks Ovsjanikov, Lei Li, Nicolas Donati.

In this work [23] published at Neurips, a novel non-rigid shape matching framework is presented
that is based on multi-resolution functional maps with spectral attention. The framework is
applicable in both supervised and unsupervised settings, and the network is trained so that it
can adapt the spectral resolution, depending on the given shape input. The approach is not only
accurate with near-isometric input, but also robust and able to produce reasonable matching even
in the presence of significant non-isometric distortion. The superior performance of the approach is
demonstrated through experiments on challenging near-isometric and non-isometric shape matching
benchmarks.

6.3.6 Neural Correspondence Prior for Effective Unsupervised Shape Matching

Participants: Maks Ovsjanikov, Souhaib Attaiki.

In this work [19] published at Neurips, we presented a new paradigm for computing corre-
spondences between 3D shapes. Our approach is fully unsupervised and can lead to high-quality
correspondences even in challenging cases such as sparse point clouds or non-isometric meshes,
where current methods fail. Most notably, we showed that given a noisy map as input, training a
feature extraction network with the input map as supervision tends to remove artifacts from the
input and can act as a powerful correspondence denoising mechanism, both between individual
pairs and within a collection. We called this approach NCP or Neural Correspondence Prior (NCP)
and showed that it significantly improves the accuracy of the state-of-the-art maps, especially when
trained within a collection.

6.3.7 DiffusionNet: Discretization Agnostic Learning on Surfaces

Participants: Maks Ovsjanikov, Souhaib Attaiki.

In collaboration with Nicholas Sharp and Keenan Crane (CMU).

In this work [18] we introduce a new general-purpose approach to deep learning on three-
dimensional surfaces based on the insight that a simple diffusion layer is highly effective for spatial
communication. The resulting networks are automatically robust to changes in resolution and
sampling of a surface—a basic property that is crucial for practical applications. Our networks can
be discretized on various geometric representations, such as triangle meshes or point clouds, and can
even be trained on one representation and then applied to another. We optimize the spatial support
of diffusion as a continuous network parameter ranging from purely local to totally global, removing
the burden of manually choosing neighborhood sizes. The only other ingredients in the method
are a multi-layer perceptron applied independently at each point and spatial gradient features to
support directional filters. The resulting networks are simple, robust, and efficient. Here, we focus
primarily on triangle mesh surfaces and demonstrate state-of-the-art results for a variety of tasks,
including surface classification, segmentation, and non-rigid correspondence.

6.3.8 Reduced Representation of Deformation Fields for Effective Non-rigid Shape
Matching
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Participants: Maks Ovsjanikov, Ramana Sundararaman.

In this work [24] published at Neurips, a novel approach for computing correspondences between
non-rigid objects is presented by exploiting a reduced representation of deformation fields. The
approach is based on mesh-free methods and network learning deformation parameters at a sparse
set of positions in space (nodes) and reconstructing the continuous deformation field in a closed-form
with guaranteed smoothness. This reduction in degrees of freedom results in significant improvement
in terms of data-efficiency and enabling limited supervision, while also providing direct access to first-
order derivatives of deformation fields which facilitates enforcing desirable regularization effectively.
The resulting model has high expressive power and is able to capture complex deformations, as
shown by state-of-the-art results across multiple deformable shape matching benchmarks.

6.3.9 Weakly Supervised 3D Local Descriptor Learning for Point Cloud Registration

Participants: Maks Ovsjanikov, Lei Li.

In this work [16], we present a novel method called WSDesc to learn 3D local descriptors in a
weakly supervised manner for robust point cloud registration. Our work builds upon recent 3D
CNN-based descriptor extractors, which leverage a voxel-based representation to parameterize local
geometry of 3D points. Instead of using a predefined fixed-size local support in voxelization, we
propose to learn the optimal support in a data-driven manner. To this end, we design a novel
differentiable voxelization layer that can back-propagate the gradient to the support size optimization.
To train the extracted descriptors, we propose a novel registration loss based on the deviation from
rigidity of 3D transformations, and the loss is weakly supervised by the prior knowledge that the
input point clouds have partial overlap, without requiring ground-truth alignment information.
Through extensive experiments, we show that our learned descriptors yield superior performance
on existing geometric registration benchmarks.

6.3.10 Learning Locally Accurate and Globally Consistent Non-Rigid Shape Corre-
spondence

Participants: Maks Ovsjanikov, Lei Li, Souhaib Attaiki.

In this work [22], we present a novel learning-based framework that combines the local accuracy
of contrastive learning with the global consistency of geometric approaches, for robust non-rigid
matching. We first observe that while contrastive learning can lead to powerful point-wise features,
the learned correspondences commonly lack smoothness and consistency, owing to the purely
combinatorial nature of the standard contrastive losses. To overcome this limitation we propose to
boost contrastive feature learning with two types of smoothness regularization that inject geometric
information into correspondence learning. With this novel combination in hand, the resulting
features are both highly discriminative across individual points, and, at the same time, lead to
robust and consistent correspondences, through simple proximity queries. Our framework is general
and is applicable to local feature learning in both the 3D and 2D domains. We demonstrate the
superiority of our approach through extensive experiments on a wide range of challenging matching
benchmarks, including 3D non-rigid shape correspondence and 2D image keypoint matching.

7 Bilateral contracts and grants with industry
7.1 Bilateral contracts with industry
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Participants: Mathieu Desbrun.

Mathieu Desbrun participated in the Inria-Dassault Systèmes convention, and Lucas Brifault
became the first PhD student to start in GeomeriX using this convention (this is not a CIFRE
grant), for a thesis whose title is “Théorie de la mesure géométrique appliquée pour la modélisation
de formes complexes”.

8 Partnerships and cooperations
8.1 International research visitors
8.1.1 Visits of international scientists

• Prof. Christian Lessig, from Otto-von-Guericke Universit at Magdeburg in January 2022 for a
talk and an afternoon of research discussions.

Other international visits to the team

Sara Hahner
Status PhD student

Institution of origin: Universität Bonn

Country: Germany

Dates: Sept. - Dec. 2022

Context of the visit: Creating generative models with surface-based Deep Learning approaches,
in collaboration with Maks Ovsjanikov

Mobility program/type of mobility: research stay

Siddharth Setlur
Status intern (Master)

Institution of origin: ETH Zürich

Country: Switzerland

Dates: Sept. - Dec. 2022

Context of the visit: Master’s internship in topological data analysis under Steve Oudot

Mobility program/type of mobility: internship

8.1.2 Visits to international teams

Research stays abroad

Mathieu Desbrun
Visited institution: Caltech

Country: USA

Dates: March 2022

Context of the visit: Collaboration with Prof. Houman Owhadi on numerical homogenization

Mobility program/type of mobility: research stay and lecture
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Theo Braune

Visited institution: Technische Universität Berlin

Country: Germany

Dates: November 2022

Context of the visit: Collaboration with Prof. Ulrich Pinkall.

Mobility program/type of mobility: research stay

8.2 European initiatives
8.2.1 Horizon Europe
ERC Starting Grant

Participants: Maks Ovsjanikov.

Title: EXPROTEA: Exploring Relations in Structured Data with Functional Maps

Partner Institution(s): • None

Date/Duration: 2018-2022

Additionnal info/keywords: Establishing theoretical foundations and designing efficient com-
putational methods for analyzing, quantifying and exploring relations and variability in
structured data sets, such as collections of geometric shapes, point clouds, and large networks
or graphs, among others. Ultimately, we expect our study to create to a new rigorous,
unified paradigm for computational variability, providing a common language and sets of
tools applicable across diverse underlying domains.

8.2.2 H2020 projects
H2020 EU Project Clipe

Participants: Pooran Memari.

Title: Creating Lively Interactive Populated Environments

Partner Institution(s): • University of Cyprus, Universitat Politecnica de Catalunya, Uni-
versity College London, Trinity College Dublin, Max Planck Institute for Intelligent
Systems, KTH Royal Institute of Technology.

Date/Duration: 2020-2024

Additionnal info/keywords: This project designs new techniques to create and control interac-
tive virtual worlds and characters, benefiting from opportunities open by the wide availability
of emergent technologies in the domains of human digitization and artificial intelligence.
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8.3 National initiatives
AEx PreMediT

Participants: Steve Oudot.

Title: Precision Medicine using Topology

Partner Institution(s): • CRESS, Hôtel-Dieu, France

Date/Duration: 2022-2025

Additionnal info/keywords: While recent advances in machine learning are opening promising
prospects for precision medicine, the sometimes small size, sparsity, or partly categorical
nature of the data involved pose some crucial challenges. The goal of PreMediT is to address
these challenges by integrating information about the geometric and topological structure of
the data into the machine learning pipelines.

ANR AI Chair AIGRETTE

Participants: Maks Osjanikov.

Title: Analyzing Large Scale Geometric Data Collections

Partner Institution(s): • ANR

Date/Duration: 2020-2024

Additionnal info/keywords: Motivated by the deluge of 3D data using geometric representations
(point clouds, triangle, quad meshes, graphs...) that are ill-suited for modern applications, we
are developing efficient algorithms and mathematical tools for analyzing diverse geometric
data collections.

9 Dissemination
People involved: Mathieu Desbrun, Pooran Memari, Maks Ovsjanikov, Steve Oudot.

9.1 Promoting scientific activities
9.1.1 Scientific events: organisation

Member of the organizing committees

• Maks Ovsjanikov was the co-organizer of the Hi! PARIS Meet Up! on Computer Vision
in Sep 2022. This event (which took place at CapGemini corporate building) consisted of
presentations by experts in Computer Vision from Hi! PARIS institutions, as well as a
general round table discussion around the topics of Computer Vision with the participation
of corporate guests, and especially corporate donors of Hi! Paris.

9.1.2 Scientific events: selection

Chair of conference program committees

• M. Desbrun was chairing the international committee deciding on the the Best Thesis award
at ACM SIGGRAPH 2022.
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Member of the conference program committees

• Steve Oudot was a member of the scientific committee of the GETCO 2022 conference.

• Pooran Memari was a member of the program committees of the Eurographics 2022 conference,
of the Symposium on Geometry Processing, and of the ACM SIGGRAPH technical papers
track.

• Maks Osjanikov was a member of the program committee of the Symposium on Geometry
Processing, and of the ACM SIGGRAPH technical papers track.

• Mathieu Desbrun was a member of the Courses Program Commitee for ACM SIGGRAPH
Asia conference.

9.1.3 Journal

Member of the editorial boards

• Steve Oudot is a member of the Editorial Board of the Journal of Computational Geometry.

• Mathieu Desbrun is a member of the Editorial Board of the Journal of Geometric Mechanics.

• Pooran Memari is an Associate Editor of Computer Graphics Forum (CGF).

9.1.4 Invited talks

• M. Desbrun was a guest speaker of Luminy’s Demi Journées du Pôle Calcul in December
2022, a keynote speaker at Eurographics 2022, a keynote speaker at GraPhys 2022, a guest
speaker at the Applied Geometry for Data Sciences at Chongqing, China, and an invited
speaker at Inria Sophia-Antipolis.

• P. Memari was keynote speaker at the Journées Française d’Informatique Graphique (JFIG)
in November.

• Steve Oudot. Interview of Frédéric Chazal. Applied Algebraic Topology Research Network
Interview Series, 2022-2023.

• Steve Oudot. Optimization in topological data analysis. Workshop Geometry, topology and
statistics in data sciences, Institut Henri Pioncaré (Paris), Oct. 2022.

• Steve Oudot. Generalized persistence diagrams, rank decompositions, signed barcodes.
Workshop Interactions between representation theory and topological data analysis, Center for
Advanced Study (Oslo), Dec. 2022.

9.1.5 Leadership within the scientific community

• Steve Oudot is co-responsible, with L. Castelli-Aleardi, of the GT GeoAlgo within the GdR-IM
(until Sept. 2022).

• Pooran Memari is the local coordinator for the GT-MG (Modélisation Géométrique).

9.1.6 Research administration

• Steve Oudot is vice-president of the Commission Scientifique at Inria Saclay.

• Pooran Memari is a member of the comité de Web du LIX, and a deputy member of the
conseil de laboratoire du LIX, École Polytechnique.

• Pooran Memari and Mathieu Desbrun were members of the comité de recrutement du
département d’informatique de Polytechnique (DIX) in 2022.

https://www.lix.polytechnique.fr/~smimram/getco22/
https://eg2022.univ-reims.fr/
https://sgp2022.github.io/organization/
https://s2022.siggraph.org/technical-papers-committee/
https://s2022.siggraph.org/technical-papers-committee/
https://sgp2022.github.io/organization/
https://sgp2022.github.io/organization/
https://s2022.siggraph.org/technical-papers-committee/
https://sa2022.siggraph.org/en/
https://sa2022.siggraph.org/en/
https://www.aatrn.net/interviews
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9.2 Teaching - Supervision - Juries
9.2.1 Teaching

• Master: Steve Oudot, Topological data analysis, 45h eq-TD, M1, École polytechnique, France;

• Master: Mathieu Desbrun, Digital Representation and Analysis of Shapes, M2, École poly-
technique, France;

• Master: Pooran Memari, Artificial Intelligence and Advanced Visual Computing, and Digital
Representation and Analysis of Shapes, M2, École polytechnique, France;

• Master: Maks Ovsjanikov, Artificial Intelligence and Advanced Visual Computing, École
polytechnique, France;

• Undergrad-Master: Steve Oudot, Algorithms for data analysis in C++, 22.5h eq-TD, L3/M1,
École Polytechnique, France.

• Master-PhD: Pooran Memari is a member of the Jury d’admission Masters & PhD Track
IGD (Interaction, Graphics & Design), IP-Paris (2020-2023).

9.2.2 Supervision

• PhD in progress: Vadim Lebovici, Laplace transform for constructible functions. Started
Sept. 1st, 2020. Steve Oudot and François Petit (CRESS).

• PhD in progress: Julie Mordacq, Analyse Topologique des Données et Apprentissage Machine
pour analyser et prédire des transitions de phase en n-dimensions. Started Sept. 1st, 2022.
Steve Oudot.

• PhD in progress: Lucas Brifault, Théorie de la mesure géométrique appliquée pour la
modélisation de formes complexes. Started May. 1st, 2022. Mathieu Desbrun.

• PhD in progress: Theo Braune, Discrétization d’Opérateurs Différentielles basée sur la
Géometrie. Started October. 1st, 2022. Mathieu Desbrun.

• PhD in progress: Nissim Maruani, Modèles 3D cognitifs et informés par la physique pour les
jumeaux numériques et les territoires intelligents. Started October. 1st, 2022. Pierre Alliez
and Mathieu Desbrun.

• PhD in progress: Jiayi Wei, New Geometric Representations for Volumetric Brain Analysis.
Started Oct. 1st, 2020. Pooran Memari and Damien Rohmer.

• PhD in progress: Nicolas Donati, Représentations robustes pour la mise en correspondence
de formes 3D via apprentissage supervisé et non-supervisé. Started Sep. 1st, 2019. Maks
Ovsjanikov and Etienne Corman.

• PhD in progress: MariemMezghanni, Apprentissage Structurel et Fonctionnel pour l’Automatisation
du Design Industriel. Started Nov. 1st, 2019. Maks Ovsjanikov.

• PhD in progress: Souhaib Attaiki, Analyse des formes 3D avec méthodes de l’apprentissage
profond. Started Oct. 1st, 2020. Maks Ovsjanikov.

• PhD in progress: Robin Magnet, Exploration de la variabilité dans les données génériques.
Started Fev. 1st, 2021. Maks Ovsjanikov.

• PhD in progress: Ramana S Sundararaman, Analyse de formes 3D à grande échelle avec des
approches basées sur l’apprentissage. Started Oct. 1st, 2021. Maks Ovsjanikov.
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9.2.3 Juries

• Steve Oudot was an invited member of the Ph.D. defence of Julian Le Deunff, IMT Atlantique,
Dec. 2022.

• Maks Ovsjanikov was a reviewer for the Ph.D. of Janis Born, Aachen University, Mar. 2022.

• Maks Ovsjanikov was an examiner for the Ph.D. defence of Théo Deprelle, Université Paris-Est,
Oct. 2022.

• Maks Ovsjanikov was an examiner for the Ph.D. defence of Tarek Ben Charrada, Cergy Paris
Université, Oct. 2022.

• Pooran Memari was an examiner for the Ph.D. defence of Yanis Marchand, Université Paris
Est, Nov. 2022.

10 Scientific production
10.1 Major publications
[1] K. Bai, C. Wang, M. Desbrun and X. Liu. ‘Predicting high-resolution turbulence details

in space and time’. In: ACM Transactions on Graphics 40.6 (Dec. 2021), p. 200. doi:
10.1145/3478513.3480492. url: https://hal.inria.fr/hal-03551723.

[2] J. Chen, F. Schäfer, J. Huang and M. Desbrun. ‘Multiscale Cholesky Preconditioning for Ill-
conditioned Problems’. In: ACM Transactions on Graphics 40.4 (19th July 2021), Art. 91. doi:
10.1145/3450626.3459851. url: https://hal.archives-ouvertes.fr/hal-03277277.

[3] N. Donati, A. Sharma and M. Ovsjanikov. ‘Deep Geometric Functional Maps: Robust Feature
Learning for Shape Correspondence’. In: CVPR. Seattle (virtual), United States, 14th June
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[4] P. Ecormier-Nocca, P. Memari, J. Gain and M.-P. Cani. ‘Accurate Synthesis of Multi-Class
Disk Distributions’. In: Computer Graphics Forum 38.2 (2019). url: https://hal.inria
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[6] T. Lacombe, M. Cuturi and S. Oudot. ‘Large Scale computation of Means and Clusters for
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[8] W. Li, Y. Ma, X. Liu and M. Desbrun. ‘Efficient kinetic simulation of two-phase flows’. In:
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Shape Matching’. In: ICCV. SEOUL, South Korea, 29th Oct. 2019. url: https://hal.sci
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10.2 Publications of the year
International journals

[12] M. B. Botnan, V. Lebovici and S. Oudot. ‘On Rectangle-Decomposable 2-Parameter Persis-
tence Modules’. In: Discrete and Computational Geometry 68.4 (Dec. 2022), pp. 1078–1101.
doi: 10.1007/s00454-022-00383-y. url: https://hal.inria.fr/hal-03906313.

[13] X. Fang, M. Desbrun, H. Bao and J. Huang. ‘TopoCut: Fast and Robust Planar Cutting of
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[14] X. Huang, P. Memari, H.-p. Seidel and G. Singh. ‘Point-Pattern Synthesis using Gabor
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[16] L. Li, H. Fu and M. Ovsjanikov. ‘WSDesc: Weakly Supervised 3D Local Descriptor Learning
for Point Cloud Registration’. In: IEEE Transactions on Visualization and Computer
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International peer-reviewed conferences

[19] S. Attaiki and M. Ovsjanikov. ‘NCP: Neural Correspondence Prior for Effective Unsupervised
Shape Matching’. In: NeurIPS Thirty-sixth Annual Conference on Neural Information
Processing Systems. NeurIPS 2022. New Orleans, United States, 2023. url: https://hal.s
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Consistent Non-Rigid Shape Correspondence’. In: 3DV 2022 - International Conference on
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