
2022
ACTIVITY REPORT

Team

INDES

RESEARCH CENTRE

Inria Center
at Université Côte d’Azur

Secure Diffuse Programming
Inria teams are typically groups of researchers working on the definition of a common

project, and objectives, with the goal to arrive at the creation of a project-team. Such

project-teams may include other partners (universities or research institutions)

DOMAIN

Networks, Systems and Services,
Distributed Computing

THEME

Distributed programming and Software
engineering

Contents

Team INDES 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 2

3 Research program 3
3.1 Parallelism, concurrency, and distribution . 3
3.2 Web, functional, and reactive programming . 3
3.3 Security of diffuse programs . 3

4 Application domains 4
4.1 Web . 4
4.2 Internet of Things . 4

5 Highlights of the year 4

6 New software and platforms 4
6.1 New software . 4

6.1.1 Bigloo . 4
6.1.2 Hop . 5
6.1.3 IFJS . 5
6.1.4 Hiphop.js . 6
6.1.5 Server-Side Protection against Third Party Web Tracking 6
6.1.6 webstats . 6
6.1.7 Skini Node.js (ISS) . 6

7 New results 7
7.1 Design and Implementation of Dynamic Languages . 7

7.1.1 JavaScript Sealed Classes . 7
7.1.2 Semi-Automatic Verification of TypeScript Type Declarations 7

7.2 Session Types . 8
7.2.1 Event Structure Semantics for Synchronous Multiparty Sessions 8
7.2.2 Asynchronous Sessions with Input Races . 9

7.3 Security . 9
7.3.1 Security Analyses for XSS . 9
7.3.2 Binary Analysis for Secret Erasure . 9

8 Partnerships and cooperations 10
8.1 International initiatives . 10

8.1.1 Associate Teams in the framework of an Inria International Lab or in the framework
of an Inria International Program . 10

8.2 European initiatives . 11
8.2.1 H2020 projects . 11
8.2.2 ANR CISC . 13

9 Dissemination 13
9.1 Promoting scientific activities . 14

9.1.1 Scientific events: organisation . 14
9.1.2 Scientific events: selection . 14
9.1.3 Journal . 14
9.1.4 Invited talks . 14
9.1.5 Research administration . 14

9.2 Teaching - Supervision - Juries . 15
9.2.1 Teaching . 15

9.2.2 Supervision . 15
9.2.3 Juries . 15

9.3 Popularization . 15
9.3.1 Interventions . 15

10 Scientific production 16
10.1 Major publications . 16
10.2 Publications of the year . 16
10.3 Cited publications . 18

Project INDES 1

Team INDES

Creation of the Team: 2022 June 22

Keywords

Computer sciences and digital sciences

A1.3. – Distributed Systems

A2. – Software

A2.1. – Programming Languages

A2.1.1. – Semantics of programming languages

A2.1.3. – Object-oriented programming

A2.1.4. – Functional programming

A2.1.7. – Distributed programming

A2.1.9. – Synchronous languages

A2.1.12. – Dynamic languages

A2.2.1. – Static analysis

A2.2.5. – Run-time systems

A2.2.9. – Security by compilation

A4.3.3. – Cryptographic protocols

A4.6. – Authentication

A4.7. – Access control

Other research topics and application domains

B6.3.1. – Web

B6.4. – Internet of things

B9.5.1. – Computer science

B9.10. – Privacy

https://radar.inria.fr/keywords/2022/computing
https://radar.inria.fr/keywords/2022/other

2 Inria Annual Report 2022

1 Team members, visitors, external collaborators

Research Scientists

• Manuel Serrano [Team leader, INRIA, Senior Researcher, HDR]

• Ilaria Castellani [INRIA, Researcher]

• Guillaume Combette [CEA, Researcher, from Jul 2022]

• Lautaro Lecumberry [AIRBUS CYBERSECURITY GMBH, Researcher, from Oct 2022]

• Tamara Rezk [INRIA, Senior Researcher, HDR]

Faculty Members

• Gérard Berry [COLLEGE DE FRANCE, HDR]

• Marc Feeley [UNIV MONTREAL]

• Robert Findler [NORTHWESTERN UNIVERSITY, from Dec 2022]

• David Naumann [STEVENS INSTITUTE OF TECHNOLOGY, from Oct 2022]

• Andreas Sabelfeld [UNIV TECH CHALMERS, from Sep 2022]

PhD Students

• Davide Davoli [UNIV COTE D’AZUR, from Oct 2022]

• Mohamad El Laz [POLE EMPLOI, from Feb 2022]

• Mohamad El Laz [INRIA, until Jan 2022]

• Jayanth Krishnamurthy [INRIA]

Administrative Assistant

• Nathalie Bellesso [INRIA]

External Collaborator

• Bertrand Petit [Pole Emploi]

2 Overall objectives

The goal of the Indes team is to study models for diffuse computing and develop languages for secure
diffuse applications. Diffuse applications, of which Web 2.0 applications are a notable example, are
the new applications emerging from the convergence of broad network accessibility, rich personal
digital environment, and vast sources of information. Strong security guarantees are required for these
applications, which intrinsically rely on sharing private information over networks of mutually distrustful
nodes connected by unreliable media.

Diffuse computing requires an original combination of nearly all previous computing paradigms,
ranging from classical sequential computing to parallel and concurrent computing in both their syn-
chronous / reactive and asynchronous variants. It also benefits from the recent advances in mobile
computing, since devices involved in diffuse applications are often mobile or portable.

The Indes team contributes to the whole chain of research on models and languages for diffuse
computing, going from the study of foundational models and formal semantics to the design and im-
plementation of new languages to be put to work on concrete applications. Emphasis is placed on

Project INDES 3

correct-by-construction mechanisms to guarantee correct, efficient and secure implementation of high-
level programs. The research is partly inspired by and built around Hop, the web programming model
proposed by the former Mimosa team, which takes the web as its execution platform and targets interac-
tive and multimedia applications.

3 Research program

3.1 Parallelism, concurrency, and distribution

Concurrency management is at the heart of diffuse programming. Since the execution platforms are
highly heterogeneous, many different concurrency principles and models may be involved. Asynchronous
concurrency is the basis of shared-memory process handling within multiprocessor or multicore com-
puters, of direct or fifo-based message passing in distributed networks, and of fifo- or interrupt-based
event handling in web-based human-machine interaction or sensor handling. Synchronous or quasi-
synchronous concurrency is the basis of signal processing, of real-time control, and of safety-critical
information acquisition and display. Interfacing existing devices based on these different concurrency
principles within Hop or other diffuse programming languages will require better understanding of
the underlying concurrency models and of the way they can nicely cooperate, a currently ill-resolved
problem.

3.2 Web, functional, and reactive programming

We are studying new paradigms for programming Web applications that rely on multi-tier functional
programming. We have created a Web programming environment named Hop. It relies on a single for-
malism for programming the server-side and the client-side of the applications as well as for configuring
the execution engine.

Hop is a functional language based on the SCHEME programming language. That is, it is a strict
functional language, fully polymorphic, supporting side effects, and dynamically type-checked. Hop
is implemented as an extension of the BIGLOO Scheme compiler that we develop. In the past, we have
extensively studied static analyses (type systems and inference, abstract interpretations, as well as classical
compiler optimizations) to improve the efficiency of compilation in both space and time.

As a Hop DSL, we have created HipHop, a synchronous orchestration language for web and IoT
applications. HipHop facilitates the design and programming of complex web/IoT applications by
smoothly integrating three computation models and programming styles that have been historically
developed in different communities and for different purposes: i) Transformational programs that simply
compute output values from input values, with comparatively simple interaction with their environment;
ii) asynchronous concurrent programs that perform interactions between their components or with
their environment with uncontrollable timing, using typically network-based communication; and
iii) synchronous reactive programs that react to external events in a conceptually instantaneous and
deterministic way.

3.3 Security of diffuse programs

The main goal of our security research is to provide scalable and rigorous language-based techniques
that can be integrated into multi-tier compilers to enforce the security of diffuse programs. Research on
language-based security has been carried on before in former Inria teams. In particular previous research
has focused on controlling information flow to ensure confidentiality.

Typical language-based solutions to these problems are founded on static analysis, logics, provable
cryptography, and compilers that generate correct code by construction. Relying on the multi-tier pro-
gramming language Hop that tames the complexity of writing and analysing secure diffuse applications,
we are studying language-based solutions to prominent web security problems such as code injection
and cross-site scripting, to name a few.

4 Inria Annual Report 2022

4 Application domains

4.1 Web

The Web is the natural application domain of the team. We are designing and implementing multitier
languages for helping the development of Web applications. We are creating static and dynamic analyses
for Web security. We are conducting empirical studies about privacy preservation on the Web.

4.2 Internet of Things

More recently, we have started focusing on Internet of Things (IoT) applications. They share many
similarities with Web applications so most of the methodologies and expertises we have developed for
the Web apply to IoT but the restricted hardware resources made available by many IoT devices demand
new developments and new research explorations.

5 Highlights of the year

This section should rather be called “Lowlights”, given its negative assessments.
We point out several issues and institutional dysfunctions which impaired and slowed down our team

activity, and also badly affected the general atmosphere in the research centre and in the institute at large,
causing a great deal of anxiety and strain in the scientific, technical and administrative staff.

• The deployment of the Eksae information system was highly problematic, substantially hindering
the activity of our administrative staff, forcing them to tedious duplications and rendering some
of their tasks almost impossible. This also had repercussions on researchers, depriving them of
a long-term vision of their budget and generating more constraints and delays in purchases and
mission reimbursements, for both team members and their visitors. Even recurrent events, such as
the “Journées scientifiques” and the hiring/promotion campaigns, suffered from delays and bad
advertisement due to the excessive workload of the technical and administrative staff.

• The presentation of the institute given in our general direction (DG) addresses and publications,
such as the “Rapport d’activité 2021” (Question d’avenir), offered a distorted and unbalanced image
of our institute, hiding the primary role of research and emphasising only the most “trendy” and
“applicable” research activities, while dismissing many others for which our institute gained its
prestigious reputation.

• The shift of our institute towards a “service agency”, as prefigured by the inclusion of all INRIA
centres within universities and the increasing pressure on researchers to participate in teaching
within these universities, makes the future of INRIA as a national research institute and the status
of its scientific and administrative staff extremely uncertain.

• A deep distress within the staff, as well as an increasing distrust towards the DG, has arisen by effect
of the dismissive attitude of the DG towards the consultative bodies of the institute, and particularly
towards the Evaluation Commission (CE), whose role is essential for the quality of our hiring and
promotion processes as well as for our prospective scientific reflexions.

6 New software and platforms

6.1 New software

6.1.1 Bigloo

Keyword: Compilers

Functional Description: Bigloo is a Scheme implementation devoted to one goal: enabling Scheme
based programming style where C(++) is usually required. Bigloo attempts to make Scheme

Project INDES 5

practical by offering features usually presented by traditional programming languages but not
offered by Scheme and functional programming. Bigloo compiles Scheme modules. It delivers
small and fast stand alone binary executables. Bigloo enables full connections between Scheme
and C programs and between Scheme and Java programs.

Release Contributions: modification of the object system (language design and implementation), new
APIs (alsa, flac, mpg123, avahi, csv parsing), new library functions (UDP support), new regular
expressions support, new garbage collector (Boehm’s collection 7.3alpha1).

URL: http://www-sop.inria.fr/teams/indes/fp/Bigloo/

Contact: Manuel Serrano

Participant: Manuel Serrano

6.1.2 Hop

Keywords: Programming language, Multimedia, Iot, Web 2.0, Functional programming

Scientific Description: The Hop programming environment consists in a web broker that intuitively
combines in a single architecture a web server and a web proxy. The broker embeds a Hop inter-
preter for executing server-side code and a Hop client-side compiler for generating the code that
will get executed by the client.

An important effort is devoted to providing Hop with a realistic and efficient implementation.
The Hop implementation is validated against web applications that are used on a daily-basis.
In particular, we have developed Hop applications for authoring and projecting slides, editing
calendars, reading RSS streams, or managing blogs.

Functional Description: Multitier web programming language and runtime environment.

URL: http://hop.inria.fr

Contact: Manuel Serrano

Participant: Manuel Serrano

6.1.3 IFJS

Name: Infomation Flow monitor inlining for JavaScript

Keyword: Cybersecurity

Functional Description: The IFJS compiler is applied to JavaScript code. The compiler generates
JavaScript code instrumented with checks to secure code. The compiler takes into account special
features of JavaScript such as implicit type coercions and programs that actively try to bypass the
inlined enforcement mechanisms. The compiler guarantees that third-party programs cannot (1)
access the compiler internal state by randomizing the names of the resources through which it
is accessed and (2) change the behaviour of native functions that are used by the enforcement
mechanisms inlined in the compiled code.

URL: http://www-sop.inria.fr/indes/ifJS/

Contact: Tamara Rezk

http://www-sop.inria.fr/teams/indes/fp/Bigloo/
http://hop.inria.fr
http://www-sop.inria.fr/indes/ifJS/

6 Inria Annual Report 2022

6.1.4 Hiphop.js

Name: Hiphop.js

Keywords: Web 2.0, Synchronous Language, Programming language

Functional Description: HipHop.js is an Hop.js DLS for orchestrating web applications. HipHop.js helps
programming and maintaining Web applications where the orchestration of asynchronous tasks is
complex.

URL: http://hop-dev.inria.fr/hiphop

Contact: Manuel Serrano

6.1.5 Server-Side Protection against Third Party Web Tracking

Keywords: Privacy, Web Application, Web, Architecture, Security by design, Program rewriting techniques

Functional Description: We present a new web application architecture that allows web developers to
gain control over certain types of third party content. In the traditional web application architecture,
a web application developer has no control over third party content. This allows the exchange of
tracking information between the browser and the third party content provider.

To prevent this, our solution is based on the automatic rewriting of the web application in such a
way that the third party requests are redirected to a trusted third party server, called the Middle Party
Server. It may be either controlled by a trusted party, or by a main site owner and automatically
eliminates third-party tracking cookies and other technologies that may be exchanged by the
browser and third party server

URL: http://www-sop.inria.fr/members/Doliere.Some/essos/

Contact: Francis Doliére Some

6.1.6 webstats

Name: Webstats

Keywords: Web Usage Mining, Statistic analysis, Security

Functional Description: The goal of this tool is to perform a large-scale monthly crawl of the top Alexa
sites, collecting both inline scripts (written by web developers) and remote scripts, and establishing
the popularity of remote scripts (such as Google Analytics and jQuery). With this data, we establish
whether the collected scripts are actually written in a subset of JavaScript by analyzing the different
constructs used in those scripts. Finally, we collect and analyze the HTTP headers of the different
sites visited, and provide statistics about the usage of HTTPOnly and Secure cookies, and the
Content Security Policy in top sites.

URL: https://webstats.inria.fr

Contact: Francis Doliére Some

6.1.7 Skini Node.js (ISS)

Name: Platform for creation and execution for audience participative music

Keywords: Music, Interaction, Web Application, Synchronous Language

Functional Description: Skini is a platform for designing and performing collaborative music. It is
based on two musical concepts: pattern and orchestration. The orchestration is designed using
HipHop.js.

Release Contributions: Can be use for performance and création.

http://hop-dev.inria.fr/hiphop
http://www-sop.inria.fr/members/Doliere.Some/essos/
https://webstats.inria.fr

Project INDES 7

Author: Bertrand Petit

Contact: Bertrand Petit

7 New results

We have pursued the development of Hop and our study on efficient JavaScript implementations as well
as our development of analyses for distributed language sessions and security.

7.1 Design and Implementation of Dynamic Languages

7.1.1 JavaScript Sealed Classes

Participants: Manuel Serrano.

We proposed the JavaScript Sealed Classes, which differ from regular classes in a few ways that allow
ahead-of-time (AoT) compilers to implement them more efficiently. Sealed classes are compatible with
the rest of the language so that they can be combined with all other structures, including regular classes,
and can be gradually integrated into existing code bases.

Sealed classes trade a little bit of the dynamicity of JavaScript classes for faster and more predictable
execution. All the benchmarks we tested benefit from sealed classes. Some benefit from a code size
reduction and others benefit from speedup. Some benefit from both.

Sealed classes are compatible with the rest of the JavaScript runtime system. They can be passed to
functions, returned by them, stored in data structures, and they can be used as the super classes of sealed
and ordinary classes. Thus, in existing programs, sealed classes can gradually replace those classes that
naturally respect the restrictions they impose. Infringements to the rules of sealed classes are detected,
so that sealing classes does not present the risk of silently corrupting operational programs.

The dynamic semantics of sealed classes that do not raise errors is identical to that of regular classes.
They can therefore already be used by unmodified JavaScript engines, although in this case there is no
runtime acceleration. To benefit from this acceleration, we have modified the AoT Hopc compiler. We
have shown that the average speedup due to sealed classes is of 19% on a variety of programs using
classes. We have detailed this implementation in a conference paper [19]. It is simple and required less
than 1,000 new lines of code for the compiler and a few hundred lines of code for the runtime system.
Sealed classes deliver better performance than regular classes and they are easy to implement.

7.1.2 Semi-Automatic Verification of TypeScript Type Declarations

Participants: Robby Findler, Manuel Serrano.

The DefinitelyTyped repository hosts type declarations for thousands of JavaScript libraries. Given
the lack of formal connection between the types and the corresponding code, a natural question is are
the types right? An equally important question, as DefinitelyTyped and the libraries it supports change
over time, is how can we keep the types from becoming wrong?

To tackle this problem, we have created Scotty, a tool that detects mismatches between the types and
code in the DefinitelyTyped repository. More specifically, Scotty checks each package by converting its
types into contracts and installing the contracts on the boundary between the library and its test suite.
Running the test suite in this environment can reveal mismatches between the types and the JavaScript
code. As automation and generality are both essential if such a tool is going to remain useful in the long
term, we focus on techniques that sacrifice completeness, instead preferring to avoid false positives.
Scotty currently handles about 26% of the 8806 packages on DefinitelyTyped (61% of the packages whose
code is available and whose test suite passes).

8 Inria Annual Report 2022

Perhaps unsurprisingly, running the tests with these contracts in place revealed many errors in
DefinitelyTyped. More surprisingly, despite the inherent limitations of the techniques we use, this
exercise led to one hundred accepted pull requests that fix errors in DefinitelyTyped, demonstrating the
value of this approach for the long-term maintenance of DefinitelyTyped. It also revealed a number of
lessons about working in the JavaScript ecosystem and how details beyond the semantics of the language
can be surprisingly important. Best of all, it also revealed a few places where programmers preferred
incorrect types, suggesting some avenues of research to improve TypeScript.

Scotty, its design, its architecture, and also its limits, have been described in a publication [14].

7.2 Session Types

Participants: Ilaria Castellani.

Session types describe communication protocols involving two or more participants by specifying
the sequence of exchanged messages and their functionality (sender, receiver and type of carried data).
They may be viewed as the analogue, for concurrency and distribution, of data types for sequential
computation. Originally conceived as a static analysis technique for a variant of the π-calculus, session
types have been progressively embedded into a range of functional, concurrent, and object-oriented
programming languages.

The aim of session types is to ensure safety properties for sessions, such as the absence of com-
munication errors (no type mismatch in exchanged data) and deadlock-freedom (no standstill until all
participants are terminated). When describing multiparty protocols, session types often target also the
liveness property of progress or lock-freedom (no participant waits forever).

While binary sessions can be described by a single session type, multiparty sessions require two
kinds of types: a global type that describes the whole session protocol, and local types that describe
the individual contributions of the participants to the protocol. The key requirement to achieve safety
properties such as deadlock-freedom is that the local types of the processes implementing the participants
be obtained as projections from the same global type. To ensure progress, global types must satisfy
additional well-formedness requirements.

What makes session types particularly attractive is that they offer several advantages at once: 1) static
safety guarantees, 2) automatic check of protocol implementation correctness, based on local types, and
3) a strong connection with linear logics and with concurrency models such as communicating automata,
graphical choreographies and message-sequence charts.

During the past year we have further investigated the relationship between multiparty session types
and concurrency models, focussing on Event Structures [27], a canonical model for concurrent computa-
tion with explicit notions of causality and concurrency. We have also addressed the issue of input races
in multiparty sessions, and proposed a new type system that accepts some kinds of “innocuous” input
races, thus enlarging the class of protocols that can be specified by session types.

Like most of our previous work on this subject, this research has been pursued in collaboration with
colleagues from the Universities of Eastern Piedmont and Turin.

7.2.1 Event Structure Semantics for Synchronous Multiparty Sessions

We proposed a denotational semantics for multiparty session calculi by means of Event Structures (ESs),
a well-known concurrency model introduced in the early 80’s [28, 26].

We considered a core multiparty session calculus with synchronous communication, where sessions
are described as networks of sequential processes (each process implementing a participant), equipped
with standard global types. We proposed an interpretation of networks as Flow Event Structures (FESs)
[25], a subclass of Winskel’s Stable Event Structures [28], as well as an interpretation of global types as
Prime Event Structures (PESs) [26], the simplest class of ESs. Concurrency between network communica-
tions may be directly reflected in the events of the associated FES. On the other hand, since global types
are sequential specifications, which are not able to explicitly represent concurrency between communi-
cations, the events of the associated PES need to be defined as equivalence classes of communication

Project INDES 9

sequences up to permutation equivalence. We showed that when a network is typable with a global type,
the FES semantics of the former is equivalent to the PES semantics of its type.

This work has been published in the journal JLAMP [12].

7.2.2 Asynchronous Sessions with Input Races

The original papers on multiparty session types imposed strong restrictions on the syntax of global types,
requiring all initial communications in the branches of a choice to have the same sender and the same
receiver, and every other participant to be independent from the choice, i.e., to have the same behaviour
in all branches. Although these were useful simplifying assumptions in order to achieve multiparty
session correctness, they limited the expressiveness of global types, ruling out relevant protocols. For this
reason, more permissive choice constructors were investigated in subsequent work. However input races,
namely the possibility for a receiver to choose between inputs from different senders, continued to be
viewed as problematic and to be forbidden by typing. As a consequence, common protocols such as a
server shared by different clients could not be specified by global types.

In the paper [16] we propose a more flexible type system for asynchronous multiparty sessions, which
allows two kinds of innocuous input races, which we call respectively confluent races and fake races, while
still rejecting dangerous races that could lead to deadlock or starvation.

7.3 Security

7.3.1 Security Analyses for XSS

Participants: Héloise Maurel, Tamara Rezk.

Cross-site Scripting (XSS) is one of the most dangerous software weaknesses due to its constant
popularity through the years. Several dynamic and static approaches for detection and prevention have
been explored in the past. In this work, we explore static approaches to detect XSS vulnerabilities using
neural networks. We compare two different code representations based on Natural Language Processing
(NLP) and Programming Language Processing (PLP) and experiment with models based on different
neural network architectures for static analysis detection in PHP and Node.js. We train and evaluate
the models using synthetic databases. Using the generated PHP and Node.js databases, we compare
our results with a well-known static analyzer for PHP code, ProgPilot, and a known scanner for Node.js,
AppScan static mode. Our analyzers using neural networks improve on the results of existing tools in all
cases.

This work was part of the PhD thesis of Héloise Maurel, defended in November 2022. The work is
described in her PhD thesis [23] and in two publications [18] and a journal article to appear.

7.3.2 Binary Analysis for Secret Erasure

Participants: Tamara Rezk.

We tackle the problem of designing efficient binary-level verification for a subset of information flow
properties encompassing constant-time and secret-erasure. These properties are crucial for crypto-
graphic implementations, but are generally not preserved by compilers. Our proposal builds on relational
symbolic execution enhanced with new optimizations dedicated to information flow and binary-level
analysis, yielding a dramatic improvement over prior work based on symbolic execution. We implement
a prototype, Binsec/Rel, for bug-finding and bounded-verification of constant-time and secret-erasure,
and perform extensive experiments on a set of 338 cryptographic implementations, demonstrating the
benefits of our approach. Using Binsec/Rel, we also automate two prior manual studies on preserva-
tion of constant-time and secret-erasure by compilers for a total of 4148 and 1156 binaries respectively.
Interestingly, our analysis highlights incorrect usages of volatile data pointers for secret erasure and

10 Inria Annual Report 2022

shows that scrubbing mechanisms based on volatile function pointers can introduce additional register
spilling which might break secret-erasure. We also discovered that gcc -O0 and backend passes of clang
introduce violations of constant-time in implementations that were previously deemed secure by a state-
of-the-art constant-time verification tool operating at LLVM level, showing the importance of reasoning
at binary-level. We have published this work in an important journal for computer security, TOPS [13].

8 Partnerships and cooperations

8.1 International initiatives

8.1.1 Associate Teams in the framework of an Inria International Lab or in the framework of an Inria
International Program

HipHopSec

Title: Secure Reactive IoT Programming

Duration: 2020 ->

Coordinator: Robby Findler (robby@eecs.northwestern.edu)

Partners: Northwestern University (Chicago) (USA)

Inria contact: Manuel Serrano

Summary: Nowadays most applications are distributed, that is, they run on several computers: a mobile
device for the graphical user interface a gateway for storing data in a local area; a remote server
of a large cloud platform for resource demanding computing; an object connected to Internet in
the IoT (Internet of Things); etc. For many different reasons, this makes programming much more
difficult than it was when only a single computer was involved:

• Applications are composed of extensive lists of diverse components, each coming with their
own specification and imposing their own constraints on application development.

• Due to the distributed nature of the applications, developers have to implement appropriate
communication protocols, which is difficult to do correctly and securely.

• Communicating applications need to resort to parallelism to handle requests from their clients
with acceptable latency. No matter whether it is multi-threading (as in Java) or asynchronous
programming (as in JavaScript/Node.js), this style of programming is notoriously difficult and
error-prone.

The Indes, Northwestern, and Collège de France teams are studying programming languages and
have each created complementary solutions that address the aforementioned problems. Com-
bined together, they could lead to a robust and secure execution environment for the web and
IoT programming. Indes will bring its expertise in secure web programming, Collège de France
its expertise in synchronous reactive programming, Northwestern its expertise in secure execu-
tion environments and run-time validation of security properties of program executions. Finally
Northwestern will contribute with its expertise in medical descriptions, which will be the main
application domain of the secure execution environment the participants aim to develop.

The main objective of the collaboration is the development of a robust and secure integrated
programming environment for reactive applications suitable for web and IoT applications. The
programming of medical prescriptions will be our favored application domain. We will base our
work on three pillars: Hop.js, the contract system designed for the Racket language, and HipHop.js,
a domain specific language for reactive programming within Hop.js.

• HipHop.js has currently minimal integration with Hop.js and a rudimentary programming
environment. We will continue the development of HipHop.js with the goal of turning it into
a a usable and reliable platform.

Project INDES 11

• The formal semantics of HipHop.js is based on rewriting logics, automata theory and Boolean
equations. Thus, HipHop.js programs can be verified using existing techniques based on
the satisfiability of logic formulas. Such techniques have been widely used for synchronous
reactive programs, but never before in the more dynamic world of web or medical applications.

• Supporting medical prescriptions as programs requires not only a language with special
syntactic abstractions to match the notations of the medical domain, but also a fundamentally
new way to think about prescription vs. computer programs. For example, medical personnel
often modifies prescriptions in the middle of a treatment. In linguistic terms this requires that
the programming language in use supports the ability to pause a program while it is running,
modify its code, and restart it from the point of the pause but with the modified version of the
code, this in a guaranteed consistent way. We hope to build such a programming language,
with a semantics inspired by synchronous-reactive programming in the style of HipHop.js but
tailored to the medical domain.

• Contracts state precise properties of the interfaces of components and validate them at
run time. Over the last fifteen years, Racket developers, including those dealing with the
language itself, have used contracts extensively to validate properties that range from sim-
ple type-like constraints to partial functional correctness and even security. Our goal is to
design and implement a contract system for Hop/HipHop.js that is as expressive as that
of Racket. Hop/HipHop.js is based on Javascript, a different linguistic setting than that of
Racket; however, existing work on Javascript proxies and macros has resulted in encouraging
preliminary results on contracts for higher-order functions and objects in Javascript. We
aim at lifting and extending these results to Hop/HipHop.js. Given an expressive contract
system for Hop/HipHop.js, we will investigate: (i) how to state and enforce security policies
for Hop/HipHop.js applications with contracts; and (ii) how different compilation and im-
plementation techniques can alleviate existing performance issues of applications, a current
weakness that impedes the widespread adoption of contracts.

• Improving the quality of the code requires support for testing. S. You (working with C. Di-
moulas and R. Findler) is working on improving automated testing techniques. So far he
has discovered a new theoretical result showing how to use concolic testing for higher-order
functions. This result may have applications for testing in JavaScript and we are hopeful that
we can leverage it to Hop.js.

8.2 European initiatives

8.2.1 H2020 projects

SPARTA SPARTA project on cordis.europa.eu

Title: Strategic programs for advanced research and technology in Europe

Coordianator: CEA, FRANCE

Duration: From February 1, 2019 to June 30, 2022

Partners:

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),
France

• CESNET ZAJMOVE SDRUZENI PRAVNICKYCH OSOB (CESNET), Czechia

• JOANNEUM RESEARCH FORSCHUNGSGESELLSCHAFT MBH (JOANNEUM RESEARCH),
Austria

• NAUKOWA I AKADEMICKA SIEC KOMPUTEROWA - PANSTWOWY INSTYTUT BADAWCZY
(NASK), Poland

• TARTU ULIKOOL (UNIVERSITY OF TARTU), Estonia

• MYKOLO ROMERIO UNIVERSITETAS (MYKOLAROMERIS UNIVERSITY), Lithuania

https://dx.doi.org/10.3030/830892

12 Inria Annual Report 2022

• LATVIJAS MOBILAIS TELEFONS SIA, Latvia

• SECURITY MADE IN LETZEBUERG (SMILE), Luxembourg

• FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG EV
(FHG), Germany

• FUNDACION TECNALIA RESEARCH & INNOVATION (TECNALIA), Spain

• TECHNISCHE UNIVERSITAET MUENCHEN (TUM), Germany

• THALES SIX GTS FRANCE SAS (THALES SIX GTS France), France

• COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (CEA), France

• STOWARZYSZENIE POLSKA PLATFORMA BEZPIECZENSTWA WEWNETRZNEGO (PPBW),
Poland

• INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON (INSA LYON), France

• SAP SE, Germany

• FORTISS GMBH, Germany

• LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY (LIST), Luxembourg

• VYSOKE UCENI TECHNICKE V BRNE (BRNO UNIVERSITY OF TECHNOLOGY), Czechia

• FUNDACION CENTRO DE TECNOLOGIAS DE INTERACCION VISUAL Y COMUNICACIONES
VICOMTECH (VICOM), Spain

• INDRA SISTEMAS SA (INDRA), Spain

• INSTITUT MINES-TELECOM, France

• RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN, Germany

• UNIVERSITE DU LUXEMBOURG (uni.lu), Luxembourg

• CONSIGLIO NAZIONALE DELLE RICERCHE (CNR), Italy

• "NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS" ("NCSR "D"), Greece

• LIETUVOS KIBERNETINIU NUSIKALTIMU KOMPETENCIJU IR TYRIMU CENTRAS (LITHUA-
NIAN CYBERCRIME CENTER OF EXCELLENCE FOR TRAINING RESEARCH & EDUCATIO),
Lithuania

• KENTRO MELETON ASFALEIAS (CENTER FORSECURITY STUDIES CENTRE D’ETUDES DE
SECURITE), Greece

• INDRA FACTORIA TECNOLOGICA SL, Spain

• UNIVERSITAT KONSTANZ (UKON), Germany

• LEONARDO - SOCIETA PER AZIONI (LEONARDO), Italy

• KAUNO TECHNOLOGIJOS UNIVERSITETAS (UNIVERSITY OF TECHNOLOGY, KAUNAS),
Lithuania

• TECHNIKON FORSCHUNGS- UND PLANUNGSGESELLSCHAFT MBH (TECHNIKON), Aus-
tria

• ITTI SP ZOO (ITTI), Poland

• DIREZIONE GENERALE PER LE TECNOLOGIE DELLE COMUNICAZIONI E LA SICUREZZA
INFORMATICA - ISTITUTO SUPERIORE DELLE COMUNICAZIONI E DELLE TECNOLOGIE
DELL’INFORMAZIONE (DG TCSI-ISCOM), Italy

• GENEROLO JONO ZEMAICIO LIETUVOS KARO AKADEMIJA (GENERAL JONAS ZEMAITISMIL-
ITARY ACADEMY OF LITHUANIA), Lithuania

• FUNDACIO EURECAT (EURECAT), Spain

• CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI (CNIT),
Italy

• CENTRALESUPELEC, France

Project INDES 13

• YES WE HACK (YWH), France

• INSTITUTO SUPERIOR TECNICO (IST), Portugal

• SECRETARIAT GENERAL DE LA DEFENSE ET DE LA SECURITE NATIONALE (SGDSN), France

• UNIVERSITE DE NAMUR ASBL (UNamur), Belgium

• INOV INSTITUTO DE ENGENHARIA DE SISTEMAS E COMPUTADORES INOVACAO (INOV),
Portugal

• CENTRE D’EXCELLENCE EN TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNI-
CATION (CETIC), Belgium

• CZ.NIC, ZSPO (CZ.NIC), Czechia

• CONSORZIO INTERUNIVERSITARIO NAZIONALE PER L’INFORMATICA (CINI), Italy

Inria contact: Thomas Jensen

Coordinator:

Summary: In the domain of Cybersecurity Research and innovation, European scientists hold pioneer-
ing positions in fields such as cryptography, formal methods, or secure components. Yet this
excellence on focused domains does not translate into larger-scale, system-level advantages. Too
often, scattered and small teams fall short of critical mass capabilities, despite demonstrating
world-class talent and results. Europe’s strength is in its diversity, but that strength is only mate-
rialised if we cooperate, combine, and develop common lines of research. Given today’s societal
challenges, this has become more than an advantage’ an urgent necessity. Various approaches
are being developed to enhance collaboration at many levels. Europe’s framework programs have
sprung projects in cybersecurity over the past thirty years, encouraging international cooperation
and funding support actions. More recently, the Cybersecurity PPP has brought together public
institutions and industrial actors around common roadmaps and projects. While encouraging,
these efforts have highlighted the need to break the mould, to step up investments and intensify
coordination. The SPARTA proposal brings together a unique set of actors at the intersection of
scientific excellence, technological innovation, and societal sciences in cybersecurity. Strongly
guided by concrete and risky challenges, it will setup unique collaboration means, leading the way
in building transformative capabilities and forming world-leading expertise centres. Through inno-
vative governance, ambitious demonstration cases, and active community engagement, SPARTA
aims at re-thinking the way cybersecurity research is performed in Europe across domains and
expertise, from foundations to applications, in academia and industry.

8.2.2 ANR CISC

Participants: Ilaria Castellani, Tamara Rezk, Manuel Serrano.

The CISC project (Certified IoT Secure Compilation) is funded by the ANR for 42 months, ending in
September 2023. The goal of the CISC project is to provide strong security and privacy guarantees for
IoT applications by means of a language to orchestrate IoT applicatoins from the microcontroller to the
cloud. Tamara Rezk coordinates this project, and Manuel Serrano, Ilaria Castellani and Nataliia Bielova
participate in the project. The partners of this project are Inria teams Celtique, Indes and Privatics, and
Collège de France.

9 Dissemination

Participants: Ilaria Castellani, Tamara Rezk, Manuel Serrano.

14 Inria Annual Report 2022

9.1 Promoting scientific activities

9.1.1 Scientific events: organisation

General chair, scientific chair Tamara Rezk organized and chaired PLMW at PLDI’22.

9.1.2 Scientific events: selection

Member of the conference program committees

• Ilaria Castellani participated in the program committees of:

– PLACES’22: 13th Workshop on Programming Language Approaches to Concurrency- and
Communication-cEntric Software

– CONCUR’22: 33rd International Conference on Concurrency Theory

• Tamara Rezk participated in the program committees of:

– IEEE S&P’22: IEEE Security and Privacy Symposium

– ACM CCS’22: ACM Communications on Computer Security

– ACSAC’22: Annual Computer Security Applications Conference

– TheWebConf’22: The Web Conference

– ICDCS’22: IEEE International Conference on Distributed Computing Systems

• Manuel Serrano participated in the program committees of:

– ECOOP’22: European Conference on Object-Oriented Programming

– ICFP’22: ACM International Conference on Functional Programming

– PROGRAMMING’22: Programming Conference

9.1.3 Journal

Member of the editorial boards

• Ilaria Castellani was guest editor for a special issue of the journal JLAMP [11].

• Manuel Serrano is a member of the Steering Committee for the conference and journal “Program-
ming”.

9.1.4 Invited talks

• Ilaria Castellani gave the invited talk Global types and event structure semantics for asynchronous
multiparty sessions at the workshop ICE’22.

• Tamara Rezk was the keynote speaker for the European Symposium on Security and Privacy 2022.
Her talk was entitled: 2022: Have Transient Execution Attacks Been Fully Solved?.

• Manuel Serrano gave the following keynotes and invited talks:

– Static compilation of JavaScript, MPLR’22 (Brussels, Belgium)

– Of JavaScript Ahead-Of-Time Compilation Performance, StrangeLoop’22 (St Louis, USA)

– Of JavaScript Ahead-Of-Time Compilation Performance, MEMOCODE’22

9.1.5 Research administration

• Tamara Rezk is part of the bureau du CP at INRIA Sophia Antipolis.

• Manuel Serrano is vice-head of the Inria Evaluation Committee. As such he co-organizes all the
grants, promotion juries and the juries of the national recruiting campaigns. He also co-organizes
all the team evaluation seminars.

https://aosa-inc.org/steering/
https://aosa-inc.org/steering/
http://www.discotec.org/2022/ice.html
https://soft.vub.ac.be/mplr22/
https://www.thestrangeloop.com/2022/of-javascript-ahead-of-time-compilation-performance.html
https://memocode2022.github.io/keynotes.html

Project INDES 15

9.2 Teaching - Supervision - Juries

9.2.1 Teaching

Tamara Rezk taught 56 hours ETD of courses in Université Côte d’Azur, master level.

9.2.2 Supervision

• PhD in progress: Jayanth Krishnamurthy, Secure Reactive Web Programming, 12/09/2018, Manuel
Serrano.

• PhD in progress : Ignacio Tiraboschi, Security analyses, 1/9/2020, Tamara Rezk and Xavier Rival.

• PhD in progress: Guillaume Combette, Binary Analyses, 1/6/2022, Sébastien Bardin and Tamara
Rezk.

• PhD in progress: Davide Davoli, Secure randomization, 1/10/2022, Martin Avanzini and Tamara
Rezk.

• PhD defended: Mohamad El Laz, Provable encryption schemes for distributed systems [21], Ben-
jamin Grégoire and Tamara Rezk.

• PhD defended: Héloise Maurel, Deep Learning applied on Web Security [23], Tamara Rezk.

• PhD defended: Adam Khayam, A Meta-Approach to Describe Effectful and Distributed Seman-
tics [22], Tamara Rezk and Alan Schmitt.

9.2.3 Juries

• Ilaria Castellani was the chair of the jury of the CONCUR 2022 Test-of-Time Award [17].

• Ilaria Castellani participated as a reviewer in the jury of the PhD thesis of Elli Anastasiadi (supervi-
sors: Luca Aceto and Anna Ingolfsdottir), Reykjavik University, October 2022.

• Tamara Rezk participated in the following juries:

– Phd Jury (Reviewer): Natalia Kulatova (supervisor: Karthikeyan Bhargavan), ENS Ulm 2022

– CSD Jury: Jonathan Brossard (supervisors: Nadia Lammari, Véronique Legrand), CNAM, 2022

– CSD Jury: Swarn Priva (supervisors: Yves Bertot, Benjamin Grégoire), Université Côte d’Azur,
2022

– External Reviewer for the European Research Council, ERC Advanced Grant 2021-Call, 2022

– CRCN for Handicaped People, Jury member (Sophia Antipolis competition), Inria 2022

– CRCN Jury member (Sophia Antipolis competition), Inria 2022

• Manuel Serrano was an examiner of the PhD thesis of Aurèle Barrière.

9.3 Popularization

9.3.1 Interventions

Tamara Rezk participated at the W@PLDI panel at PLDI’22.

https://concur2022.mimuw.edu.pl/tot-award/

16 Inria Annual Report 2022

10 Scientific production

10.1 Major publications

[1] N. Bielova and T. Rezk. ‘A Taxonomy of Information Flow Monitors’. In: International Conference
on Principles of Security and Trust (POST 2016). Ed. by F. Piessens and L. Viganò. Vol. 9635. LNCS -
Lecture Notes in Computer Science. Eindhoven, Netherlands: Springer, Apr. 2016, pp. 46–67. DOI:
10.1007/978-3-662-49635-0_3. URL: https://hal.inria.fr/hal-01348188.

[2] G. Boudol and I. Castellani. ‘Noninterference for Concurrent Programs and Thread Systems’. In:
Theoretical Computer Science 281.1 (2002), pp. 109–130.

[3] G. Boudol, Z. Luo, T. Rezk and M. Serrano. ‘Reasoning about Web Applications: An Operational Se-
mantics for HOP’. In: ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS (TOPLAS)
34.2 (2012).

[4] S. Capecchi, I. Castellani and M. Dezani-Ciancaglini. ‘Information Flow Safety in Multiparty Ses-
sions’. In: Mathematical Structures in Computer Science. Special Issue: EXPRESS’11 26.8 (2015),
p. 43. DOI: 10.1017/S0960129514000619. URL: https://hal.inria.fr/hal-01237236.

[5] I. Castellani, M. Dezani-Ciancaglini and P. Giannini. ‘Concurrent Reversible Sessions’. In: CONCUR
2017 - 28th International Conference on Concurrency Theory. Vol. 85. CONCUR 2017. Roland Meyer
and Uwe Nestmann. Berlin, Germany, Sept. 2017, pp. 1–17. DOI: 10.4230/LIPIcs.CONCUR.2017
.30. URL: https://hal.inria.fr/hal-01639845.

[6] C. Fournet and T. Rezk. ‘Cryptographically sound implementations for typed information-flow se-
curity’. In: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008. 2008, pp. 323–335.

[7] M. Ngo, F. Piessens and T. Rezk. ‘Impossibility of Precise and Sound Termination-Sensitive Security
Enforcements’. In: SP 2018 - IEEE Symposium on Security and Privacy. San Francisco, United States:
IEEE, May 2018, pp. 496–513. DOI: 10.1109/SP.2018.00048. URL: https://hal.inria.fr/hal
-01928669.

[8] M. Serrano and G. Berry. ‘Multitier Programming in Hop - A first step toward programming 21st-
century applications’. In: Communications of the ACM 55.8 (Aug. 2012), pp. 53–59. DOI: 10.1145/2
240236.2240253. URL: http://cacm.acm.org/magazines/2012/8/153796-multitier-pro
gramming-in-hop/abstract.

[9] M. Serrano and V. Prunet. ‘A Glimpse of Hopjs’. In: 21th ACM SIGPLAN INT’L CONFERENCE ON

FUNCTIONAL PROGRAMMING (ICFP). Nara, Japan, Sept. 2016, pp. 188–200. URL: http://dx.doi
.org/10.1145/2951913.2951916.

[10] D. F. Somé, N. Bielova and T. Rezk. ‘On the Content Security Policy Violations due to the Same-
Origin Policy’. In: 26th International World Wide Web Conference, 2017 (WWW 2017) (Apr. 2017).
DOI: 10.1145/3038912.3052634. URL: https://hal.inria.fr/hal-01649526.

10.2 Publications of the year

International journals

[11] I. Castellani, P. D’Argenio, M. R. Mousavi and A. Sokolova. ‘Preface to the special issue on Open
Problems in Concurrency Theory’. In: Journal of Logical and Algebraic Methods in Programming
130 (Jan. 2023), p. 100823. DOI: 10.1016/j.jlamp.2022.100823. URL: https://hal.inria.fr
/hal-03970947.

[12] I. Castellani, M. Dezani-Ciancaglini and P. Giannini. ‘Event structure semantics for multiparty
sessions’. In: Journal of Logical and Algebraic Methods in Programming 131 (Feb. 2023). DOI:
10.1016/j.jlamp.2022.100844. URL: https://hal.inria.fr/hal-03940191.

[13] L.-A. Daniel, S. Bardin and T. Rezk. ‘Binsec/Rel: Symbolic Binary Analyzer for Security with Applica-
tions to Constant-Time and Secret-Erasure’. In: ACM Transactions on Privacy and Security (2022).
URL: https://hal.inria.fr/hal-03833598.

https://doi.org/10.1007/978-3-662-49635-0_3
https://hal.inria.fr/hal-01348188
https://doi.org/10.1017/S0960129514000619
https://hal.inria.fr/hal-01237236
https://doi.org/10.4230/LIPIcs.CONCUR.2017.30
https://doi.org/10.4230/LIPIcs.CONCUR.2017.30
https://hal.inria.fr/hal-01639845
https://doi.org/10.1109/SP.2018.00048
https://hal.inria.fr/hal-01928669
https://hal.inria.fr/hal-01928669
https://doi.org/10.1145/2240236.2240253
https://doi.org/10.1145/2240236.2240253
http://cacm.acm.org/magazines/2012/8/153796-multitier-programming-in-hop/abstract
http://cacm.acm.org/magazines/2012/8/153796-multitier-programming-in-hop/abstract
http://dx.doi.org/10.1145/2951913.2951916
http://dx.doi.org/10.1145/2951913.2951916
https://doi.org/10.1145/3038912.3052634
https://hal.inria.fr/hal-01649526
https://doi.org/10.1016/j.jlamp.2022.100823
https://hal.inria.fr/hal-03970947
https://hal.inria.fr/hal-03970947
https://doi.org/10.1016/j.jlamp.2022.100844
https://hal.inria.fr/hal-03940191
https://hal.inria.fr/hal-03833598

Project INDES 17

[14] J. Hoeflich, R. B. Findler and M. Serrano. ‘Highly illogical, Kirk: spotting type mismatches in the
large despite broken contracts, unsound types, and too many linters’. In: Proceedings of the ACM on
Programming Languages 6.OOPSLA2 (31st Oct. 2022), pp. 479–504. DOI: 10.1145/3563305. URL:
https://hal.inria.fr/hal-03920363.

[15] H. Maurel, S. Vidal and T. Rezk. ‘Statically identifying XSS using deep learning’. In: Science of
Computer Programming 219 (July 2022), p. 102810. DOI: 10.1016/j.scico.2022.102810. URL:
https://hal.inria.fr/hal-03684437.

International peer-reviewed conferences

[16] I. Castellani, M. Dezani-Ciancaglini and P. Giannini. ‘Asynchronous Sessions with Input Races’. In:
EPTCS, Proceedings of the 13th International Workshop on Programming Language Approaches to
Concurrency and Communication-cEntric Software. PLACES 2022. Vol. 356. Munich (Allemagne),
Germany, 24th Mar. 2022, pp. 12–23. DOI: 10.4204/EPTCS.356.2. URL: https://hal.inria.fr
/hal-03940160.

[17] I. Castellani, P. Gastin, O. Kupferman, M. Randour and D. Sangiorgi. ‘CONCUR Test-Of-Time
Award 2022’. In: 33rd International Conference on Concurrency Theory (CONCUR 2022). Vol. 243.
Warsaw (Poland), Poland, 6th Sept. 2022, 1:1–1:3. DOI: 10.4230/LIPIcs.CONCUR.2022.1. URL:
https://hal.inria.fr/hal-03970965.

[18] H. Maurel, S. Vidal and T. Rezk. ‘Comparing the Detection of XSS Vulnerabilities in Node.js and
a Multi-tier JavaScript-based Language via Deep Learning’. In: ICISSP 2022 - 8th International
Conference on Information Systems Security and Privacy. Virtual, France, 9th Feb. 2022. DOI:
10.5220/0010980800003120. URL: https://hal.inria.fr/hal-03576267.

[19] M. Serrano. ‘JavaScript Sealed Classes’. In: 36th European Conference on Object-Oriented Program-
ming (ECOOP 2022). Berlin, Germany, 6th June 2022. URL: https://hal.inria.fr/hal-039203
56.

[20] I. Tiraboschi, T. Rezk and X. Rival. ‘Sound Symbolic Execution via Abstract Interpretation and its
Application to Security’. In: Lecture Notes in Computer Science. 24th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI 2023). Vol. 13881. Verification,
Model Checking, and Abstract Interpretation 24th International Conference, VMCAI 2023, Boston,
MA, USA, January 16–17, 2023, Proceeding. Boston, MA, United States: Springer Nature Switzerland,
17th Jan. 2023, pp. 267–295. DOI: 10.1007/978-3-031-24950-1_13. URL: https://hal.scien
ce/hal-03942146.

Doctoral dissertations and habilitation theses

[21] M. El Laz. ‘Provable encryption schemes for distributed systems’. Université Côte d’Azur, 30th Mar.
2022. URL: https://theses.hal.science/tel-03814201.

[22] A. Khayam. ‘A Meta-Approach to Describe Effectful and Distributed Semantics’. Université Rennes
1, 30th Nov. 2022. URL: https://theses.hal.science/tel-03969183.

[23] H. Maurel. ‘Deep learning applied on Web security: Statically Identifying Web vulnerabilities using
Deep Learning’. INRIA : Institut national de recherche en sciences et technologies du numérique;
Université Cote d’Azur, 14th Nov. 2022. URL: https://hal.inria.fr/tel-03849284.

Reports & preprints

[24] M. El Laz, A. Hevia and T. Rezk. Tracking Information Flow by Mapping Broadcast Encryption
Subgroups to Security Lattices. Inria, 19th Jan. 2022. URL: https://hal.inria.fr/hal-0353796
2.

https://doi.org/10.1145/3563305
https://hal.inria.fr/hal-03920363
https://doi.org/10.1016/j.scico.2022.102810
https://hal.inria.fr/hal-03684437
https://doi.org/10.4204/EPTCS.356.2
https://hal.inria.fr/hal-03940160
https://hal.inria.fr/hal-03940160
https://doi.org/10.4230/LIPIcs.CONCUR.2022.1
https://hal.inria.fr/hal-03970965
https://doi.org/10.5220/0010980800003120
https://hal.inria.fr/hal-03576267
https://hal.inria.fr/hal-03920356
https://hal.inria.fr/hal-03920356
https://doi.org/10.1007/978-3-031-24950-1_13
https://hal.science/hal-03942146
https://hal.science/hal-03942146
https://theses.hal.science/tel-03814201
https://theses.hal.science/tel-03969183
https://hal.inria.fr/tel-03849284
https://hal.inria.fr/hal-03537962
https://hal.inria.fr/hal-03537962

18 Inria Annual Report 2022

10.3 Cited publications

[25] G. Boudol and I. Castellani. ‘Permutation of transitions: an event structure semantics for CCS and
SCCS’. In: REX: Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency.
Ed. by J. W. de Bakker, W. P. de Roever and G. Rozenberg. Vol. 354. LNCS. Springer, 1988, pp. 411–427.

[26] M. Nielsen, G. Plotkin and G. Winskel. ‘Petri Nets, Event Structures and Domains, Part I’. In:
Theoretical Computer Science 13.1 (1981), pp. 85–108.

[27] G. Winskel. ‘An introduction to event structures’. In: REX: Linear Time, Branching Time and Partial
Order in Logics and Models for Concurrency. Ed. by J. W. de Bakker, W. P. de Roever and G. Rozenberg.
Vol. 354. LNCS. Heidelberg: Springer, 1988, pp. 364–397.

[28] G. Winskel. ‘Events in Computation’. PhD thesis. University of Edinburgh, 1980.

	Team INDES
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Parallelism, concurrency, and distribution
	Web, functional, and reactive programming
	Security of diffuse programs

	Application domains
	Web
	Internet of Things

	Highlights of the year
	New software and platforms
	New software
	Bigloo
	Hop
	IFJS
	Hiphop.js
	Server-Side Protection against Third Party Web Tracking
	webstats
	Skini Node.js (ISS)

	New results
	Design and Implementation of Dynamic Languages
	JavaScript Sealed Classes
	Semi-Automatic Verification of TypeScript Type Declarations

	Session Types
	Event Structure Semantics for Synchronous Multiparty Sessions
	Asynchronous Sessions with Input Races

	Security
	Security Analyses for XSS
	Binary Analysis for Secret Erasure

	Partnerships and cooperations
	International initiatives
	Associate Teams in the framework of an Inria International Lab or in the framework of an Inria International Program

	European initiatives
	H2020 projects
	ANR CISC

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks
	Research administration

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Interventions

	Scientific production
	Major publications
	Publications of the year
	Cited publications

