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2 Overall objectives

In this project, we investigate theoretical and numerical mathematical issues concerning heterogeneous
physical systems. The heterogeneities we consider result from the fact that the studied systems involve
subsystems of different physical nature. In this wide class of problems, we study two types of systems:
fluid-structure interaction systems (FSIS) and complex wave systems (CWS). In both situations, one
has to develop specific methods to take the coupling between the subsystems into account.

(FSIS) Fluid-structure interaction systems appear in many applications: medicine (motion of the
blood in veins and arteries), biology (animal locomotion in a fluid, such as swimming fishes or flapping
birds but also locomotion of microorganisms, such as amoebas), civil engineering (design of bridges or any
structure exposed to the wind or the flow of a river), naval architecture (design of boats and submarines,
researching into new propulsion systems for underwater vehicles by imitating the locomotion of aquatic
animals). FSIS can be studied by modeling their motions through Partial Differential Equations (PDE)
and/or Ordinary Differential Equations (ODE), as is classical in fluid mechanics or in solid mechanics.
This leads to the study of difficult nonlinear free boundary problems which have constituted a rich and
active domain of research over the last decades.

(CWS) Complex wave systems are involved in a large number of applications in several areas of science
and engineering: medicine (breast cancer detection, kidney stone destruction, osteoporosis diagnosis,
etc.), telecommunications (in urban or submarine environments, optical fibers, etc.), aeronautics (target
detection, aircraft noise reduction, etc.) and, in the longer term, quantum supercomputers. Direct prob-
lems, that is finding a solution with respect to parameters of the problem, for instance the propagation of
waves with respect to the knowledge of speed of propagation of the medium, most theoretical issues are
now widely understood. However, substantial efforts remain to be undertaken concerning the simulation
of wave propagation in complex media. Such situations include heterogeneous media with strong local
variations of the physical properties (high frequency scattering, multiple scattering media) or quantum
fluids (Bose-Einstein condensates). In the first case for instance, the numerical simulation of such direct
problems is a hard task, as it generally requires solving ill-conditioned possibly indefinite large size
problems, following from space or space-time discretizations of linear or nonlinear evolution PDE set on
unbounded domains. Inverse problems are the converse problem of the direct problems, as they aim to
find properties of the direct problem, for instance the speed of propagation in a medium, with respect
to the solution or a partial observation of the solution. These problems are often ill-posed and many
questions are open at both the theoretical (identifiability, stability and robustness, etc.) and practical
(reconstruction methods, approximation and convergence analysis, numerical algorithms, etc.) levels.

3 Research program

3.1 Analysis, control, stabilization and optimization of heterogeneous systems

Fluid-Structure Interaction System are present in many physical problems and applications. Their study
involves solving several challenging mathematical problems:

• Nonlinearity: One has to deal with a system of nonlinear PDE such as the Navier-Stokes or the
Euler systems;

• Coupling: The corresponding equations couple two systems of different types and the methods
associated with each system need to be suitably combined to solve successfully the full problem;

• Coordinates: The equations for the structure are classically written with Lagrangian coordinates
whereas the equations for the fluid are written with Eulerian coordinates;

• Free boundary: The fluid domain is moving and its motion depends on the motion of the structure.
The fluid domain is thus an unknown of the problem and one has to solve a free boundary problem.

In order to control such FSIS, one has first to analyze the corresponding system of PDE. The oldest
works on FSIS go back to the pioneering contributions of Thomson, Tait and Kirchhoff in the 19th century
and Lamb in the 20th century, who considered simplified models (potential fluid or Stokes system). The
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first mathematical studies in the case of a viscous incompressible fluid modeled by the Navier-Stokes
system and a rigid body whose dynamics is modeled by Newton’s laws appeared much later [112, 107, 84],
and almost all mathematical results on such FSIS have been obtained in the last twenty years.

The most studied FSIS is the problem modeling a rigid body moving in a viscous incompressible
fluid ( [66, 63, 105, 73, 78, 109, 111, 95, 76]). Many other FSIS have been studied as well. Let us mention [97,
81, 77, 67, 55, 72, 54, 74] for different fluids. The case of deformable structures has also been considered,
either for a fluid inside a moving structure (e.g. blood motion in arteries) or for a moving deformable
structure immersed in a fluid (e.g. fish locomotion). The obtained coupled FSIS is a complex system
and its study raises several difficulties. The main one comes from the fact that we gather two systems of
different nature. Some studies have been performed for approximations of this system: [59, 55, 87, 68, 57]).
Without approximations, the only known results [64, 65] were obtained with very strong assumptions on
the regularity of the initial data. Such assumptions are not satisfactory but seem inherent to this coupling
between two systems of different natures. In order to study self-propelled motions of structures in a fluid,
like fish locomotion, one can assume that the deformation of the structure is prescribed and known,
whereas its displacement remains unknown ([102]). This permits to start the mathematical study of a
challenging problem: understanding the locomotion mechanism of aquatic animals. This is related to
control or stabilization problems for FSIS. Some first results in this direction were obtained in [82, 56, 99].

3.2 Inverse problems for heterogeneous systems

The area of inverse problems covers a large class of theoretical and practical issues which are important
in many applications (see for instance the books of Isakov [83] or Kaltenbacher, Neubauer, and Scherzer
[85]). Roughly speaking, an inverse problem is a problem where one attempts to recover an unknown
property of a given system from its response to an external probing signal. For systems described by
evolution PDE, one can be interested in the reconstruction from partial measurements of the state (initial,
final or current), the inputs (a source term, for instance) or the parameters of the model (a physical
coefficient for example). For stationary or periodic problems (i.e. problems where the time dependency
is given), one can be interested in determining from boundary data a local heterogeneity (shape of an
obstacle, value of a physical coefficient describing the medium, etc.). Such inverse problems are known
to be generally ill-posed and their study raises the following questions:

• Uniqueness. The question here is to know whether the measurements uniquely determine the
unknown quantity to be recovered. This theoretical issue is a preliminary step in the study of any
inverse problem and can be a hard task.

• Stability. When uniqueness is ensured, the question of stability, which is closely related to sensi-
tivity, deserves special attention. Stability estimates provide an upper bound for the parameter
error given some uncertainty on the data. This issue is closely related to the so-called observability
inequality in systems theory.

• Reconstruction. Inverse problems being usually ill-posed, one needs to develop specific recon-
struction algorithms which are robust to noise, disturbances and discretization. A wide class of
methods is based on optimization techniques.

We can split our research in inverse problems into two classes which both appear in FSIS and CWS:

1. Identification for evolution PDE.

Driven by applications, the identification problem for systems of infinite dimension described
by evolution PDE has seen in the last three decades a fast and significant growth. The unknown
to be recovered can be the (initial/final) state (e.g. state estimation problems [49, 75, 79, 108] for
the design of feedback controllers), an input (for instance source inverse problems [46, 58, 69])
or a parameter of the system. These problems are generally ill-posed and many regularization
approaches have been developed. Among the different methods used for identification, let us
mention optimization techniques ( [62]), specific one-dimensional techniques (like in [50]) or
observer-based methods as in [91].

In the last few years, we have developed observers to solve initial data inverse problems for a class of
linear systems of infinite dimension. Let us recall that observers, or Luenberger observers [89], have
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been introduced in automatic control theory to estimate the state of a dynamical system of finite
dimension from the knowledge of an output (for more references, see for instance [96] or [110]).
Using observers, we have proposed in [98, 80] an iterative algorithm to reconstruct initial data
from partial measurements for some evolution equations. We are deepening our activities in this
direction by considering more general operators or more general sources and the reconstruction of
coefficients for the wave equation. In connection with this problem, we study the stability in the
determination of these coefficients. To achieve this, we use geometrical optics, which is a classical
albeit powerful tool to obtain quantitative stability estimates on some inverse problems with a
geometrical background, see for instance [52, 51].

2. Geometric inverse problems.

We investigate some geometric inverse problems that appear naturally in many applications, like
medical imaging and non destructive testing. A typical problem we have in mind is the following:
given a domainΩ containing an (unknown) local heterogeneity ω, we consider the boundary value
problem of the form 

Lu = 0, (Ω\ω)
u = f , (∂Ω)
Bu = 0, (∂ω)

where L is a given partial differential operator describing the physical phenomenon under consider-
ation (typically a second order differential operator), B the (possibly unknown) operator describing
the boundary condition on the boundary of the heterogeneity and f the exterior source used to
probe the medium. The question is then to recover the shape of ω and/or the boundary operator
B from some measurement Mu on the outer boundary ∂Ω. This setting includes in particular
inverse scattering problems in acoustics and electromagnetics (in this caseΩ is the whole space
and the data are far field measurements) and the inverse problem of detecting solids moving in a
fluid. It also includes, with slight modifications, more general situations of incomplete data (i.e.
measurements on part of the outer boundary) or penetrable inhomogeneities. Our approach to
tackle this type of problems is based on the derivation of a series expansion of the input-to-output
map of the problem (typically the Dirichlet-to-Neumann map of the problem for the Calderón
problem) in terms of the size of the obstacle.

3.3 Numerical analysis and simulation of heterogeneous systems

Within the team, we have developed in the last few years numerical codes for the simulation of FSIS and
CWS. We plan to continue our efforts in this direction.

• In the case of FSIS, our main objective is to provide computational tools for the scientific commu-
nity, essentially to solve academic problems.

• In the case of CWS, our main objective is to build tools general enough to handle industrial
problems. Our strong collaboration with Christophe Geuzaine’s team in Liège (Belgium) makes
this objective credible, through the combination of DDM (Domain Decomposition Methods) and
parallel computing.

Below, we explain in detail the corresponding scientific program.

• Simulation of FSIS: In order to simulate fluid-structure systems, one has to deal with the fact that
the fluid domain is moving and that the two systems for the fluid and for the structure are strongly
coupled. To overcome this free boundary problem, three main families of methods are usually
applied to numerically compute in an efficient way the solutions of the fluid-structure interaction
systems. The first method consists in suitably displacing the mesh of the fluid domain in order to
follow the displacement and the deformation of the structure. A classical method based on this idea
is the A.L.E. (Arbitrary Lagrangian Eulerian) method: with such a procedure, it is possible to keep a
good precision at the interface between the fluid and the structure. However, such methods are
difficult to apply for large displacements (typically the motion of rigid bodies). The second family
of methods consists in using a fixed mesh for both the fluid and the structure and to simultaneously
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compute the velocity field of the fluid with the displacement velocity of the structure. The presence
of the structure is taken into account through the numerical scheme. Finally, the third class of
methods consists in transforming the set of PDEs governing the flow into a system of integral
equations set on the boundary of the immersed structure. The members of SPHINX have already
worked on these three families of numerical methods for FSIS systems with rigid bodies (see e.g.
[103], [86], [104], [100], [101], [92]).

• Simulation of CWS: Solving acoustic or electromagnetic scattering problems can become a tremen-
dously hard task in some specific situations. In the high frequency regime (i.e. for small wavelength),
acoustic (Helmholtz’s equation) or electromagnetic (Maxwell’s equations) scattering problems are
known to be difficult to solve while being crucial for industrial applications (e.g. in aeronautics and
aerospace engineering). Our particularity is to develop new numerical methods based on the hy-
bridization of standard numerical techniques (like algebraic preconditioners, etc.) with approaches
borrowed from asymptotic microlocal analysis. Most particularly, we contribute to building hybrid
algebraic/analytical preconditioners and quasi-optimal Domain Decomposition Methods (DDM)
[53, 70], [71] for highly indefinite linear systems. Corresponding three-dimensional solvers (like
for example GetDDM) will be developed and tested on realistic configurations (e.g. submarines,
complete or parts of an aircraft, etc.) provided by industrial partners (Thales, Airbus). Another
situation where scattering problems can be hard to solve is the one of dense multiple (acoustic,
electromagnetic or elastic) scattering media. Computing waves in such media requires us to take
into account not only the interactions between the incident wave and the scatterers, but also the
effects of the interactions between the scatterers themselves. When the number of scatterers is
very large (and possibly at high frequency [47, 48]), specific deterministic or stochastic numerical
methods and algorithms are needed. We introduce new optimized numerical methods for solving
such complex configurations. Many applications are related to this problem, such as osteoporosis
diagnosis where quantitative ultrasound is a recent and promising technique to detect a risk of
fracture. Therefore, numerical simulation of wave propagation in multiple scattering elastic media
in the high frequency regime is a very useful tool for this purpose.

4 Application domains

4.1 Robotic swimmers

Some companies aim at building biomimetic robots that can swim in an aquarium, as toys but also for
medical purposes. An objective of SPHINX is to model and to analyze several models of these robotic
swimmers. For the moment, we focus on the motion of a nanorobot. In that case, the size of the swimmers
leads us to neglect the inertia forces and to only consider the viscosity effects. Such nanorobots could be
used for medical purposes to deliver some medicine or perform small surgical operations. In order to get
a better understanding of such robotic swimmers, we have obtained control results via shape changes
and we have developed simulation tools (see [60, 61, 92, 88]). Among all the important issues, we aim to
consider the following ones:

1. Solve the control problem by limiting the set of admissible deformations.

2. Find the “best” location of the actuators, in the sense of being the closest to the exact optimal
control.

The main tools for this investigation are the 3D codes that we have developed for simulation of fish in a
viscous incompressible fluid (SUSHI3D) or in an inviscid incompressible fluid (SOLEIL).

4.2 Aeronautics

We will develop robust and efficient solvers for problems arising in aeronautics (or aerospace) like elec-
tromagnetic compatibility and acoustic problems related to noise reduction in an aircraft. Our interest
for these issues is motivated by our close contacts with companies like Airbus or “Thales Systèmes Aéro-
portés”. We will propose new applications needed by these partners and assist them in integrating these

http://onelab.info/GetDDM/
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new scientific developments in their home-made solvers. In particular, in collaboration with C. Geuzaine
(Université de Liège), we are building a freely available parallel solver based on Domain Decomposition
Methods that can handle complex engineering simulations, in terms of geometry, discretization methods
as well as physics problems, see here.

5 Highlights of the year

One of the members of the assessment panel that evaluated our team in 2021 wrote an email to the team
leader wondering how it is possible that almost a year after he sent his report,he had still not received
his honorarium. The problems due to the deployment of EKSAE (the new Inria Information System for
finance and human resources) are detrimental to the people outside the institute who have agreed to
collaborate with us. They also put us in a situation that is more than embarrassing, and damages the
credibility of our institute. Finally, they are also detrimental to the staff of the institute by making them
work in unacceptable conditions.

6 New software and platforms

6.1 New software

6.1.1 FlatStefan

Keyword: Control

Functional Description: This provides codes related to the paper "Controllability of the Stefan problem
by the flatness approach" by Blaise Colle, Jérôme Lohéac and Takéo Takahashi (https://hal.science/hal-
03721544Flatness).

URL: https://hal.science/hal-03889209

Publication: hal-03721544

Contact: Takeo Takahashi

Participants: Blaise Colle, Jérôme Lohéac, Takeo Takahashi

7 New results

7.1 Analysis, control, stabilization and optimization of heterogeneous systems

Participants: Rémi Buffe, Imene Djebour, Ludovick Gagnon, Julien Lequeurre, Jean-
François Scheid, Takéo Takahashi, Julie Valein, Christophe Zhang.

Analysis of fluid mechanics

In [18], we study a bi-dimensional viscous incompressible fluid in interaction with a beam located
at its boundary. We show the existence of strong solutions for this fluid-structure interaction system,
extending a previous result where they supposed that the initial deformation of the beam was small. The
main point of the proof consists in the study of the linearized system and in particular in proving that the
corresponding semigroup is of Gevrey class.

In [17], we consider a viscous incompressible fluid interacting with an elastic structure located on a
part of its boundary. The fluid motion is modeled by the bi-dimensional Navier-Stokes system and the
structure follows the linear wave equation in dimension 1 in space. The aim of the article is to study the
linearized system coupling the Stokes system with a wave equation and to show that the corresponding
semigroup is analytic. In particular the linear system satisfies a maximal regularity property that allows us

http://onelab.info/wiki/GetDDM
https://hal.science/hal-03889209
https://hal.inria.fr/hal-03721544
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to deduce the existence and uniqueness of strong solutions for the nonlinear system. This result can be
compared to the case where the elastic structure is a beam equation ([18]) for which the corresponding
semigroup is only of Gevrey class.

Control

Controlling coupled systems is a complex issue depending on the coupling conditions and the
equations themselves. Our team has a strong expertise to tackle these kind of problems in the context of
fluid-structure interaction systems. More precisely, we obtained the following results.

In [20], we prove an inequality of Hölder type traducing the unique continuation property at one
time for the heat equation with a potential and Neumann boundary condition. The main feature of
the proof is to overcome the propagation of smallness by a global approach using a refined parabolic
frequency function method. It relies on a Carleman commutator estimate to obtain the logarithmic
convexity property of the frequency function.

In [21], we are interested in the controllability of a fluid-structure interaction system where the fluid
is viscous and incompressible and where the structure is elastic and located on a part of the boundary of
the fluid’s domain. In this article, we simplify this system by considering a linearization and by replacing
the wave/plate equation for the structure by a heat equation. We show that the corresponding system
coupling the Stokes equations with a heat equation at its boundary is null-controllable. The proof is
based on Carleman estimates and interpolation inequalities. One of the Carleman estimates corresponds
to the case of Ventcel boundary conditions. This work can be seen as a first step to handle the real system
where the structure is modeled by the wave or the plate equation.

In [33], we prove the null-controllability of the non-simplified fluid-structure system (as opposed
to [21]), that is, a system coupling the Navier-Stokes equation for the fluid and a plate equation at the
boundary. The control acts on arbitrary small subsets of the fluid domain and in a small subset of the
vibrating boundary. By proving a proper observability inequality, we obtain the local controllability for
the non-linear system. The proof relies on microlocal argument to handle the pressure terms.

In [25], an optimal control problem for the Navier–Stokes system with Navier slip boundary conditions
is considered. Denoting by α the friction coefficient, we analyze the asymptotic behavior of such a
problem as α→∞. More precisely, we prove that for every α > 0, there exists a sequence of optimal
controls converging to an optimal control of a similar problem but for the Navier–Stokes system with the
Dirichlet boundary condition. We also show the convergence of the corresponding direct and adjoint
states.

In [35], we study the local null controllability of a modified Navier-Stokes system where they include
nonlocal spatial terms. We generalize a previous work where the nonlocal spatial term is given by the
linearization of a Ladyzhenskaya model for a viscous incompressible fluid. Here the nonlocal spatial term
is more complicated and they consider a control with one vanishing component. The proof of the result
is based on a Carleman estimate where the main difficulty consists in handling the nonlocal spatial terms.
One of the key points is a particular decomposition of the solution of the adjoint system that allows us to
overcome regularity issues. With a similar approach, we also show the existence of insensitizing controls
for the same system.

In [36], we show the boundary controllability to stationary states of the Stefan problem with two
phases and in one dimension in the space variable. For an initial condition that is a stationary state and
for a time of control large enough, we also obtain the controllability to stationary states together with the
sign constraints associated to the problem. Our method is based on the flatness approach that consists
in writing the solution and the controls through two outputs and their derivatives. We construct these
outputs as Gevrey functions of order σ so that their solution and controls are also in a Gevrey class.

In [39], we consider a nonlinear system of two parabolic equations, with a distributed control in the
first equation and an odd coupling term in the second one. We prove that the nonlinear system is small
time locally null-controllable. The main difficulty is that the linearized system is not null-controllable. To
overcome this obstacle, we extend in a nonlinear setting the strategy introduced in a previous article that
consists in constructing odd controls for the linear heat equation. The proof relies on three main steps.
First, we obtain from the classical L2 parabolic Carleman estimate, conjugated with maximal regularity
results, a weighted Lp observability inequality for the nonhomogeneous heat equation. Secondly, we
perform a duality argument, close to the well-known Hilbert Uniqueness Method in a reflexive Banach
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setting, to prove that the heat equation perturbed by a source term is null-controllable thanks to odd
controls. The nonlinearity is handled with a Schauder fixed-point argument.

Finally, in [43], C. Zhang and co-authors consider the internal control of linear parabolic equations
through on-off shape controls with a prescribed maximal measure. They establish small-time approx-
imate controllability towards all possible final states allowed by the comparison principle with non
negative controls and manage to build controls with constant amplitude.

Stabilization

Stabilization of infinite dimensional systems governed by PDE is a challenging problem. In our team,
we have investigated this issue for different kinds of systems (fluid systems and wave systems) using
different techniques.

The work [24] is devoted to the stabilization of parabolic systems with a finite-dimensional control
subjected to a constant delay. Our main result shows that the Fattorini-Hautus criterion yields the
existence of such a feedback control, as in the case of stabilization without delay. The proof consists
in splitting the system into a finite dimensional unstable part and a stable infinite-dimensional part
and to apply the Artstein transformation on the finite-dimensional system to remove the delay in the
control. Using our abstract result, we can prove new results for the stabilization of parabolic systems with
constant delay.

The aim of [31] is to study the asymptotic stability of the nonlinear Korteweg-de Vries equation in the
presence of a delayed term. We first consider the case where the weight of the term with delay is smaller
than the weight of the term without delay and we prove a semiglobal stability result for any lengths.
Secondly we study the case where the support of the term without delay is not included in the support of
the term with delay. In that case, we give a local exponential stability result if the weight of the delayed
term is small enough. We illustrate these results by some numerical simulations.

In [42], we consider the Korteweg-de Vries equation with time-dependent delay on the boundary
or internal feedbacks. Under some assumptions on the time- dependent delay, on the weights of the
feedbacks and on the length of the spatial domain, we prove the exponential stability results, using
appropriate Lyapunov functionals. We finish by some numerical simulations that illustrate the stability
results and the influence of the delay on the decay rate.

In [32], we consider a wave equation with a structural damping coupled with an undamped wave
equation located at its boundary. We prove that, due to the coupling, the full system is parabolic. In
order to show that the underlying operator generates an analytical semigroup, we study in particular the
effect of the damping of the "interior" wave equation on the "boundary" wave equation and show that it
generates a structural damping.

In [38], we prove the rapid stabilization of the linearized water waves equation with the Fredholm
backstepping method. This result is achieved by overcoming an important theoretical threshold imposed
by the classical methodology, namely, the quadratically close criterion. Indeed, the spatial operator of
the linearized water waves exhibit an insufficient growth of the eigenvalues and the quadratically close
criterion is not true in this case. We introduce the duality compactness method for general skew-adjoint
operators to circumvent this difficulty. In turn, we prove the existence of a Fredholm backstepping
transformation for a wide range of equations, opening the path to an abstract framework for this widely
used method.

In [37], I. Djebour investigates the stabilization of a fluid-structure interaction system composed
by a three-dimensional viscous incompressible fluid and an elastic plate located on the upper part of
the fluid boundary. The main result of this paper is the feedback stabilization of the strong solutions of
the corresponding system around a stationary state for any exponential decay rate by means of a time
delayed control localized on the fixed fluid boundary.

Optimization

We have also considered optimization issues for fluid-structure interaction systems.
J.F. Scheid, V. Calisti and I. Lucardesi study an optimal shape problem for an elastic structure im-

mersed in a viscous incompressible fluid. They aim to establish the existence of an optimal elastic
domain associated with an energy-type functional for a Stokes-Elasticity system. They want to find an
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optimal reference domain (the domain before deformation) for the elasticity problem that minimizes
an energy-type functional. This problem is concerned with 2D geometry and is an extension of [106]
for a 1D problem. The optimal domain is searched for in a class of admissible open sets defined with a
diffeomorphism of a given domain. The main difficulty lies in the coupling between the Stokes problem
written in a eulerian frame and the linear elasticity problem written in a lagrangian form. The shape
derivative of an energy-type functional has been formally obtained. This will allow us to numerically
determine an optimal elastic domain which minimizes the energy-type functional under consideration.
The rigorous proof of the derivability of the energy-type functional with respect to the domain is still in
progress.

The article [90] is devoted to the mathematical analysis of a fluid-structure interaction system
where the fluid is compressible and heat conducting and where the structure is deformable and lo-
cated on a part of the boundary of the fluid domain. The fluid motion is modeled by the compressible
Navier-Stokes-Fourier system and the structure displacement is described by a structurally damped plate
equation. Our main results are the existence of strong solutions in an LP −Lq setting for small time or for
small data. Through a change of variables and a fixed point argument, the proof of the main results is
mainly based on the maximal regularity property of the corresponding linear systems. For small time
existence, this property is obtained by decoupling the linear system into several standard linear systems
whereas for global existence and for small data, the maximal regularity property is proved by showing
that the corresponding linear coupled fluid-structure operator is R-sectorial.

In [17], we consider a viscous incompressible fluid interacting with an elastic structure located on a
part of its boundary. The fluid motion is modeled by the bi-dimensional Navier-Stokes system and the
structure follows the linear wave equation in dimension 1 in space. Our aim is to study the linearized
system coupling the Stokes system with a wave equation and to show that the corresponding semigroup
is analytic. In particular the linear system satisfies a maximal regularity property that allows us to deduce
the existence and uniqueness of strong solutions for the nonlinear system. This result can be compared
to the case where the elastic structure is a beam equation for which the corresponding semigroup is only
of Gevrey class.

7.2 Direct and inverse problems for heterogeneous systems

Participants: Anthony Gerber-Roth, Alexandre Munnier, Julien Lequeurre,
Karim Ramdani, Jean-Claude Vivalda.

Direct problems

Negative materials are artificially structured composite materials (also known as metamaterials),
whose dielectric permittivity and magnetic permeability are simultaneously negative in some frequency
ranges. K. Ramdani continued his collaboration with R. Bunoiu on the homogenization of composite
materials involving both positive and negative materials. Due to the sign-changing coefficients in the
equations, classical homogenization theory fails, since it is based on uniform energy estimates which are
known only for positive (more precisely constant sign) coefficients.

In [23], in collaboration with C. Timofte, the authors investigate the homogenization of a diffusion-
type problem, for sign-changing conductivities with extreme contrasts (of order ε2, where ε is the period
of the composite material). In [22], also in collaboration with C. Timofte, the case of imperfect interface
conditions is considered, by allowing flux jumps across their oscillating interface. The main difficulties
of this study are due to the sign-changing coefficients and to the appearance of an unsigned surface
integral term in the variational formulation. A proof by contradiction (nonstandard in this context) and
T -coercivity technics are used in order to cope with these difficulties.

Inverse problems

Supervised by Alexandre Munnier and Karim Ramdani, the PhD of Anthony Gerber-Roth is devoted
to the investigation of some geometric inverse problems, and can be seen as a continuation of the work
initiated by the two supervisors in [94] and [93]. In these papers, the authors addressed a particular case of
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Calderòn’s inverse problem in dimension two, namely the case of a homogeneous background containing
a finite number of cavities (i.e. heterogeneities of infinitely high conductivities). The first contribution
of Anthony Gerber-Roth was to apply the method proposed in [93] to tackle a two-dimensional inverse
gravimetric problem. The strong connection with the important notion of quadrature domains in this
context has been highlighted. An efficient reconstruction algorithm has been proposed (and rigorously
justified in some cases) for this geometric inverse problem. This work, which is still in progress, has
been presented to the conference WAVES 2022, the 15th International Conference on Mathematical and
Numerical Aspects of Wave Propagation.

In [34], an optimal shape problem for a general functional depending on the solution of a bidimen-
sional Fluid-Structure Interaction problem (FSI) is studied. The system is composed by a coupling
stationary Stokes-Elasticity sub-system for modeling the deformation of an elastic structure immersed in
a viscous fluid. The differentiability with respect to reference elastic domain variations is proved under
shape perturbations with diffeomorphisms. The shape-derivative is then calculated. The main difficulty
for studying the shape sensitivity, lies in the coupling between the Stokes problem written in a Eulerian
frame and the linear elasticity problem written in a Lagrangian form.

7.3 Numerical analysis and simulation of heterogeneous systems

Participants: Xavier Antoine, Ismail Badia, David Gasperini, Christophe Geuzaine,
Philippe Marchner, Jean-François Scheid.

The work in [19] is devoted to the long time behaviour of the solution of a one dimensional Stefan
problem arising from corrosion theory. It is rigorously proved that under rather general hypotheses on
the initial data, the solution of this free boundary problem converges to a self-similar profile as the time
t →+∞. This convergence result is proved by applying a comparison principle together with suitable
upper and lower solutions. Some numerical simulations illustrate this time asymptotic behavior.

The paper [13] is devoted to the numerical computation of fractional linear systems. The proposed
approach is based on an efficient computation of Cauchy integrals allowing to estimate the real power
of a (sparse) matrix A. A first preconditioner M is used to reduce the length of the Cauchy integral con-
tour enclosing the spectrum of M A, hence allowing for a large reduction of the number of quadrature
nodes along the integral contour. Next, ILU-factorizations are used to efficiently solve the linear systems
involved in the computation of approximate Cauchy integrals. Numerical examples related to station-
ary (deterministic or stochastic) fractional Poisson-like equations are finally proposed to illustrate the
methodology.

Several contributions have been devoted to the numerical approximation of problems set in un-
bounded domains, appearing in acoustics, electromagnetics, quantum field theory, fluid mechanics
and continuum mechanics. More precisely, absorbing boundary conditions (ABC) have been used to
solve acoustic scattering problems [28], the linearized Green-Naghdi system in fluid dynamics [29] and a
mechanical problem from peridynamics [30]. Perfectly matched players (PML) have been proposed for
the numerical solution of nonlinear Klein-Gordon equations [15]. In electromagnetics, coupling between
high-order finite elements and boundary elements has been used to tackle time-harmonic scattering by
inhomogeneous objects [16]. In acoustics, other methods have been also proposed: integral equations
methods for 3D high-frequency acoustic scattering problems [27] and on-surface radiation conditions
(OSRC) combined with isogeometric (IGA) finite elements [11]. Finally, the acoustic scattering problem by
small-amplitude boundary deformations has been studied in [26] using a multi-harmonic finite element
method.

In collaboration with Emmanuel Lorin, Xavier Antoine investigated numerical methods to tackle
fractional equations, either in the PDE case [12, 13] or for algebraic linear systems [14].

8 Bilateral contracts and grants with industry

https://waves2022.apps.math.cnrs.fr/
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Participants: Xavier Antoine, Ismail Badia, David Gasperini, Christophe Geuzaine,
Philippe Marchner.

8.1 Bilateral grants with industry

The three industrial PhD theses of I. Badia, D. Gasperini and P. Marchner have been defended in 2022.

1. • Company: Siemens

• Duration: 2018 – 2021

• Participants: X. Antoine, C. Geuzaine, P. Marchner

• Abstract: This CIFRE grant funds the PhD thesis of Philippe Marchner, which concerns the
numerical simulation of aeroacoustic problems using domain decomposition methods.

2. • Company: Thales

• Duration: 2018 – 2021

• Participants: X. Antoine, I. Badia, C. Geuzaine

• Abstract: This CIFRE grant funds the PhD thesis of Ismail Badia, which concerns the HPC
simulation by domain decomposition methods of electromagnetic problems.

3. • Company: IEE

• Duration: 2018 – 2021

• Participants: X. Antoine, D. Gasperini, C. Geuzaine

• Abstract: This FNR grant funds the PhD thesis of David Gasperini, which concerns the numer-
ical simulation of scattering problems with moving boundaries.

9 Partnerships and cooperations

Participants: Xavier Antoine, Ludovick Gagnon, Takéo Takahashi.

9.1 International initiatives

9.1.1 Inria associate team not involved in an IIL or an international program

BEC2HPC

Title: Bose-Einstein Condensates : Computation and HPC simulation

Duration: 2019 - 2022

Coordinator: Qinglin TANG

Partners:

• Sichuan University, Chengdu (Chine)

Inria contact: Xavier Antoine
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Summary: All members of the associate team are experts in the mathematical modeling and numerical
simulation of PDEs related to engineering and physics applications. The first objective of the
associate team is to develop efficient high-order numerical methods for computing the stationary
states and dynamics of Bose-Einstein Condensates (BEC) modeled by Gross-Pitaevskii Equations
(GPEs). A second objective is to implement and validate these new methods in a HPC environment
to simulate large scale 2D and 3D problems in quantum physics. Finally, a third objective is to
provide a flexible and efficient HPC software to the quantum physics community for simulating
realistic problems.

MOUSTIQ

Title: Modelization and control of infectious diseases, wave propagation in heterogeneous media and
nonlinear dispersive equations

Duration: 2020 - 2024

Coordinator: Felipe Chaves (Assistant professor, Departamento de Matemática of Universidade Federal
da Paraíba)

Partners:

• Universidade Federale da Paraiba (Brésil)

Inria contact: Ludovick Gagnon

Summary: This project is divided into three research axes, all in the field of control theory and within
the field of expertise of the Sphinx project team. Although covering several fields of applications,
the problems studied here can be handled with similar mathematical techniques.

The first axis consists in improving a network transport model of virus spread by mosquitoes such
as Zika, Dengue or Chikungunya. The objective is to introduce time-delay terms into the model to
take into account delays such as incubation time or reaction time of health authorities. The study
of the controllability of the model will then be carried out in order to optimize the reaction time as
well as the coverage of the population in the event of an outbreak.

The second axis concerns the controllability of waves in a heterogeneous environment. These
media are characterized by discontinuous propagation speed at the interface between two media,
leading to refraction phenomena according to Snell’s law. Only a few controllability results are
known in restricted geometric settings, the last result being due to the Inria principal investigator.
Examples of applications of the controllability of these models range from seismic exploration to
the clearance of anti-personnel mines.

Finally, the last axis aims to study the controllability of nonlinear dispersive equations. These
equations are distinguished by a decrease of the solutions due to the different propagation speed of
each frequency. There only exist few tools available to obtain arbitrarily small time controllability
results of these equations and many important questions remain open. These equations can be
used to model, for example, the propagation of waves in shallow waters as well as the propagation
of signals in an optical fiber.

9.1.2 STIC/MATH/CLIMAT AmSud projects

ACIPDE

Title: Analysis, Control and Inverse problems for Partial Differential Equations

Program: MATH-AmSud

Duration: January 1, 2020 – December 31st, 2023

Local supervisor: Takéo Takahashi
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Partners:

• Federal University of Paraiba

• Carreno (Chili)

Inria contact: Takeo Takahashi

Summary: The objective of this project is two-folded. On one hand, we will study controllability proper-
ties to infinite dimensional systems modeled by partial differential equations. We will extend the
theory to the case of parabolic systems or hyperbolic systems with a particular attention to fluid
systems. We also want to investigate the controllability of systems mixing hyperbolic and parabolic
equations such as fluid-elastic interaction systems. We want in particular to develop new tools to
handle coupled systems, where the coupling can appear as in a transmission problem. On the other
hand, we will consider inverse problems for stationary, parabolic systems or hyperbolic systems
with again a particular attention to fluid systems. We also want to tackle coupled/transmission
systems such as fluid-structure interaction systems or cardiac models.

SCIPinPDEs

Title: Stabilization, Control and Inverse Problems in PDEs

Program: MATH-AmSud

Duration: January 1, 2023 – December 31st, 2026

Local supervisor: Takéo Takahashi

Partners:

• Brazil (Federal University of Paraiba)

• Chile (Universidad Tecnica Federico Santa Maria)

Inria contact: Takeo Takahashi

Summary: The objectives of this project are divided into three parts depending on the type of partial
differential equations we want to control or stabilize. The first part is devoted to the study of control
properties of some parabolic systems, appearing, for example, in cardiovascular models but also
for other parabolic equations with various constraints. In a second part, we propose controllability
problems for systems of hyperbolic type such as elasticity, wave or plate equations. The last part
concerns systems mixing hyperbolic and parabolic equations such as fluid-elastic interaction
systems or equations with memory.

9.1.3 Visits to international teams

Research stays abroad

• From December 4th to 18th, Julie Valein visited Axel Osses and Alberto Mercado at University of
Chile and Universidad Federico Santa Maria.

• From November 11th to December 1st, Ludovick Gagnon visited Felipe Chaves and Stefanella
Boatto at Universidad Federal da Paraiba and Universidad Federal do Rio de Janeiro. He also visited
from December 6th to 15th, José Urquiza at Université Laval and Damien Van Pham Bang at Institut
National de Recherche Scientifique
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9.2 National initiatives

• ANR TRECOS, for New Trends in Control and Stabilization: Constraints and non-local terms,
coordinated by Sylvain Ervedoza, University of Bordeaux. The ANR started in 2021 and runs up to
2024. TRECOS’ focus is on control theory for partial differential equations, and in particular models
from ecology and biology. SPHINX members : Ludovick Gagnon, Takéo Takahashi, Julie Valein

• ANR ODISSE, for Observer Design for Infinite-dimensional Systems, coordinated by Vincent An-
drieu, University of Lyon. The ANR ends in 2023 and addresses theoretical aspects of observability
and identifiability. SPHINX members : Ludovick Gagnon, Karim Ramdani, Julie Valein and Jean-
Claude Vivalda

10 Dissemination

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

Member of the organizing committees

• Julien Lequeurre and Alexandre Munnier are co-organizers of the annual Workshop "Journées EDP
de l’IECL".

• Julien Lequeurre is the co-organizers of the PDE seminar, in Metz, of the IECl.

• Julie Valein and Ludovick Gagnon were co-organizers of the PDE seminar, in Nancy, of the IECl.

• Rémi Buffe is the organizer of the groupe de travail d’EDP, in Nancy, of the IECL.

• Ludovick Gagnon was member of the organizing committee for the "control of dynamical systems"
session of the 2022 Winter Meeting of the Canadian Mathematical Society.

10.1.2 Journal

Reviewer - reviewing activities

• SPHINX members were reviewers of several scientific journals in control theory and PDEs.

10.1.3 Invited talks

• Julie Valein was invited to give a talk in the “ CA18232: Mathematical models for interacting
dynamics on networks” for the European women in mathematics conference. She was also invited
to give a seminar at Université de Lille and Université de Valenciennes.

• Ludovick Gagnon was invited to give a seminar at Université de Bordeaux, Universidad Federal
do Rio de Janeiro and at Université Laval. He also gave a presentation at the TRECOS meeting in
Marseille.

10.1.4 Leadership within the scientific community

• David Dos Santos Ferreira was one of the two coordinators of the GDR “Analyse des EDP” (until the
end of 2022).

10.1.5 Research administration

• Since June 2021, Karim Ramdani is the head of the PDE team of IECL laboratory (the Mathematics
laboratory of Université de Lorraine).

• Julie Valein is an elected member of the scientific pole AM2I of Université de Lorraine since 2022.
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10.2 Teaching - Supervision - Juries

10.2.1 Teaching

Except L. Gagnon, K. Ramdani, T. Takahashi and J.-C. Vivalda, SPHINX members have teaching obligations
at “Université de Lorraine” and are teaching at least 192 hours each year. They teach mathematics at
different level (Licence, Master, Engineering school). Many of them have pedagogical responsibilities.

10.2.2 Supervision

• Karim Ramdani and Alexandre Munnier are involved in the Ph.D supervision of Anthony Gerber
Roth

• Takéo Takahashi is involved in the co-supervision, with Jérôme Lohéac (CRAN, Université de
Lorraine), of Blaise Colle

• Takéo Takahashi is involved in the co-supervision, with Luz de Teresa (Uiversidad Nacional
Autónoma de México), of Ying Wang

• Christophe Zhang is involved in the co-supervision, with Sébastien Martin (Université Paris Cité),
Yannick Privat (Université de Strasbourg) and Camille Pouchol (Université Paris Cité), of Ivan
Hasenohr

• SPHINX members are involved in the supervision of bachelor or master degree students projects.

10.2.3 Juries

• Julie Valein was member of the Ph.D jury of Xinyong Wang (Lille), Arthur Bottois (Clermont-Ferrand)
and Amadou Cisse (Longwy)

10.3 Popularization

10.3.1 Internal or external Inria responsibilities

• Ludovick Gagnon is the international deputy of Inria Nancy – Grand Est. He is also involved in the
integration of the new researchers of the center.

• Karim Ramdani is a member (since October 2018) of the Working Group “Publications” of the “Com-
mittee for Open Science” of the French ministry of Higher Education, Research and Innovation.

10.3.2 Interventions

Karim Ramdani gave several talks to review the most recent changes in scientific publishing, especially
concerning the emergence of the dangerous author-pays model of open science.
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[74] E. Feireisl, M. Hillairet and Š. Nečasová. ‘On the motion of several rigid bodies in an incompressible
non-Newtonian fluid’. In: Nonlinearity 21.6 (2008), pp. 1349–1366. DOI: 10.1088/0951-7715/21
/6/012. URL: http://dx.doi.org/10.1088/0951-7715/21/6/012.

[75] E. Fridman. ‘Observers and initial state recovering for a class of hyperbolic systems via Lyapunov
method’. In: Automatica 49.7 (2013), pp. 2250–2260.

[76] G. P. Galdi and A. L. Silvestre. ‘On the motion of a rigid body in a Navier-Stokes liquid under
the action of a time-periodic force’. In: Indiana Univ. Math. J. 58.6 (2009), pp. 2805–2842. DOI:
10.1512/iumj.2009.58.3758. URL: http://dx.doi.org/10.1512/iumj.2009.58.3758.

[77] O. Glass and F. Sueur. ‘The movement of a solid in an incompressible perfect fluid as a geodesic
flow’. In: Proc. Amer. Math. Soc. 140.6 (2012), pp. 2155–2168. DOI: 10.1090/S0002-9939-2011-1
1219-X. URL: http://dx.doi.org/10.1090/S0002-9939-2011-11219-X.

[78] C. Grandmont and Y. Maday. ‘Existence for an unsteady fluid-structure interaction problem’. In:
M2AN Math. Model. Numer. Anal. 34.3 (2000), pp. 609–636. DOI: 10.1051/m2an:2000159. URL:
http://dx.doi.org/10.1051/m2an:2000159.

[79] G. Haine. ‘Recovering the observable part of the initial data of an infinite-dimensional linear
system with skew-adjoint generator’. In: Mathematics of Control, Signals, and Systems 26.3 (2014),
pp. 435–462.

https://doi.org/10.1080/03605300008821540
http://dx.doi.org/10.1080/03605300008821540
http://dx.doi.org/10.1080/03605300008821540
https://doi.org/10.1007/s00205-004-0340-7
http://dx.doi.org/10.1007/s00205-004-0340-7
https://doi.org/10.1007/s00205-005-0385-2
https://doi.org/10.1007/s00205-005-0385-2
http://dx.doi.org/10.1007/s00205-005-0385-2
https://doi.org/10.1007/s002050050136
https://doi.org/10.1007/s002050050136
http://dx.doi.org/10.1007/s002050050136
https://doi.org/10.1080/03605300008821553
http://dx.doi.org/10.1080/03605300008821553
http://dx.doi.org/10.1080/03605300008821553
https://doi.org/10.1016/j.jcp.2015.03.041
https://hal.archives-ouvertes.fr/hal-01095566
https://hal.archives-ouvertes.fr/hal-01095566
https://doi.org/10.1007/s00205-002-0242-5
http://dx.doi.org/10.1007/s00205-002-0242-5
http://dx.doi.org/10.1007/s00205-002-0242-5
https://doi.org/10.1007/s00028-003-0110-1
http://dx.doi.org/10.1007/s00028-003-0110-1
https://doi.org/10.1088/0951-7715/21/6/012
https://doi.org/10.1088/0951-7715/21/6/012
http://dx.doi.org/10.1088/0951-7715/21/6/012
https://doi.org/10.1512/iumj.2009.58.3758
http://dx.doi.org/10.1512/iumj.2009.58.3758
https://doi.org/10.1090/S0002-9939-2011-11219-X
https://doi.org/10.1090/S0002-9939-2011-11219-X
http://dx.doi.org/10.1090/S0002-9939-2011-11219-X
https://doi.org/10.1051/m2an:2000159
http://dx.doi.org/10.1051/m2an:2000159


22 Inria Annual Report 2022

[80] G. Haine and K. Ramdani. ‘Reconstructing initial data using observers: error analysis of the
semi-discrete and fully discrete approximations’. In: Numer. Math. 120.2 (2012), pp. 307–343.

[81] J. Houot and A. Munnier. ‘On the motion and collisions of rigid bodies in an ideal fluid’. In:
Asymptot. Anal. 56.3-4 (2008), pp. 125–158.

[82] O. Y. Imanuvilov and T. Takahashi. ‘Exact controllability of a fluid-rigid body system’. In: J. Math.
Pures Appl. (9) 87.4 (2007), pp. 408–437. DOI: 10.1016/j.matpur.2007.01.005. URL: http://d
x.doi.org/10.1016/j.matpur.2007.01.005.

[83] V. Isakov. Inverse problems for partial differential equations. Second. Vol. 127. Applied Mathemati-
cal Sciences. New York: Springer, 2006.

[84] N. V. Judakov. ‘The solvability of the problem of the motion of a rigid body in a viscous incompress-
ible fluid’. In: Dinamika Splošn. Sredy Vyp. 18 Dinamika Zidkost. so Svobod. Granicami (1974),
pp. 249–253, 255.

[85] B. Kaltenbacher, A. Neubauer and O. Scherzer. Iterative regularization methods for nonlinear
ill-posed problems. Vol. 6. Radon Series on Computational and Applied Mathematics. Walter de
Gruyter GmbH & Co. KG, Berlin, 2008.

[86] G. Legendre and T. Takahashi. ‘Convergence of a Lagrange-Galerkin method for a fluid-rigid body
system in ALE formulation’. In: M2AN Math. Model. Numer. Anal. 42.4 (2008), pp. 609–644. DOI:
10.1051/m2an:2008020. URL: http://dx.doi.org/10.1051/m2an:2008020.

[87] J. Lequeurre. ‘Existence of strong solutions to a fluid-structure system’. In: SIAM J. Math. Anal.
43.1 (2011), pp. 389–410. DOI: 10.1137/10078983X. URL: http://dx.doi.org/10.1137/1007
8983X.

[88] J. Lohéac and A. Munnier. ‘Controllability of 3D Low Reynolds Swimmers’. In: ESAIM:COCV
(2013).

[89] D. Luenberger. ‘Observing the state of a linear system’. In: IEEE Trans. Mil. Electron. MIL-8 (1964),
pp. 74–80.

[90] D. Maity and T. Takahashi. ‘Existence and uniqueness of strong solutions for the system of in-
teraction between a compressible Navier-Stokes-Fourier fluid and a damped plate equation’. In:
Nonlinear Analysis: Real World Applications (2021). DOI: 10.1016/j.nonrwa.2020.103267. URL:
https://hal.archives-ouvertes.fr/hal-02668248.

[91] P. Moireau, D. Chapelle and P. Le Tallec. ‘Joint state and parameter estimation for distributed
mechanical systems’. In: Computer Methods in Applied Mechanics and Engineering 197 (2008),
pp. 659–677.

[92] A. Munnier and B. Pinçon. ‘Locomotion of articulated bodies in an ideal fluid: 2D model with
buoyancy, circulation and collisions’. In: Math. Models Methods Appl. Sci. 20.10 (2010), pp. 1899–
1940. DOI: 10.1142/S0218202510004829. URL: http://dx.doi.org/10.1142/S0218202510
004829.

[93] A. Munnier and K. Ramdani. ‘Calderón cavities inverse problem as a shape-from-moments
problem’. In: Quarterly of Applied Mathematics 76 (2018), pp. 407–435. DOI: 10.1090/qam/1505.
URL: https://hal.inria.fr/hal-01503425.

[94] A. Munnier and K. Ramdani. ‘Conformal mapping for cavity inverse problem: an explicit recon-
struction formula’. In: Applicable Analysis (2016). DOI: 10.1080/00036811.2016.1208816. URL:
https://hal.inria.fr/hal-01196111.

[95] A. Munnier and E. Zuazua. ‘Large time behavior for a simplified N -dimensional model of fluid-
solid interaction’. In: Comm. Partial Differential Equations 30.1-3 (2005), pp. 377–417. DOI: 10.10
81/PDE-200050080. URL: http://dx.doi.org/10.1081/PDE-200050080.

[96] J. O’Reilly. Observers for linear systems. Vol. 170. Mathematics in Science and Engineering. Orlando,
FL: Academic Press Inc., 1983.

https://doi.org/10.1016/j.matpur.2007.01.005
http://dx.doi.org/10.1016/j.matpur.2007.01.005
http://dx.doi.org/10.1016/j.matpur.2007.01.005
https://doi.org/10.1051/m2an:2008020
http://dx.doi.org/10.1051/m2an:2008020
https://doi.org/10.1137/10078983X
http://dx.doi.org/10.1137/10078983X
http://dx.doi.org/10.1137/10078983X
https://doi.org/10.1016/j.nonrwa.2020.103267
https://hal.archives-ouvertes.fr/hal-02668248
https://doi.org/10.1142/S0218202510004829
http://dx.doi.org/10.1142/S0218202510004829
http://dx.doi.org/10.1142/S0218202510004829
https://doi.org/10.1090/qam/1505
https://hal.inria.fr/hal-01503425
https://doi.org/10.1080/00036811.2016.1208816
https://hal.inria.fr/hal-01196111
https://doi.org/10.1081/PDE-200050080
https://doi.org/10.1081/PDE-200050080
http://dx.doi.org/10.1081/PDE-200050080


Project SPHINX 23

[97] J. Ortega, L. Rosier and T. Takahashi. ‘On the motion of a rigid body immersed in a bidimensional
incompressible perfect fluid’. In: Ann. Inst. H. Poincaré Anal. Non Linéaire 24.1 (2007), pp. 139–165.
DOI: 10.1016/j.anihpc.2005.12.004. URL: http://dx.doi.org/10.1016/j.anihpc.2005
.12.004.

[98] K. Ramdani, M. Tucsnak and G. Weiss. ‘Recovering the initial state of an infinite-dimensional
system using observers’. In: Automatica 46.10 (2010), pp. 1616–1625.

[99] J.-P. Raymond. ‘Feedback stabilization of a fluid-structure model’. In: SIAM J. Control Optim. 48.8
(2010), pp. 5398–5443. DOI: 10.1137/080744761. URL: http://dx.doi.org/10.1137/080744
761.

[100] J. San Martín, J.-F. Scheid and L. Smaranda. ‘A modified Lagrange-Galerkin method for a fluid-rigid
system with discontinuous density’. In: Numer. Math. 122.2 (2012), pp. 341–382. DOI: 10.1007/s
00211-012-0460-1. URL: http://dx.doi.org/10.1007/s00211-012-0460-1.

[101] J. San Martín, J.-F. Scheid and L. Smaranda. ‘The Lagrange-Galerkin method for fluid-structure
interaction problems’. In: Boundary Value Problems. (2013), pp. 213–246.

[102] J. San Martín, J.-F. Scheid, T. Takahashi and M. Tucsnak. ‘An initial and boundary value problem
modeling of fish-like swimming’. In: Arch. Ration. Mech. Anal. 188.3 (2008), pp. 429–455. DOI:
10.1007/s00205-007-0092-2. URL: http://dx.doi.org/10.1007/s00205-007-0092-2.

[103] J. San Martín, J.-F. Scheid, T. Takahashi and M. Tucsnak. ‘Convergence of the Lagrange-Galerkin
method for the equations modelling the motion of a fluid-rigid system’. In: SIAM J. Numer. Anal.
43.4 (2005), 1536–1571 (electronic). DOI: 10.1137/S0036142903438161. URL: http://dx.doi
.org/10.1137/S0036142903438161.

[104] J. San Martín, L. Smaranda and T. Takahashi. ‘Convergence of a finite element/ALE method for
the Stokes equations in a domain depending on time’. In: J. Comput. Appl. Math. 230.2 (2009),
pp. 521–545. DOI: 10.1016/j.cam.2008.12.021. URL: http://dx.doi.org/10.1016/j.cam
.2008.12.021.

[105] J. San Martín, V. Starovoitov and M. Tucsnak. ‘Global weak solutions for the two-dimensional
motion of several rigid bodies in an incompressible viscous fluid’. In: Arch. Ration. Mech. Anal.
161.2 (2002), pp. 113–147. DOI: 10.1007/s002050100172. URL: http://dx.doi.org/10.1007
/s002050100172.

[106] J.-F. Scheid and J. Sokolowski. ‘Shape optimization for a fluid-elasticity system’. In: Pure and
Applied Functional Analysis 3.1 (2018), pp. 193–217. URL: https://hal.archives-ouvertes.f
r/hal-01449478.

[107] D. Serre. ‘Chute libre d’un solide dans un fluide visqueux incompressible. Existence’. In: Japan J.
Appl. Math. 4.1 (1987), pp. 99–110. DOI: 10.1007/BF03167757. URL: http://dx.doi.org/10.1
007/BF03167757.

[108] P. Stefanov and G. Uhlmann. ‘Thermoacoustic tomography with variable sound speed’. In: Inverse
Problems 25.7 (2009). 075011, p. 16.

[109] T. Takahashi. ‘Analysis of strong solutions for the equations modeling the motion of a rigid-fluid
system in a bounded domain’. In: Adv. Differential Equations 8.12 (2003), pp. 1499–1532.

[110] H. Trinh and T. Fernando. Functional observers for dynamical systems. Vol. 420. Lecture Notes in
Control and Information Sciences. Berlin: Springer, 2012.

[111] J. L. Vázquez and E. Zuazua. ‘Large time behavior for a simplified 1D model of fluid-solid interac-
tion’. In: Comm. Partial Differential Equations 28.9-10 (2003), pp. 1705–1738. DOI: 10.1081/PDE-
120024530. URL: http://dx.doi.org/10.1081/PDE-120024530.

[112] H. F. Weinberger. ‘On the steady fall of a body in a Navier-Stokes fluid’. In: Partial differential
equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971). Providence,
R. I.: Amer. Math. Soc., 1973, pp. 421–439.

https://doi.org/10.1016/j.anihpc.2005.12.004
http://dx.doi.org/10.1016/j.anihpc.2005.12.004
http://dx.doi.org/10.1016/j.anihpc.2005.12.004
https://doi.org/10.1137/080744761
http://dx.doi.org/10.1137/080744761
http://dx.doi.org/10.1137/080744761
https://doi.org/10.1007/s00211-012-0460-1
https://doi.org/10.1007/s00211-012-0460-1
http://dx.doi.org/10.1007/s00211-012-0460-1
https://doi.org/10.1007/s00205-007-0092-2
http://dx.doi.org/10.1007/s00205-007-0092-2
https://doi.org/10.1137/S0036142903438161
http://dx.doi.org/10.1137/S0036142903438161
http://dx.doi.org/10.1137/S0036142903438161
https://doi.org/10.1016/j.cam.2008.12.021
http://dx.doi.org/10.1016/j.cam.2008.12.021
http://dx.doi.org/10.1016/j.cam.2008.12.021
https://doi.org/10.1007/s002050100172
http://dx.doi.org/10.1007/s002050100172
http://dx.doi.org/10.1007/s002050100172
https://hal.archives-ouvertes.fr/hal-01449478
https://hal.archives-ouvertes.fr/hal-01449478
https://doi.org/10.1007/BF03167757
http://dx.doi.org/10.1007/BF03167757
http://dx.doi.org/10.1007/BF03167757
https://doi.org/10.1081/PDE-120024530
https://doi.org/10.1081/PDE-120024530
http://dx.doi.org/10.1081/PDE-120024530

	Project-Team SPHINX
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Analysis, control, stabilization and optimization of heterogeneous systems
	Inverse problems for heterogeneous systems
	Numerical analysis and simulation of heterogeneous systems

	Application domains
	Robotic swimmers
	Aeronautics

	Highlights of the year
	New software and platforms
	New software
	FlatStefan


	New results
	Analysis, control, stabilization and optimization of heterogeneous systems
	Direct and inverse problems for heterogeneous systems
	Numerical analysis and simulation of heterogeneous systems

	Bilateral contracts and grants with industry
	Bilateral grants with industry

	Partnerships and cooperations
	International initiatives
	Inria associate team not involved in an IIL or an international program
	STIC/MATH/CLIMAT AmSud projects
	Visits to international teams

	National initiatives

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Journal
	Invited talks
	Leadership within the scientific community
	Research administration

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Internal or external Inria responsibilities
	Interventions


	Scientific production
	Major publications
	Publications of the year
	Other
	Cited publications


