
2022
ACTIVITY REPORT

Project-Team

STATIFY

RESEARCH CENTRE

Inria Center
at Université Grenoble Alpes

IN PARTNERSHIP WITH:

CNRS, Université de Grenoble Alpes

Bayesian and extreme value statistical
models for structured and high
dimensional data

IN COLLABORATION WITH: Laboratoire Jean Kuntzmann (LJK)

DOMAIN

Applied Mathematics, Computation and
Simulation

THEME

Optimization, machine learning and
statistical methods



Contents

Project-Team STATIFY 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3

3 Research program 4
3.1 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Graphical and Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Functional Inference, semi- and non-parametric methods . . . . . . . . . . . . . . . . . . . . 5

3.3.1 Modelling extremal events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.2 Level sets estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.3 Dimension reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Application domains 7
4.1 Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Biology, Environment and Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Social and environmental responsibility 8
5.1 Footprint of research activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Impact of research results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Highlights of the year 8
6.1 New projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.2 Outstanding papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.3 Awards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7 New software and platforms 9
7.1 New software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7.1.1 Planet-GLLiM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7.1.2 Kernelo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

8 New results 10
8.1 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8.1.1 An online Minorization-Maximization algorithm . . . . . . . . . . . . . . . . . . . . . 10
8.1.2 Global implicit function theorems and the online expectation-maximisation algorithm 10
8.1.3 Concentration results for approximate Bayesian computation without identifiability 10
8.1.4 Online EM algorithm for robust clustering . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.1.5 A non-asymptotic approach for model selection via penalization in high-dimensional

mixture of experts models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.1.6 Bayesian mixture models (in)consistency for the number of clusters . . . . . . . . . . 11
8.1.7 Joint supervised classification and reconstruction of irregularly sampled satellite

image times series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8.2 Semi and non-parametric methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

8.2.1 Extreme events and neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8.2.2 Estimation of extreme risk measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.2.3 Conditional extremal events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.2.4 Estimation of multivariate risk measures . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.2.5 Dimension reduction for extremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.2.6 Bayesian inference for extreme values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.2.7 Diagnosing convergence of Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . 15
8.2.8 Dimension reduction with Sliced Inverse Regression . . . . . . . . . . . . . . . . . . . 15
8.2.9 Latent factor models: a tool for dimension reduction in joint species distribution

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.3 Graphical and Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



8.3.1 A Pre-Screening Approach for Faster Bayesian Network Structure Learning . . . . . . 16
8.3.2 Trustworthy clinical AI solutions: a unified review of uncertainty quantification in

deep learning models for medical image analysis. . . . . . . . . . . . . . . . . . . . . . 16
8.3.3 Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can trust. . . . . 17
8.3.4 Multi-Scale Evaluation of Uncertainty Quantification Techniques for Deep Learning

based MRI Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.3.5 Improving Uncertainty-based Out-of-Distribution detection for medical image seg-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.3.6 Brain subtle anomaly detection based on Auto-Encoders latent space analysis: Ap-

plication to de novo Parkinson patients . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.3.7 Bayesian nonparametric models for hidden Markov random fields on count variables

and application to traffic accidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.3.8 Hidden Markov models for the analysis of eye movements . . . . . . . . . . . . . . . 19
8.3.9 Estimation of leaf area densities in tropical forests . . . . . . . . . . . . . . . . . . . . 19
8.3.10 Bayesian neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.3.11 Graph comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.3.12 Spatio-temporal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.4 Inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.4.1 Sequential Bayesian experimental design for inverse problems. . . . . . . . . . . . . 21
8.4.2 Bayesian nonparametric mixture of experts for high-dimensional inverse problems. 22
8.4.3 Hierarchical Bayesian models for simulation-based inference . . . . . . . . . . . . . 22
8.4.4 Bayesian inference on a large-scale brain simulator . . . . . . . . . . . . . . . . . . . . 22

9 Bilateral contracts and grants with industry 23
9.1 Bilateral contracts with industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10 Partnerships and cooperations 23
10.1 International initiatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10.1.1 Inria associate team not involved in an IIL or an international program . . . . . . . . 23
10.2 International research visitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

10.2.1 Visits of international scientists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.2.2 Visits to international teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

10.3 National initiatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10.3.1 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

11 Dissemination 26
11.1 Promoting scientific activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

11.1.1 Scientific events: organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
11.1.2 Scientific events: selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
11.1.3 Journal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
11.1.4 Invited talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
11.1.5 Research administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

11.2 Teaching - Supervision - Juries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
11.2.1 Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
11.2.2 Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11.2.3 Juries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11.3 Popularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11.3.1 Articles and contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

12 Scientific production 30
12.1 Major publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
12.2 Publications of the year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
12.3 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
12.4 Cited publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



Project STATIFY 1

Project-Team STATIFY

Creation of the Project-Team: 2020 April 01

Keywords

Computer sciences and digital sciences

A3.1.1. – Modeling, representation

A3.1.4. – Uncertain data

A3.3.2. – Data mining

A3.3.3. – Big data analysis

A3.4.1. – Supervised learning

A3.4.2. – Unsupervised learning

A3.4.4. – Optimization and learning

A3.4.5. – Bayesian methods

A3.4.7. – Kernel methods

A5.3.3. – Pattern recognition

A5.9.2. – Estimation, modeling

A6.2. – Scientific computing, Numerical Analysis & Optimization

A6.2.3. – Probabilistic methods

A6.2.4. – Statistical methods

A6.3. – Computation-data interaction

A6.3.1. – Inverse problems

A6.3.3. – Data processing

A6.3.5. – Uncertainty Quantification

A9.2. – Machine learning

A9.3. – Signal analysis

Other research topics and application domains

B1.2.1. – Understanding and simulation of the brain and the nervous system

B2.6.1. – Brain imaging

B3.3. – Geosciences

B3.4.1. – Natural risks

B3.4.2. – Industrial risks and waste

B3.5. – Agronomy

B5.1. – Factory of the future

B9.5.6. – Data science

B9.11.1. – Environmental risks

https://radar.inria.fr/keywords/2022/computing
https://radar.inria.fr/keywords/2022/other


2 Inria Annual Report 2022

1 Team members, visitors, external collaborators

Research Scientists

• Florence Forbes [Team leader, INRIA, Senior Researcher, HDR]

• Sophie Achard [CNRS, Senior Researcher, HDR]

• Julyan Arbel [INRIA, Researcher, HDR]

• Pedro Luiz Coelho Rodrigues [INRIA, Researcher]

• Stephane Girard [INRIA, Senior Researcher, HDR]

• Pierre Wolinski [UNIV OXFORD, Starting Research Position, from Oct 2022]

Faculty Members

• Jean-Baptiste Durand [GRENOBLE INP, Associate Professor]

• Olivier Francois [GRENOBLE INP, Professor]

Post-Doctoral Fellows

• Jhouben Janyk Cuesta Ramirez [Inria, from Oct 2022]

• Trung Tin Nguyen [Inria]

• Konstantinos Pitas [INRIA, from Mar 2022]

PhD Students

• Louise Alamichel [UGA]

• Yuchen Bai [UGA]

• Daria Bystrova [UGA]

• Lucrezia Carboni [UGA]

• Jacopo Iollo [INRIA]

• Benjamin Lambert [PIXYL, from Feb 2022]

• Hana Lbath [UGA]

• Minh Le [Invensense, CIFRE]

• Theo Moins [INRIA]

• Geoffroy Oudoumanessah [INSERM, from Oct 2022]

Technical Staff

• Pascal Dkengne Sielenou [INRIA, Engineer]

Interns and Apprentices

• Geoffroy Oudoumanessah [INSERM, from Apr 2022 until Sep 2022]



Project STATIFY 3

Administrative Assistant

• Marion Ponsot [INRIA]

Visiting Scientists

• Filippo Ascolani [Bocconi University, from Nov 2022 until Nov 2022]

• Alberto Gonzales Sanz [University of Toulouse, from Nov 2022]

• Hien Nguyen [UNIV QUEENSLAND, from Jul 2022]

• Kai Qin [UNIV SWINBURNE, from Jul 2022]

External Collaborator

• Jonathan El Methni [UNIV PARIS]

2 Overall objectives

The STATIFY team focuses on statistics. Statistics can be defined as a science of variation where the
main question is how to acquire knowledge in the face of variation. In the past, statistics were seen
as an opportunity to play in various backyards. Today, the statistician sees his own backyard invaded
by data scientists, machine learners and other computer scientists of all kinds. Everyone wants to do
data analysis and some (but not all) do it very well. Generally, data analysis algorithms and associated
network architectures are empirically validated using domain-specific datasets and data challenges. While
winning such challenges is certainly rewarding, statistical validation lies on more fundamentally grounded
bases and raises interesting theoretical, algorithmic and practical insights. Statistical questions can be
converted to probability questions by the use of probability models. Once certain assumptions about the
mechanisms generating the data are made, statistical questions can be answered using probability theory.
However, the proper formulation and checking of these probability models is just as important, or even
more important, than the subsequent analysis of the problem using these models. The first question is
then how to formulate and evaluate probabilistic models for the problem at hand. The second question
is how to obtain answers after a certain model has been assumed. This latter task can be more a matter of
applied probability theory, and in practice, contains optimization and numerical analysis.

The STATIFY team aims at bringing strengths, at a time when the number of solicitations received by
statisticians increases considerably because of the successive waves of big data, data science and deep
learning. The difficulty is to back up our approaches with reliable mathematics while what we have is
often only empirical observations that we are not able to explain. Guiding data analysis with statistical
justification is a challenge in itself. STATIFY has the ambition to play a role in this task and to provide
answers to questions about the appropriate usage of statistics.

Often statistical assumptions do not hold. Under what conditions then can we use statistical methods
to obtain reliable knowledge? These conditions are rarely the natural state of complex systems. The
central motivation of STATIFY is to establish the conditions under which statistical assumptions and
associated inference procedures approximately hold and become reliable.

However, as George Box said "Statisticians and artists both suffer from being too easily in love with
their models". To moderate this risk, we choose to develop, in the team, expertise from different statistical
domains to offer different solutions to attack a variety of problems. This is possible because these domains
share the same mathematical food chain, from probability and measure theory to statistical modeling,
inference and data analysis.

Our goal is to exploit methodological resources from statistics and machine learning to develop
models that handle variability and that scale to high dimensional data while maintaining our ability to
assess their correctness, typically the uncertainty associated with the provided solutions. To reach this
goal, the team offers a unique range of expertise in statistics, combining probabilistic graphical models
and mixture models to analyze structured data, Bayesian analysis to model knowledge and regularize
ill-posed problems, non-parametric statistics, risk modeling and extreme value theory to face the lack, or
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impossibility, of precise modeling information and data. In the team, this expertise is organized to target
five key challenges:

1. Models for high dimensional, multimodal, heterogeneous data;

2. Spatial (structured) data science;

3. Scalable Bayesian models and procedures;

4. Understanding mathematical properties of statistical and machine learning methods;

5. The big problem of small data.

The first two challenges address sources of complexity coming from data, namely, the fact that observa-
tions can be: 1) high dimensional, collected from multiple sensors in varying conditions i.e. multimodal
and heterogeneous and 2) inter-dependent with a known structure between variables or with unknown
interactions to be discovered. The other three challenges focus on providing reliable and interpretable
models: 3) making the Bayesian approach scalable to handle large and complex data; 4) quantifying
the information processing properties of machine learning methods and 5) allowing to draw reliable
conclusions from datasets that are too small or not large enough to be used for training machine/deep
learning methods.

These challenges rely on our four research axes:

1. Models for graphs and networks;

2. Dimension reduction and latent variable modeling;

3. Bayesian modeling;

4. Modeling and quantifying extreme risk.

In terms of applied work, we will target high-impact applications in neuroimaging, environmental and
earth sciences.

3 Research program

3.1 Mixture models

Participants: Jean-Baptiste Durand, Florence Forbes, Stephane Girard, Julyan Ar-
bel, Olivier Francois, Daria Bystrova, Giovanni Poggiato, Geof-
froy Oudoumanessah, Louise Alamichel.

Keywords: Key-words: mixture of distributions, EM algorithm, missing data, conditional indepen-
dence, statistical pattern recognition, clustering, unsupervised and partially supervised learning..

In a first approach, we consider statistical parametric models, θ being the parameter, possibly multi-
dimensional, usually unknown and to be estimated. We consider cases where the data naturally divides
into observed data y = {y1, . . . , yn} and unobserved or missing data z = {z1, . . . , zn}. The missing data zi

represents for instance the memberships of one of a set of K alternative categories. The distribution of an
observed yi can be written as a finite mixture of distributions,

f (yi ;θ) =
K∑

k=1
P (zi = k;θ) f (yi | zi ;θ) . (1)

These models are interesting in that they may point out hidden variables responsible for most of the
observed variability and so that the observed variables are conditionally independent. Their estimation
is often difficult due to the missing data. The Expectation-Maximization (EM) algorithm is a general
and now standard approach to maximization of the likelihood in missing data problems. It provides
parameter estimation but also values for missing data.

Mixture models correspond to independent zi ’s. They have been increasingly used in statistical
pattern recognition. They enable a formal (model-based) approach to (unsupervised) clustering.
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3.2 Graphical and Markov models

Participants: Jean-Baptiste Durand, Florence Forbes, Julyan Arbel, Sophie Achard,
Olivier Francois, Mariia Vladimirova, Lucrezia Carboni, Hana Lbath,
Minh-tri Le, Yuchen Bai.

Keywords: Key-words: graphical models, Markov properties, hidden Markov models, clustering,
missing data, mixture of distributions, EM algorithm, image analysis, Bayesian inference..

Graphical modelling provides a diagrammatic representation of the dependency structure of a joint
probability distribution, in the form of a network or graph depicting the local relations among variables.
The graph can have directed or undirected links or edges between the nodes, which represent the
individual variables. Associated with the graph are various Markov properties that specify how the graph
encodes conditional independence assumptions.

It is the conditional independence assumptions that give graphical models their fundamental modular
structure, enabling computation of globally interesting quantities from local specifications. In this way
graphical models form an essential basis for our methodologies based on structures.

The graphs can be either directed, e.g. Bayesian Networks, or undirected, e.g. Markov Random Fields.
The specificity of Markovian models is that the dependencies between the nodes are limited to the nearest
neighbor nodes. The neighborhood definition can vary and be adapted to the problem of interest. When
parts of the variables (nodes) are not observed or missing, we refer to these models as Hidden Markov
Models (HMM). Hidden Markov chains or hidden Markov fields correspond to cases where the zi ’s in (1)
are distributed according to a Markov chain or a Markov field. They are a natural extension of mixture
models. They are widely used in signal processing (speech recognition, genome sequence analysis) and in
image processing (remote sensing, MRI, etc.). Such models are very flexible in practice and can naturally
account for the phenomena to be studied.

Hidden Markov models are very useful in modelling spatial dependencies but these dependencies and
the possible existence of hidden variables are also responsible for a typically large amount of computation.
It follows that the statistical analysis may not be straightforward. Typical issues are related to the neigh-
borhood structure to be chosen when not dictated by the context and the possible high dimensionality of
the observations. This also requires a good understanding of the role of each parameter and methods
to tune them depending on the goal in mind. Regarding estimation algorithms, they correspond to an
energy minimization problem which is NP-hard and usually performed through approximation. We
focus on a certain type of methods based on variational approximations and propose effective algorithms
which show good performance in practice and for which we also study theoretical properties. We also
propose some tools for model selection. Eventually we investigate ways to extend the standard Hidden
Markov Field model to increase its modelling power.

3.3 Functional Inference, semi- and non-parametric methods

Participants: Julyan Arbel, Daria Bystrova, Giovanni Poggiato, Stephane Girard,
Florence Forbes, Pedro Coelho Rodrigues, Pascal Dkengne Sielenou,
Meryem Bousebata, Theo Moins, Pierre Wolinski, Sophie Achard
.

Keywords: Key-words: dimension reduction, extreme value analysis, functional estimation..

We also consider methods which do not assume a parametric model. The approaches are non-
parametric in the sense that they do not require the assumption of a prior model on the unknown
quantities. This property is important since, for image applications for instance, it is very difficult to
introduce sufficiently general parametric models because of the wide variety of image contents. Projection
methods are then a way to decompose the unknown quantity on a set of functions (e.g. wavelets). Kernel
methods which rely on smoothing the data using a set of kernels (usually probability distributions) are
other examples. Relationships exist between these methods and learning techniques using Support
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Vector Machine (SVM) as this appears in the context of level-sets estimation (see section 3.3.2). Such non-
parametric methods have become the cornerstone when dealing with functional data [88]. This is the case,
for instance, when observations are curves. They enable us to model the data without a discretization
step. More generally, these techniques are of great use for dimension reduction purposes (section 3.3.3).
They enable reduction of the dimension of the functional or multivariate data without assumptions on
the observations distribution. Semi-parametric methods refer to methods that include both parametric
and non-parametric aspects. Examples include the Sliced Inverse Regression (SIR) method [90] which
combines non-parametric regression techniques with parametric dimension reduction aspects. This
is also the case in extreme value analysis [87], which is based on the modelling of distribution tails (see
section 3.3.1). It differs from traditional statistics which focuses on the central part of distributions, i.e.
on the most probable events. Extreme value theory shows that distribution tails can be modelled by both
a functional part and a real parameter, the extreme value index.

3.3.1 Modelling extremal events

Extreme value theory is a branch of statistics dealing with the extreme deviations from the bulk of
probability distributions. More specifically, it focuses on the limiting distributions for the minimum or
the maximum of a large collection of random observations from the same arbitrary distribution. Let
X1,n ≤ . . . ≤ Xn,n denote n ordered observations from a random variable X representing some quantity of
interest. A pn-quantile of X is the value xpn such that the probability that X is greater than xpn is pn , i.e.
P (X > xpn ) = pn . When pn < 1/n, such a quantile is said to be extreme since it is usually greater than the
maximum observation Xn,n .

To estimate such quantiles therefore requires dedicated methods to extrapolate information beyond
the observed values of X . Those methods are based on Extreme value theory. This kind of issue appeared
in hydrology. One objective was to assess risk for highly unusual events, such as 100-year floods, starting
from flows measured over 50 years. To this end, semi-parametric models of the tail are considered:

P (X > x) = x−1/θ`(x), x > x0 > 0, (2)

where both the extreme-value index θ > 0 and the function `(x) are unknown. The function ` is a slowly
varying function i.e. such that

`(t x)

`(x)
→ 1 as x →∞ (3)

for all t > 0. The function `(x) acts as a nuisance parameter which yields a bias in the classical extreme-
value estimators developed so far. Such models are often referred to as heavy-tail models since the
probability of extreme events decreases at a polynomial rate to zero. It may be necessary to refine the
model (2,3) by specifying a precise rate of convergence in (3). To this end, a second order condition is
introduced involving an additional parameter ρ ≤ 0. The larger ρ is, the slower the convergence in (3) and
the more difficult the estimation of extreme quantiles.
More generally, the problems that we address are part of the risk assessment theory. For instance, in
reliability, the distributions of interest are included in a semi-parametric family whose tails are decreasing
exponentially fast. These so-called Weibull-tail distributions [8] are defined by their survival distribution
function:

P (X > x) = exp{−xθ`(x)}, x > x0 > 0. (4)

Gaussian, gamma, exponential and Weibull distributions, among others, are included in this family.
An important part of our work consists in establishing links between models (2) and (4) in order to
propose new estimation methods. We also consider the case where the observations were recorded with
a covariate information [9]. In this case, the extreme-value index and the pn-quantile are functions of
the covariate. We propose estimators of these functions by using moving window approaches, nearest
neighbor methods, or kernel estimators.

3.3.2 Level sets estimation

Level sets estimation is a recurrent problem in statistics which is linked to outlier detection. In biology,
one is interested in estimating reference curves, that is to say curves which bound 90% (for example) of the
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population. Points outside this bound are considered as outliers compared to the reference population.
Level sets estimation can be looked at as a conditional quantile estimation problem which benefits from a
non-parametric statistical framework. In particular, boundary estimation, arising in image segmentation
as well as in supervised learning, is interpreted as an extreme level set estimation problem. Level sets
estimation can also be formulated as a linear programming problem. In this context, estimates are sparse
since they involve only a small fraction of the dataset, called the set of support vectors.

3.3.3 Dimension reduction

Our work on high dimensional data requires that we face the curse of dimensionality phenomenon.
Indeed, the modelling of high dimensional data requires complex models and thus the estimation of
high number of parameters compared to the sample size. In this framework, dimension reduction
methods aim at replacing the original variables by a small number of linear combinations with as small
as a possible loss of information. Principal Component Analysis (PCA) is the most widely used method
to reduce dimension in data. However, standard linear PCA can be quite inefficient on image data
where even simple image distortions can lead to highly non-linear data. Two directions are investigated.
First, non-linear PCAs can be proposed, leading to semi-parametric dimension reduction methods [89].
Another field of investigation is to take into account the application goal in the dimension reduction
step. One of our approaches is therefore to develop new Gaussian models of high dimensional data
for parametric inference [1]. Such models can then be used in a Mixtures or Markov framework for
classification purposes. Another approach consists in combining dimension reduction, regularization
techniques, and regression techniques to improve the Sliced Inverse Regression method [90].

4 Application domains

4.1 Image Analysis

Participants: Florence Forbes, Jean-Baptiste Durand, Stephane Girard, Pe-
dro Coelho Rodrigues, Geoffroy Oudoumanessah, Sophie Achard.

As regards applications, several areas of image analysis can be covered using the tools developed in the
team. More specifically, in collaboration with team PERCEPTION, we address various issues in computer vi-
sion involving Bayesian modelling and probabilistic clustering techniques. Other applications in medical
imaging are natural. We work more specifically on MRI and functional MRI data, in collaboration with the
Grenoble Institute of Neuroscience (GIN). We also consider other statistical 2D fields coming from other
domains such as remote sensing, in collaboration with the Institut de Planétologie et d’Astrophysique
de Grenoble (IPAG) and the Centre National d’Etudes Spatiales (CNES). In this context, we worked on
hyperspectral and/or multitemporal images. In the context of the "pole de competivité" project I-VP, we
worked of images of PC Boards.

4.2 Biology, Environment and Medicine

Participants: Florence Forbes, Stephane Girard, Jean-Baptiste Durand, Julyan Arbel,
Sophie Achard, Pedro Coelho Rodrigues, Olivier Francois, Yuchen Bai,
Theo Moins, Daria Bystrova, Meryem Bousebata, Lucrezia Carboni,
Hana Lbath.

A third domain of applications concerns biology and medicine. We considered the use of mixture
models to identify biomakers. We also investigated statistical tools for the analysis of fluorescence signals
in molecular biology. Applications in neurosciences are also considered. In the environmental domain,
we considered the modelling of high-impact weather events and the use of hyperspectral data as a new
tool for quantitative ecology.
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5 Social and environmental responsibility

5.1 Footprint of research activities

The footprint of our research activities has not been assessed yet. Most of the team members have
validated the "charte d’éco-resposnsabilité" written by a working group from Laboratoire Jean Kuntzmann,
which should have practical implications in the near future.

5.2 Impact of research results

A lot of our developments are motivated by and target applications in medicine and environmental
sciences. As such they have a social impact with a better handling and treatment of patients, in particular
with brain diseases or disorders. On the environmental side, our work has an impact on geoscience-
related decision making with e.g. extreme events risk analysis, planetary science studies and tools to
assess biodiversity markers. However, how to truly measure and report this impact in practice is another
question we have not really addressed yet.

6 Highlights of the year

6.1 New projects

• Australian Research Council Discovery project (2023-25): F. Forbes is coPI of a recently (Nov. 2022)
funded project for 3 years.

• ANR project PEG2 (2022-26) on Predictive Ecological Genomics: STATISFY is involved in this 4-year
project recently accepted in July 2022. The PI is prof. Olivier Francois who spent 2 years (2021-22)
in the team on a Delegation position.

• Plan de Relance project with GE Healthcare (2022-24). The topic of the collaboration is related to
early anomaly detection of failures in medical transducer manufacturing.

• MIAI: Pedro Rodrigues was awarded 13K euros for his project on Machine Learning for Experimental
Data via the IRGA 2022 call for projects.

• MIAI: F. Forbes, J-B. Durand and Y. Bai were awarded 4.5K euros for their project on Developing IA
for estimating leaf area density area in tropical forests from LiDAR data, Nov. 2022.

• A new collaboration has recently started with the PhD co-supervision of Julien Zhou, involving J.
Arbel, P. Gaillard from Inria THOTH team, and T. Rahier from Criteo Grenoble. This PhD will address
bandit problems from a Bayesian viewpoint.

• ANR project NODAL (2022-2026) « Network-based biomarker discovery of neurodegenerative
diseases using multimodal connectivity ». Sophie Achard is involved in this projet where the PI is in
Rennes Julie Coloigner

• ANR DynaSTI : « modélisation de la dynamique spatio-temporelle de la connectivité fonctionnelle
en IRMf de repos. » Sophie Achard is involved in this projet where the PI is in Strasbourg Céline
Meillier

6.2 Outstanding papers

A recent work has been accepted in Journal of Machine Learning Research, which is one of the top
journals in the domain [13].
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6.3 Awards

M. Vladimirova received the best poster award for her work at the BAyesian Young Statisticians Meeting in
Université de Montréal, Canada, in June 22-23, 2022.

H. Lbath received the student award for her work on Clusted-based inter-regional correlation estima-
tion presented at 2022 IMS International Conference on Statistics and Data Science (ICSDS) December
13-16, 2022, Florence, Italy, [56].

7 New software and platforms

7.1 New software

7.1.1 Planet-GLLiM

Name: Planet-GLLiM

Keyword: Inverse problem

Functional Description: The application implements the GLLiM statistical learning technique in its dif-
ferent variants for the inversion of a physical model of reflectance on spectro-(gonio)-photometric
data. The latter are of two types: 1. laboratory measurements of reflectance spectra acquired
according to different illumination and viewing geometries, 2. and 4D spectro-photometric remote
sensing products from multi-angular CRISM or Pléiades acquisitions.

URL: https://gitlab.inria.fr/kernelo-mistis/planet-gllim-front-end/-/wikis/Home

Publications: insu-03705153, hal-02908364

Contact: Sylvain Douté

Participants: Florence Forbes, Benoit Kugler, Sami Djouadi, Samuel Heidmann, Stanislaw Borkowski

Partner: Institut de Planétologie et d’Astrophysique de Grenoble

7.1.2 Kernelo

Name: Kernelo-GLLiM

Keywords: Inverse problem, Clustering, Regression, Gaussian mixture, Python, C++

Scientific Description: Building a regression model for the purpose of prediction is widely used in all
disciplines. A large number of applications consists of learning the association between responses
and predictors and focusing on predicting responses for the newly observed samples. In this
work, we go beyond simple linear models and focus on predicting low-dimensional responses
using high-dimensional covariates when the associations between responses and covariates are
non-linear.

Functional Description: Kernelo-GLLiM is a Gaussian Locally-Linear Mapping (GLLiM) solver. Kernelo-
GLLiM provides a C++ library and a python module for non linear mapping (non linear regression)
using a mixture of regression model and an inverse regression strategy. The methods include the
GLLiM model (Deleforge et al (2015) ) based on Gaussian mixtures.

URL: https://gitlab.inria.fr/kernelo-mistis/kernelo-gllim-is/-/wikis/home

Publications: hal-00863468, hal-02908364

Contact: Florence Forbes

Participants: Florence Forbes, Benoit Kugler, Sami Djouadi, Samuel Heidmann, Stanislaw Borkowski

Partner: Institut de Planétologie et d’Astrophysique de Grenoble

https://gitlab.inria.fr/kernelo-mistis/planet-gllim-front-end/-/wikis/Home
https://hal.inria.fr/insu-03705153
https://hal.inria.fr/hal-02908364
https://gitlab.inria.fr/kernelo-mistis/kernelo-gllim-is/-/wikis/home
https://hal.inria.fr/hal-00863468
https://hal.inria.fr/hal-02908364
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8 New results

8.1 Mixture models

8.1.1 An online Minorization-Maximization algorithm

Participants: Florence Forbes.

Joint work with: Hien Nguyen, University of Queensland, Brisbane Australia, Gersende Fort, IMT
Toulouse and Olivier Cappé ENS Paris.

Modern statistical and machine learning settings often involve high data volume and data streaming,
which require the development of online estimation algorithms. The online Expectation-Maximization
(EM) algorithm extends the popular EM algorithm to this setting, via a stochastic approximation approach.
We show that an online version of the Minorization-Maximization (MM) algorithm, which includes the
online EM algorithm as a special case, can also be constructed in a similar manner. We demonstrate our
approach via an application to the logistic regression problem and compare it to existing methods [36].

8.1.2 Global implicit function theorems and the online expectation-maximisation algorithm

Participants: Florence Forbes.

Joint work with: Hien Nguyen, University of Queensland, Brisbane Australia.

Due to the changing nature of data, online and mini-batch variants of EM and EM-like algorithms
have become increasingly popular. The consistency of the estimator sequences that are produced by
these EM variants often rely on an assumption regarding the continuous differentiability of a parameter
update function. In many cases, the parameter update function is often not in closed form and may
only be defined implicitly, which makes the verification of the continuous differentiability property
difficult. We demonstrate how a global implicit function theorem can be used to verify such properties
in the cases of finite mixtures of distributions in the exponential family and more generally when the
component specific distribution admits a data augmentation scheme in the exponential family. We
demonstrate the use of such a theorem in the case of mixtures of beta distributions, gamma distributions,
fully-visible Boltzmann machines and Student distributions. Via numerical simulations, we provide
empirical evidence towards the consistency of the online EM algorithm parameter estimates in such
cases [27].

8.1.3 Concentration results for approximate Bayesian computation without identifiability

Participants: Florence Forbes, Julyan Arbel, Trung Tin Nguyen.

Joint work with: Hien Nguyen, University of Queensland, Brisbane Australia.

We study the large sample behaviors of approximate Bayesian computation (ABC) posterior measures
in situations when the data generating process is dependent on non-identifiable parameters. In particular,
we establish the concentration of posterior measures on sets of arbitrarily small size that contain the
equivalence set of the data generative parameter, when the sample size tends to infinity. Our theory
also makes weak assumptions regarding the measurement of discrepancy between the data set and
simulations, and in particular, does not require the use of summary statistics and is applicable to a broad
class of kernelized ABC algorithms. We provide useful illustrations and demonstrations of our theory in
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practice, and offer a comprehensive assessment of the nature in which our findings complement other
results in the literature.

8.1.4 Online EM algorithm for robust clustering

Participants: Florence Forbes, Geoffroy Oudoumanessah.

Joint work with: Hien Nguyen, University of Queensland, Australia and Michel Dojat Grenoble Institute
of Neurosciences.

A popular way to approach clustering tasks is via a parametric mixture model. The vast majority of
the work on such mixtures has been based on Gaussian mixture models. However, in some applications
the tails of Gaussian distributions are shorter than appropriate or parameter estimations are affected
by atypical observations (outliers). To address this issue, mixtures of so-called multiple scale Student
distributions have been proposed and used for clustering. In contrast to the Gaussian case, no closed-
form solution exists for such mixtures but tractability is maintained via the use of the expectation-
maximisation (EM) algorithm. However, such mixtures require more parameters than the standard
Student or Gaussian mixtures and the EM algorithm used to estimate the mixture parameters involves
more complex numerical optimizations. Consequently, when the number of samples to be clustered
becomes large, applying EM on the whole data set (Batch EM) may become costly both in terms of time
and memory requirements. A natural approach to bypass this issue is to consider an online version of the
algorithm, that can incorporate the samples incrementally or in mini batches. In this work, we proposed
to design a tractable online EM for mixtures of multiple scale Student distributions in order to use it then
to detect subtle brain anomalies from MR brain scans for patients suffering from Parkinson disease. The
application to Parkinson disease will be carried out jointly with Grenoble Institute of Neuroscience.

8.1.5 A non-asymptotic approach for model selection via penalization in high-dimensional mixture
of experts models

Participants: Florence Forbes, Trung Tin Nguyen.

Joint work with: Faicel Chamroukhi, University of Caen and Hien Nguyen, University of Queensland,
Brisbane, Australia.

Mixture of experts (MoE) are a popular class of statistical and machine learning models that have
gained attention over the years due to their flexibility and efficiency. In this work, we consider Gaussian-
gated localized MoE (GLoME) and block-diagonal covariance localized MoE (BLoME) regression models
to present nonlinear relationships in heterogeneous data with potential hidden graph-structured inter-
actions between high-dimensional predictors. These models pose difficult statistical estimation and
model selection questions, both from a computational and theoretical perspective. This paper [84] is
devoted to the study of the problem of model selection among a collection of GLoME or BLoME models
characterized by the number of mixture components, the complexity of Gaussian mean experts, and
the hidden block-diagonal structures of the covariance matrices, in a penalized maximum likelihood
estimation framework. In particular, we establish non-asymptotic risk bounds that take the form of weak
oracle inequalities, provided that lower bounds for the penalties hold. The good empirical behavior of
our models is then demonstrated on synthetic and real datasets.

8.1.6 Bayesian mixture models (in)consistency for the number of clusters

Participants: Julyan Arbel, Louise Alamichel, Daria Bystrova.
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Joint work with: Guillaume Kon Kam King (INRAE).

Bayesian nonparametric mixture models are common for modeling complex data. While these models
are well-suited for density estimation, their application for clustering has some limitations. Recent results
proved posterior inconsistency of the number of clusters when the true number of clusters is finite for the
Dirichlet process and Pitman–Yor process mixture models. In [68], we extend these results to additional
Bayesian nonparametric priors such as Gibbs-type processes and finite-dimensional representations
thereof. The latter include the Dirichlet multinomial process, the recently proposed Pitman–Yor, and
normalized generalized gamma multinomial processes. We show that mixture models based on these
processes are also inconsistent in the number of clusters and discuss possible solutions. Notably, we
show that a post-processing algorithm introduced for the Dirichlet process can be extended to more
general models and provides a consistent method to estimate the number of components.

8.1.7 Joint supervised classification and reconstruction of irregularly sampled satellite image times
series

Participants: Alexandre Constantin, Stephane Girard.

Joint work with: Mathieu Fauvel, INRAE
Recent satellite missions have led to a huge amount of earth observation data, most of them being

freely available. In such a context, satellite image time series have been used to study land use and land
cover information. However, optical time series, like Sentinel-2 or Landsat ones, are provided with an
irregular time sampling for different spatial locations, and images may contain clouds and shadows. Thus,
pre-processing techniques are usually required to properly classify such data. The proposed approach is
able to deal with irregular temporal sampling and missing data directly in the classification process. It is
based on Gaussian processes and allows to perform jointly the classification of the pixel labels as well as
the reconstruction of the pixel time series. The method complexity scales linearly with the number of
pixels, making it amenable in large scale scenarios. Experimental classification and reconstruction results
show that the method does not compete yet with state of the art classifiers but yields reconstructions
that are robust with respect to the presence of undetected clouds or shadows and does not require any
temporal preprocessing [16].

8.2 Semi and non-parametric methods

8.2.1 Extreme events and neural networks

Participants: Stephane Girard.

Joint work with: M. Allouche and E. Gobet (CMAP, Ecole Poytechnique)
Feedforward neural networks based on Rectified linear units (ReLU) cannot efficiently approximate

quantile functions which are not bounded, especially in the case of heavy-tailed distributions. We thus
propose a new parametrization for the generator of a Generative adversarial network (GAN) adapted to
this framework, basing on extreme-value theory. We provide an analysis of the uniform error between
the extreme quantile and its GAN approximation. It appears that the rate of convergence of the error is
mainly driven by the second-order parameter of the data distribution. The above results are illustrated
on simulated data and real financial data [13].

A similar investigation has been conducted to simulate fractional Brownian motion with ReLU neural
networks [12].

In [69], we propose new parametrizations for neural networks in order to estimate extreme quantiles
in both non-conditional and conditional heavy-tailed settings. All proposed neural network estimators
feature a bias correction based on an extension of the usual second-order condition to an arbitrary order.
The convergence rate of the uniform error between extreme log-quantiles and their neural network
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approximation is established. The finite sample performances of the non-conditional neural network
estimator are compared to other bias-reduced extreme-value competitors on simulated data. It is shown
that our method outperforms them in difficult heavy-tailed situations where other estimators almost all
fail. Finally, the conditional neural network estimators are implemented to investigate the behaviour of
extreme rainfalls as functions of their geographical location in the southern part of France. The results
are submitted for publication.

8.2.2 Estimation of extreme risk measures

Participants: Stephane Girard.

Joint work with: J. El-Methni (Univ. Paris Cité), G. Stupfler (Univ. Angers) and A. Usseglio-Carleve (Univ.
Avignon).

One of the most popular risk measures is the Value-at-Risk (VaR) introduced in the 1990’s. In statistical
terms, the VaR at level α ∈ (0,1) corresponds to the upper α-quantile of the loss distribution. Weissman
extrapolation device for estimating extreme quantiles (when α→ 0) from heavy-tailed distributions is
based on two estimators: an order statistic to estimate an intermediate quantile and an estimator of
the tail-index. The common practice is to select the same intermediate sequence for both estimators.
In [11], we show how an adapted choice of two different intermediate sequences leads to a reduction of
the asymptotic bias associated with the resulting refined Weissman estimator. This new bias reduction
method is fully automatic and does not involve the selection of extra parameters. Our approach is
compared to other bias reduced estimators of extreme quantiles both on simulated and real data.

The Value-at-Risk however suffers from several weaknesses. First, it provides us only with a pointwise
information: VaR(α) does not take into consideration what the loss will be beyond this quantile. Second,
random loss variables with light-tailed distributions or heavy-tailed distributions may have the same
Value-at-Risk. Finally, Value-at-Risk is not a coherent risk measure since it is not subadditive in general.
A first coherent alternative risk measure is the Conditional Tail Expectation (CTE), also known as Tail-
Value-at-Risk, Tail Conditional Expectation or Expected Shortfall in case of a continuous loss distribution.
The CTE is defined as the expected loss given that the loss lies above the upper α-quantile of the loss
distribution. This risk measure thus takes into account the whole information contained in the upper tail
of the distribution.

Risk measures of a financial position are, from an empirical point of view, mainly based on quantiles.
Replacing quantiles with their least squares analogues, called expectiles, has recently received increasing
attention [3]. The novel expectile-based risk measures satisfy all coherence requirements. Currently
available estimators of extreme expectiles are typically biased and hence may show poor finite-sample
performance even in fairly large samples. In [22], we focus on the construction of bias-reduced extreme
expectile estimators for heavy-tailed distributions. The rationale for our construction hinges on a care-
ful investigation of the asymptotic proportionality relationship between extreme expectiles and their
quantile counterparts, as well as of the extrapolation formula motivated by the heavy-tailed context. We
accurately quantify and estimate the bias incurred by the use of these relationships when constructing
extreme expectile estimators. This motivates the introduction of a class of bias-reduced estimators
whose asymptotic properties are rigorously shown, and whose finite-sample properties are assessed on a
simulation study and three samples of real data from economics, insurance and finance.

8.2.3 Conditional extremal events

Participants: Stephane Girard.

Joint work with: G. Stupfler (Univ. Angers) and A. Usseglio-Carleve (Univ. Avignon).
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As explained in Paragraph 8.2.2, expectiles have recently started to be considered as serious candidates
to become standard tools in actuarial and financial risk management. However, expectiles and their
sample versions do not benefit from a simple explicit form, making their analysis significantly harder
than that of quantiles and order statistics. This difficulty is compounded when one wishes to integrate
auxiliary information about the phenomenon of interest through a finite-dimensional covariate, in which
case the problem becomes the estimation of conditional expectiles.

We exploit the fact that the expectiles of a distribution F are in fact the quantiles of another distribution
E explicitly linked to F , in order to construct nonparametric kernel estimators of extreme conditional
expectiles. We analyze the asymptotic properties of our estimators in the context of conditional heavy-
tailed distributions. Applications to simulated data and real insurance data are provided [21]. The
extension to functional covariates is investigated in [20].

8.2.4 Estimation of multivariate risk measures

Participants: Julyan Arbel, Stephane Girard.

Joint work with: H. Nguyen, Universityof Queensland, Brisbane, Australia and A. Usseglio-Carleve (Univ.
Avignon).

Expectiles form a family of risk measures that have recently gained interest over the more common
value-at-risk or return levels, primarily due to their capability to be determined by the probabilities
of tail values and magnitudes of realisations at once. However, a prevalent and ongoing challenge of
expectile inference is the problem of uncertainty quantification, which is especially critical in sensitive
applications, such as in medical, environmental or engineering tasks. In [14], we address this issue
by developing a novel distribution, termed the multivariate expectilebased distribution (MED), that
possesses an expectile as a closed-form parameter. Desirable properties of the distribution, such as
log-concavity, make it an excellent fitting distribution in multivariate applications. Maximum likelihood
estimation and Bayesian inference algorithms are described. Simulated examples and applications to
expectile and mode estimation illustrate the usefulness of the MED for uncertainty quantification.

8.2.5 Dimension reduction for extremes

Participants: Meryem Bousebata, Stephane Girard.

Joint work with: G. Enjolras (CERAG).

In the context of the PhD thesis of Meryem Bousebata, we propose a new approach, called Extreme-
PLS, for dimension reduction in regression and adapted to distribution tails. The objective is to find linear
combinations of predictors that best explain the extreme values of the response variable in a non-linear
inverse regression model. The asymptotic normality of the Extreme-PLS estimator is established in the
single-index framework and under mild assumptions. The performance of the method is assessed on
simulated data. A statistical analysis of French farm income data, considering extreme cereal yields, is
provided as an illustration [15].

8.2.6 Bayesian inference for extreme values

Participants: Julyan Arbel, Theo Moins, Stephane Girard.

Joint work with: A. Dutfoy (EDF R&D).
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Combining extreme value theory with Bayesian methods offers several advantages, such as a quan-
tification of uncertainty on parameter estimation or the ability to study irregular models that cannot be
handled by frequentist statistics. However, it comes with many options that are left to the user concerning
model building, computational algorithms, and even inference itself. Among them, the parameterization
of the model induces a geometry that can alter the efficiency of computational algorithms, in addition
to making calculations involved. In [75], we focus on the Poisson process characterization of extremes
and outline two key benefits of an orthogonal parameterization addressing both issues. First, several
diagnostics show that Markov chain Monte Carlo convergence is improved compared with the original
parameterization. Second, orthogonalization also helps deriving Jeffreys and penalized complexity priors,
and establishing posterior propriety. The analysis is supported by simulations, and our framework is then
applied to extreme level estimation on river flow data. The results are submitted for publication.

8.2.7 Diagnosing convergence of Markov chain Monte Carlo

Participants: Julyan Arbel, Theo Moins, Stephane Girard.

Joint work with: A. Dutfoy (EDF R&D).

Diagnosing convergence of Markov chain Monte Carlo (MCMC) is crucial in Bayesian analysis. Among
the most popular methods, the potential scale reduction factor (commonly named R̂) is an indicator
that monitors the convergence of output chains to a stationary distribution, based on a comparison of
the between- and within-variance of the chains. Several improvements have been suggested since its
introduction in the 90’ss. We analyse some properties of the theoretical value R associated to R̂ in the
case of a localized version that focuses on quantiles of the distribution. This leads to proposing a new
indicator, which is shown to allow both for localizing the MCMC convergence in different quantiles of
the distribution, and at the same time for handling some convergence issues not detected by other R̂
versions. This work is submitted for publication [74].

8.2.8 Dimension reduction with Sliced Inverse Regression

Participants: Stephane Girard.

Joint work with: H. Lorenzo and J. Saracco (Inria Bordeaux Sud-Ouest).

Since its introduction in the early 90’s, the Sliced Inverse Regression (SIR) methodology has evolved
adapting to increasingly complex data sets in contexts combining linear dimension reduction with non
linear regression. The assumption of dependence of the response variable with respect to only a few linear
combinations of the covariates makes it appealing for many computational and real data application
aspects. In [19], we propose an overview of the most active research directions in SIR modeling from
multivariate regression models to regularization and variable selection.

8.2.9 Latent factor models: a tool for dimension reduction in joint species distribution models

Participant: Julyan Arbel, Daria Bystrova, Giovanni Poggiato.

Joint work with: Wilfried Thuiller, LECA - Laboratoire d’Ecologie Alpine.

We investigate modelling species distributions over space and time which is one of the major research
topics in both ecology and conservation biology. Joint Species Distribution models (JSDMs) have recently
been introduced as a tool to better model community data, by inferring a residual covariance matrix
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between species, after accounting for species’ response to the environment. However, these models are
computationally demanding, even when latent factors, a common tool for dimension reduction, are used.
To address this issue, previous research proposed to use a Dirichlet process, a Bayesian nonparametric
prior, to further reduce model dimension by clustering species in the residual covariance matrix. Here,
we built on this approach to include a prior knowledge on the potential number of clusters, and instead
used a Pitman-Yor process to address some critical limitations of the Dirichlet process. We therefore
propose a framework that includes prior knowledge in the residual covariance matrix, providing a tool to
analyze clusters of species that share the same residual associations with respect to other species. We
applied our methodology to a case study of plant communities in a protected area of the French Alps (the
Bauges Regional Park), and demonstrated that our extensions improve dimension reduction and reveal
additional information from the residual covariance matrix, notably showing how the estimated clusters
are compatible with plant traits, endorsing their importance in shaping communities. A book chapter
describing latent factor models as a tool for dimension reduction in joint species distribution models is
aslo available.

8.3 Graphical and Markov models

8.3.1 A Pre-Screening Approach for Faster Bayesian Network Structure Learning

Participants: Florence Forbes.

Joint work with: Thibaud Rahier from Criteo and Sylvain Marié from Schneider.

Learning the structure of Bayesian networks from data is a NP-Hard problem that involves optimiza-
tion over a super-exponential sized space. Still, in many real-life datasets a number of the arcs contained
in the final structure correspond to strongly related pairs of variables and can be identified efficiently
with information-theoretic metrics. In this work, we propose a meta-algorithm to accelerate any existing
Bayesian network structure learning method. It contains an additional arc pre-screening step allowing to
narrow the structure learning task down to a subset of the original variables, thus reducing the overall
problem size. We conduct extensive experiments on both public benchmarks and private industrial
datasets, showing that this approach enables a significant decrease in computational time and graph
complexity for little to no decrease in performance score [37].

8.3.2 Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learn-
ing models for medical image analysis.

Participants: Florence Forbes, Benjamin Lambert.

Joint work with: Senan Doyle, Alan Tucholka from Pixyl and Michel Dojat from Grenoble Institute of
Neurosciences.

The full acceptance of Deep Learning (DL) models in the clinical field is rather low with respect to the
quantity of high-performing solutions reported in the literature. Particularly, end users are reluctant to
rely on the rough predictions of DL models. Uncertainty quantification methods have been proposed in
the literature as a potential response to reduce the rough decision provided by the DL black box and thus
increase the interpretability and the acceptability of the result by the final user. In this review, we propose
an overview of the existing methods to quantify uncertainty associated to DL predictions. We focus on
applications to medical image analysis, which present specific challenges due to the high dimensionality
of images and their quality variability, as well as constraints associated to real-life clinical routine. We
then discuss the evaluation protocols to validate the relevance of uncertainty estimates. Finally, we
highlight the open challenges of uncertainty quantification in the medical field [72].



Project STATIFY 17

8.3.3 Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can trust.

Participants: Florence Forbes, Benjamin Lambert.

Joint work with: Senan Doyle, Alan Tucholka from Pixyl and Michel Dojat from Grenoble Institute of
Neurosciences.

Deep neural networks have become the gold-standard approach for the automated segmentation
of 3D medical images. Their full acceptance by clinicians remains however hampered by the lack of
intelligible uncertainty assessment of the provided results. Most approaches to quantify their uncertainty,
such as the popular Monte Carlo dropout, restrict to some measure of uncertainty in prediction at the
voxel level. In addition not to be clearly related to genuine medical uncertainty, this is not clinically
satisfying as most objects of interest (e.g. brain lesions) are made of groups of voxels whose overall
relevance may not simply reduce to the sum or mean of their individual uncertainties. In this work,
we propose to go beyond voxel-wise assessment using an innovative Graph Neural Network approach,
trained from the outputs of a Monte Carlo dropout model. This network allows the fusion of three
estimators of voxel uncertainty: entropy, variance, and model’s confidence; and can be applied to any
lesion, regardless of its shape or size. We demonstrate the superiority of our approach for uncertainty
estimate on a task of Multiple Sclerosis lesions segmentation [35].

8.3.4 Multi-Scale Evaluation of Uncertainty Quantification Techniques for Deep Learning based MRI
Segmentation.

Participants: Florence Forbes, Benjamin Lambert.

Joint work with: Senan Doyle, Alan Tucholka from Pixyl and Michel Dojat from Grenoble Institute of
Neurosciences.

Deep Learning (DL) techniques have become the gold standard for biomedical image segmentation.
Although extensively used, they tend to be considered as black-boxes, preventing their full acceptance in
clinical routine. This opacity is partly due to the inability of neural networks to express the uncertainty in
their predictions. In recent years, tremendous work has been carried out to alleviate this limitation and
develop models that know when they don’t know 1. In this work, we propose an in-depth evaluation of 3
state-of-the-art approaches to quantify uncertainty attached to DL predictions : Monte- Carlo Dropout,
Deep Ensemble, and Heteroscedastic network. We performed a multi-scale analysis of these techniques
by evaluating uncertainty estimates at the voxel, lesion and image levels. We illustrate this comparison
on an automatic segmentation task to detect White-Matter Hyperintensities (WMH) from T2-weighted
FLAIR MRI sequences of multiple sclerosis patients [54].

8.3.5 Improving Uncertainty-based Out-of-Distribution detection for medical image segmentation
.

Participants: Florence Forbes, Benjamin Lambert.

Joint work with: Senan Doyle, Alan Tucholka from Pixyl and Michel Dojat from Grenoble Institute of
Neurosciences.

Deep Learning models are easily disturbed by variations in the input images that were not seen during
training, resulting in unpredictable behaviours. Such Out-of-Distribution (OOD) images represent a
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significant challenge in the context of medical image analysis, where the range of possible abnormalities
is extremely wide, including artifacts, unseen pathologies, or different imaging protocols. In this work,
we evaluate various uncertainty frameworks to detect OOD inputs in the context of Multiple Sclerosis
lesions segmentation. By implementing a comprehensive evaluation scheme including 14 sources of
OOD of various nature and strength, we show that methods relying on the predictive uncertainty of
binary segmentation models often fails in detecting outlying inputs. On the contrary, learning to segment
anatomical labels alongside lesions highly improves the ability to detect OOD inputs.

8.3.6 Brain subtle anomaly detection based on Auto-Encoders latent space analysis: Application to
de novo Parkinson patients

Participants: Florence Forbes, Geoffroy Oudoumanessah.

Joint work with: Michel Dojat from Grenoble Institute of Neurosciences, Carole Lartizien, Nicolas Pinon,
Robin Trombetta from Creatis.

Neural network-based anomaly detection remains challenging in clinical applications with little or no
supervised information and subtle anomalies such as hardly visible brain lesions. Among unsupervised
methods, patch-based auto-encoders with their efficient representation power provided by their latent
space, have shown good results for visible lesion detection. However, the commonly used reconstruction
error criterion may limit their performance when facing less obvious lesions. In this work, we design
two alternative detection criteria. They are derived from multivariate analysis and can more directly
capture information from latent space representations. Their performance compares favorably with two
additional supervised learning methods, on a difficult de novo Parkinson Disease (PD) classification task.

8.3.7 Bayesian nonparametric models for hidden Markov random fields on count variables and ap-
plication to traffic accidents

Participants: Julyan Arbel, Jean-Baptiste Durand, Florence Forbes.

Joint work with: Hien Nguyen from University of Queensland Brisbane Australia and Fatoumata Dama,
Laboratoire des Sciences du Numérique de Nantes, France

Hidden Markov random fields (HMRFs) have been widely used in image segmentation and more
generally, for clustering of data indexed by graphs. Dependent hidden variables (states) represent the
cluster identities and determine their interpretations. Dependencies between state variables are induced
by the notion of neighborhood in the graph. A difficult and crucial problem in HMRFs is the identification
of the number of possible states K . Recently, selection methods based on Bayesian non parametric
priors (Dirichlet processes) have been developed. They do not assume that K is bounded a priori,
thus allowing its adaptive selection with respect to the quantity of available data and avoiding costly
systematic estimation and comparison of models with different fixed values for K . Our previous work
[85] has focused on Bayesian nonparametric priors for HMRFs and continuous, Gaussian observations.
In this work, we consider extensions to non-Gaussian observed data. A first case is discrete data, typically
issued from counts. A second is exponential-distributed data. We defined and implemented Bayesian
nonparametric models for HMRFs with Poisson- and exponential-distributed observations. Inference is
achieved by Variational Bayesian Expectation Maximization (VBEM).

We proposed an application of the discrete-data model to a new risk mapping model for traffic
accidents in the region of Victoria, Australia [17]. The partition into regions using labels yielded by
HMRFs was interpreted using covariates, which showed a good discrimination with regard to labels.

As a perspective, Bayesian nonparametric models for hidden Markov random fields could be extended
to non-Poissonian models (particularly to account for zero-inflated and over-/under-dispersed cases of
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application) and to regression models.Further perspectives of this work include the improvement of the
convergence in the VBEM algorithm, since however the KL divergence between the posterior distribution
and its approximation converges, the sequence of optimizing parameters is shown to diverge in our
current approach.

8.3.8 Hidden Markov models for the analysis of eye movements

Participants: Jean-Baptiste Durand, Sophie Achard.

Joint work with: Anne Guérin-Dugué (GIPSA-lab) and Benoit Lemaire (Laboratoire de Psychologie et
Neurocognition)
This research theme is supported by a LabEx PERSYVAL-Lab project-team grant.

In the last years, GIPSA-lab has developed computational models of information search in web-
like materials, using data from both eye-tracking and electroencephalograms (EEGs). These data were
obtained from experiments, in which subjects had to decide whether a text was related or not to a target
topic presented to them beforehand. In such tasks, reading process and decision making are closely
related. Statistical analysis of such data aims at deciphering underlying dependency structures in these
processes. Hidden Markov models (HMMs) have been used on eye-movement series to infer phases in
the reading process that can be interpreted as strategies or steps in the cognitive processes leading to
decision. In HMMs, each phase is associated with a state of the Markov chain. The states are observed
indirectly though eye-movements. Our approach was inspired by Simola et al. (2008) [91], but we used
hidden semi-Markov models for better characterization of phase length distributions (Olivier et al.,
2021) [29]. The estimated HMM highlighted contrasted reading strategies, with both individual and
document-related variability. New results were obtained in the standalone analysis of the eye-movements:
1) a statistical comparison between the effects of three types of texts was performed, considering texts
either closely related, moderately related or unrelated to the target topic; 2) a characterization of the
effects of the distance to trigger words on transition probabilities and 3) highlighting a predominant
intra-individual variability in scanpaths.

As a perspective of this work, the segmentation induced by our eye-movement model could be
used to obtain a statistical characterization of functional brain connectivity through simultaneous EEG
recordings. This should lead to some integrated models coupling EEG and eye movements within one
single HMM for better identification of strategies.

The results of this study have been partially included in a dissemination work at Inria Interstice
journal. [86].

8.3.9 Estimation of leaf area densities in tropical forests

Participants: Jean-Baptiste Durand, Florence Forbes, Yuchen Bai.

Joint work with: Grégoire Vincent, IRD, AMAP, Montpellier, France.

Covering just 7% of the Earth’s land surface, tropical forests play a disproportionate role in the
biosphere: they store about 25% of the terrestrial carbon and contribute to over a third of the global
terrestrial productivity. They also recycle about a third of the precipitations through evapotranspiration
and thus contribute to generate and maintain a humid climate regionally, with positive effects also
extending well beyond the tropics. However, the seasonal variability in fluxes between tropical rainforests
and atmosphere is still poorly understood. Better understanding the processes underlying flux seasonality
in tropical forests is thus critical to improve our predictive ability on global biogeochemical cycles. Leaf
area, one key variable controlling water efflux and carbon influx, is poorly characterized. To monitor
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evolutions of biomass, leaf area density (LAD) or gas exchange, aerial and terrestrial laser scanner (LiDAR)
measurements have been frequently used.

The principle is, for different LiDAR shoots assumed as independent, to measure the portions of beam
lengths between successive hits. Possible censoring comes from beams not being intercepted within
a given voxel. Current approaches aim at connecting LAD to the distribution of beam lengths through
some statistical model. Such a simplified model does not currently take into account several effects that
may impact either LAD or beam lengths: heterogeneity and dependencies in the vegetation properties
in different voxels on the one hand and the nature of hit material on the other hand: wood vs. leaves,
leading to biases or deteriorated uncertainty in estimation.

This collaboration, supported by Y. Bai’s PhD work, aims at developping machine learning methods
to address these issues.Current work is now focusing on 1) Applying 3D point convolution neural network
to discriminate wood from leaves 2) Modeling the effect of underdetection of vegetal elements due to
gradual loss of laser power through different censoring assumptions and validating these assumptions on
simulated and real data sets.

8.3.10 Bayesian neural networks

Participants: Julyan Arbel, Pierre Wolinski, Konstantinos Pitas.

The study of feature propagation at initialization in neural networks lies at the root of numerous
initialization designs. An assumption very commonly made in the field states that the pre-activations are
Gaussian. Although this convenient Gaussian hypothesis can be justified when the number of neurons
per layer tends to infinity, it is challenged by both theoretical and experimental works for finite-width
neural networks. In [79], our major contribution of this work is to construct a family of pairs of activation
functions and initialization distributions that ensure that the pre-activations remain Gaussian throughout
the network’s depth, even in narrow neural networks. In the process, we discover a set of constraints
that a neural network should fulfill to ensure Gaussian pre-activations. Additionally, we provide a critical
review of the claims of the Edge of Chaos line of works and build an exact Edge of Chaos analysis. We
also propose a unified view on pre-activations propagation, encompassing the framework of several
well-known initialization procedures. Finally, our work provides a principled framework for answering the
much-debated question: is it desirable to initialize the training of a neural network whose pre-activations
are ensured to be Gaussian?

We also investigate the cold posterior effect through the lens of PAC-Bayes generalization bounds.
We argue that in the non-asymptotic setting, when the number of training samples is (relatively) small,
discussions of the cold posterior effect should take into account that approximate Bayesian inference
does not readily provide guarantees of performance on out-of-sample data. Instead, out-of-sample error
is better described through a generalization bound. In this context, we explore the connections of the
ELBO objective from variational inference and the PAC-Bayes objectives. We note that, while the ELBO
and PAC-Bayes objectives are similar, the latter objectives naturally contain a temperature parameter
λ which is not restricted to be λ= 1. For classification tasks, in the case of Laplace approximations to
the posterior, we show how this PAC-Bayesian interpretation of the temperature parameter captures
important aspects of the cold posterior effect.

8.3.11 Graph comparisons

Participants: Sophie Achard, Lucrezia Carboni.

Joint work with: Michel Dojat from GIN, Univ. Grenoble Alpes

In recent accepted publication, we worked on the notion of graph comparisons. Node role explain-
ability in complex networks is very difficult, yet is crucial in different application domains such as social
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science, neurosciences or computer science. Many efforts have been made on the quantification of hubs
revealing particular nodes in a network using a given structural property. Yet, in several applications,
when multiple instances of networks are available and several structural properties appear to be relevant,
the identification of node roles remains largely unexplored. Inspired by the node automorphically equiva-
lence relation, we define an equivalence relation on graph’s nodes associated with any collection of nodal
statistics (i.e. any functions on the node set). This allows us to define new graph global measures, the
power coefficient and the orthogonality score to evaluate the collection parsimony and heterogeneity of a
given nodal statistics collection. In addition, we introduce a new method based on structural patterns to
compare graphs that have the same vertices set. This methods assigns a value to a node to determine its
role distinctiveness in a graph family. Extensive numerical results of our method are conducted on both
generative graph models and real data concerning human brain functional connectivity. The differences
in nodal statistics are shown to be dependent on the underlying graph structure. Comparisons between
generative models and real networks combining two different nodal statistics reveal the complexity of
human brain functional connectivity with differences at both global and nodal levels. Using a group of
200 healthy controls connectivity networks, our method is able to compute high correspondence scores
among the whole population, to detect homotopy, and finally to quantify differences between comatose
patients and healthy controls.

8.3.12 Spatio-temporal data

Participants: Sophie Achard, Hana Lbath.

Joint work with: Alex Petersen, Brigham Young University, US and Wendy Meiring, University Santa
Barbara California, US

A novel non-parametric estimator of the correlation between regions, or groups of arbitrarily depen-
dent variables, is proposed in the presence of noise. The challenge resides in the fact that both noise and
low intra-regional correlation lead to inconsistent inter-regional correlation estimation using classical
approaches. While some existing methods handle one of these issues or the other, none tackle both at
the same time. To address this problem, we propose a trade-off between two approaches: correlating
regional averages, which is not robust to low average intra-regional correlation, and averaging pairwise
inter-regional correlations, which is not robust to high noise. To that end, we project the data onto a
space where the Euclidean distance can be used as a proxy for the sample correlation. We then leverage
hierarchical clustering to gather together highly correlated variables within each region prior to averag-
ing. We prove our estimator is consistent for an appropriate cut-off height of the dendogram. We also
empirically show our approach surpasses popular estimators in terms of quality and provide illustrations
on real-world datasets that further demonstrate its usefulness. [56]

8.4 Inverse problems

8.4.1 Sequential Bayesian experimental design for inverse problems.

Participants: Florence Forbes, Jacopo Iollo.

Bayesian Optimal Experimental Design is a technique that allows practitioners to efficiently make
use of limited experimental resources. In the sequential case however, we often have to run from
start computationally intensive inference techniques such as Markov Chain Monte Carlo or Variational
Inference to obtain the current estimate of the posterior. In this study, we show how we can leverage
Sequential Monte Carlo Samplers in order to simultaneously estimate the best possible design and the
current posterior. This iterative procedure make use of past information in order to avoid to have to run
an inference algorithm from start at each iteration. We demonstrate its applicability in a source location
inverse problem.
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8.4.2 Bayesian nonparametric mixture of experts for high-dimensional inverse problems.

Participants: Julyan Arbel, Florence Forbes, Trung Tin Nguyen.

A wide class of problems can be formulated as inverse problems where the goal is to find parameter
values that best explain some observed measures. Typical constraints in practice are that relationships
between parameters and observations are highly nonlinear, with high-dimensional observations and
multi-dimensional correlated parameters. To handle these constraints, we consider probabilistic mixtures
of locally linear models, which can be seen as particular instances of mixtures of experts (MoE). We have
shown in previous studies that such models had a good approximation ability provided the number
of experts was large enough. This contribution is to propose a general scheme to design a tractable
Bayesian nonparametric (BNP) MoE model to avoid any commitment to an arbitrary number of experts.
A tractable estimation algorithm is designed using a variational approximation and theoretical properties
are derived on the predictive distribution and the number of components. Illustrations on simulated
and real data show good results in terms of selection and computing time compared to more traditional
model selection procedures.

8.4.3 Hierarchical Bayesian models for simulation-based inference

Participants: Pedro Rodrigues, Julia Linhart.

Joint work with: Thomas Moreau and Alexandre Gramfort from Inria Saclay and Gilles Louppe from
Université de Liège
Inferring the parameters of a stochastic model based on experimental observations is central to the
scientific method. A particularly challenging setting is when the model is strongly indeterminate, i.e.
when distinct sets of parameters yield identical observations. This arises in many practical situations,
such as when inferring the distance and power of a radio source (is the source close and weak or far and
strong?) or when estimating the amplifier gain and underlying brain activity of an electrophysiological
experiment. In a recent work, we have proposed the hierarchical neural posterior estimation (HNPE),
a novel method for cracking such indeterminacy by exploiting additional information conveyed by an
auxiliary set of observations sharing global parameters. This method extends recent developments
in simulation-based inference (SBI) based on normalizing flows to Bayesian hierarchical models. We
validated HNPE quantitatively on a motivating example amenable to analytical solutions and then applied
it to invert a well known non-linear model from computational neuroscience, using both simulated and
real EEG data.

8.4.4 Bayesian inference on a large-scale brain simulator

Participants: Pedro Rodrigues.

Joint work with: Nicholas Tolley and Stephanie Jones from Brown University, Alexandre Gramfort from
Inria Saclay
The Human Neocortical Neurosolver (HNN) is a framework whose foundation is a cortical column
model with cell and circuit level detail designed to connect macroscale signals to meso/microcircuit level
phenomena. We apply this model to study the cellular and circuit mechanisms of beta generation using
local field potential (LFP) recordings from the non-human primate (NHP) motor cortex. To characterize
beta producing mechanisms, we employ simulation based inference (SBI) in the HNN modeling tool.
This framework leverages machine learning techniques and neural density estimators to characterize the
relationship between a large space of model parameters and simulation output. In this setting, Bayesian
inference can be applied to models with intractable likelihood functions (Gonçalves 2020, Papamakarios
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2021). The main goal of this project is to provide a set of guidelines for scientists that wish to apply
simulation-based inference to their neuroscience studies with a large-scale simulator such as HNN. This
involves developing new methods for extracting summary features, checking the quality of the posterior
approximation, etc. This work is mostly carried out by the Ph.D. student Nicholas Tolley from Brown
University.

9 Bilateral contracts and grants with industry

9.1 Bilateral contracts with industry

Participants: Florence Forbes, Pedro Luiz Coelho Rodrigues, Stephane Girard,
Julyan Arbel.

Plan de Relance project with GE Healthcare (2022-24). The topic of the collaboration is related to early
anomaly detection of failures in medical transducer manufacturing. The financial support for
STATIFY is of 155K euros.

Contract with EDF (2020-2023). Julyan Arbel and Stéphane Girard are the advisors of the PhD thesis of
Théo Moins founded by EDF. The goal is to investigate sensitivity analysis and extrapolation limits
in extreme-value theory Bayesian methods. The financial support for STATIFY is of 150 keuros.

Contract with TDK-Invensense (2020-2023). Julyan Arbel is the advisor of the PhD thesis of Minh Tri
Lê founded by TDK-Invensense. The goal is to apply deep learning methods on small size systems,
thus investigating compression methods in deep learning. The financial support for STATIFY is of
150 keuros.

Contract with Phimeca (2021-2022). Stéphane Girard is supervising the work of Valentin Pibernus (en-
gineer at Phimeca) funded by a PEPS-AMIES-2 project and a contract between STATIFY and Phimeca.
The goal is to implement auto-associative models for assessing the dispersion of pollutants in the
atmosphere. The total financial support for STATIFY is of 50 keuros.

Contract with Valeo (2021-2022). Stéphane Girard is supervising the work of Pascal Dkengne Sielenou
(engineer at STATIFY) funded by ca ontract between STATIFY and Valeo. The goal is to design
statistical method for autonomous vehicle data analysis [70]. The total financial support for STATIFY

is of 50 keuros.

10 Partnerships and cooperations

10.1 International initiatives

10.1.1 Inria associate team not involved in an IIL or an international program

Participants: Florence Forbes, Julyan Arbel, Jean-Baptiste Durand, Stephane Girard,
Trung Tin Nguyen.

LANDER stands for "Latent Analysis, Adversarial Networks, and DimEnsionality Reduction" and is
an associate team with researchers in Australia that has started in 2019. Details can be found at Lander
website.

During the year, a number of journal publications have been finalized on subjects directly linked to
the project, mixture of expert models and variants related to high dimensional regression, distributions
and properties for non-Gaussian data, clustering and classification, Approximate Bayesian Computa-
tion (ABC), Bayesian non parametrics and Markov random fields, Expectiles, etc. The corresponding
publications and working papers are listed on the website.

https://team.inria.fr/statify/projects/lander/
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All this work served as a basis for a new submission to the Australian Research Council (ARC), which
has been recently granted.

10.2 International research visitors

10.2.1 Visits of international scientists

Other international visits to the team

Kai Qin

Status (Professor)

Institution of origin: Swinburn University

Country: Australia

Dates: July 2022

Context of the visit: Lander associate team

Hien Duy Nguyen

Status (Professor)

Institution of origin: University of Queensland

Country: Australia

Dates: July 2022

Context of the visit: Lander associate team

Filippo Ascolani

Status (PhD Student)

Institution of origin: Bocconi University, Milano

Country: Italy

Dates: November 2022

Context of the visit: collaboration

Alberto Gonzales Sanz

Status (PhD Student)

Institution of origin: University of Toulouse

Country: France

Dates: November 2022

Context of the visit: collaboration

10.2.2 Visits to international teams

Research stays abroad



Project STATIFY 25

Konstantinos Pitas

Visited institution: Riken

Country: Japan

Dates: October-November 2022

Context of the visit: Bayes-Duality ANR project

Hana Lbath

Visited institution: Brigham Young University

Country: USA

Dates: May-June 2022

Context of the visit: QFunc ANR project

Sophie Achard

Visited institution: Brigham Young University

Country: USA

Dates: May 2022

Context of the visit: QFunc ANR project

Florence Forbes

Visited institution: University of Queensland and Queensland University of Technology

Country: Australia

Dates: April 2022

Context of the visit: Lander associate team

10.3 National initiatives

Participants: Jean-Baptiste Durand, Florence Forbes, Julyan Arbel, Sophie Achard,
Stephane Girard, Giovanni Poggiato, Pedro Luiz Coelho Rodrigues.

ANR

• STATIFY is involved in the ANR project GAMBAS (2019-2023) hosted by CIRAD, Montpellier. The
project Generating Advances in Modeling Biodiversity And ecosystem Services (GAMBAS) develops
statistical improvements and ecological relevance of joint species distribution models. The project
supports the PhD thesis of Giovanni Poggiato.

• an ANR project RADIO-AIDE (2022-26) for Radiation induced neurotoxicity assessed by Spatio-
temporal modeling and AI after brain radiotherapy coordinated by S.Ancelet from IRSN has been
granted for 4 years starting from April 2022. It involves STATIFY, Grenoble Insitute of Neurosciences,
Pixyl, ICANS, APHP, ICM and ENS P.Saclay. The available funding for STATIFY is 94K euros.

https://gambas.cirad.fr/
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• ANR project PEG2 (2022-26) on Predictive Ecological Genomics: STATIFY is involved in this 4-year
project recently accepted in July 2022. The PI is prof. Olivier Francois who spent 2 years (2021-22)
in the team on a Delegation position.

• Julyan Arbel is coPI of the Bayes-Duality project launched with a funding of $2.76 millions by Japan
JST - French ANR for a total of 5 years starting in October 2021. The goal is to develop a new learning
paradigm for Artificial Intelligence that learns like humans in an adaptive, robust, and continuous
fashion. On the Japan side the project is led by Mohammad Emtiyaz Khan as the research director,
and Kenichi Bannai and Rio Yokota as Co-PIs.

• STATIFY is involved in the 4-year ANR project ExtremReg (2019-2023) hosted by Toulouse University.
This research project aims to provide new adapted tools for nonparametric and semiparametric
modeling from the perspective of extreme values. Our research program concentrates around
three central themes. First, we contribute to the expanding literature on non-regular boundary
regression where smoothness and shape constraints are imposed on the regression function and
the regression errors are not assumed to be centred, but one-sided. Our second aim is to further
investigate the study of the modern extreme value theory built on the use of asymmetric least
squares instead of traditional quantiles and order statistics. Finally, we explore the less-discussed
problem of estimating high-dimensional, conditional and joint extremes The financial support for
STATIFY is about 15.000 euros.

Grenoble Idex projects

• MIAI, Multidisciplinary Institute in Artificial Intelligence: In the context of the MIAI institute, S.
Achard is co-PI of a chair (2020-23) on Toward Robust and Understandable Neuromorphic Systems
funding one PhD student and several post-doc fellows.

• MIAI: Pedro Rodrigues was awarded 13K euros for his project on Machine Learning for Experimental
Data via the IRGA 2022 call for projects.

• MIAI: F. Forbes, J-B. Durand and Y. Bai were awarded 4.5K euros for their project on Developing IA
for estimating leaf area density area in tropical forests from LiDAR data, Nov. 2022.

10.3.1 Networks

MSTGA and AIGM INRAE (French National Institute for Agricultural Research) networks: F. Forbes
and J.B Durand are members of the INRAE network called AIGM (ex MSTGA) network since 2006, website,
on Algorithmic issues for Inference in Graphical Models. It is funded by INRAE MIA and RNSC/ISC Paris.
This network gathers researchers from different disciplines. STATIFY co-organized and hosted 2 of the
network meetings in 2008 and 2015 in Grenoble.

11 Dissemination

Participants: Jean-Baptiste Durand, Florence Forbes, Julyan Arbel, Sophie Achard,
Stephane Girard, Pedro Luiz Coelho Rodrigues.

11.1 Promoting scientific activities

11.1.1 Scientific events: organisation

Member of the organizing committees

• F. Forbes is a member of the organizing committee of the MCM2023 14th international conference
on Monte-Carlo methods and applications.

https://miai.univ-grenoble-alpes.fr/miai-institute/
http://carlit.toulouse.inra.fr/AIGM
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• F. Forbes is a member of the organizing committee of the 1st French workshop on AI for biomedical
imaging IABM2023 and of the scientific committee for the Bayesian autumn school at CIRM in
October 2023.

11.1.2 Scientific events: selection

Member of the conference program committees

• Stéphane Girard, Member of the Scientific Program Committee of the 15th International Conference
of the ERCIM WG on computational and methodological statistics, London, 2022. He organized an
invited session entitled "Machine learning for extremes" and he was chair of a contributed session
entitled "Extreme values".

• Julyan Arbel, Member of the scientific committee of the Statistical Methods for Post Genomic Data
analysis (SMPGD) meeting, in January 2022.

• Julyan Arbel, Member of the scientific committee of the One World Approximate Bayesian Compu-
tation (ABC) Seminar, from 2020 to 2022.

Reviewer

• Julyan Arbel, Reviewer, Advances in Neural Information Processing Systems 2022.

• Julyan Arbel, Reviewer, Symposium on Advances in Approximate Bayesian Inference (AABI) 2022.

11.1.3 Journal

Member of the editorial boards

• Stéphane Girard, Associate Editor, Revstat - Statistical Journal since 2019.

• Stéphane Girard, Member of the Advisory Board, Dependence Modeling since 2015.

• Stéphane Girard, Associate Editor, Journal of Multivariate Analysis from 2016 to 2022.

• Julyan Arbel, Associate Editor, Bayesian Analysis since 2019.

• Julyan Arbel, Associate Editor, Australian and New Zealand Journal of Statistics since 2019.

• Julyan Arbel, Associate Editor, Statistics & Probability Letters since 2019.

• Julyan Arbel, Associate Editor, Computational Statistics & Data Analysis since 2020.

• Florence Forbes, Associate Editor, Australian and New Zealand Journal of Statistics since 2019.

Reviewer - reviewing activities

• Stéphane Girard, Reviewer, Advances in Water Resources.

• Stéphane Girard, Reviewer, Extremes.

• Stéphane Girard, Reviewer, Computational Statistics and Data Analysis.

• Stéphane Girard, Reviewer, Advances in Data Analysis and Classification.

• Julyan Arbel, Reviewer, Computo.

• Julyan Arbel, Reviewer, Journal of Machine Learning Research.
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11.1.4 Invited talks

• F. Forbes, Automatic learning of functional summary statistics for approximate Bayesian com-
putation, O’Bayes 2022 - Objective Bayes Methodology Conference, Santa Cruz, United States,
September 2022, [46].

• F. Forbes, Learning approaches for Bayesian inverse problems, UGA-McMaster joint workshop
2022, Hamilton, Canada, June 2022, [47].

• F. Forbes, Online Majorization Minimization algorithms, CIRM Workshop on Computational Meth-
ods for Unifying Multiple Statistical Analyses (Fusion), Luminy, France, October 2022, [48].

• F. Forbes, Simulation based inference for high dimensional inverse problems: application to
magnetic resonance fingerprinting, Colloque Intelligence Artificielle et santé : approches interdis-
ciplinaires 2022, Nantes, France, June 2022, [49].

• A. Usseglio-Carleve, S. Girard, G. Stuplfer, Extreme conditional expectile estimation in heavy-tailed
heteroscedastic regression models, Insurance Data Science Conference 2022, Milano, Italy, June
2022.

• S. Achard, Statistical comparisons of spatio-temporal networks, CIRM Workshop on GraphLearn:
Machine Learning and Signal Processing on Graphs, Luminy, France, November 2022,

11.1.5 Research administration

• S. Achard, since Nov. 2020, has been elected as the head of Pole MSTIC (with J.P. Jamont,K. Altisen
and C. Lescop) at University of Grenoble. Before she was co-director of pole MSTIC since 2017.

• Julyan Arbel, Member of the scientific committee of the Data Science axis of Persyval Labex.

• Julyan Arbel, Board of Directors member of ISBA, the International Society for Bayesian Analysis,
2022-2025.

• F. Forbes is a member of the advisory committee of the Helmholtz AI Cooperation Unit since 2019.

• F. Forbes is Scientific Advisor since March 2015 for the Pixyl company.

• F. Forbes and S. Achard are members of the EURASIP Technical Area Committee BISA (Biomedical
Image & Signal Analytics) since January 2021 for a 3 years duration.

• J. Arbel has been a member of the Comit´e des Emplois Scientifiques at Inria Grenoble since 2019.

• P. Rodrigues is a member of the Comit´e D´eveloppement Technologique, a committee for evaluat-
ing software development projects, at Inria Grenoble since 2021.

• F. Forbes is a member of the Comite d’organisation strategique of Inria Grenoble since 2017.

• F. Forbes was deputy head of science at Inria Grenoble, from Sep. 2021 to Sep. 2022.

11.2 Teaching - Supervision - Juries

11.2.1 Teaching

• Master: Stéphane Girard, Statistique Inférentielle Avancée, 18 ETD, M1 level, Ensimag. Grenoble-INP,
France.

• Master: Stéphane Girard, Introduction to Extreme-Value Analysis, 18 ETD, M2 level, Univ-Grenoble
Alpes (UGA), France.

• Master: Julyan Arbel, Bayesian nonparametrics and Bayesian deep learning, Master Mathématiques
Apprentissage et Sciences Humaines (M*A*S*H), Université PSL (Paris Sciences & Lettres), 25 ETD.
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• Master: Julyan Arbel, Bayesian deep learning, Master Intelligence Artificielle, Systèmes, Données
(IASD), Université PSL (Paris Sciences & Lettres), 12 ETD.

• Master, Julyan Arbel, Bayesian machine learning, Master Mathématiques Vision et Apprentissage
(MVA), École normale supérieure Paris-Saclay, 36 ETD.

• Master, Julyan Arbel, Bayesian statistics, Ensimag Grenoble INP, 27 ETD.

• Master: Jean-Baptiste Durand, Statistics and probability, 192H, M1 and M2 levels, Ensimag Greno-
ble INP, France. Head of the MSIAM M2 program, in charge of the data science track.

• Jean-Baptiste Durand is a faculty member at Ensimag, Grenoble INP.

• Sophie Achard M1 course Théorie des graphes et réseaux sociaux, M1 level, MIASHS, Université
Grenoble Alpes (UGA), 14 ETD.

11.2.2 Supervision

• Stéphane Girard was co-supervisor of the PhD thesis of Michaël Allouche (with Emmanuel Gobet,
Ecole Polytechnique) "Contributions to generative modeling and dictionary learning: Theory and
application”, Institut Polytechnique de Paris, defended on December, 2022.

• Stéphane Girard was co-supervisor of the PhD thesis of Meryem Bousebata (with Geoffroy Enjolras,
UGA), "Bayesian estimation of extreme risk measures: Implication for the insurance of natural
disasters", UGA, defended on March 2022.

• Julyan Arbel was supervisor of the PhD thesis of Mariia Vladimirova, "Bayesian Neural Networks’
Distributional Properties", Inria, defended on March 2022.

• PhD in progress: Daria Bystrova, “Joint Species Distribution Modeling: Dimension reduction
using Bayesian nonparametric priors”, started on October 2019, Julyan Arbel and Wilfried Thuiller,
Université Grenoble Alpes.

• PhD in progress: Giovanni Poggiatto, “Scalable Approaches for Joint Species Distribution Modeling”,
started on November 2019, Julyan Arbel and Wilfried Thuiller, Université Grenoble Alpes.

• PhD in progress: Théo Moins "Quantification bayésienne des limites d’extrapolation en statistique
des valeurs extrêmes", started on October 2020, Stéphane Girard and Julyan Arbel, Université
Grenoble Alpes.

• PhD in progress: Minh Tri Lê, “Constrained signal processing using deep neural networks for
MEMs sensors based applications.”, started on September 2020, Julyan Arbel and Etienne de Foras,
Université Grenoble Alpes, CIFRE Invensense.

• PhD in progress: Hana Lbath, "Advanced Spatiotemporal Statistical Models for Quantification and
Estimation of Functional Connectivity", started in October 2020, supervised by Sophie Achard and
Alex Petersen (Brigham Young University, Utah, USA).

• PhD in progress: Lucrezia Carboni, "Graph embedding for brain connectivity", started in October
2020, supervised by Sophie Achard and Michel Dojat (GIN).

• PhD in progress: Louise Alamichel. "Bayesian Nonparametric methods for complex genomic data"
Inria, started in October 2021, advised by Julyan Arbel and Guillaume Kon Kam King (INRAE).

• PhD in progress: Julien Zhou. "Learning combinatorial bandit models under privacy constraints"
Inria-Criteo, started in November 2022, advised by Julyan Arbel, Pierre Gaillard and Thibaud Rahier.

• PhD in progress: Mohamed-Bahi Yahiaoui. "Computation time reduction and efficient uncertainty
propagation for fission gas simulation" CEA Cadarache-Inria, started in October 2021, advised by
Julyan Arbel, Loïc Giraldi, Geoffrey Daniel.
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• PhD in progress: Yuchen Bai, "Hierarchical Bayesian Modelling of leaf area density from UAV-lidar",
started in October 2021, supervised by Jean-Baptiste Durand, Florence Forbes and Gregoire Vincent
(IRD, Montpellier).

• PhD in progress: Julia Linhart, "Simulation based inference with neural networks: applications
to computational neuroscience", started in November 2021, supervised by Pedro Rodrigues and
Alexandre Gramfort (DR Inria Saclay).

• PhD in progress: Jacopo Iollo, started in January 2022, supervised by F. Forbes, P. Alliez (DR Inria
Sophia) and C. Heinkele (Cerema, Strasbourg).

• PhD in progress: Geoffroy Oudoumanessah, started in October 2022, supervised by F. Forbes, C.
Lartizien (Creatis, Lyon) and M. Dojat (GIN).

• PhD in progress: Theo Sylvestre, started in October 2022, supervised by F. Forbes and S. Ancelet
(IRSN).

• PhD in progress: Benjamin Lambert, started in January 2022, supervised by F. Forbes and M. Dojat
(GIN).

11.2.3 Juries

• Stéphane Girard, Member of the PhD thesis committee of Gloria Buritica, "Assessing the time
dependence of multivariate extremes for heavy rainfall modeling", Sorbonne Université, May 2022.

• Julyan Arbel, Rapporteur of the PhD thesis of Gabriel Ducrocq, Institut Polytechnique de Paris,
France.

• Julyan Arbel, Rapporteur of the PhD thesis of Ioanni Mitro, University College Dublin, Ireland.

• Julyan Arbel, Rapporteur of the PhD thesis of Yuqing Hu, IMT Atlantique & Orange, France.

• Julyan Arbel, Member of the PhD thesis of Meryem Bousebata, Inria Grenoble, France.

• F. Forbes, Member of the PhD thesis of Grégoire Aufort, "Statistique Computationnelle Bayésienne
pour l’étude des Distributions Spectrales d’énergie des galaxies", October 2022, University Aix-
Marseille.

• F. Forbes, Reviewer for the Master Thesis of John Davey from Adelaide University, Australia, July
2022.

• F. Forbes, Reviewer for the CSI, mid-term examination, for the PhD thesis of Thomas Coudert, GIN,
University of Grenoble, October 2022.

11.3 Popularization

11.3.1 Articles and contents

S. Achard and J-B. Durand published an illustration of the process of statistical modeling, in the Inria
journal for popularization of science (in French). The topic was illustrated through the analysis of eye
movements to infer cognitive processes.
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