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2 Overall objectives

2.1 Presentation

Since its creation in 2003, TAO activities had constantly but slowly evolved, as old problems were being
solved, and new applications arose, bringing new fundamental issues to tackle. But recent abrupt
progresses in Machine Learning (and in particular in Deep Learning) have greatly accelerated these
changes also within the team. It so happened that this change of slope also coincided with some more
practical changes in TAO ecosystem: following Inria 12-years rule, the team definitely ended in December
2016. The new team TAU (for TAckling the Underspecified) has been proposed, and formally created in
July 2019. At the same time important staff changes took place, that also justify even sharper changes in
the team focus. During the year 2018, the second year of this new era for the (remaining) members of the
team, our research topics have now stabilized around a final version of the TAU project.

Following the dramatic changes in TAU staff during the years 2016-2017 (see the 2017 activity report
of the team for the details), the research around continuous optimization has definitely faded out in TAU
(while the research axis on hyperparameter tuning has focused on Machine Learning algorithms), the
Energy application domain has slightly changed direction under Isabelle Guyon’s supervision (Section
4.2), after the completion of the work started by Olivier Teytaud, and a few new directions have emerged,
around the robustness of ML systems (Section 3.1.2). The other research topics have been continued, as
described below.

https://raweb.inria.fr/rapportsactivite/RA2017/tau/uid0.html
https://raweb.inria.fr/rapportsactivite/RA2017/tau/uid0.html
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3 Research program

3.1 Toward Good AI

As discussed by [151], and in the recent collaborative survey paper [73], the topic of ethical AI was non-
existent until 2010, was laughed at in 2016, and became a hot topic in 2017 as the AI disruptivity with
respect to the fabric of life (travel, education, entertainment, social networks, politics, to name a few)
became unavoidable [146], together with its expected impacts on the nature and amount of jobs. As of
now, it seems that the risk of a new AI Winter might arise from legal1 and societal2 issues. While privacy is
now recognized as a civil right in Europe, it is feared that the GAFAM, BATX and others can already capture
a sufficient fraction of human preferences and their dynamics to achieve their commercial and other
goals, and build a Brave New Big Brother (BNBB), a system that is openly beneficial to many, covertly
nudging, and possibly dictatorial).

The ambition of TAU is to mitigate the BNBB risk along several intricated dimensions, and build i)
causal and explainable models; ii) fair data and models; iii) provably robust models.

3.1.1 Causal modeling and biases

Participants: Isabelle Guyon, Michèle Sebag, Philippe Caillou, Paola Tubaro

The extraction of causal models, a long goal of AI [149, 126, 150], became a strategic issue as the
usage of learned models gradually shifted from prediction to prescription in the last years. This evolution,
following Auguste Comte’s vision of science (Savoir pour prévoir, afin de pouvoir) indeed reflects the
exuberant optimism about AI: Knowledge enables Prediction; Prediction enables Control. However,
although predictive models can be based on correlations, prescriptions can only be based on causal
models3.

Among the research applications concerned with causal modeling, predictive modeling or collabora-
tive filtering at TAU are all projects described in section 4.1 (see also Section 3.4), studying the relationships
between: i) the educational background of persons and the job openings (FUI project JobAgile and DataIA
project Vadore); ii) the quality of life at work and the economic performance indicators of the enterprises
(ISN Lidex project Amiqap) [128] ; iii) the nutritional items bought by households (at the level of granular-
ity of the barcode) and their health status, as approximated from their body-mass-index (IRS UPSaclay
Nutriperso); iv) the actual offer of restaurants and their scores on online rating systems. In these projects,
a wealth of data is available (though hardly sufficient for applications ii), iii and iv))) and there is little
doubt that these data reflect the imbalances and biases of the world as is, ranging from gender to racial
to economical prejudices. Preventing the learned models from perpetuating such biases is essential to
deliver an AI endowed with common decency.

In some cases, the bias is known; for instance, the cohorts in the Nutriperso study are more well-off
than the average French population, and the Kantar database includes explicit weights to address this bias
through importance sampling. In other cases, the bias is only guessed; for instance, the companies for
which Secafi data are available hardly correspond to a uniform sample as these data have been gathered
upon the request of the company trade union.

Causal relationships are being identified using our recently published paper [18]. This work will be
continued, as TAU is a partner of the PEPR-IA project Causalit-AI (local PI Michèle Sebag), starting next
Spring.

3.1.2 Robustness of Learned Models

Participants: Guillaume Charpiat, Marc Schoenauer, Michèle Sebag

1For instance, the (fictitious) plea challenge proposed to law students in Oct. 2018 considered a chain reaction pileup occurred
among autonomous and humanly operated vehicles on a highway.

2For instance related to information bubbles and nudge [116, 161].
3One can predict that it rains based on the presence of umbrellas in the street; but one cannot induce rainfall by going out with

an umbrella. Likewise, the presence of books/tablets at home and the good scores of children at school are correlated; but offering
books/tablets to all children might fail to improve their scores per se, if both good scores and books are explained by a so-called
confounder variable, like the presence of adults versed in books/tablets at home.
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Due to their outstanding performances, deep neural networks and more generally machine learning-
based decision making systems, referred to as MLs in the following, have been raising hopes in the recent
years to achieve breakthroughs in critical systems, ranging from autonomous vehicles to defense. The
main pitfall for such applications lies in the lack of guarantees for MLs robustness.

Specifically, MLs are used when the mainstream software design process does not apply, that is, when
no formal specification of the target software behavior is available and/or when the system is embedded
in an open unpredictable world. The extensive body of knowledge developed to deliver guarantees about
mainstream software − ranging from formal verification, model checking and abstract interpretation
to testing, simulation and monitoring − thus does not directly apply either. Another weakness of MLs
regards their dependency to the amount and quality of the training data, as their performances are
sensitive to slight perturbations of the data distribution. Such perturbations can occur naturally due to
domain or concept drift (e.g. due to a change in light intensity or a scratch on a camera lens); they can
also result from intentional malicious attacks, a.k.a adversarial examples [162].

These downsides, currently preventing the dissemination of MLs in safety-critical systems (SCS), call
for a considerable amount of research, in order to understand when and to which extent an MLs can be
certified to provide the desired level of guarantees.

This activity has been put on hold in the team this year, but will be revived in the PEPR-IA SAIF project
(starting next Spring) in which TAU is a partner (local PI Guillaume Charpiat).

3.2 Hybridizing numerical modeling and learning systems

Participants: Guillaume Charpiat, Cécile Germain, Isabelle Guyon, Marc Schoenauer, Michèle Sebag

In sciences and engineering, human knowledge is commonly expressed in closed form, through
equations or mechanistic models characterizing how a natural or social phenomenon, or a physical
device, will behave/evolve depending on its environment and external stimuli, under some assumptions
and up to some approximations. The field of numerical engineering, and the simulators based on such
mechanistic models, are at the core of most approaches to understand and analyze the world, from solid
mechanics to computational fluid dynamics, from chemistry to molecular biology, from astronomy to
population dynamics, from epidemiology and information propagation in social networks to economy
and finance.

Most generally, numerical engineering supports the simulation, and when appropriate the opti-
mization and control4 of the phenomenons under study, although several sources of discrepancy might
adversely affect the results, ranging from the underlying assumptions and simplifying hypotheses in the
models, to systematic experiment errors to statistical measurement errors (not to mention numerical
issues). This knowledge and know-how are materialized in millions of lines of code, capitalizing the
expertise of academic and industrial labs. These softwares have been steadily extended over decades,
modeling new and more fine-grained effects through layered extensions, making them increasingly
harder to maintain, extend and master. Another difficulty is that complex systems most often resort to
hybrid (pluridisciplinary) models, as they involve many components interacting along several time and
space scales, hampering their numerical simulation.

At the other extreme, machine learning offers the opportunity to model phenomenons from scratch,
using any available data gathered through experiments or simulations. Recent successes of machine
learning in computer vision, natural language processing and games, to name a few, have demonstrated
the power of such agnostic approaches and their efficiency in terms of prediction [132], inverse problem
solving [147], and sequential decision making [164, 102], despite their lack of any "semantic" under-
standing of the universe. Even before these successes, Anderson’s claim was that the data deluge [might
make] the scientific method obsolete [91], as if a reasonable option might be to throw away the existing
equational or software bodies of knowledge, and let Machine Learning rediscover all models from scratch.
Such a claim is hampered among others by the fact that not all domains offer a wealth of data, as any
academic involved in an industrial collaboration around data has discovered.

Another approach is considered in TAU, investigating how existing mechanistic models and related
simulators can be partnered with ML algorithms: i) to achieve the same goals with the same methods

4Note that the causal nature of mechanistic models is established from prior knowledge and experimentations.
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with a gain of accuracy or time; ii) to achieve new goals; iii) to achieve the same goals with new methods.

Toward more robust numerical engineering: In domains where satisfying mechanistic models and
simulators are available, ML can contribute to improve their accuracy or usability. A first direction
is to refine or extend the models and simulators to better fit the empirical evidence. The goal is to
finely account for the different biases and uncertainties attached to the available knowledge and data,
distinguishing the different types of known unknowns. Such known unknowns include the model hyper-
parameters (coefficients), the systematic errors due to e.g., experiment imperfections, and the statistical
errors due to e.g., measurement errors. A second approach is based on learning a surrogate model for
the phenomenon under study that incorporate domain knowledge from the mechanistic model (or its
simulation). See Section 8.5 for case studies.

A related direction, typically when considering black-box simulators, aims to learn a model of the
error, or equivalently, a post-processor of the software. The discrepancy between simulated and empirical
results, referred to as reality gap [137], can be tackled in terms of domain adaptation [95, 115]. Specifically,
the source domain here corresponds to the simulated phenomenon, offering a wealth of inexpensive
data, and the target domain corresponds to the actual phenomenon, with rare and expensive data; the
goal is to devise accurate target models using the source data and models.

Extending numerical engineering: ML, using both experimental and numerical data, can also be used to
tackle new goals, that are beyond the current state-of-the-art of standard approaches. Inverse problems
are such goals, identifying the parameters or the initial conditions of phenomenons for which the model
is not differentiable, or amenable to the adjoint state method.

A slightly different kind of inverse problem is that of recovering the ground truth when only noisy
data is available. This problem can be formulated as a search for the simplest model explaining the data.
The question then becomes to formulate and efficiently exploit such a simplicity criterion.

Another goal can be to model the distribution of given quantiles for some system: The challenge is to
exploit available data to train a generative model, aimed at sampling the target quantiles.

Examples tackled in TAU are detailed in Section 8.5. Note that the "Cracking the Glass Problem",
described in Section 8.2.3 is yet another instance of a similar problem.

Data-driven numerical engineering: Finally, ML can also be used to sidestep numerical engineering
limitations in terms of scalability, or to build a simulator emulating the resolution of the (unknown)
mechanistic model from data, or to revisit the formal background.

When the mechanistic model is known and sufficiently accurate, it can be used to train a deep network
on an arbitrary set of (space,time) samples, resulting in a meshless numerical approximation of the model
[158], supporting by construction differentiable programming [134].

When no mechanistic model is sufficiently efficient, the model must be identified from the data only.
Genetic programming has been used to identify systems of ODEs [157], through the identification of
invariant quantities from data, as well as for the direct identification of control commands of nonlinear
complex systems, including some chaotic systems [109]. Another recent approach uses two deep neural
networks, one for the state of the system, the other for the equation itself [152]. The critical issues for both
approaches include the scalability, and the explainability of the resulting models. Such line of research
will benefit from TAU unique mixed expertise in Genetic Programming and Deep Learning.

3.3 Learning to learn

According to Ali Rahimi’s test of times award speech at NIPS 17, the current ML algorithms have become
a form of alchemy. Competitive testing and empirical breakthroughs gradually become mandatory for
a contribution to be acknowledged; an increasing part of the community adopts trials and errors as
main scientific methodology, and theory is lagging behind practice. This style of progress is typical of
technological and engineering revolutions for some; others ask for consolidated and well-understood
theoretical advances, saving the time wasted in trying to build upon hardly reproducible results.
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Basically, while practical achievements have often passed the expectations, there exist caveats along
three dimensions. Firstly, excellent performances do not imply that the model has captured what was
to learn, as shown by the phenomenon of adversarial examples. Following Ian Goodfellow, some well-
performing models might be compared to Clever Hans, the horse that was able to solve mathematical
exercizes using non verbal cues from its teacher [125]; it is the purpose of Pillar I. to alleviate the Clever
Hans trap (section 3.1).
Secondly, some major advances, e.g. related to the celebrated adversarial learning [119, 115], establish
proofs of concept more than a sound methodology, where the reproducibility is limited due to i) the
computational power required for training (often beyond reach of academic labs); ii) the numerical
instabilities (witnessed as random seeds happen to be found in the codes); iii) the insufficiently docu-
mented experimental settings. What works, why and when is still a matter of speculation, although better
understanding the limitations of the current state of the art is acknowledged to be a priority. After Ali
Rahimi again, simple experiments, simple theorems are the building blocks that help us understand more
complicated systems. Along this line, [143] propose toy examples to demonstrate and understand the
defaults of convergence of gradient descent adversarial learning.
Thirdly, and most importantly, the reported achievements rely on carefully tuned learning architectures
and hyper-parameters. The sensitivity of the results to the selection and calibration of algorithms has
been identified since the end 80s as a key ML bottleneck, and the field of automatic algorithm selection
and calibration, referred to as AutoML or Auto-? in the following, is at the ML forefront.

TAU aims to contribute to the ML evolution toward a more mature stage along three dimensions.
In the short term, the research done in Auto-? will be pursued (section 3.3.1). In the medium term,
an information theoretic perspective will be adopted to capture the data structure and to calibrate the
learning algorithm depending on the nature and amount of the available data (section 3.3.2). In the longer
term, our goal is to leverage the methodologies forged in statistical physics to understand and control the
trajectories of complex learning systems (section 3.3.3).

3.3.1 Auto-*

Participants: Isabelle Guyon, Marc Schoenauer, Michèle Sebag

The so-called Auto-? task, concerned with selecting a (quasi) optimal algorithm and its hyper-
parameters depending on the problem instance at hand, remained a key issue in ML for the last three
decades [96], as well as in optimization at large [124], including combinatorial optimization and constraint
satisfaction [131] and continuous optimization [93]. This issue, tackled by several European projects
along the decades, governs the knowledge transfer to industry, due to the shortage of data scientists. It
becomes even more crucial as models are more complex and their training requires more computational
resources. This has motivated several international challenges devoted to Auto-ML [123] (see also Section
3.4), including the AutoDL challenge series [139] (see also Section 8.6). The latest one AutoGraph aims to
bring Automated Machine Learning to Graph Learning, aiming to reduce the human effort and achieve
generally top-performing Graph Neural Networks (GNN) [67]. The AutoML challenge series results
pointed to the importance of meta-learning, which conducted us to pursue a new line of research on
meta-learning from learning curves [28, 64] and cross-domain meta-learning [36]. The dataset that was
developed for ths work was published in the NeurIPS datasets and benchmarks track [39]. This line of
work led us to explore uses of reinforcement learning as a means to devise policies for meta-learning.

Several approaches have been used to tackle Auto-? in the literature, and TAU has been particularly
active in several of them. Meta-learning aims to build a surrogate performance model, estimating
the performance of an algorithm configuration on any problem instance characterized from its meta-
feature values [155, 93, 118]. Collaborative filtering, considering that a problem instance "likes better"
an algorithm configuration yielding a better performance, learns to recommend good algorithms to
problem instances [160, 144]. Bayesian optimization proceeds by alternatively building a surrogate model
of algorithm performances on the problem instance at hand, and tackling it [111]. This last approach
currently is the prominent one; as shown in [144], the meta-features developed for AutoML are hardly
relevant, hampering both meta-learning and collaborative filtering. The design of better features is
another long-term research direction, in which TAU has recently been [108], ans still is very active. more
recent approach used in TAU [153] extends the Bayesian Optimization approach with a Multi-Armed
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Bandit algorithm to generate the full Machine Learning pipeline, competing with the famed AutoSKLearn
[111] (see Section 8.2.1).

3.3.2 Information theory: adjusting model complexity and data fitting

Participants: Guillaume Charpiat, Marc Schoenauer, Michèle Sebag

In the 60s, Kolmogorov and Solomonoff provided a well-grounded theory for building (probabilistic)
models best explaining the available data [156, 120], that is, the shortest programs able to generate
these data. Such programs can then be used to generate further data or to answer specific questions
(interpreted as missing values in the data). Deep learning, from this viewpoint, efficiently explores a
space of computation graphs, described from its hyperparameters (network structure) and parameters
(weights). Network training amounts to optimizing these parameters, namely, navigating the space of
computational graphs to find a network, as simple as possible, that explain the past observations well.

This vision is at the core of variational auto-encoders [130], directly optimizing a bound on the
Kolmogorov complexity of the dataset. More generally variational methods provide quantitative criteria
to identify superfluous elements (edges, units) in a neural network, that can potentially be used for
structural optimization of the network (Leonard Blier’s PhD, started Oct. 2018).

The same principles apply to unsupervised learning, aimed to find the maximum amount of structure
hidden in the data, quantified using this information-theoretic criterion.

The known invariances in the data can be exploited to guide the model design (e.g. as translation
invariance leads to convolutional structures, or LSTM is shown to enforce the invariance to time affine
transformations of the data sequence [163]). Scattering transforms exploit similar principles [99]. A
general theory of how to detect unknown invariances in the data, however, is currently lacking.

The view of information theory and Kolmogorov complexity suggests that key program operations
(composition, recursivity, use of predefined routines) should intervene when searching for a good compu-
tation graph. One possible framework for exploring the space of computation graphs with such operations
is that of Genetic Programming. It is interesting to see that evolutionary computation appeared in the last
two years among the best candidates to explore the space of deep learning structures [154, 135]. Other
approaches might proceed by combining simple models into more powerful ones, e.g. using “Context
Tree Weighting” [166] or switch distributions [110]. Another option is to formulate neural architecture
design as a reinforcement learning problem [94]; the value of the building blocks (predefined routines)
might be defined using e.g., Monte-Carlo Tree Search. A key difficulty is the computational cost of
retraining neural nets from scratch upon modifying their architecture; an option might be to use neutral
initializations to support warm-restart.

3.3.3 Analyzing and Learning Complex Systems

Participants: Cyril Furtlehner, Aurélien Decelle, François Landes, Michèle Sebag

Methods and criteria from statistical physics have been widely used in ML. In early days, the capacity of
Hopfield networks (associative memories defined by the attractors of an energy function) was investigated
by using the replica formalism [90]. Restricted Boltzmann machines likewise define a generative model
built upon an energy function trained from the data. Along the same lines, Variational Auto-Encoders
can be interpreted as systems relating the free energy of the distribution, the information about the data
and the entropy (the degree of ignorance about the micro-states of the system) [165]. A key promise of
the statistical physics perspective and the Bayesian view of deep learning is to harness the tremendous
growth of the model size (billions of weights in recent machine translation netwowrks), and make them
sustainable through e.g. posterior drop-out [145], weight quantization and probabilistic binary networks
[140]. Such "informational cooling" of a trained deep network can reduce its size by several orders of
magnitude while preserving its performance.

Statistical physics is among the key expertises of TAU, originally only represented by Cyril Furtlehner,
later strenghtened by Aurélien Decelle’s and François Landes’ arrivals in 2014 and 2018. On-going studies
are conducted along several directions.
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Generative models are most often expressed in terms of a Gibbs distributions P [S] = exp(−E [S]),
where energy E involves a sum of building blocks, modelling the interactions among variables. This
formalization makes it natural to use mean-field methods of statistical physics and associated inference
algorithms to both train and exploit such models. The difficulty is to find a good trade-off between the
richness of the structure and the efficiency of mean-field approaches. One direction of research pursued
in TAU, [113] in the context of traffic forecasting, is to account for the presence of cycles in the interaction
graph, to adapt inference algorithms to such graphs with cycles, while constraining graphs to remain
compatible with mean-field inference.

Another direction, explored in TAO/TAU in the recent years, is based on the definition and exploitation
of self-consistency properties, enforcing principled divide-and-conquer resolutions. In the particular
case of the message-passing Affinity Propagation algorithm for instance [167], self-consistency imposes
the invariance of the solution when handled at different scales, thus enabling to characterize the critical
value of the penalty and other hyper-parameters in closed form (in the case of simple data distributions)
or empirically otherwise [114].

A more recent research direction examines the quantity of information in a (deep) neural net along
the random matrix theory framework [101]. It is addressed in Giancarlo Fissore’s PhD, and is detailed in
Section 8.2.3.

Finally, we note the recent surge in using ML to address fundamental physics problems: from tur-
bulence to high-energy physics and soft matter (with amorphous materials at its core) [74] or atro-
physics/cosmology as well. TAU’s dual expertise in Deep Networks and in statistical physics places it in an
ideal position to significantly contribute to this domain and shape the methods that will be used by the
physics community in the future. In that direction, the PhD thesis of Marion Ullmo and Tony Bonnaire
applying statistical method coming either from deep learning or statistical physics to the task of inferring
the structure of the cosmic web has show great succes with recents results discussed in Section 8.2.3.
François Landes’ recent arrival in the team makes TAU a unique place for such interdisciplinary research,
thanks to his collaborators from the Simons Collaboration Cracking the Glass Problem (gathering 13
statistical physics teams at the international level). This project is detailed in Section 8.2.3.

Independently, François Landes is actively collaborating with statistical physicists (Alberto Rosso,
LPTMS, Univ. Paris-Saclay) and physcists at the frontier with geophysics (Eugenio Lippiello, Second
Univ. of Naples) [136, 75]. A CNRS grant (80Prime) finances a shared PhD (Vincenzo Schimmenti), at the
frontier between seismicity and ML (Alberto Rosso, Marc Schoenauer and François Landes).

3.4 Organisation of Challenges

Participants: Cécile Germain, Isabelle Guyon, Marc Schoenauer, Michèle Sebag

Challenges have been an important drive for Machine Learning research for many years, and TAO
members have played important roles in the organization of many such challenges: Michèle Sebag was
head of the challenge programme in the Pascal European Network of Excellence (2005-2013); Isabelle
Guyon, as mentioned, was the PI of many challenges ranging from causation challenges [121], to Au-
toML [122]. The Higgs challenge [89], most attended ever Kaggle challenge, was jointly organized by TAO
(C. Germain), LAL-IN2P3 (D. Rousseau and B. Kegl) and I. Guyon (not yet at TAO), in collaboration with
CERN and Imperial College.

Many challenges have been organized in the recent years on the Codalab platform, managed by
Isabelle Guyon and maintained at LISN. See details in Section 8.6.

4 Application domains

4.1 Computational Social Sciences

Participants: Philippe Caillou, Isabelle Guyon, Michèle Sebag, Paola Tubaro
Collaboration: Jean-Pierre Nadal (EHESS); Marco Cuturi, Bruno Crépon (ENSAE); Thierry Weil (Mines);
Jean-Luc Bazet (RITM)

Computational Social Sciences (CSS) studies social and economic phenomena, ranging from techno-
logical innovation to politics, from media to social networks, from human resources to education, from

https://scglass.uchicago.edu/
http://www.pascal-network.org/
https://www.kaggle.com/c/higgs-boson
https://codalab.org/
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inequalities to health. It combines perspectives from different scientific disciplines, building upon the
tradition of computer simulation and modeling of complex social systems [117] on the one hand, and
data science on the other hand, fueled by the capacity to collect and analyze massive amounts of digital
data.

The emerging field of CSS raises formidable challenges along three dimensions. Firstly, the definition
of the research questions, the formulation of hypotheses and the validation of the results require a tight
pluridisciplinary interaction and dialogue between researchers from different backgrounds. Secondly, the
development of CSS is a touchstone for ethical AI. On the one hand, CSS gains ground in major, data-rich
private companies; on the other hand, public researchers around the world are engaging in an effort to
use it for the benefit of society as a whole [133]. The key technical difficulties related to data and model
biases, and to self-fulfilling prophecies have been discussed in section 3.1. Thirdly, CSS does not only
regard scientists: it is essential that the civil society participate in the science of society [159].

TAO was involved in CSS for the last five years, and its activities have been strengthened thanks to P.
Tubaro’s and I. Guyon’s expertises respectively in sociology and economics, and in causal modeling. Their
departures will impact the team activities in this domain, but many projects are tsill on-going and CSS
will remain a domain of choice. Details are given in Section 8.3.

4.2 Energy Management

Participants: Isabelle Guyon, Marc Schoenauer, Michèle Sebag
Collaboration: Rémy Clément, Antoine Marot, Patrick Panciatici (RTE), Vincent Renault (Artelys),
Thibault Faney (IFPEN)

Energy Management has been an application domain of choice for TAO since the mid 2000s, with main
partners SME Artelys (METIS Ilab INRIA; ADEME projects POST and NEXT), RTE (three CIFRE PhDs), and
IFPEN (bilateral contract, DATAIA project ML4CFD). The goals concern i) optimal planning over several
spatio-temporal scales, from investments on continental Europe/North Africa grid at the decade scale
(POST), to daily planning of local or regional power networks (NEXT); ii) monitoring and control of the
French grid enforcing the prevention of power breaks (RTE); iii) improvement of house-made numerical
methods using data-intense learning in all aspects of IFPEN activities (Section 3.2).

The daily maintainance of power grids requires the building of approximate predictive models on the
top of any given network topology. Deep Networks are natural candidates for such modelling, considering
the size of the French grid (∼ 10000 nodes), but the representation of the topology is a challenge when,
e.g. the RTE goal is to quickly ensure the "n-1" security constraint (the network should remain safe even
if any of the 10000 nodes fails). Existing simulators are too slow to be used in real time, and the size of
actual grids makes it intractable to train surrogate models for all possible (n-1) topologies (see Section 8.4
for more details).

Furthermore, predictive models of local grids are based on the estimated consumption of end-
customers: Linky meters only provide coarse grain information due to privacy issues, and very few
samples of fine-grained consumption are available (from volunteer customers). A first task is to transfer
knowledge from small data to the whole domain of application. A second task is to directly predict the
peaks of consumption based on the user cluster profiles and their representativity (see Section 8.4.2).

4.3 Data-driven Numerical Modeling

Participants: Guillaume Charpiat, Cécile Germain, Isabelle Guyon, Flora Jay, Marc Schoenauer, Michèle
Sebag

As said (section 3.2), in domains where both first principle-based models and equations, and em-
pirical or simulated data are available, their combined usage can support more accurate modelling and
prediction, and when appropriate, optimization, control and design, and help improving the time-to-
design chain through fast interactions between the simulation, optimization, control and design stages.
The expected advances regard: i) the quality of the models or simulators (through data assimilation, e.g.
coupling first principles and data, or repairing/extending closed-form models); ii) the exploitation of
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data derived from different distributions and/or related phenomenons; and, most interestingly, iii) the
task of optimal design and the assessment of the resulting designs.

A first challenge regards the design of the model space, and the architecture used to enforce the
known domain properties (symmetries, invariance operators, temporal structures). When appropriate,
data from different distributions (e.g. simulated vs real-world data) will be reconciled, for instance
taking inspiration from real-valued non-volume preserving transformations [105] in order to preserve the
natural interpretation.
Another challenge regards the validation of the models and solutions of the optimal design problems. The
more flexible the models, the more intensive the validation must be. Along this way, generative models
will be used to support the design of "what if" scenarios, to enhance anomaly detection and monitoring
via refined likelihood criteria.

In the application domains described by Partial Differential Equations (PDEs), the goal of incorporat-
ing machine learning into classical simulators is to speed up the simulations while maintaining as much
as possible the accuracy ad physical relevance of the proposed solutions. Many possible tracks are possi-
ble for this; one can build surrogate models, either of the whole system, or of its most computationaly
costly parts; one can search to provide better initialization heuristics to solvers, which make sure that
physical constraints are satisfied. Or one can inject physical knowledge/constraints at different stages of
the numerical solver.

5 Social and environmental responsibility

5.1 Footprint of research activities

Thanks to the pandemia, the impact of our activities regarding carbon footprint have decreased a lot,
from our daily commute that have almost completely disappeared as we all switched to tele-working
to the transformation of all conferences and workshops into virtual events. We all miss the informal
discussions that took place during coffee breaks in the lab as well as during conferences. But when
the pandemia vanishes, after the first moments of joy when actually meeting again physically with our
colleagues, we will have to think of a new model for the way we work: we were indeed discussing before
the pandemia about how to reduce the carbon footpring of the conferences, but now we know that there
exist solutions, even though not perfect.

5.2 Impact of research results

All our work on Energy (see Sections 4.2) is ultimately targeted toward optimizing the distribution of
electricity, be it in planning the investments in the power network by more accurate previsions of user
consumption, or helping the operators of RTE to maintain the French Grid in optimal conditions.

6 Highlights of the year

Herilalaina Rakotoarison, Louisot Milijaona, Andry Rasoanaivo, Michèle Sebag, Marc Schoenauer,
Spotlight paper at ICLR (top 5% submissions) for the paper [31] Learning Meta-features for AutoML.
International Conference on Learning Representations, 2022.

Isabelle Guyon Keynote, NeurIPS 2022 : The Data-centric Era: How ML is becoming an experimental
science.

6.1 Awards

Herilalaina Rakotoarison, First prize ex æquo at the 2022 PhD Prize in Computer Science, awarded by
Labex DigiCosme, the CS doctoral school of Universite‘ Paris Saclay and the doctoral school of IPP (i.e.,
the whole ”Plateau de Saclay” in CS).
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7 New software and platforms

7.1 New software

7.1.1 Codalab

Keywords: Benchmarking, Competition

Functional Description: Challenges in machine learning and data science are competitions running
over several weeks or months to resolve problems using provided datasets or simulated environ-
ments. Challenges can be thought of as crowdsourcing, benchmarking, and communication tools.
They have been used for decades to test and compare competing solutions in machine learning in
a fair and controlled way, to eliminate “inventor-evaluator" bias, and to stimulate the scientific com-
munity while promoting reproducible science. See our news: https://codalab.lisn.upsaclay.fr/highlights.

The new Codalab infrastructure deployed in 2021 includes vast amounts of storage over a dis-
tributed Minio (4 physical servers, each with 12 disks of 16 TB) spread over 2 buildings for robust-
ness, and 20 GPU workers in the backend, thanks for the sponsorship of région Ile-de-France,
ANR, Université Paris-Saclay, CNRS, INRIA, and ChaLearn, to support 50,000 users, organizing or
participating each year to hundreds of competitions.

Some of the areas in which Codalab is used include Computer vision and medical image analysis,
natural language processing, time series prediction, causality, and automatic machine learning.
Codalab has been selected by the Région Ile de France to organize industry-scale challenges.

TAU continues expanding Codalab to accommodate new needs, including teaching. Check recent
student projects: https://saclay.chalearn.org/

News of the Year:
L2RPN The Learning to Run a Power Network competition track in collaboration with RTE France
continues. The ICAPS 2021 competition allowed us to go one step further towards making the grid
control with reinforcement learning more realistic, allowing adversarial attacks. A new open-source
framework Grid2Operate was released.

AutoDL The Automated Deep Learning (AutoDL) challenge series evolved in the direction of
meta learning (https://metalearning.chalearn.org/). We organized a competition fr NwurIPS 2021
sponsored by Google and Microsoft. The results, which will appear in PMLR, indicate that few
shot learning (5 shots, 5 classes) is now within reach of the state of the art for small image object
recognition, but heavily relies on pre-trained backbone networks, trained on large image datasets.

Industry challenges The first Ile de France industry challenge was organized on Codalab, in col-
laboration with Dassault aviation and the results were presented at ICMLA 2021. The goal was to
predict sensor data indicating constrains on the fuselage. Surprisingly conventional methods based
on ensembles of decision trees dominated this task and outperformed deep learnign methods.

World use of the platform In 2021, on average, 50 competitions per month were organized on
Codalab by researchers from all over the world. Codalab is also used in education to organize code
submission homework.

Codabench December 2021: Codabench (beta) is announced at NeurIPS 2021, see https://www.codabench.org/.

URL: http://competitions.codalab.org

Contact: Isabelle Guyon

7.1.2 Cartolabe

Name: Cartolabe

Keyword: Information visualization

http://competitions.codalab.org
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Functional Description: The goal of Cartolabe is to build a visual map representing the scientific activity
of an institution/university/domain from published articles and reports. Using the HAL Database,
Cartolabe provides the user with a map of the thematics, authors and articles . ML techniques are
used for dimensionality reduction, cluster and topics identification, visualisation techniques are
used for a scalable 2D representation of the results.

Cartolabe has in particular been applied to the Grand Debat dataset (3M individual propositions
from french Citizen, see https://cartolabe.fr/map/debat). The results were used to test both the
scaling capabilities of Cartolabe and its flexibility to non-scientific and non-english corpuses. We
also Added sub-map capabilities to display the result of a year/lab/word filtering as an online
generated heatmap with only the filtered points to facilitate the exploration. Cartolabe has also
been applied in 2020 to the COVID-19 kaggle publication dataset (Cartolabe-COVID project) to
explore these publications.

URL: http://www.cartolabe.fr/

Publication: hal-02499006

Contact: Philippe Caillou

Participants: Philippe Caillou, Jean Daniel Fekete, Michèle Sebag, Anne-Catherine Letournel

Partners: LRI - Laboratoire de Recherche en Informatique, CNRS

7.2 New platforms

Participants: Guillaume Charpiat, Isabelle Guyon, Flora Jay, Anne-Catherine Le-
tournel, Adrien Pavao, Théophile Sanchez, Dinh Tran Tuan, Ben-
jamin Maudet.

• CODALAB: The TAU group is community lead (under the leadership of Isabelle Guyon) of the open-
source Codalab project, hosted by Universite‘ Paris-Saclay, whose goal is to host competitions and
benchmarks in machine learning [65]. We have replaced the historical server by a dedicated server
hosted in our lab. Since inception in December 2021, over 40000 participants entered 640 public
competitions (see statistics). The engineering team, overseen by Anne-Catherine Letournel (CNRS
engineer) includes two engineers dedicated full time to administering the platform and developing
challenges: Adrien Pavao, financed by a project started in 2020 with the Re‘gion Ile-de-France, et
Dinh-Tuan Tran, financed by the ANR AI chaire of Isabelle Guyon. Several other engineers are
engaged as contractors on a needs-be basis. The rapid growth in usage led us to put in place a new
infrastructure. We have migrated the storage over a distributed Minio (4 physical servers, each with
12 disks of 16 TB) spread over 2 buildings for robustness, and added 10 more GPUs to the existing
10 previous ones in the backend. A lot of horsepower to suport Industry-strength challenges,
thanks for the sponsorship of re‘gion Ile-de-France, ANR, Universite‘ Paris-Saclay, CNRS, INRIA,
and ChaLearn.

• CODABENCH: Codabench [23] is a new version of Codalab emphasizing the orgnization of bench-
marks, which can be thought of as ever-lasting challenges, de-emphasizing competiton, and
favoring the comparison between algorithms. Codabench has also all the capabilities of Codalab
and will progressively replace it. When Codabench is fully stable, we will retire Codalab.

• DNA-DNA (Deep Neural Architectures for Dna – https://mlgenetics.gitlab.io/dnadna/) is a package
for deep learning inference in population genetics. DNADNA provides utility functions to improve
development of neural networks for population genetics and is currently based on PyTorch. In
particular, it already implements several neural networks that allow inferring demographic and
adaptive history from genetic data. Pre-trained networks can be used directly on real/simulated
genetic polymorphism data for prediction. Implemented networks can also be optimized based on
user-specified training sets and/or tasks. Finally, any user can implement new architectures and

http://www.cartolabe.fr/
https://hal.inria.fr/hal-02499006
https://codalab.org/
https://competitions.codalab.org/
https://codalab.lisn.upsaclay.fr
https://github.com/codalab/codalab-competitions/wiki/Statistics-of-the-public-servers
https://mlgenetics.gitlab.io/dnadna/
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tasks, while benefiting from DNADNA input/output, network optimization, and test environment.
DNADNA should allow researchers to focus on their research project, be it the analysis of popu-
lation genetic data or building new methods, without the need to focus on proper development
methodology (unit test, continuous integration, documentation, etc.). Results will thus be more
easily reproduced and shared. Having a common interface will also decrease the risk of bugs.

8 New results

8.1 Toward Good AI

8.1.1 Causal Modeling

Participants: Philippe Caillou, Isabelle Guyon, Michèle Sebag
PhDs: Armand Lacombe, Cyriaque Rousselot, Nicolas Atienza
Post-doc: Shuyu Dong, Shiyang Yan
Collaboration: Olivier Allais (INRAE); Julia Mink (Univ. Bonn); Jean-Pierre Nadal & Annick Vignes (CAMS,
EHESS); David Lopez-Paz (Facebook).

This year, the long awaited journal version of SAM (Structural Agnostic Modelling), has been published
in JMLR [18], long after Diviyan Kalainathan’s PhD [127]. The causal modelling activity continues with
three main directions in 2022. The first one is tackled in collaboration with INRAE (Cyriaque Rousselot’s
PhD), within the Horapest DataIA project. The goal is to assess the causal effects of the diffusion of
pesticides in French residential areas, through exploiting the data from the Health Data Hub together
with the newly available dataset reporting the concentrations of diverse molecules in 50 stations on a
weekly basis (CNEP), and the overall amount of products bought yearly in every postal code (BNVD).
The potential effects that will be investigated concern the children’ health in the 2019-2022 period, born
between 2013 and 2019. The study will contrast the children resident in places with high or low pesticide
average concentration on average, and the children with high or low pesticide concentration in utero.
Besides getting the data5 the difficulty lies in observational causal modelling from spatio-temporal data
with hidden confounders. A second direction is explored in partnership with Fujitsu (Shuyu Dong’s
postdoc). The goal is to achieve linear Structural Equation Model (SEM)identification from observational
data in the large p small n context. The famed characterization of DAG graphs through the exponential
trace of the graph proposed by [168] is of cubic complexity in the number p of variables. A low rank
decomposition of the inverse covariance matrix combined with an approximation of the gradient has
been proposed with a significantly better scalability, at the expense of a moderate loss of accuracy in [25].
Our current approach aims to distinguish the statistical and the geometrical errors of SEM identification,
respectively related with the estimation of the inverse covariance matrix, and the projection of the
associate causal graph on the DAG space [56]. A third direction is considered with Nicolas Atienza (PhD
Cifre Thales), co-supervised with Johanne Cohen, LISN. The goal is to extend algorithmic recourse [129] to
the identification and correction of inappropriate tuning for a critical system. Preliminary investigations
have conducted to determining a sufficient and inexpensive characterization of the system state and a
patent has been filed on this characterization.

Finally, causality is also at the core of TAU participation in the INRIA Challenge OceanIA, that started in
2021 [86]. Shiyang Yan’s post-doc is dedicated to out-of-distribution learning, motivated by the analysis of
the TARA images to identify the ecosystems in the diverse sites of the data collection. The high imbalance
of the data among the classes, the prevalence of outliers, are handled using generalized contrastive losses
and introducing fake outliers extracted from face images, or created as chimeras.

Other motivating applications for causal modeling are described in section 4.1.

8.1.2 Explainability

Participants: Isabelle Guyon, François Landes, Alessandro Leite, Marc Schoenauer, Michèle Sebag
PhD: Cyriaque Rousselot
Collaboration: MyDataModels; Thales

5The IRB and access demand to the data have been accepted and the HDH data will be available in Sept. 2023.
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In Roman Bresson’s PhD [46], (coll. LISN-GALAC, Thales, U. Paderborn; pending patent Bresson-
Labreuche-Sebag-Cohen), the goal was to adapt a neuronal architecture to yield an interpretable-by-
design model. The extension of this approach is investigated to transform an accurate black-box into a
hierarchical choquet integral.

The team is also involved in the proposal for the IPL HyAIAI (Hybrid Approaches for Interpretable
AI), coordinated by the LACODAM team (Rennes) dedicated to the design of hybrid approaches that
combine state of the art numeric models (e.g., deep neural networks) with explainable symbolic models,
in order to be able to integrate high level (domain) constraints in ML models, to give model designers
information on ill-performing parts of the model, to provide understandable explanations on its results.
On-going collaboration with the Multispeech team in Nancy is concerned with co-supervision of G.
Zervakis’ PhD (to be defended March 2023), and concerns the use of background knowledge to improve
the performances of foundational models in NLP [81] and an analogy based approach for solving target
sense verification [34].

An original approach to DNN explainability might arise from the study of structural glasses (8.2.3),
with a parallel to Graph Neural Networks (GNNs), that could become an excellent non-trivial example for
developing explainability protocols, as we already suggest from results in [66].

Build on collaboration with Raymond Poincaré Hospital, the team is developing tools to increase the
interpretability of medical data in applicative context. A first study published in [17] investigates how
geometric methods could represent the evolution of patients’ key indicators on a curved manifold to
generate meaningful and interpretable representation. These representations could be generalized with
minor modifications to temporal data.

Genetic Programming [92] is an Evolutionary Computing technique that evolves models as analytical
expressions (Boolean formulae, functions, LISP-like code), that are hopefully easier to understand than
black-box NNs with hundreds of thousands of weights. This idea has been picked up by the European FET
project TRUST-AI (Transparent, Reliable and Unbiased Smart Tool for AI) that started in October 2020.
Alessandro Leite joined the project (and the TAU team) in February 2021 on an ARP position. First work
addressed explainable reinforcement learning using GP [33]. Current work, recently acepted to EuroGP
2023, concerns the adaptation of the Memetic Semantic Generic Programming [112] to the continuous
case. Furthermore, a collaboration with O. Teytaud (Meta), around the follow-up is Mathurin’s CIFRE
PhD (started Oct. 2022).

8.1.3 Robustness of AI Systems

Participants: Guillaume Charpiat, Marc Schoenauer, Michèle Sebag
PhDs: Roman Bresson
Collaboration: Johanne Cohen (LISN-GALAC) and Christophe Labreuche (Thalès); Eyke Hullermeier (U.
Paderborn, Germany).

Though several on-going activitires in this domain have been put on hold (see Section 3.1.2), new
research lines have started to emerge, pertaining to robustness.

The first one, already described in section 8.1.2, concerns the indentifiability of the neural net
implementing a hierarchical Choquet integral, in the large sample limit.

Another direction, part of A. Lacombe’s on-going PhD, is concerned with privacy. Our primary
motivation was to contribute to the understanding of the pandemy, with no former collaboration with
hospitals, and therefore, no access to real data. An approach was developed to achieve excessively private
learning through a differential-privacy compliant access to the only marginals of the data [82].

We have also explored relationships between theoretical guarantees provided by differential privacy
and membership interence attacks [30], as described in Section 8.5.3.

8.2 Learning to Learn

8.2.1 Auto-*

Participants: Guillaume Charpiat, Isabelle Guyon, Marc Schoenauer, Michèle Sebag
PhDs: Léonard Blier, Adrien Pavao, Herilalaina Rakotoarison, Hoazhe Sun, Manon Verbockhaven, Romain
Egele
Collaborations: Vincent Renault (SME Artelys); Yann Ollivier (Facebook); Wei-Wei Tu (4Paradigm, Chine);

https://cordis.europa.eu/project/id/952060/fr
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André Elisseeff (Google Zurich); Prasanna Balaprakash (Argonne National labs), among others (for a full
list see https://autodl.chalearn.org/ and https://metalearning.chalearn.org/)

Auto-? studies at TAU investigate several research directions.
After proposing MOSAIC [153], that extends and adapts Monte-Carlo Tree Search to explore the struc-

tured space of pre-processing + learning algorithm configurations, and performs on par with AutoSklearn,
the winner of Auto-? international competitions in the last few years, Herilalaina Rakotoarison explored
in the end of his PhD the learning of meta-features for tabular data, addressing the lack of expressiveness
of the standard Hand-Crafted ones [50]. The idea is to use Optimal Transport to align the distribution of
the datasets from the training meta-data with that of their best hyperparameter settings in the space of
hyperparameter conigurations. The results were presented as a spotlight (top 5% submissions) at ICLR
2022 [31].

Heri also contributed to a large benchmarking effort together with Olivier Teytaud, former member of
the team, now with Facebook AI Research [19].

In a second direction, with the internship and starting PhD thesis of Manon Verbockhaven, we adopt
a functional analysis viewpoint in order to adapt on the fly the architecture of neural networks that are
being trained. This allows to start training neural networks with very few neurons and layers, and add
them where they are needed, instead of training huge architectures and then pruning them, a common
practice in deep learning, for optimization reasons. For this, we quantify the lack of expressivity of a
neural network being trained, by analyzing the difference between how the backpropagation would like
the activations to change and what the tangent space of the parameters offers as possible activation
variations. We can then localize the lacks of expressivity, and add neurons accordingly. It turns out that
the optimal weights of the added neurons can be computed in closed form.

A last direction of investigation concerns the design of challenges, that contribute to the collective
advance of research in the Auto-? direction. The team has been very active in the series of AutoML and
AutoDL, which has been extended to Meta-Learning, with support from Microsoft, Google, 4Paradigm
and ChaLearn, to Meta-Learning, namely meta-learning from learning curves [28, 64] and cross-domain
meta-learning [36].

Sef-supervised learning seems to be an avenue with great future, allowing to train reprsentations
without costly human labeling. A new challenge accepted as part of the WCCI competition program
2022 is currently running. Another challenge on Neural Architecture Search (NAS) has been run together
with a workshop at the CVPR 2021 conference. Preliminary results on NAS have been produced by one
of our interns (Romain Egele [77]). Further developments have led to effective algorithms to conduct
simultaneously NAS and hyper-parameter selection [27, 57]. More details on challenges are found in
Section 8.6).

8.2.2 Deep Learning: Practical and Theoretical Insights

Participants: Guillaume Charpiat, Isabelle Guyon, Marc Schoenauer, Michèle Sebag
PhDs: Léonard Blier, Zhengying Liu, Adrien Pavao, Haozhe Sun, Romain Egele
Collaboration: Yann Ollivier (Facebook AI Research, Paris)

Although a comprehensive mathematical theory of deep learning is yet to come, theoretical insights
from information theory or from dynamical systems can deliver principled improvements to deep
learning and/or explain the empirical successes of some architectures compared to others.

During his CIFRE PhD with Facebook AI Research Paris, co-supervised by Yann Ollivier (former
TAU member) [45] , Léonard Blier has properly formalized the concepts of successor states and multi-
goal functions [87], in particular in the case of continuous state spaces. This allowed him to define
unbiased algorithms with finite variance to learn such ojects, including the continuous case thanks
to approximation functions. In the case of finite environments, new convergence bounds have been
obtained for the learning of the value function. These new algorithms capable of learning successor
states in turn lead to define and learn new representations for the state space.

The AutoDL challenges, co-organized in TAU (in particular by Isabelle Guyon), also contribute to
a better understanding of Deep Learning. It is interesting to note that no Neural Architecture Search
algorithm was proposed to solve the different challenges in AutoDL (corresponding to different data
types). See section 8.6 for more details.

https://autodl.chalearn.org/
https://metalearning.chalearn.org/
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Our PhD student Haozhe Sun is continuing to work on the problem of modularity in Deep Learning.
He wrote a survey under revision and recently submitted a paper on novel algorithms for low-cost AI
exploiting modularity. The current trend in Artificial Intelligence (AI) is to heavily rely on systems capable
of learning from examples, such as Deep learning (DL) models, a modern embodiment of artificial
neural networks. While numerous applications have made it to market in recent years (including self-
driving cars, automated assistants, booking services, and chatbots, improvements in search engines,
recommendations, and advertising, and heath-care applications, to name a few) DL models are still
notoriously hard to deploy in new applications. In particular, the require massive numbers of training
examples, hours of GPU training, and highly qualified engineers to hand-tune their architectures. This
thesis will contribute to reduce the barrier of entry in using DL models for new applications, a step
towards "democratizing AI".

Romain Egele in his PhD in collaboration with Argonne National Labs (USA), is been actively working
on Neural Architecture Search (NAS). He developed a package called DeepHyper, allowing users to con-
duct NAS with genetic algorithms using TensorFlow or PyTorch, the principal Deep Learning frameworks
[27]. His contributions include applying Recurrent Neural Network Architecture Search for Geophysical
Emulation and Scalable Reinforcement-Learning-Based Neural Architecture Search for Cancer Deep
Learning Research. In 2022 he published two papers on hyper-parameter optimization. In [57], he
proposes to exploit the parallelism in large compute clusters to speed up Bayesian hyper-parameter
search in an effective way. In [26] he extends Bayesan optimization algorithms to perform accurate
estimations of uncertainties.

8.2.3 Analyzing and Learning Complex Systems

Participants: Cyril Furtlehner, Aurélien Decelle, François Landes, Guillaume Charpiat
PhDs: Giancarlo Fissore, Marion Ullmo
Collaboration: Jacopo Rocchi (LPTMS Paris Sud); the Simons team: Rahul Chako (post-doc), Andrea Liu
(UPenn), David Reichman (Columbia), Giulio Biroli (ENS), Olivier Dauchot (ESPCI).; Clément Vignax
(EPFL); Yufei Han (Symantec), Nabila Aghanim (Institut d’Astrophysique Spatiale), Tony Bonnaire (ENS
Paris).

Generative models constitute an important piece of unsupervised ML techniques which is still
under rapid developpment. In this context insights from statistical physics are relevent in particular
for energy based models like restricted Boltzmann machines. The information content of a trained
restricted Boltzmann machine (RBM) and its learning dynamics can be analyzed precisely with help
of ensemble averaging techniques [103, 104]. More insight can be obtained by looking at data of low
intrinsic dimension, where exact solutions of the RBM can be obtained [70], thanks to a convex relaxation.
In particular we have found a 1st order transition mechanisms that may plague the learning in a more
advanced part of the learning.In [11] we investigate further this question and show that sampling the
equilibrium distribution using the Markov chain Monte Carlo method can be dramatically accelerated
when using biased sampling techniques, in particular the Tethered Monte Carlo (TMC) method. This
sampling technique can also be used to improve the computation of the log-likelihood gradient during
training, leading to dramatic improvements in training RBMs with artificial clustered datasets. On real
low-dimensional datasets, this new training method fits RBM models with significantly faster relaxation
dynamics than those obtained with standard PCD recipes. Learning dynamics has also been adressed
in a different context of feature learning processes in [59] where closed form expressions are obtained
for train and test errors via random matrix theory, a characterization of good alignment between the
features and the signal and the derivation of a set autonomous equations driving the process at large scale.
We have also investigated models of decision-making with approaches grounded in statistical physics,
that are able to predict experimental observed data [68]. A last point concerns road traffic forecasting,
a long standing application of mean-field inference methods based on probabilistic modelling. In [16]
we wrap up some of the techniques developed in past works and perform comprehensive experimental
tests on various real world Urban traffic dataset, thanks to PTV-SISTeMA, showing the effectiveness of our
method.

As mentioned earlier, the use of ML to address fundamental physics problems is quickly growing.
In that direction in the context of T. Bonnaire’s PhD [97], is undertaken in [12] the first comprehensive
and quantitative real-space analysis of the cosmological information content in the environments of the
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cosmic web (voids, filaments, walls, and nodes) up to non-linear scales, k=0.5 h/Mpc, using a method
based on the Gaussian mixture model with a prior forcing the centers to "live" on a tree-graph [13] [98,
71]. This method has been further developed for handling in particular possible outliers and put into a
general formalism [72].

Another place where ML can help address fundamental physics questions is the domain of glasses
[40] (how the structure of glasses is related to their dynamics), which is of the major problems in modern
theoretical physics (glasses are a key part of the carrer of Giorgio Parisi, a 2021 nobel prize laureate). The
idea is to let ML models automatically find the hidden structures (features) that control the flowing or non-
flowing state of matter, discriminating liquid from solid states. These models can then help identifying
"computational order parameters", that would advance the understanding of physical phenomena [74,
71], on the one hand, and support the development of more complex models, on the other hand. Attacking
the problem of amorphous condensed matter by novel Graph Neural Networks (GNN) architectures
is a very promising lead, regardless of the precise quantity one may want to predict. Currently GNNs
are engineered to deal with molecular systems and/or crystals, but not to deal with amorphous matter.
This strategy is currently being investigated by Francesco Pezzicoli (PhD student), who has already
demonstrated the generalizing abilities of rotation-equivariant GNNs [66].

8.3 Computational Social Sciences

Computational Social Sciences (CSS) is making significant progress in the study of social and economic
phenomena thank to the combination of social science theories and new insight from data science. While
the simultaneous advent of massive data and unprecedented computational power has opened exciting
new avenues, it has also raised new questions and challenges.

Several studies are being conducted in TAU, about labor (labor markets, the labor of human an-
notators for AI data, quality of life and economic performance), about nutrition (health, food, and
socio-demographic issues), around Cartolabe, a platform for scientific information system and visual
querying.

8.3.1 Labor Studies

Participants: Philippe Caillou, Isabelle Guyon, Michèle Sebag, Paola Tubaro
PhDs: Guillaume Bied, Armand Lacombe, Assia Wirth
Engineers: Victor Alfonso Naya
Collaboration: Jean-Pierre Nadal (EHESS); Bruno Crépon (ENSAE); Antonio Casilli, Ulrich Laitenberger
(Telecom Paris); Odile Chagny (IRES); Francesca Musiani, Mélanie Dulong de Rosnay (CNRS); José Luis
Molina (Universitat Autònoma de Barcelona); Antonio Ortega (Universitat de València); Julian Posada
(University of Toronto)

A first area of activity of TAU in Computational Social Sciences is the study of labor, from the func-
tioning of the job market, to the rise of new, atypical forms of work in the networked society of internet
platforms, and the quality of life at work.

Job markets The DATAIA project Vadore (partners ENSAE and Pôle Emploi) benefits from the sus-
tained cooperation and from the wealth of data gathered by Pôle Emploi. The data management is
regulated along a 3-partite convention (GENES-ENSAE, Univ Paris-Saclay, Pôle Emploi). Extensive efforts
have been required to achieve the data pipelines required to enable learning recommendation models
and exploiting them in a confidentiality preserving way (G. Bied’s PhD). Primary online testing (beta-test
campaigns) have assessed the suitability of the recommendations. A second round of testing at the region
Rhone-Alpes scale will take place in 2023.

The learned models are inspected w.r.t. several criteria and requirements. A first criterion regards
the robustness of the recommender performances under non-stationary distributions, e.g. due to the
Covid pandemy [35]. Another criterion concerns the congestion of the job market (share of job offers paid
attention to by job seekers). Recommender systems tend to increase the congestion due to the so-called
popularity bias. Early attempts to prevent the congestion were investigated in [83, 85], using optimal
transport; and this direction will be pursued in S. Nathan’s PhD.

https://cartolabe.fr/map/hal
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A third criterion regards the fairness of the recommendation model. A gender-related gap in several
utilities (wages, types of contract, distance-to-job) is observed by contrasting the jobs recommended
to men and women, everything else being equal. Most interestingly, this gap parallels the gap among
the jobs actually occupied by men and women (everything else being equal). Several directions of
research are considered based on this fact, depending on the regulations to be enforced (in French or
European public services). The first direction consists in integrating a risk-avoidance sub-model in the
recommendation model, to decouple the prejudice effects (from the recruiters’ decisions) and the social
conditioning (from the job seekers’ preferences). The second one aims at defining new population-based
and individual-based performance criteria for a job recommender system.

A key difficulty for research on ML-based job recommendation is the lack of open and representative
datasets, owing to the very sensitive nature of the data and the protection of vulnerable persons. We have
co-organized a workshop (Feb. 2023) gathering researchers and industrials on this topic, in collaboration
with Actiris and VDAB (public employment services in Belgium), to identify how this lack of open datasets,
hindering the benchmarking of existing systems, can be addressed.

The human labor behind AI
We look at business-to-business platform labour [55] and more specifically at the data "micro-

workers" who perform essential, yet marginalized and poorly paid tasks such as labeling objects in
a photograph, translating or transcribing short texts, or recording utterances. Micro-workers are recruited
through specialist intermediaries across supply chains that span the globe and reproduce inherited
North-South outsourcing relationships [44]. Further observed inequalities are gender-based [22]. Despite
the opportunity to telework, the COVID-19 pandemic has adversely affected these workers, widening the
gap that separates them from the formally employed [21].

Current work extends this research to workers’ skills, competencies and workplace learning practices
in an environment in which they support machine learning [20], and to the resilience of these emerging
labour markets [43]

8.3.2 Health and practices

Participants: Philippe Caillou, Michèle Sebag
PhD: Armand Lacombe, Cyriaque Rousselot
Collaboration: Olivier Allais (INRA); Julia Mink (Univ. Bonn, DE).

Continuing our former partnership with INRAE (in the context of the Initiative de Recherche Stratégique
Nutriperso; [78]), we proposed the HORAPEST project to uncover the potential causal relationships be-
tween pesticide dissemination and children’s health (Cyriaque Rousselot’s PhD). The demand of access
has been approved by the CNIL and the Health Data Hub; the data are expected in Sept. 2023, and
contacts have been taken with the CHU Toulouse for cooperation on complementary data.

8.3.3 Scientific Information System and Visual Querying

Participants: Philippe Caillou, Michèle Sebag
Engineers: Anne-Catherine Letournel, Victor Alfonso Naya
Collaboration: Jean-Daniel Fekete (AVIZ, Inria Saclay)

A third area of activity concerns the 2D visualisation and querying of a corpus of documents. Its initial
motivation was related to scientific organisms, institutes or Universities, using their scientific production
(set of articles, authors, title, abstract) as corpus. The Cartolabe project (see also Section 7) started as an
Inria ADT (coll. TAO and AVIZ, 2015-2017). It received a grant from CNRS (coll. TAU, AVIZ and HCC-LRI,
2018-2019).

The originality of the approach is to rely on the content of the documents (as opposed to, e.g. the
graph of co-authoring and citations). This specificity allowed to extend Cartolabe to various corpora, such
as Wikipedia, Bibliotheque Nationale de France, or the Software Heritage. Cartolabe was also applied in
2019 to the Grand Debat dataset: to support the interactive exploration of the 3 million propositions; and
to check the consistency of the official results of the Grand Debat with the data. Cartolabe has also been
applied in 2020 to the COVID-19 kaggle publication dataset (Cartolabe-COVID project) to explore these
publications.
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Among its intended functionalities are: the visual assessment of a domain and its structuration (who is
expert in a scientific domain, how related are the domains); the coverage of an institute expertise relatively
to the general expertise; the evolution of domains along time (identification of rising topics). A round of
interviews with beta-user scientists has been performed in 2019-2020. Cartolabe usage raises questions
at the crossroad of human-centered computing, data visualization and machine learning: i) how to deal
with stressed items (the 2D projection of the item similarities poorly reflects their similarities in the high
dimensional document space; ii) how to customize the similarity and exploit the users’ feedback about
relevant neighborhoods. A statement of the current state of the project was published in 2021 [69].

8.4 Energy Management

8.4.1 Power Grids Management

Participants: Isabelle Guyon, Marc Schoenauer
PhDs: Balthazar Donon, Wenzhuo Liu
Collaboration: Rémi Clément, Patrick Panciatici (RTE)

Our collaboration with RTE, during Benjamin Donnot’s (2016-2019) [106] and Balthazar Donon’s [47]
CIFRE PhDs, is centered on the maintainance of the national French Power Grid. In order to maintain the
so-called "(n-1) safety" (see Section 4.2), fast simulations of the electrical flows on the grid are mandatory,
that the home-brewed simulator HADES is too slow to provide. The main difficulty of using Deep Neural
Networks surrogate models is that the topology of the grid (a graph) should be taken into account, and
because all topologies cannot be included in the training set, this requires out-of-sample generalization
capabilities of the learned models.

Balthazar Donon developped in his PhD [47] an approach based on Graph Neural Networks (GNNs).
From a Power Grid perspective, GNNs can be viewed as including the topology in the heart of the structure
of the neural network, and learning some generic transfer function amongst nodes that will perform
well on any topology. His work uses a loss that directly aims to minimize Kirshhoff’s law on all lines.
Theoretical results as well as a generalization of the approach to other optimization problems had been
originaly published at NeurIPS 2021 [107].

Eva Boguslawski’s CIFRE PhD, that started in Sept. 2022, addresses the problem of global monitoring
of the grid through decentralized decision process (aka multi-agent Reinforcement Learning), in the line
of the LR2PN challenge (see Section 8.6) that she contributed to organize during a previous internship
[32].

8.4.2 Optimization of Local Grids

Participants: Isabelle Guyon, Marc Schoenauer, Michèle Sebag
PhDs: Herilalaina Rakotoarison
Collaboration: Vincent Renault (Artelys).

One of the goals of the ADEME Next project, in collaboration with SME Artelys (see also Section
4.2), is the sizing and capacity design of regional power grids. Though smaller than the national grid,
regional and urban grids nevertheless raise scaling issues, in particular because many more fine-grained
information must be taken into account for their design and predictive growth.

Regarding the design of such grids, and provided accurate predictions of consumption are available
(see below), off-the-shelf graph optimization algorithms can be used. However, they require a careful
tuning of their hyperparameters, and this was the motiaton of funding Herilalaina Rakotoarison’s PhD,
that tackles the automatic tuning of such hyer-parameters (see Section 8.2.1); both the Mosaic algorithm
[153] and the Metabu algorithm to learn meta-features are being used for Artelys’ home optimizer Knitro,
and compared to the state-of-the-art in parameter tuning (confidential deliverable).

8.4.3 Accelerating simulation codes

Participants: Guillaume Charpiat, Marc Schoenauer, Michèle Sebag
PhDs: Matthieu Nastorg
Post-doc: Tamon Nakano
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Collaboration: Alessandro Bucci (Safran Tech, former member of the team); Thilbault Faney et Jean-Marc
Gratien (IFPEN).

During the 2.5 years that he spent at TAU, funded by the bilateral project with IFPEN, Alessandro
Bucci worked on several use case of IFPEN, with the goal of accelerating some softwares that IFPEN
uses daily. This IFPEN/TAU collaboration lead to a successful application to a DATAIA program with the
ML4CFD project. Direct follow-up of the previous collaboration , a prominent result was obtained on the
simulation of diphasic fluid flow in a distillation column: one of the main timeconsuming step in the
simulation is the tracking of the interface between the bubbles of the gaz and the liquid they circulate
in within the Volume-of-Fluid numerical method: this critical step was replaced with a Graph Neural
Network model directly working on the unstrutured mesh, making the industrial application possible
[63]. ML4CFD is also funding Matthieu Nastorg’s PhD, who significantly accelerated [38] the numerical
resolution of the Poisson equation (ubiquitous in CFD, e.g., to compute the pressure in Navier Stokes
simulations), based on B. Donon’s Statistical Solvers [107]. Note that this resul is more general than its
application to energy problems, but was made possible only because of the collaboration with IFPEN.

8.5 Data-driven Numerical Modelling

8.5.1 Space Weather Forecasting

Participants: Cyril Furtlehner, Michèle Sebag
Post-doc: Olivier Bui
Collaboration: Jannis Teunissen (CWI)

Space Weather is broadly defined as the study of the relationships between the variable conditions on
the Sun and the space environment surrounding Earth. Aside from its scientific interest from the point of
view of fundamental space physics phenomena, Space Weather plays an increasingly important role on
our technology-dependent society. In particular, it focuses on events that can affect the performance and
reliability of space-borne and ground-based technological systems, such as satellite and electric networks
that can be damaged by an enhanced flux of energetic particles interacting with electronic circuits.6

Since 2016, in the context of the Inria-CWI partnership, a collaboration between TAU and the Multi-
scale Dynamics Group of CWI aims to long-term Space Weather forecasting. The goal is to take advantage
of the data produced everyday by satellites surveying the sun and the magnetosphere, and more particu-
larly to relate solar images and the quantities (e.g., electron flux, proton flux, solar wind speed) measured
on the L1 libration point between the Earth and the Sun (about 1,500,000 km and 1 hour time forward of
Earth). A challenge is to formulate such goals in terms of supervised learning problem, while the "labels"
associated to solar images are recorded at L1 (thus with a varying and unknown time lag). In essence,
while typical ML models aim to answer the question What, our goal here is to answer both questions
What and When. This project has been articulated around Mandar Chandorkar’s Phd thesis [100] which
has been defended this year in Eindhoven. The continuation of this collaboration is inseured by the hiring
of Olivier Bui as a post-doc who’s work has consisting in extending preliminary results on solar wind
forecasting based on auto-encoded solar magnetograms on a longer period of data corresponding to 2
solar cycles. Negative results have incited us to dig more into physical models of solar wind propagation
and try to combine them with ML models in a systematic way.

8.5.2 Genomic Data and Population Genetics

Participants: Guillaume Charpiat, Flora Jay, Aurélien Decelle, Cyril Furtlehner
PhD: Théophile Sanchez, Jérémy Guez
PostDoc: Jean Cury, Burak Yelmen
Collaboration: Bioinfo Team (LISN), Estonian Biocentre (Institute of Genomics, Tartu, Estonia), UNAM
(Mexico), U Brown (USA), U Cornell (USA), TIMC-IMAG (Grenoble), MNHN (Paris), Pasteur Institute
(Paris)

Thanks to the constant improvement of DNA sequencing technology, large quantities of genetic data
should greatly enhance our knowledge about evolution and in particular the past history of a population.

6After a recent survey conducted by the insurance company Lloyd’s, an extreme Space Weather event could produce up to $2.6
trillion in financial damage.

https://projects.cwi.nl/mlspaceweather/
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This history can be reconstructed over the past thousands of years, by inference from present-day
individuals: by comparing their DNA, identifying shared genetic mutations or motifs, their frequency,
and their correlations at different genomic scales. Still, the best way to extract information from large
genomic data remains an open problem; currently, it mostly relies on drastic dimensionality reduction,
considering a few well-studied population genetics features.

For the past decades, simulation-based likelihood-free inference methods have enabled researchers
to address numerous population genetics problems. As the richness and amount of simulated and real
genetic data keep increasing, the field has a strong opportunity to tackle tasks that current methods hardly
solve. However, high data dimensionality forces most methods to summarize large genomic datasets
into a relatively small number of handcrafted features (summary statistics).In Theophile Sanchez’ PhD
[51], we propose an alternative to summary statistics, based on the automatic extraction of relevant
information using deep learning techniques. Specifically, we design artificial neural networks (ANNs)
that take as input single nucleotide polymorphic sites (SNPs) found in individuals sampled from a single
population and infer the past effective population size history. First, we provide guidelines to construct
artificial neural networks that comply with the intrinsic properties of SNP data such as invariance to
permutation of haplotypes, long scale interactions between SNPs and variable genomic length. Thanks to
a Bayesian hyperparameter optimization procedure, we evaluate the performance of multiple networks
and compare them to well established methods like Approximate Bayesian Computation (ABC). Even
without the expert knowledge of summary statistics, our approach compares fairly well to an ABC based
on handcrafted features. Furthermore we show that combining deep learning and ABC can improve
performance while taking advantage of both frameworks. Later, we experimented with other types of
permutation invariance, based on similar architectures, and achieved a significative performance gain
with respect to the state of the art, including w.r.t. ABC on summary statistics (20% gap), which means
that we extract information from raw data that is not present in summary statistics. The question is now
how to express this information in a human-friendly way.

In the short-term these architectures can be used for demographic inference [60] or selection inference
in bacterial populations (ongoing work with a postdoctoral researcher, J Cury, collab: Pasteur Institute,
for ancient DNA: UNAM and U Brown); the longer-term goal is to integrate them in various systems
handling genetic data or other biological sequence data. Regarding the bacterial populations, we already
implemented a flexible simulator that will allow researchers to investigate complex evolutionary scenarios
(e.g. dynamics of antibiotic resistance in 2D space through time) with realistic biological processes
(bacterial recombination), which was impossible before (collab. U Cornell, MNHN) [14].

In collaboration with the Institute of Genomics of Tartu, we leveraged two types of generative neural
networks (Generative Adversarial Networks and Restricted Boltzmann Machines) to learn the high
dimensional distributions of real genomic datasets and create artificial genomes [76]. These artificial
genomes retain important characteristics of the real genomes (genetic allele frequencies and linkage,
hidden population structure, ...) without copying them and have the potential to be valuable assets in
future genetic studies by providing anonymous substitutes for private databases (such as the ones hold
by companies or public institutes like the Institute of Genomics of Tartu. Ongoing work concerns scaling
up to the full genome and developing new privacy scores.

We released dnadna, a flexible open-source python-based software for deep learning inference in
population genetics7. It is task-agnostic and aims at facilitating the development, reproducibility, dis-
semination, and reusability of neural networks designed for genetic polymorphism data. dnadna defines
multiple user-friendly workflows[88].

8.5.3 Privacy and synthetic data generation

Participants: Isabelle Guyon
PhD: Adrien Pavao
Collaboration: Kristin Bennett and Joe Pedersen (RPI, NY, USA), Wei-Wei Tu (4Paradigm, Chine), Pablo
Piantanida (Centrale-Supelec)

While theoretical criteria of privacy preservation, such as “differencial privacy” are important to gain
insights into how to protect privacy, they are often impractical, because they put forward pessimistic

7https://gitlab.com/mlgenetics/dnadna

https://gitlab.com/mlgenetics/dnadna
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bounds and impose degrading data and/or model to a point that hampers utility. Additionally, for all
practical purposes, data owners seek to obtain guarantees that no privite information is leaked in the
form of an empirical statistical test, rather than a more elusive theoretical guarantee. To that end, we
have set to work on evaluating the effectiveness of privacy protection agains specific attacks, such as
membership inference or attribute inference. We devised an evaluation apparatus called “LTU-attacker”
[30], in collaboration with Kristin Bennett, Joe Pedersen, and Wei-Wei Tu and with 2 interns (Rafel
Monos-Gomez and Jiangna Huang) have obtained interesting preliminary results demonstrating lack of
privacy preservation of most scikit-learn algorithms under membership inference attacks. New directions
currently explored in collabotation with Pablo Piantanida include defining a degree of “privacy exposure”
of particular individual involving information theoretic arguments.

With Master student Alice Lacan, we have been investigating the modelization of the Covid-19
epidemic propogation using compartimental models, following earlier work by former master student
Martin Cepeda. A group of students including Alice entered the "Pandemic response" XPrize and qualified
for the final phase. This work was follwed by a paper on estimating uncertainty in time series, in
application to prediciting the evolution of the number of Covid cases presented at the BayLearn 2022
conference[84]. Alice was invited to give a presentation of this work at the WIDS 2023 conference.

Last but not least regarding Covid-19, F. Landes participated to Inria Saclay collaborative effort to
monitor and optimize the emergency bed occupancy in East of France [24].

8.5.4 Sampling molecular conformations

Participants: Guillaume Charpiat
PhD: Loris Felardos
Collaboration: Jérôme Hénin (IBPC), Bruno Raffin (InriAlpes)

Numerical simulations on massively parallel architectures, routinely used to study the dynamics of
biomolecules at the atomic scale, produce large amounts of data representing the time trajectories of
molecular configurations, with the goal of exploring and sampling all possible configuration basins of
given molecules. The configuration space is high-dimensional (10,000+), hindering the use of standard
data analytics approaches. The use of advanced data analytics to identify intrinsic configuration patterns
could be transformative for the field.

The high-dimensional data produced by molecular simulations live on low-dimensional manifolds;
the extraction of these manifolds will enable to drive detailed large-scale simulations further in the
configuration space. We study how to bypass simulations by directly predicting, given a molecule formula,
its possible configurations. This is done using Graph Neural Networks [58] in a generative way, producing
3D configurations, and constitutes the main part of Loris Felardos’ PhD [48], funded by the Inria Challenge
HPC/Big Data. The goal is to sample all possible configurations, and with the right probability. This
year we studied various normalizing flow architectures as well as varied training criteria suitable for
distributions (Kullback-Leibler divergence in latent or sample space, in one direction or the other one, as
it is not symmetric, but also pairwise distances, optimal transport, etc.). It turns out that mode collapse is
frequently observed in most cases, even on simple tasks. Further analysis identified several causes for
this, from which we built remedies.

8.5.5 Earthquake occurrence prediction

Participants: François Landes, Marc Schoenauer
PhD: Vincenzo Schimmenti
Collaboration: Alberto Rosso (LPTMS)

Earthquakes occur in brittle regions of the Crust typically located at the depth of 5-15 km and
characterized by a solid friction, which is at the origin of the stick-slip behaviour. Their magnitude
distribution displays thecelebrated Gutenberg-Richter law and a significant increase of the seismic rate is
observed after large events (called main shocks). The occurrence of the subsequent earthquakes in the
same region, the aftershocks, obeys well established empirical laws that demand to be understood. A
change in the seismic rate also happens before a main shock, with an excess of small events compared
to the expected rate of aftershocks related to the previous main shock in that region. These additional
events are defined as foreshocks of the coming main shock, however they are scarce so that defininig
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them is a very difficult task. For this reason their statistical fingerprint, so important for human secutiry,
remains elusive.

The treatment of rare events by Machine Learning is a challenging yet rapidly evolving domain. At
TAU we have a great expertise in data modeling, in particular Bayesian models and Restricted Boltzman
Machines (RBMs) have been built to model space weather forecast data (Section 8.5.1). These techniques,
inspired from statistical physics, are both based on a probabilistic description of latent variables, allowing
the modelling of a large span of data correlations. This kind of models can be extended to study spatially
resolved earthquakes, the latent variable here being the local stress within the fault and in the ductile
regions. Our goal is to characterize the statistical properties of a sequence of events (foreshocks, main
shock and aftershocks) and predict its following history. We will first study the sequences obtained from
simulations of the physical model [75]. We will answer the following question: given a short sequence of
foreshocks, can we predict the future of the sequence? How big will be the main shock? When will it occur?
In a second step we will use also the data coming from real sequences, where events are unlabeled. These
sequences are public and available (The most accurate catalog is for Southern California, a catalog with
1.81 million earthquakes. It is available at https://scedc.caltech.edu/research-tools/QTMcatalog.html).
Concretely, the data consists in the earthquakes’ magnitude, occurrence time and hypocenter locations.

Two parallel directions are being explored, with our PhD Student, Vincenzo Schimmenti:

• The available data can be used to tune the parameters of the new model to improve its accuracy
and generalization properties. We will adjust the parameters of the elastic and friction coefficients
in order to produce earthquakes with realistic magnitudes. This will allow us to have information
about the physical condition in the fault and in the ductile regions.

• We will use our understanding of foreshocks statistics to perform classification of earthquakes
with respect to their nature: foreshock, main shock or after shock, and alignment (assignment
of the earthquake to a sequence). These labels are known in the synthetic data and unknown in
the catalogs, so this would be an instance of semi-supervised learning. Our final goal is real data
completion: presented with an incomplete catalog, the machine is asked to complete it with the
missing points.

8.5.6 Reduced order model correction

Partecipants: Michele Alessandro Bucci, Marc Schoenauer
PhD: Emmanuel Menier
Collaboration: Mouadh Yagoubi (IRT-SystemX), Lionel Mathelin (DATAFLOT team, LISN)

Numerical simulations of fluid dynamics in industrial applications require the spatial discretization of
complex 3D geometries with consequent demanding computational operations for the PDE integration.
The computational cost is mitigated by the formulation of Reduced Order Models (ROMs) aiming at
describing the flow dynamics in a low dimensional feature space. The Galerkin projection of the driving
equations onto a meaningful orthonormal basis speeds up the numerical simulations but introduces
numerical errors linked to the underrepresentation of dissipative mechanisms.

Deep Neural Networks can be trained to compensate missing information in the projection basis.
By exploiting the projection operation, the ROM correction consists in a forcing term in the reduced
dynamical system which has to i) recover the information living in the subspace orthonormal to the
projection one ii) ensure that its dynamic is dissipative. A constrained optimization is then employed to
minimize the ROM errors but also to ensure the reconstruction and the dissipative nature of the forcing.
We tested this solution on benchmarked cases where it is well known that transient dynamics are poorly
represented by ROMs. The results [62] show how the correction term improves the prediction while
preserving the guarantees of the ROM. Furthermore, the approach was generalized, and the extension
was validated on Michelin use case of rubber calendering process [61].

8.5.7 Active Learning for chaotic systems

Participants: Michele Alessandro Bucci (now with SafranTech)
Collaboration: Lionel Mathelin (LISN), Onofrio Semeraro (LISN), Sergio Chibbaro (UPMC), Alexandre
Allauzen (ESPCI)

https://scedc.caltech.edu/research-tools/QTMcatalog.html
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The inference of a data driven model aiming at reproducing chaotic systems is challenging even for
the most performing Neural Network architectures. According to the ergodic theory, the amount of data
required to converge to the invariant measure of a chaotic system goes exponentially with its intrinsic
dimension. Recent work [54] analyzes the amount of data that is sufficient for a priori guaranteeing a
faithful model of the physical system.

8.5.8 Graph Neural Networks for Numerical Simulations

Participants: Guillaume Charpiat, Marc Schoenauer, Michèle Sebag
PhDs: Balthazar Donon, Loris Felardos, Wenzhuo Liu, Matthieu Nastorg
Post-doc: Tamon Nakano
Collaboration: Mouahd, Yagoubi (IRT SystemX), Lionel Mathelin (LISN), Alessandro Bucci (Safran Tech,
former member of the team); Thilbault Faney et Jean-Marc Gratien (IFPEN).

Many of the works that have been introduced earlier featured the use of Graph Neural Networks to
learn how to solve numerical problems invoving data on graphs: Balthazar Donon’s PhD [47] simulated
the French Power Grid, Loris Felardos’ PhD [48] learnt the distribution of 3D molecule conformations,
Matthieu Nastorg accelerate the numerical resolution of Poisson’s equation on any unstructured mesh
with GNNs [38], Tamon Nakano also handled unstructured meshes with GNNs to track the interface
between both fluids in multi-phasic flow simulations [63].

But the use of GNNs to approximate the numerical solutions of PDEs on any unstructured mesh,
rather than using grid meshes to be able to use the CNNs and the whold zoology of Deep Neural Networks
designed for image processing was systematicall studies in Wenzhuo Liu’s PhD: After porting ideas from
multi-grid approaches to Finite Elements, and comparing the CNN and GNN approchaes [138], she
tackled the poor Out-of-Distribution generalization issue using Meta-Learning [37], improving the OoD
learning on CFD simulations of air flow around an airfoil by considering each airfoil shape as a separate
task. he is now completing her PhD (defense in March) by applying Transfer Learning to decrease the
amount of data to learn accurate simulation on fine meshes using numerous costless simulations on
coarse meshes (submitted).

8.6 Challenges

Participants: Cécile Germain, Isabelle Guyon, Adrien Pavao, Anne-Catherine Letournel, Marc Schoe-
nauer, Michèle Sebag
PhD: Eva Boguslawski, Balthazar Donon, Adrien Pavao, Haozhe Sun, Romain Egele
Engineer: Sébastien Tréguer.
Collaborations: D. Rousseau (LAL), André Elisseeff (Google Zurich), Jean-Roch Vilmant (CERN), Antoine
Marot and Benjamin Donnot (RTE), Kristin Bennett (RPI), Magali Richard (Université de Grenoble),
Wei-Wei Tu (4Paradigm, Chine), Sergio Escalera (U. Barcelona, Espagne).

The TAU group uses challenges (scientific competitions) as a means of stimulating research in machine
learning and engage a diverse community of engineers, researchers, and students to learn and contribute
advancing the state-of-the-art. The TAU group is community lead of the open-source Codalab platform
(see Section 7), hosted by Université Paris-Saclay. The project had grown since 2019 and includes now an
engineer dedicated full time to administering the platform and developing challenges (Adrien Pavao),
financed in 2021 by a 500k€ project with the Région Ile-de-France. This project will also receive the
support of the Chaire Nationale d’Intelligence Artificielle of Isabelle Guyon (2020-2024).

Adrien Pavao has also set to work on the theoretical rationalization of judging competitions. A
first work built ties between this problem and the theory of social choice [80]. This is applicable, in
particular to judging multi-task or multi-objective challenges: each task or objective can be thought of as
a “judge” voting towards determining a winner. He devised novel empirical criteria to assess the quality
of ranking functions, including the generalization to new tasks and the stability under judge or candidate
perturbation and conducted empirical comparisons on 5 competitions and benchmarks. While prior
theoretical analyses indicate that no single ranking function satisfies all desired theoretical properties,
our empirical study reveals that the classical "average rank" method (often used in practice to judge
competitions) fares well. However, some pairwise comparison methods can get better empirical results.
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Following the highly successful ChaLearn AutoML Challenges (NIPS 2015 – ICML 2016 [122] – PKDD
2018 [123])and AutoDL [139] was run in 2019 (see http://autodl.chalearn.org), that pointed to the impor-
tance of meta-learning, we opened a new line of research on meta-learning from learning curves [28, 64]
and cross-domain meta-learning [36]. This led us to explore uses of reinforcement learning as a means to
devise policies for meta-learning (on-going). In parallel, a new challenge on automated reinforcement
learning (AutoRL) is currently under design.

A new challenge series in Reinforcement Learning for Power Grid control was started in 2021 with the
company RTE France on the theme “Learning to run a power network” [142] (L2RPN, http://l2rpn.chalearn.org).
The goal is to test the potential of Reinforcement Learning to solve a real world problem of great practical
importance: controlling electricity transportation in smart grids while keeping people and equipment
safe. The first edition was run in Spring 2019, and aimed at demonstrating the feasibility of applying
Reinforcement Learning for controlling electrical flows on a power grid. The 2020 edition [141] intro-
duced a realistically-sized grid environment along with two fundamental real-life properties of power
grid systems to reconsider while shifting towards a sustainable world: robustness and adaptability, and
the 2022 edition was concerned with changing topology, and was co-organized with RTE and TAILOR
challenge task force (TAU team is responsible of the organization of challenges within the European
project TAILOR). The analysis paper is under review.

In preparation, with the sponsorship of Paris-Région Ile de France, a competition between statups in
the AI challenge for Industry series is being organized, in collaboration with RTE [32]. The competition is
assorted with a 1 millon Euro prize pool. The objective is to device control policies for the French electric-
ity grid under scenarios of energies of the future, towards attaining carbon neutrality. The participants
will be tackling prospective productions and consumption scenarios of the future, emphasing renewable
energies. This poses particular difficulties because of solal and wind energies have irregular productions.

Paris Ile-de-France region selected in 2021 Codalab and the TAU team to organize the industry
machine learning challenge seris of the Paris Region. Adrien Pavao, who was the project leader, organized
with Dassault aviation a project of “numerical twins”, aiming at performing predictive maintenance on
airplanes. The Paris Region offered 500K Euros to the winner, a startup, which would then collaborate
with Dassault to productize the solution. The challenge took place from February 2021 to May 2021.
The results have indicated that, on such problems of time series regression, ensembles of decision trees
such as XGBoost dominate over DL methods. This result, which came somewhat as a surprise, but stem
from the massive amount of data that had to be processed. Despite the significant compute power made
avaliable (10 GPUs for 2 days), search for optimal architectures was difficult. Results of detailed analyses
conducted by a consortium of organizers and participants have been published [79]. This challenge has
demonstrated that Codalab is now “industry grade”, and has paved the way to organizing other AI for
Industry challenges. We have currently in preparation a challenge targeting carbon-neutrality by 2025, in
collaboration with RTE-France.

It is important to introduce challenges in ML teaching. This has been done (and is on-going) in I.
Guyon’s Master courses [148] : some assignments to Master students are to design small challenges,
which are then given to other students in labs, and both types of students seem to love it. Codalab has also
been used to implement reinforcement learning homework in the form of challenges by Victor Berger
and Heri Rakotoarison for the class of Michèle Sebag. New directions being explored by students in 2021
include takling fairness and bias in data.

In terms of dissemination, a collaborative book “AI competitions and benchmarks: The science behind
the contests ” written by expert challenge organizers is under way and will appear in the Springer series
on challenges in machine learning, see http://www.chalearn.org/books.html. Challenge organizaton is
now better grounded in theory, with such effort. The thesis of Adrien Pavao will include several advances
in devising sound challenge protocols, including two-stage challenges, as described in his recent paper
"Filtering participants improves generalization in competitions and benchmarks" [29].

http://autodl.chalearn.org
http://l2rpn.chalearn.org
http://saclay.chalearn.org/
http://www.chalearn.org/books.html
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9 Bilateral contracts and grants with industry

9.1 Bilateral contracts with industry

TAU continues its policy about technology transfer, accepting any informal meeting following industrial
requests for discussion (and we are happy to be often solicited), and deciding about the follow-up based
upon the originality, feasibility and possible impacts of the foreseen research directions, provided they
fit our general canvas. This lead to the following 3 on-going CIFRE PhDs, with the corresponding side-
contracts with the industrial supervisor, one bilateral contract with IFPEN, one recently started bilateral
contract with Fujitsu (within the national "accord-cadre" Inria/Fujitsu), plus at least two new CIFRE
PhDs, one with our long-lasting partner RTE, and one with Ekimetrics company, with whom we have
never worked before), that will start in 2022.

• IFPEN (Institut Français du Pétrole Energies Nouvelles) 2019-2023 (300 kEuros), to hire an Inria
Starting Research Position (Alessandro Bucci) to work in all topics mentioned in Section 3.2 relevant
to IFPEN activity.
Coordinator: Marc Schoenauer
Participants: Alessandro Bucci, Guillaume Charpiat

• Fujitsu, 2021-2022 renewed 2022-2023 (200k€ per year), Causal discovery in high dimensions
Coordinator: Marc Schoenauer
Participants: Shuyu Dong and Michèle Sebag

• CIFRE RTE 2021-2024 (72 kEuros), with RTE, related to Eva Boguslawski’s CIFRE PhD Decentralized
Partially Observable Markov Decision Process for Power Grid Management
Coordinator: Marc Schoenauer and Matthieu Dussartre (RTE)
Participants: Eva Boguslawski, Alessandro Leite

• CIFRE Ekimetrics 2022-2025 (45 kEuros), with Ekimetrics, related to Audrey Poinsot’s CIFRE PhD
Causal incertainty quantification under partial knowledge and low data regimes
Coordinator: Marc Schoenauer
Participants: Guillaume Charpiat, Alessandro Leite, Audrey Poinsot and Michèle Sebag

• CIFRE MAIR 2022-2025 (75 kEuros), with Meta (Facebook) AI Research, related to Mathurin
Videau’s CIFRE PhD Reinforcement Learning: Sparse Noisy Reward
Coordinator: Marc Schoenauer and Olivier Teytaud (Meta)
Participants: Alessandro Leite and Mathurin Videau

• CIFRE MAIR 2022-2025 (75 kEuros), with Meta (Facebook) AI Research, related to Badr Youbi’s
CIFRE PhD Learning invariant representations from temporal data
Coordinator: Isabelle Guyon (now Michèle Sebag) and David Lopez-Paz (Meta)
Participants: Badr Youbi

10 Partnerships and cooperations

10.1 International initiatives

10.1.1 STIC/MATH/CLIMAT AmSud projects

Green AI

Participants: Marc Schoenauer, Michèle Sebag.

Title: Towards an ecologically viable machine learning

Program: CLIMAT-AmSud
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Duration: January 1, 2021 – December 31, 2022

Local supervisor: Marc Schoenauer

Partners:

• Nayat Sanchez-Pi (Inria Chili)

• Universidad Nacional de Asuncion

Inria contact: Marc Schoenauer

Summary: The Green AI project’s main goal is to conceive a systemic and multi-component approach to
the problem of the Artificial Intelligence’s ecological impact. Thus, it focuses on cloud and mobile
computing, transfer learning, model reuse, active learning and evolutionary computing, among
others.

10.1.2 Participation in other International Programs

HFSP RGY0075/2019

Participants: Flora Jay.

Title: Evolutionary changes in human hosts and their pathogens during first contact in the New World

Partner Institution(s): • Human Frontier Science Program (funded by)

• Emilia Huerta-Sanchez (U Brown, USA), coordinator

• M Avila-Arcos (UNAM, Mexico)

Date/Duration: 2019-2024

10.2 European initiatives

10.2.1 Horizon Europe

Adra-e

Participants: Marc Schoenauer.

Adra-e project on cordis.europa.eu

Title: AI, Data and Robotics ecosystem

Duration: From July 1, 2022 to June 30, 2025

Partners:

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),
France

• LINKOPINGS UNIVERSITET (LIU), Sweden

• NATIONAL UNIVERSITY OF IRELAND GALWAY (NUI GALWAY), Ireland

• DUBLIN CITY UNIVERSITY (DCU), Ireland

• AI DATA AND ROBOTICS ASSOCIATION, Belgium

• TRUST-IT SRL, Italy

• COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (CEA), France

https://dx.doi.org/10.3030/101070336
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• UNIVERSITEIT TWENTE (UNIVERSITEIT TWENTE), Netherlands

• DEUTSCHES FORSCHUNGSZENTRUM FUR KUNSTLICHE INTELLIGENZ GMBH (DFKI),
Germany

• ATOS SPAIN SA, Spain

• HRVATSKA UDRUGA ZA UMJETNU INTELIGENCIJU (CROATIAN ARTIFICIAL INTELLI-
GENCE ASSOCIATION), Croatia

• COMMPLA SRL (Commpla Srl), Italy

• ATOS IT SOLUTIONS AND SERVICES IBERIA SL (ATOS IT), Spain

• SIEMENS AKTIENGESELLSCHAFT, Germany

• UNIVERSITEIT VAN AMSTERDAM (UvA), Netherlands

Inria contact: Marc Schoenauer

Coordinator: Marc Schoenauer

Summary: Artificial intelligence, data and robotics (ADR): these are three domains that are closely
connected. The rise of artificial intelligence was made possible due to the availability of data, and
advances in robotics made it possible to increase the number of sensors that each robot can have.
In this context, the EU-funded Adra-e project will work to boost Europe’s excellent research centres,
innovative start-ups, a world-leading position in robotics and competitive manufacturing and
services sectors. With a consortium composed of leading industry and research organisations in
all three domains, the project will create the conditions for an inclusive, sustainable, effective,
multilayered and coherent European ADR ecosystem. The expected result will be the increased
trust and adoption of ADR.

10.2.2 H2020 projects

VISION

Participants: Marc Schoenauer.

TAILOR project on cordis.europa.eu

Title: Foundations of Trustworthy AI - Integrating Learning, Optimization, and Reasoning

Duration: From September 1, 2020 to August 31, 2023 (+1 year extension)

Partners:

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),
France

• LINKOPINGS UNIVERSITET (LIU), Sweden

• and 51 other partners (see web site)

Inria contact: Marc Schoenauer

Coordinator: Fredrik Heintz (U. Linköpings)

Summary: Maximising opportunities and minimising risks associated with artificial intelligence (AI)
requires a focus on human-centred trustworthy AI. This can be achieved by collaborations between
research excellence centres with a technical focus on combining expertise in theareas of learning,
optimisation and reasoning. Currently, this work is carried out by an isolated scientific community
where research groups are working individually or in smaller networks. The EU-funded TAILOR
project aims to bring these groups together in a single scientific network on the Foundations of
Trustworthy AI, thereby reducing the fragmentation and increasing the joint AI research capacity of
Europe, helping it to take the lead and advance the state-of-the-art in trustworthy AI. The four main
instruments are a strategic roadmap, a basic research programme to address grand challenges, a
connectivity fund for active dissemination, and network collaboration activities.

https://cordis.europa.eu/project/id/952215
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TAILOR

Participants: Isabelle Guyon, Marc Schoenauer.

VISION project on cordis.europa.eu

Title: Value and Impact through Synergy, Interaction and coOperation of Networks of AI Excellence
Centres

Duration: From September 1, 2020 to August 31, 2023 (+1 year extension)

Partners:

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),
France

• UNIVERSITEIT LEIDEN (ULEI), Netherlands

• NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUURWETENSCHAPPELIJK ONDER-
ZOEK TNO (NETHERLANDS ORGANISATION FORAPPLIED SCIENTIFIC RESEARCH), Nether-
lands

• THALES SIX GTS FRANCE SAS (THALES SIX GTS France), France

• DEUTSCHES FORSCHUNGSZENTRUM FUR KUNSTLICHE INTELLIGENZ GMBH (DFKI),
Germany

• CESKE VYSOKE UCENI TECHNICKE V PRAZE (CVUT), Czechia

• FONDAZIONE BRUNO KESSLER (FBK), Italy

• INTELLERA CONSULTING SRL (INTELLERA CONSULTING), Italy

• UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORK (UCC), Ireland

Inria contact: Jozef Geurts

Coordinator: Holger Hoos (U. Leiden)

Summary: Artificial intelligence (AI) is an area of strategic importance and a key driver of economic
development, bringing solutions to many societal challenges ranging from treating diseases to
minimising the environmental impact of farming. The EU is focussing on connecting and strength-
ening AI research centres across Europe and supporting the development of AI applications in
key sectors. To ensure Europe stays at the forefront of AI developments, the EU-funded VISION
project will build on Europe’s world-class community of researchers. The project will also build
on the success and organisation of CLAIRE (the Confederation of Laboratories for AI Research in
Europe) as well as of AI4EU, which was established to set up the first European Artificial Intelligence
On-Demand Platform and Ecosystem.

10.3 National initiatives

10.3.1 ANR

• Chaire IA HUMANIA 2020-2024 (600kEuros), Democratizing Artificial Intelligence.
Coordinator: Isabelle Guyon (TAU)
Participants: Marc Schoenauer, Michèle Sebag, Anne-Catherine Letournel, François Landes.

• HUSH 2020-2023 (348k euros), HUman Supply cHain behind smart technologies.
Coordinator : Antonio A. Casilli (Telecom Paris)
Participants: Paola Tubaro

• SPEED 2021-2024 (49k€) Simulating Physical PDEs Efficiently with Deep Learning
Coordinator: Lionel Mathelin (LISN (ex-LIMSI))
Participants: Michele Alessandro Bucci, Guillaume Charpiat, Marc Schoenauer.

https://dx.doi.org/10.3030/952070
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• RoDAPoG 2021-2025 (302k€) Robust Deep learning for Artificial genomics and Population Genetics
Coordinator:Flora Jay,
Participants: Cyril Furtlehner, Guillaume Charpiat.

10.3.2 Others

• ADEME NEXT 2017-2021, extended 2023 (675 kEuros). Simulation, calibration, and optimization
of regional or urban power grids (Section 4.2).
ADEME (Agence de l’Environnement et de la Maîtrise de l’Energie)
Coordinator: SME ARTELYS
Participants Isabelle Guyon, Marc Schoenauer, Michèle Sebag, Victor Berger (PhD), Herilalaina
Rakotoarison (PhD), Berna Bakir Batu (Post-doc)

• IPL HPC-BigData 2018-2022 (100 kEuros) High Performance Computing and Big Data (Section
8.5.4)
Coordinator: Bruno Raffin (Inria Grenoble)
Participants: Guillaume Charpiat, Loris Felardos (PhD)

• Inria Challenge (formerly IPL) HYAIAI, 2019-2023, HYbrid Approaches for Interpretable Artificial
Intelligence
Coordinator: Elisa Fromont (Lacodam, Inria Rennes)
Participants: Marc Schoenauer and Michèle Sebag

• Les vraies voix de l’Intelligence Artificielle, 2021-2023 (29k euros), funded by Maison des Sciences
de l’Homme Paris-Saclay.
Coordinator : Paola Tubaro
Participants: A.A. Casilli (Telecom Paris); I. Vasilescu, L. Lamel, Gilles Adda (CNRS-LISN); J.L. Molina
(UAB Barcelona); J.A. Ortega (Univ. València)

• Inria Challenge OceanAI 2021-2025, AI, Data, Models for a Blue Economy
Coordinator: Nayat Sanchez Pi (Inria Chile)
Participants: Marc Schoenauer, Michèle Sebag and Shiyang Yan

10.4 Regional initiatives

• DATAIA ML4CFD 2020-2022 (105 kEuros) Machine Learning for Computational Fluid Dynamics.
Coordinator: Michele Alessandro Bucci
Participants: Guillaume Charpiat, Marc Schoenauer
Collaboration: IFPEN (Jean-Marc Gratien and Thibault Faney)

• DATAIA YARN 2022-2025 (240 kEuros) Automatic Processing of Messy Brain Data with Robust
Methods and Transfer Learning.
Coordinator: Sylvain Chevallier, Florent Bouchard (L2S)
Collaboration: Raymond Poincare‘ Hospital (France), FCAI (Aalto University, Finland), Fre‘de‘ric
Pascal (L2S), Alexandre Gramfort (Meta)

11 Dissemination

11.1 Promoting scientific activities

11.1.1 Scientific events: organisation

Member of the organizing committees

• Marc Schoenauer - Steering Committee, Parallel Problem Solving from Nature (PPSN); Steering
Committee, Learning and Intelligent OptimizatioN (LION).
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• Cecile Germain - Steering committee of the Learning to Discover program of Institut Pascal (origi-
nally 2020, postponed to 2022)

• Flora Jay - Organizer of Thematic School “Graph as models in life sciences: Machine learning and
integrative approaches” (supported by Digicosme)

11.1.2 Scientific events: selection

Chair of conference program committees

• Marc Schoenauer, Senior Area Chair, IJCAI 2022

• Michele Sebag, Senior Area Chair ICML 2022

Reviewer All TAU members are reviewers of the main conferences in their respective fields of expertise.

11.1.3 Journal

Member of the editorial boards

• Isabelle Guyon - Action editor, Journal of Machine Learning Research (JMLR); series editor, Springer
series Challenges in Machine Learning (CiML).

• Marc Schoenauer - Advisory Board, Evolutionary Computation Journal, MIT Press, and Genetic Pro-
gramming and Evolutionary Machines, Springer Verlag; Action editor, Journal of Machine Learning
Research (JMLR); Editorial Board, ACM Transaction on Evolutionary Learning and Optimization
(TELO).

• Michèle Sebag - Editorial Board, Machine Learning, Springer Verlag; ACM Transactions on Evolu-
tionary Learning and Optimization.

• Paola Tubaro: Sociology, Revue française de sociologie, Journal of Economic Methodology, Lecturas
de Economia.

Reviewer - reviewing activities All members of the team reviewed numerous articles for the most
prestigious journals in their respective fields of expertise.

11.1.4 Invited talks

• Guillaume Charpiat, Apprentissage profond pour le recalage, la segmentation et la polygonisation
d’images satellitaires, lors du "Séminaire IA: imagerie aérienne et report au plan" de la DGFIP
(Bercy) le 29 juin.

• Guillaume Charpiat, invited keynote and co-chair of the session "Trustworthy and Explainable AI"
of the day "Franco-German Research and Innovation Network on AI", Rocquencourt, June 14th.

• Flora Jay,

• Marc Schoenauer,

• Michele Sebag, keynote speaker IDA 2022; keynote MIT-France Symposium; keynote French-
German symposium;

• Paola Tubaro,

• François Landes, SE(3)-Equivariant GNNs for Machine Learning Glasses, at the CNRS+CFM work-
shop "Machine Learning Glasses", Paris, November 11, 2022

• Isabelle Guyon, NeurIPS’22 keynote The Data-Centric Era: How ML is Becoming an Experimental
Science.

https://neurips.cc/Conferences/2022/ScheduleMultitrack?event=56158
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11.1.5 Leadership within the scientific community

• Guillaume Charpiat: creation and co-animation of 2 DigiCosme working groups on the Saclay
plateau and beyond: vrAI (verification and robustness of AI) and SNAP (simulations numériques et
apprentissage)

• Isabelle Guyon: Member of the board, NeurIPS; Member of the Board, JEDI, Joint European
Disruptive Initiative; President and co-founder, ChaLearn, non-for-profit organization dedicated
to the organization of challenges.

• Marc Schoenauer: Advisory Board, ACM-SIGEVO, Special Interest Group on Evolutionary Com-
putation; Founding President (since 2015), SPECIES, Society for the Promotion of Evolutionary
Computation In Europe and Surroundings, that organizes the yearly series of conferences EvoStar.

• Michèle Sebag: Executive Committee, Institut de Convergence DataIA; Member of IRSN Scientific
Council; Member of scientific council of the AMIES Labex;

11.1.6 Scientific expertise

• Guillaume Charpiat: member of the Commission Scientifique (CS) at INRIA Saclay (PhD/post-docs
grant allocations)

• Guillaume Charpiat: Jean Zay (GENCI/IDRIS) committee member for resource allocation (GPU)
demand expertise

• Guillaume Charpiat: PhD grant allocation: UdopIA jury + DigiCosme Labex jury

• Guillaume Charpiat: jury of "Prix Doctorants STIC du Plateau de Saclay"

• Flora Jay, CR hiring committee, INRAE Toulouse

• Flora Jay, MdC hiring committee, LIX

• Marc Schoenauer, Scientific Advisory Board, BCAM, Bilbao, Spain

• Marc Schoenauer, "Conseil Scientifique", IFPEN

• Marc Schoenauer, "Conseil Scientifique", Mines Paritech

• Marc Schoenauer, "Commission Recherche", Université Paris-Diderot

• Michele Sebag, UDOPIA jury (PhDs)

• Michele Sebag, FNRS (PhDs and Post-docs)

• Michele Sebag, professorship hiring committee, INSA Rouen

• Paola Tubaro, MdC hiring committee, University of Lille

• Paola Tubaro, professorship hiring committee, Sorbonne Université

• Paola Tubaro, associate professorship hiring committee, University of Greenwich (UK)

• Paola Tubaro, assistant professorship hiring committee, University of Insubria (IT)

• Isabelle Guyon, Advisory board Kaggle competitons.

11.1.7 Research administration

• Guillaume Charpiat: head of the Data Science department at LISN, Université Paris-Saclay

• Michele Sebag, elected member of Lab. Council, LISN, Université Paris-Saclay; Member of Council,
Institut Pascal

• Paola Tubaro, member of Local Committee of Institut Pascal, Université Paris-Saclay

https://nips.cc/Conferences/2020/Board
https://www.jedi.foundation/
https://www.jedi.foundation/
http://www.chalearn.org/
http://sigevo.org
http://sigevo.org
http://species-society.org/
http://species-society.org/
https://www.dataia.eu/linstitut/le-comite-executif
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11.2 Teaching - Supervision - Juries

11.2.1 Teaching

• Licence : Philippe Caillou, Computer Science for students in Accounting and Management, 192h,
L1, IUT Sceaux, Univ. Paris Sud.

• Licence : François Landes, Mathematics for Computer Scientists, 51h, L2, Univ. Paris-Sud.

• Licence : François Landes, Introduction to Statistical Learning, 88h, L2, Univ. Paris-Sud.

• Licence : Isabelle Guyon: Introduction to Data Science, L1, Univ. Paris-Sud.

• Licence : Isabelle Guyon, Project: Resolution of mini-challenges (created by M2 students), L2, Univ.
Paris-Sud.

• Master : François Landes, A first look inside the ML black box, 25h, M1 Recherche (AI track), U.
Paris-Sud.

• Master : François Landes, Machine Learning, 28h, M2 Univ. Paris-sud, physics department (PCS
international Master)

• Master : Guillaume Charpiat, Deep Learning in Practice, 21h, M2 Recherche, MVA / Centrale-
Supelec / DSBA.

• Master : Guillaume Charpiat, Information Theory, 14h, M1 IA Paris-Sud.

• Master : Guillaume Charpiat, Introduction to Deep Learning, 1h30, Eugloh.

• Master : Guillaume Charpiat, Deep Learning for Physics, 3h, M2 IASD, Paris-Dauphine university

• Master : Isabelle Guyon, Project: Creation of mini-challenges, M2, Univ. Paris-Sud.

• Master : Michèle Sebag, Deep Learning, 4h; Reinforcement Learning, 12h; M2 Recherche, U.
Paris-Sud.

• Master : Paola Tubaro, Sociology of social networks, 24h, M2, EHESS/ENS.

• Master : Paola Tubaro, Social and economic network science, 24h, M2, ENSAE.

• Master: Paola Tubaro, Ethics of social and digital data, 12h, Université de Toulouse Jean Jaurès

• Master : Flora Jay, Population genetics inference, 11h, M2, U PSaclay.

• Master : Flora Jay, Machine Learning in Genomics, 6h, M2, PSL. Some Principled Methods for Deep
Reinforcement Learning and verification of deep learning: theory and practice, July 23rd.

• Fall school : Flora Jay, Inference using full genome data, 7h, TUM, Germany.

11.2.2 Supervision

• PhD - Leonard BLIER, Some Principled Methods for Deep Reinforcement Learning [45], 28/04/22,
Yann Ollivier (Facebook AI Research, Paris) and Marc Schoenauer

• PhD - R. BRESSON, Neural learning and validation of hierarchical multi-criteria decision aiding
models with interacting criteria [46], 2/02/22, Johanne Cohen (Galac, LISN) and Michèle Sebag

• PhD - Balthazar DONON, Deep Statistical Solvers and Power Systems Applications [47], 16/03/22,
Isabelle Guyon, Marc Schoenauer, and Rémy Clément (RTE)

• PhD - Loris FELARDOS, Neural networks for molecular dynamics simulations [48], 2/12/22, Guil-
laume Charpiat, Jérôme Hénin (IBPC) and Bruno Raffin (InriAlpes)
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• PhD - Giancarlo FISSORE, Statistical physics analysis of generative models [49], 9/03/22, Aurélien
Decelle and Cyril Furtlehner

• PhD - Herilalaina RAKOTOARISON, Automatic Algorithm Configuration for Power Grid Optimiza-
tion [50], 27/06/22, Marc Schoenauer and Michèle Sebag

• PhD - Théophile SANCHEZ, Reconstructing the past: deep learning for population genetics [51],
18/03/22, Guillaume Charpiat and Flora Jay

• PhD - Marion ULLMO, Emulation and prediction of cosmic web simulations through deep learning
[52], from 1/02/22, Nabila Aghanim (Institut d’Astrophysique Spatiale) and Aurélien Decelle

• PhD in progress - Guillaume BIED, Valorisation des Données pour la Recherche d’Emploi, 1/10/2019,
Bruno Crepon (CREST-ENSAE) and Philippe Caillou

• PhD in progress - Eva BOGUSLAWSKI Congestion handling on Power Grid governed by complex
automata, from 1/05/22, Alessandro Leite, Mathieu Dussartre (RTE) and Marc Schoenauer

• PhD in progress - Romain EGELE, Data-centric automated deep learning, from 1/01/22, Isabelle
Guyon/Michèle Sebag

• PhD in progress - Jérémy GUEZ, Statistical inference of cultural transmission of reproductive success,
1/10/2019, Evelyne Heyer (MNHN) and Flora Jay

• PhD in progress - Isabelle HOXHA, Neurocognitive mechanisms of perceptual anticipation in
decision-making, from 1/10/2020, Michel-Ange Amorim (Faculté des Sciences du Sport), Sylvain
Chevallier and Arnaud Delorme (CerCo)

• PhD in progress - Badr Youbi IDRISSI Learning an invariant representation through continuously
evolving data, from 01/10/22, David Lopez-Paz (Meta) and Michèle Sebag

• PhD in progress - Armand LACOMBE, Causal Modeling for Vocational training Recommendation,
1/10/2019, Michele Sebag and Philippe Caillou

• PhD in progress - Wenzhuo LIU, Graph Neural Networks for Numerical Simulation of PDEs, from
1/11/2019, Mouadh Yagoubi (IRT SystemX) and Marc Schoenauer

• PhD in progress - Romain LLORIA. Geometrical Robust Blind Source Separation: Application to EEG
classification, from 1/11/2022, Frédéric Pascal (L2S), Florent Bouchard (L2S), and Sylvain Chevallier

• PhD in progress - Emmanuel MENIER, Complementary Deep Reduced Order Model, from 1/9/2020,
Michele Alessandro Bucci and Marc Schoenauer

• PhD in progress - Thibault MONSEL, Active Deep Learning for Complex Physical Systems, 1/12/21,
Alexandre Allauzen (LAMSADE), Guillaume Charpiat, Lionel Mathelin (LISN), Onofrio Semeraro
(LISN)

• PhD in progress - Mathieu NASTORG, Machine Learning enhanced resolution of Navier-Stokes
equations on general unstructured grids, 4/1/2021, Guillaume Charpiat and Michele Alessandro
Bucci.

• PhD in progress - Adrien PAVAO, Theory and practice of challenge organization, from 1/03/2020,
Isabelle Guyon.

• PhD in progress - Francisco PEZZICOLI A new generation of Graph Neural Networks to tackle
amorphous materials from 1/11/2021, François Landes and Guillaume Charpiat.

• PhD in progress - Audrey POINSOT, Causal Uncertainty Quantification under Partial Knowledge and
Low Data Regimes, from 1/03/22, Nicolas Chesneau (Ekimetrics), Guillaume Charpiat, Alessandro
Leite, and Marc Schoenauer
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• PhD in progress - Arnaud QUELIN, Infering Human population history with approximated Bayesian
computation and machine learning, from ancient and recent genoms’ polymorphism data, from
1/10/22, Frédéric Austerlitz (MNHN), Flora Jay

• PhD in progress - Cyriaque ROUSSELOT, Spatio-temporal causal discovery – Application to modeling
pesticides impact, from 1/10/22, Michèle Sebag

• PhD in progress - Vincenzo SCHIMMENTI, Eartquake Predictions: Machine Learned Features using
Expert Models Simulations, from 1/11/2020, François Landes and Alberto Rosso (LPTMS)

• PhD in progress - Antoine SZATKOWNIK, Deep learning for population genetics, from 1/10/22, Flora
Jay, Burak Yelmen, Cyril Furtlehner and Guillaume Charpiat

• PhD in progress - Manon VERBOCKHAVEN, Spotting and fixing expressivity bottlenecks, from
11/2021, Sylvain Chevallier and Guillaume Charpiat

• PhD in progress - Assia WIRTH, Coloniality of the production of facial recognition technologies,
started 01/04/2021, Paola Tubaro

• PhD in progress - Maria Sayu YAMAMOTO, Tackling the large variability of EEG data using Rieman-
nian geometry toward reliable Brain-Computer Interfaces, from 01-04-2021, Sylvain Chevallier and
Fabien Lotte (INRIA Bordeaux Potioc)

11.2.3 Juries

• Marc Schoenauer, PhD jury member, Paul Defossé, 22/12/22, CMAP Ecole Polytechnique, Palaiseau;
PhD jury member, Ekhi Ajuria, 5/12/2022, Cerfacs, Toulouse; PhD Committee (2nd year), Kaitlin
Maile, 16/12/2022, IRIT, Toulouse.

• Guillaume Charpiat, PhD jury member, Arthur Ouaknine, 04/03/22, Telecom, IPP, Palaiseau

• Michèle Sebag: HdR jury member: Ievgen Redko; Thomas Lampert; Raphael Féraud; PhD jury
member: Teo Sanchez; Naoufal Acharki; Marwa Kechaou; Fatoumata Dama

11.3 Popularization

11.3.1 Internal or external Inria responsibilities

• Marc Schoenauer, Deputy Research Director in charge of AI

• Marc Schoenauer, sherpa for Inria as pilot institution of the PEPR-IA (together with CEA and CNRS)

• Marc Schoenauer, scientific coordinator of ICT49 CSA Adra-e (coordinated by Inria)

11.3.2 Interventions

• Michèle Sebag; France Culture; RadioLibertaire; Exposé invité Sinclair Lab; Exposé invité, Labex
Nano-Saclay; participation table ronde, Expertise sur la régulation numérique, ministère des
Finances.

12 Scientific production
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https://doi.org/10.1088/1742-6596/664/7/072015
https://hal.inria.fr/hal-01745998
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