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2 Overall objectives

2.1 Introduction

An embedded architecture is an artifact of heterogeneous constituents and at the crossing of several
design viewpoints: software, embedded in hardware, interfaced with the physical world. Time takes
different forms when observed from each of these viewpoints: continuous or discrete, event-based or
time-triggered. Modeling and programming formalisms that represent software, hardware and physics
significantly alter this perception of time. Therefore, time reasoning in system design is usually isolated
to a specific design problem: simulation, profiling, performance, scheduling, parallelization, simulation.
The aim of project-team TEA is to define conceptually unified frameworks for reasoning on composition
and integration in cyber-physical system design, and to put this reasoning to practice by revisiting
analysis and synthesis issues in real-time system design with soundness and compositionality gained
from formalization.

2.2 Context

In the construction of complex systems, information technology (IT) has become a central force of
revolutionary changes, driven by the exponential increase of computational power. In the field of
telecommunication, IT provides the necessary basis for systems of networked distributed applications. In
the field of control engineering, IT provides the necessary basis for embedded control applications. The
combination of telecommunication and embedded systems into networked embedded systems opens up
a new range of systems, capable of providing more intelligent functionalities, thanks to information and
communication (ICT). Networked embedded systems have revolutionized several application domains:
energy networks, industrial automation and transport systems.

20th-century science and technology brought us effective methods and tools for designing both
computational and physical systems, such as for instance Simulink and Matlab. But the design of cyber-
physical systems (CPS) is much more than the union of those two fields. Traditionally, information
scientists only have a hazy notion of requirements imposed by the physical environment of computers.
Similarly, mechanical, civil, and chemical engineers view computers strictly as devices executing algo-
rithms. CPS design is, to date, mostly executed in this ad-hoc manner, without sound, mathematically
grounded, integrative methodology. A new science of CPS design will allow to create machines with
complex dynamics and high control reliability, and apply to new industries and applications, such as
IoT or edge devices, in a reliable and economically efficient way. Progress requires nothing less than the
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construction of a new science and technology foundation for CPS that is simultaneously physical and
computational.

2.3 Motivations

Beyond the buzzword, a CPS is a ubiquitous object of our everyday life. CPSs have evolved from individual
independent units (e.g. an ABS brake) to more and more integrated networks of units, which may be
aggregated into larger components or sub-systems. For example, a transportation monitoring network
aggregates monitored stations and trains through a large scale distributed system with relatively high
latency. Each individual train is being controlled by a train control network, each car in the train has its
own real-time bus to control embedded devices. More and more, CPSs are mixing real-time low latency
technology with higher latency distributed computing technology.

A common feature found in CPSs is the ever presence of concurrency and parallelism in models.
Large systems are increasingly mixing both types of concurrency. They are structured hierarchically
and comprise multiple synchronous devices connected by buses or networks that communicate asyn-
chronously. This led to the advent of so-called GALS (Globally Asynchronous, Locally Synchronous)
models, or PALS (Physically Asynchronous, Logically Synchronous) systems, where reactive synchronous
objects are communicating asynchronously. Still, these infrastructures, together with their programming
models, share some fundamental concerns: parallelism and concurrency synchronization, determinism
and functional correctness, scheduling optimality and calculation time predictability.

Additionally, CPSs monitor and control real-world processes, the dynamics of which are usually
governed by physical laws. These laws are expressed by physicists as mathematical equations and
formulas. Discrete CPS models cannot ignore these dynamics, but whereas the equations express the
continuous behavior usually using real (irrational) variables, the models usually have to work with discrete
time and approximate floating point variables.

2.4 Challenges

A cyber-physical, or reactive, or embedded system is the integration of heterogeneous components
originating from several design viewpoints: reactive software, some of which is embedded in hardware,
interfaced with the physical environment through mechanical parts. Time takes different forms when
observed from each of these viewpoints: it is discrete and event-based in software, discrete and time-
triggered in hardware, continuous in mechanics or physics. Design of CPS often benefits from concepts of
multiform and logical time(s) for their natural description. High-level formalisms used to model software,
hardware and physics additionally alter this perception of time quite significantly.

In model-based system design, time is usually abstracted to serve the purpose of one of many design
tasks: verification, simulation, profiling, performance analysis, scheduling analysis, parallelization,
distribution, or virtual prototyping. For example in non-real-time commodity software, timing abstraction
such as number of instructions and algorithmic complexity is sufficient: software will run the same on
different machines, except slower or faster. Alternatively, in cyber-physical systems, multiple recurring
instances of meaningful events may create as many dedicated logical clocks, on which to ground modeling
and design practices.

Time abstraction increases efficiency in event-driven simulation or execution (i.e SystemC simula-
tion models try to abstract time, from cycle-accurate to approximate-time, and to loosely-time), while
attempting to retain functionality, but without any actual guarantee of valid accuracy (responsibility is
left to the model designer). Functional determinism (a.k.a. conflict-freeness in Petri Nets, monotonicity
in Kahn PNs, confluence in Milner’s CCS, latency-insensitivity and elasticity in circuit design) allows for
reducing to some amount the problem to that of many schedules of a single self-timed behavior, and
time in many system studies is partitioned into models of computation and communication (MoCCs).
Multiple, multiform time(s) raises the question of combination, abstraction or refinement between
distinct time bases. The question of combining continuous time with discrete logical time calls for proper
discretization in simulation and implementation. While timed reasoning takes multiple forms, there is
no unified foundation to reason about multi-form time in system design.

The objective of project-team TEA is henceforth to define formal models for timed quantitative rea-
soning, composition, and integration in embedded system design. Formal time models and calculi should
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allow us to revisit common domain problems in real-time system design, such as time predictability
and determinism, memory resources predictability, real-time scheduling, mixed-criticality and power
management; yet from the perspective gained from inter-domain timed and quantitative abstraction or
refinement relations. A regained focus on fundamentals will allow to deliver better tooled methodologies
for virtual prototyping and integration of embedded architectures.

3 Research program

3.1 Previous Works

The challenges of team TEA support the claim that sound Cyber-Physical System design (including
embedded, reactive, and concurrent systems altogether) should consider multi-form time models as a
central aspect. In this aim, architectural specifications found in software engineering are a natural focal
point to start from. Architecture descriptions organize a system model into manageable components,
establish clear interfaces between them, collect domain-specific constraints and properties to help
correct integration of components during system design. The definition of a formal design methodol-
ogy to support heterogeneous or multi-form models of time in architecture descriptions demands the
elaboration of sound mathematical foundations and the development of formal calculi and methods to
instrument them.

System design based on the “synchronous paradigm” has focused the attention of many academic
and industrial actors on abstracting non-functional implementation details from system design. This
elegant design abstraction focuses on the logic of interaction in reactive programs rather than their timed
behavior, allowing to secure functional correctness while remaining an intuitive programming model for
embedded systems. Yet, it corresponds to embedded technologies of single cores and synchronous buses
from the 90s, and may hardly cover the semantic diversity of distribution, parallelism, heterogeneity, of
cyber-physical systems found in 21st century Internet-connected, true-time-synchronized clouds, of
tomorrow’s grids.

By contrast with a synchronous hypothesis, yet from the same era, the polychronous MoCC is inher-
ently capable of describing multi-clock abstractions of GALS systems. Polychrony is implemented in the
data-flow specification language Signal, available in the Eclipse project POP (Polychrony on Polarsys) and
in the CCSL standard Clock Constraints in CCSL available from the TimeSquare project. Both provide
tooled infrastructures to refine high-level specifications into real-time streaming applications or locally
synchronous and globally asynchronous systems, through a series of model analysis, verification, and
synthesis services. These tool-supported refinement and transformation techniques can assist the system
engineer from the earliest design stages of requirement specification to the latest stages of synthesis,
scheduling and deployment. These characteristics make polychrony much closer to the required semantic
for compositional, refinement-based, architecture-driven, system design.

While polychrony was a step ahead of the traditional synchronous hypothesis, CCSL is a leap forward
from synchrony and polychrony. The essence of CCSL is “multi-form time” toward addressing all of the
domain-specific physical, electronic and logical aspects of cyber-physical system design.

3.2 Timed Modeling

To formalize timed semantics for system design, we shall rely on algebraic representations of time as
clocks found in previous works and introduce a paradigm of "time system": refinement types that
represent timed behaviors. Just as a type system abstracts data carried along operations in a program,
a “time system” abstracts the causal interaction of that program module or hardware element with its
environment, its pre- and post-conditions, its assumptions and guarantees, either logical or numerical,
discrete or continuous. Some fundamental concepts we envision are present in the clock calculi found
in data-flow synchronous languages like Signal or Lustre, yet bound to a particular model of timed
concurrency.

In particular, the principle of refinement type systems 1, is to associate information (data-types)
inferred from programs and models with properties pertaining, for instance, to the algebraic domain

1Abstract Refinement Types. N. Vazou, P. Rondon, and R. Jhala. European Symposium on Programming. Springer, 2013.

https://www.polarsys.org/projects/polarsys.pop
http://hal.inria.fr/inria-00280941
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on their value, or any algebraic property related to its computation: effect, memory usage, pre-post
condition, value-range, cost, speed, time, temporal logic 2. Being grounded on type and domain theories,
such type systems system should naturally be equipped with program analysis techniques based on type
inference (for data-type inference) or abstract interpretation (for program properties inference) to help
establish formal relations between heterogeneous component “types”.

Gaining scalability requires the capacity to modularly decompose systems which can be obtained us-
ing Abadi and Lamport’s “Composing Specifications” and implemented by the notion of assume-guarantee
contracts or Dijkstra monads. Verification problems encompassing heterogeneously timed specifications
are common and of great variety: checking correctness between abstract (e.g. the synchronous hypothe-
sis) and concrete time models (e.g. real-time architectures) relates to desynchronisation (from synchrony
to asynchrony) and scheduling analysis (from synchronous data-flow to hardware). More generally, they
can be perceived from heterogeneous timing viewpoints (e.g. mapping a synchronous-time software on
a real-time middleware or hardware).

This perspective demands capabilities to use abstraction and refinement mechanisms for time
models (using simulation, refinement, bi-simulation, equivalence relations) but also to prove more
specific properties (synchronization, determinism, endochrony). All this formalization effort will allow to
effectively perform the tooled validation of common cross-domain properties (e.g. cost v.s. power v.s.
performance v.s. software mapping) and tackle problems such as these integrating constraints of battery
capacity, on-board CPU performance, available memory resources, software schedulability, to logical
software correctness and plant controllability.

3.3 Modeling Architectures

To address the formalization of such cross-domain case studies, modeling the architecture formally plays
an essential role. An architectural model represents components in a distributed system as boxes with
well-defined interfaces, connections between ports on component interfaces, and specifies component
properties that can be used in analytical reasoning about the model.

In system design, an architectural specification serves several important purposes. First, it breaks
down a system model into components of manageable size and complexity, to establish clear interfaces
between components. In this way, complexity becomes manageable by hiding details that are not relevant
at a given level of abstraction. Clear, formally defined, and semantically rich component interfaces
facilitate integration by allowing most validation efforts to be conducted modularly. Connections between
components, which specify how components interact with each other, help propagate the guaranteed
effects of a component to the assumptions of linked components.

Most importantly, an architectural model is a repository to share knowledge about the system being
designed. This knowledge can be represented as requirements, design artifacts, component implemen-
tations, held together by a structural backbone. Such a repository enables automatic generation of
analytical models for different aspects of the system, such as timing, reliability, security, performance,
energy, etc. Since all the models are generated from the same source, the consistency of assumptions
w.r.t. guarantees, of abstractions w.r.t. refinements, used for different analyses becomes easier, and can
be properly ensured in a design methodology based on formal verification and synthesis methods.

3.4 Scheduling Theory

Based on sound formalization of time and CPS architectures, real-time scheduling theory provides tools
for predicting the timing behavior of a CPS which consists of many interacting software and hardware
components. Expressing parallelism among software components is a crucial aspect of the design process
of a CPS. It allows for efficient partition and exploitation of available resources.

The literature about real-time scheduling 3 provides very mature schedulability tests regarding
many scheduling strategies, preemptive or non-preemptive scheduling, uniprocessor or multiprocessor
scheduling, etc. Scheduling of data-flow graphs has also been extensively studied in the past decades.

2LTL types FRP. A. Jeffrey. Programming Languages meets Program Verification.
3A survey of hard real-time scheduling for multiprocessor systems. R. I. Davis and A. Burns. ACM Computing Survey 43(4), 2011.
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A milestone in this prospect is the development of abstract affine scheduling techniques 4. It consists,
first, of approximating task communication patterns (e.g. between Safety-Critical Java threads) using
cyclo-static data-flow graphs and affine functions. Then, it uses state of the art ILP techniques to find
optimal schedules and to concretize them as real-time schedules in the program implementations 5 6.

Abstract scheduling, or the use of abstraction and refinement techniques in scheduling borrowed
to the theory of abstract interpretation 7 is a promising development toward tooled methodologies to
orchestrate thousands of heterogeneous hardware/software blocks on modern CPS architectures (just
consider modern cars or aircrafts). It is an issue that simply defies the state of the art and known bounds
of complexity theory in the field, and consequently requires a particular focus.

3.5 Verified programming for system design

The IoT is a network of devices that sense, actuate and change our immediate environment. Against this
fundamental role of sensing and actuation, design of edge devices often considers actions and event
timings to be primarily software implementation issues: programming models for IoT abstract even
the most rudimentary information regarding timing, sensing and the effects of actuation. As a result,
applications programming interfaces (API) for IoT allow wiring systems fast without any meaningful
assertions about correctness, reliability or resilience.

We make the case that the "API glue" must give way to a logical interface expressed using contracts
or refinement types. Interfaces can be governed by a calculus – a refinement type calculus – to enable
reasoning on time, sensing and actuation, in a way that provides both deep specification refinement, for
mechanized verification of requirements, and multi-layered abstraction, to support compositionality
and scalability, from one end of the system to the other.

Our project seeks to elevate the “function as type” paradigm to that of “system as type”: to define
a refinement type calculus based on concepts of contracts for reasoning on networked devices and
integrate them as cyber-physical systems 8. An invited paper 9 outlines our progress with respect to this
aim and plans towards building a verified programming environment for networked IoT devices: we
propose a type-driven approach to verifying and building safe and secure IoT applications.

Accounting for such constraints in a more principled fashion demands reasoning about the composi-
tion of all the software and hardware components of the application. Our proposed framework takes a
step in this direction by (1) using refinement types to make physical constraints explicit and (2) imposing
an event-driven programming discipline to simplify the reasoning of system-wide properties to that of an
event queue. In taking this approach, a developer could build a verified IoT application by ensuring that
a well-typed program cannot violate the physical constraints of its architecture and environment.

4 Application domains

In collaboration with Mitsubishi R&D, we explore another application domain where time and domain
heterogeneity are prime concerns: factory automation. In factory automation alone, a system is con-
ventionally built from generic computing modules: PLCs (Programmable Logic Controllers), connected
to the environment with actuators and detectors, and linked to a distributed network. Each individual,
physically distributed, PLC module must be timely programmed to perform individually coherent actions
and fulfill the global physical, chemical, safety, power efficiency, performance and latency requirements of
the whole production chain. Factory chains are subject to global and heterogeneous (physical, electronic,
functional) requirements whose enforcement must be orchestrated for all individual components.

Model-based analysis in factory automation emerges from different scientific domains and focuses
on different CPS abstractions that interact in subtle ways: logic of PLC programs, real-time electro-
mechanical processing, physical and chemical environments. This yields domain communication

4Buffer minimization in EDF scheduling of data-flow graphs. A. Bouakaz and J.-P. Talpin. LCTES, ACM, 2013.
5ADFG for the synthesis of hard real-time applications. A. Bouakaz, J.-P. Talpin, J. Vitek. ACSD, IEEE, June 2012.
6Design of SCJ Level 1 Applications Using Affine Abstract Clocks. A. Bouakaz and J.-P. Talpin. SCOPES, ACM, 2013.
7La vérification de programmes par interprétation abstraite. P. Cousot. Séminaire au Collège de France, 2008.
8Refinement types for system design. Jean-Pierre Talpin. FDL’18 keynote.
9Steps toward verified programming of embedded computing systems. Jean-Pierre Talpin, Jean-Joseph Marty, Deian Stefan,

Shravan Nagarayan, Rajesh Gupta, DATE’18.
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problems that render individual domain analysis useless. For instance, if one domain analysis (e.g.
software) modifies a system model in a way that violates assumptions made by another domain (e.g.
chemistry) then the detection of its violation may well be impossible to explain to either the software or
chemistry experts. As a consequence, cross-domain analysis issues are discovered very late during system
integration and lead to costly fixes. This is particularly prevalent in multi-tier industries, such as avionic,
automotive, factories, where systems are prominently integrated from independently-developed parts.

5 Highlights of the year

We released the first fully verified implementation of "femto-containers": a virtual machine executing
eBPF scripts (extended Berkeley Packet Filters) to provide kernel extensibility in the RIOT operating
system [10]. The workflow of our implementation consisted of 1) modelling an executable interpreter of
the rBPF virtual machine in Coq; 2) formally verifying that the rBPF interpreter satisfies software faults
isolation; 3) refining this proof model into an equivalent monadic representation; 4) transpiling this
monadic representation as an imperative program in CompCert Clight using δx; 4) proving a forward
simulation relation between the monadic Coq model and the Clight implementation. The resulting
artifact: CertFC [6.1.1] was benchmarked, validated, and integrated to RIOT’s-featured femto-containers
as an open-source library. A second publication reports this evaluation and the integration of CertFC in
RIoT OS [11].

6 New software and platforms

6.1 New software

6.1.1 CertFC

Name: End-to-end Mechanized Proof of an eBPF Virtual Machine for Micro-controllers

Keywords: Virtualization, Network Function Virtualization, Proof, Isolation, Code generation

Functional Description: CertrBPF includes a verified C verifier and interpreter. The verifier performs
static checks to verify that the rBPF instructions are syntactically correct. If the verification succeeds,
the program is run by the interpreter. The static verification and the dynamic checks ensure software
fault isolation of the running rBPF propgram. Namely, we have the guarantee that:

The interpreter never crashes. More precisely, the proved C program is free of undefined behaviours
such as division by zero or invalid memory accesses. All the memory accesses are performed in
designated memory regions which are an argument of the interpreter.

The development of CertrBPF follows a refinement methodology with three main layers:

The proof model: an executable Coq specification of the rBPF virtual machine The synthesis model:
a refined and optimised executable Coq program that is close in style to a C program. Eventually,
we have the synthesis model (named dx model) which is compliant with the dx C extraction tool.
The implementation model: the extracted C implementation in the form of CompCert Clight AST.

URL: https://github.com/future-proof-iot/CertFC

Authors: Shenghao Yuan, Jean-Pierre Talpin, Frederic Besson, Samuel Hym, Koen Zandberg, Emmanuel
Baccelli

Contact: Jean-Pierre Talpin

6.1.2 ADFG

Name: Affine data-flow graphs schedule synthesizer

Keywords: Code generation, Scheduling, Static program analysis

https://github.com/future-proof-iot/CertFC
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Functional Description: ADFG is a synthesis tool of real-time system scheduling parameters: ADFG
computes task periods and buffer sizes of systems resulting in a trade-off between throughput
maximization and buffer size minimization. ADFG synthesizes systems modeled by ultimately
cyclo-static dataflow (UCSDF) graphs, an extension of the standard CSDF model.

Knowing the WCET (Worst Case Execute Time) of the actors and their exchanges on the channels,
ADFG tries to synthezise the scheduler of the application. ADFG offers several scheduling policies
and can detect unschedulable systems. It ensures that the real scheduling does not cause overflows
or underflows and tries to maximize the throughput (the processors utilization) while minimizing
the storage space needed between the actors (i.e. the buffer sizes).

Abstract affine scheduling is first applied on the dataflow graph, that consists only of periodic actors,
to compute timeless scheduling constraints (e.g., relations between the speeds of two actors) and
buffering parameters. Then, symbolic schedulability policies analysis (i.e., synthesis of timing and
scheduling parameters of actors) is applied to produce the scheduler for the actors.

ADFG, initially defined to synthesize real-time schedulers for SCJ/L1 applications, may be used for
scheduling analysis of AADL programs.

URL: https://gitlab.inria.fr/ADFG/ADFG

Authors: Thierry Gautier, Jean-Pierre Talpin, Adnan Bouakaz, Alexandre Honorat, Loïc Besnard, Hai
Nam Tran

Contact: Jean-Pierre Talpin

7 New results

7.1 Verified programming and secure integration of operating system libraries in
RIOT-fp

Participants: Shenghao Yuan, Jean-Pierre Talpin.

Our project aims at the formal verification of safety and security properties for embedded operating
system libraries in the RIOT operating system, focusing on a virtual machine to implement kernel-
extensibility by hosting runtime applications and services using the virtual instruction set architecture
(ISA) of eBPF (extended Berkeley packet filter).

We implemented a fully verified rBPF virtual machine for RIOT’s "femto-containers" in the proof
assistant Coq [10]. The workflow of our implementation consists of 1) modelling an executable interpreter
of the rBPF virtual machine in Coq; 2) formally verifying that the rBPF interpreter satisfies software faults
isolation; 3) refining this proof model into a monadic form; 4) transpiling this monadic representation
as an imperative program in CompCert Clight; 4) proving a forward simulation relation between the
monadic Coq model and the Clight implementation.

The resulting artifact: CertFC [6.1.1] was then benchmarked, validated, and integrated to RIOT’s-
featured femto-containers as an open-source library. A second publication reports this evaluation and its
integration to RIoT OS [11].

7.2 Semantic foundations for cyber-physical systems using higher-order UTP

Participants: Jean-Pierre Talpin.

The associate-team CONVEX yielded a number of important results in the development of theorem-
proving models for cyber-physical systems verification, under the joint supervision of Xiong Xu with team

https://gitlab.inria.fr/ADFG/ADFG
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TEA and Naijun Zhan’s group at ISCAS, Beijing. In [8], we define an extension of Hoare&He’s Unifying
Theories of Programming (UTP) with higher-order quantification and provide a formal semantics for
modeling and verifying hybrid systems. Higher-order UTP (HUTP) provides a semantics foundation for
cyber-physical systems (CPSs). It separates the concerns in CPS design into time, state and trace, which
support the specification of discrete, real-time and continuous dynamics, concurrency and communica-
tion, and higher-order quantification. Within HUTP, we defined a calculus of normal hybrid designs to
model, analyze, compose, refine and verify heterogeneous hybrid system models. In addition, we defined
respective formal semantics for Hybrid Communicating Sequential Processes (HCSP) and Simulink using
HUTP and justified the correctness of the translation from Simulink to HCSP by translation validation as
an application of HUTP. We have started applying this framework to co-modeling real-time hardware plat-
forms in AADL and hybrid discrete-continuous models in Simulink/Stateflow (AADL+S/S) to uniformly
analyze and verify this combination in HUTP. In this aim, [9] provides, to our knwoledge, the simplest
formalization of a semantic for Simulink.

We are furthering our study and application of the HUTP in the Isabelle/HOL theorem prover by
developping a hybrid extension of Milner’s π-calculus. Our aim is to model, analyze and verify mobile
hybrid systems, or more generally mobile and extensible hybrid systems as found in the IoT in the form
of intermittent, mobile, distributed cyber-physical systems such as transportation grids in general (data,
resources, vehicules).

First, based on our previous work on higher-order unifying theories of programming (HUTP), we
will investigate the mechanism of mobile hybrid systems, i.e., an HUTP theory extended with mobility.
Then, we will focus on the operational semantics of a hybrid extension to a generic π-calculus. Finally, we
will refine this theory to a protocolar session calculus and build a session type system for hybrid mobile
processes, to characterize important safety and security properties, such as determinism and isolation.

7.3 A logical framework to verify requirements of hybrid system models

Participants: Stéphane Kastenbaum, Jean-Pierre Talpin.

The goal of this PhD project is to build on the previous work done in Simon Lunel’s PhD thesis. The
goal is to ensure the correctness-by-design of cyber-physical system models. It deals with cyber-physical
systems (CPS), which are assemblies of networked, heterogeneous, hardware, and software components
sensing, evaluating, and actuating a physical environment. This heterogeneity induces complexity that
makes CPSs challenging to model correctly. Since CPSs often have critical functions, it is however of
utmost importance to formally verify them in order to provide the highest guarantees of safety. Faced
with CPS complexity, model abstraction becomes paramount to make verification attainable. To this end,
assume/guarantee contracts enable component model abstraction to support a sound, structured, and
modular verification process.

While abstractions of models by contracts are usually proved sound, none of the related contract
frameworks themselves have, to the best of our knowledge, been formally proved correct so far. In this aim,
we present the formalization of a generic assume/guarantee contract theory in the Coq proof assistant.
We identify and prove theorems that ensure its correctness. Our theory is generic, or parametric, in that it
can be instantiated and used with any given logic, in particular hybrid logics, in which highly complex
cyber-physical systems can uniformly be described.

We are pursuing the development of this model by instantiating this parametric theory with differen-
tial dynamic logic, a language to specify cyber-physical sytems. This instantiation provides a use case for
the meta-theory of contracts. To this end, we are using CoqDL, a formalization of differential dynamic
logic that was developed by the Logical Systems Lab of Carnegie Mellon University.

7.4 ADFG: Affine data-flow graphs scheduler synthesis

Participants: Thierry Gautier, Jean-Pierre Talpin.
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We continued our research involving the development of advanced signal processing dataflow meth-
ods for the ADFG tool. This research is collaboratively developed with the TEA Team, Hai Nam Tran
(Lab-STICC/UBO), Alexandre Honorat (INSA) and Shuvra Bhattacharyya (UMD/INSA/INRIA). Our em-
phasis during this reporting period is the public release of the ADFG infrastructure on Gitlab 6.1.2.

8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

Inria – Mitsubishi Electric framework program (2018+)

Title: Inria – Mitsubishi Electric framework program

INRIA principal investigator: Jean-Pierre Talpin

International Partner: Mitsubishi Electric R&D Europe (MERCE)

Duration: 2018+

Abstract: Following up the fruitful collaboration of TEA with the formal methods group at MERCE,
Inria and Mitsubishi Electric signed an Inria-wide collaboration agreement, which currently hosts
projects with project-teams Sumo and Tea, as well as Toccata.

8.2 Bilateral grants with industry

Participants: Jean-Pierre Talpin, Stéphane Kastenbaum.

Mitsubishi Electric R&D Europe (2019-2022)

Title: A logical framework to verify requirements of hybrid system models

INRIA principal investigator: Jean-Pierre Talpin, Stéphane Kastenbaum

International Partner: Mitsubishi Electric R&D Europe

Duration: 2019 - 2022

Abstract: The goal of this doctoral project is to verify and build cyber-physical systems (CPSs)
with a correct-by-construction approach in order to validate system requirements against the two
facets of the cyber and physical aspects of such designs. Our approach is based on components
augmented with formal contracts that can be composed, abstracted or refined. It fosters on the
proof of system-level requirements by composing individual properties proved at component
level. While semantically grounded, the tooling of this methodology should be usable by regular
engineers (i.e. not proof theory specialists).

9 Partnerships and cooperations

9.1 International initiatives

Associate Teams in the framework of the Inria International Program with the Chinese Academy of
Science
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Participants: Jean-Pierre Talpin, Thierry Gautier.

Title: Convex Compositional Verification of Cyber-Physical Systems (Convex)

Partner Institution: Institute of Software, Chinese Academy of Science (ISCAS)

Date/Duration: 3 years Formal modeling and verification methods have successfully improved software
safety and security in vast application domains in transportation, production and energy. However,
formal methods are labor-intensive and require highly trained software developers. Challenges
facing formal methods stem from rapid evolution of hardware platforms, the extensibility and
increasing cost of software infrastructures, and from the interaction between software, hardware
and physics in mobile and networked cyber-physical systems. Automation and expressivity of
formal verification tools must be improved not only to scale functional verification to very large
software stacks, but also verify non-functional properties from models of hardware (time, energy)
and physics (domain). Abstraction, compositionality and refinement are essential properties to
provide the necessary scalability to tackle the complexity of system design with methods able to
scale heterogeneous, concurrent, networked, timed, extensible, discrete and continuous models
of cyber-physical systems. The aim of project Convex is to define a verified CPS architecture
design methodology that takes advantage of existing time and concurrency modeling standards, yet
focuses on interfacing heterogeneous and exogenous models using simple, mathematically-defined
structures, to achieve the single goal of correctly integrating CPS components.

9.1.1 Visits to international teams

Jean-Pierre Talpin

Visited institution: ISCAS

Country: China

Dates: 15/12/22 - 28/01/23

Context of the visit: Convex

Mobility program/type of mobility: definition and developement of a hybrid π-calculus in the HOL4
theorem prover.

9.2 National initiatives

Participants: Jean-Pierre Talpin, Shenghao Yuan.

Title: RIOT-fp: Future-proof IoT

Duration: 4 years

Coordinator: Emmanuel Bachelli

Partners: Tribe, Eva, Grace, Prosecco, Tea, Freie Universität Berlin and Fujitsu.

Summary: RIOT-fp is a research project on cyber-security targeting low-end, microcontroller-based
IoT devices, on which operating systems such as RIOT run, and the development of a low-power
network stack. Taking a global and practical approach, RIOT-fp gathers partners planning to
enhance RIOT with an array of security mechanisms. The main challenges tackled by RIOT-fp
are: 1/ developing high-speed, high-security, low-memory IoT crypto primitives, 2/ providing
guarantees for software execution on low-end IoT devices, and 3/ enabling secure IoT software

http://convex.irisa.fr
http://convex.irisa.fr
https://future-proof-iot.github.io
https://future-proof-iot.github.io
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updates and supply-chain, over the network. Beyond academic outcomes, the output of RIOT-fp
is open source code published, maintained and integrated in the open source ecosystem around
RIOT. As such, RIOT-fp strives to contribute usable building blocks for an open source IoT solution
improving the typical functionality vs. risk tradeoff for end-users. The goal of project-team TEA
in RIOT-fp is to build verified operating system libraries for IoT devices using proof-oriented
programming techniques in Coq and F*, such as the actual bootloader of RIOT and its femto-
containers: virtual machines isolating kernel-level execution of user-supplied applications and
services using the eBPF virtual ISA.

10 Dissemination

Participants: Jean-Pierre Talpin.

10.1 Promoting scientific activities

Jean-Pierre Talpin chairs the steering committee of the ACM-IEEE International Conference on Formal
Methods and Models for System Design (MEMOCODE) which, for its 20th anniversary, joined the ESWEEK
event.

He also cochaired the program committee of the Symposium on Dependable Software Engineering:
Theories, Tools and Applications (SETTA’22).

He participated in the program committee of the International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS XXII) and of the 1st International Workshop
on Formal Engineering of Cyber-Physical Systems (FE-CPS@TASE’22).

10.2 Juries

Jean-Pierre Talpin served as rapporteur and president for the Ph.D. defense committee of Frédéric Fort,
entitled "Programing adaptative real-time systems", at the University of Lille.

He also served as rapporteur for the Ph.D. defense committee of Nicolas Dejon, entitled "Conception
d’un noyau sécurisé pour objets contraints", at the University of Lille.

10.3 Supervision

Jean-Pierre Talpin surpervises the Ph.D. Thesis of Shenghao Yuan with Frédéric Besson, Inria Epicure
(registered with University of Rennes, since 2020).

Jean-Pierre Talpin surpervises the Ph.D. Thesis of Shenghao Yuan with Benoït Boyer, MERCE (regis-
tered with University of Rennes, since 2019).

11 Scientific production

11.1 Major publications

[1] L. Besnard, T. Gautier, P. Le Guernic, C. Guy, J.-P. Talpin, B. Larson and E. Borde. ‘Formal Semantics
of Behavior Specifications in the Architecture Analysis and Design Language Standard’. In: Cyber-
Physical System Design from an Architecture Analysis Viewpoint. Cyber-Physical System Design from
an Architecture Analysis Viewpoint. Springer, Jan. 2017. DOI: 10.1007/978-981-10-4436-6_3.
URL: https://hal.inria.fr/hal-01615143.

[2] L. Besnard, T. Gautier, P. Le Guernic and J.-P. Talpin. ‘Compilation of Polychronous Data Flow
Equations’. In: Synthesis of Embedded Software. Ed. by S. K. Shukla and J.-P. Talpin. Springer, 2010,
pp. 1–40. DOI: 10.1007/978-1-4419-6400-7_1. URL: https://hal.inria.fr/inria-005404
93.

https://doi.org/10.1007/978-981-10-4436-6_3
https://hal.inria.fr/hal-01615143
https://doi.org/10.1007/978-1-4419-6400-7_1
https://hal.inria.fr/inria-00540493
https://hal.inria.fr/inria-00540493
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[3] A. Bouakaz and J.-P. Talpin. ‘Design of Safety-Critical Java Level 1 Applications Using Affine Abstract
Clocks’. In: International Workshop on Software and Compilers for Embedded Systems. St. Goar,
Germany, June 2013, pp. 58–67. DOI: 10.1145/2463596.2463600. URL: https://hal.inria.fr
/hal-00916487.

[4] A. Honorat, H. N. Tran, L. Besnard, T. Gautier, J.-P. Talpin and A. Bouakaz. ‘ADFG: a scheduling
synthesis tool for dataflow graphs in real-time systems’. In: International Conference on Real-Time
Networks and Systems. Grenoble, France, Oct. 2017, pp. 1–10. DOI: 10.1145/3139258.3139267.
URL: https://hal.inria.fr/hal-01615142.

[5] S. Lunel, S. Mitsch, B. Boyer and J.-P. Talpin. ‘Parallel Composition and Modular Verification of
Computer Controlled Systems in Differential Dynamic Logic’. In: FM 2019 - 23rd International
Symposium on Formal Methods. Long version of an article accepted to the conference FM’19. Porto,
Portugal, Oct. 2019, pp. 1–22. URL: https://hal.inria.fr/hal-02193642.

[6] S. Nakajima, J.-P. Talpin, M. Toyoshima and H. Yu. Cyber-Physical System Design from an Architecture
Analysis Viewpoint. Communications of NII Shonan Meetings. Springer, Jan. 2017. DOI: 10.1007
/978-981-10-4436-6. URL: https://hal.inria.fr/hal-01615144.

[7] H. Yu, J. Prashi, J.-P. Talpin, S. K. Shukla and S. Shiraishi. ‘Model-Based Integration for Automotive
Control Software’. In: Digital Automation Conference. ACM. San Francisco, United States, June 2015.
URL: https://hal.inria.fr/hal-01148905.

11.2 Publications of the year

International journals

[8] X. Xu, J.-P. Talpin, S. Wang, B. Zhan and N. Zhan. ‘Semantics Foundation for Cyber-Physical Sys-
tems Using Higher-Order UTP’. In: ACM Transactions on Software Engineering and Methodology
(23rd Apr. 2022), pp. 1–47. DOI: 10.1145/3517192. URL: https://hal.inria.fr/hal-0388805
5.

[9] X. Xu, B. Zhan, S. Wang, J.-P. Talpin and N. Zhan. ‘A denotational semantics of Simulink with higher-
order UTP’. In: Journal of Logical and Algebraic Methods in Programming 130 (Jan. 2023), p. 100809.
DOI: 10.1016/j.jlamp.2022.100809. URL: https://hal.inria.fr/hal-03888092.

International peer-reviewed conferences

[10] S. Yuan, F. Besson, J.-P. Talpin, S. Hym, K. Zandberg and E. Baccelli. ‘End-to-end Mechanized Proof
of an eBPF Virtual Machine for Micro-controllers’. In: CAV 2022 - 34th International Conference on
Computer Aided Verification. Haifa, Israel, 7th Aug. 2022, pp. 1–23. URL: https://hal.inria.fr
/hal-03888082.

[11] K. Zandberg, E. Baccelli, S. Yuan, F. Besson and J.-P. Talpin. ‘Femto-Containers: Lightweight Virtual-
ization and Fault Isolation For Small Software Functions on Low-Power IoT Microcontrollers’. In:
Middleware 2022 - 23rd ACM/IFIP International Conference Middleware. quebec, Canada, 7th Nov.
2022, pp. 1–12. DOI: 10.1145/3528535.3565242. URL: https://hal.inria.fr/hal-03888109.
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