
2023
ACTIVITY REPORT

Project-Team

CASH

RESEARCH CENTRE

Inria Lyon Centre

IN PARTNERSHIP WITH:

Université Claude Bernard (Lyon 1), Ecole
normale supérieure de Lyon, CNRS

Compilation and Analyses for Software and
Hardware

IN COLLABORATION WITH: Laboratoire de l’Informatique du Parallélisme
(LIP)

DOMAIN

Algorithmics, Programming, Software and
Architecture

THEME

Architecture, Languages and Compilation

Contents

Project-Team CASH 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3

3 Research program 4
3.1 Research direction 1: Parallel and Dataflow Programming Models 4

3.1.1 Expected Impact . 5
3.1.2 Scientific Program . 5

3.2 Research direction 2: Expressive, Scalable and Certified Static Analyses 5
3.2.1 Expected impact . 7
3.2.2 Scientific Program . 7

3.3 Research direction 3: Optimizing Program Transformations 7
3.3.1 Expected impact . 9
3.3.2 Scientific Program . 10

3.4 Research direction 4: Simulation and Hardware . 11
3.4.1 Expected Impact . 11
3.4.2 Scientific Program . 12

4 Application domains 12

5 Social and environmental responsibility 13
5.1 Footprint of research activities . 13
5.2 Impact of research results . 13

6 Highlights of the year 13
6.1 Articles . 13

7 New software, platforms, open data 13
7.1 New software . 13

7.1.1 DCC . 13
7.1.2 PoCo . 14
7.1.3 Encore with dataflow explicit futures . 14
7.1.4 fkcc . 14
7.1.5 Vellvm . 15
7.1.6 vaphor . 15
7.1.7 Data Abstraction . 15
7.1.8 S4BXI . 16
7.1.9 llvm-pass . 16
7.1.10 ribbit . 16
7.1.11 calv . 16
7.1.12 adtr . 16
7.1.13 dowsing . 17
7.1.14 odoc . 17
7.1.15 PoLA . 17
7.1.16 Actors-OCaml . 18
7.1.17 ctrees . 18

8 New results 18
8.1 Research direction 1: Parallel and Dataflow Programming Models 18

8.1.1 Flexible Synchronization for Parallel Computations. 18
8.1.2 Locally abstract globally concrete semantics . 18
8.1.3 Deterministic parallel programs . 19
8.1.4 PNets: Parametrized networks of automata . 19

8.1.5 A Survey on Verified Reconfiguration . 19
8.1.6 Verified Compilation Infrastructure for Concurrent Programs 20
8.1.7 Operational Game Semantics . 20
8.1.8 Foundational support to datatypes and codatatypes in Coq 20
8.1.9 Actors and algebraic effects . 21

8.2 Research direction 2: Expressive, Scalable and Certified Analyses 21
8.2.1 Verification of electric properties on transistor-level descriptions of circuits, using

formal methods . 21
8.2.2 Search functions by types . 22
8.2.3 A new module system for OCaml . 22

8.3 Research direction 3: Optimizing Program Transformations 22
8.3.1 Memory optimizations for Algebraic Data Types . 22
8.3.2 Vellvm: Verified LLVM . 23
8.3.3 Verified Abstract Interpreters as Monadic Interpreters 23
8.3.4 A verified CompCert backend for OptiTrust . 23
8.3.5 Scalable Array Contraction using Trace-Based Polyhedral Analysis 24
8.3.6 Partial Evaluation of Dense Code on Sparse Structures 24

8.4 Research direction 4: Simulation and Hardware . 24
8.4.1 S4BXI: the MPI-ready Portals 4 Simulator . 24

9 Bilateral contracts and grants with industry 25
9.1 Partnertship with the Aniah startup on circuit verification . 25
9.2 CAVOC Project with Inria/Nomadic Labs . 25

10 Partnerships and cooperations 25
10.1 International initiatives . 25

10.1.1 Participation in other International Programs . 25
10.2 International research visitors . 26

10.2.1 Visits of international scientists . 26
10.2.2 Visits to international teams . 26

10.3 National initiatives . 27

11 Dissemination 27
11.1 Promoting scientific activities . 27

11.1.1 Scientific events: organisation . 27
11.1.2 Scientific events: selection . 27
11.1.3 Journal . 27
11.1.4 Conferences . 27
11.1.5 Leadership within the scientific community . 27
11.1.6 Scientific expertise . 28
11.1.7 Research administration . 28

11.2 Teaching - Supervision - Juries . 28
11.2.1 Teaching . 28
11.2.2 Supervision . 29
11.2.3 Defended Ph.D . 29
11.2.4 Juries . 29

11.3 Popularization . 29
11.3.1 Education . 29

12 Scientific production 30
12.1 Major publications . 30
12.2 Publications of the year . 30
12.3 Cited publications . 32

Project CASH 1

Project-Team CASH

Creation of the Project-Team: 2019 June 01

Keywords

Computer sciences and digital sciences

A2.1. – Programming Languages

A2.1.1. – Semantics of programming languages

A2.1.2. – Imperative programming

A2.1.4. – Functional programming

A2.1.6. – Concurrent programming

A2.1.7. – Distributed programming

A2.1.10. – Domain-specific languages

A2.1.11. – Proof languages

A2.2. – Compilation

A2.2.1. – Static analysis

A2.2.2. – Memory models

A2.2.3. – Memory management

A2.2.4. – Parallel architectures

A2.2.5. – Run-time systems

A2.2.6. – GPGPU, FPGA...

A2.2.8. – Code generation

A2.3.1. – Embedded systems

A2.4. – Formal method for verification, reliability, certification

A2.4.1. – Analysis

A2.4.2. – Model-checking

A2.4.3. – Proofs

A2.5.3. – Empirical Software Engineering

A2.5.4. – Software Maintenance & Evolution

A7.2.1. – Decision procedures

A7.2.3. – Interactive Theorem Proving

Other research topics and application domains

B9.5.1. – Computer science

https://radar.inria.fr/keywords/2023/computing
https://radar.inria.fr/keywords/2023/other

2 Inria Annual Report 2023

1 Team members, visitors, external collaborators

Research Scientists

• Christophe Alias [INRIA, Researcher, HDR]

• Ludovic Henrio [CNRS, Researcher, HDR]

• Gabriel Radanne [INRIA, Senior Researcher]

• Yannick Zakowski [INRIA, Researcher]

Faculty Member

• Matthieu Moy [Team leader, UNIV LYON I, Associate Professor, HDR]

Post-Doctoral Fellows

• Emmanuel Arrighi [ENS DE LYON, from Sep 2023, ATER]

• Bruno Ferres [INRIA, Post-Doctoral Fellow, until Aug 2023]

PhD Students

• Thaïs Baudon [ENS DE LYON]

• Nicolas Chappe [ENS DE LYON]

• Julien Emmanuel [ENS DE LYON, until Jan 2023]

• Amaury Maille [UNIV LYON I, ATER, until Aug 2023]

• Oussama Oulkaid [ANIAH, CIFRE]

• Alec Sadler [INRIA, from Sep 2023]

• Hugo Thievenaz [INRIA]

Interns and Apprentices

• Mohamed-Aymane Akil [INRIA, Intern, from May 2023 until Aug 2023]

• David Gozlan [INRIA, Intern, from May 2023 until Aug 2023]

• Galaad Langlois [ENS DE LYON, Intern, from Feb 2023 until Jul 2023]

• Nicolas Nardino [ENS de Lyon, Intern, from Feb 2023 until Jul 2023]

Administrative Assistant

• Elise Denoyelle [INRIA, from Dec 2023]

External Collaborator

• Laure Gonnord [GRENOBLE INP, HDR]

Project CASH 3

2 Overall objectives

Research objectives. The overall objective of the CASH team is to take advantage of the characteristics
of the specific hardware (generic hardware, hardware accelerators, or reconfigurable chips) to compile
energy efficient software and hardware. To reach this goal, the CASH team provides efficient analyses
and optimizing compilation frameworks for dataflow programming models. These contributions are
combined with two other research directions. First, research on foundations of programming language
and program analysis provides a theoretical basis for our work. Second, parallel and scalable simulation
of hardware systems, combined with high-level synthesis tools, result in an end-to-end workflow for
circuit design.

The scientific focus of CASH is on compute kernels and assembly of kernels, and the first goal is
to improve their efficient compilation. However the team also works in collaboration with application
developers, to understand better the overall need in HPC and design optimizations that are effective
in the context of the targeted applications. Small computation kernels (tens of lines of code) that can
be analyzed and optimized aggressively, medium-size kernels (hundreds of lines of code) that require
modular analysis, and assembly of compute kernels (either as classical imperative programs or written
directly in a dataflow language).

Our objective is to allow developers to design their own kernels, and benefit from good performance
in terms of speed and energy efficiency without having to deal with fine-grained optimizations by
hand. Consequently, our objective is first to improve the performance and energy consumption for HPC
applications, while providing programming tools that can be used by developers and are at a convenient
level of abstraction.

Obviously, large applications are not limited to assembly of compute kernels. Our languages and
formalism definitions and analyses must also be able to deal with general programs. Our targets also
include generalist programs with complex behaviors such as recursive programs operating on arrays,
lists and trees; worklist algorithms (we often use the polyhedral model, a powerful theory to optimize
loop nests, but it does not support data structures such as lists). Analysis on these programs should be
able to detect non licit memory accesses, memory consumption, hotspots, . . . , and to prove functional
properties.

Our Approach and methodology. We target a balance between theory and practice: problems extracted
from industrial requirements often yield theoretical problems.

On the practical side, the CASH team targets applied research, in the sense that most research topics
are driven by actual needs, discussed either through industrial partnership or extracted from available
benchmarks.

The theoretical aspects ensure the coherency and the correctness of our approach. We rely on a
precise definition of the manipulated languages and their semantics. The formalization of the different
representations of the programs and of the analyses allow us to show that these different tasks will be
performed with the same understanding of the program semantics.

Our approach is to cross-fertilize between several communities. For example, the abstract interpreta-
tion community provides a sound theoretical framework and very powerful analysis, but these are rarely
applied in the context of optimizing compilation. Similarly, the hardware simulation community usually
considers compilers as black-boxes and does not interact with researchers in compilation.

While a global approach links CASH activities and members, we do not plan to have a single unified
toolchain where all contributions would be implemented. For example, contributions in the domain of
static analysis of sequential programs may be implemented in the LLVM tool, results on dataflow models
are applied both in the SigmaC compiler and in the DCC HLS tool, . . . This also implies that different
activities of CASH target different application domains and potential end-users.

Research directions. The main objectives of the cash team are to provide scalable and expressive
static analysis and optimizing parallel compilers. These directions rely on programming languages and
representation of programs in which parallelism and dataflow play a crucial role. A central research
direction aims at the study of parallelism and dataflow aspects in programming languages, both from a
practical perspective (syntax or structure), and from a theoretical point of view (semantics). The CASH

4 Inria Annual Report 2023

team also has simulation activities that are both applied internally in CASH, to simulate intermediate
representations, and for embedded systems.

3 Research program

3.1 Research direction 1: Parallel and Dataflow Programming Models

In the last decades, several frameworks have emerged to design efficient compiler algorithms. The
efficiency of all the optimizations performed in compilers strongly relies on effective static analyses and
intermediate representations. Dataflow models are a natural intermediate representation for hardware
compilers (HLS) and more generally for parallelizing compilers. Indeed, dataflow models capture task-
level parallelism and can be mapped naturally to parallel architectures. In a way, a dataflow model is
a partition of the computation into processes and a partition of the flow dependences into channels.
This partitioning prepares resource allocation (which processor/hardware to use) and medium-grain
communications.

The main goal of the CASH team is to provide efficient analyses and the optimizing compilation
frameworks for dataflow programming models. The results of the team relies on programming languages
and representation of programs in which parallelism and dataflow play a crucial role. This first research
direction aims at defining these dataflow languages and intermediate representations, both from a
practical perspective (syntax or structure), and from a theoretical point of view (semantics). This first
research direction thus defines the models on which the other directions will rely. It is important to
note that we do not restrict ourselves to a strict definition of dataflow languages: more generally, we are
interested in the parallel languages in which dataflow synchronization plays a significant role.

Intermediate dataflow model. The intermediate dataflow model is a representation of the program that
is adapted for optimization and scheduling. It is obtained from the analysis of a (parallel or sequential)
program and should at some point be used for compilation. The dataflow model must specify precisely
its semantics and parallelism granularity. It must also be analyzable with polyhedral techniques, where
powerful concepts exist to design compiler analysis, e.g., scheduling or resource allocation. Polyhedral
Process Networks [63] extended with a module system could be a good starting point. But then, how to fit
non-polyhedral parts of the program? A solution is to hide non-polyhedral parts into processes with a
proper polyhedral abstraction. This organization between polyhedral and non-polyhedral processes will
be a key aspect of our medium-grain dataflow model. The design of our intermediate dataflow model
and the precise definition of its semantics will constitute a reliable basis to formally define and ensure
the correctness of algorithms proposed by CASH: compilation, optimizations and analyses.

Dataflow programming languages. Dataflow paradigm has also been explored quite intensively in
programming languages. Indeed, there exists a large panel of dataflow languages, whose characteristics
differ notably, the major point of variability being the scheduling of agents and their communications.
There is indeed a continuum from the synchronous dataflow languages like Lustre [45] or Streamit [59],
where the scheduling is fully static, and general communicating networks like KPNs [47] or RVC-Cal [29]
where a dedicated runtime is responsible for scheduling tasks dynamically, when they can be executed.
These languages share some similarities with actor languages that go even further in the decoupling of
processes by considering them as independent reactive entities. Another objective of the CASH team is
to study dataflow programming languages, their semantics, their expressiveness, and their compilation.
The specificity of the CASH team is that these languages will be designed taking into consideration the
compilation using polyhedral techniques. In particular, we will explore which dataflow constructs are
better adapted for our static analysis, compilation, and scheduling techniques. In practice we want to
propose high-level primitives to express data dependency, this way the programmer can express parallel-
ism in a dataflow way instead of the classical communication-oriented dependencies. The higher-level
more declarative point of view makes programming easier but also give more optimization opportunities.
These primitives will be inspired by the existing works in the polyhedral model framework, as well as
dataflow languages, but also in the actors and active object languages [37] that nowadays introduce
more and more dataflow primitives to enable data-driven interactions between agents, particularly with
futures [34, 42].

Formal semantics

Project CASH 5

Proving the correctness of an analysis or of a program transformation requires a formal semantics
of the language considered. Depending on the context, our formalizations may take the form of paper
definitions, or of a mechanization inside of a proof assistant. While more time consuming, the latter
may ensure in the adequate context some additional trust in the proofs established, as well as a tighter
connection to an executable artifact. We have been recently studying in particular the formalization
of concurrent and parallel paradigms, under weak memory models notably, by building on top of the
interaction tree [66] approach developed for the Coq proof assistant.

Programming models and program transformations.
So far, the programming models designed in this direction allow to express parallelism in novel ways,

but don’t leverage the optimising compiler transformation introduced in direction 3. Indeed, optimising
compilers only provide control over their behavior through extra-language annotations called “pragmas”.
Since those annotations are outside the language, they do not benefit from abstraction and modularity,
and are often brittle. We plan to provide better integration between the optimisation passes of compiler
inside the language itself through the use of meta-programming, by presenting optimisations as first class
objects which can be applied, composed and manipulated in the language. A first step of this long term
project is to investigate how to express loop transformations (developed by polyhedral model approaches)
using existing meta-programming constructs.

3.1.1 Expected Impact

The impact of this research direction is both the usability of our representation for static analyses and
optimizations performed in Sections 3.2 and 3.3, and the usability of its semantics to prove the correctness
of these analyses.

3.1.2 Scientific Program

Medium-term activities. We plan to extend the existing results to widen the expressiveness of our
intermediate representation and design new parallelism constructs. We will also work on the semantics
of dataflow languages:

• Propose new stream programming models and a clean semantics where all kinds of parallelisms
are expressed explicitly, and where all activities from code design to compilation and scheduling
can be clearly expressed.

• Identify a core language that is rich enough to be representative of the dataflow languages we are
interested in, but abstract and small enough to enable formal reasoning and proofs of correctness
for our analyses and optimizations.

Long-term activities. In a longer-term vision, the work on semantics, while remaining driven by the
applications, would lead to to more mature results, for instance:

• Design more expressive dataflow languages and intermediate representations which would at the
same time be expressive enough to capture all the features we want for aggressive HPC optim-
izations, and sufficiently restrictive to be (at least partially) statically analyzable at a reasonable
cost.

• Define a module system for our medium-grain dataflow language. A program will then be divided
into modules that can follow different compilation schemes and execution models but still commu-
nicate together. This will allow us to encapsulate a program that does not fit the polyhedral model
into a polyhedral one and vice versa. Also, this will allow a compositional analysis and compilation,
as opposed to global analysis which is limited in scalability.

3.2 Research direction 2: Expressive, Scalable and Certified Static Analyses

The design and implementation of efficient compilers becomes more difficult each day, as they need
to bridge the gap between complex languages and complex architectures. Application developers use
languages that bring them close to the problem that they need to solve which explains the importance of

6 Inria Annual Report 2023

high-level programming languages. However, high-level programming languages tend to become more
distant from the hardware which they are meant to command.

In this research direction, we propose to design expressive and scalable static analyses for compilers.
This topic is closely linked to Sections 3.1 and 3.3 since the design of an efficient intermediate repres-
entation is made while regarding the analyses it enables. The intermediate representation should be
expressive enough to embed maximal information; however if the representation is too complex the
design of scalable analyses will be harder.

The analyses we plan to design in this activity will of course be mainly driven by the HPC dataflow
optimizations we mentioned in the preceding sections; however we will also target other kinds of analyses
applicable to more general purpose programs. We will thus consider two main directions:

• Extend the applicability of the polyhedral model, in order to deal with HPC applications that do
not fit totally in this category. More specifically, we plan to work on more complex control and also
on complex data structures, like sparse matrices, which are heavily used in HPC.

• Design of specialized static analyses for memory diagnostic and optimization inside general pur-
pose compilers.

For both activities, we plan to cross fertilize ideas coming from the abstract interpretation community
as well as language design, dataflow semantics, and WCET estimation techniques.

Correct by construction analyses. The design of well-defined semantics for the chosen programming
language and intermediate representation will allow us to show the correctness of our analyses. The
precise study of the semantics of Section 3.1 will allow us to adapt the analysis to the characteristics of
the language, and prove that such an adaptation is well founded. This approach will be applicable both
on the source language and on the intermediate representation.

We are interested both in paper proofs and verified proofs using a proof assistant such as Coq.
Formally verified analysis crucially rely on a formal semantics of the programming language the analysis
operates on: Yannick Zakowskiprecisely developed recently a new formal semantics in Coq for the
sequential fragment of LLVM IR [8], the intermediate representation at the heart of the LLVM compilation
infrastructure.

The semantics of Vellvm, which technically relies on Interaction Trees [66], enjoys crucial properties
of compositionality and modularity. By leveraging these meta-theoretic properties of the semantics of
the language, we believe that the additional objective of formal correctness can be compatible with the
objectives of expressivity and scalability of the analyses we wish to develop for LLVM in particular.

The design of formal semantics allows formulating well-foundedness criteria relatively to the language
semantics, that we can use to design our analyses, and then to study which extensions of the languages
can be envisioned and analyzed safely, and which extensions (if any) are difficult to analyze and should
be avoided. Here the correct identification of a core language for our formal studies (see Section 3.1) will
play a crucial role as the core language should feature all the characteristics that might make the analysis
difficult or incorrect.

Scalable abstract domains. We already have experience in designing low-cost semi relational abstract
domains for pointers [53, 49], as well as tailoring static analyses for specialized applications in compila-
tion [41, 58], Synchronous Dataflow scheduling [57], and extending the polyhedral model to irregular
applications [25]. We also have experience in the design of various static verification techniques adapted
to different programming paradigms.

Modularity of programming languages Modularity is an essential property of modern programming
languages, allowing to assemble pieces of software in a high level and composable fashion. We aim
to develop new module systems and tools for large scale ecosystems. A first aspect of this work is to
pursue the collaboration with Didier Remy (Inria Cambium) and Jacques Garrigue (University of Nagoya)
on designing module systems for ML languages. Gabriel Radanne is working on the formalization and
implementation of a new rich module system which can serve as foundation for further experiment on
the OCaml module system. A second aspect is to improve the ease of use of large ecosystems. We also
work on tools to assist software developers, such as a tool to search functions by types, in a way that scales
to complete ecosystems.

Project CASH 7

3.2.1 Expected impact

The impact of this work is the significantly widened applicability of various tools/compilers related to
parallelization: allow optimizations for a larger class of programs, and allow low-cost analysis that scale
to very large programs.

We target both analysis for optimization and analysis to detect, or prove the absence of bugs.

3.2.2 Scientific Program

Medium-term activities. In the context of Paul Iannetta’s Phd thesis, we have proposed a semantic
rephrasing of the polyhedral model and proposed first steps toward and effective "polyhedral-like compil-
ation" for algebraic datastructures like trees. In medium term, we want to extend the applicability of this
new model for arbitrary layouts. The must challenging ones are sparse matrices. This activity still relies
on a formalization of the optimization activities (dependency computation, scheduling, compilation) in
a more general Abstract-Interpretation based framework in order to make the approximations explicit.

At the same time, we plan to continue to work on scaling static analyses for general purpose programs,
in the spirit of Maroua Maalej’s PhD [50], whose contribution is a sequence of memory analyses inside
production compilers. We already began a collaboration with Caroline Collange (PACAP team of IRISA
Laboratory) on the design of static analyses to optimize copies from the global memory of a GPU to the
block kernels (to increase locality). In particular, we have the objective to design specialized analyses
but with an explicit notion of cost/precision compromise, in the spirit of the paper [44] that tries to
formalize the cost/precision compromise of interprocedural analyses with respect to a “context sensitivity
parameter”.

Long-term activities. In a longer-term vision, the work on scalable static analyses, whether or not
directed from the dataflow activities, will be pursued in the direction of large general-purpose programs.

An ambitious challenge is to find a generic way of adapting existing (relational) abstract domains
within the Single Static Information [30] framework so as to improve their scalability. With this framework,
we would be able to design static analyses, in the spirit of the seminal paper [36] which gave a theoretical
scheme for classical abstract interpretation analyses.

We also plan to work on the interface between the analyses and their optimization clients inside
production compilers.

3.3 Research direction 3: Optimizing Program Transformations

In this part, we propose to design the compiler analyses and optimizations for the medium-grain dataflow
model defined in section 3.1. We also propose to exploit these techniques to improve the compilation of
dataflow languages based on actors. Hence our activity is split into the following parts:

• Translating a sequential program into a medium-grain dataflow model. The programmer cannot
be expected to rewrite the legacy HPC code, which is usually relatively large. Hence, compiler
techniques must be invented to do the translation.

• Transforming and scheduling our medium-grain dataflow model to meet some classic optimization
criteria, such as throughput, local memory requirements, or I/O traffic.

• Combining agents and polyhedral kernels in dataflow languages. We propose to apply the tech-
niques above to optimize the processes in actor-based dataflow languages and combine them with
the parallelism existing in the languages.

We plan to rely extensively on the polyhedral model to define our compiler analysis. The polyhedral
model was originally designed to analyze imperative programs. Analysis (such as scheduling or buffer
allocation) must be redefined in light of dataflow semantics.

Translating a sequential program into a medium-grain dataflow model. The programs considered are
compute-intensive parts from HPC applications, typically big HPC kernels of several hundreds of lines of
C code. In particular, we expect to analyze the process code (actors) from the dataflow programs. On
short ACL (Affine Control Loop) programs, direct solutions exist [61] and rely directly on array dataflow

8 Inria Annual Report 2023

analysis [39]. On bigger ACL programs, this analysis no longer scales. We plan to address this issue by
modularizing array dataflow analysis. Indeed, by splitting the program into processes, the complexity
is mechanically reduced. This is a general observation, which was exploited in the past to compute
schedules [40]. When the program is no longer ACL, a clear distinction must be made between polyhedral
parts and non polyhedral parts. Hence, our medium-grain dataflow language must distinguish between
polyhedral process networks, and non-polyhedral code fragments. This structure raises new challenges:
How to abstract away non-polyhedral parts while keeping the polyhedrality of the dataflow program?
Which trade-off(s) between precision and scalability are effective?

Medium-grain data transfers minimization. When the system consists of a single computing unit
connected to a slow memory, the roofline model [64] defines the optimal ratio of computation per
data transfer (operational intensity). The operational intensity is then translated to a partition of the
computation (loop tiling) into reuse units: inside a reuse unit, data are transfered locally; between reuse
units, data are transfered through the slow memory. On a fine-grain dataflow model, reuse units are
exposed with loop tiling; this is the case for example in Data-aware Process Network (DPN) [27]. The
following questions are however still open: How does that translate on medium-grain dataflow models?
And fundamentally what does it mean to tile a dataflow model?

Combining agents and polyhedral kernels in dataflow languages. In addition to the approach de-
veloped above, we propose to explore the compilation of dataflow programming languages. In fact,
among the applications targeted by the project, some of them are already thought or specified as dataflow
actors (video compression, machine-learning algorithms,. . .).

So far, parallelization techniques for such applications have focused on taking advantage of the
decomposition into agents, potentially duplicating some agents to have several instances that work
on different data items in parallel [43]. In the presence of big agents, the programmer is left with the
splitting (or merging) of these agents by-hand if she wants to further parallelize her program (or at least
give this opportunity to the runtime, which in general only sees agents as non-malleable entities). In
the presence of arrays and loop-nests, or, more generally, some kind of regularity in the agent’s code,
however, we believe that the programmer would benefit from automatic parallelization techniques such
as those proposed in the previous paragraphs. To achieve the goal of a totally integrated approach where
programmers write the applications they have in mind (application flow in agents where the agents’ code
express potential parallelism), and then it is up to the system (compiler, runtime) to propose adequate
optimizations, we propose to build on solid formal definition of the language semantics (thus the formal
specification of parallelism occurring at the agent level) to provide hierarchical solutions to the problem
of compilation and scheduling of such applications.

Certified compilation We will develop a research direction around the formal proof of compilation
passes, and of optimizing program transformations in particular. Although realistic formally verified
optimizing compilers are roughly 15 years old, three limitations to the current state of the art are apparent.

First, loop optimizations have been very sparsely tackled, their proof rising difficult semantic issues.
We intend on one side to leverage the compositionality of Interaction-Tree-based semantics as used in
Vellvm to improve the situation. An orthogonal axis we wish to explore is the formalization in Coq of the
Polyhedral Model, as pioneered in 2021 by Courant and Leroy [35].

Second, parallelism and concurrency have been almost ignored by the verified compilation com-
munity. This problem is a major long term endeavor for we first need to develop the appropriate semantic
tools. Ludovic Henrio and Yannick Zakowski will work with a master student, Ambre Suhamy, to explore
the use of Interaction Trees to model various paradigms for concurrency, paving the long term way to an
extension of Vellvm to concurrency.

Third, these proofs are very brittle for they rely on concrete implementation of memory models rather
than axiomatizations of those. Ludovic Henrio and Yannick Zakowski will work with a master student,
Alban Reynaud, to develop semantic tools to reason formally up-to arbitrary algebras in Coq. One of
the core objectives of this project is to prove optimizations at a higher level of abstraction, so that these
proofs remain valid by construction under changes in the memory model.

The compiler analyses proposed above do not target a specific platform. In this part, we propose to
leverage these analysis to develop source-level optimizations for high-level synthesis (HLS).

High-level synthesis consists in compiling a kernel written in a high-level language (typically in
C) into a circuit. As for any compiler, an HLS tool consists in a front-end which translates the input
kernel into an intermediate representation. This intermediate representation captures the control/flow

Project CASH 9

dependences between computation units, generally in a hierarchical fashion. Then, the back-end maps
this intermediate representation to a circuit (e.g. FPGA configuration). We believe that HLS tools must
be thought as fine-grain automatic parallelizers. In classic HLS tools, the parallelism is expressed and
exploited at the back-end level during the scheduling and the resource allocation of arithmetic operations.
We believe that it would be far more profitable to derive the parallelism at the front-end level.

Hence, CASH will focus on the front-end pass and the intermediate representation. Low-level back-end
techniques are not in the scope of CASH. Specifically, CASH will leverage the dataflow representation
developed in Section 3.1 and the compilation techniques developed in Section 3.3 to develop a relevant
intermediate representation for HLS and the corresponding front-end compilation algorithms.

Our results will be evaluated by using existing HLS tools (e.g., Intel HLS compiler, Xilinx Vivado HLS).
We will implement our compiler as a source-to-source transformation in front of HLS tools. With this
approach, HLS tools are considered as a “back-end black box”. The CASH scheme is thus: (i) front-
end: produce the CASH dataflow representation from the input C kernel. Then, (ii) turn this dataflow
representation to a C program with pragmas for an HLS tool. This step must convey the characteristics
of the dataflow representation found by step (i) (e.g. dataflow execution, fifo synchronisation, channel
size). This source-to-source approach will allow us to get a full source-to-FPGA flow demonstrating the
benefits of our tools while relying on existing tools for low-level optimizations. Step (i) will start from the
DCC tool developed by Christophe Alias, which already produces a dataflow intermediate representation:
the Data-aware Process Networks (DPN) [27]. Hence, the very first step is then to chose an HLS tool and
to investiguate which input should be fed to the HLS tool so it “respects” the parallelism and the resource
allocation suggested by the DPN. From this basis, we plan to investiguate the points described thereafter.

Roofline model and dataflow-level resource evaluation. Operational intensity must be tuned according
to the roofline model. The roofline model [64] must be redefined in light of FPGA constraints. Indeed,
the peak performance is no longer constant: it depends on the operational intensity itself. The more
operational intensity we need, the more local memory we use, the less parallelization we get (since FPGA
resources are limited), and finally the less performance we get! Hence, multiple iterations may be needed
before reaching an efficient implementation. To accelerate the design process, we propose to iterate at
the dataflow program level, which implies a fast resource evaluation at the dataflow level.

Reducing FPGA resources. Each parallel unit must use as little resources as possible to maximize
parallel duplication, hence the final performance. This requires to factorize the control and the channels.
Both can be achieved with source-to-source optimizations at dataflow level. The main issue with outputs
from polyhedral optimization is large piecewise affine functions that require a wide silicon surface on
the FPGA to be computed. Actually we do not need to compute a closed form (expression that can be
evaluated in bounded time on the FPGA) statically. We believe that the circuit can be compacted if we
allow control parts to be evaluated dynamically. Finally, though dataflow architectures are a natural
candidate, adjustments are required to fit FPGA constraints (2D circuit, few memory blocks). Ideas from
systolic arrays [56] can be borrowed to re-use the same piece of data multiple times, despite the limitation
to regular kernels and the lack of I/O flexibility. A trade-off must be found between pure dataflow and
systolic communications.

Improving circuit throughput. Since we target streaming applications, the throughput must be
optimized. To achieve such an optimization, we need to address the following questions. How to
derive an optimal upper bound on the throughput for polyhedral process network? Which dataflow
transformations should be performed to reach it? The limiting factors are well known: I/O (decoding of
burst data), communications through addressable channels, and latencies of the arithmetic operators.
Finally, it is also necessary to find the right methodology to measure the throughput statically and/or
dynamically.

3.3.1 Expected impact

In general, splitting a program into simpler processes simplifies the problem. This observation leads to
the following points:

• By abstracting away irregular parts in processes, we expect to structure the long-term problem of
handling irregular applications in the polyhedral model. The long-term impact is to widen the
applicability of the polyhedral model to irregular kernels.

10 Inria Annual Report 2023

• Splitting a program into processes reduces the problem size. Hence, it becomes possible to scale
traditionally expensive polyhedral analysis such as scheduling or tiling to quote a few.

As for the third research direction, the short term impact is the possibility to combine efficiently
classical dataflow programming with compiler polyhedral-based optimizations. We will first propose
ad-hoc solutions coming from our HPC application expertise, but supported by strong theoretical results
that prove their correctness and their applicability in practice. In the longer term, our work will allow
specifying, designing, analyzing, and compiling HPC dataflow applications in a unified way. We target
semi-automatic approaches where pertinent feedback is given to the developer during the development
process.

3.3.2 Scientific Program

Short-term and ongoing activities. We plan to evaluate the impact of state-of-the-art polyhedral source-
to-source transformations on HLS for FPGA. Our results on polyhedral HLS (DPN [26, 28]) could also be a
good starting point for this purpose. We will give a particular focus to memory layout transformations,
easier to implement as a source level transformation. Then, we will tackle control optimizations throught
the adaptation of loop tiling to HLS constraints.

Medium-term activities. The results of the preceding paragraph are partial and have been obtained
with a simple experimental approach only using off-the-shelf tools. We are thus encouraged to pursue
research on combining expertise from dataflow programming languages and polyhedral compilation.
Our long term objective is to go towards a formal framework to express, compile, and run dataflow
applications with intrinsic instruction or pipeline parallelism.

We plan to investigate in the following directions:

• Investigate how polyhedral analysis extends on modular dataflow programs. For instance, how to
modularize polyhedral scheduling analysis on our dataflow programs?

• Develop a proof of concept and validate it on linear algebra kernels (SVD, Gram-Schmidt, etc.).

• Explore various areas of applications from classical dataflow examples, like radio and video pro-
cessing, to more recent applications in deep learning algorithmic. This will enable us to identify
some potential (intra and extra) agent optimization patterns that could be leveraged into new
language idioms.

Also, we plan to explore how polyhedral transformations might scale on larger applications, typically
those found in deep-learning algorithms. We will investigate how the regularity of polyhedral kernels
can be exploited to infer general affine transformations from a few offline execution traces. This is the
main goal of the PolyTrace exploratory action, started on 2021 in collaboration with Waseda University.
We will first target offline memory allocation, an important transformation used in HLS and generally in
automatic parallelization.

Finally, we plan to explore how on-the-fly evaluation can reduce the complexity of the control. A good
starting point is the control required for the load process (which fetch data from the distant memory).
If we want to avoid multiple load of the same data, the FSM (Finite State Machine) that describes it is
usually very complex. We believe that dynamic construction of the load set (set of data to load from the
main memory) will use less silicon than an FSM with large piecewise affine functions computed statically.

Long-term activities. Current work focus on purely polyhedral applications. Irregular parts are not
handled. Also, a notion of tiling is required so the communications of the dataflow program with the
outside world can be tuned with respect to the local memory size. Hence, we plan to investigate the
following points:

• Assess simple polyhedral/non polyhedral partitioning: How non-polyhedral parts can be hidden in
processes/channels? How to abstract the dataflow dependencies between processes? What would
be the impact on analyses? We target programs with irregular control (e.g., while loop, early exits)
and regular data (arrays with affine accesses).

Project CASH 11

• Design tiling schemes for modular dataflow programs: What does it mean to tile a dataflow pro-
gram? Which compiler algorithms to use?

• Implement a mature compiler infrastructure from the front-end to code generation for a reasonable
subset of the representation.

Also, we plan to systematize the definition of scalable polyhedral compilers using extrapolation from
offline traces. Both theoretical and applied research are required to reach this goal. The research strategy
consists in studying several instances (memory allocation, scheduling, etc). Then, in producing the
theoretical ingredients to reach a general methodology of conception.

3.4 Research direction 4: Simulation and Hardware

Complex systems such as systems-on-a-chip or HPC computer with FPGA accelerator comprise both
hardware and software parts, tightly coupled together. In particular, the software cannot be executed
without the hardware, or at least a simulator of the hardware.

Because of the increasing complexity of both software and hardware, traditional simulation tech-
niques (Register Transfer Level, RTL) are too slow to allow full system simulation in reasonable time.
New techniques such as Transaction Level Modeling (TLM) [52] in SystemC [46] have been introduced
and widely adopted in the industry. Internally, SystemC uses discrete-event simulation, with efficient
context-switch using cooperative scheduling. TLM abstracts away communication details, and allows
modules to communicate using function calls. We are particularly interested in the loosely timed coding
style where the timing of the platform is not modeled precisely, and which allows the fastest simulations.
This allowed gaining several orders of magnitude of simulation speed. However, SystemC/TLM is also
reaching its limits in terms of performance, in particular due to its lack of parallelism.

Work on SystemC/TLM parallel execution is both an application of other work on parallelism in the
team and a tool complementary to HLS presented in Sections 3.1 (dataflow models and programs) and 3.3
(application to FPGA). Indeed, some of the parallelization techniques we develop in CASH could apply
to SystemC/TLM programs. Conversely, a complete design-flow based on HLS needs fast system-level
simulation: the full-system usually contains both hardware parts designed using HLS, handwritten
hardware components, and software.

We also work on simulation of the DPN intermediate representation. Simulation is a very important
tool to help validate and debug a complete compiler chain. Without simulation, validating the front-end
of the compiler requires running the full back-end and checking the generated circuit. Simulation can
avoid the execution time of the backend and provide better debugging tools.

Automatic parallelization has shown to be hard, if at all possible, on loosely timed models [33]. We
focus on semi-automatic approaches where the programmer only needs to make minor modifications
of programs to get significant speedups. We already obtained results in the joint PhD (with Tanguy
Sassolas) of Gabriel Busnot with CEA-LIST. The research targets parallelizing SystemC heterogeneous
simulations, extending SCale [62], which is very efficient to simulate parallel homogeneous platforms
such as multi-core chips. We removed the need for manual address annotations, which did not work
when the software does non-trivial memory management (virtual memory using a memory management
unit, dynamic allocation), since the address ranges cannot be known statically. We can now parallelize
simulation running with a full software stack including Linux.

We are also working with Bull/Atos on HPC interconnect simulation, using SimGrid [38]. Our goal is
to allow simulating an application that normally runs on a large number of nodes on a single computer,
and obtain relevant performance metrics.

3.4.1 Expected Impact

The short term impact is the possibility to improve simulation speed with a reasonable additional
programming effort. The amount of additional programming effort will thus be evaluated in the short
term.

In the longer term, our work will allow scaling up simulations both in terms of models and execution
platforms. Models are needed not only for individual Systems on a Chip, but also for sets of systems
communicating together (e.g., the full model for a car which comprises several systems communicating

12 Inria Annual Report 2023

together), and/or heterogeneous models. In terms of execution platform, we are studying both parallel
and distributed simulations.

3.4.2 Scientific Program

Medium-term activities. We started working on the “heterogeneous” aspect of simulations with an
approach allowing changing the level of details in a simulation at runtime.

Several research teams have proposed different approaches to deal with parallelism and heterogeneity.
Each approach targets a specific abstraction level and coding style. While we do not hope for a universal
solution, we believe that a better coordination of different actors of the domain could lead to a better
integration of solutions. We could imagine, for example, a platform with one subsystem accelerated
with SCale [62] from CEA-LIST, some compute-intensive parts delegated to sc-during [51] from Matthieu
Moy, and a co-simulation with external physical solvers using SystemC-MDVP [31] from LIP6. We plan to
work on the convergence of approaches, ideally both through point-to-point collaborations and with a
collaborative project.

A common issue with heterogeneous simulation is the level of abstraction. Physical models only
simulate one scenario and require concrete input values, while TLM models are usually abstract and
not aware of precise physical values. One option we would like to investigate is a way to deal with loose
information, e.g. manipulate intervals of possible values instead of individual, concrete values. This
would allow a simulation to be symbolic with respect to the physical values.

Long-term activities. In the long term, our vision is a simulation framework that will allow combining
several simulators (not necessarily all SystemC-based), and allow running them in a parallel way. The
Functional Mockup Interface (FMI) standard is a good basis to build upon, but the standard does not
allow expressing timing and functional constraints needed for a full co-simulation to run properly.

4 Application domains

The CASH team targets HPC programs, at different levels. Small computation kernels (tens of lines of
code) that can be analyzed and optimized aggressively, medium-size kernels (hundreds of lines of code)
that require modular analysis, and assembly of compute kernels (either as classical imperative programs
or written directly in a dataflow language).

The work on various application domains and categories of programs is driven by the same idea:
exploring various topics is a way to converge on unifying representations and algorithms even for
specific applications. All these applications share the same research challenge: find a way to integrate
computations, data, mapping, and scheduling in a common analysis and compilation framework.

Typical HPC kernels include linear solvers, stencils, matrix factorizations, BLAS kernels, etc. Many
kernels can be found in the Polybench/C benchmark suite [54]. The irregular versions can be found in
[55]. Numerical kernels used in quantitative finance [65] are also good candidates, e.g., finite difference
and Monte-Carlo simulation.

The medium-size applications we target are streaming algorithms [29], scientific workflows [60], and
also the now very rich domain of deep learning applications [48]. We explore the possibilities of writing
(see Section 3.1) and compiling (see Section 3.3) applications using a dataflow language. As a first step,
we will target dataflow programs written in SigmaC [32] for which the fine grain parallelism is not taken
into account. In parallel, we will also study the problem of deriving relevant (with respect to safety or
optimization) properties on dataflow programs with array iterators.

The approach of CASH is based on compilation, and our objective is to allow developers to design
their own kernels, and benefit from good performance in terms of speed and energy efficiency without
having to deal with fine-grained optimizations by hand. Consequently, our objective is first to improve
the performance and energy consumption for HPC applications, while providing programming tools that
can be used by developers and are at a convenient level of abstraction.

Obviously, large applications are not limited to assembly of compute kernels. Our languages and
formalism definitions and analyses must also be able to deal with general programs. Our targets also
include generalist programs with complex behaviors such as recursive programs operating on arrays, lists

Project CASH 13

and trees; worklist algorithms (lists are not handled within the polyhedral domain). Analysis on these
programs should be able to detect non licit memory accesses, memory consumption, hotspots, . . . , and
to prove functional properties.

The simulation activities are both applied internally in CASH, to simulate intermediate representa-
tions, and for embedded systems. We are interested in Transaction-Level Models (TLM) of Systems-on-a-
Chip (SoCs) including processors and hardware accelerators. TLM provides an abstract but executable
model of the chip, with enough details to run the embedded software. We are particularly interested in
models written in a loosely timed coding style. We plan to extend these to heterogeneous simulations
including a SystemC/TLM part to model the numerical part of the chip, and other simulators to model
physical parts of the system.

5 Social and environmental responsibility

5.1 Footprint of research activities

Although we do not have a precise measure of our carbon (and other environmental) footprint, the two
main sources of impact of computer-science research activities are usually transport (plane) and digital
equipment (lifecycle of computers and other electronic devices).

Many members of the CASH team are already in an approach of reducing their international travel,
and hopefully the new solutions we had to set up to continue our activities during the COVID crisis will
allow us to continue our research with a sustainable amount of travel, and using other forms of remote
collaborations when possible.

As far as digital equipment is concerned, we try to extend the lifetime of our machines as much as
possible.

5.2 Impact of research results

Many aspects of our research are meant to provide tools to make programs more efficient, in particular
more power-efficient. It is very hard, however, to asses the actual impact of such research. In many
cases, improvements in power-efficiency lead to a rebound effect which may weaken the benefit of the
improvement, or even lead to an increase in total consumption (backfire).

CASH provides tools for developers, but does not develop end-user applications. We believe the
social impact of our research depends more on the way developers will use our tools than on the way we
conduct our research. We do have a responsibility on the application domains we promote, though.

Ludovic Henrio followed the "Atelier Sciences Environnements Sociétés Inria 2021" (atelier Sens)
organized by Eric Tannier in June 2021. Then, for the voluntary Cash members, he has animated an atelier
Sens during the Cash seminar in October 2021.

6 Highlights of the year

6.1 Articles

• Our works on choice trees, an extension of interaction trees for representing non-deterministic
computations with effects in Coq, has been accepted at POPL 2023 [9].

• Our work on memory representation of Algebraic Data Types has been accepted at ICFP 2023 [13]

7 New software, platforms, open data

7.1 New software

7.1.1 DCC

Name: DPN C Compiler

14 Inria Annual Report 2023

Keywords: Polyhedral compilation, Automatic parallelization, High-level synthesis

Functional Description: Dcc (Data-aware process network C Compiler) compiles a regular C kernel to a
data-aware process network (DPN), a dataflow intermediate representation suitable for high-level
synthesis in the context of high-performance computing. Dcc has been registered at the APP
("Agence de protection des programmes") and transferred to the XtremLogic start-up under an
Inria license.

News of the Year: This year, Dcc was enhanced with user-guided loop tiling. Given a user-specified tiling
template, a correct loop tiling with minimal latency is inferred.

Publication: hal-03143777

Contact: Christophe Alias

Participants: Christophe Alias, Alexandru Plesco

7.1.2 PoCo

Name: Polyhedral Compilation Library

Keywords: Polyhedral compilation, Automatic parallelization

Functional Description: PoCo (Polyhedral Compilation Library) is framework to develop program ana-
lysis and optimizations in the polyhedral model. PoCo features polyhedral building blocks as well
as state-of-the-art polyhedral program analysis. PoCo has been registered at the APP (“agence de
protection des programmes”) and transferred to the XtremLogic start-up under an Inria licence.

News of the Year: This year, GLPK was interfaced to the symbolic engine. Also, the Farkas engine was
improved to handle more complex affine constraints.

Contact: Christophe Alias

Participant: Christophe Alias

7.1.3 Encore with dataflow explicit futures

Keywords: Language, Optimizing compiler, Source-to-source compiler, Compilers

Functional Description: Fork of the Encore language compiler, with a new "Flow" construct implement-
ing data-flow explicit futures.

URL: https://gitlab.inria.fr/lhenrio/encorewithdatafuts

Contact: Ludovic Henrio

7.1.4 fkcc

Name: The Farkas Calculator

Keywords: DSL, Farkas Lemma, Polyhedral compilation

Scientific Description: fkcc is a scripting tool to prototype program analyses and transformations ex-
ploiting the affine form of Farkas lemma. Our language is general enough to prototype in a few lines
sophisticated termination and scheduling algorithms. The tool is freely available and may be tried
online via a web interface. We believe that fkcc is the missing chain to accelerate the development
of program analyses and transformations exploiting the affine form of Farkas lemma.

https://hal.inria.fr/hal-03143777
https://gitlab.inria.fr/lhenrio/encorewithdatafuts

Project CASH 15

Functional Description: fkcc is a scripting tool to prototype program analyses and transformations
exploiting the affine form of Farkas lemma. Our language is general enough to prototype in a
few lines sophisticated termination and scheduling algorithms. The tool is freely available and
may be tried online via a web interface. We believe that fkcc is the missing chain to accelerate the
development of program analyses and transformations exploiting the affine form of Farkas lemma.

Release Contributions: - Script language - Polyhedral constructors - Farkas summation solver

URL: http://foobar.ens-lyon.fr/fkcc/

Publication: hal-03106000

Contact: Christophe Alias

Participant: Christophe Alias

7.1.5 Vellvm

Keywords: Coq, Semantic, Compilation, Proof assistant, Proof

Scientific Description: A modern formalization in the Coq proof assistant of the sequential fragment of
LLVM IR. The semantics, based on the Interaction Trees library, presents several rare properties
for mechanized development of this scale: it is compositional, modular, and extracts to a certified
executable interpreter. A rich equational theory of the language is provided, and several verified
tools based on this semantics are in development.

Functional Description: Formalization in the Coq proof assistant of a subset of the LLVM compilation
infrastructure.

URL: https://github.com/vellvm/vellvm

Contact: Yannick Zakowski

Participants: Yannick Zakowski, Steve Zdancewic, Calvin Beck, Irene Yoon

Partner: University of Pennsylvania

7.1.6 vaphor

Name: Verification of Programs with Horn Clauses

Keyword: Program verification

Functional Description: Program to horn clauses horn clauses with arrays abstraction

Contact: Laure Gonnord

Partner: Vérimag

7.1.7 Data Abstraction

Name: Data Abstraction

Keywords: Static analysis, Program verification, Propositional logic

Functional Description: The tool is an element of a static program (or other) verification process which
is done in three steps:

1. Transform the verification problem into Horn clauses, perhaps using MiniJavaConverter or
SeaHorn 2. Simplify the Horn clauses using data abstraction (this tool). 3. Solve the Horn clauses
using a Horn solver such as Z3

Contact: Laure Gonnord

Partner: Vérimag

http://foobar.ens-lyon.fr/fkcc/
https://hal.inria.fr/hal-03106000
https://github.com/vellvm/vellvm

16 Inria Annual Report 2023

7.1.8 S4BXI

Keywords: Simulation, HPC, Network simulator

Functional Description: S4BXI is a simulator of the Portals4 network API. It is written using SimGrid’s
S4U interface, which provides a fast flow-model. More specifically, this simulator is tuned to model
as best as possible Bull’s hardware implementation of portals (BXI interconnect)

URL: https://s4bxi.julien-emmanuel.com/docs/

Contact: Julien Emmanuel

Partner: Bull - Atos Technologies

7.1.9 llvm-pass

Name: LLVM Pass analyzer

Keyword: Compilation

Functional Description: tool suite to work on llvm passes

URL: https://github.com/llvmpass/llvm-passes

Contact: Laure Gonnord

7.1.10 ribbit

Keywords: Compilation, Pattern matching, Algebraic Data Types

Functional Description: Ribbit is a compiler for pattern languages with algebraic data types which is
parameterized by the memory representation of types. Given a memory representation, it generates
efficient and correct code for pattern matching clauses.

URL: https://gitlab.inria.fr/cash/ribbit

Contact: Gabriel Radanne

7.1.11 calv

Name: AVL calculator

Keywords: Data structures, OpenMP

Functional Description: calv is a calculator which is used to run different implementations of AVL trees,
and compare their relative performances.

URL: https://gitlab.inria.fr/paiannet/calv

Contact: Paul Iannetta

7.1.12 adtr

Name: ADT Rewriting language

Keywords: Compilation, Static typing, Algebraic Data Types, Term Rewriting Systems

Functional Description: ADTs are generally represented by nested pointers, for each constructors of the
algebraic data type. Furthermore, they are generally manipulated persistently, by allocating new
constructors.

ADTr allow representing ADTs in a flat way while compiling a pattern match-like construction as a
rewrite on the memory representation. The goal is to then use this representation to optimize the
rewriting and exploit parallelism.

https://s4bxi.julien-emmanuel.com/docs/
https://github.com/llvmpass/llvm-passes
https://gitlab.inria.fr/cash/ribbit
https://gitlab.inria.fr/paiannet/calv

Project CASH 17

URL: https://github.com/Drup/adtr

Publication: hal-03355377

Contact: Gabriel Radanne

Participants: Gabriel Radanne, Paul Iannetta, Laure Gonnord

7.1.13 dowsing

Keywords: Static typing, Ocaml

Functional Description: Dowsing is a tool to search function by types. Given a simple OCaml type, it
will quickly find all functions whose types are compatible.

Dowsing works by building a database containing all the specified libraries. New libraries can be
added to the database. It then builds an index which allow to quickly answer to requests.

URL: https://github.com/Drup/dowsing/

Publication: hal-03355381

Contact: Gabriel Radanne

Participants: Gabriel Radanne, Laure Gonnord

7.1.14 odoc

Keyword: Ocaml

Functional Description: OCaml is a statically typed programming language with wide-spread use in
both academia and industry. Odoc is a tool to generate documentation of OCaml libraries, either as
HTML websites for online distribution or to create PDF manuals and man pages.

URL: https://github.com/ocaml/odoc/

Contact: Gabriel Radanne

Participants: Jon Ludlam, Gabriel Radanne, Florian Angeletti, Leo White

7.1.15 PoLA

Name: PoLA: a Polyhedral Liveness Analyser

Keywords: Polyhedral compilation, Array contraction

Functional Description: PoLA is a C++ tool that optimizes the footprint of C(++) programs of the poly-
hedral model by applying reduced mappings deduced from dynamic analysis of the program. More
precisely, we apply a dataflow analysis on traces of a program, obtained either by execution or
interpretation, and infer parametrized mappings for the arrays used for intermediate computations.
This tool is part of the Polytrace project.

URL: https://hthieven.gitlabpages.inria.fr/pola/

Publications: thievenaz:hal-03862219, thievenaz:hal-03862218

Contact: Christophe Alias

Participants: Hugo Thievenaz, Christophe Alias, Keiji Kimura

Partner: Waseda University

https://github.com/Drup/adtr
https://hal.inria.fr/hal-03355377
https://github.com/Drup/dowsing/
https://hal.inria.fr/hal-03355381
https://github.com/ocaml/odoc/
https://hthieven.gitlabpages.inria.fr/pola/
https://hal.inria.fr/thievenaz:hal-03862219
https://hal.inria.fr/thievenaz:hal-03862218

18 Inria Annual Report 2023

7.1.16 Actors-OCaml

Keywords: Concurrency, Ocaml

Functional Description: An actor library for OCaml

URL: https://gitlab.inria.fr/mandrieu/actors-ocaml

Contact: Gabriel Radanne

7.1.17 ctrees

Name: Choice Trees

Keywords: Coq, Concurrency, Formalisation, Semantics, Proof assistant

Functional Description: We develop so-called "ctrees", a data-structure in Coq suitable for modelling
and reasoning about non-deterministic programming languages as an executable monadic in-
terpreter. We link this new library to the Interaction Trees project: ctrees offer a valid target for
interpretation of non-deterministic events.

URL: https://github.com/vellvm/ctrees/

Contact: Yannick Zakowski

8 New results

This section presents the scientific results obtained in the evaluation period. They are grouped according
to the directions of our research program.

8.1 Research direction 1: Parallel and Dataflow Programming Models

8.1.1 Flexible Synchronization for Parallel Computations.

Participants: Ludovic Henrio, Matthieu Moy, Amaury Maillé.

Parallel applications make use of parallelism where work is shared between tasks; often, tasks need
to exchange data stored in arrays or FIFO queues and synchronize depending on the availability of
these data. In the thesis of Amaury Maillé we explored different approahces to parametrise manually or
automatically the granularity of synchronisation induced by such data transmission.

Amaury defended his PhD thesis on July 7, presenting the results of his research on this subject [19].

8.1.2 Locally abstract globally concrete semantics

Participants: Ludovic Henrio, Reiner Hähnle, Einar Broch Johnsen, Violet Ka I Pun,
Crystal Chang Din, Lizeth Tapia Tarifa.

This research direction aims at designing a new way to write semantics for concurrent languages. The
objective is to design semantics in a compositional way, where each primitive has a local behavior, and to
adopt a style much closer to verification frameworks so that the design of an automatic verifier for the
language is easier. The local semantics is expressed in a symbolic and abstract way, a global semantics
gathers the abstract local traces and concretizes them. We have a reliable basis for the semantics of a
simple language (a concurrent while language) and for a complex one (ABS), but the exact semantics
and the methodology for writing it is still under development. After 2 meetings in 2019, this work has
slowed down in 2020 and 2021, partly because of Covid restrictions but several visits of Reiner Hähnle

https://gitlab.inria.fr/mandrieu/actors-ocaml
https://github.com/vellvm/ctrees/

Project CASH 19

in the Cash team allowed us to progress on the subject and to prepare a follow-up relating scheduling
and LAGC. The separation of concerns in the LAGC semantics between state computation rules on one
hand and the scheduling rules on the other, makes it possible to characterize fairness constructively at a
semantic level and prove fairness of the scheduling at this level. This allowed us to characterise a new
form of fairness and describe a scheduler at the programming language semantic level.

In 2023, the journal paper describinbg LAGC has been accepted to TOPLAS after several revisions. It
will be published in 2024. We finished the work on scheduling and had it accepted at <Programming>.
Irt will be presented at the programming conference in 2024 [11].

This is a joint with Reiner Hähnle (TU Darmstadt), Einar Broch Johnsen, Crystal Chang Din, Lizeth
Tapia Tarifa (Univ Oslo), Violet Ka I Pun (Univ Oslo and Univ of applied science Bergen).

8.1.3 Deterministic parallel programs

Participants: Ludovic Henrio, Einar Broch Johnsen, Violet Ka I Pun, Yannick Za-
kowski.

This research direction takes place through visits and remote meetings between Ludovic Henrio and
our Norwegian colleagues. First results were published in 2021 on a simple static criteria for deterministic
behaviour of active objects. We are now extending this work to be able to ensure deterministic behaviour
in more cases and to lay a theoretical background that will make our results more general and easier to
adapt to different settings. This year, we formalised in Coq a result by DeBruinjn dating back from the
70th on proving confluence of a system. In the process, we solved some mistakes in the existing proof,
and generalised it in a way that will make it even more useful in the context of programming language
semantics. We continued to investigate the question of confluence for distributed progrmming languages
based on this proof and extended the Coq framework with concurrent programming language use-cases.
We expect to finish the mechanization and publish these results in 2024.

Note that the CASH team previously published a survey on parallelism and determinacy [6].

8.1.4 PNets: Parametrized networks of automata

Participants: Ludovic Henrio, Quentin Corradi, Eric Madelaine, Rabéa Ameur
Boulifa.

pNets (parameterised networks of synchronised automata) are semantic objects for defining the
semantics of composition operators and parallel systems. We have used pNets for the behavioral spe-
cification and verification of distributed components, and proved that open pNets (i.e. pNets with holes)
were a good formalism to reason on operators and parameterized systems. This year, we finished the
formalisation and proved the basic properties of a refinement theory for open pNets. These results were
published and presented at SEFM [12].

8.1.5 A Survey on Verified Reconfiguration

Participants: Ludovic Henrio, Helene Coullon, Frederic Loulergue, Simon Robillard.

We have conducted a survey on the use of formal methods to ensure safety of reconfiguration of
distributed system, that is to say the runtime adaptation of a deployed distributed software system. The
survey article is written together with Hélène Coullon and Simon Robillard (IMT Atlantique, Inria, LS2N,
UBL), and Frédéric Loulergue (Northern Arizona University). Hélène Coullon is the coordinator and the
article has been published in 2023 [10].

20 Inria Annual Report 2023

8.1.6 Verified Compilation Infrastructure for Concurrent Programs

Participants: Nicolas Chappe, Ludovic Henrio, Yannick Zakowski.

The objective of this research direction is to provide semantic and reasoning tools for the formalization
of concurrent programs and the verification of compilers for concurrent languages. In particular, we want
to apply these results to the design of verified optimizing compilers for parallel high-level languages. We
wish to proceed in the spirit of the approach advocated in Vellvm [8]: compositional, modular, executable
monadic interpreters based on Interaction Trees [66] are used to specify the semantics of the language,
in contrast with more traditional transition systems. Proving correct optimizations for such concurrent
languages naturally requires new proof techniques that we need to design as well. Last year had seen the
successful publication of the ctrees project. This year’s major contributions in this line of work are:

• Nicolas Chappe has made major contributions to the library. In particular, he has identified an
alternate definition of strong bisimilarity and strong similarity enjoying better proof principles. He
has furthermore continued his investigations in applying these semantics methods to modelling
concurrent programs under weak memory models, modelling a minimal version of Vellvm as a first
step towards scaling these methods. We project a submission covering his work during the first half
of 2024.

• In collaboration with Lef Ioannidis and Steve Zdancewic, we have formalized in Coq a CTL logic,
and showed how ctrees can be instantiated as a model of the logic. Intuitively, CTL formulas are
speculated to be convenient abstractions to express protocols on the external events that a given
computation may exhibit at run time. We are ironning out relevant applications to the approach, in
view of a submission during the year 2024.

8.1.7 Operational Game Semantics

Participants: Peio Borthelle, Tom Hirschowitz, Guilhem Jaber, Yannick Zakowski.

Peio Borthelle, PhD student at the Lama in Chambéry co-advised by Tom Hirschowitz, Guilhem Jaber,
and Yannick Zakowski, works on the formalization in Coq of Operational Game Semantics (OGS). OGS is
a technique used to define sufficient conditions to proving the contextual equivalence of higher-order
programs, in which names are exchange in lieu of higher order values. This year has seen major break-
throughs in Peio’s work. A complete, axiom-free development has been achieved. In this development, a
notion of OGS is defined over an abstract, axiomatic notion of programing language. The bisimilarity of
the resulting OGS is proved to be sound w.r.t. contextual equivalence. Finally, examples such as System L
are proved to satisfy the interface. In terms of dissemination, this work has led to: - A first communication
at the TYPES’23 workshop titled "Games and Strategies using Coinductive Types" - An incoming second
communication this month (january 2024) at the GALOP’24 workshop titled "An abstract, certified ac-
count of Operational Game Semantics" - The writing of a paper that will be submitted this month (january
2024) at LICS’24

8.1.8 Foundational support to datatypes and codatatypes in Coq

Participants: Galaad Langlois, Damien Pous, Yannick Zakowski.

Libraries such as the interaction trees or the choice trees that Yannick Zakowski develops rely heav-
ily on coinductive datatypes, and functions building values of these codatatypes. Coq’s support is, in

Project CASH 21

some respects, lacking in this realm, putting an excessive burden on the shoulders of the program-
mer/mathematician. While libraries such that Pous’s coinduction library helps greatly in proving coin-
ductive properties, no support exists in Coq to help writing corecursive functions.

Damien Pous and Yannick Zakowski have advised Galaad Langlois as part of his Master 2 internship
to build a first contribution in this direction. The internship has resulted in a library formalizing a class of
functors, so-called polynomial functors as spawned by containers, for which we build the initial algebra
(the associated Inductive datatype) and the final coalgebra (the associated CoInductive datatype). The
construction is done in the category of setoids, allowing for a completely axom free result. This result has
been presented by Galaad at the Coq Workshop 2023.

8.1.9 Actors and algebraic effects

Participants: Martin Andrieux, Ludovic Henrio, Gabriel Radanne.

This works aims to understand the link between two constructions. Actors, on one hand, aim to
provide high level language constructors for concurency and parallelism. They have been implemented
and successfully used in several industry-grade frameworks, such as Akka. Algebraic effects allow the
precise modelling of operation with effects, while providing excellent composition properties. They have
been used both as a fundamental primitive for theoretical study, but also used as effective building blocks
to create new complex control and effectful operators. The new version of OCaml with multicore support
promotes the use of algebraic effects to implement new concurrency primitives. We implement actors
using algebraic effects, and obtain a practical, efficient implementation of Actors for OCaml. In 2022,
we designed such embedding and implemented it as a proof of concept library 7.1.16 using multicore
OCaml.

In 2023, we formalised the embedding and proved the correctness of our implementation relatively to
the actor model. We wrote an article describing the library and its formalisation [20]. It will be published
by Springer in a special volume in 2024.

We now aim at extending the library to make it more versatile.

8.2 Research direction 2: Expressive, Scalable and Certified Analyses

8.2.1 Verification of electric properties on transistor-level descriptions of circuits, using formal
methods

Participants: Oussama Oulkaid, Bruno Ferres, Ludovic Henrio, Matthieu Moy, Gab-
riel Radanne.

We started discussions with the Aniah start-up in 2019, and started a formal partnership in 2022, with
the recruitment of Bruno Ferres as a post-doc, and Oussama Oulkaid as a CIFRE Ph.D (co-supervised by
Aniah, Verimag, and LIP). We developed a prototype verification tool. The tool compiles transistor-level
circuit descriptions (CDL file format) to logical formula expressing the semantics of the circuit plus
a property to verify, and uses an SMT solver (Z3) to check the validity of the property. The tool was
successfully used on a real-life case study, and we showed that our approach can reduce the number of
false-alarms significantly compared to traditional approaches, with a reasonable computational cost
(under a second for most sub-circuits analyzed). To the best of our knowledge, formal methdos like
SAT/SMT-solving were never applied to multi-supplies electronic circuits before. We published a short
paper presenting these results to the “late breaking results” track of the DATE 2023 conference [15], and
got a longer version of the paper accepted for DATE 2024. The technique experimented in the prototype
was successfully re-implemented in the production tool commercialized by Aniah and is now available in
the latest release.

In parallel with the technical work, we conducted a thorough review of existing work on the domain,
and submitted a survey article to the TODAES journal.

https://www.aniah.fr

22 Inria Annual Report 2023

We are currently working on richer semantics able to take into account more properties on the circuits
under analysis.

8.2.2 Search functions by types

Participants: Gabriel Radanne, Laure Gonnord, Clement Allain, Pauline Garelli,
Emmanuel Arrighi.

Dowsindex is a tool to allows searching in a collection of libraries using types as query. Given a type,
the tool returns a list of functions whose type can be unified to the query modulo isomorphisms. Using
unification allows the returns type to be more general than the query and the isomorphisms abstract
some details of the implementation, for example, the order of the arguments of functions. Unfortunately,
algorithms for unification modulo type isomorphisms are costly (at best NP). An exhaustive search would
not be usable during programming in practice.

In this research direction, we investigate how to scale search by types. For this purpose, we developed
new algorithm technique similar to indexes used in databases, but appropriate for keys following a rich
language of types. We have developed a prototype, Dowsing 7.1.13, implementing these ideas. In 2023,
Emmanuel Arrighi started a Postdoc on this topic, established benchmark to do empirical experiment
and started working of the unification modulo isomorphisms algorithms.

8.2.3 A new module system for OCaml

Participants: Clement Blaudeau, Didier Remy, Gabriel Radanne.

ML modules are offer large-scale notions of composition and modularity. Provided as an additional
layer on top of the core language, they have proven both vital to the working OCaml and SML program-
mers, and inspiring to other use-cases and languages. Unfortunately, their meta-theory remanins difficult
to comprehend, requiring heavy machinery to prove their soundness.

In this research direction, we study a translation from ML modules to Fω to provide a new com-
prehensive description of a generative subset of OCaml modules, embarking on a journey right from
the source OCaml module system, up to Fω , and back. We propose a “middle representation” called
canonical that combines the best of both worlds. Our goal is to obtain type soundness, but also and
more importantly, a deeper insight into the signature avoidance problem, along with ways to improve
both the OCaml language and its typechecking algorithm. In 2023, we developed a full account of both
"applicative" and "generative" cases (which are in OCaml). We published recently the generative case [17]
and wrote an article covering the full language.

8.3 Research direction 3: Optimizing Program Transformations

8.3.1 Memory optimizations for Algebraic Data Types

Participants: Thaïs Baudon, Gabriel Radanne, Laure Gonnord.

In the last few decades, Algebraic Data Types (ADT) have emerged as an incredibly effective tool to
model and manipulate data for programming. Additionally, ADTs could provide numerous advantages
for optimizing compilers, as the rich declarative description could allow them to choose the memory
representation of the types.

Initially, ADTs were mostly present in functional programming languages such as OCaml and Haskell.
Such GC-managed functional languages generally use uniform memory representation which prohibit
agressive optimisations of the representation of ADTs. However, ADTs are now present in many different
languages, notably Scala and Rust, which permit such optimizations.

Project CASH 23

The goal of this research direction is to investigate how to represent terms of Algebraic Data Types and
how to compile pattern matching efficiently. We aim to develop a generic compilation framework which
accomodate arbitrarely complex memory representation for terms, and to provide news ways to optimize
the representation of ADTs. A prototyper compiler has been implemented 7.1.10. In 2023, We developed
a language with a dual view of types, the high level view of algebraic data types and their memory layout.
We published this language, its formalization, and the compilation algorithms in ICFP [13]. We then
extended this setup with more complex types [24] and a richer compilation algorithm.

8.3.2 Vellvm: Verified LLVM

Participants: Calvin Beck, Irene Yoon, Yannick Zakowski, Steve Zdancewic.

We develop, in collaboration with the University of Pennsylvania, a formally verified in Coq compila-
tion infrastructure based on LLVM, dubbed Vellvm 7.1.5. Compared to other existing verified compilation
framework, we define the semantics of the languages we consider as monadic interpreters built on top of
the Interaction Trees framework. This approach brings us benefits in terms of modularity, compositional-
ity and executability, as well as leads to an equational mode of reasoning to establish refinements. The
following major achievements have taken place this year:

• The major redefinition of the memory model, led by Calvin Beck and accounting for the necessary
finite view of the memory imposed by the presence of pointer to integer casts in LLVM IR, is
essentially complete. We are ironing out the last details in prevision of a submission at ICFP’24.

• Spiral is a compilation framework for the generalization of efficient low level code for numerical
computations. HELIX is a formalization in Coq of part of this framework that Vadim Zaliva has
developped during his PhD. We have finally finished the last details of the proof of the compilation
chain, and written a journal paper describing the project. We will submit it at the end of January
2024 at the TOPLAS journal.

8.3.3 Verified Abstract Interpreters as Monadic Interpreters

Participants: Laure Gonnord, Sébastien Michelland, Yannick Zakowski.

In the realm of verified compilation, one typically wants to verify the static analyzes used by the
compiler. In existing works, the analysis is typically written as a fuel-based pure function in Coq and
verified against the semantics described as a transition system. The goal of this research is to develop the
tools and reasoning principles to transfer these ideas to a context where the semantics of the language is
defined as a monadic interpreters built on Interaction Trees.

During his internship, Sébastien Michelland had developed a first promising prototype, establishing a
highly modular framework to build and prove correct such analyses. He has instantiated his result on a toy
Imp language, and is now aiming at instantiating it on a toy assembly language. This year, this project has
seen major progress: a fully fledged, admit-free, development has been achieved with the construction of
an abstract interpreter for both an imperative language with failure and a CFG-based, assembly-style,
language. We have written a paper [23] describing these contributions and are considering a submission
as is or with further extensions during the first semester of 2024.

8.3.4 A verified CompCert backend for OptiTrust

Participants: Nicolas Nardino, Arthur Chargueraud, Yannick Zakowski.

24 Inria Annual Report 2023

OptiTrust is an ANR led by Arthur Chargueraud, of which Yannick Zakowski is a participant. The
project revolves around a DSL for writing program optimisations for high performance, highly parallel,
code. A functional OCaml prototype is already used to perform ambitious case studies of source to source
optimization of C code thanks to this DSL. The ANR revolves around providing foundational soundness
guarantees to the tool.

In particular, Nicolas Nardino has done a Master 2 internship revolving around the compilation of
the programming language used as internal representation for the source programs upon which the
optimizations are performed (essentially a rich imperative lambda calculus) and (one of the languages
of) CompCert, a verified C compiler. A partial prototype has been developed during this internship.

8.3.5 Scalable Array Contraction using Trace-Based Polyhedral Analysis

Participants: Hugo Thievenaz, Keiji Kimura, Christophe Alias.

In this work, we defend the iconoclast idea that polyhedral optimizations might be computed without
expensive polyhedral operations, simply by applying a lightweight analysis on a few off-line execution
traces. The main intuition being that, since polyhedral transformations are expressed as affine mappings,
only a few points are required to infer the general mapping. Our hope is to compute those points from
a few off-line execution traces. We focus on array contraction, a well known technique to reallocate
temporary arrays thanks to affine mappings so the array size is reduced. We describe a trace selection
algorithm, a liveness algorithm from an execution trace, and another to compute the maximum number
of variables alive alongside a dimension, from which we get our scalar modular mappings. We show that
a simple interpolation allow to infer the modulo mapping.

This year, we have validated the scalability of our approach on real life benchmarks from the high-level
synthesis world. A journal publication is under preparation.

8.3.6 Partial Evaluation of Dense Code on Sparse Structures

Participants: Alec Sadler, Gabriel Dehame, Christophe Alias.

Most HPC computations process sparse tensors. The resulting code is highly dynamic, which makes
code optimization quite challenging. One way is to start from the original dense specification, which is
usually much more regular and ready to be optimized thanks to state-of-the-art program optimization
algorithms. Then, to specialize that code on the sparse input structure. We propose a novel approach to
apply that specialization. The key ingredient of our algorithm is the transitive closure of affine relation,
for which efficient and accurate heuristics exist. Experimental evaluation shows the effectiveness of our
approach.

Our results are available as a research report [21]. They are still under publication.

8.4 Research direction 4: Simulation and Hardware

8.4.1 S4BXI: the MPI-ready Portals 4 Simulator

Participants: Julien Emmanuel, Matthieu Moy, Ludovic Henrio, Grégoire Pichon.

We present a simulator for High Performance Computing (HPC) interconnection networks. It models
Portals 4, a standard low-level API for communication, and it allows running unmodified applications
that use higher-level network APIs such as the Message Passing Interface (MPI). It is based on SimGrid, a
framework used to build single-threaded simulators based on a cooperative actor model. Unlike existing
tools like SMPI, we rely on an actual MPI implementation, hence our simulation takes into account

Project CASH 25

MPI’s implementation details in the performance. We applied the approach on a case study using the
BullSequana eXascale Interconnect (BXI) made by Atos, which highlights how such a simulator can help
design space exploration (DSE) for new interconnects. The Ph.D of Julien Emmanuel on the topic was
defended in early 2023.

9 Bilateral contracts and grants with industry

9.1 Partnertship with the Aniah startup on circuit verification

Participants: Bruno Ferres, Matthieu Moy, Ludovic Henrio, Gabriel Radanne, Ous-
sama Oulkaid.

The CASH team started discussion with the Aniah startup in 2019, to work on verification of electrical
properties of circuits at transistor level. We recruited a post-doc (Bruno Ferres) in March 2022, and
formalized the collaboration with a bilateral contract (Réf. Inria : 2021-1144), in parallel with a joint
internship with LIP, Verimag laboratory and Aniah (Oussama Oulkaid), which led to a CIFRE Ph.D
(LIP/Verimag/Aniah) started in October 1st 2022. The collaboration led to the development of a prototype
tool, which served a the basis for the re-implementation of the approach in the production tool, and to
two articles accepted at the DATE conference plus one ongoing submission.

9.2 CAVOC Project with Inria/Nomadic Labs

Participants: Guilhem Jaber, Gabriel Radanne, Laure Gonnord.

This project aims to develop a sound and precise static analyzer for OCaml, that can catch large
classes of bugs represented by uncaught exceptions. It will deal with both user-defined exceptions, and
built-in ones used to represent error behaviors, like the ones triggered by failwith, assert, or a match
failure. Via “assert-failure” detection, it will thus be able to check that invariants annotated by users hold.
The analyzer will reason compositionally on programs, in order to analyze them at the granularity of a
function or of a module. It will be sound in a strong way: if an OCaml module is considered to be correct
by the analyzer, then one will have the guarantee that no OCaml code interacting with this module can
trigger uncaught exceptions coming from the code of this module. In order to be precise, it will take into
account the abstraction properties provided by the type system and the module system of the language:
local values, abstracted definition of types, parametric polymorphism. The goal being that most of the
interactions taken into account correspond to typeable OCaml code.

This project is part of the partnership between Inria and Nomadic Labs, and lead by Guilhem Jaber,
from the Inria Team Galinette.

10 Partnerships and cooperations

10.1 International initiatives

10.1.1 Participation in other International Programs

Polytrace Exploratory Action

Participants: Christophe Alias, Keiji Kimura.

Title: Polytrace – Scaling Polyhedral Compilers with Trace Analysis

https://www.aniah.fr/

26 Inria Annual Report 2023

Partner Institution(s): Waseda University, Japan

Date/Duration: 4 years, until December 2024.

Additionnal info/keywords: Compilers, HPC, Polyhedral Model, Trace Analysis

10.2 International research visitors

10.2.1 Visits of international scientists

Other international visits to the team

Violet Ka I Pun and Einar Broch Johnsen

Status (professor/assistant professor))

Institution of origin: Univ of applied science(Bergen) and Univ of Oslo

Country: Norway

Dates: 16/42023-23/4/2023

Context of the visit: Collaboration

Mobility program/type of mobility: research stay

Reiner Hähnle

Status (professor))

Institution of origin: Teschnische Universitat Darmstadt

Country: Germany

Dates: 5-6/4/2023

Context of the visit: Collaboration

Mobility program/type of mobility: research stay

10.2.2 Visits to international teams

Research stays abroad

Yannick Zakowski

Visited institution: University of Pennsylvania

Country: USA

Dates: August 1st 2023 to October 15th 2023

Context of the visit: ongoing scentific collaborations with Steve Zdancewic around the Vellvm project

Mobility program/type of mobility: Research stay

Christophe Alias

Visited institution: Waseda University

Country: Japan

Dates: October 30 to December 4

Context of the visit: Polytrace exploratory action

Mobility program/type of mobility: Research stay

Project CASH 27

10.3 National initiatives
PEPR NumPex, ExaSoft Project (WP2, Task 2.3)

Participants: Alec Sadler, Christophe Alias, Thierry Gautier, Xavier Rival, Phil-
ippe Clauss.

Title: Polysparse – Compiling Sparse Kernels by Specialization

Partner Institution(s): Inria Paris (X. Rival), Inria Nancy (P. Clauss)

Date/Duration: 6 years, started this year.

Additionnal info/keywords: Compilers, HPC, Polyhedral Model, Sparse Computation

11 Dissemination

11.1 Promoting scientific activities

The team participated in a DECLICS (Dialogues Entre Chercheurs et Lycéens pour les Intéresser à la
Construction des Savoirs) meeting with high-school students (Lycée Saint-Just). Matthieu Moy was
“Capitaine” and Yannick Zakowski and Emmanuel Arrighi were “Ambassadors”.

11.1.1 Scientific events: organisation

Ludovic Henrio organised a workshop on active objects and the ABS kanguage in Lyon.

General chair, scientific chair Ludovic Henrio is member of the steering committee of ICE workshops.

11.1.2 Scientific events: selection

Member of the conference program committees

• Gabriel Radannewas a PC member for JFLA’23, ICFP’23

• Yannick Zakowskiwas a PC member for CoqPL’24, GALOP’24, JFLA’24, POPL’24

Member of the Artifact Evaluation committees

• Nicolas Chappewas a member of the Artifact Evaluation Committee for POPL’24

11.1.3 Journal

• Christophe Alias was a reviewer for PARCO, TETC and TRETS.

• Gabriel Radanne was an external reviewer for JFP (1 paper)

• Matthieu Moy was a reviewer for TACO and TECS.

11.1.4 Conferences

• Christophe Alias was a reviewer for COMPAS’23.

11.1.5 Leadership within the scientific community

• Ludovic Henrio is one of the responsibles, with Kévin Martin of the GdT CLAP inside the GDR GPL.

• Laure Gonnord is responsible for "Ecole des Jeunes Chercheurs en Programmation" in the GdR
GPL.

28 Inria Annual Report 2023

11.1.6 Scientific expertise

• Christophe Alias is scientific advisor for the XTREMLOGIC startup.

• Ludovic Henrio was a member of the evaluation committee of LIPN laboratory (Dec 2023).

11.1.7 Research administration

• Ludovic Henrio is member of the "commission recherche" of labex Milyon.

11.2 Teaching - Supervision - Juries

11.2.1 Teaching

Nicolas Chappe published an article about the online platform that allows teaching programming lan-
guages at ENS Lyon [14].

Licence

• Christophe Alias: "Compilation", INSA CVL 3A, cours+TD, 27h ETD.

• Hugo Thievenaz: "Algorithmique programmation impérative, initiation", L1 UCBL, TP, 18h ETD.

• Hugo Thievenaz: "Bases de l’architecture pour la programmation", L1 UCBL, TP, 24h ETD.

• Matthieu Moy: Responsible of the “licence d’informatique UCBL”. “Programmation concurrente”,
L3 UCBL, 26h; “Projet Informatique”, L3 UCBL, 9.5h; “Systèmes d’exploitation”, L2 UCBL, 25h.

• Nicolas Chappe: "Architecture des ordinateurs", L2 UCBL, 24h TP

• Amaury Maillé: "Algorithmique et Programmation Orientée Objet", L3 UCBL, TD, 14h EQTD

• Amaury Maillé: "Algorithmique et Programmation Orientée Objet", L3 UCBL, TD+TP, 32.16h EQTD

• Amaury Maillé: "Programmation Logique", L2 UCBL, TP, 12h EQTD

• Amaury Maillé: "Algorithmique, programmation impérative, initiation", L1 UCBL, TD+TP, 1.67h
EQTD

• Amaury Maillé: "Algorithmique, programmation et structures de données", L2 UCBL, TD+TP, 24h
EQTD

• Amaury Maillé: "Architecture des ordinateurs", L2 UCBL, TP, 16h EQTD

• Emanuel Arrighi: "Théorie de la Programmation", L3 ENS, TP

• Emanuel Arrighi: "Algorithmique 1", L3 ENS, TP

Master 1

• Christophe Alias: "Optimisation des applications embarquées", INSA CVL 4A, cours+TD, 27h ETD.

• Christophe Alias: "Compilation", Préparation à l’agrégation d’informatique, ENS-Lyon, cours, 18h
ETD.

• Hugo Thievenaz: "Compilation / traduction des programmes", M1 UCBL, TD+TP, 22.5h ETD.

• Thaïs Baudon: "Compilation", Préparation à l’agrégation d’informatique, ENS-Lyon, TP, 10h ETD.

• Matthieu Moy: “Compilation et traduction des programmes”, M1 UCBL, responsible, 31h; “Gestion
de projet et génie logiciel”, M1 UCBL, responsible, 32h; “Projet pour l’Orientation en Master”, M1
UCBL, 2 students supervised.

Project CASH 29

• Gabriel Radanne, Ludovic Henrio and Hugo Thievenaz: "Compilation and Analysis" (CAP), ENS-
Lyon, Master d’Informatique Fondamentale, cours, 48h CM + 28h TD, 64h ETD.

• Gabriel Radanne: “Projet”, M1 ENS-Lyon, 9 students supervised.

• Gabriel Radanne: TP "Programmation Fonctionelle", L3 UCBL, 16h ETD

• Thaïs Baudon: TD de compilation, préparation à l’agrégation d’informatique, ENS de Lyon, 10ETD.

Master 2

• Christophe Alias: "Polyhedral Compilation: A Short Survey", Waseda University, 3 lectures of 2h.

• Yannick Zakowski: "Program Verification with Coinduction and Proof Assistants", ENS-Lyon, cours,
24h ETD.

• Ludovic Henrio: University of Nice Sophia Antipolis, M2 Ubinet. "an algorithmic approach to
distributed systems" 3h30 CM+TD

11.2.2 Supervision

• Christophe Alias co-advises the PhD thesis of Hugo Thievenaz with Keiji Kimura (Waseda Univer-
sity).

• Christophe Alias advises the PhD thesis of Alec Sadler with the collaboration of Thierry Gautier,
Xavier Rival (Inria Paris) and Philippe Clauss (Inria Strasbourg).

• Ludovic Henrio and Yannick Zakowski co-advise the PhD thesis of Nicolas Chappe.

• Gabriel Radanne and Laure Gonnord co-advise the PhD thesis of Thaïs Baudon.

• Matthieu Moy co-advises the PhD thesis of Oussama Oulkaid with Pascal Raymond (Verimag),
Mehdi Khosravian (Aniah), and Bruno Ferres (Verimag).

11.2.3 Defended Ph.D

• Julien Emmanuel: "A full stack simulator for HPC: Multi-level modelling of the BXI interconnect to
predict the performance of MPI applications" [18], directed by Ludovic Henrio and Matthieu Moy.

• Amaury Maillé: "Simple, Safe and Efficient Abstractions for Communication and Streaming in
Parallel Computing" [19], directed by Ludovic Henrio and Matthieu Moy

11.2.4 Juries

• Christophe Alias was examiner for the "oral d’infomatique du second concours de l’ENS de Lyon"
competitive examination.

• Christophe Alias was "correcteur" for the "X/ENS filière PSI" competitive examination.

• Christophe Alias was a specialist member for the CSI of Clément Rosseti (advisor: Philippe Clauss).

• Gabriel Radanne was jury for the "Épreuve d’algorithmique du concours de l’ENS".

11.3 Popularization

11.3.1 Education

• Thaïs Baudon: Conception d’activités débranchées pour la vulgarisation de l’informatique et des
mathématiques auprès du grand public, Maison des Mathématiques et de l’Informatique (MMI),
32h ETD.

• Thaïs Baudon: "Maths en Jeans" with Joël Felderhoff et Daniel Hirschkoff

30 Inria Annual Report 2023

12 Scientific production

12.1 Major publications

[1] C. Alias and A. Plesco. ‘Data-Aware Process Networks’. In: CC 2021 - 30th ACM SIGPLAN Interna-
tional Conference on Compiler Construction. Virtual, South Korea: ACM, 2nd Mar. 2021, pp. 1–11.
DOI: 10.1145/3446804.3446847. URL: https://hal.inria.fr/hal-03143777.

[2] T. Baudon, G. Radanne and L. Gonnord. ‘Bit-Stealing Made Legal: Compilation for Custom Memory
Representations Of Algebraic Data Types’. In: Proceedings of the ACM on Programming Languages.
ICFP 2023. ICFP. Seattle (USA), United States, 4th Sept. 2023. DOI: 10.1145/3607858. URL: https:
//inria.hal.science/hal-04165615.

[3] G. Busnot, T. Sassolas, N. Ventroux and M. Moy. ‘Standard-compliant parallel SystemC simulation
of loosely-timed transaction level models: From baremetal to Linux-based applications support’.
In: Integration, the VLSI Journal 79 (July 2021), pp. 23–40. DOI: 10.1016/j.vlsi.2020.12.006.
URL: https://hal.archives-ouvertes.fr/hal-03487607.

[4] N. Chappe, P. He, L. Henrio, Y. Zakowski and S. Zdancewic. ‘Choice Trees: Representing Non-
deterministic, Recursive, and Impure Programs in Coq’. In: Proceedings of the ACM on Programming
Languages (15th Jan. 2023), pp. 1–31. DOI: 10.1145/3571254. URL: https://hal.science/hal-
03886910.

[5] N. Chappe, L. Henrio, A. Maillé, M. Moy and H. Renaud. ‘An Optimised Flow for Futures: From
Theory to Practice’. In: The Art, Science, and Engineering of Programming 6.1 (15th July 2021),
pp. 1–41. DOI: 10.22152/programming-journal.org/2022/6/3. URL: https://hal.inria.f
r/hal-03440766.

[6] L. Gonnord, L. Henrio, L. Morel and G. Radanne. ‘A Survey on Parallelism and Determinism’. In:
ACM Computing Surveys (27th Sept. 2022). DOI: 10.1145/3564529. URL: https://hal.inria.f
r/hal-03828497.

[7] R. Hähnle and L. Henrio. ‘Provably Fair Cooperative Scheduling’. In: The Art, Science, and Engineer-
ing of Programming 8.2 (15th Oct. 2023). DOI: 10.22152/programming-journal.org/2024/8/6.
URL: https://hal.science/hal-04372450.

[8] Y. Zakowski, C. Beck, I. Yoon, I. Zaichuk, V. Zaliva and S. Zdancewic. ‘Modular, compositional, and
executable formal semantics for LLVM IR’. In: Proceedings of the ACM on Programming Languages
5.ICFP (22nd Aug. 2021), pp. 1–30. DOI: 10.1145/3473572. URL: https://hal.archives-ouver
tes.fr/hal-03525711.

12.2 Publications of the year

International journals

[9] N. Chappe, P. He, L. Henrio, Y. Zakowski and S. Zdancewic. ‘Choice Trees: Representing Non-
deterministic, Recursive, and Impure Programs in Coq’. In: Proceedings of the ACM on Programming
Languages (15th Jan. 2023), pp. 1–31. DOI: 10.1145/3571254. URL: https://hal.science/hal-
03886910.

[10] H. Coullon, L. Henrio, F. Loulergue and S. Robillard. ‘Component-Based Distributed Software
Reconfiguration: a Verification-Oriented Survey’. In: ACM Computing Surveys 56.1 (3rd May 2023),
pp. 1–37. DOI: 10.1145/3595376. URL: https://inria.hal.science/hal-04067909.

[11] R. Hähnle and L. Henrio. ‘Provably Fair Cooperative Scheduling’. In: The Art, Science, and Engineer-
ing of Programming 8.2 (15th Oct. 2023). DOI: 10.22152/programming-journal.org/2024/8/6.
URL: https://hal.science/hal-04372450.

https://doi.org/10.1145/3446804.3446847
https://hal.inria.fr/hal-03143777
https://doi.org/10.1145/3607858
https://inria.hal.science/hal-04165615
https://inria.hal.science/hal-04165615
https://doi.org/10.1016/j.vlsi.2020.12.006
https://hal.archives-ouvertes.fr/hal-03487607
https://doi.org/10.1145/3571254
https://hal.science/hal-03886910
https://hal.science/hal-03886910
https://doi.org/10.22152/programming-journal.org/2022/6/3
https://hal.inria.fr/hal-03440766
https://hal.inria.fr/hal-03440766
https://doi.org/10.1145/3564529
https://hal.inria.fr/hal-03828497
https://hal.inria.fr/hal-03828497
https://doi.org/10.22152/programming-journal.org/2024/8/6
https://hal.science/hal-04372450
https://doi.org/10.1145/3473572
https://hal.archives-ouvertes.fr/hal-03525711
https://hal.archives-ouvertes.fr/hal-03525711
https://doi.org/10.1145/3571254
https://hal.science/hal-03886910
https://hal.science/hal-03886910
https://doi.org/10.1145/3595376
https://inria.hal.science/hal-04067909
https://doi.org/10.22152/programming-journal.org/2024/8/6
https://hal.science/hal-04372450

Project CASH 31

International peer-reviewed conferences

[12] R. Ameur-Boulifa, Q. Corradi, L. Henrio and E. Madelaine. ‘Refinements for Open Automata’.
In: Lecture Notes in Computer Science. SEFM 2023 - Software Engineering and Formal Methods.
Vol. LNCS-14323. Software Engineering and Formal Methods 21st International Conference, SEFM
2023, Eindhoven, The Netherlands, November 6-10, 2023, Proceedings. Eindhoven, Netherlands:
Springer Nature Switzerland, 31st Oct. 2023, pp. 11–29. DOI: 10.1007/978-3-031-47115-5_2.
URL: https://inria.hal.science/hal-04271300.

[13] T. Baudon, G. Radanne and L. Gonnord. ‘Bit-Stealing Made Legal: Compilation for Custom Memory
Representations Of Algebraic Data Types’. In: Proceedings of the ACM on Programming Languages.
ICFP 2023. ICFP. Seattle (USA), United States, 4th Sept. 2023. DOI: 10.1145/3607858. URL: https:
//inria.hal.science/hal-04165615.

[14] E. Caron and N. Chappe. ‘FicWebBoard: A Playful and Collaborative Learning Platform Built for All
People and All Programming Languages’. In: 2023 IEEE Frontiers in Education Conference (FIE).
College Station, TX, United States: IEEE, 18th Oct. 2023, pp. 1–8. DOI: 10.1109/FIE58773.2023.1
0343040. URL: https://inria.hal.science/hal-04380643.

[15] B. Ferres, O. Oulkaid, L. Henrio, M. Khosravian, M. Moy, G. Radanne and P. Raymond. ‘Electrical
Rule Checking of Integrated Circuits using Satisfiability Modulo Theory’. In: h t t p s : // i e
e e x p l o r e . i e e e . o r g / x p l / c o n h o m e / 9 7 7 4 4 9 6 / p r o c e e d i n g . DATE 2023 -
Design, Automation and Test in Europe Conference. Anvers (Antwerpen), Belgium, 2022. URL:
https://hal.science/hal-04007446.

National peer-reviewed Conferences

[16] J. Abou-Samra, Y. Zakowski and M. Bodin. ‘Effectful Programming across Heterogeneous Com-
putations -Work in Progress’. In: Journées Francophones des Langages Applicatifs. JFLA 2023 -
34èmes Journées Francophones des Langages Applicatifs. Praz-sur-Arly, France, 2023, pp. 7–23.
URL: https://hal.science/hal-03886975.

[17] C. Blaudeau, D. Rémy and G. Radanne. ‘Retrofitting OCaml modules: Fixing signature avoidance
in the generative case’. In: Journées Francophones des Langages Applicatifs. JFLA 2023 - 34èmes
Journées Francophones des Langages Applicatifs. Praz-sur-Arly, France, 16th Jan. 2023, pp. 59–100.
URL: https://inria.hal.science/hal-03936636.

Doctoral dissertations and habilitation theses

[18] J. Emmanuel. ‘A full stack simulator for HPC: Multi-level modelling of the BXI interconnect to
predict the performance of MPI applications’. Université Claude Bernard Lyon 1, 8th Mar. 2023.
URL: https://inria.hal.science/tel-04211680.

[19] A. Maillé. ‘Simple, Safe and Efficient Abstractions for Communication and Streaming in Parallel
Computing’. Ecole normale supérieure de lyon - ENS LYON, 7th July 2023. URL: https://theses
.hal.science/tel-04238803.

Reports & preprints

[20] M. Andrieux, L. Henrio and G. Radanne. Active Objects based on Algebraic Effects. 11th Jan. 2024.
URL: https://hal.science/hal-04388798.

[21] G. Dehame, C. Alias and A. Sadler. Partial Evaluation of Dense Code on Sparse Structures. RR-9534.
INRIA Lyon; CNRS; ENS de Lyon; Université de Lyon, 20th Dec. 2023, p. 16. URL: https://inria
.hal.science/hal-04358187.

[22] L. Henrio, E. Madelaine, R. Ameur-Boulifa and Q. Corradi. Refinements for Open Automata (Ex-
tended Version). RR-9517. Inria - Research Centre Grenoble – Rhône-Alpes, 1st Sept. 2023. URL:
https://inria.hal.science/hal-04193421.

https://doi.org/10.1007/978-3-031-47115-5_2
https://inria.hal.science/hal-04271300
https://doi.org/10.1145/3607858
https://inria.hal.science/hal-04165615
https://inria.hal.science/hal-04165615
https://doi.org/10.1109/FIE58773.2023.10343040
https://doi.org/10.1109/FIE58773.2023.10343040
https://inria.hal.science/hal-04380643
https://ieeexplore.ieee.org/xpl/conhome/9774496/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9774496/proceeding
https://hal.science/hal-04007446
https://hal.science/hal-03886975
https://inria.hal.science/hal-03936636
https://inria.hal.science/tel-04211680
https://theses.hal.science/tel-04238803
https://theses.hal.science/tel-04238803
https://hal.science/hal-04388798
https://inria.hal.science/hal-04358187
https://inria.hal.science/hal-04358187
https://inria.hal.science/hal-04193421

32 Inria Annual Report 2023

[23] S. Michelland, Y. Zakowski and L. Gonnord. Abstract Interpreters: a Monadic Approach to Modular
Verification (DRAFT). 10th Jan. 2024. DOI: 10.1145/nnnnnnn.nnnnnnn. URL: https://inria.ha
l.science/hal-04385725.

[24] G. Radanne, T. Baudon and L. Gonnord. Rebuilding Algebraic Data Types from Mangled Memory
Layouts. 11th Jan. 2024. URL: https://hal.science/hal-04388766.

12.3 Cited publications

[25] C. Alias, A. Darte, P. Feautrier and L. Gonnord. ‘Multi-dimensional Rankings, Program Termination,
and Complexity Bounds of Flowchart Programs’. In: International Static Analysis Symposium
(SAS’10). 2010.

[26] C. Alias and A. Plesco. ‘Data-Aware Process Networks’. In: Proceedings of the 30th ACM SIGPLAN
International Conference on Compiler Construction. CC 2021. Virtual, Republic of Korea: Association
for Computing Machinery, 2021, pp. 1–11. DOI: 10.1145/3446804.3446847. URL: https://doi
.org/10.1145/3446804.3446847.

[27] C. Alias and A. Plesco. Data-aware Process Networks. Research Report RR-8735. Inria - Research
Centre Grenoble – Rhône-Alpes, June 2015, p. 32. URL: https://hal.inria.fr/hal-01158726.

[28] C. Alias and A. Plesco. Method of Automatic Synthesis of Circuits, Device and Computer Program
associated therewith. Patent FR1453308. Apr. 2014.

[29] I. Amer, C. Lucarz, G. Roquier, M. Mattavelli, M. Raulet, J.-F. Nezan and O. Deforges. ‘Reconfigurable
video coding on multicore’. In: Signal Processing Magazine, IEEE 26.6 (2009), pp. 113–123. URL:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5230810.

[30] S. Ananian. ‘The Static Single Information Form’. MA thesis. MIT, Sept. 1999.

[31] C. B. Aoun, L. Andrade, T. Maehne, F. Pêcheux, M.-M. Louërat and A. Vachouxy. ‘Pre-simulation
elaboration of heterogeneous systems: The SystemC multi-disciplinary virtual prototyping ap-
proach’. In: Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2015
International Conference on. IEEE. 2015, pp. 278–285.

[32] P. Aubry, P.-E. Beaucamps, F. Blanc, B. Bodin, S. Carpov, L. Cudennec, V. David, P. Doré, P. Dubrulle,
B. Dupont De Dinechin, F. Galea, T. Goubier, M. Harrand, S. Jones, J.-D. Lesage, S. Louise, N. Morey
Chaisemartin, T. H. Nguyen, X. Raynaud and R. Sirdey. ‘Extended Cyclostatic Dataflow Program
Compilation and Execution for an Integrated Manycore Processor’. In: Alchemy 2013 - Architecture,
Languages, Compilation and Hardware support for Emerging ManYcore systems. Vol. 18. Proceed-
ings of the International Conference on Computational Science, ICCS 2013. Barcelona, Spain, June
2013, pp. 1624–1633. DOI: 10.1016/j.procs.2013.05.330. URL: https://hal.inria.fr/hal-
00832504.

[33] D. Becker, M. Moy and J. Cornet. ‘Parallel Simulation of Loosely Timed SystemC/TLM Programs:
Challenges Raised by an Industrial Case Study’. In: MDPI Electronics 5.2 (2016). Ed. by F. Rousseau,
G. Nicolescu, A. Baghdadi and M. Bassiouni, p. 22. DOI: 10.3390/electronics5020022. URL:
https://hal.archives-ouvertes.fr/hal-01321055.

[34] D. Caromel and L. Henrio. A Theory of Distributed Objects. Springer-Verlag, 2004.

[35] N. Courant and X. Leroy. ‘Verified Code Generation for the Polyhedral Model’. In: Proceedings of
the ACM on Programming Languages 5.POPL (Jan. 2021), 40:1–40:24. DOI: 10.1145/3434321. URL:
https://hal.archives-ouvertes.fr/hal-03000244.

[36] P. Cousot and R. Cousot. ‘Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints’. In: 4th ACM Symposium on Principles of
Programming Languages (POPL’77). Los Angeles, Jan. 1977, pp. 238–252.

[37] F. De Boer, V. Serbanescu, R. Hähnle, L. Henrio, J. Rochas, C. C. Din, E. Broch Johnsen, M. Sirjani,
E. Khamespanah, K. Fernandez-Reyes and A. M. Yang. ‘A Survey of Active Object Languages’. In:
ACM Comput. Surv. 50.5 (Oct. 2017), 76:1–76:39. DOI: 10.1145/3122848. URL: http://doi.acm
.org/10.1145/3122848.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://inria.hal.science/hal-04385725
https://inria.hal.science/hal-04385725
https://hal.science/hal-04388766
https://doi.org/10.1145/3446804.3446847
https://doi.org/10.1145/3446804.3446847
https://doi.org/10.1145/3446804.3446847
https://hal.inria.fr/hal-01158726
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5230810
https://doi.org/10.1016/j.procs.2013.05.330
https://hal.inria.fr/hal-00832504
https://hal.inria.fr/hal-00832504
https://doi.org/10.3390/electronics5020022
https://hal.archives-ouvertes.fr/hal-01321055
https://doi.org/10.1145/3434321
https://hal.archives-ouvertes.fr/hal-03000244
https://doi.org/10.1145/3122848
http://doi.acm.org/10.1145/3122848
http://doi.acm.org/10.1145/3122848

Project CASH 33

[38] J. Emmanuel, M. Moy, L. Henrio and G. Pichon. ‘Simulation of the Portals 4 protocol, and case
study on the BXI interconnect’. In: HPCS 2020 - International Conference on High Performance
Computing & Simulation. Barcelona, Spain, Dec. 2020, pp. 1–8. URL: https://hal.archives-ou
vertes.fr/hal-02972297.

[39] P. Feautrier. ‘Dataflow analysis of array and scalar references’. In: International Journal of Parallel
Programming 20.1 (1991), pp. 23–53.

[40] P. Feautrier. ‘Scalable and Structured Scheduling’. In: International Journal of Parallel Programming
34.5 (Oct. 2006), pp. 459–487.

[41] P. Feautrier, A. Gamatié and L. Gonnord. ‘Enhancing the Compilation of Synchronous Dataflow
Programs with a Combined Numerical-Boolean Abstraction’. In: CSI Journal of Computing 1.4
(2012), 8:86–8:99. URL: http://hal.inria.fr/hal-00860785.

[42] K. Fernandez-Reyes, D. Clarke, E. Castegren and H.-P. Vo. ‘Forward to a Promising Future’. In:
Conference proceedings COORDINATION 2018. 2018.

[43] M. I. Gordon. ‘Compiler techniques for scalable performance of stream programs on multicore
architectures’. PhD thesis. Massachusetts Institute of Technology. Dept. of Electrical Engineering
and Computer Science, 2010.

[44] O. Hakjoo, L. Wonchan, H. Kihong, Y. Hongseok and Y. Kwangkeun. ‘Selective context-sensitivity
guided by impact pre-analysis’. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014. ACM, 2014, p. 49.

[45] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud. ‘The synchronous data flow programming
language LUSTRE’. In: Proceedings of the IEEE 79.9 (Sept. 1991), pp. 1305–1320.

[46] IEEE 1666 Standard: SystemC Language Reference Manual. Open SystemC Initiative. 2011. URL:
http://www.accellera.org/.

[47] G. Kahn. ‘The semantics of a simple language for parallel programming’. In: Information processing.
North-Holland, 1974.

[48] A. Krizhevsky, I. Sutskever and G. E. Hinton. ‘Imagenet classification with deep convolutional
neural networks’. In: Advances in neural information processing systems. 2012, pp. 1097–1105.

[49] M. Maalej, V. Paisante, P. Ramos, L. Gonnord and F. Pereira. ‘Pointer Disambiguation via Strict
Inequalities’. In: Code Generation and Optimisation. Austin, United States, Feb. 2017. URL: https:
//hal.archives-ouvertes.fr/hal-01387031.

[50] M. Maalej Kammoun. ‘Low-cost memory analyses for efficient compilers’. Thèse de doctorat,
Université Lyon1. PhD thesis. Université Lyon 1, 2017. URL: http://www.theses.fr/2017LYSE1
167.

[51] M. Moy. ‘Parallel Programming with SystemC for Loosely Timed Models: A Non-Intrusive Approach’.
In: DATE. Grenoble, France, Mar. 2013, p. 9. URL: https://hal.archives-ouvertes.fr/hal-0
0761047.

[52] OSCI TLM-2.0 Language Reference Manual. Open SystemC Initiative (OSCI). June 2008. URL: http:
//www.accellera.org/downloads/standards.

[53] V. Paisante, M. Maalej, L. Barbosa, L. Gonnord and F. M. Q. Pereira. ‘Symbolic Range Analysis of
Pointers’. In: International Symposium of Code Generation and Optmization. Barcelon, Spain, Mar.
2016, pp. 791–809. URL: https://hal.inria.fr/hal-01228928.

[54] L.-N. Pouchet. Polybench: The polyhedral benchmark suite. 2012. URL: http://www.cs.ucla.edu
/~pouchet/software/polybench/.

[55] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. ‘Numerical recipes in C++’. In: The
art of scientific computing (2015).

[56] P. Quinton. ‘Automatic synthesis of systolic arrays from uniform recurrent equations’. In: ACM
SIGARCH Computer Architecture News 12.3 (1984), pp. 208–214.

https://hal.archives-ouvertes.fr/hal-02972297
https://hal.archives-ouvertes.fr/hal-02972297
http://hal.inria.fr/hal-00860785
http://www.accellera.org/
https://hal.archives-ouvertes.fr/hal-01387031
https://hal.archives-ouvertes.fr/hal-01387031
http://www.theses.fr/2017LYSE1167
http://www.theses.fr/2017LYSE1167
https://hal.archives-ouvertes.fr/hal-00761047
https://hal.archives-ouvertes.fr/hal-00761047
http://www.accellera.org/downloads/standards
http://www.accellera.org/downloads/standards
https://hal.inria.fr/hal-01228928
http://www.cs.ucla.edu/~pouchet/software/polybench/
http://www.cs.ucla.edu/~pouchet/software/polybench/

34 Inria Annual Report 2023

[57] H. Rihani, M. Moy, C. Maïza, R. I. Davis and S. Altmeyer. ‘Response Time Analysis of Synchronous
Data Flow Programs on a Many-Core Processor’. In: Proceedings of the 24th International Conference
on Real-Time Networks and Systems. RTNS ’16. Brest, France: ACM, 2016, pp. 67–76. DOI: 10.1145
/2997465.2997472. URL: http://doi.acm.org/10.1145/2997465.2997472.

[58] H. N. W. Santos, I. Maffra, L. Oliveira, F. Pereira and L. Gonnord. ‘Validation of Memory Accesses
Through Symbolic Analyses’. In: Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages And Applications (OOPSLA’14). Portland, Oregon, United
States, Oct. 2014. URL: http://hal.inria.fr/hal-01006209.

[59] W. Thies. ‘Language and compiler support for stream programs’. PhD thesis. Massachusetts Insti-
tute of Technology, 2009.

[60] J. Travis and J. Kring. LabVIEW for everyone: graphical programming made easy and fun. Prentice-
Hall, 2007.

[61] A. Turjan. ‘Compiling Nested Loop Programs to Process Networks’. PhD thesis. Universiteit Leiden,
2007.

[62] N. Ventroux and T. Sassolas. ‘A new parallel SystemC kernel leveraging manycore architectures’. In:
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2016. IEEE. 2016, pp. 487–492.

[63] S. Verdoolaege. ‘Polyhedral Process Networks’. In: Handbook of Signal Processing Systems. Springer,
2010, pp. 931–965.

[64] S. Williams, A. Waterman and D. Patterson. ‘Roofline: an insightful visual performance model for
multicore architectures’. In: Communications of the ACM 52.4 (2009), pp. 65–76.

[65] P. Wilmott. Quantitative Finance. Wiley, 2006.

[66] L. Xia, Y. Zakowski, P. He, C. Hur, G. Malecha, B. C. Pierce and S. Zdancewic. ‘Interaction Trees’. In:
Proceedings of the ACM on Programming Languages 4.POPL (2020). DOI: 10.1145/3371119.

https://doi.org/10.1145/2997465.2997472
https://doi.org/10.1145/2997465.2997472
http://doi.acm.org/10.1145/2997465.2997472
http://hal.inria.fr/hal-01006209
https://doi.org/10.1145/3371119

	Project-Team CASH
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Research direction 1: Parallel and Dataflow Programming Models
	Expected Impact
	Scientific Program

	Research direction 2: Expressive, Scalable and Certified Static Analyses
	Expected impact
	Scientific Program

	Research direction 3: Optimizing Program Transformations
	Expected impact
	Scientific Program

	Research direction 4: Simulation and Hardware
	Expected Impact
	Scientific Program

	Application domains
	Social and environmental responsibility
	Footprint of research activities
	Impact of research results

	Highlights of the year
	Articles

	New software, platforms, open data
	New software
	DCC
	PoCo
	Encore with dataflow explicit futures
	fkcc
	Vellvm
	vaphor
	Data Abstraction
	S4BXI
	llvm-pass
	ribbit
	calv
	adtr
	dowsing
	odoc
	PoLA
	Actors-OCaml
	ctrees

	New results
	Research direction 1: Parallel and Dataflow Programming Models
	Flexible Synchronization for Parallel Computations.
	Locally abstract globally concrete semantics
	Deterministic parallel programs
	PNets: Parametrized networks of automata
	A Survey on Verified Reconfiguration
	Verified Compilation Infrastructure for Concurrent Programs
	Operational Game Semantics
	Foundational support to datatypes and codatatypes in Coq
	Actors and algebraic effects

	Research direction 2: Expressive, Scalable and Certified Analyses
	Verification of electric properties on transistor-level descriptions of circuits, using formal methods
	Search functions by types
	A new module system for OCaml

	Research direction 3: Optimizing Program Transformations
	Memory optimizations for Algebraic Data Types
	Vellvm: Verified LLVM
	Verified Abstract Interpreters as Monadic Interpreters
	A verified CompCert backend for OptiTrust
	Scalable Array Contraction using Trace-Based Polyhedral Analysis
	Partial Evaluation of Dense Code on Sparse Structures

	Research direction 4: Simulation and Hardware
	S4BXI: the MPI-ready Portals 4 Simulator

	Bilateral contracts and grants with industry
	Partnertship with the Aniah startup on circuit verification
	CAVOC Project with Inria/Nomadic Labs

	Partnerships and cooperations
	International initiatives
	Participation in other International Programs

	International research visitors
	Visits of international scientists
	Visits to international teams

	National initiatives

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Conferences
	Leadership within the scientific community
	Scientific expertise
	Research administration

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Defended Ph.D
	Juries

	Popularization
	Education

	Scientific production
	Major publications
	Publications of the year
	Cited publications

