
2023
ACTIVITY REPORT

Project-Team

CORSE

RESEARCH CENTRE

Inria Centre
at Université Grenoble Alpes

IN PARTNERSHIP WITH:

Université de Grenoble Alpes

Compiler Optimization and Run-time
SystEms

IN COLLABORATION WITH: Laboratoire d’Informatique de Grenoble (LIG)

DOMAIN

Algorithmics, Programming, Software and
Architecture

THEME

Architecture, Languages and Compilation

Contents

Project-Team CORSE 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3

3 Research program 3
3.1 Scientific Foundations . 3
3.2 Main Research Directions . 3

4 Application domains 4
4.1 Transfer . 4

5 Social and environmental responsibility 4
5.1 Footprint of research activities . 4
5.2 Impacting research directions for environment . 4
5.3 Impacting usage . 5

6 New software, platforms, open data 5
6.1 New software . 5

6.1.1 Pipedream . 5
6.1.2 IOLB . 6
6.1.3 IOOpt . 6
6.1.4 PALMED . 6
6.1.5 BISM . 6
6.1.6 EasyTracker . 7
6.1.7 GUS . 7
6.1.8 CesASMe . 7
6.1.9 staticdeps . 8
6.1.10 Agdbentures . 8

7 New results 8
7.1 Performance Debugging and Compiler Optimization . 8

7.1.1 Performance Modeling, Schedule Optimization and Code Generation for Tensor
Computations . 9

7.1.2 Automatic Resource Characterization and Performance Feedback 10
7.1.3 Automatic derivation of parametric data movement complexity 10

7.2 Runtime Monitoring, Verification, and Enforcement . 10
7.2.1 Runtime Verification and Testing for Neural Networks 11
7.2.2 Runtime Verification of Multithreaded Programs . 11
7.2.3 Runtime Verification of Complex Systems . 12
7.2.4 Instrumentation for Monitoring . 12

7.3 Teaching of Algorithms, Programming and Debugging . 12
7.3.1 Easytracker : A generic library for controlling and inspecting program execution and

state . 13
7.3.2 Agdbentures: A game to learn to debug in autonomy 13
7.3.3 Active learning method in the context of large programming classes 14

8 Partnerships and cooperations 14
8.1 International initiatives . 14

8.1.1 Inria associate team not involved in an IIL or an international program 14
8.2 National initiatives . 15

9 Dissemination 16
9.1 Promoting scientific activities . 16

9.1.1 Scientific events: organisation . 16
9.1.2 Scientific events: selection . 16
9.1.3 Journal . 17
9.1.4 Invited talks . 17
9.1.5 Leadership within the scientific community . 17
9.1.6 Research administration . 17

9.2 Teaching - Supervision - Juries . 17
9.2.1 Teaching . 17
9.2.2 Supervision . 18
9.2.3 Juries . 18

9.3 Popularization . 18
9.3.1 Internal or external Inria responsibilities . 18
9.3.2 Education . 19
9.3.3 Interventions . 19

10 Scientific production 19
10.1 Publications of the year . 19

Project CORSE 1

Project-Team CORSE

Creation of the Project-Team: 2016 July 01

Keywords

Computer sciences and digital sciences

A1.1.1. – Multicore, Manycore

A1.1.2. – Hardware accelerators (GPGPU, FPGA, etc.)

A1.1.3. – Memory models

A1.1.4. – High performance computing

A1.1.12. – Non-conventional architectures

A1.6. – Green Computing

A2.1.6. – Concurrent programming

A2.1.7. – Distributed programming

A2.1.8. – Aspect-oriented programming

A2.1.10. – Domain-specific languages

A2.2. – Compilation

A2.2.1. – Static analysis

A2.2.2. – Memory models

A2.2.3. – Memory management

A2.2.4. – Parallel architectures

A2.2.5. – Run-time systems

A2.2.6. – GPGPU, FPGA...

A2.2.8. – Code generation

A2.2.9. – Security by compilation

A2.3.2. – Cyber-physical systems

A4.4. – Security of equipment and software

A7.1. – Algorithms

A9.6. – Decision support

Other research topics and application domains

B3.1. – Sustainable development

B4.5. – Energy consumption

B5.3. – Nanotechnology

B6.1.2. – Software evolution, maintenance

B6.6. – Embedded systems

B6.7. – Computer Industry (harware, equipments...)

B9.1. – Education

https://radar.inria.fr/keywords/2023/computing
https://radar.inria.fr/keywords/2023/other

2 Inria Annual Report 2023

1 Team members, visitors, external collaborators

Research Scientists

• Fabrice Rastello [Team leader, INRIA, Senior Researcher, HDR]

• Walid Ghandour [INRIA, Starting Research Position, from Mar 2023]

• Guillaume Iooss [INRIA, Researcher]

Faculty Members

• Florent Bouchez [UGA, Associate Professor]

• Ylies Falcone [UGA, Associate Professor]

• Manuel Selva [GRENOBLE INP, Associate Professor]

Post-Doctoral Fellow

• Hugo Pompougnac [INRIA, Post-Doctoral Fellow, from Mar 2023]

PhD Students

• Hamzah Al-Qadasi [Univ. Grenoble Alpes]

• Theo Barollet [INRIA, until Mar 2023]

• Theophile Bastian [UGA]

• Nicolas Derumigny [Foreign university, until Aug 2023, co-supervision with the USA]

• Irman Faqrizal [Univ. Grenoble Alpes, Convecs]

• Florian Gallay [UGA, until Oct 2023, Halted the PhD]

• Chukri Soueidi [INRIA, until Sep 2023]

• Ahang Zuo [Univ. Grenoble Alpes, Convecs]

Technical Staff

• Christophe Guillon [INRIA, Engineer]

• Chukri Soueidi [INRIA, Engineer, from Oct 2023]

• Valentin Trophime-Gilotte [INRIA, Engineer]

Interns and Apprentices

• Thomas Civade [UGA, from Jun 2023 until Aug 2023]

• Etienne Delort [INRIA, Intern, from Apr 2023 until Sep 2023]

• Alexis Detroyat [UGA, Intern, from Jun 2023 until Jul 2023]

• Alban Dutilleul [INRIA, Intern, from Sep 2023]

• Chu Hoang Anh Nguyen [UGA, Intern, from Jun 2023 until Jul 2023]

• Laura Riou [INRIA, Intern, from Apr 2023 until Sep 2023]

• Tristan Rollet [UGA, from Jun 2023 until Jul 2023]

• Anukriti Srivastava [INRIA, from Apr 2023 until Sep 2023]

Project CORSE 3

Administrative Assistant

• Imma Presseguer [INRIA]

2 Overall objectives

Languages, compilers, and run-time systems are some of the most important components to bridge the
gap between applications and hardware. With the continuously increasing power of computers, expecta-
tions are evolving, with more and more ambitious, computationally intensive and complex applications.
As desktop PCs are becoming a niche and servers mainstream, three categories of computing impose
themselves for the next decade: mobile, cloud, and super-computing. Hence diversity, heterogeneity
(even on a single chip) and thus also hardware virtualization are putting more and more pressure both
on compilers and run-time systems. However, because of the energy wall, architectures are becoming
more and more complex and parallelism ubiquitous at every level. Unfortunately, the memory-CPU
gap continues to increase and energy consumption remains an important issue for future platforms. To
address the challenge of performance and energy consumption raised by silicon companies, compilers
and run-time systems must evolve and, in particular, interact, taking into account the complexity of the
target architecture.

The overall objective of CORSE is to address this challenge by combining static and dynamic compila-
tion techniques, with more interactive embedding of programs and compiler environment in the run-time
system.

3 Research program

3.1 Scientific Foundations

One of the characteristics of CORSE is to base our researches on diverse advanced mathematical tools.
Compiler optimization requires the usage of several tools around discrete mathematics: combinatorial
optimization, algorithmic, and graph theory. The aim of CORSE is to tackle optimization not only
for general purpose but also for domain specific applications. In addition to run-time and compiler
techniques for program instrumentation, hybrid analysis and compilation advances will be mainly based
on polynomial and linear algebra.

The other specificity of CORSE is to address technical challenges related to compiler technology,
run-time systems, and hardware characteristics. This implies mastering the details of each. This is
especially important as any optimization is based on a reasonably accurate model. Compiler expertise
will be used in modeling applications (e.g. through automatic analysis of memory and computational
complexity); Run-time expertise will be used in modeling the concurrent activities and overhead due to
contention (including memory management); Hardware expertise will be extensively used in modeling
physical resources and hardware mechanisms (including synchronization, pipelines, etc.).

The core foundation of the team is related to the combination of static and dynamic techniques, of
compilation, and run-time systems. We believe this to be essential in addressing high-performance and
low energy challenges in the context of new important changes shown by current application, software,
and architecture trends.

3.2 Main Research Directions

Our project is structured along three main directions. The first direction belongs to the area of program
analysis and optimization. This direction breaks down into:

• Performance debugging, binary instrumentation, automatic characterization and simulation of
architectures

• Loop scheduling, data locality, I/O complexity

• Compiler design, hybrid compilation, domain-specific intermediate representations

4 Inria Annual Report 2023

The second direction belongs to the area of runtime monitoring, verification, and enforcement.
This direction breaks into:

• Instrumentation for Java programs for performance and security

• Monitoring of learning-enabled components using geometrical shape abstraction

• Decentralization of the monitoring process for multi-threaded and distributed systems

• Predictive monitoring of business processes

The third direction belongs to the area of teaching and tutoring of programming. This direction
breaks into:

• Visualisation tools for teaching of programming

• Tools and education of debugging

• Problem based learning, generation, recommandation

4 Application domains

4.1 Transfer

The main industrial sector related to the research activities of CORSE is the one of semi-conductor
(programmable architectures spanning from embedded systems to servers). Obviously any computing
application which has the objective of exploiting as much as possible the resources (in terms of high-
performance but also low energy consumption) of the host architecture is intended to take advantage
of advances in compiler and run-time technology. These applications are based on numerical kernels
(linear algebra, FFT, convolution, . . .) that can be adapted to a wide spectrum of architectures. More
specifically, an important activity concerns the optimization of machine learning applications for some
high-performance accelerators. Members of CORSE already maintain fruitful and strong collaborations
with several companies such as KALRAY, GOOGLE, STMICROELECTRONICS, ARM.

5 Social and environmental responsibility

5.1 Footprint of research activities

As expected, after the COVID pandemia, team members kept travel activities quite low compared to
before the pandemia. Whenever long distance meetings (such as conference PC) could be done virtually,
travel has been avoided. Also, team members try to better use existing hardware instead of replacing
them (buying new ones).

5.2 Impacting research directions for environment

Because of rebound effect, improving efficiency does not necessarily improve environmental impact.
It is thus crucial to think how our community can have actual impact on sustainable computing, that
is, influence better design ("R" friendly) and better usage (consume less) of our compute resources. To
achieve this goal, we arrange panels with the aim of raising awareness within our community about this
significant issue. We expect some of our future research projects to address the challenge of sustainable
computing without just focusing on energy efficiency but by considering the global systemic impact as
much as possible.

Project CORSE 5

5.3 Impacting usage

The main two challenges of sustainable computing are:

1. Decrease usage: While the actual environmental impact of our usage is already not that clear to
experts like us (need for open data), it is even less clear for users and developers. It is thus our
responsibility to expose estimations of resource usage (and associated environmental impact) to
the developers. Performance debugging tools should evolve to provide meaningful metrics and
make it accessible to none-experts.

2. Increase the lifetime of hardware (that is, Reuse, Repair, Re...): The need for supporting the develop-
ment of simple, open-source, commons, low-impact (not necessarily low-tech) hardware/software
solutions is becoming critical but not sufficient. We also need to provide the microscope and the
tool-box so that a majority (including sometimes the end-user) can repair or repurpose and device.

Compiler analysis, programming infrastructure, hardware modeling, teaching tools, HIM, etc. are at the
heart of those challenges.

6 New software, platforms, open data

6.1 New software

6.1.1 Pipedream

Name: Pipedream

Keywords: Performance analysis, CPU, Reverse engineering

Scientific Description: Pipedream reverse engineers the following performance characteristics: (1) In-
struction latency – The number of cycles an instruction requires to execute. (2) Peak micro-op
retirement rate – How many fused micro-ops the CPU can retire per cycle. (3) Micro-fusion – The
number of fused micro-ops an instruction decomposes into. (4) Micro-op decomposition and
micro-op port usage – The list of unfused micro-ops every instruction decomposes into and the list
of execution ports every one of these micro-ops can execute on.

The first step of the reverse engineering process consists of generating a number of microbench-
marks. Pipedream then runs these benchmark, measuring their performance using hardware
counters. The latency, throughput, and micro-fusion of different instructions can then be read
directly from these measurements.

The process of finding port mappings, i.e. micro-op decompositions and micro-op port usage,
however, is more involved. For this purpose, we have defined a variation of the maximum flow
problem which we call the "instruction flow problem". We have developed a linear program (LP)
formulation of the instruction flow problem which can be used to calculate the peak IPC and
micro-operations per cycle (MPC) a benchmark kernel can theoretically achieve with a given port
mapping. The actual port mapping of the underlying hardware is then determined by finding the
mapping for which the throughput predicted by instruction flow best matches the actual measured
IPC and MPC.

Functional Description: Pipedream is a tool for measuring specific performance characteristics of CPUs
It is used to build the performance model of another tool called Gus (https://gitlab.inria.fr/nderumig/gus).
Pipedream finds measured performance characteristics such as the throughput and latency of
instructions by running a large set of automatically generated microbenchmarks. The tool can also
find port mappings, a model of part of the CPU instruction scheduler, by analysing performance
measurements of specially crafted microkernels using a LP solver. We have used it to produce a
port mapping for the Intel Skylake CPU architecture. Pipedream is able to find the port mappings
for some instructions for which existing approaches fall back to manual analysis.

URL: https://gitlab.inria.fr/fgruber/pipedream

Contact: Nicolas Derumigny

https://gitlab.inria.fr/fgruber/pipedream

6 Inria Annual Report 2023

6.1.2 IOLB

Keywords: Complexity, Polyhedral compilation, Performance analysis

Functional Description: IOLB computes a symbolic lower bound on the I/O, or data movement, com-
plexity of a computer program, that is the amount of data that needs to be moved between cache
and main memory to perform its computation. The input is a C program, and the output is a
mathematical formula that depends on program parameters (array sizes...) and cache size.

URL: https://gitlab.inria.fr/CORSE/iolb

Publications: hal-02421026, hal-02910961

Contact: Guillaume Iooss

6.1.3 IOOpt

Keywords: I/O, Polyhedral compilation

Functional Description: IOOpt takes as input an abstract representation of a tileable program. The
tool generates a tractable set of relevant permutations of the tiling loops, and a symbolic I/O
cost expression for each of them. It then uses a non-linear problem optimizer to find the best
permutations and corresponding tile sizes for a given value of machine parameters (cache sizes
and bandwidths at each level). IOOpt can also be used to find an upper bound on the I/O cost of a
program, for a given tiling scheme.

Publication: hal-03200539

Contact: Guillaume Iooss

6.1.4 PALMED

Keywords: CPU, Performance measure, Performance analysis, Reverse engineering

Functional Description: PALMED computes a bipartite graph assembly instructions <-> abstract re-
sources that may be used for performance prediction, targeting static analysis tools and compilers.
Internally, PALMED uses PIPEDREAM as a framework for microbenchmarking code generation,
and use gurobi to find a first small graph. Then, PALMED deduces from the found resources and
the microbenchmarks that saturates them a mapping of every supported instruction.

URL: https://gitlab.inria.fr/nderumig/palmed

Contact: Fabrice Rastello

6.1.5 BISM

Name: BISM: Bytecode-level Instrumentation for Software Monitoring

Keywords: Java, Bytecode, Instrumentation, Control Flow

Functional Description: BISM (Bytecode-level Instrumentation for Software Monitoring) is a lightweight
Java bytecode instrumentation tool which features an expressive high-level control-flow-aware
instrumentation language. The language follows the aspect-oriented programming paradigm by
adopting the joinpoint model, advice inlining, and separate instrumentation mechanisms. BISM
provides joinpoints ranging from bytecode instruction to method execution, access to compre-
hensive context information, and instrumentation methods. BISM runs in two modes: build-time
and load-time.

URL: https://gitlab.inria.fr/bism/bism-public

Publication: hal-03081265

https://gitlab.inria.fr/CORSE/iolb
https://hal.inria.fr/hal-02421026
https://hal.inria.fr/hal-02910961
https://hal.inria.fr/hal-03200539
https://gitlab.inria.fr/nderumig/palmed
https://gitlab.inria.fr/bism/bism-public
https://hal.inria.fr/hal-03081265

Project CORSE 7

Contact: Ylies Falcone

Participants: Chukri Soueidi, Ylies Falcone, Ali Kassem

6.1.6 EasyTracker

Keywords: Monitoring, Debug, Visualization, Teaching of programming

Scientific Description: Learning to program involves building a mental representation of how a machine
executes instructions and stores information in memory. To help students, teachers often use
visual representations to illustrate executions of programs or particular concepts in their lectures.
EasyTracker is a library that assists teachers of programming courses in building tools that generate
representations tuned to their needs from actual programs. At its core, EasyTracker provides ways
of controlling the execution and inspecting the state of programs. The control and inspection are
driven and customized through a Python interface. The controlled program itself can be written
either in Python or in any GDB supported language like C.

Functional Description: EasyTracker is a Python library for controlling and inspecting program execu-
tion. The library allows to pause the program’s execution on specific points of interest (modification
of a variable, recursive function call return for example) described using a high level interface and
allows to inspect the state of a paused program. The controlled program can be written either in
Python, C, or assembly languages. While the library has been initially written to ease the creation
of visualization tools for teaching programming, it can also be used in other contexts such as
debugging or testing.

URL: https://gitlab.inria.fr/CORSE/easytracker/

Publication: hal-04368835

Contact: Manuel Selva

Participants: Theo Barollet, Manuel Selva, François Broquedis, Florent Bouchez, Fabrice Rastello, Chris-
tophe Guillon

6.1.7 GUS

Keywords: CPU, Microarchitecture simulation, Performance analysis, Dynamic Analysis

Functional Description: GUS’ goal is to detect performance bottlenecks at the very low level on mono-
thread applications by the use of sensitivity analysis. It is coded as a QEMU plug-in in order to
collect runtime information that are later treated by the generic CPU model.

URL: https://gitlab.inria.fr/nderumig/gus

Contact: Nicolas Derumigny

6.1.8 CesASMe

Keywords: CPU, Microarchitecture simulation, Performance analysis

Functional Description: CesASMe fulfills 2 goals: 1- It automatically generates a large amount of mi-
crobenchmarks (ie benchmarks whose computation is L1-resident) from a benchmark suite, each
implementing a different loop optimisation : tiling, loop fusion, etc. 2- For each compiled mi-
crobenchmark, it collects execution time estimates provided by the studied code analyzers (uica,
iaca, Gus...), lifts them to common metrics and compare them with each other and with a measure.

Contact: Theophile Bastian

https://gitlab.inria.fr/CORSE/easytracker/
https://hal.inria.fr/hal-04368835
https://gitlab.inria.fr/nderumig/gus

8 Inria Annual Report 2023

6.1.9 staticdeps

Keywords: CPU, Microarchitecture simulation, Performance analysis

Functional Description: Given an executable, staticdep focuses on the loops within. It computes static-
ally a triplet (source, dest, k) for each dependency, where source is the instruction producing the
data carrying the dependency, dest is the instruction consuming the data carrying the dependency,
and k is the number of iterations required for the dependency to appear.

URL: https://gitlab.inria.fr/CORSE/uica-staticdeps

Contact: Theophile Bastian

6.1.10 Agdbentures

Keywords: Debug, Teaching of programming, Video Game

Functional Description: Agdbentures is a game to teach debugging. It is based on GDB (the Gnu Debug-
ger), uses the Easytracker library, and proposes to students an RPG-like (Role Playing Game) 2D
interface, where each level is a program in C-language that contains one or more bugs. To validate
a level, one needs to first correct the bugs that blocks the main character in its goals. Difficulty is
gradual, and the code for each level is based (and expands) on the preceding level, which allows
players to get familiar with the code base.

URL: https://gitlab.inria.fr/CORSE/agdbentures

Contact: Florent Bouchez

7 New results

7.1 Performance Debugging and Compiler Optimization

Participants: Fabrice Rastello, Guillaume Iooss, Christophe Guillon, Hugo Pom-
pougnac, Mariana Vargas Vieyra (EPFL, Switzerland), Alban Dutil-
leul, Nicolas Derumigny, Théophile Bastian, Laura Riou, Étienne De-
lort, Anukriti Srivastava, Nicolas Tollenaere (Inria CORSE), Albert Co-
hen (Google, France), P. Sadayappan (OSU, USA).

Our current efforts with regard to code optimization follow three directions.

1. The primary focus is on enhancing compiler optimization techniques by considering pattern-
specific applications, such as those within the polyhedral framework or more restrictively, those
related to machine learning. This improvement involves exploring the usage of reinforcement
learning for optimizing tiling transformations of dense kernels widely used in deep learning, like
tensor contraction and convolution. Additionally, new code generation strategies are being explored
for optimizing the computing kernel of Sparse Matrix-Matrix (SpMM) operations.

2. The second consists in generating performance debugging tools. In that context we improved
our existing tools PALMED (see Section 6.1.4) and GUS (see Section 6.1.2) but also developped an
infrastructure called CesASMe (see Section 6.1.8) for evaluating and comparing existing tools.

3. The third consists in developping proof schemes for automatically deriving parametric data move-
ment complexity of programs. In that context, we improved our tool IOLB by incorporating a new
proof pattern in it.

We have utilized our compiler expertise to assess a portion of the environmental impact associated
with numerical operations. In particular, we advised three interns who investigated the carbon footprint
caused by the training and inference phase of deep neural network architectures, and its correlation with
the number of instructions and number of memory movements. A report was produced [10].

https://gitlab.inria.fr/CORSE/uica-staticdeps
https://gitlab.inria.fr/CORSE/agdbentures

Project CORSE 9

7.1.1 Performance Modeling, Schedule Optimization and Code Generation for Tensor Computations

Tensor computation such as Sparse Matrix Multi-vector multiplication (SpMM), Sampled Dense Dense
Matrix Multiplication, Dense Matrix Multiplication, Tensor Contraction, Convolution are important
kernels used in many domains like Fluid Dynamics, Data Analytics, Economic Modelling, and Machine
Learning. Developing highly optimized code for such kernels requires the combination of highly tuned
register/instruction level micro-kernels and appropriate multi-level tiling.

We focused on the problem of automatic optimization of such operators from multiple directions. A
first direction studied statically the structure of the optimization space and the impact of optimization
choices, in order to increase the probability of selecting a well-performing implementation using a
combination of machine learning and analytical modeling techniques. This works is mostly focused on
dense tensor operations on CPU.

Another direction focuses on exploring the effect of different optimization and preprocessing tech-
niques for SpMM. In particular, we exploit the structure of the sparse matrix, which we assume is known
at compile time, to guide our optimization. We also consider sparse matrices originating from machine
learning applications, such as DNN and transformers, which exhibit less sparsity and less structural
properties compared to usual sparse matrices.

Cache model and Tiling transformation for tensor operations on CPU A first direction concerns
the evaluation of the effectiveness of analytical cache modeling for CPU, following our previous work
on IOOpt and Ttile. Due to the complexity of cache behavior, analytical modeling relies on simplified
hypotheses, such as full-associativity, or LRU cache policy, to estimate and minimize the number of
cache misses. We analyze the trade-off between the reduction of the computational cost and the loss of
precision of the model, using several variations of analytical cache modeling algorithms, and the Dinero
cache simulator.

Reinforcement learning for tiling transformations Another explored direction for optimizing the
performance of tiled tensor operations is the usage of reinforcement learning techniques through iterative
compilation on the transformations space.

To this end we are leveraging several components: tiling solutions generation tools and AI compiler
backends featuring execution feedback loops; unsupervised surrogate models trained at compilation
time; performance metrics such as the ones presented above as additional inputs to the surrogate
model; Bayesian Optimization frameworks managing the reinforcement loop and statistical knowledge
accumulated over executions.

We explore several dimensions in the choices available for this kind of framework in our particular
context: sampling strategy, acquisition function strategy, scalability of Gaussian Processes, categorical v.s.
continuous kernels, apriori on performance metrics, management of reduced dimensions when using
metrics, variational or closed form processes.

Our objectives are: improve the convergence time for finding good optimization choices compared to
the current state of the art; find better solutions to the problem of termination of the iterative search and
global optimization given a time budget; provide an easy interface for injecting expert features (estimated
performance metrics for instance).

Optimizing sparse matrix multiplication (SpMM) on CPU We focused on improving the performance
of the Sparse-Matrix Multiplication kernel, which is a matrix product between a sparse matrix A and a
dense matrix B .

A first approach tried to reorder the rows of A to agglomerate the non-zero values into dense blocks.
Instead of using a sparse implementation, a dense matrix multiplication microkernel (or accelerator) can
be used for these blocks. The size of these blocks is determined by a trade-off between the sparsity of the
agglomerated blocks and the performance of the dense microkernels.

A second approach being explored is the usage of recurring patterns of non-zero values in the sparse
matrix. These patterns are discovered when scanning the matrice through a small window generally
fitting the register file. From these patterns it is possible to have a code generation strategy which among
other things combines register tiling, unrolling, pattern outlining or inlining and memory tiling. A large
space of optimization choices is available and the challenge is to find a good one-shot heuristic for

10 Inria Annual Report 2023

choosing the parameters controlling these choices. To this end we also explore computed performance
estimation metrics for this particular problem. Also, we extensively use tools for performance debugging
such as GUS (see Section 6.1.2) for fine grain or the profiling tools based on hardware performance
counter.

7.1.2 Automatic Resource Characterization and Performance Feedback

Performance modeling is a critical component for program optimizations, assisting compilers as well as
developers in predicting the performance of code variations ahead of time. Performance models can be
obtained through different approaches that span from precise and complex simulation of a hardware
description (Zesto, GEM5, PTLSim) to application level analytical formulations. An interesting approach
for modeling the CPU of modern pipelined, super-scalar, out-of-order processors trades simulation time
with accuracy by separately characterizing both latency and throughput of instructions. This approach
is suitable both for optimizing compilers, but also for hand-tuning critical kernels written in assembler
(see Section 7.1.1). It is used by performance-analysis tools such as CQA, Intel IACA, OSACA, MIAMI
or llvm-mca. Cycle-approximate simulators such as ZSim or MCsimA can also take advantage of such
an instruction characterization. PALMED (see Section 6.1.4) and GUS (see Section 6.1.2) have been
developped in this context. This year, we improved those tools along the following directions. PALMED
now supports ARM instruction set. GUS supports AVX512 instruction set and now contains several other
extensions that improves its accuracy.

Facing the diversity of existing analyzers, evaluating their strengths and weaknesses is important
to guide both their usage and their enhancement. We developped CesASMe (see Section 6.1.8), a fully-
tooled solution to evaluate code analyzers on C-level benchmarks composed of a benchmark derivation
procedure that feeds an evaluation harness. We conclude that memory-carried data dependencies are
a major source of imprecision for these tools. We tackle this issue with staticdeps (see Section 6.1.9),
a static analyzer extracting memorycarried data dependencies, including across loop iterations, from
an assembly basic block. We integrate its output to uiCA, a state-of-the-art code analyzer, to evaluate
staticdeps’ impact on a code analyzer’s precision through CesASMe.

7.1.3 Automatic derivation of parametric data movement complexity

When studying the properties of an algorithm, we often consider its computational complexity. This
quantifies the amount of computation needed, but it does not consider other critical aspects such as the
quantity of data movement needed to perfom these computations.

The I/O complexity (also called data-movement complexity) is the minimal amount of data movement
required by an algorithm, for all valid schedules. In order to estimate this quantity, we derive lower and
upper parametric bounds by using two different approaches. A lower bound can be deduced, by proving
mathematically that a certain volume of computation must happen. This mathematical proof follows a
derivation strategy, such as the K -partitioning method or the wavefront method. An upper bound can be
found by exhibiting a schedule that corresponds to this quantity of data movement.

We introduced a new specialised derivation proof strategy to improve the I/O complexity lower bound
of the programs exhibiting an hourglass pattern in their dependence graph. An hourglass pattern is a
pattern of dependencies that combines successive reductions and broadcasts over a parametric number
of elements. This pattern strongly constrains the shape of a valid tiling, and its properties can be used to
derive tight asymptotic lower bounds. Several important linear algebra algorithms exhibit such a pattern,
such as GramSchmidt, QR Householder or Hessenberg matrix factorisation (gehd2). We integrated this
proof inside the automatic I/O complexity lower bound derivation tool, IOLB (see Section 6.1.2).

7.2 Runtime Monitoring, Verification, and Enforcement

Participants: Yliès Falcone, Sylvain Hallé, Marius Monnier, Florian Gallay, Ir-
man Faqrizal, Chukri Soueidi, Hamzah Al-Qadasi, Ahang Zuo,
Gwen Salaün, Saddek Bensalem, Changshun Wu.

Project CORSE 11

This section overviews our ongoing efforts on the topics of runtime monitoring, verification, and
testing. More specifically, our work can be categorized into the following topics:

• Runtime verification and testing, where we define approaches for neural networks [2];

• Runtime verification of multithreaded programs [9, 7];

• Runtime verification of complex systems [8];

• Instrumentation [1, 5, 6], where we define an instrumentation approach to capture conservative
models of Java programs for runtime verification.

7.2.1 Runtime Verification and Testing for Neural Networks

There has been a growing trend in AI testing toward developing new test prioritization algorithms for
deep learning systems. These algorithms aim to reduce the cost and time needed to annotate test datasets
by prioritizing instances with a higher chance of exposing faults. Various metrics have been used to
evaluate the effectiveness of these algorithms, e.g., APFD, RAUC, and ATRC. However, there is a lack of
research to confirm their validity. The results indicate that the existing metrics have severe limitations.
For example, some metrics ignore the labeling budget and prioritize the fault detection rate instead of
the fault detection ratio. Moreover, others overlook the prioritization difficulty in the evaluation. As a
solution, we develop a new metric (WFDR), which solves the deficiencies of previous metrics. We also
draw attention to a new research area, known as severity prioritization, which emphasizes the importance
of prioritizing misclassified instances according to the severity level, particularly in critical situations. Our
experiments reveal that instances with high severity make up more than 20% of all misclassified instances.
Thus, these instances should be prioritized when it comes to labeling. Consequently, we proposed a
new metric known as (SFDR) that evaluates the effectiveness of algorithms in prioritizing high-severity
instances. Our evaluations show that our proposed metrics are more effective than other existing metrics.
Besides, our two metrics re-evaluate some recent algorithms and indicate that these algorithms perform
poorly.

The DeepAbstraction algorithm that we developped employs a box-abstraction concept, the efficiency
of which depends on the tau parameter, the clustering parameter, that influences the size of these
boxes. The conclusion of the previous experiments using tau values of 0.4 or 0.05 has failed to produce
optimal results among all experiments. This highlights a significant challenge in the DeepAbstraction
framework concerning the appropriate selection of the tau parameter. The selection of the tau value
is extremely crucial, given its decisive effect on box size and, subsequently, the stability and efficacy of
the framework. Addressing this challenge, we propose a methodology called combined parameterized
boxes. This approach leverages the collective verdicts of monitors with various tau values to evaluate
network predictions. We assign appropriate weights to these verdicts to ensure that no single verdict
influences the decision-making process, thereby ensuring balance. Furthermore, we propose multiple
strategies for integrating the weighted verdicts of monitors into a conclusive verdict, such as mean, max,
product, and mode. The results of our investigation demonstrate that our approach can notably boost
the DeepAbstraction framework’s performance. Compared to the leading algorithms, DeepAbstraction++
consistently outperforms its competitors, delivering an increase in performance between 2.38% and
7.71%. Additionally, DeepAbstraction++ brings remarkable stability to the process, addressing a significant
shortcoming of the earlier version of DeepAbstraction.

7.2.2 Runtime Verification of Multithreaded Programs

Monitoring concurrent programs typically relies on collecting traces of abstract program executions.
However, existing approaches targeting general behavioral properties are either not tailored for online
monitoring, are no longer maintained, or implement naive instrumentation that often leads to unsound
verdicts. We first define the notion of when a trace is representative of a concurrent execution. We then
present a non-blocking vector clock algorithm to collect sound concurrent traces on the fly reflecting the
partial order between events. Moreover, concurrent events in the representative trace pose a soundness
problem for monitors synthesized from total order formalisms. For this, we extract a causal dependence
relation from the monitor to check if the trace has the needed orderings and define the conditions to

12 Inria Annual Report 2023

decide at runtime when a collected trace is monitorable. We implement our contributions in a tool,
FACTS, which instruments programs compiling to Java bytecode, constructs sound representative traces,
and warns the monitor about non-monitorable traces. We evaluate our work and compare it with existing
approaches.

Moreover, we introduced a generic approach for monitoring multithreaded programs online lever-
aging existing runtime verification (RV) techniques. In our setting, monitors are deployed to monitor
specific threads and only exchange information upon reaching synchronization regions defined by the
program itself. They use the opportunity of a lock in the program, to evaluate information across threads.
As such, we refer to this approach as opportunistic monitoring. By using the existing synchronization,
our approach reduces additional overhead and interference to synchronize at the cost of adding a delay
to determine the verdict. We utilize a textbook example of readers-writers to show how opportunistic
monitoring is capable of expressing specifications on concurrent regions. We also presented a preliminary
assessment of the overhead of our approach and compare it to classical monitoring showing that it scales
particularly well with the concurrency present in the program.

7.2.3 Runtime Verification of Complex Systems

We considered the problem of discovering divergences between the actions of a digital twin and those of
its real-world counterpart. It observes the similarities between this problem and an existing field of formal
methods called Runtime Verification (RV), and suggests leveraging and adapting RV techniques to this
effect. Concretely, three important aspects of the problem are identified and for which both theoretical
and practical challenges must be addressed.

We also introduced a flexible and modular approach to dynamic program analysis for JVM-based
languages, aiming to address the limitations of existing tools, in particular their limited expressivity
and tight coupling between instrumentation and analysis. The proposed solution decouples these
two processes using BISM (see Section 6.1.5), a lightweight instrumentation language, and BeepBeep, a
complex event processing engine. This novel combination enhances expressiveness, promotes reusability,
and integrates seamlessly into JVM-based projects. Various analyses such as monitoring, profiling,
coverage measurement, and complex event generation are demonstrated, showcasing the approach’s
flexibility.

7.2.4 Instrumentation for Monitoring

Instrumentation is crucial in Runtime Verification because it should ensure that monitors are fed with
relevant and accurate information about the executing program under monitoring. While expressive
instrumentation is desirable to handle any possible monitoring scenario, instrumentation should also
efficiently capture the just-needed information and impact the monitoring program as least as possible.
Our presented tutorial comprehensively overviews the instrumentation process and considerations for
single and multithreaded programs. We discuss often overlooked aspects in instrumenting multithreaded
programs. We also cover metrics for evaluating the efficiency and effectiveness of instrumentation. We
use four hands-on use cases to apply the introduced concepts and provide practical guidance on choosing
and applying instrumentation for runtime verification.

We also introduced a novel instrumentation language for BISM, a lightweight bytecode-level instru-
mentation tool for JVM languages. The new DSL aims to simplify the instrumentation process, making
it more accessible to a wider user base. It employs an intuitive syntax, directly mapping to the key re-
quirements of program instrumentation for runtime verification. It enhances productivity by eliminating
boilerplate code and low-level details, while also supporting code generation and collaboration. The DSL
balances expressiveness, and abstraction, bridging the gap between domain experts and the complexities
of instrumentation specification.

7.3 Teaching of Algorithms, Programming and Debugging

Participants: Théo Barollet, Florent Bouchez Tichadou, Manuel Selva, Fabrice Ras-
tello, Christophe Guillon, Valentin Trophime-Gilotte.

Project CORSE 13

Our goal here is to combine our expertise in compilation and teaching to help teachers and learners
in computer science fields such as programming, algorithms, data structures, automata, debugging, or
more generally computing literacy. This axis is developed into three projects:

• EasyTracker: a library for controlling and inspecting the execution of a program. See Section 6.1.6.

• Agdbentures: a game that helps learners to gain skills in debugging, which is based on EasyTracker.
See Section 6.1.10.

• Usage of active learning techniques in the context of large programming classes

7.3.1 Easytracker : A generic library for controlling and inspecting program execution and state

Learning to program involves building a mental representation of how a machine executes instructions
and stores data in memory. To help students, teachers often use visual representations to illustrate the
execution of programs or particular concepts in their lectures. As a famous example, teachers often
represent references/pointers with arrows pointing to objects or memory locations. While these visual
representations are mostly hand-drawn, there is a tendency to supplement them with tools. However,
building such a tool from scratch requires much effort and a high level of debugging technical expertise,
while existing tools are difficult to adapt to different contexts.

EasyTracker (See Section 6.1.6) is a Python library targeting teachers who are not debugging experts. By
providing ways of controlling the execution and inspecting the state of programs, EasyTracker simplifies
the development of tools that generate tuned visual representations from the controlled execution of a
program. The controlled program can be written either in Python, C, or assembly languages. To ease the
development of visualization tools working for programs in different languages and to allow the building
of web-based tools, EasyTracker provides a language-agnostic and serializable representation of the state
of a running program.

We pursued our work on the EasyTracker library with a focus on usability. To that end, we worked
on the packaging of the library, we improved the application programming interface and we created a
complete documentation for the library.

This work has been accepted for publication at ACM/IEEE CGO 2024 [3].
As a side project of EasyTracker, still to help computer science teachers, we started the development

of a library dedicated to visualization. The aim of this library is to provide an application programming
interface allowing to draw hierarchical nodes with connections and positioning constraints between
them.

7.3.2 Agdbentures: A game to learn to debug in autonomy

Debugging is an important task in software development and can be the source of a lot of frustration
and time consumption. However, it is not often taught explicitly in computer science curricula even at
university level. For these reasons, we developped Agdbentures (see Section 6.1.10), a debug practicing
game where “levels” consist of programs containing bugs that the learner needs to debug to advance in
the game.

In Agdbentures, the level programs are executed using Easytracker, which allows us to present a live
visual representation of the program state during execution in the form of a 2D RPG-like world. For
instance, the “player_x” and “player_y” variables in the level code are inspected at runtime and used to
place a character representing the player on a graphical 2D map. The interest is three-fold: First, this
makes the game appealing as the player/learner is plunged into a “real” game; Second, it showcases
the importance of having information on the state of the program being executed in order to be able
to do debugging; Third, it separates completely the graphical code, which can be very complex and is
hidden from players, from the level code which is given to players: this allows us to simplify the source
code so novice programmers won’t be rebuked. The levels share a common codebase that is increasing
in size and complexity as the player advances in the game. It initially only controls the main character
position, then more features are added such as interactive objects, NPCs (non playable characters), level
logic (activating levers, collecting items...). This allows the player to get familiar with the codebase over
time so we can present more difficult bugs which could arise in real life development. It also allows us

14 Inria Annual Report 2023

to create “fun” levels where bugs have interesting or amusing effects on the visual representation, and
where finding the solution (fixing the bugs) is rewarding.

The first experiments we conducted are very encouraging about the engagement of students at the
L2 university level. All were eager to participate and declared they would really like to continue playing
Agdbentures on their own with more levels. Work this year has been devoted to increase the number of
levels, fix existing problems in the back-story world and the difficulty progression, as well as develop new
game mechanisms that can be used in levels.

7.3.3 Active learning method in the context of large programming classes

Manuel Selva has been using for four years an active learning method in the context of large programming
classes (called "Cours Magistraux" in France). This method, called scientific debate and initially cretated
in the context of teaching mathematics, focuses on teaching concepts called thresholds that:

• are hard to grasp;

• change how students perceive a given discipline;

• allow making relations within a discipline

• students cannot forget them once learned

The scientific debate method involves students by having them defend their position with arguments
and scales up with the number of students by leveraging collective intelligence.

From the experience we gathered during the last four years, we wrote a report that presents in detail
how we apply scientific debate in a programming class. We also discuss student exchanges during debates
and gather feedback after the last debate. Students report they stay more focused and motivated during
class with scientific debate compared to traditional transmissive lectures. They also indicate that they
understood the goal of this new pedagogical contract.

This work has been accepted for publication at ACM SIGCSE TS 2024 [4].

8 Partnerships and cooperations

8.1 International initiatives

8.1.1 Inria associate team not involved in an IIL or an international program

RV4IoT

Title: Runtime Verification for the Internet of Things

Duration: 2021 – 2024

Coordinator: Sylvain Hallé (shalle@acm.org)

Partners:

• Université du Québec à Chicoutimi Chicoutimi (Canada)

Inria contact: Ylies Falcone

Summary: The goal of the associate team is to develop theories, formal techniques, and tools based on
runtime verification for the detection of security issues on connected objects, and the mitigation of
potential attacks through runtime enforcement mechanisms.

Project CORSE 15

8.2 National initiatives

ANR SEVERITAS

Title: Secure and Verifiable Test and Assessment System (SEVERITAS)

Duration: May 2021 – April 2025

Coordinator: Ylies Falcone

Partners: • Laboratoire d’Informatique de Grenoble (LIG)

• Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes (LIMOS)

• University of Luxembourg / Interdisciplianary Center for Security, Reliability and Trust
(SnT/UL)

• Laboratoire lorrain de recherche en informatique et ses applications (LORIA)

CORSE contact: Ylies Falcone

Summary: SEVERITAS advances information socio-technical security for Electronic Test and Assessment
Systems (e-TAS). These systems measure skills and performances in education and training. They
improve management, reduce time-to-assessment, reach larger audiences, but they do not always
provide security by design. This project recognizes that the security aspects for e-TAS are still mostly
unexplored. We fill these gaps by studying current and other to-be-defined security properties. We
develop automated tools to advance the formal verification of security and show how to rigorously
validate e-TAS security. We also develop new secure, transparent, verifiable and lawful e-TAS
procedures and protocols. We also deploy novel run-time monitoring strategies to reduce frauds
and study the user experience about processes to foster e-TAS usable security. And thanks to
connections with players in the business of e-TAS, such as OASYS, this project will contribute to the
development of secure e-TAS.

BPI OTPaaS

Title: Développement et renforcement de la filière française et européenne du Cloud

Duration: October 2021 – September 2024

Coordinator: P. Betinelli

CORSE contact: Fabrice Rastello

CORSE participants: Fabrice Rastello, Christophe Guillon

Partners: Agileo, Atos, Captronic, Duliprint, IMT, MDM, Prosyst, SE, Soben, Tridimeo, Solem, CEA, Valeo

INRIA Partners: DataMove

Summary: The OTPaaS project targets massive digitization by offering a suitable cloud for scanning
that is compatible with Gaia-X and easy to use by companies including SMEs. The consortium
brings together national technology providers and users from major groups and SMEs/ETIs, with
strong support from major French research institutes. The platform OTPaaS will be validated by 6
demonstrators and followed by ambitious industrialization programs.

BPI DeepGreen

Title: Plateforme independante pour le deep learning embarqué

Duration: April 1st 2023 – 2027

Coordinator: CEA

16 Inria Annual Report 2023

CORSE contact: Fabrice Rastello

CORSE participants: Fabrice Rastello, Christophe Guillon, Hugo Pompougnac, Valentin Trophine, Guil-
laume Iooss

Partners: CEA, ADAGOS, PULSE AUDITION, KALRAY, DOLPHIN DESIGN, THALES RESEARCH & TECH-
NOLOGY FRANCE, ARCYS, MBDA, ARCELORMITTAL, EDF, SYSNAV, HAWAI.TECH, EZAKO

Summary: The DeepGreen project aims to bring together major industrial players and small and
medium-sized enterprises (SMEs) in France for the deployment of Artificial Intelligence on con-
strained hardware targets through a software platform that meets the requirements and expecta-
tions of each stakeholder.

HOLIGRAIL – PEPR AI

Title: HOLIistic approaches to GReener model Architectures for Inference and Learning

Duration: Oct 1st 2023 – 2027

Coordinator: Olivier Sentieys

CORSE contact: Fabrice Rastello

CORSE participants: Fabrice Rastello, Christophe Guillon, Hugo Pompougnac

Partners: CEA List, TIMA

INRIA Partners: Taran, Emeraude

Summary: The vision of this action is to create a synergy with the research on the foundations of
AI frugality (as proposed in SHARP action) to propose cutting-edge methods that significantly
improve the energy efficiency of both inference and training of a model. We will propose (i)
more compact and efficient number representations that still maintain a quality of inference
or training close to the reference, (ii) hardware-aware training algorithms that enhance certain
types of sparsity (e.g., more structured), coding compactness (aggressive quantization, maximum
entropy) and tensor transformations. Most state-of-the-art solutions are agnostic of the hardware
they run on. By taking advantage of this interplay between the hardware and the algorithms, we
can achieve breakthroughs beyond current solutions, in particular by developing (iii) efficient
hardware mechanisms, especially optimized to take advantage of sparsity, extreme quantization
and ad-hoc number representations, together with (iv) compiler optimizations, to demonstrate
the effectiveness of the proposed methods. Our approaches are holistic in the sense that they will
jointly optimize the whole computing stack of AI, i.e., at the algorithm, arithmetic, compiler and
hardware levels.

9 Dissemination

9.1 Promoting scientific activities

9.1.1 Scientific events: organisation

Member of the Conference Steering Committee

• Fabrice Rastello: Member of the steering Committee of ACM/IEEE CGO.

9.1.2 Scientific events: selection

Chair of conference program committees

• Fabrice Rastello: Program co-chair of track Programming Models, Compilers, and Runtime Systems,
IPDPS 2024

Project CORSE 17

Member of the conference program committees

• Guillaume Iooss, IDPDS 2024

• Yliès Falcone, RV 2023

Reviewer

• Manuel Selva, ACM conference on Innovation and Technology in Computer Science Education
(ITiCSE 2023)

• Manuel Selva, ACM Technical Symposium on Computer Science Education (SIGCSE TS 2024)

9.1.3 Journal

Reviewer

• Guillaume Iooss, ACM TOCS

9.1.4 Invited talks

• Florent Bouchez Tichadou, Talk and Roundtable participation at "Journée enseignement de la SIF
(Société Informatique de France)", May 2023

• Fabrice Rastello, Scalperf 2023: "IOUB: A tool for automatically computing and maximizing the
operational intensity of affine programs. Can it be used to optimize neural networks?"

9.1.5 Leadership within the scientific community

• Fabrice Rastello: member of Inria evaluation committee (CE) since Sept 2023

• Fabrice Rastello: deputy scientific director of Inria Grenoble Rhône-Alpes (DSA) since Sept 2022

• Fabrice Rastello: scientific council of Inria Grenoble Rhône-Alpes (CoS)

• Fabrice Rastello: vice-president of the Inria CRCN/IFSP recruiting committee

9.1.6 Research administration

• Guillaume Iooss: RADAR local correspondant

9.2 Teaching - Supervision - Juries

9.2.1 Teaching

• Licence: Florent Bouchez Tichadou, Algorithms languages and programming, 118 hours, L2 UGA.

• Licence: Florent Bouchez Tichadou, Algorithms, 16 hours, L3 UGA.

• Licence: Florent Bouchez Tichadou, Programming project, 12 hours, L3 UGA.

• Master: Florent Bouchez Tichadou, Introduction to Problem-Based Learning, 4 hours, MEEF M1,
UGA.

• Formation NSI, Florent Bouchez Tichadou, Teaching high-school teachers. Algorithms. 10 hours,
UGA.

• License: Yliès Falcone, Languages and Automata, Univ. Grenoble Alpes, 45 hours

• Master: Yliès Falcone, is responsible for the above course.

18 Inria Annual Report 2023

• License 3: Manuel Selva, Imperative programming using Python, 80 hours, Grenoble Institute of
Technology (Ensimag)

• License 3: Manuel Selva is responsible for the above course.

• License 3: Manuel Selva, Assembly programming, 15 hours, Grenoble Institute of Technology
(Ensimag)

• License 3: Manuel Selva, Processor design, 15 hours, Grenoble Institute of Technology (Ensimag)

• License 3: Manuel Selva, C programming, 60 hours, Grenoble Institute of Technology (Ensimag)

• License 2: Guillaume Iooss, Algorithms languages and imperative programming (TD/TP), 3 hours,
DLST, UGA UFR IM2AG

• License 3: Valentin Trophime-Gilotte, C programming, 30 hours, Grenoble Institute of Technology
(Ensimag)

9.2.2 Supervision

• PhD: Théo Barollet, Learning programming via debugging problems in a game and visualization of
the states of programs, advised by Florent Bouchez Tichadou and Fabrice Rastello, defended in
November 2023.

• PhD: Nicolas Derumigny, Throughput Optimisation Techniques for Heterogeneous Architectures,
advised by Fabrice Rastello and Louis-Noël Pouchet (CSU), defended in December 2023.

• PhD in progress: Théophile Bastian, Performance study: identifying bottlenecks by means of
sensitivity analysis, September 2021, advised by Fabrice Rastello.

• PhD in progress: Chukri Soueidi, Instrumentation, Runtime Verification and Enforcement for
Multithreaded Programs, October 2020, advised by Yliès Falcone.

• PhD: Florian Gallay, Decentralized Runtime Enforcement, October 2022, advised by Yliès Falcone.
Florian halted his PhD in September 2023.

• L2 internships: Tristan Rollet, Alexis Détroyat, Nguyen Chu Hoang Anh, working on the Agdbentures
project. June-July 2023.

9.2.3 Juries

Florent Bouchez

• PhD, Théo Barollet–Grenoble, Jury, Nov. 2023. Learning programming via debugging problems in a
game and visualization of the states of programs.

Fabrice Rastello

• PhD, Luc Forget–Université de Lyon, Chair, June 2023. Description and compilation of ad-hoc
arithmetic operators in the context of High-Level Synthesis.

• PhD, Théo Barollet–Grenoble, Jury, Nov. 2023. Learning programming via debugging problems in a
game and visualization of the states of programs.

• PhD, Nicolas Derumigny–Grenoble, Jury, Dec. 2023. Throughput Optimisation Techniques for
Heterogeneous Architectures.

9.3 Popularization

9.3.1 Internal or external Inria responsibilities

• Fabrice Rastello: scientific council of CEA-EDF-Inria summer schools

Project CORSE 19

9.3.2 Education

• Manuel Selva, participation to the INRIA program called "1 Scientifique - 1 Classe, Chiche !" : one
intervention in Lycée les Eaux Claires

• Manuel Selva, presentation of the research side of my work of enseignant-chercheur at Grenoble
Institute of Technology (Ensimag)

• Manuel Selva, co-animation of a 2-days formation about an active learning technic in the context
of "Parcours Enseigner dans le Supérieur (ES)" at Université Grenoble Alpes

9.3.3 Interventions

• Valentin Trophime, presentation to the seminar of the workgroups CLAP, HiFi and LVP (GDR GPL),
March 2023.

• Valentin Trophime, poster to the ACACES summer school, July 2023.

• Guillaume Iooss, presentation of the IO Complexity work to the L3 students of ENS Saclay, Novem-
ber 2023.

• Manuel Selva, presentation of EasyTracker at the CITI laboratory from INSA de Lyon

10 Scientific production

10.1 Publications of the year

International journals

[1] C. Soueidi, M. Monnier and Y. Falcone. ‘Efficient and expressive bytecode-level instrumentation for
Java programs’. In: International Journal on Software Tools for Technology Transfer 25.4 (29th June
2023), pp. 453–479. DOI: 10.1007/s10009-023-00708-z. URL: https://inria.hal.science
/hal-04381736.

Invited conferences

[2] H. Al-Qadasi, Y. Falcone and S. Bensalem. ‘DeepAbstraction++: Enhancing Test Prioritization
Performance via Combined Parameterized Boxes ⋆’. In: AISOLA - Bridging the Gap Between AI and
Reality. Crete, Greece, 23rd Oct. 2023. URL: https://inria.hal.science/hal-04380870.

International peer-reviewed conferences

[3] T. Barollet, C. Guillon, M. Selva, F. Broquedis, F. Bouchez-Tichadou and F. Rastello. ‘EasyTracker: A
Python Library for Controlling and Inspecting Program Execution’. In: International Symposium
on Code Generation and Optimization (CGO). International Symposium on Code Generation and
Optimization (CGO). Edinburgh, United Kingdom, 2nd Mar. 2024. URL: https://inria.hal.sci
ence/hal-04368835.

[4] M. Selva and F. Broquedis. ‘Mining Jewels Together: Debating about Programming Threshold
Concepts in Large Classes’. In: Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1 (SIGCSE 2024). Proceedings of the 55th ACM Technical Symposium on
Computer Science Education (SIGCSE 2024). Portland (OR), United States, 20th Mar. 2024. DOI:
10.1145/3626252.3630893. URL: https://inria.hal.science/hal-04383009.

[5] C. Soueidi and Y. Falcone. ‘Bridging the Gap: A Focused DSL for RV-Oriented Instrumentation
with BISM’. In: International Conference on Runtime Verification. Vol. 14245. Lecture Notes in
Computer Science. Thessalokini, Greece: Springer Nature Switzerland, 1st Oct. 2023, pp. 327–338.
DOI: 10.1007/978-3-031-44267-4_17. URL: https://inria.hal.science/hal-04381683.

https://doi.org/10.1007/s10009-023-00708-z
https://inria.hal.science/hal-04381736
https://inria.hal.science/hal-04381736
https://inria.hal.science/hal-04380870
https://inria.hal.science/hal-04368835
https://inria.hal.science/hal-04368835
https://doi.org/10.1145/3626252.3630893
https://inria.hal.science/hal-04383009
https://doi.org/10.1007/978-3-031-44267-4_17
https://inria.hal.science/hal-04381683

20 Inria Annual Report 2023

[6] C. Soueidi and Y. Falcone. ‘Instrumentation for RV: From Basic Monitoring to Advanced Use Cases’.
In: International Conference on Runtime Verification. Vol. 14245. Lecture Notes in Computer
Science. Thessaloniki, Greece: Springer Nature Switzerland, 1st Oct. 2023, pp. 403–427. DOI: 10.10
07/978-3-031-44267-4_23. URL: https://inria.hal.science/hal-04381696.

[7] C. Soueidi and Y. Falcone. ‘Sound Concurrent Traces for Online Monitoring’. In: International
Symposium on Model Checking Software. Vol. 13872. Lecture Notes in Computer Science. Paris,
France: Springer Nature Switzerland, 2nd May 2023, pp. 59–80. DOI: 10.1007/978-3-031-32157-
3_4. URL: https://inria.hal.science/hal-04381666.

[8] C. Soueidi, Y. Falcone and S. Hallé. ‘Dynamic Program Analysis with Flexible Instrumentation and
Complex Event Processing’. In: 2023 IEEE 34th International Symposium on Software Reliability
Engineering (ISSRE). Florence, Italy: IEEE, 9th Oct. 2023, pp. 742–751. DOI: 10.1109/ISSRE59848
.2023.00048. URL: https://inria.hal.science/hal-04381709.

[9] C. Soueidi, A. El-Hokayem and Y. Falcone. ‘Opportunistic Monitoring of Multithreaded Programs’.
In: Fundamental Approaches to Software Engineering. Vol. 13991. Lecture Notes in Computer
Science. Paris, France: Springer Nature Switzerland, 20th Apr. 2023, pp. 173–194. DOI: 10.1007/97
8-3-031-30826-0_10. URL: https://inria.hal.science/hal-04381611.

Reports & preprints

[10] E. Delort, L. Riou and A. Srivastava. Environmental Impact of Artificial Intelligence: Bibliographic
Report - Artificial Intelligence and Eco-responsibility Internship. INRIA; CEA Leti, Sept. 2023, pp. 1–
33. URL: https://inria.hal.science/hal-04283245.

[11] D. Potop-Butucaru, A. Cohen, G. Plotkin and H. Pompougnac. Bidirectional Reactive Programming
for Machine Learning. 2023. DOI: 10.48550/arXiv.2311.16977. URL: https://inria.hal.sci
ence/hal-04354071.

https://doi.org/10.1007/978-3-031-44267-4_23
https://doi.org/10.1007/978-3-031-44267-4_23
https://inria.hal.science/hal-04381696
https://doi.org/10.1007/978-3-031-32157-3_4
https://doi.org/10.1007/978-3-031-32157-3_4
https://inria.hal.science/hal-04381666
https://doi.org/10.1109/ISSRE59848.2023.00048
https://doi.org/10.1109/ISSRE59848.2023.00048
https://inria.hal.science/hal-04381709
https://doi.org/10.1007/978-3-031-30826-0_10
https://doi.org/10.1007/978-3-031-30826-0_10
https://inria.hal.science/hal-04381611
https://inria.hal.science/hal-04283245
https://doi.org/10.48550/arXiv.2311.16977
https://inria.hal.science/hal-04354071
https://inria.hal.science/hal-04354071

	Project-Team CORSE
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Scientific Foundations
	Main Research Directions

	Application domains
	Transfer

	Social and environmental responsibility
	Footprint of research activities
	Impacting research directions for environment
	Impacting usage

	New software, platforms, open data
	New software
	Pipedream
	IOLB
	IOOpt
	PALMED
	BISM
	EasyTracker
	GUS
	CesASMe
	staticdeps
	Agdbentures

	New results
	Performance Debugging and Compiler Optimization
	Performance Modeling, Schedule Optimization and Code Generation for Tensor Computations
	Automatic Resource Characterization and Performance Feedback
	Automatic derivation of parametric data movement complexity

	Runtime Monitoring, Verification, and Enforcement
	Runtime Verification and Testing for Neural Networks
	Runtime Verification of Multithreaded Programs
	Runtime Verification of Complex Systems
	Instrumentation for Monitoring

	Teaching of Algorithms, Programming and Debugging
	Easytracker : A generic library for controlling and inspecting program execution and state
	Agdbentures: A game to learn to debug in autonomy
	Active learning method in the context of large programming classes

	Partnerships and cooperations
	International initiatives
	Inria associate team not involved in an IIL or an international program

	National initiatives

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks
	Leadership within the scientific community
	Research administration

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Internal or external Inria responsibilities
	Education
	Interventions

	Scientific production
	Publications of the year

