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2 Overall objectives

The goal of the Emeraude project-team1 is to combine the multidisciplinary skills of CITI laboratory and
Grame-CNCM to foster the development of new programming tools and signal processing techniques for
embedded audio systems.

Grame-CNCM2 is a National Center for Musical Creation (CNCM3) hosting a research team specialized
in music technology. Grame is also the inventor of the FAUST programming language,4 which has met
great success in the audio processing community. The skills in compilation, embedded systems, and
FPGAs of former Inria Socrate team members, as well as the experience acquired in signal processing is
also useful for research in audio and acoustic signal processing.

Embedded programmable audio systems are ubiquitously used in our day-to-day life. Whether it’s
in our headphones or our car to carry out active noise cancellation, in virtual home assistants (e.g.,
Alexa, Google Home, etc.), or in modern musical instruments and sound systems, they are everywhere.
Real-time audio processing is known to be relatively computationally expensive, but progress in processor
architectures in recent years – including microcrontrollers, microprocessors, Digital Signal Processors
(DSPs), Graphics Processing Unit (GPUs), etc. – have made computing power much more affordable. The
generalization of hardware floating point support, and the availablilty of high-level IDEs (Integrated De-
velopment Environments) for these new architectures has made them accessible to audio programmers.

Programming embedded audio systems requires specific skills: Digital Signal Processing (DSP), low-
level C/C++ programming, and a deep understanding of system architecture. Few engineers (whether
they are on the DSP or the programming side) fully master all these domains, and even fewer people in
the maker community. The scientific credo of the Emeraude Inria-Insa joint project-team is that Domain
Specific Languages (DSLs) are a major technical evolution to enable audio programming on emerging
embedded systems. There currently exists a few software solutions addressing audio programming such
as libpd [20] or the SOUL programming language,5 but none of them is as generic and as universal as
FAUST [69], which has been developed at Grame for more than 15 years.

Emeraude uses the FAUST programming language as the main platform for experimenting funda-
mental research. FAUST [69] is a DSL for real-time audio signal processing. A screenshot of the FAUST

IDE is shown in Fig. 1. FAUST is widely used for audio plugin design (i.e., effects and synthesizers), DSP
research, mobile and web app design, etc. The success of FAUST is due to its natural data-flow paradigm
and on a compiler “translating” DSP specifications written in FAUST into a wide range of lower-level
languages (e.g., C, C++, Rust, Java, LLVM bitcode, WebAssembly, etc.). Thanks to its highly re-targetable
compilation flow, generated DSP objects can be embedded into template programs (wrappers) used to
turn a FAUST program into a specific ready-to-use object (e.g., standalone, plug-in, smartphone app,
webpage, etc.).

While FAUST was not originally designed with embedded audio systems in mind, its development took
a significant turn in that direction by targeting an increasingly large number of hardware platforms such
as the Teensy6 [62] and the ESP-32 microcontrollers7 [63], the SHARC Audio Module DSP,8 the BELA,9 the
ELK,10 etc. Since FAUST can generate various types of standalone programs for Linux, it can also target
most embedded Linux systems such as the Raspberry Pi or the BeagleBone for real-time audio signal
processing applications. This recent availability of FAUST compilation on tiny embedded systems and
micro-controllers in particular opens the door to the creation of innovative audio objects. Fig. 2 shows
the Gramophone, a device designed by the Grame team and that is used in schools to teach basic science
concepts to children.

FAUST is now a well-established language in the audio DSP community. It is used both in academia

1Throughout the document, we refer to Emeraude as “the Emeraude project-team,” being aware that the official denomination
should be “Insa-Inria joint project-team.”

2www.grame.fr
3Centre National de Création Musicale (CNCM) is a Label of the Ministry of Culture. Grame is the first CNCM in France.
4faust.grame.fr
5soul.dev
6pjrc.com/teensy
7faust.grame.fr/doc/tutorials/#dsp-on-the-esp32-with-faust
8wiki.analog.com/resources/tools-software/sharc-audio-module/faust
9bela.io

10elk.audio

https://www.grame.fr/
https://faust.grame.fr/
https://soul.dev/
https://www.pjrc.com/teensy/
https://faust.grame.fr/doc/tutorials/#dsp-on-the-esp32-with-faust
https://wiki.analog.com/resources/tools-software/sharc-audio-module/faust
https://bela.io/
https://elk.audio/
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Figure 1: The FAUST Web IDE allowing for the compilation of FAUST programs on any machines without
having to install any particular tool.

for teaching in prestigious institutions such as Stanford University,11 Aalborg University, the University of
Michigan, and in the industry (e.g., moForte Inc.,12 ExpressiveE). FAUST is also used as a prototyping tool
at Korg, Apple, Google, Tesla, etc.

Figure 2: The Gramophone is a speaker/musical instrument programmable with FAUST designed to
facilitate the teaching of programming, maths, and physics in middle and high schools. A picture of the
board used inside it (an ESP-32 microcontroller programmed directly with a FAUST program) can be seen
on the right-hand-side of the figure.

While embedded audio systems are already widespread, many limitations remain, especially for
real-time applications where latency plays a crucial role. For instance, efficient active control of sound
where audio processing should be faster than the propagation of acoustical waves [35], digital musical
instruments playability [52], digital audio effects, etc. cannot be deployed on lightweight systems. While
latency can be potentially reduced on “standard” computing platforms such as personal computers,
going under the “one millisecond threshold” is usually impossible because of audio samples buffering
induced by software audio drivers.

Up to now, most of the research effort on audio signal processing has been focused on throughput
and computing power, leaving aside ultra-low latency as it seemed inaccessible on software platforms.
We believe that enabling ultra-low latency for audio application will open a wide range of new domains
of application from active acoustic control to new musical instruments (see Fig. 3, “stolen” from the ANR
FAST project which started in 2021).

FPGAs (Field Programmable Gate Arrays) can help solve current limitations of traditional computing

11FAUST plays a central role in the curriculum at Stanford University’s Center for Computer Research in Music and Acoustics
where it is used to teach signal processing, physical modeling, physical interaction design, etc.

12www.moforte.com/faustandfurious

http://www.moforte.com/faustandfurious/
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Figure 3: Example of target applications for ultra-low latency audio processing on FPGA: module A and
module B are two possible “products” based on the same faust2FPGA compilation flow.

platforms used for musical and artistic applications, especially in terms of audio latency. FPGAs are
known for their high computational capabilities [26, 70] and their very low-latency performances [89].
They also provide a large number of GPIOs (General Purpose Inputs and Outputs) which can be exploited
to implement modern real-time multi-channel processing algorithms (e.g., sound field capture using a
very large number of digital microphones [73], active sound control over a large spatial region [93], etc.).

But FPGAs remain extremely complex to program, even with state-of-the-art high-level tools,13

making them largely inaccessible to DSP researchers, musicians, digital artists, and maker communities.
There are currently only a few examples of professional FPGA-based real-time audio DSP systems (i.e.,
Antelope Audio,14 Korora Audio15) and in these applications, FPGAs are dedicated to a specific task and
not exploited as user-programmable devices.

Emeraude provides a combination of skills that is unique in the world: audio signal processing,
compilation, high-level synthesis, computer arithmetic, FPGA programming, acoustics, and embedded
system design. This gives a hint on what initially motivated the creation of Emeraude: a compiler from
FAUST to FPGA as considered in the SyFaLa project16 enabling very low latency processing (less than
100 µs, or equivalently between 1 and 5 sample latency).

The objective of the research axes described in the next section is to deeply understand and enable
new compilation flows for audio signal processing.

13FPGAs are configured/programmed using a Hardware Description Language (HDL) such as VHDL or Verilog. The learning
curve and the electrical engineering skills required to master these types of environments make them out of reach to the real-time
audio DSP community. Solutions exist to program FPGAs at a higher level (i.e., LabVIEW: www.ni.com/fr-fr/shop/labview.html,
Vivado HLS: www.xilinx.com/HLS for instance), but none of them is specifically dedicated nor adapted to real-time audio DSP. On
the contrary, high-level tools tend to add abstraction layers which translate to buffers, hence latency.

14en.antelopeaudio.com
15www.kororaaudio.com
16The SyFaLa project (Synthétiseur Faible Latence sur FPGA – faust.grame.fr/syfala) initiated the idea of VHDL compilation from

FAUST by coupling the FAUST compiler and high-level synthesis tools of FPGA vendors.

https://www.ni.com/fr-fr/shop/labview.html
https://www.xilinx.com/HLS
https://en.antelopeaudio.com
https://www.kororaaudio.com
https://faust.grame.fr/syfala/
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3 Research program

The research activities of Emeraude are articulated around four axes. The first three are devoted to
research problems around: high-level compilation for FPGAs, arithmetic, and signal processing. The
fourth axis combines the results of the first three axes with tools (e.g., language design, compilation
technologies, Human Computer Interaction, etc.) to enable practical uses of the developed techniques.

3.1 Ultra-low audio latency on FPGAs

Participants: Florent de Dinechin, Stephane Letz, Romain Michon, Yann Orlarey, Tanguy Risset
The main objective of this research axis is to enable the construction of audio systems reacting with a

latency smaller than (or at least comparable to) the duration of a single audio sample.
Low-latency digital audio processing might seem easy: computer systems operate at GHz frequencies

whereas audible sound stops at about 20 kHz (high-resolution sound processing means 192 kHz sample
frequency; CD-quality is 44.1 kHz). Concerning sound propagation, electronic data may be transmitted
at speeds close to the speed of light while sound travels one million times slower. Still, achieving ultra-low
latency remains a huge technical challenge. For the main applications of mass-produced audio devices
(mostly sound playback and telephony), a latency of a thousand audio cycles translates to an audible
delay that is barely noticeable. However, for the applications envisioned in Emeraude, sound must be
captured, processed, and emitted with sub-millisecond latencies.

For that, we need to provide a real compilation flow from high-level audio DSP programs to FPGA
IPs. Our proposal is to target a new FAUST architecture backend for FPGA-based platforms as depicted
in Fig. 4. One of the challenges here is the optimization of the module generated by FAUST. The real
breakthrough will be obtained with the use of two recent technologies in the FAUST compilation workflow:
(i ) High Level Synthesis (HLS) for compiling FAUST programs to VHDL and (i i ) fixed-point support in the
code generated by the FAUST compiler, building on the expertise developed at CITI around the FloPoCo
project (and studied in next research axis: §3.2).

In Audio, sampling rate is between 20kHz and 200kHz. The sampling rate has of course an impact on
achievable latency: at 48kHz, one sample arrives every 20µs and the achievable latency is limited to one
sample because of the audio codec (ADC/DAC) serial protocol. However, what is called “low latency” in
current systems is usually close to 1ms (50 samples at 48kHz). Various systems, both in the industry and
in academia, have been targeting low audio latency through the use of different hardware solutions. The
most affordable ones are embedded Linux systems enhanced with dedicated audio hardware. They run
audio signal processing tasks outside of the operating system. The BELA [60] and the Elk,17 which belong
to this category, can achieve relatively low latency with buffer sizes as low as 8 samples.

Microcontrollers have been used more and more in recent years for sound synthesis and processing
because of their increasing power. The Teensy [62] and the ESP32 [63] are good examples of such
systems. When programmed “bare-metal” (i.e., without an OS), their latency can be similar to that of
dedicated/specialized embedded Linux systems (buffer size of 8 samples as well).

Digital Signal Processors (DSPs) can target even lower latency with buffer sizes as low as 4 samples
and provide tremendous amounts of computational power for signal processing applications. Their
programming needs specific developer tools, making them less accessible than the other types of systems
mentioned in this section. Additionally, many of them do not provide native support for floating-points
computations, further increasing the complexity of their programming. The Analog Devices SHARC
Processor18 is a leader on the market which can be used as a prototyping system through the SHARC
Audio Module. It also provides an official FAUST support.

The only way to take audio latency one step further down is to use FPGAs, which is what we plan to
do in this research axis.

Programming FPGAs is usually done with a hardware description language (VHDL or Verilog). De-
veloping a VHDL IP19 is extremely time consuming. Hence, FPGA programmers have two possibilities:
re-using existing IPs and assembling them to compose a circuit solving their problem (as proposed

17elk.audio
18www.analog.com/en/products/processors-dsp/dsp/sharc.html
19IP stands for Intellectual Property, it is the common denomination for hardware library, i.e., a circuit design that can be re-used

as for instance a software library.

https://elk.audio/
https://www.analog.com/en/products/processors-dsp/dsp/sharc.html
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by LABVIEW20), or using High-Level Synthesis to compile a VHDL specification from a higher-level
description.

High Level Synthesis (HLS) [68] has been referred to for decades as the mean to enable fast and safe
circuit design for programmers. However, the design space offered to a hardware designer is so huge that
no automatic tool is able to capture all the constraints and come up with the optimal solution (which does
not exists anyway since multiple objectives are to be optimized). Many HLS tools have been proposed
(i.e., Pico [77], CatapultC [19], Gaut [83], to cite a few) dedicated to specific target application domains.
Most of the existing tools start from a high-level representation that is based on a programming language
(i.e., C, C++, or Python) which is instrumented using pragmas to guide the HLS process.

Using HLS today still requires very specific skills [46] to write a source description that is correctly
processed by the tools, but we believe that this technology has reached a certain level of maturity and can
now be foreseen as a valuable tool for audio designers.

Figure 4: The complete faust2FPGA flow targeted by this research axis. Different possible compilation
flows for generating VHDL from a FAUST program will be studied.

Another goal is to adapt the different design flows to target high-performance FPGA boards, such as
the Genesys ZU based on a Zynq Ultrascale FPGA for instance. These new targets are used for the compute-
bound studied algorithms. High computing power implies the introduction of parallelization techniques
in the compilation flow (either using the HLS process or by direct VHDL generation from FAUST). This
research direction might require the parallelization techniques (Polyhedral tools in particular) developed
within Inria in particular (e.g., CASH, Taran, CAMUS, CORSE, etc.).

The main outcome of this research axis, namely the new open-source compilation flow from FAUST to
FPGA is useful in many contexts: for musicians, acoustic engineers or mechanical vibration engineers.
In order to convince these people to use it, we are prototyping a large number of audio treatments (e.g.,
filters, reverb effects, etc.) and study the resulting performances – in terms of latency and computing
power – depending of the configuration chosen for the flow. A special focus is made on active acoustic
control, as detailed in Section 3.3.

3.2 Advanced arithmetics for digital audio

Participants: Florent de Dinechin, Yann Orlarey
In this research axis, Emeraude builds upon the expertise developed in Socrate in application-specific

arithmetic. Florent de Dinechin is a specialist of computer arithmetics in general (including floating-
point [67] and alternatives [30, 86]) but also in arithmetics for FPGAs, in particular with the FloPoCo
project [29]. This expertise is helping us address challenges related to low-latency digital audio by com-
bining complementary approaches: compilation of digital audio to fixed-point arithmetic, an arithmetic-
centered approach to digital filter design, and the scheduling and tiling problems. In these three directions,
audio applications fuel research that has an impact well beyond audio.

20www.ni.com/fr-fr/shop/labview.html

https://www.ni.com/fr-fr/shop/labview.html
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Audio-to-fixed easier than float-to-fixed In audio processing, we know that the inputs and outputs are
fixed-point data, and we also have a lot of domain knowledge about audio physics. This gives serious
hope that FAUST audio can be compiled directly to fixed-point. This is a requirement for FPGAs, but it
will also reduce the latency and power consumption on software targets if we can use their integer units.
It will also enable the compilation of FAUST to ultra-low-power microcontrollers without floating-point
hardware.

“Domain-specific” is the key word here making us confident that a problem that is generally intract-
able (float-to-fixed conversion) can be addressed with little or no modification to a FAUST program. The
challenge here is to keep this additional work so high-level and sound-related that it is not a burden for a
musician or a sound engineer. A central objective is that FAUST programmers should not need to become
fixed-point experts. They should actually not be anymore aware of the underlying arithmetic than they
currently are with floating-point. Being high-level is a key reason for the success of FAUST.

Automated error analysis for hardware computing just right The main issue is to understand how
arithmetic errors propagate, are amplified, are accumulated, etc. in a computation and in a circuit.
This is called error analysis. Then a general technique [33] is to add enough bits to the right of internal
fixed-point formats so that errors accumulate in these bits and the overall error accumulation does not
hinder the final quality of the result. Error analysis is also managed by a worst-case combination, but here
there is nothing implicit or hidden. This is therefore a comparatively well understood problem, and there
is no reason to believe it cannot be fully automated in a compiler that is already able to derive the format
information, building on the experience accumulated when designing complex FloPoCo operators [32,
31, 21, 85, 90].

Digital filters as arithmetic objects Digital filters are essential components of everyday electronics like
radios, mobile phones, etc., but also in audio systems of course. Their design is a core topic in digital signal
processing and control theory, one that has received significant research interest for the better part of the
last half century. A lot of effort has gone into constructing flexible filter design methods. For designing
software-based digital filters with floating-point coefficients, there are many powerful approaches that are
relatively easy to use by the filter designer (all the more as they rely on over-dimensioned floating-point
operators). When designing hardware, things are not that simple for several reasons:

• algorithms developed for software-implemented filters cannot be transferred directly to hardware:
what is a constraint in software (e.g., “use a 32-bit fixed-point format”) becomes a degree of freedom
in hardware design (“What is the smallest fixed-point format that can be used?”);

• another degree of freedom comes from different available realization techniques to implement the
arithmetic itself, for instance the construction of multipliers by constants.

A consequence is that popular tools, such as the popular fdatool (filter design and analysis tool)
from Matlab’s Signal Processing toolbox, offer a complex interface, requiring a tedious hand-tuning
process, and expect some domain expertise. Such tools input a frequency response, and decompose the
filter implementation problem in three steps: 1/ the filter design (FD) step consists in finding a filter with
ideal (high precision) coefficients that adheres to the frequency response; 2/ the quantization (Q) step
converts the obtained coefficients to hardware-friendly fixed-point values ; 3/ the implementation (I)
step generates a valid hardware description (e.g., a VHDL or Verilog description) using the quantized
coefficients.

The objective of this research axis is to offer an optimal solution to the global FD + Q + I problem.
Optimal techniques exist for each of the FD, Q and I steps in isolation. The combination of the FD & Q
steps have been studied since the 1960’s [48], and can even be regarded as solved for certain practical
instances of fixed-point Finite Impulse Response (FIR) design [49]. A large body of work also exists for
the I step, with recent optimal approaches [13, 50, 51]. However, these approaches are only optimal for a
given set of coefficients, and therefore strongly depend on the FD and Q steps.

Arithmetic-oriented scheduling and tiling for low-latency audio Finally, we also want to formally insert
arithmetic considerations in the global problem of distributing a very heavy computation between space
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(we have up to several thousands multipliers in an FPGA, and many more if we multiply by a constant) and
time (we have thousands of FPGA cycles within one audio cycle). These are well-researched compilation
issues, called the scheduling and tiling problems. There is local expertise in Lyon (in particular in the
CASH team and its spin-off XtremLogic21) who have worked on these problems for FPGAs. However,
scheduling and tiling techniques so far consider each operation as having a standard, constant cost (e.g.,
multiplication costs cm and has latency tm , addition costs ca in space and ta in time). This is a very
crude simplification if one attempts to optimize each operator, think for multiplications by constant
for instance. The availability of many audio-related case studies in Emeraude will allow us (hopefully
in collaboration with CASH) to develop arithmetic-aware scheduling and tiling techniques that will
eventually prove useful well beyond the world of digital audio.

3.3 Digital audio signal processing

Participants: Stephane Letz, Romain Michon, Yann Orlarey, Tanguy Risset, Florent de Dinechin
The main goal of Emeraude is to ease audio signal processing design and implementation. This

work necessarily involves more “traditional” signal processing research: algorithmic research, library
development, and the exploration of innovative technologies such as machine learning. The fact that
new embedded platforms are targeted requires us to re-think the DSP algorithms because of the resource
constraints: memory, latency, etc. Hence Emeraude will be involved in developping new audio DSP
algorithms and techniques.

Physical modeling One of the most active areas of research in audio DSP is physical modeling of musical
instruments, mechanic vibrations and analog electronic circuits (also called “virtual analog”). Because
these techniques have a direct link with the real acoustical-world, they make a lot of sense in the context
of Emeraude which develops skills in embedded systems, hardware and electronics.

While waveguide [82], mass-interaction [25], and modal models [12] are relatively well understood
and can be easily implemented in FAUST, we would like to focus on algorithms using the Finite-Difference
Time-Domain (FDTD) method [17, 18]. Similarly, we would like to work on Wave Digital Filter (WDF)
algorithms [37] in the context of the modeling of analog electronic circuits for audio processing and
synthesis [92]. This is a very hot topic [91].

Virtual acoustics, acoustic active control, and spatial audio A large portion of the tools developed as
part of Emeraude target real-time ultra-low-latency audio (i.e., FPGAs, etc.). Some of the application
areas for this type of systems are virtual room acoustics (e.g., artificial reverberation, etc.), acoustic active
control, and spatial audio (i.e., Ambisonics [39] and binaural [66]).

Artificial reverberation can be implemented using a wide range of techniques such as feedback delay
networks [44], waveguide meshes [75], finite difference schemes [74], simple combination of IIR filters
[78], and Impulse Responses (IR) convolution [87]. Convolution reverbs have been taken to another step
recently by introducing the concept of “modal reverb” [11] where convolution is carried out in the time
domain instead of the frequency domain by using a bank of resonant bandpass filters taking advantage of
the principle of modal decomposition [12]. While similar experiments have been prototyped on GPUs
[81], our proposal it to take this to the next level by providing ultra-low latency and active control of the
acoustics of the room where the sound will be rendered.

Active control of room acoustics is a challenging topic with the first commercial applications dating
back to the 90s [40]. The objective of this theme is to vary at will the subjective and quantifiable acoustic
parameters of a room (e.g., reverberation time, early reflections, loudness, etc.) in order to adapt it to the
artistic performance and the venue [71]. To reach this goal, several loudspeakers, microphones and DSP
modules are used to create artificial reflections in a non-generative way [47]. Several commercial systems
are available on the market such as CSTB’s CARMEN [76] or Yamaha’s AFC system 22 [65] to name a few.
Other examples can be found in [71]. In such systems, the feedback loops should be controlled, as well as
the system stability, and real-time DSP.

21www.xtremlogic.com
22fr.yamaha.com/fr/products/proaudio/afc/afc/index.html

https://www.xtremlogic.com/
https://fr.yamaha.com/fr/products/proaudio/afc/afc/index.html
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Recent advances in active control and approaches to sound field decomposition [54] allow us to
partially overcome this limitation, by proposing “spatial active noise contol” algorithms [93, 43]. As one
can imagine, such approaches require a very large number of control channels with very low latency.
While Emeraude investigates the technological solutions to implement such algorithms in a real situation,
we also hope to make contributions to the field of acoustic active control in general.

Machine learning for digital signal processing Machine learning and deep learning in particular, are
playing an increasingly important role in the field of audio DSP. Researchers are revisiting the algorithmic
techniques of signal synthesis and processing in the light of machine learning, for instance for speech pro-
cessing [41]. Recent breakthroughs such as the use of machine learning use in the context of Differentiable
Digital Signal Processing (DDSP) [36] demonstrate its power. Hybrid approaches combine classical signal
processing with deep learning to obtain CPU efficient implementations like in the RNNoise project.23

One of our goals is to integrate these new developments to the Emeraude ecosystem and to further
explore their potential applications in the context of embedded audio processing.

3.4 Language, compilation, deployment and interfaces for audio signal processing

Participants: Florent de Dinechin, Stephane Letz, Romain Michon, Yann Orlarey, Tanguy Risset
Audio signal processing is an applied field where each result, algorithm, method, or tool ends up

being validated by the human ear. This validation requires efficient tools to rapidly prototype audio
signal processing algorithms. For many years, languages and tools for audio DSP have been developed
by researchers to ease the implementation and the deployment of new audio processing algorithms.
The FAUST programming language and environment were invented in that context at Grame-CNCM.
Emeraude continues to bring new developments around these tools.

The FAUST language and its compiler A large part of Emeraude’s research results is visible thanks to
the FAUST ecosystem development. FAUST has gained an international recognition, especially since
it is used for teaching at Stanford University (in the context of courses on signal processing, physical
interaction design, etc.) and developing new audio plugins [64]. The efforts needed to keep FAUST as the
most efficient language for real-time audio processing involve research in: language design, compiler
design, and development of DSP libraries.

One of the reason of FAUST’s success is that it is both a language and an environment for audio signal
processing. The FAUST compiler typically generates high-level codes (in languages such as C, C++, etc.),
following every compiler’s goal: providing better code than manually written code. For that, it has to stick
to the most recent compiler technologies and processors evolutions [58]. For instance, a back-end for
WebAssembly was recently added to the FAUST compiler [57]. An important deployment step was the
embedding of the FAUST compiler in a web browser [56] which makes it easily accessible on all computers.

FAUST language design research in Emeraude The current design of FAUST, inspired by lambda-
calculus, combinatory logic and John Backus’ functional programming, has to be extended to face new
challenges, in particular multi-dimensional and multi-rate signals and linear algebra.

FAUST allows for the description of synchronous mono-rate scalar DSP computations. This is sufficient
to implement most time-domain algorithms such as filters, oscillators, waveguides, etc. However, this
makes the implementation of frequency-domain algorithms (e.g., FFT, convolution, etc.) very inefficient,
not to say impossible. One of our goals is to extend the language to enable multi-rate as well as vector
computations. While we already have a working prototype for this, some challenges have yet to be
overcome.

Along the lines of the previous point, FAUST currently doesn’t provide any support for efficient matrix
operations and more generally linear algebra. This prevents the implementation of some classes of DSP
algorithms such as Finite-Difference Time-Domain (FDTD) method for physical modeling. The skills of
former Socrate members on seminal Alpha language [34] and polyhedral optimization are very useful
here.

23jmvalin.ca/demo/rnnoise

https://jmvalin.ca/demo/rnnoise/
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Support for the main target programming languages in FAUST is essential. Recently added languages
(WebAssembly, Rust, and SOUL) have opened many new opportunities. The FPGA target, studied in §3.1,
introduces new challenges such as the ability to use fixed-point arithmetic or the use of HLS for targeting
hardware platforms (e.g., VHDL, Verilog, etc.). Other “exotic” architectures such as GPUs or MPSoCs
should be studied for compute-bound algorithms.

Musicians have to deal with a large variety of operating systems, software environments and hardware
architectures. FAUST is designed to favor an easy deployment of FAUST programs on all these targets by
making a clear separation between computation itself, as described by the program code, and how this
computation should be related to the external world. This relation (with audio drivers, GUIs, sensors,
etc.) is described in specific architecture files [38]. Architecture files concern both hardware (i.e., audio
interfaces/sound cards) as well as software control interfaces (e.g., GUI, OSC,24 MIDI), new luthieries
(e.g., SmartFaust, Gramophone), Web platforms (Web audio Plugin), etc. One of the goal of the work of
Emeraude on FAUST is to ease the programming of these audio systems.

FAUST ecosystem and DSP libraries FAUST users are very attached to its ecosystem, including native
applications, online and “embedded” audio applications, Just In Time (JIT) compiler, etc. Recent devel-
opments include a JIT FAUST compiler on the Web, a JIT compiler in the Max/MSP environment, tools to
find the best compilation parameters and ease compilation for multiple CPUs. This is constantly evolving
to answer to users’ demand.

The FAUST DSP libraries currently implement hundreds of functions/objects ranging from simple
oscillators and filters to advanced filter architectures, physical models, and complete ready-to-use audio
plugins. These libraries are at the heart of FAUST’s success and international position. Julius Smith25

(Stanford professor) is one of the most respected figures in the field of audio DSP and one of the main
contributors to the FAUST libraries. One of the ambitions of the Emeraude team is to maintain and extend
this tool to make it as exhaustive and as universal as possible. Along these lines, new developments made
to the language presented above (e.g., multi-rate, linear algebra, etc.) should be ported to the libraries.
Finally, dedicated libraries targeting specific hardware platforms (e.g., microcontrollers, FPGAs) should
be made available too.

Embedded systems for audio processing As Emeraude’s name suggests it, the implementation of audio
Digital Signal Processing on embedded hardware is at the heart of the project. We naturally rely on
the FAUST language for these implementations. The skills of Emeraude members in compilation and
embedded systems are used to add new embedded target for audio processing, in particular FPGAs, as
explained previously. This action is a mix of research and engineering work, it should be very useful for
the dissemination of audio processing programming.

Haptics is a huge topic, especially in the field of New Interfaces for Musical Expression (NIME), which
has been studied for many years [27, 88]. It has always been tightly coupled to physical modeling because
this sound synthesis technique provides natural connections to the physical world. A big part of the
challenge is technological because haptics requires ultra low-latency and high sampling resolution in
order to be accurate. This is at the heart of Emeraude’s goals.

Virtual and Augmented Reality (VR/AR) is not limited to immersive 3D graphics, sound also has an
important role to play in that emerging field. Lots of work has been done around using VR environments
as a creative tool for audio [53, 24, 22]. While many VR-based musical instruments have been created
in the past [79], little work has been done around implementing interfaces specifically targeting VR/AR
audio environments, especially in the context of 3D sound. This is something that we plan to explore as
part of Emeraude.

Finally, beside ergonomic and HCI aspects, the design of musical interfaces is impacted by various
kinds of technical limitations that we plan to address as part of Emeraude. First, just like for real-time
audio processing, latency plays a crucial role in this context. Similarly, the “time resolution” (e.g., the
sampling rate of the interfaces) can have a huge impact, especially when targeting specific kinds of
instruments such as drums. Finally, the “spatial resolution” (e.g., the number of sensor points per squared
centimeters on a tabletop interface) also impacts its quality. In this context, we would like to develop an

24Open Sound Control: HTTP-based communication protocol heavily used in the field of computer music.
25ccrma.stanford.edu/ jos

https://ccrma.stanford.edu/~jos/
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embedded, high-resolution, high-sampling-rate, multi-touch multi-dimensional (X and Y + pressure)
interface/instrument leveraging the development carried out in the previous axes. This work would be
followed by a user study to measure the impact of this type of advanced system on perception.

4 Application domains

Emeraude aims at being a world leading research team on audio systems, carrying out fundamental
research. However, Emeraude’s research topics do belong to the spectrum of applied research. Hence,
discoveries made in the context of Emeraude should be illustrated with experimental prototypes and
demonstrations. Here is a brief overview of various application fields where research developed in
Emeraude could be applied.

4.1 Spatial active noise control

Noise control is a major issue in many industries: transport, construction, multimedia, etc. Active noise
control techniques can help to partially remedy this problem.

However, the implementation of such approaches requires several microphones and loudspeakers,
whose signal processing must be done in real-time and faster than the propagation time of the acoustical
waves. In these applications, FPGA solutions are therefore the most suitable way to program such devices,
and the flow proposed in §3.1 is of great interest in this context.

For instance, it could be used for single-channel controllers: a theme already developed, for example
for active headsets [14]. In that case, low latency allows for fully digital feedback control to be imple-
mented. More generally, the feedback control previously limited to small, non-modular spaces, can
be extended to a variety of situations, given the flexibility and adaptability of digital filters. Another
extension would be the implementation of multichannel controllers: experiments have already been
performed for the implementation of multichannel feedforward FPGA controllers with the development
of architectures adapted from the FXLMS reference algorithm [80]. This allows developments to be
considered in a real-world context.

4.2 Virtual acoustics/spatial audio

Controlling noise is only one of the applications of the aforementioned system. There is a rather strong
interest at the moment for the replication of virtual acoustic spaces for “immersive experiences.” Stanford
is currently discussing the possibility of integrating a virtual acoustics component to the replica of the
Chauvet cave in Ardèche with the scientific director of the Chauvet cave program. The idea would be to
make acoustic measurements of the real cave and to set up a system which, by capturing the position of
the visitor’s head, would allow him to hear the guide’s voice as if he were in the real cave (in 3D). Emeraude
(Romain Michon) is part of the think-tank on this topic.

Research around Virtual Reality (VR) and Augmented Reality (AR) systems is very active today: im-
mersive/augmented experience: audio guides, AR headsets implementing binaural rendering, augmented
acoustics experience, with a strong focus on the development of systems supporting binaural rendering.
Emeraude will be active in this domain too (see the Virtual Acoustics, Acoustic Active Control and Spatial
Audio section in §3.3).

4.3 Industrial acoustics

Industrial developments of active noise control systems have so far been limited either to small spaces
(e.g., active headsets, low-frequency ducts for aeraulic systems, etc.) or to noises of a particular nature
(e.g., periodic noise from propeller aircraft, land vehicle engines, etc.). Our FPGA-based solution, which
offers low latency and high computational capabilities, would enable the extension of controlled volumes,
and the possibility of active noise control over any kind of noise. This includes for instance the automotive
sectors where the reduction of road noise inside the passenger compartment is a big concern [45].

Another application would be the active treatment of boundary conditions with the realisation of
“smart surfaces” for absorption [59, 16], or vibro-acoustic isolation [61, 42, 94]. The development of active
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material is based on multi-channel control systems combining global control and decentralized feedback
systems. The use of FPGAs would enable them to be applied on a large scale, in buildings and also in
transport systems (e.g., aircraft, turbojet nacelles, etc.). The LMFA is developing both the experimental
means (i.e., MATISSE and CAIMAN test benches, ECL-B3 test bench from Equipex PHARE, etc.), and
the numerical codes of acoustic propagation [28, 84], within the framework of a strong partnership with
Safran Aircraft Engines (ANR ADOPSYS and ARENA industrial chairs). The development of a high-level
compiler dedicated to Acoustic Digital Signal processing on FPGAs is therefore of high interest for many
researchers in acoustic for numerous industrial applications.

4.4 Medicine/sonification

There is a trend in the medical world towards the “sonification” of medical data such as EEGs, etc. The idea
behind this concept is that our brain can process time series much faster and with much more precision
if they are “encoded” as sound than if they are plotted on a graph. For instance, trained doctors can spot
patterns which are characteristics of seizures in EEGs just by listening to their sonified version, which
would not be possible just by looking at the corresponding plot. In that context, a “brain stethoscope”
which basically sonifies the output signal of an EEG cap in real-time is currently being developed and
will be released soon.26 This type of development will be greatly simplified by the tools developed by
Emeraude.

4.5 Low-latency audio effect processors and synthesizers

Custom low-latency synthesizers and sound processors (i.e., audio effects) are currently mostly out of
reach to people in the audio and music technology communities. Indeed, the high-level programming
environments used by these groups (e.g., Max/MSP, SuperCollider, etc.) cannot be used to program em-
bedded audio platforms targeting low-latency applications. Instead, they were meant to be executed on
personal computers which have potentially way more audio latency than embedded systems. Providing
people in these communities with a tool (from §3.1) solving this problem would completely revolutionize
the way they approach their tool chain.

4.6 Digital luthiery

Since the 1980s, digital equipment has become deeply embedded in all parts of the popular music
production, distribution and consumption chain. In a market whose worldwide sales exceed 15 billion
euros, digital instruments (also known as “Digital Luthiery”) are only the latest chapter in the long history
of music technology. Digital instruments have sped up the evolution process by increasing accessibility
of musical equipment to practitioners, especially young people, who can now achieve at home with
inexpensive devices the kind of professional-calibre sounds that previously would have needed a large
recording studio. Modern musical instruments are all in need of some form of embedded audio processing
in which Emeraude could play a central role.

Grame is actively contributing to this effort by creating tools easily accessible to the maker community:
open platform to design musical instruments, educational tools, etc.

5 Highlights of the year

5.1 2023 Programmable Audio Workshop (PAW-23)

The Programmable Audio Workshop (PAW) is a yearly one day FREE event gathering members of the
programmable audio community around scientific talks and hands-on workshops. The 2023 edition
of PAW was hosted by the INRIA/INSA/GRAME-CNCM Emeraude Team at the Marie Curie Library of
INSA Lyon (France) on December 2nd, 2023: paw.grame.fr. The theme was “Artificial Intelligence and
Audio Programming Languages” with a strong focus on computer music languages (i.e., Faust, ChucK,
and PureData). The main aim of PAW-23 was to give an overview of the various ways artificial intelligence

26chrischafe.net/brain-stethoscope-news

https://paw.grame.fr
http://chrischafe.net/brain-stethoscope-news/
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is used and approached in the context of Domain Specific Languages (DSL) for real-time audio Digital
Signal Processing (DSP).

PAW-23 was organized by Emeraude and supported by INRIA and GRAME-CNCM.

Figure 5: PAW-23 took place at INSA Lyon on December 2, 2023 and was organized by Emeraude.

5.2 Participation to the HOLIGRAIL PEPR

Emeraude members belong to the HOLIGRAIL project (HOLIistic approaches to GReener model Architec-
tures for Inference and Learning) that started at the end of 2023. In collaboration with Inria/IRISA Taran
(Univ. Rennes, Inria, CNRS), List/LIAE (Université Paris Saclay, CEA), Inria Corse (Université Grenoble
Alpes), TIMA SLS (CNRS, Grenoble-INP, Université Grenoble Alpes), and List/LVML (Université Paris
Saclay, CEA), the objective of this project is to make machine learning (ML) more frugal by considering to
all the levels of the ML stack: algorithms, data structures and data representations, compilers, hardware
macro-architecture and microarchitecture.

5.3 Recruitement of Anastasia Volkova as a reasearch scientist

Anastasia Volkova, previously an associate professor at Nantes Unviersity, joined the team on October
1st, 2023. Her research interests include computer arithmetic, digital signal processing, and hardware
acceleration. With her expertise in optimization of arithmetic operators for embedded systems and
hardware implementation of digital filters, she reinforces the bridge between the arithmetic and DSP
research axes of Emeraude. With Romain Michon and Tanguy Risset she now co-supervises a master
student, and with Florent de Dinechin she co-supervises a PhD thesis starting in January 2024.

6 New software, platforms, open data

6.1 New software

6.1.1 FloPoCo

Name: Floating-Point Cores, but not only

Keyword: Synthesizable VHDL generator
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Functional Description: The purpose of the open-source FloPoCo project is to explore the many ways
in which the flexibility of the FPGA target can be exploited in the arithmetic realm.

URL: http://flopoco.org

Contact: Florent de Dinechin

Participants: Florent de Dinechin, Luc Forget

Partners: ENS Lyon, Insa de Lyon, Inria, Fulda University of Applied Science

6.1.2 hint

Name: High-level synthesis Integer Library

Keyword: High-level synthesis

Functional Description: Hint is an header-only arbitrary size integer API with strong semantics for C++.
Multiple backends are provided using various HLS libraries, allowing a user to write one operator
and synthetize it using the main vendor tools.

URL: https://github.com/yuguen/hint

Publication: hal-02131798v2

Contact: Luc Forget

Participants: Yohann Uguen, Florent de Dinechin, Luc Forget

6.1.3 marto

Name: Modern Arithmetic Tools

Keywords: High-level synthesis, Arithmetic, FPGA

Functional Description: Marto provides C++ headers to implement custom sized arithmetic operators
such as:

Custom sized posits and their environment (including the quire) Custom sized IEEE-754 numbers
Custom sized Kulisch accumulators (and sums of products)

URL: https://gitlab.inria.fr/lforget/marto

Publication: hal-02130912v4

Contact: Yohann Uguen

Participants: Yohann Uguen, Florent de Dinechin, Luc Forget

6.1.4 Syfala

Name: Low-Latency Synthesizer on FPGA

Keywords: FPGA, Compilers, High-level synthesis, Audio signal processing

Functional Description: The goal of Syfala is to design an FPGA-based platform for multichannel ultra-
low-latency audio Digital Signal Processing programmable at a high-level with Faust and usable
for various applications ranging from sound synthesis and processing to active sound control and
artificial sound field/room acoustics.

A series of tools are currently being developed around SyFaLa. While none of them has been
officially released yet, you can follow their development/evolution on the project Git repository:
https://gitlab.inria.fr/risset/syfala

URL: https://faust.grame.fr/syfala/

Contact: Tanguy Risset

http://flopoco.org
https://github.com/yuguen/hint
https://hal.inria.fr/hal-02131798v2
https://gitlab.inria.fr/lforget/marto
https://hal.inria.fr/hal-02130912v4
https://faust.grame.fr/syfala/
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6.1.5 FAUST

Name: Functional Audio Stream)

Keywords: Audio, Functional programming

Functional Description: The core component of Faust is its compiler. It allows to "translate" any Faust
digital signal processing (DSP) specification to a wide range of non-domain specific languages such
as C++, C, LLVM bit code, WebAssembly, Rust, etc. In this regard, Faust can be seen as an alternative
to C++ but is much simpler and intuitive to learn.

Thanks to a wrapping system called "architectures," codes generated by Faust can be easily com-
piled into a wide variety of objects ranging from audio plug-ins to standalone applications or
smartphone and web apps, etc.

URL: https://faust.grame.fr/

Contact: Yann Orlarey

Partners: GRAME, Insa de Lyon, Inria

7 New results

7.1 Compilation of audio DSP on FPGA (Syfala)

The Emeraude team has been actively extending the Syfala toolchain. Syfala was first released in 2022 [72].
It is meant to be a poweful audio to FPGA compilation toolchain. With the help of Pierre Cochard (ADT
Inria), we succedded in gathering all the possible use of the compilation toolchain in a single software
suite. This section describe the extensions that have been added to Syfala in 2023.

7.1.1 C++ optimizations in the context of High-Level Synthesis

Participants: Maxime Popoff, Tanguy Risset, Romain Michon, Pierre Cochard.

When compiling FAUST programs to FPGA, Syfala relies on the High Level Synthesis (HLS) tool
provided by Xilinx, which takes a C++ program as an input. Hence, FAUST generates C++ code from a
FAUST program and Syfala feeds it to HLS. The topology of the C++ code provided to HLS has a huge impact
on the performances of the generated Intellectual Property (IP). In 2023, we conducted a study aiming
at understanding the kind of optimizations that can be carried out on C++ code in the context of the
high-level synthesis of real-time audio DSP programs. Thanks to this work, we managed to significantly
optimize the applications generated by Syfala allowing for much more complex audio DSP algorithms to
be run on the FPGA. While these findings haven’t been integrated to the FAUST Syfala backend, they can
be used with the new Syfala C++ support. Indeed, we recently added a new mode in Syfala allowing for
C++ code to be used as a substitute for FAUST. This, combined with an exhaustive public documentation
of the aforementionned optimizations will help increasing the attractivity of Syfala.

This work will be published in 2024.

7.1.2 Linux support for Syfala

Participants: Pierre Cochard, Maxime Popoff, Antoine Fraboulet, Tanguy Risset,
Stephane Letz, Romain Michon.

Up to now, the CPU portion of applications generated by Syfala was implemented as a bare-metal
kernel. In 2023, we added the possibility to run Alpine Linux on the CPU of the Zybo board while

https://faust.grame.fr/
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carrying out audio DSP operations on the FPGA, taking a hardware accelerator approach. This enables
the compilation of complete audio applications involving various control protocols and approaches such
as OSC (Open Sound Control) through Ethernet or Wi-Fi, MIDI, web interfaces running on an HTTPD
server, etc. It also opens the door to the integration of hardware accelerators in high-level computer
music programming environments such as Pure Data, SuperCollider, etc.

This work led to a publication at the 2023 Sound and Music Computing conference (SMC-23) [1].

7.1.3 Syfala PipeWire support

Participants: Jurek Weber, Pierre Cochard, Tanguy Risset, Romain Michon.

As we worked on applications for Syfala requiring the handling of a large number of audio channels
in parallel for spatial audio, we realized that we needed a way to send and receive audio streams in
parallel between a laptop computer and our FPGA board. For this, we opted for an open standard
named PipeWire which allows for the transmission of digital audio streams in real-time over an ethernet
connection. PipeWire was implemented in the Linux layer of Syfala (see §7.1.2) and is now perfectly
integrated to the toolchain. It will allow to significantly expand the scope of the various spatial audio
systems that we’ve been working on in the context of PLASMA (see §7.2)

This work will be published in 2024.

7.1.4 Multichannel audio boards for FPGA

Participants: Maxime Popoff, Romain Michon, Tanguy Risset.

We developed two audio FPGA sister boards aiming various kinds of spatial audio applications.
One targets the Digilent Zybo Z7 (10 or 20) board and is designed to be cost-efficient, accessible, and

easily reproducible (see Figure 6). It provides 32 amplified (3W) audio outputs to which small speakers
can be directly connected. Its goal is to provide an affordable way to deal with a large number of audio
outputs in the context of spatial audio. It was used at the heart of the frugal spatial audio system described
in §7.2.2.

The other board that we developed is meant to be connected to a Digilent Genesys board and targets
high-end spatial audio applications with a strong focus on active control (see Figure 7). It provides 32
ultra-low latency (10µs) balanced inputs and outputs, leveraging the work presented in [72]. It is currently
used as part of the FAST ANR project for implementing FxLMS algorithms for active control.

This work will be published in 2024.

7.1.5 FAUST to VHDL backend

Participants: Jessica Zaki Sewa, Alois Rautureau, Pierre Cochard, Tanguy Risset,
Yann Orlarey, Stéphane Letz.

Syfala uses HLS for compiling C++ code downto VHDL, the C++ code being itself generated from
FAUST. However, FAUST, as a functionnal langage, exhibits all the parallelism of the audio application.
The code is sequentialized in the C++ code and then re-parallelized by the viti_hls tool for the FPGA.

An interesting alternative is to translate directly FAUST downto VHDL. FAUST programs can be rep-
resented as audio circuits connected together and hence provides a natural equivalence with VHDL
structural representation of such circuits. The VHDL program is just a translation of the data-flow graph
of the audio application.

However, for an efficient implementation on FPGA, this data-flow graph must be retimed. Retim-
ing [55] is an old classical transformation that adds registers in a digital circuit without changing its
functionnal behaviour but allowing for a much faster clock rate.
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Figure 6: Affordable (less than 1000€) sister board for the Digilent Zybo Z7 providing 32 amplified audio
outputs.

A first Faust2VHDL translator prototype was issued in 2022 generating a fully combinatorial datapath
on the FPGA. In 2023 we have released the first real Faust2FPGA compiler which includes retiming and
fixed point computations.

This work will be published in 2024. Preliminary results shows that the IP generated by our Faust2FPGA
compiler are twice smaller than the IP generated by viti_hls. However, the use of HLS is still pref-
ered because many features are not included in the Faust2FPGA compiler (i.e., control from the ARM
processeur or use of the external RAM).

7.2 PLASMA: Pushing the Limits of Audio Spatialization with eMerging Architectures

PLASMA is an associate research team gathering the strengths of Emeraude and of the Center for Com-
puter Research in Music and Acoustics (CCRMA) at Stanford University (see §9).

Plasma started in 2022. In 2023 and we continued the development of the different prototypes of
spatial audio systems taking both a centralized and a distributed approach using some of the technology
developed in Emeraude (i.e., the FAUST programming language [69], Syfala [72], etc.).

7.2.1 Distributed spatial audio system

Participants: Thomas Rushton, Romain Michon, Tanguy Risset, Stéphane Letz.

We developed a distributed systems for spatial audio DSP based on a network of microcontrollers
(see Fig. 8). We chose this type of platform because they are cost-effective, very lightweight, and OS-free.
We used PJRC’s Teensys 4.127 as they host a powerful Cortex M7 clocked at 600 MHz as well as built-in
ethernet support. PJRC also provides an “audio shield” which is just a breakout board for a stereo audio
codec (SGTL-5000) compatible with the Teensy 4.1.

A preliminary task was to send audio streams over the Ethernet from a laptop to the Teensy. For
that, we decided to use the JackTrip protocol which is open source and used a lot in the audio/music
tech community [23]. Implementing a JackTip client on the Teensy was fairly straightforward. We then

27www.pjrc.com/store/teensy41.html

https://www.pjrc.com/store/teensy41.html
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Figure 7: Sister board for the Digilent Genesys board providing 32 ultraa-low latency audio inputs and
outputs.

implemented our own protocol which can be easily accessed through an audio plugin directly runnable
in a Digital Audio Workstation (DAW).

Audio DSP is carried out directly on the Teensys which are programmed with the FAUST programming
language thanks to the faust2teensy [62] tool developed by the Emeraude team. A laptop is used to
transmit audio streams to the Teensys which are controlled using the Open Sound Control (OSC) standard.
OSC messages are multicast/broadcast to save bandwidth. The same audio streams are sent to all the
Teensys in the network (all audio processing is carried out on the Teensys, not on the laptop computer).

This work was presented at the SMC-23 conference [6].

7.2.2 Frugal FPGA-based spatial audio system

Participants: Romain Michon, Joseph Bizien, Pierre Cochard, Tanguy Risset.

As a first step towards implementing a centralized system for spatial audio, we worked on a low-cost
Wave Field Synthesis (WFS) [15] (see Figure 9) system based on an affordable sister board for the Digilent
Zybo Z7 FPGA board that we developed (see §7.1.4).

We successfully ran a standard WFS algorithm implemented in the FAUST programming language on
this system where multiple sources can be moved in space. Individual sources are sent to the speaker
array thanks to the Syfala PipeWire support (see §7.1.3). Their position can be controlled using a web
interface accessible through an HTTPD server or OSC.

Thanks to the use of the FPGA, the cost of each new channel in the system is very low. Implementing
a WFS system with a more traditional architecture would be way more expensive that what we achieved
which is very promising!

This work was presented at the NIME-23 conference [8].
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Figure 8: The Wave Field Synthesis system developed as part of PLASMA.

Figure 9: The Wave Field Synthesis system developed as part of PLASMA.

7.3 FAUST ecosystem development

Participants: Yann Orlarey, Stéphane Letz, Agathe Herrou.

7.3.1 Extension to the FAUST language with widget modulation

FAUST favors the reuse of existing code via several mechanisms, particularly through the component()
expression. Utilizing component("freeverb.dsp"), for instance, facilitates the integration of a com-
prehensive reverb program, as specified in the freeverb.dsp file, along with its user interface, into a
programmer’s own application. However, a challenge arises when there is a need to modify the user inter-
face of such a component. Consider scenarios like replacing a slider with a constant value, or employing
an audio signal to modulate a slider’s value. Previously, such modifications necessitated alterations to the
source code of freeverb.dsp.

The conventional approach to this limitation was, for the developer of freeverb.dsp, to structure
the code such that the audio processing component is distinct from its user interface. This practice is
advantageous as it allows for the audio processing component to be reused in various contexts or with
different user interfaces. Nonetheless, it does not ease the reuse of any part of the existing user interface.

The introduction of a new feature in FAUST version 2.69.0, termed widget modulation, addresses this
issue. This feature enables modifications to an existing component, such as altering a slider’s functionality,
replacing a slider, or setting a slider to a fixed value, all without requiring changes to the component’s
original source code. Programmers specify the desired modifications to the user interface, and the
compiler generates a modified version of the code that implements these changes.
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Examples The most basic example of widget modulation is demonstrated by the following code:
["Wet" -> component("freeverb.dsp")]

This code instructs the FAUST compiler to generate a new version of freeverb.dsp, incorporating
an additional input that merges with the output of the Wet widget in the interface. This extra input can
be connected to a control signal, such as a Low Frequency Oscillator (LFO), for modulating the Wet
parameter of the reverberator.

The label "Wet" identifies the slider intended for modulation. This process assumes familiarity
with the names of the sliders, which can be easily ascertained from the user interface, thus avoid-
ing the need to examine the source code of freeverb.dsp. In cases where multiple widgets share
the same name, specificity can be achieved by including the names of enclosing groups, such as
"h:group/h:subgroup/label".

To indicate multiple sliders, the syntax is as follows:
["Wet", "Damp", "RoomSize" -> component("freeverb.dsp")].

Here, three new inputs are added.
The method of slider modulation is not explicitly stated. By default, modulation is performed by

multiplication, as seen in the implicit form of the previous example, which is equivalent to the expli-
cit form ["Wet":*, "Damp":*, "RoomSize":* -> component("freeverb.dsp")]. However, mul-
tiplication can be substituted with any other circuit that has at most two inputs and one output.

For instance, ["Wet", "Damp", "RoomSize":+ -> component("freeverb.dsp")] suggests that
the "RoomSize" parameter is modulated through addition.

The primary requirement for a modulation circuit is that it should have a single output and a max-
imum of two inputs. Therefore, circuits can be 0->1, 1->1, or 2->1 in terms of input-output configuration.
Only 2->1 circuits introduce additional inputs, and 0->1 circuits result in the removal of the slider, as its
value becomes irrelevant.

Consequently, the expressionlfo(10, 0.5), _, _ : ["Wet" -> component("freeverb.dsp")]
can be reformulated as ["Wet":*(lfo(10, 0.5)) -> component("freeverb.dsp")]. In this lat-
ter format, no additional input is created, as the LFO is integrated within the reverb. The expression
["Wet":0.75 -> component("freeverb.dsp")] leads to the removal of the "Wet" slider, which is
replaced by a constant value of 0.75. Finally, using ["Wet":+(hslider("More Wet", 0, 0, 1, 0.1))
-> component("freeverb.dsp")] adds a second slider to the interface of the freeverb component.

How the widget modulation variant is produced The compilation of a FAUST program involves several
phases. Initially, the user program is evaluated into a normal form audio circuit. Subsequently, this
circuit is translated into audio signals by calculating, through symbolic propagation, the output signals
it produces based on the input signals it receives. These signal expressions are then normalized and
compiled into a generic imperative representation. This representation is finally translated into code by
the various backends of the compiler (C++, Rust, WebAssembly, etc.).

Widget modulations are handled during the first phase of the compilation process. For example,
with ["Wet":*(lfo(10, 0.5)) -> component("freeverb.dsp")], the compiler begins by evaluat-
ing the normal form of component("freeverb.dsp"). Then, it replaces in this circuit in normal form
every occurrence of a widget w labeled "Wet" with the expression w*lfo(10, 0.5). In other words, the
normal form of ["Wet":*(lfo(10, 0.5)) -> component("freeverb.dsp")] is the normal form of
component("freeverb.dsp") in which every occurrence of a widget w labeled "Wet" has been replaced
by the normal form of w*lfo(10, 0.5).

7.3.2 Fixed-point extension in the FAUST programming language

In this axis of the FAST project, we are developing a fixed-point extension to FAUST to optimize the
performance of FAUST programs on FPGAs.

The already existing interval library, which makes it possible to annotate signals with their range
(minimum and maximum value they can attain) has been extended with a precision property. The
precision denotes the number of bits that needs to be used to represent a signal, with the implicit goal of
balancing signal quality (using enough bits to preserve information) and resource economy (using no
more bits than what is needed).
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The strategy to determine this precision is theoretically founded on the novel notion of pseudo-
injectivity, introduced in the context of that work. This notion is attached to a function and its definition
interval, and links the input and output precisions. More precisely, a function defined on a given interval
and equipped with input and output precisions is said to be pseudo-injective if all images of representable
inputs, in the given input format, are distinctly representable in the output format. We established a
closed-form formula to determine the output format from an input format and vice-versa (for a given
function and definition interval).

This information can be forwardly propagated into the signal graph, in the sense that each node
receives the precision and interval information of its inputs, and uses them to infer the output interval
and precision of the function. The global propagation is done as a compiler pass, in the same way that
other properties are propagated: the operation starts from the inputs of the program (for which the
precision is typically set by external factors) and traverses the program graph until it reaches the outputs.

Preliminary experiments towards backwards propagation of these signals have been conducted,
without being implemented into the compiler for now. This backwards propagation consists in traversing
the program graph from the outputs to the inputs, inferring the input precision of each node from its
output precision in a way that preserves pseudo-injectivity. Early results seem to indicate that performing
a step of backward propagation results in smaller precisions than forward propagation alone, without
sacrificing the overall quality of the signal.

Once the precision and interval has been inferred for every signal, it is then used to generate C++
code, using the ap_fixed library from Xilinx for fixed-point formats. The position of the most significant
bit of the format is determined by the amplitude of the interval, and the position of the least significant
bit is given by the precision.

This work will be published in 2024.

7.3.3 faust2rnbo project

RNBO is a library and toolchain that can take Max-like patches, export them as portable code, and directly
compile that code to targets like a VST, a Max External, or a Raspberry Pi. DSP programs can be compiled
to the internal codebox sample level scripting language. Compiling FAUST DSP to codebox code allows
us to take profit of hundreds of DSP building blocks implemented in the FAUST libraries, ready to use
examples, any DSP program developed in more than 200 projects listed in the Powered By FAUST page, or
FAUST DSP programs found on the net.

A new backend to produce the codebox language has been added to the compiler. The codebox code
can be generated using the following line (note the use of -double option, the default sample format in
RNBO/codebox ):

faust -lang codebox -double foo.dsp -o foo.codebox

Looking at the generated code The generated code contains a sequence of parameters definitions with
their min, max, step and default values.

Next the declaration of the DSP structure using the @state decorator, creating a state that persists
across the lifetime of the codebox object. Scalar and arrays with the proper type are created.

Next the DSP init code, which is added in dspsetup, only available in codebox where it will be called
each time audio is turned on in Max (which is basically every time the audio state is toggled, or the sample
rate or vector size is changed). Here the DSP state is initialized using the RNBO current sample rate.

Parameter handling is separated into two functions: control is called each time a parameter has
changed, and the actual change is triggered when at least one parameter has changed, controlled by the
state of fUpdated global variable.

Finally, the compute function processes the audio inputs and produces audio outputs. Note that the
generated code uses the so-called scalar code generation model, the default one, where the compiled
sample generation code is done in compute.

The faust2rnbo tool To be tested, the generated code has to be pasted in a codebox component in
an encompassing RNBO patch, with additional patching to add the needed audio inputs/outputs and
control parameters. Thus a more integrated and simpler model is to use the faust2rnbo tool.
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The faust2rnbo tool transforms a FAUST DSP program into a RNBO patch containing a rnbo~ object
and including the codebox code (generated using the codebox backend) as a subpatch. Needed audio
inputs/outputs and parameters (with the proper name, default, min and max values) are automatically
added in the patch. Additional options allow to generate a special version of the RNBO patch used in
the testing infrastructure. The code is written in Python and uses the very powerful py2max library to
generate the maxpat JSON format.

Bargraph handling In FAUST, bargraph are typically used to analyze audio signals where computed
values are sent at control rate. This cannot be directly done in the RNBO model where only audio signals
can be sent from the codebox code. So additional audio outputs are created for bargraph, and will be
sampled (using snapshot and change) and be connected to param objects, like input controllers.

MIDI control Control of parameters with MIDI can be activated using the -midi option, or using the
declare options "[midi:on]";" syntax in the DSP code. The patch will then contain midiin/midiout
objects at global level and specialized ctlin/notein etc. objects in the codebox subpatcher with the
appropriate scale object to map the MIDI message range on the target parameter range. The following
faust2rnbo -midi osc.dsp command can be used to compile a osc.dsp file in a MIDI controllable
maxpat.

Polyphonic instruments When the DSP follows the polyphonic ready instrument convention, it can
be activated in MIDI controllable polyphonic mode. The command faust2rnbo -midi -nvoices 12
organ.dsp will create a patch containing a rnbo object with 12 voices, and with a notein object added
in the subpatcher correctly connected to the appropriate freq/gain/gate aware parameters. Additional
mapping depending on the convention used to describe the pitch (freq or key) or gain (gain or velocity)
will be added when needed.

Polyphonic instruments with an effect The following polyphonic ready instrument DSP, with an
integrated effect, can be converted to a polyphonic MIDI ready patch, to be compiled with the following
faust2rnbo -midi -nvoices 16 -effect auto organ2.dsp.

The generated user-interface will contain the polyphonic DSP rnbo object, using the p abstraction
model to load and activate the polyphonic instrument (as a organ2.rnbopat file), connected to the
global effect (as a organ2_effect.rnbopat file). Having a single rnbo object with the two embedded
subpachers is mandatory to properly create the exported project.

7.3.4 Other developments around FAUST

GSOC projects Google Summer of Code is a global, online program focused on bringing new contribut-
ors into open source software development. GSoC Contributors work with an open source organization
on a 12+ week programming project under the guidance of mentors. For the second consecutive year,
GRAME has been selected as a mentor organization for the FAUST project and two projects have been
achieved.

Auto-differentiation Automatic Differentiation in the FAUST Compiler aims at adding Automatic dif-
ferentiation directly in the compiler, as a first-class citizen concept, so that gradient calculation can be
carried out natively in FAUST, with applications in Machine Learning algorithms, and certain classes of
DSP algorithms like ODE or PDE based descriptions.

A first exploratory version of the project has been completed. The FAUST compiler has been enriched
with a new signal transformation pass, which calculates the derived version of a computation graph with
respect to its input control parameters. The following developments have been done:

• Derivative implementations for the majority of FAUST’s primitives, in theSignalAutoDifferentiate
class and, for math.h-equivalent primitives, descendents of the xtended class.

• A new architecture file, autodiff.cpp, compilable to an executable for computing gradient des-
cent.
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• A selection of example differentiable and ground-truth FAUST .dsp files for exploring and testing
autodiff functionality and gradient descent.

• A python script for plotting the evolution of loss and parameter values during the gradient descent
process.

• A shell script, autodiff.sh for streamlining the process of building the gradient descent applica-
tion, executing it with suitable example files, and plotting the results.

• Another architecture file, autodiffVerifier.cpp, compilable to an executable for assessing the
validity of automatically differentiated FAUST programs via comparison with differentiation by
finite differences.

The autodiff architecture file uses libfaust to compile DSP algorithms dynamically at runtime, so
FAUST must be compiled and installed with the LLVM backend.

A number of simple DSP programs were then tested. Starting, for instance, from a noise attenuated
by a gain parameter, the gradient descent algorithm is then used to find a target gain setting value,
by comparing the original signal and the signal resulting from processing by the algorithm using the
auto-differentiation mechanism. Other examples have also been implemented and tested.

Following this work, a PhD should start in 2024.

faust-web-component The faust-web-component package provides two web components for em-
bedding interactive FAUST snippets in web pages:

• <faust-editor> displays an editor (using CodeMirror 6) with executable, editable FAUST code, along
with some bells & whistles (controls, block diagram, plots) in a side pane. This component is ideal
for demonstrating some code in FAUST and allowing the reader to try it out and tweak it themselves
without having to leave the page.

• <faust-widget> just shows the controls and does not allow editing, so it serves simply as a way to
embed interactive DSP.

This project is built using faustwasm, a new version of the FAUST WebAssembly compiler which
provides TypeScript and JavaScript wrappers for FAUST DSPs. It allows to generate static self-contained
html pages or JavaScript modules (including the FAUST code as a WebAssembly module and various
additional resources), or even to integrate the libfaust compiler in applications which need to dynamically
compile and deploy FAUST DSP programs. The library can be used either in Node.js based projects or in
web browsers and is published on NPM.

7.4 Arithmetics

Participants: Florent de Dinechin, Anastasia Volkova, Orégane Desrentes.

7.4.1 Hardware-optimal digital FIR filters

The article [7] addresses the implementation of Finite Impulse Response filters as digital hardware circuits
(Figure 10). It formalizes, as a mathematical model, the problem of finding the optimal circuit for a given
frequency specification and given input/output fixed-point formats. This model captures at the bit
level a wide class of implementations (transposed-form circuits based on truncated shift-and-add adder
graphs). It also captures formally the constraints due to the frequency specification, as well as those
due to rounding to the output format. This model can be expressed as an Integer Linear Programming
(ILP) problem, such that the optimal circuit (in terms of bit-level adders and registers) can be found by
standard ILP solvers. This approach allows for a completely automatic tool from a frequency specification
to a circuit with user-specified input and output formats. This tool is evaluated (with cost functions
modeling FPGAs) on several benchmarks.
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Figure 10: From a frequency specification to an architecture

7.4.2 High-performance floating-point hardware and their applications

The work in this section took place in the framework of the CIFRE thesis of Oregane Desrentes with Kalray.
Low bit-width floating-point formats appear as the main alternative to 8-bit integers for quantized

deep learning applications. The article [3] proposes an architecture for exact dot product accumulate
operators and compares its implementation costs for different 8-bit floating-point formats: FP8 with five
exponent bits and two fraction bits (E5M2), FP8 with four exponent bits and three fraction bits (E4M3),
and Posit8 formats with different exponent sizes. The front-ends of these exact dot product accumulate
operators take 8-bit multiplicands, expand their fullprecision products to fixed-point, and sum terms
into wide accumulators. The back-ends of these operators round down the wide accumulators contents
first to FP32 and then to one of the 8-bit floating-point formats. The proposed 8-bit floating-point exact
dot product accumulate operators are synthesized targeting the TSMC 16FFC node in order to compare
their area and power to a baseline of operators with FP16 and INT8 multiplicands.

For larger precisions, the article [2] explores architectures of exact (correctly rounded) fused dot
product and add operators suitable for the FP32 and FP64 binary floating-point representations with
subnormal support, and other representations with a wide dynamic range such as bfloat16. The exact
summation of terms before rounding requires a full-size accumulator, and this work discusses techniques
to compress the identical bits of this accumulator. This requires the computation of the relative shift
amounts of the terms, which is formulated as a parallel prefix algorithm, allowing for a low-latency
implementation. Architectural options for the exact fused dot product and add operators with up to
16 products for FP32, FP64 and mixed-precision BF16 to FP32 are evaluated using the TSMC 16FFC
technology node.

The article [4] revisits 1D Fast Fourier Transforms (FFT) implementation approaches in the context
of compute units composed of multiple cores with SIMD ISA extensions and sharing a multi-banked
local memory. A main constraint is to spare use of local memory, which motivates us to use in-place
FFT implementations and to generate the twiddle factors with trigonometric recurrences. A key object-
ive is to maximize bandwidth of the multi-banked local memory system by ensuring that cores issue
maximum-width aligned non-temporal SIMD accesses. We propose combining the SIMD lane-slicing
and sample partitioning techniques to derive multicore FFT implementations that do not require matrix
transpositions and only involve one stage of bit-reverse unscrambling. This approach is demonstrated
on the Kalray MPPA3 processor compute unit, where it outperforms the classic six-step algorithm for
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multicore FFT implementation.

8 Bilateral contracts and grants with industry

Participants: Florent de Dinechin, Stephane Letz, Romain Michon, Yann Orlarey,
Tanguy Risset, Anastasia Volkova.

8.1 Bilateral contracts with industry

Following similar contracts in previous years, we participate (along with members of the AriC team)
to a contract with the Bosch company related to efficiently implement numerical functions on Bosch
Electronic Control Units (ECUs). The amount is 15,000 euros (1/3 for Emeraude, 2/3 for AriC).

The PhD thesis of Orégane Desrentes, in collaboration with Kalray, includes a support contract of
47,500 € for the duration of the thesis.

Anastasia Volkova, recruited this year as CR, co-advises an industrial PhD thesis with Valeuriad
company and Nantes University. Inria enters as a new party to the contract, which proposes the total
support of 90,000€, negotiations on a precise support for Inria are in process.

9 Partnerships and cooperations

Participants: Florent de Dinechin, Stephane Letz, Romain Michon, Yann Orlarey,
Tanguy Risset, Anastasia Volkova.

9.1 International initiatives

9.1.1 Associate Teams in the framework of an Inria International Lab or in the framework of an Inria
International Program

Title: Pushing the Limits of Audio Spatialization with eMerging Architectures (PLASMA)

Partner Institution(s): • Stanford University Stanford (USA)

Date/Duration: 2022 -> 2025

Additionnal info/keywords: PLASMA is an associate research team gathering the strength of Emeraude
and of the Center for Computer Research in Music and Acoustics (CCRMA) at Stanford University.
The two main objectives of Plasma are: (i) Exploring various approaches based on embedded
systems towards the implementation of modular audio signal processing systems involving a
large number of output channels (and hence speakers) in the context of spatial audio; (ii) Making
these systems easily programmable: we want to create an open and accessible system for spatial
audio where the number of output channels is not an issue anymore. Two approaches are being
considered in parallel: (i) Distributed using cheap simple embedded audio systems (i.e., Teensy,
etc.); (ii) Centralized using an FPGA-based (Field-Programmable Gate Array) solution.

9.2 International research visitors

9.2.1 Visits of international scientists

Mike Mulshine

Status PhD

Institution of origin: Stanford University
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Country: USA

Dates: July 2023

Context of the visit: PLASMA Associate Team

Mobility program/type of mobility: research stay

Riccardo Russo

Status: PhD

Institution of origin: University of Bologna

Country: Italy

Dates: October 2023

Context of the visit: Work on finite different scheme models on FPGA

Mobility program/type of mobility: research stay

Martin Kumm

Status: full professor

Institution of origin: Fulda University of Applied Sciences

Country: Germany

Dates: July 2023

Context of the visit: Work on FloPoCo, filters, and neural networks.

Mobility program/type of mobility: research stay

9.2.2 Visits to international teams

Maxime Popoff

Visited institution: Stanford University

Country: USA

Dates: April-June 2023

Context of the visit: PLASMA Associate Team

Mobility program/type of mobility: Research stay

Romain Michon

Visited institution: Stanford University

Country: USA

Dates: April-June 2023

Context of the visit: PLASMA Associate Team

Mobility program/type of mobility: Research stay and teaching
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Florent de Dinechin

Visited institution: Fulda University of Applied Sciences

Country: Germany

Dates: February 2023

Context of the visit: Collaboration on the FloPoCo project

Mobility program/type of mobility: Research stay

9.3 National initiatives

9.3.1 ANR FAST

Embedded systems for audio and multimedia are increasingly used in the arts and culture (e.g., interactive
systems, musical instruments, virtual and augmented reality, artistic creation tools, etc.). They are
typically based on a CPU (Central Processing Unit) which limits their computational power and induces
some latency. FPGAs (Field Programmable Gate Arrays) can be seen as a solution to these problems.
However, these types of chips are extremely complex to program, making them largely inaccessible to
musicians, digital artists and makers communities.

The goal of the FAST ANR project is to enable high-level programming of FPGA-based platforms for
multichannel ultra-low-latency audio processing using the Faust programming language (a standard in
the field of computer music). We plan to use this system for various applications ranging from sound
synthesis and processing to active sound control and artificial sound field/room acoustics.

FAST officially started in March 2021. It gathers the strength of GRAME-CNCM, CITI Lab (INRIA/INSA
Lyon), and LMFA (École Centrale Lyon).

10 Dissemination

Participants: Florent de Dinechin, Stephane Letz, Romain Michon, Yann Orlarey,
Tanguy Risset, Anastasia Volkova.

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

• Romain Michon and Stephane Letz organized the 2023 Programmable Audio Workshop (PAW-
23: paw.grame.fr) which is a one day workshop on emerging programmable audio technologies
(see §5.1). The theme of this event this year was “Artificial Intelligence and Audio Programming
Languages” It took place at INSA Lyon on December 2, 2023.

• The Syfala Team (Tanguy Risset, Romain Michon, Maxime Popov, Pierre Cochard, Yann Orlarey)
with the help of Matthieu Imbert have organized the first "Syfala Workshop" using Grid5000 facility.
10 persons were assisting, 6 from abroad (Germany, Switzerland, Poland, Stanford). We show how
to use the open-source Syfala compiler to compile Faust programs.

• Anastasia Volkova organized a one-day workshop on Optimization for Hardware Arithmetic Archi-
tectures on October 26th in Nantes, France. 15 persons from University of Lincoping (Sweden), CEA
Paris, CNRS, Inria Rennes, Inria Lyon and INSA Lyon participated. Potential collaborations in the
fields of machine learning and digital signal processing acceleration were discussed and planned.

https://paw.grame.fr
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10.1.2 Scientific events: selection

• Romain Michon was a member of the conference program committee of NIME-23 (www.nime2023.org/).

• Romain Michon was a member of the conference program committee of DAFx-23 (dafx23.create.aau.dk/).

• Romain Michon was a member of the conference program committee of SMC-23 (smcnetwork.org/smc2023/).

• Tanguy Risset was a member of the conference program committee of SMC-23 (smcnetwork.org/smc2023/)
and DATE 2023 (Design Automation and Test in Europe), on track " Architectural and Microarchi-
tectural Design".

• Florent de Dinechin was a member of the conference program committee of the conferences Arith
(arith2023.arithsymposium.org/), FCCM (www.fccm.org/past/2023/), and FPL (2023.fpl.org/).

10.1.3 Invited talks

• Romain Michon gave an invited talk at the Rhode Island School of Design in April 2023.

• Romain Michon gave an invited talk at the Fédération Informatique de Lyon in July 2023.

• Romain Michon gave an invited talk at the École Normale Supérieure de Lyon in October 2023.

• Romain Michon gave an invited talk at the “Fabrique des sons” symposium at the École des arts de
la Sorbonne in Paris in October 2023.

• Romain Michon gave an invited talk at the CCRMA colloquium at Stanford University in October
2023 on the work carried out around the Plasma team.

• Tanguy Risset gave an invited talk at CCRMA in the DSP Seminar of Julius Smith at Stanford
University in October 2023 on the recent advances of the Syfala project.

• Tanguy Risset gave an invited talk at ENS-Rennes in January presenting the research of the Em-
eraude Team and more specifically the Syfala project.

• Tanguy Risset gave an invited talk for the GDR SoC in Lyon in June presenting the research of the
Emeraude Team.

• Florent de Dinechin gave an invited online talk to the FPBench community meeting (fpbench.org/community-
meetings.html) on the upcoming book Application-Specific Arithmetic.

• Florent de Dinechin gave two invited lectures at the Joint ICTP-IAEA School on Systems-on-Chip
Based on FPGA for Scientific Instrumentation and Reconfigurable Computing (indico.ictp.it/event/10225/).

10.1.4 Scientific expertise

Florent de Dinechin is a member of the scientific committee of the DeepGreen platform (deepgreen.ai/).

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Tanguy Risset is professor at the Telecommunications Department of Insa Lyon.

• Florent de Dinechin is a professor at the Computer Science Department of Insa Lyon. He also
teaches computer architecture at ENS-Lyon.

• Romain Michon is a part-time lecturer at Stanford University.

• Romain Michon is a part-time associate professor at the Telecommunications Department of Insa
Lyon.

https://www.nime2023.org/
https://dafx23.create.aau.dk/
https://smcnetwork.org/smc2023/
https://smcnetwork.org/smc2023/
https://arith2023.arithsymposium.org/
https://www.fccm.org/past/2023/
https://2023.fpl.org/
https://fpbench.org/community-meetings.html
https://fpbench.org/community-meetings.html
https://indico.ictp.it/event/10225/
https://deepgreen.ai/
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• Romain Michon teaches 2 courses as part of the RIM/RAN Masters Program at the université of
Saint-Étienne.

• Romain Michon teaches 2 one week workshops at Aalborg University in Copenhagen every year.

• Stephane Letz teaches 1 course as part of the RIM/RAN Masters Program at the université of
Saint-Étienne.

10.2.2 Supervision

• PhD starting: Thomas Rushton: Distributed spatial audio

• PhD in progress: Orégane Desrentes: Hardware arithmetic: fused operators and applications

• PhD in progress: Maxime Popoff: Compilation of Audio Program on FPGA

• PostDoc in progress: Agathe Herrou: Fixed-point extention for the FAUST programming language

• PhD in progress: Lucas Chaloyard: Cross-assemblage d’un système d’exploitation frugal

10.2.3 Juries

Tanguy Risset was a member of the jury of the following theses:

• Martin Fouilleul (reviewer), Sorbonne U.

Florent de Dinechin was a member of the jury for the following defenses:

• PhD of Mak Nazecic-Andrlon (reviewer), U. Melbourne

• PhD of Van-Phu Ha (reviewer), U. Rennes 1

• PhD of Ilias Bournias (reviewer), Sorbonne U.

• HDR of Guillaume Revy (reviewer), U. Perpignan Via Domitia

Florent de Dinechin served as External Assessor for the tenure appointment of Dr Hayden Kwok Hay So
(Hong Kong U.).
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