
2023
ACTIVITY REPORT

Project-Team

GALLINETTE

RESEARCH CENTRE

Inria Centre
at Rennes University

IN PARTNERSHIP WITH:

Ecole Nationale Supérieure
Mines-Télécom Atlantique Bretagne Pays
de la Loire, Nantes Université

Gallinette: developing a new generation of
proof assistants

IN COLLABORATION WITH: Laboratoire des Sciences du numerique de
Nantes

DOMAIN

Algorithmics, Programming, Software and
Architecture

THEME

Proofs and Verification

Contents

Project-Team GALLINETTE 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3

3 Research program 3

3.1 Scientific Context . 3

3.2 Enhance the computational and logical power of proof assistants 5

3.2.1 Multiverse and Sort Polymorphism . 5

3.2.2 Extensional Equalities . 5

3.2.3 Adding Effects in Type Theory . 5

3.3 Tools for Improving Proof Assistants . 5

3.3.1 MetaProgramming in Coq . 5

3.3.2 Automatic Transport of Libraries . 6

3.3.3 Logical Frameworks for Proof Assistants . 6

3.4 Formal Verification and Semantics of Real World Programming Languages 6

3.4.1 Semantic foundations of resource management in programming languages 6

3.4.2 Interactive semantics . 6

3.5 Formal Verification of Computer Assisted Certification . 7

3.5.1 Certification of the Trusted Code Base of Coq . 7

3.5.2 Formally Verified Symbolic Computations . 7

3.5.3 Erasure/Extraction of Certified Programs . 7

4 Application domains 7

5 Highlights of the year 8

6 New software, platforms, open data 8

6.1 New software . 8

6.1.1 Ltac2 . 8

6.1.2 Equations . 8

6.1.3 Math-Components . 10

6.1.4 Math-comp-analysis . 10

6.1.5 MetaCoq . 11

6.1.6 Coq . 12

6.1.7 memprof-limits . 12

6.1.8 ocaml-boxroot . 13

6.1.9 LogRel-Coq . 13

6.1.10 Trocq . 14

7 New results 14

7.1 Type Theory . 14

7.2 Proof Assistants . 15

7.3 Logical Foundations of Programming Languages . 17

7.4 Program Certifications and Formalisation of Mathematics . 18

8 Bilateral contracts and grants with industry 20

8.1 Bilateral Contracts with Industry . 20

9 Partnerships and cooperations 23
9.1 International initiatives . 23

9.1.1 Associate Teams in the framework of an Inria International Lab or in the framework
of an Inria International Program . 23

9.2 European initiatives . 23
9.2.1 H2020 projects . 23

9.3 National initiatives . 25

10 Dissemination 26
10.1 Promoting scientific activities . 27

10.1.1 Scientific events: organisation . 27
10.1.2 Scientific events: selection . 27
10.1.3 Journal . 27
10.1.4 Invited talks . 28
10.1.5 Leadership within the scientific community . 28
10.1.6 Research administration . 28

10.2 Teaching - Supervision - Juries . 28
10.2.1 Teaching . 28
10.2.2 Supervision . 29
10.2.3 Juries . 30

10.3 Popularization . 30
10.3.1 Articles and contents . 30
10.3.2 Education . 30
10.3.3 Interventions . 30

11 Scientific production 30
11.1 Major publications . 30
11.2 Publications of the year . 31
11.3 Cited publications . 33

Project GALLINETTE 1

Project-Team GALLINETTE

Creation of the Project-Team: 2018 June 01

Keywords

Computer sciences and digital sciences

A2.1.1. – Semantics of programming languages

A2.1.2. – Imperative programming

A2.1.3. – Object-oriented programming

A2.1.4. – Functional programming

A2.1.11. – Proof languages

A2.2.3. – Memory management

A2.4.3. – Proofs

A7.2.3. – Interactive Theorem Proving

A7.2.4. – Mechanized Formalization of Mathematics

A8.4. – Computer Algebra

Other research topics and application domains

B6.1. – Software industry

https://radar.inria.fr/keywords/2023/computing
https://radar.inria.fr/keywords/2023/other

2 Inria Annual Report 2023

1 Team members, visitors, external collaborators

Research Scientists

• Nicolas Tabareau [Team leader, INRIA, Senior Researcher, HDR]

• Assia Mahboubi [INRIA, Senior Researcher, HDR]

• Kenji Maillard [INRIA, ISFP]

• Guillaume Munch-Maccagnoni [INRIA, Researcher]

• Pierre-Marie Pédrot [INRIA, Researcher]

• Matthieu Sozeau [INRIA, Researcher]

Faculty Members

• Julien Cohen [UNIV NANTES, Associate Professor]

• Rémi Douence [IMT ATLANTIQUE, Associate Professor, HDR]

• Guilhem Jaber [UNIV NANTES, Associate Professor Delegation, until Aug 2023]

Post-Doctoral Fellows

• Yannick Forster [INRIA, Post-Doctoral Fellow, until Nov 2023]

• Koen Jacobs [INRIA, Post-Doctoral Fellow]

• Axel Kerinec [INRIA, Post-Doctoral Fellow, from Sep 2023]

• Matthieu Piquerez [INRIA, Post-Doctoral Fellow]

PhD Students

• Martin Baillon [INRIA]

• Sidney Congard [INRIA, from Oct 2023]

• Enzo Crance [INRIA, from Nov 2023]

• Enzo Crance [MITSUBISHI ELECTRIC, until Oct 2023]

• Pierre Giraud [INRIA, until Nov 2023]

• Hamza Jaafar [INRIA]

• Yann Leray [UNIV NANTES, from Sep 2023]

• Josselin Poiret [UNIV NANTES, from Sep 2023]

Technical Staff

• Sidney Congard [INRIA, Engineer, from May 2023 until Sep 2023]

• Nils Lauermann [INRIA, Engineer, until Aug 2023]

• Loic Pujet [INRIA, Engineer, until May 2023]

• Kazuhiko Sakaguchi [INRIA, Engineer]

Project GALLINETTE 3

Interns and Apprentices

• Jean Caspar [ENS Paris, Intern, from Jun 2023 until Jul 2023]

• Benoît Guillemet [ENS PARIS-SACLAY, from May 2023 until Jul 2023]

• Robin Jourde [ENS DE LYON, Intern, from Feb 2023 until Jul 2023]

• Virgil Marionneau [UNIV NANTES, from Apr 2023 until Jun 2023]

Administrative Assistant

• Anne-Claire Binetruy [INRIA]

Visiting Scientists

• Tomàs Diaz Troncoso [UNIV CHILI, from Oct 2023]

• Stefan Ignacy Malewski Correa [UNIV CHILI, from Oct 2023]

• Léo Mangel [LS2N, from Mar 2023 until May 2023]

• Eric Tanter [UNIV CHILI, from Jun 2023 until Jul 2023]

2 Overall objectives

The EPI Gallinette aims at developing a new generation of proof assistants, with the belief that practical
experiments must go in pair with foundational investigations:

• The goal is to advance proof assistants both as certified programming languages and mechanised
logical systems. Advanced programming and mathematical paradigms must be integrated, notably
dependent types and effects. The distinctive approach is to implement new programming and
logical paradigms on top of Coq by considering the latter as a target language for compilation.

• The aim of foundational investigations is to extend the boundaries of the Curry-Howard corres-
pondence. It is seen both as providing foundations for programming languages and logic, and as a
purveyor of techniques essential to the development of proof assistants. Under this perspective,
the development of proof assistants is seen as a full-fledged experiment using the correspondence
in every aspect: programming languages, type theory, proof theory, rewriting and algebra.

3 Research program

3.1 Scientific Context

Software quality is a requirement that is becoming more and more prevalent, by now far exceeding the
traditional scope of embedded systems. The development of tools to construct software that respects a
given specification is a major challenge in computer science. Proof assistants such as Coq [39] provide a
formal method whose central innovation is to produce certified programs by transforming the very activity
of programming. Programming and proving are merged into a single development activity, informed
by an elegant but rigid mathematical theory inspired by the correspondence between programming,
logic and algebra: the Curry-Howard correspondence. For the certification of programs, this approach
has shown its effectiveness in the development of important pieces of certified software such as the
C compiler of the CompCert project [45]. The extracted CompCert compiler is reliable and efficient,
running only 15% slower than GCC 4 at optimisation level 2 (gcc -O2), a level of optimisation that was
considered before to be unreliable from critical applications such as embedded systems.

Proof assistants can also be used to formalise mathematical theories: they not only provide a means of
representing mathematical theories in a form amenable to computer processing, but their internal logic

4 Inria Annual Report 2023

provides a language for reasoning about such theories. In the last decade, proof assistants have been used
to verify extremely large and complicated proofs of recent mathematical results, sometimes requiring
either intensive computations [41, 43] or intricate combinations of a multitude of mathematical theories
[42]. But formalised mathematics is more than just proof checking and proof assistants can help with the
organisation of mathematical knowledge or even with the discovery of new constructions and proofs.

Unfortunately, the rigidity of the theory behind proof assistants restricts their expressiveness both as
programming languages and as logical systems. For instance, a program extracted from Coq only uses a
purely functional subset of OCaml, leaving behind important means of expression such as side-effects
and objects. Limitations also appear in the formalisation of advanced mathematics: proof assistants
do not cope well with classical axioms such as excluded middle and choice which are sometimes used
crucially. The fact of the matter is that the development of proof assistants cannot be dissociated from a
reflection on the nature of programs and proofs coming from the Curry-Howard correspondence. In the
EPC Gallinette, we propose to address several limitations of proof assistants by pushing the boundaries of
this correspondence.

In the 1970’s, the Curry-Howard correspondence was seen as a perfect match between functional
programs, intuitionistic logic, and Cartesian closed categories. It received several generalisations over the
decades, and now it is more widely understood as a fertile correspondence between computation, logic,
and algebra.

Nowadays, the Curry-Howard correspondence is not perceived as a perfect match anymore, but
rather as a collection of theories meant to explain similar structures at work in logic and computation,
underpinned by mathematical abstractions. By relaxing the requirement of a perfect match between
programs and proofs, and instead emphasising the common foundations of both, the insights of the
Curry-Howard correspondence may be extended to domains for which the requirements of programming
and mathematics may in fact be quite different.

Consider the following two major theories of the past decades, which were until recently thought to
be irreconcilable:

• (Martin-Löf) Type theory: introduced by Martin-Löf in 1971, this formalism [46] is both a program-
ming language and a logical system. The central ingredient is the use of dependent types to allow
fine-grained invariants to be expressed in program types. In 1985, Coquand and Huet developed a
similar system called the calculus of constructions, which served as logical foundation of the first
implementation of Coq. This kind of systems is still under active development, especially with the
recent advent of homotopy type theory (HoTT) [50] that gives a new point of view on types and the
notion of equality in type theory.

• The theory of effects: starting in the 1980’s, Moggi [47] and Girard [40] put forward monads and
co-monads as describing various compositional notions of computation. In this theory, programs
can have side-effects (state, exceptions, input-output), logics can be non-intuitionistic (linear,
classical), and different computational universes can interact (modal logics). Recently, the safe and
automatic management of resources has also seen a coming of age (Rust, Modern C++) confirming
the importance of linear logic for various programming concepts. It is now understood that the
characteristic feature of the theory of effects is sensitivity to evaluation order, in contrast with type
theory which is built around the assumption that evaluation order is irrelevant.

We now outline a series of scientific challenges aimed at understanding of type theory, effects, and their
combination.

More precisely, three key axes of improvement have been identified:

1. Making the notion of equality closer to what is usually assumed when doing proofs on black board,
with a balance between irrelevant equality for simple structures and equality up-to equivalences
for more complex ones (Section 3.2). Such a notion of equality should allow one to implement
traditional model transformations that enhance the logical power of the proof assistant using
distinct compilation phases.

2. Advancing the foundations of effects within the Curry-Howard approach. The objective is to
pave the way for the integration of effects in proof assistants and to prototype the corresponding

Project GALLINETTE 5

implementation. This integration should allow for not only certified programming with effects, but
also the expression of more powerful logics (Section 3.3).

3. Making more programming features (notably, object polymorphism) available in proof assistants, in
order to scale to practical-sized developments. The objective is to enable programming styles closer
to common practices. One of the key challenges here is to leverage gradual typing to dependent
programming (Section 3.4).

To validate the new paradigms, we propose in Section 3.5 three particular application fields in which
members of the team already have a strong expertise: code refactoring, constraint programming and
symbolic computation.

3.2 Enhance the computational and logical power of proof assistants

3.2.1 Multiverse and Sort Polymorphism

The experience of the team on various extensions of type theory (definitional proof irrelevant propositions,
observational type theory, gradual type theory, opetopic type theory) begs naturally the question of the
integration of these distinct flavours of type theory in a single type theory. At a theoretical level, we will
investigate type theories with multiple universe hierarchies hosting theories with potentially incompatible
principles able to express efficiently a variety of mathematical situations. At a practical level, we will
develop a version of the Coq proof assistant with multiple sorts, generalizing the existing situation where
the sorts of types, propositions and definitionally proof-irrelevant propositions cohabit de facto. An
important challenge in that direction is to design a sound mechanism of sort polymorphism to factor
away the constructions common to multiple sorts and prevent the combinatorial explosion induced by a
naive implementation. A somewhat related line of research is designing an efficient decision procedure
for universe level constraints, following the work of [38].

3.2.2 Extensional Equalities

In the long quest towards a practical and extensional notion of equality, observational type theory, first
introduced by [36] and further developped and studied in [49] and [13], represents an important milestone
that should now be implemented in practice. We will pursue in parallel other extensionality principles
to enhance the expressivity of type theories. In particular, functor laws for type formers [33] provide a
common basis to type cast operations with a structural behaviour.

3.2.3 Adding Effects in Type Theory

The investigation of extensions of CIC with side effects, in particular that of exceptions and the addition of
a case analysis operator on types, yields important insights to give sound models of the cast calculi behind
gradual dependent types. We plan to go beyond these relatively simple extensions and consider other
widely used side effects, for instance the addition of global state to a type theory. These type theories with
a primitive support for effectful operations could provide a new approach to the verification of programs
exhibiting side-effects. Extending our previous work on classical sequent calculus with dependent types,
we will study the integration of classical axioms such as excluded middle and choice in rich type theory.
One goal is to better integrate insights of (classical) proof theory in the state of art of type theory (or in
an alternative approach thereof). We also aim to look at concrete issues met in formalized mathematics
stemming from the classical/intuitionist divide.

3.3 Tools for Improving Proof Assistants

3.3.1 MetaProgramming in Coq

The MetaCoq project currently provides bare-bones meta-programming facilities of quotation and
denotation. We plan to improve this to provide a full-feature meta-programming facility, and explore
the possibility to give strong specifications and verify our meta-programs. A prime example of this
is the development of support for verified parametricity translations that can have many uses during
formalization (elimination principles, automatic transport, etc.).

6 Inria Annual Report 2023

3.3.2 Automatic Transport of Libraries

We aim at pursuing the study of representation independence principles and the implementation of
corresponding tools, so as to dramatically reduce the practical cost of library development. The mid-term
expected outcome concerns the design of refinements libraries, which connect proof-oriented with
computation-oriented data-structures, and better transport instruments for formalized mathematics,
e.g., automating reasoning modulo structure isomorphisms.

3.3.3 Logical Frameworks for Proof Assistants

The porting of the developement of logical relations for MLTT of Abel et al. from Agda to Coq paves
the may to a much more modular library. We would like to extend this work by developping a generic
framework for dependently-typed logical relations, and use it for a wide variety of new dependent type
theories. The main goal is to establish strong metatheoretical properties: normalization, but also suitable
forms of interoperability. Ultimately, we believe this framework could interface with the MetaCoq project.

3.4 Formal Verification and Semantics of Real World Programming Languages

3.4.1 Semantic foundations of resource management in programming languages

We will keep investigating the semantic foundations of features of systems programming languages
from a mathematical point of view. Based on our earlier work showing a link between resources and
ordered logic, we will study resources management in the context of the formal theory of side-effects
and linearity. Existing theorems will need to be generalized in many ways (extension of the notions of
effect and resource modalities, handling of order, etc.). A link with linear logic will help make tighter
connections between systems programming and “linear” approaches to program semantics (ownership,
linear types, etc.). The notion of “borrowing” will be studied from the angle of linear logic, with possible
applications to program verification. This study should also be extended to notions of fault tolerance
(exception-safety and isolation) which might show links with modal logics. The anticipated outcome is
an understanding of advanced notions in programming languages that better align with proven concepts
from systems programming, compared to experimental type systems originating from pure theory, while
providing clear distinctions between essential and accidental aspects of these real-world languages. As
concrete experiments, we will keep researching ways to integrate systems programming concepts such as
resources and fault tolerance in functional programming languages (notably OCaml and the OCaml-Rust
interface).

3.4.2 Interactive semantics

We will continue our work on game semantics for programming languages, with the aim of studying
interoperability and compilation between languages. Indeed, these semantics are particularly well suited
to studying the interaction between a program and an environment written in different languages. We
believe this approach will make it possible to overcome major open problems concerning interoperability
between languages equipped with abstraction properties statically enforced by parametric polymorphism,
and untyped languages where such abstractions properties are enforced dynamically. We will also
continue studying the automation of reasoning on these semantics, along the lines of the CAVOC project.
To do this, we want to apply abstract interpretation techniques, in particular the Abstracting Abstract
Machine methodology, to automatically check accessibility properties on programs, such as unverified
assertions.

As part of the CANofGAS project, we also plan to apply these interactive semantics to develop com-
positional cost models for programs. This would provide compositional reasoning on time and space
complexity for higher-order programs.

Project GALLINETTE 7

3.5 Formal Verification of Computer Assisted Certification

3.5.1 Certification of the Trusted Code Base of Coq

The MetaCoq project’s Achille’s heel is that it relies on an assumption of strong normalization for the
calculus: there is ongoing work in the team on defining powerful logical relations in Coq without relying on
inductive-recursion, that gives hope that a strong-normalization model for a large fragment of MetaCoq
can be constructed in the future. The main scientific obstacle is to specify the syntactic guard/productivity
condition at the heart of termination checking in such a way that it can be reduced to an eliminator-based
definition of (co-)inductive types, which is how they are usually modelled. We anticipate difficulties with
nested and indexed inductive types, which might be currently accepted by Coq but difficult to emulate
with eliminators. However, this can only lead to a better understanding of the theory. As part of the
ReCiProg project, we also plan to establish formal links between the validation criteria derived from
circular proofs and this guard condition.

3.5.2 Formally Verified Symbolic Computations

The benefits of formally verified symbolic computations is twofold: increase the trust in computer-
produced mathematics and expand the automation available for users of proof assistants. The main
challenge is to enable the formal verification of efficient programs, whose correctness proofs involve
sophisticated mathematical ingredients rather than subtle memory or parallelism issues. This involves
in particular scaling up the automatic transport of libraries, as well as the formal verification of existing
imperative code from computer algebra systems (typically written in C).

3.5.3 Erasure/Extraction of Certified Programs

The MetaCoq erasure pipeline, targeting C or OCaml, provides a guarantee that the evaluation of the
compiled program gives a semantically correct result. However, in general extracted programs are linked
to larger programs of the target language, where we lose guarantees of correctness in most non-trivial
cases of interoperability. We are hence interested in developing techniques to show interoperability
results between code that is extracted through our certified compilation pipeline and external code, e.g.,
in OCaml or C. In [32], we developped a complete verified extraction pipeline from Coq to OCaml. The
goal for the future is to scale this work to allow more scenarios of interoperability with effectful target
programs, using a formal semantics for the target language. In particular, we should be able to soundly
interpret the primitive constructs that are already part of Coq, which are fixed-width integers, IEE-754
floating point numbers and applicative arrays. There is a point of synergy here with the previous goal of
enabling the development of efficient, formally verified symbolic computation.

4 Application domains

Programming

• Correct and certified software engineering through the development and the advancement of Coq
(e.g. gradualizing type theory, MetaCoq) and practical experiments for its application.

• More general contributions to programming languages: theoretical works advancing semantic
techniques (e.g. deciding equivalence between programs, abstract syntaxes and rewriting, models
of effects and resources), and practical works for functional programming (e.g. related to OCaml
and Rust).

Foundations of mathematics

• Formalisation of mathematics

• Contributions to mathematical logic: type theory (e.g. dependent types and univalence), proof
theory (e.g. constructive classical logic), categorical logic (e.g. higher algebra, models of focusing
and linear logic)

8 Inria Annual Report 2023

5 Highlights of the year

• Distinguished paper at CPP’24 for [29].

• Assia Mahboubi did her inaugural lecture for professorship at Vrije Universiteit Amsterdam on April
2023.

• The team has organized a week of events the week before Xmas (Decembre 18-21), with a Coq
developer meeting, two PhD defenses and a one-day worskhop.

6 New software, platforms, open data

6.1 New software

6.1.1 Ltac2

Keywords: Coq, Proof assistant

Functional Description: Ltac2 is a member of the ML family of languages, in the sense that it is an
effectful call-by-value functional language, with static typing à la Hindley-Milner. It is commonly
accepted that ML constitutes a sweet spot in PL design, as it is relatively expressive while not being
either too lax (unlike dynamic typing) nor too strict (unlike, say, dependent types).

The main goal of Ltac2 is to serve as a meta-language for Coq. As such, it naturally fits in the ML
lineage, just as the historical ML was designed as the tactic language for the LCF prover. It can also
be seen as a general-purpose language, by simply forgetting about the Coq-specific features.

Sticking to a standard ML type system can be considered somewhat weak for a meta-language
designed to manipulate Coq terms. In particular, there is no way to statically guarantee that a
Coq term resulting from an Ltac2 computation will be well-typed. This is actually a design choice,
motivated by backward compatibility with Ltac1. Instead, well-typedness is deferred to dynamic
checks, allowing many primitive functions to fail whenever they are provided with an ill-typed
term.

The language is naturally effectful as it manipulates the global state of the proof engine. This allows
to think of proof-modifying primitives as effects in a straightforward way. Semantically, proof
manipulation lives in a monad, which allows to ensure that Ltac2 satisfies the same equations as a
generic ML with unspecified effects would do, e.g. function reduction is substitution by a value.

Contact: Pierre-Marie Pedrot

6.1.2 Equations

Keywords: Coq, Dependent Pattern-Matching, Proof assistant, Functional programming

Scientific Description: Equations is a tool designed to help with the definition of programs in the setting
of dependent type theory, as implemented in the Coq proof assistant. Equations provides a syntax
for defining programs by dependent pattern-matching and well-founded recursion and compiles
them down to the core type theory of Coq, using the primitive eliminators for inductive types,
accessibility and equality. In addition to the definitions of programs, it also automatically derives
useful reasoning principles in the form of propositional equations describing the functions, and an
elimination principle for calls to this function. It realizes this using a purely definitional translation
of high-level definitions to core terms, without changing the core calculus in any way, or using
axioms.

The main features of Equations include:

Dependent pattern-matching in the style of Agda/Epigram, with inaccessible patterns, with and
where clauses. The use of the K axiom or a proof of K is configurable, and it is able to solve
unification problems without resorting to the K rule if not necessary.

https://vu.nl/en/events/2023/inaugural-lecture-prof-dr-a-s-mahboubi

Project GALLINETTE 9

Support for well-founded and mutual recursion using measure/well-foundedness annotations,
even on indexed inductive types, using an automatic derivation of the subterm relation for inductive
families.

Support for mutual and nested structural recursion using with and where auxilliary definitions,
allowing to factor multiple uses of the same nested fixpoint definition. It proves the expected
elimination principles for mutual and nested definitions.

Automatic generation of the defining equations as rewrite rules for every definition.

Automatic generation of the unfolding lemma for well-founded definitions (requiring only func-
tional extensionality).

Automatic derivation of the graph of the function and its elimination principle. In case the automa-
tion fails to prove these principles, the user is asked to provide a proof.

A new dependent elimination tactic based on the same splitting tree compilation scheme that can
advantageously replace dependent destruction and sometimes inversion as well. The as clause of
dependent elimination allows to specify exactly the patterns and naming of new variables needed
for an elimination.

A set of Derive commands for automatic derivation of constructions from an inductive type: its
signature, no-confusion property, well-founded subterm relation and decidable equality proof, if
applicable.

Functional Description: Equations is a function definition plugin for Coq (supporting Coq 8.13 to 8.17,
with special support for the Coq-HoTT library), that allows the definition of functions by dependent
pattern-matching and well-founded, mutual or nested structural recursion and compiles them
into core terms. It automatically derives the clauses equations, the graph of the function and its
associated elimination principle.

Equations is based on a simplification engine for the dependent equalities appearing in dependent
eliminations that is also usable as a separate tactic, providing an axiom-free variant of dependent
destruction.

Release Contributions: This is a new major release of Equations, working with Coq 8.15 to 8.17. This
version adds an improved syntax (less ,-separation), integration with the Coq-HoTT library and
numerous bug fixes. See the reference manual for details.

This version introduces minor breaking changes along with the following features:

Enhancements of pattern interpretation

No explicit shadowing of pattern variables is allowed anymore. This fixes numerous bugs where
generated implicit names introduced by the elaboration of patterns could shadow user-given
names, leading to incorrect names in right-hand sides and confusing environments.

Improved syntax for "concise" clauses separated by |, at top-level or inside with subprograms. We
no longer require to separate them by ,. For example, the following definition is now accepted:

Equations foo : nat -> nat := | 0 => 1 | S n => S (foo n). The old syntax is however still supported for
backwards compatibility.

Multiple patterns can be separated by , in addition to |, as in:

Equations trans {A} {x y z : A} (e : x = y) (e’ : y = z) : x = z := | 1, 1 => 1. Require Import Equa-
tions.Equations. does not work anymore. One has to use Require Import Equations.Prop.Equations
to load the plugin’s default instance where equality is in Prop. From Equations Require Import
Equations is unaffected.

Use Require Import Equations.HoTT.All to use the HoTT variant of the library compatible with
the Coq HoTT library The plugin then reuses the definition of paths from the HoTT library and
all its constructions are universe polymorphic. As for the HoTT library alone, coq must be passed
the arguments -noinit -indices-matter to use the library and plugin. The coq-equations opam
package depends optionally on coq-hott, so if coq-hott is installed before it, coq-equations will

10 Inria Annual Report 2023

automatically install the HoTT library variant in addition to the standard one. This variant of
Equations allows to write very concise dependent pattern-matchings on equality:

Require Import Equations.HoTT.All. Equations sym {A} {x y : A} (e : x = y) : y = x := | 1 => 1. New
attribute #[tactic=tac] to set locally the default tactic to solve remaining holes. The goals on which
the tactic applies are now always of the form Γ |- τ where Γ is the context where the hole was
introduced and τ the expected type, even when using the Obligation machinery to solve them,
resulting in a possible incompatibility if the obligation tactic treated the context differently than
the conclusion. By default, the program_simpl tactic performs a simpl call before introducing the
hypotheses, so you might need to add a simpl in * to your tactics.

New attributes #[derive(equations=yes,no, eliminator=yes|no)] can be used in place of the (noeqns,
noind) flags which are deprecated.

URL: http://mattam82.github.io/Coq-Equations/

Publications: hal-01671777, hal-01248807, inria-00628862

Contact: Matthieu Sozeau

Participant: Matthieu Sozeau

6.1.3 Math-Components

Name: Mathematical Components library

Keyword: Proof assistant

Functional Description: The Mathematical Components library is a set of Coq libraries that cover the
prerequisites for the mechanization of the proof of the Odd Order Theorem.

Release Contributions: Major release using Hierarchy Builder to handle algebraic structures.

URL: https://math-comp.github.io/

Contact: Assia Mahboubi

Participants: Alexey Solovyev, Andrea Asperti, Assia Mahboubi, Cyril Cohen, Enrico Tassi, François
Garillot, Georges Gonthier, Ioana Pasca, Jeremy Avigad, Laurence Rideau, Laurent Théry, Russell
O’Connor, Sidi Ould Biha, Stéphane Le Roux, Yves Bertot

6.1.4 Math-comp-analysis

Name: Mathematical Components Analysis

Keyword: Proof assistant

Functional Description: This library adds definitions and theorems to the Math-components library for
real numbers and their mathematical structures.

Release Contributions: Several results in integration theory have been added.

URL: https://github.com/math-comp/analysis

Publications: hal-02463336, hal-03917948, hal-01719918

Contact: Cyril Cohen

Participants: Cyril Cohen, Georges Gonthier, Marie Kerjean, Assia Mahboubi, Damien Rouhling, Pierre
Roux, Laurence Rideau, Pierre-Yves Strub, Reynald Affeldt, Laurent Théry, Yves Bertot, Zachary
Stone

Partners: Ecole Polytechnique, AIST Tsukuba, Onera

http://mattam82.github.io/Coq-Equations/
https://hal.inria.fr/hal-01671777
https://hal.inria.fr/hal-01248807
https://hal.inria.fr/inria-00628862
https://math-comp.github.io/
https://github.com/math-comp/analysis
https://hal.inria.fr/hal-02463336
https://hal.inria.fr/hal-03917948
https://hal.inria.fr/hal-01719918

Project GALLINETTE 11

6.1.5 MetaCoq

Keyword: Coq

Scientific Description: The MetaCoq project aims to provide a certified meta-programming environ-
ment in Coq. It builds on Template-Coq, a plugin for Coq originally implemented by Malecha
(Extensible proof engineering in intensional type theory, Harvard University, 2014), which provided
a reifier for Coq terms and global declarations, as represented in the Coq kernel, as well as a de-
notation command. Recently, it was used in the CertiCoq certified compiler project (Anand et al.,
in: CoqPL, Paris, France, 2017), as its front-end language, to derive parametricity properties (Anand
and Morrisett, in: CoqPL’18, Los Angeles, CA, USA, 2018). However, the syntax lacked semantics,
be it typing semantics or operational semantics, which should reflect, as formal specifications
in Coq, the semantics of Coq ’s type theory itself. The tool was also rather bare bones, providing
only rudimentary quoting and unquoting commands. MetaCoq generalizes it to handle the entire
polymorphic calculus of cumulative inductive constructions, as implemented by Coq, including
the kernel’s declaration structures for definitions and inductives, and implement a monad for
general manipulation of Coq’s logical environment. The MetaCoq framework allows Coq users
to define many kinds of general purpose plugins, whose correctness can be readily proved in the
system itself, and that can be run efficiently after extraction. Examples of implemented plugins
include a parametricity translation and a certified extraction to call-by-value lambda-calculus. The
meta-theory of Coq itself is verified in MetaCoq along with verified conversion, type-checking and
erasure procedures providing highly trustable alternatives to the procedures in Coq’s OCaml kernel.
MetaCoq is hence a foundation for the development of higher-level certified tools on top of Coq’s
kernel. A meta-programming and proving framework for Coq.

MetaCoq is made of 4 main components:

- The entry point of the project is the Template-Coq quoting and unquoting library for Coq which
allows quotation and denotation of terms between three variants of the Coq AST: the OCaml one
used by Coq’s kernel, the Coq one defined in MetaCoq and the one defined by the extraction of the
MetaCoq AST, allowing to extract OCaml plugins from Coq implementations.

- The PCUIC component is a full formalization of Coq’s typing and reduction rules, along with
proofs of important metatheoretic properties: weakening, substitution, validity, subject reduction
and principality. The PCUIC calculus differs slightly from the Template-Coq one and verified
translations between the two are provided.

- The checker component contains verified implementations of weak-head reduction, conversion
and type inference for the PCUIC calculus, along with a verified checker for Coq theories.

- The erasure compoment contains a verified implementation of erasure/extraction from PCUIC to
untyped (call-by-value) lambda calculus extended with a dummy value for erased terms.

Functional Description: MetaCoq is a framework containing a formalization and verified implementa-
tion of Coq’s kernel in Coq along with a verified erasure procedure. It provides tools for manipulating
Coq terms and developing certified plugins (i.e. translations, compilers or tactics) in Coq.

Release Contributions: This new version integrates:

Support for primitive integers and floating point values, using the same typechecking mechanism
as Coq’s kernel, up to the erased lambda-box language. Better computational behavior of the safe
checker. Support for nix and cachix (useful for CI, allows to reuse remotely compiled components)
Registering of projections for inductive types defined as records More efficient eta-expansion
transformation using environment maps instead of association lists.

URL: https://metacoq.github.io

Publications: hal-02901011, hal-02380196, hal-02167423, hal-01809681

Contact: Matthieu Sozeau

https://metacoq.github.io
https://hal.inria.fr/hal-02901011
https://hal.inria.fr/hal-02380196
https://hal.inria.fr/hal-02167423
https://hal.inria.fr/hal-01809681

12 Inria Annual Report 2023

Participants: Abhishek Anand, Danil Annenkov, Meven Lennon-Bertrand, Jakob Botsch Nielsen, Simon
Boulier, Cyril Cohen, Yannick Forster, Kenji Maillard, Gregory Malecha, Matthieu Sozeau, Nicolas
Tabareau, Theo Winterhalter

Partners: Concordium Blockchain Research Center, Saarland University

6.1.6 Coq

Name: The Coq Proof Assistant

Keywords: Proof, Certification, Formalisation

Scientific Description: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and
co-inductive families, an impredicative sort and a hierarchy of predicative universes, making it a
very expressive logic. The calculus allows to formalize both general mathematics and computer
programs, ranging from theories of finite structures to abstract algebra and categories to program-
ming language metatheory and compiler verification. Coq is organised as a (relatively small) kernel
including efficient conversion tests on which are built a set of higher-level layers: a powerful proof
engine and unification algorithm, various tactics/decision procedures, a transactional document
model and, at the very top an integrated development environment (IDE).

Functional Description: Coq provides both a dependently-typed functional programming language
and a logical formalism, which, altogether, support the formalisation of mathematical theories
and the specification and certification of properties of programs. Coq also provides a large and
extensible set of automatic or semi-automatic proof methods. Coq’s programs are extractible to
OCaml, Haskell, Scheme, ...

Release Contributions: An overview of the new features and changes, along with the full list of contrib-
utors is available at https://coq.inria.fr/refman/changes.html#version-8-18 .

News of the Year: Coq version 8.18 integrates changes to several parts of the system : kernel, spe-
cification language, type inference, notation, tactics, Ltac2 language, commands and options,
command-line tools, CoqIDE, standard library, infrastructure and dependencies, extraction. See
https://coq.inria.fr/refman/changes.html#version-8-18 for an overview of the new features and
changes, along with the full list of contributors.

URL: http://coq.inria.fr/

Contact: Matthieu Sozeau

Participants: Yves Bertot, Frédéric Besson, Tej Chajed, Cyril Cohen, Pierre Corbineau, Pierre Courtieu,
Maxime Dénès, Jim Fehrle, Julien Forest, Emilio Jesús Gallego Arias, Gaëtan Gilbert, Georges
Gonthier, Benjamin Grégoire, Jason Gross, Hugo Herbelin, Vincent Laporte, Olivier Laurent, Assia
Mahboubi, Kenji Maillard, Érik Martin-Dorel, Guillaume Melquiond, Pierre-Marie Pedrot, Clément
Pit-Claudel, Kazuhiko Sakaguchi, Vincent Semeria, Michael Soegtrop, Arnaud Spiwack, Matthieu
Sozeau, Enrico Tassi, Laurent Théry, Anton Trunov, Li-Yao Xia, Theo Zimmermann

Partners: CNRS, Université Paris-Sud, ENS Lyon, Université Paris-Diderot

6.1.7 memprof-limits

Keyword: Library

Scientific Description: Memprof-limits is an implementation of per-thread global memory limits, and
per-thread allocation limits à la Haskell, and CPU-bound thread cancellation, for OCaml, compat-
ible with multiple threads.

Memprof-limits interrupts the execution by raising an asynchronous exception: an exception that
can arise at almost any location in the program. It is provided with a guide on how to recover

http://coq.inria.fr/

Project GALLINETTE 13

from asynchronous exceptions and other unexpected exceptions, summarising for the first time
practical knowledge acquired in OCaml by the Coq proof assistant as well as in other programming
languages.

Memprof-limits is probabilistic, as it is based on the statistical memory accountant memprof.
It is provided with a statistical analysis that the user can rely on to have guarantees about the
enforcement of limits.

Functional Description: Memprof-limits is an implementation of (per-thread) global memory limits,
(per-thread) allocation limits, and cancellation of CPU-bound threads, for OCaml. Memprof-limits
interrupts a computation by raising an exception asynchronously and offers features to recover
from them such as interrupt-safe resources.

It is provided with an extensive documentation with examples which explains what must be done
to ensure one recovers from an interrupt. This documentation summarises for the first time the
experience acquired in OCaml in the Coq proof assistant, as well as in other situations in other
programming languages.

Release Contributions: Initial version.

URL: https://gitlab.com/gadmm/memprof-limits

Publication: hal-03517592

Author: Guillaume Munch

Contact: Guillaume Munch

6.1.8 ocaml-boxroot

Keywords: Interoperability, Library, Ocaml, Rust

Scientific Description: Boxroot is an implementation of roots for the OCaml GC based on concurrent
allocation techniques. These roots are designed to support a calling convention to interface
between Rust and OCaml code that reconciles the latter’s foreign function interface with the idioms
from the former.

Functional Description: Boxroot implements fast movable roots for OCaml in C. A root is a data type
which contains an OCaml value, and interfaces with the OCaml GC to ensure that this value and its
transitive children are kept alive while the root exists. This can be used to write programs in other
languages that interface with programs written in OCaml.

URL: https://gitlab.com/ocaml-rust/ocaml-boxroot

Publication: hal-03910313

Contact: Guillaume Munch

Participants: Guillaume Munch, Gabriel Scherer

6.1.9 LogRel-Coq

Keyword: Proof assistant

Functional Description: This Coq library develop the metatheory of Martin-Löf Type Theory with a
universe and some inductive types in order to establish consistency, normalisation, canonicity and
decidability of a core theory close to that of Coq.

URL: https://github.com/CoqHott/logrel-coq

Publications: hal-04379245, hal-04214008, hal-04160858

https://gitlab.com/gadmm/memprof-limits
https://hal.inria.fr/hal-03517592
https://gitlab.com/ocaml-rust/ocaml-boxroot
https://hal.inria.fr/hal-03910313
https://github.com/CoqHott/logrel-coq
https://hal.inria.fr/hal-04379245
https://hal.inria.fr/hal-04214008
https://hal.inria.fr/hal-04160858

14 Inria Annual Report 2023

Contact: Kenji Maillard

Participants: Meven Lennon-Bertrand, Loic Pujet, Pierre-Marie Pedrot, Kenji Maillard, Yannick Forster,
Arthur Adjedj

6.1.10 Trocq

Keywords: Proof synthesis, Proof transfer, Coq, Elpi, Logic programming, Parametricity, Univalence

Functional Description: Trocq is a prototype of a modular parametricity plugin for Coq, aiming to
perform proof transfer by translating the goal into an associated goal featuring the target data struc-
tures as well as a rich parametricity witness from which a function justifying the goal substitution
can be extracted.

The plugin features a hierarchy of parametricity witness types, ranging from structure-less relations
to a new formulation of type equivalence, gathering several pre-existing parametricity translations,
including univalent parametricity and CoqEAL, in the same framework.

This modular translation performs a fine-grained analysis and generates witnesses that are rich
enough to preprocess the goal yet are not always a full-blown type equivalence, allowing to perform
proof transfer with the power of univalent parametricity, but trying not to pull in the univalence
axiom in cases where it is not required.

The translation is implemented in Coq-Elpi and features transparent and readable code with
respect to a sequent-style theoretical presentation.

URL: https://github.com/coq-community/trocq

Publication: hal-04177913

Contact: Cyril Cohen

Participants: Cyril Cohen, Enzo Crance, Assia Mahboubi

Partner: Mitsubishi Electric R&D Centre Europe, France

7 New results

7.1 Type Theory

Participants: Antoine Allioux, Martin Baillon, Gaëtan Gilbert, Meven Lennon-
Bertand, Assia Mahboubi, Kenji Maillard, Pierre-Marie Pédrot,
Loïc Pujet, Matthieu Sozeau, Nicolas Tabareau.

Impredicative Observational Equality In dependent type theory, impredicativity is a powerful logical
principle that allows the definition of propositions that quantify over arbitrarily large types, potentially
resulting in self-referential propositions. Impredicativity can provide a system with increased logical
strength and flexibility, but in counterpart it comes with multiple incompatibility results. In particular,
Abel and Coquand showed that adding definitional uniqueness of identity proofs (UIP) to the main
proof assistants that support impredicative propositions (Coq and Lean) breaks the normalization
procedure, and thus the type-checking algorithm. However, it was not known whether this stems from
a fundamental incompatibility between UIP and impredicativity or if a more suitable algorithm could
decide type-checking for a type theory that supports both. In [13], we design a theory that handles both
UIP and impredicativity by extending the recently introduced observational type theory TTobs with
an impredicative universe of definitionally proof-irrelevant types, as initially proposed in the seminal
work on observational equality of [36]. We prove decidability of conversion for the resulting system,
that we call CCobs, by harnessing proof-irrelevance to avoid computing with impredicative proof terms.
Additionally, we prove normalization for CCobs in plain Martin-Löf type theory, thereby showing that
adding proof-irrelevant impredicativity does not increase the computational content of the theory.

https://github.com/coq-community/trocq
https://hal.inria.fr/hal-04177913

Project GALLINETTE 15

Definitional Functoriality for Dependent (Sub)Types Dependently-typed proof assistant rely crucially
on definitional equality, which relates types and terms that are automatically identified in the underlying
type theory. In [33], we extend type theory with definitional functor laws, equations satisfied propos-
itionally by a large class of container-like type constructors F : Type → Type, equipped with a mapF :
(A → B) → F A → F B , such as lists or trees. Promoting these equations to definitional ones strengthen
the theory, enabling slicker proofs and more automation for functorial type constructors. This extension
is used to modularly justify a structural form of coercive subtyping, propagating subtyping through type
formers in a map-like fashion. We show that the resulting notion of coercive subtyping, thanks to the
extra definitional equations, is equivalent to a natural and implicit form of subsumptive subtyping. The
key result of decidability of type-checking in a dependent type system with functor laws for lists has been
entirely mechanized in Coq.

Engineering logical relations for MLTT in Coq We report in [15] on a mechanization in the Coq
proof assistant of the decidability of conversion and type-checking for Martin-Löf Type Theory (MLTT),
extending a previous Agda formalization. Our development proves the decidability not only of conversion,
but also of type-checking, using bidirectional derivations that are canonical for typing. Moreover, we
wish to narrow the gap between the object theory we formalize (currently MLTT with Π, Σ, N and one
universe) and the metatheory used to prove the normalization result, e.g., MLTT, to a mere difference
of universe levels. We thus avoid induction-recursion or impredicativity, which are central in previous
work. Working in Coq, we also investigate how its features, including universe polymorphism and the
metaprogramming facilities provided by tactics, impact the development of the formalization compared
to the development style in Agda. The development is freely accessible on GitHub.

Opetopic Type Theory In his PhD thesis, defended this year, Antoine Allioux developed the theory of
dependent opetopic types and the universe of polynomial monads and provides example synthetic proofs
of results from higher category theory, including adjunction and representability theorems.

Pursuing Shtuck By mimicking the internal sheafification construction in an arbitrary topos, we provide
a simple description of the various sheaf-related constructions in a purely type-theoretical setting [34].
Assuming mild extensionality properties on our target type theory, we show that it almost results in a
syntactic model of CIC. Unfortunately, a well-known topos-theoretic issue carries over, and the resulting
theory, called ShTT, does not feature universes. We propose three different solutions to this problem:
making the target theory univalent, allowing effects in the source theory, or changing our point of view
while using strict propositions. As a side-product, we also give a computational interpretation of sheaves
that highlights their deep relationship with the well-known structure of interaction trees.

7.2 Proof Assistants

Participants: Yannick Forster, Gaëtan Gilbert, Kazuhiko Sakaguchi, Yann Leray, As-
sia Mahboubi, Kenji Maillard, Pierre-Marie Pédrot, Loïc Pujet, Mat-
thieu Sozeau, Nicolas Tabareau.

Manifest Termination In formal systems combining dependent types and inductive types, such as the
Coq proof assistant, non-terminating programs are frowned upon. They can indeed be made to return
impossible results, thus endangering the consistency of the system, although the transient usage of a
non-terminating Y combinator, typically for searching witnesses, is safe. To avoid this issue, the definition
of a recursive function is allowed only if one of its arguments is of an inductive type and any recursive call
is performed on a syntactically smaller argument. If there is no such argument, the user has to artificially
add one, e.g., an accessibility property. Free monads can still be used to address general recursion and
elegant methods make possible to extract partial functions from sophisticated recursive schemes. The
latter yet rely on an inductive characterization of the domain of a function, and of its computational
graph, which in turn might require a substantial effort of specification and proof. This leads to a rather
frustrating situation when computations are involved. Indeed, the user first has to formally prove that

16 Inria Annual Report 2023

the function will terminate, then the computation can be performed, and finally a result is obtained
(assuming the user waited long enough). But since the computation did terminate, what was the point of
proving that it would terminate? In [22], we investigates how users of proof assistants based on variants
of the Calculus of Inductive Constructions could benefit from manifestly terminating computations. A
companion file showcasing the approach in the Coq proof assistant is available online.

Compositional pre-processing for automated reasoning in dependent type theory In the context of
interactive theorem provers based on a dependent type theory, automation tactics (dedicated decision
procedures, call of automated solvers, ...) are often limited to goals which are exactly in some expected
logical fragment. This very often prevents users from applying these tactics in other contexts, even similar
ones. [16] discusses the design and the implementation of pre-processing operations for automating
formal proofs in the Coq proof assistant. It presents the implementation of a wide variety of predictible,
atomic goal transformations, which can be composed in various ways to target different backends. A
gallery of examples illustrates how it helps to expand significantly the power of automation engines.

From Lost to the River: Embracing Sort Proliferation Since their inception, proof assistants based on
dependent type theory have featured some way to quantify over types. Leveraging dependent products,
the most common way to do so is to introduce a type of types, known as a universe. Care has to be taken,
as paradoxes lurk in the dark. Martin-Löf famously introduced in his seminal type theory MLTT a universe
U with the typing rule U : U , only for Girard to show that this system was inconsistent. The standard
solution is to introduce a hierarchy of universes (Ui)i∈N and mandate that Ui : Ui+1.

While trivial from the point of view of the typing rules, this additional index is a major source of
non-modularity. In [26] we report on the implementation of sort polymorphism in Coq to solve this
modularity issue.

The Rewster: The Coq Proof Assistant with Rewrite Rules Dependently typed languages such as Coq
or Agda are very convenient tools to program with strong invariants and develop mathematical proofs.
However, a user might be inconvenienced by things such as the fact that n and n+0 are not considered
definitionally equal, or the inability to postulate one’s own constructs with computation rules such as
exceptions. Coq modulo theory solves the first of the two problems by extending Coq’s conversion with
decision procedures, e.g., for linear integer arithmetic. Rewrite rules can be used to deal with directed
equalities for natural numbers, but also to implement exceptions that compute. They were introduced in
Agda a few years ago, and later extended to provide more guarantees with a modular confluence checker.
We present in [20] a work-in-progress extension of Coq which supports user-defined rewrite rules. While
we mostly follow in the footsteps of the Agda implementation, we also have to face new issues due to the
differences in the implementation and meta-theory of Coq and Agda. The most prominent one being the
different treatment of universes as Coq supports cumulativity but no first-class universe levels.

Porting Coq Scripts to the Mathematical Components Library Version 2 The Mathematical Com-
ponents library (hereafter, MathComp) provides, among others, a number of mathematical structures
organized as hierarchies. Hierarchy Builder (hereafter, HB) is an extension of the Coq proof assistant to
ease the development of hierarchies of structures. MathComp 2 is the result of the port of MathComp to
HB. [30] is a technical report whose goal is to explain how to port MathComp developments to MathComp
2. It has been written by the participants of the MathComp Documentation Sprint that happened from
2023-05-03 to 2023-05-10.

Trocq: Proof Transfer for Free, With or Without Univalence In interactive theorem proving, a range of
different representations may be available for a single mathematical concept, and some proofs may rely
on several representations. Without automated support such as proof transfer, theorems available with
different representations cannot be combined, without light to major manual input from the user. Tools
with such a purpose exist, but in proof assistants based on dependent type theory, it still requires human
effort to prove transfer, whereas it is obvious and often left implicit on paper. In [17], we present Trocq,
a new proof transfer framework, based on a generalization of the univalent parametricity translation,
thanks to a new formulation of type equivalence. This translation takes care to avoid dependency on the

Project GALLINETTE 17

axiom of univalence for transfers in a delimited class of statements, and may be used with relations that
are not necessarily isomorphisms. We motivate and apply our framework on a set of examples designed
to show that it unifies several existing proof transfer tools. The article also discusses an implementation
of this translation for the Coq proof assistant, in the Coq-Elpi metalanguage.

Correct and Complete Type Checking and Certified Erasure for Coq, in Coq Coq is built around a
well-delimited kernel that performs type checking for definitions in a variant of the Calculus of Inductive
Constructions (CIC). Although the metatheory of CIC is very stable and reliable, the correctness of its
implementation in Coq is less clear. Indeed, implementing an efficient type checker for CIC is a rather
complex task, and many parts of the code rely on implicit invariants which can easily be broken by further
evolution of the code. Therefore, on average, one critical bug has been found every year in Coq. In [35,
14], we present the first implementation of a type checker for the kernel of Coq (without the module
system, template polymorphism and η-conversion), which is proven sound and complete in Coq with
respect to its formal specification. Note that because of Gödel’s second incompleteness theorem, there is
no hope to prove completely the soundness of the specification of Coq inside Coq (in particular strong
normalization), but it is possible to prove the correctness and completeness of the implementation
assuming soundness of the specification, thus moving from a trusted code base (TCB) to a trusted theory
base (TTB) paradigm. Our work is based on the MetaCoq project which provides meta-programming
facilities to work with terms and declarations at the level of the kernel. We verify a relatively efficient type
checker based on the specification of the typing relation of the Polymorphic, Cumulative Calculus of
Inductive Constructions (PCUIC) at the basis of Coq. It is worth mentioning that during the verification
process, we have found a source of incompleteness in Coq’s official type checker, which has then been
fixed in Coq 8.14 thanks to our work. In addition to the kernel implementation, another essential feature
of Coq is the so-called extraction mechanism: the production of executable code in functional languages
from Coq definitions. We present a verified version of this subtle type and proof erasure step, therefore
enabling the verified extraction of a safe type checker for Coq in the future.

7.3 Logical Foundations of Programming Languages

Participants: Sidney Congard, Hamza Jaafar, Guillhem Jaber, Guillaume Munch-
Maccagnoni.

Semantic foundations of resource management in programming languages We continued previous
work establishing a formal link between resource-management features from systems programming
(C++/Rust), and ordered (or non-commutative) logic.

We previously showed that there exist algorithms for clean-up functions that are efficient in time and
space for ordered algebraic datatypes. We have extended this approach to support abstract types and
separate compilation, in order to make it suitable for code generation, as part of Jean Caspar’s internship.
This addresses a long-standing conceptual problem with compiler-generated clean-up functions causing
stack overflows in deep structures.

In [25], we present a functional translation of a subset of safe Rust programs, building upon the results
of Aeneas. It preserves linearity and captures a new feature, namely lifetime bounds. This is a work in
progress: in particular, translation rules are not set yet.

Resource Polymorphism Thanks to the semantic understanding of resources in system programming
languages mentioned in the previous paragraph, we proposed a design for extending functional pro-
gramming languages towards usages from systems programming, centered around the ML language [27].
One motivation is to show the feasibility of basing linear allocation with re-use [44, 37] inside languages
that would still leverage state-of-art garbage collection for non-linear values. The design includes the
possibility to choose the most suitable allocation mode, with a garbage collector (GC) or with a controlled
form of dynamic memory (linear allocation with reuse), based on kinds.

18 Inria Annual Report 2023

Führmann-Hasegawa theorem A result by Fürhmann and by Hasegawa is important in the type-
theoretic semantics of side-effects and linearity, as it characterises what it means to be without side-
effects in the context of classical and linear logics. It was admitted to be true, but lacked a written proof,
for lack of a conceptual approach to the result. We proposed such a conceptual proof with Éléonore
Mangel.

Deciding contextual equivalence of ν-calculus with effectful contexts In [21], we prove decidability for
contextual equivalence of the λµν-calculus, that is the simply-typed call-by-value λµ-calculus equipped
with booleans and fresh name creation, with contexts taken in λµref, that is λµν-calculus extended
with higher-order references. The proof exploits a labelled transition system capturing the interactions
between λµν programs and λµref contexts. The induced bisimulation equivalence is characterized as
the equality of certain trees, inspired by the work of Lassen. Since these trees are computable and finite,
decidability follows. Bisimulation coincides also with trace equivalence, which in turn coincides with
contextual equivalence.

Modular efficient deconstruction with typed pointer reversal Destructors, responsible for releasing
memory and other resources in languages such as C++ and Rust, can lead to stack overflows when
releasing a recursive structure that is too deep. In certain cases, it is possible to generate an efficient
destructor (non-allocating and tail recursive) using a typed variant of pointer reversal. In [24], we extend
this technique by making it more modular, in order to handle abstract types, separate compilation, and
unboxed types.

7.4 Program Certifications and Formalisation of Mathematics

Participants: Yannick Forster, Assia Mahboubi, Kenji Maillard, Matthieu Piquerez,
Kazuhiko Sakaguchi, Matthieu Sozeau, Nicolas Tabareau.

A Foundational Framework for Modular Cryptographic Proofs in Coq State-separating proofs (SSP) is
a recent methodology for structuring game-based cryptographic proofs in a modular way, by using algeb-
raic laws to exploit the modular structure of composed protocols. While promising, this methodology
was previously not fully formalized and came with little tool support. We address this by introducing SS-
Prove [12], the first general verification framework for machine-checked state-separating proofs. SSProve
combines high-level modular proofs about composed protocols, as proposed in SSP, with a probabil-
istic relational program logic for formalizing the lower-level details, which together enable constructing
machine-checked cryptographic proofs in the Coq proof assistant. Moreover, SSProve is itself fully
formalized in Coq, including the algebraic laws of SSP, the soundness of the program logic, and the
connection between these two verification styles. To illustrate SSProve, we use it to mechanize the simple
security proofs of ElGamal and pseudo-random-function–based encryption. We also validate the SSProve
approach by conducting two more substantial case studies: First, we mechanize an SSP security proof
of the key encapsulation mechanism–data encryption mechanism (KEM-DEM) public key encryption
scheme, which led to the discovery of an error in the original paper proof that has since been fixed.
Second, we use SSProve to formally prove security of the sigma-protocol zero-knowledge construction,
and we moreover construct a commitment scheme from a sigma-protocol to compare with a similar
development in CryptHOL. We instantiate the security proof for sigma-protocols to give concrete security
bounds for Schnorr’s sigma-protocol.

A Computational Cantor-Bernstein and Myhill’s Isomorphism Theorem in Constructive Type Theory:
Proof Pearl. The Cantor-Bernstein theorem (CB) from set theory, stating that two sets which can be
injectively embedded into each other are in bijection, is inherently classical in its full generality, i.e.
implies the law of excluded middle, a result due to Pradic and Brown [48]. Recently, Escardó has provided
a proof of CB in univalent type theory, assuming the law of excluded middle. It is a natural question to
ask which restrictions of CB can be proved without axiomatic assumptions. In [19], we give a partial

Project GALLINETTE 19

answer to this question contributing an assumption-free proof of CB restricted to enumerable discrete
types, i.e. types which can be computationally treated. In fact, we construct several bijections from
injections: The first is by translating a proof of the Myhill isomorphism theorem from computability
theory—stating that 1-equivalent predicates are recursively isomorphic-to constructive type theory,
where the bijection is constructed in stages and an algorithm with an intricate termination argument is
used to extend the bijection in every step. The second is also constructed in stages, but with a simpler
extension algorithm sufficient for CB. The third is constructed directly in such a way that it only relies on
the given enumerations of the types, not on the given injections. We aim at keeping the explanations
simple, accessible, and concise in the style of a "proof pearl". All proofs are machine-checked in Coq but
should transport to other foundations: they do not rely on impredicativity, on choice principles, or on
large eliminations.

Constructive and Synthetic Reducibility Degrees: Post’s Problem for Many-one and Truth-table Re-
ducibility in Coq We present in [18] a constructive analysis and machine-checked theory of one-one,
many-one, and truth-table reductions based on synthetic computability theory in the Calculus of In-
ductive Constructions, the type theory underlying the proof assistant Coq. We give elegant, synthetic,
and machine-checked proofs of Post’s landmark results that a simple predicate exists, is enumerable,
undecidable, but many-one incomplete (Post’s problem for many-one reducibility), and a hypersimple
predicate exists, is enumerable, undecidable, but truth-table incomplete (Post’s problem for truth-table
reducibility). In synthetic computability, one assumes axioms allowing to carry out computability theory
with all definitions and proofs purely in terms of functions of the type theory with no mention of a
model of computation. Proofs can focus on the essence of the argument, without having to sacrifice
formality. Synthetic computability also clears the lense for constructivisation. Our constructively careful
definition of simple and hypersimple predicates allows us to not assume classical axioms, not even
Markov’s principle, still yielding the expected strong results.

A First Order Theory of Diagram Chasing In [23], we discuss the formalization of proofs "by diagram
chasing", a standard technique for proving properties in abelian categories. We discuss how the essence
of diagram chases can be captured by a simple many-sorted first-order theory, and we study the models
and decidability of this theory. The longer-term motivation of this work is the design of a computer-aided
instrument for writing reliable proofs in homological algebra, based on interactive theorem provers.

Design patterns of hierarchies for order structures Using order structures in a proof assistant naturally
raises the problem of working with multiple instances of a same structure over a common type of elements.
This goes against the main design pattern of hierarchies used for instance in Coq’s MathComp or Lean’s
mathlib libraries, where types are canonically associated to at most one instance and instances share a
common overloaded syntax. In [31], we present new design patterns to leverage these issues, and apply
them to the formalization of order structures in the MathComp library. A common idea in these patterns
is underloading, i.e., a disambiguation of operators on a common type. In addition, our design patterns
include a way to deal with duality in order structures in a convenient way. We hence formalize a large
hierarchy which includes partial orders, semilattices, lattices as well as many variants. We finally pay a
special attention to order substructures. We introduce a new kind of structure called prelattice. They
are abstractions of semilattices, and allow us to deal with finite lattices and their sublattices within a
common signature. As an application, we report on significant simplifications of the formalization of the
face lattices of polyhedra in the Coq-Polyhedra library.

Verified Extraction from Coq to OCaml One of the central claims of fame of the Coq proof assistant
is extraction, i.e., the ability to obtain efficient programs in industrial programming languages such as
OCaml, Haskell, or Scheme from programs written in Coq’s expressive dependent type theory. Extraction
is of great practical usefulness, used crucially e.g., in the CompCert project. However, for such execut-
ables obtained by extraction, the extraction process is part of the trusted code base (TCB), as are Coq’s
kernel and the compiler used to compile the extracted code. The extraction process contains intricate
semantic transformation of programs that rely on subtle operational features of both the source and
target language. Its code has also evolved since the last theoretical exposition in the seminal PhD thesis

20 Inria Annual Report 2023

of Pierre Letouzey. Furthermore, while the exact correctness statements for the execution of extracted
code are described clearly in academic literature, the interoperability with unverified code has never
been investigated formally, and yet is used in virtually every project relying on extraction. In [32], we
describe the development of a novel extraction pipeline from Coq to OCaml, implemented and verified
in Coq itself, with a clear correctness theorem and guarantees for safe interoperability. We build our work
on the MetaCoq project, which aims at decreasing the TCB of Coq’s kernel by reimplementing it in Coq
itself and proving it correct w.r.t. a formal specification of Coq’s type theory in Coq. Since OCaml does
not have a formal specification, we make use of the Malfunction project specifying the semantics of the
intermediate language of the OCaml compiler. Our work fills some gaps in the literature and highlights
important differences between the operational semantics of Coq programs and their extracted variants.
In particular, we focus on the guarantees that can be provided for interoperability with unverified code,
identify guarantees that are infeasible to provide, and raise interesting open question regarding semantic
guarantees that could be provided. As central result, we prove that extracted programs of first-order
data type are correct and can safely interoperate, whereas for higher-order programs already simple
interoperations can lead to incorrect behaviour and even outright segfaults.

8 Bilateral contracts and grants with industry

8.1 Bilateral Contracts with Industry

CoqExtra

Participants: Pierre-Marie Pédrot, Matthieu Sozeau, Nicolas Tabareau, Yannick For-
ster, Pierre Giraud, Kazuhiko Sakaguchi.

Title: A Formally Verified Extraction Mechanism using Precise Type Specifications

Duration: 2020 - 2023

Coordinator: Nicolas Tabareau

Partners:

• Inria

• Nomadic Labs

Inria contact: Nicolas Tabareau

Summary: The extraction mechanism from Coq to OCaml can be seen as a compilation phase, from
a functional language with dependent types to a functional language with a weaker type system.
It is very useful to be able to run and link critical pieces of code that have been certified with the
rest of a software system. For instance, for Tezos, it is important to certify the Michelson language
for smart contracts and then to be able to extract it to OCaml so that it interacts with the rest
of the code that has been developed. Unfortunately, the current extraction mechanism of Coq
suffers from two major flaws that prevent extraction from being used in complex situations—and in
particular for the Michelson language. First, the extraction mechanism does not make use of new
features of OCaml type system, such as Generalized Abstract Data Types (GADTs). This prevents
code using indexed inductive types (Coq’s generalization of GADTs) to be extracted to code using
GADTs. Therefore, in the case of Michelson, the extracted code does not correspond at all to the
seminal implementation of Michelson in OCaml as it jeopardizes its type specification. The second
flaw comes from the fact that extraction sometimes produces ill-typed pieces of code (even if it
uses Obj.magic to cheat the type system), for instance when the arity of a function depends on
some value. Therefore, the extracted program fails to type-checked in OCaml and cannot be used.

Project GALLINETTE 21

Expected Impact: This project proposes to remedy to the situation so that the formalized Michelson
implementation can be extracted to OCaml in a satisfactory and certified way. But this project
is also of great interest outside Nomadic Labs as it will allow Coq users to use a better extraction
mechanism and, on a longer term, it will allow OCaml developers to prove their OCaml programs
using a formal semantics of (a fragment of) OCaml defined in Coq.

CIFRE PhD grant, funded by Mitsubishi Electric R&D Centre Europe (MERCE)

Participants: Assia Mahboubi, Enzo Crance.

Title: Automated theorem proving and dependent types: automated reasoning for interactive proof
assistants

Duration: 2020 - 2023

Coordinator: Denis Cousineau (MERCE), Assia Mahboubi (Inria)

Partners:

• Inria

• Mitsubishi Electric R&D Centre Europe (MERCE)

Inria contact: Assia Mahboubi

Summary: The aim of this project is to vastly improve the automated reasoning skills of proof assistants
based on dependent type theory, and in particular of the Coq proof assistant. Automated provers,
like SAT solvers or SMT solvers, can provide fast decision answers on large formulas, typically
quantifier-free first order statements generated by code analysis instruments like static analyzers.
Modern provers are moreover able to produce additional data, called certificates, which contain
enough information for an a posteriori verification of their results, e.g., using a formal proof. In
this project, we would like to use this feature to expand the automation available to users of proof
assistants. The main motivation here is thus to increase the class of goals that can be proved
formally and automatically by the interactive proof assistant, rather than to work on the formal
verification of specific albeit large decision problems. In this case, the central research problem is
to bridge the gap between the rich specification language of the proof assistant, and the restricted
fragment handled by the automated prover. This project will thus investigate the design, and the
implementation, of the corresponding translation phase. This translation transforms a logical
statement possibly featuring user-defined data structures and higher-order quantifications, into
another statement, logically stronger, that can be sent to the automated prover. We thus aim at
a triple objective: expressivity, extensibility and efficiency. This grant is funding the PhD of Enzo
Crance.

Expected Impact: Enhancing the automated reasoning skills of proof assistants based on dependent
type theory will be key to their wider usage in industry. As of today, they are considered too
expensive to be used in the large outside of specific niches.

OCaml-Rust

Participants: Guillaume Munch-Maccagnoni.

Title: OCaml/Rust bindings

Duration: 2021-2023

22 Inria Annual Report 2023

Coordinator: Gabriel Scherer (INRIA Saclay, EPI Partout)

Participants:

• Guillaume Munch-Maccagnoni (INRIA Rennes, EPI Gallinette),

• Jacques-Henri Jourdan (CNRS, LRI)

Partners: Inria, Nomadic Labs

Inria contact: Gabriel Scherer

Summary: We often want to write programs with components in several different programming lan-
guages. Interfacing two languages typically goes through low-level, unsafe interfaces. The OCaml/Rust
project studies safer interfaces between OCaml and Rust.

Expected Impact: We investigated safe low-level representations of OCaml values on the Rust side,
representing GC ownership, and developed a calling convention that reconciles the OCaml FFI
idioms with Rust idioms. We also developed Boxroot, a new API to register values with the OCaml
GC, for use when interfacing with Rust (and other programming languages) and possibly when
writing concurrent programs. This resulted in novel techniques which can benefit other pairs of
languages in the future. These works are now integrated in the ocaml-rs interface between OCaml
and Rust used in the industry.

CAVOC

Participants: Guilhem Jaber, Hamza Jaafar.

Title: Compositional Automated Verification for OCaml

Duration: 2021-2024

Coordinator: Guilhem Jaber

Partners:

• Inria

• Nomadic Labs

Inria contact: Guilhem Jaber

Summary: This project aims to develop a sound and precise static analyzer for OCaml, that can catch
large classes of bugs represented by uncaught exceptions. It will deal with both user-defined
exceptions, and built-in ones used to represent error behaviors, like the ones triggered by failwith,
assert, or a match failure. Via “assert-failure” detection, it will thus be able to check that invariants
annotated by users hold. The analyzer will reason compositionally on programs, in order to analyze
them at the granularity of a function or of a module. It will be sound in a strong way: if an OCaml
module is considered to be correct by the analyzer, then one will have the guarantee that no OCaml
code interacting with this module can trigger uncaught exceptions coming from the code of this
module. In order to be precise, it will take into account the abstraction properties provided by
the type system and the module system of the language: local values, abstracted definition of
types, parametric polymorphism. The goal being that most of the interactions taken into account
correspond to typeable OCaml code (that do not use unsafe features of the Obj Module, or the
Foreign Function Interface to some external code).

Project GALLINETTE 23

Expected Impact: Being modular the analyzer should be able to automatically check the absence of
bugs of a large base of code written in the considered subset of OCaml. This subset will include
most of the codebase developed by Nomadic Labs, which is an heavy user of GADT, for example
to enforce subject reduction in the implementation of Michelson. We would then be able to get a
higher degree of trust in its codebase, and possibly to find undetected bugs in it. The impact of this
project could be large for the OCaml ecosystem in general, where automated analysis of programs
to check soundness properties of the code could be really useful (for example for the Coq proof
assistant, whose full analysis would be nonetheless too ambitious for this project).

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Associate Teams in the framework of an Inria International Lab or in the framework of an Inria
International Program

GRAPA

Participants: Kenji Maillard, Nicolas Tabareau.

Title: Gradual Proof Assistants

Duration: 2023 - 2025

Coordinator: Nicolas Tabareau

Partners: Centrum Wiskunde & Informatica, Universidad de Chile (Chile)

Inria contact: Nicolas Tabareau

Summary: The main objective of this work is therefore to extend the reach of gradual typing to full-
fledged type theories in order to support smooth certified programming in a new generation of
proof assistants.

9.2 European initiatives

9.2.1 H2020 projects

FRESCO FRESCO project on cordis.europa.eu

Title: Fast and Reliable Symbolic Computation

Duration: From November 1, 2021 to October 31, 2026

Partners:

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),
France

Inria contact: Assia Mahboubi

Coordinator: Assia Mahboubi

Summary: The use of computers for formulating conjectures, but also for substantiating proof steps,
pervades mathematics, even in its most abstract fields. Most computer proofs are produced by
symbolic computations, using computer algebra systems. Sadly, these systems suffer from severe,
intrinsic flaws, key to their amazing efficiency, but preventing any flavor of post-hoc verification.

https://dx.doi.org/10.3030/101001995

24 Inria Annual Report 2023

But can computer algebra become reliable while remaining fast? Bringing a positive answer to this
question represents an outstanding scientific challenge per se, which this project aims at solving.

Our starting point is that interactive theorem provers are the best tools for representing math-
ematics in silico. But we intend to disrupt their architecture, shaped by decades of applications
in computer science, so as to dramatically enrich their programming features, while remaining
compatible with their logical foundations.

We will then design a novel generation of mathematical software, based on the firm grounds of mod-
ern programming language theory. This environment will feature a new, high-level, performance-
oriented programming language, devised for writing efficient and correct code easily, and for
serving the frontline of research in computational mathematics. Users will have access to fast
implementations, and to powerful proving technologies for verifying any component à la carte,
with high productivity. Logic- and computer-based formal proofs will prevent run-time errors, and
incorrect mathematical semantics.

We will maintain a close, continuous collaboration with interested high-profile mathematicians,
on the verification of cutting-edge research results, today beyond the reach of formal proofs. We
ambition to empower mathematical journals to install high-quality artifact evaluation, when peer-
reviewing falls short of assessing computer proofs. This project will eventually impact the use of
formal methods in engineering, in areas like cryptography or signal-processing.

Coqaml Coqaml project on cordis.europa.eu

Title: Verified Extraction from Coq to OCaml with GADTs

Duration: From December 1, 2021 to November 30, 2023

Partners:

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),
France

Inria contact: Nicolas Tabareau

Coordinator: Nicolas Tabareau

Summary: The Coq proof assistant is a popular tool to verify the correctness of security-critical software.
The CompCert C compiler, some implementations of blockchain languages, and the implementa-
tion of the P-256 elliptic curve in Google’s BoringSSL library are all OCaml programs obtained by
extraction from Coq functions.

While a type checker for Coq has recently been verified via a machine-checked mathematical proof
based on the MetaCoq project for verified meta-programming, the extraction process from Coq to
OCaml is still part of the trusted computing base (TCB).

The Coqaml project will minimise the TCB for extracted programs even further by also providing a
machine-checked correctness proof for the extraction mechanism to OCaml. Under the supervision
of Nicolas Tabareau, head of the Inria Gallinette team in Nantes, the experienced researcher (ER)
will implement Coq’s extraction as mechanically verified MetaCoq-plugin, obtaining the guarantee
that extracted OCaml programs behave exactly like the Coq function specified.

In order to be usable in industrial applications, Coqaml will include a novel extraction targeting
generalized algebraic datatypes (GADTs) in OCaml. The project includes a secondment of the ER to
Nomadic Labs in Paris, who require GADTs as target for Coq’s extraction. The intermediate semantic
correctness proof for type and proof erasure, allowing axioms like functional extensionality or proof
irrelevance in verified programs, can also be exploited in other extraction projects like the CertiCoq
compiler from Coq to C code.

The Coqaml project is interdisciplanary by design, spanning logic, type theory, programming
languages, and compilers. The density of some of the world’s leading experts on Coq and type
theory in the Gallinette team and the expertise at Nomadic Labs will ensure that the environment is

https://dx.doi.org/10.3030/101024493

Project GALLINETTE 25

ideal for the success of the Coqaml project and the most beneficial development of the ER, greatly
enhancing his future career prospects.

9.3 National initiatives
NUSCAP

Participants: Enzo Crance, Assia Mahboubi.

Title: Numerical Safety for Computer-Aided Proofs

Program: ANR AAPG2020,

Type: PRC, CES 48

Duration: Feb 2021 - Jan 2024

Coordinator: UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668

Local Contact: Assia Mahboubi

Summary: The last twenty years have seen the advent of computer-aided proofs in mathematics and
this trend is getting more and more important. They request various levels of numerical safety,
from fast and stable computations to formal proofs of the computations. Hovewer, the necessary
tools and routines are usually ad hoc, sometimes unavailable, or inexistent. On a complementary
perspective, numerical safety is also critical for complex guidance and control algorithms, in the
context of increased satellite autonomy. We plan to design a whole set of theorems, algorithms and
software developments, that will allow one to study a computational problem on all (or any) of the
desired levels of numerical rigor. Key developments include fast and certified spectral methods
and polynomial arithmetic, with subsequent formal verifications. There will be a strong feedback
between the development of our tools and the applications that motivate it.

ReCiProg

Participants: Guilhem Jaber.

Title: Reasoning on Circular proofs for Programming

Program: ANR AAPG2021,

Type: PRC, CES 48

Duration: Jan 2022 - Jan 2025

Coordinator: UMR CNRS - IRIF - Université de Paris

Local Contact: Guilhem Jaber

Summary: ReCiProg is a collaborative project (Lyon-Marseille-Nantes-Paris) aiming at extending the
proofs-as-programs correspondence (also known as Curry-Howard correspondence) to recursive
programs and circular proofs for logic and type systems using induction and coinduction. The
project will contribute both to the necessary theoretical foundations of circular proofs and to the
software development allowing to enhance the use of coinductive types and coinductive reasoning
in the Coq proof assistant: such coinductive types present, in the current state of the art serious
defects that the project will aim at solving.

26 Inria Annual Report 2023

DyVerSe

Participants: Guillaume Munch-Maccagnoni.

Title: Dynamic Versatile Semantics

Program: ANR AAPG2019,

Type: PRC, CES 48

Duration: Jan 2020 - Dec 2023

Coordinator: Pierre Clairambault (CR CNRS, LIP, UMR 5668)

Local Contact: Guillaume Munch-Maccagnoni

Summary: DyVerSe aims to develop a theoretical framework for dynamic/game semantics for pro-
gramming languages, capturing in one versatile setting a spectrum of computational features,
representative of the heterogeneity of software (e.g. higher-order functions, concurrency, probabil-
ities or other quantitative aspects). Our ambition is (1) to help unify denotational semantics by
providing the missing link between various incompatible models focusing on specific aspects, and
(2) to provide a toolbox to reason compositionally about the dynamic behaviour of programs, with
an eye towards specification and verification.

CANofGAS

Participants: Guilhem Jaber.

Title: Cost Analysis of Game Semantics

Program: Inria Exploratory Action,

Duration: Sep 2022 - Dec 2025

Coordinator: Beniamino Accattoli (CR Inria, LIX, PARTOUT Team) and Guilhem Jaber (MCF, LS2N,
Gallinette Team)

Local Contact: Guilhem Jaber

Summary: CANofGAS aims at capturing the time and space cost of the evaluation of higher-order
programs at the semantic level. The directions we plan to explore are using the advances in
reasonable cost models to develop a cost-based understanding of game semantics. In particular, we
aim at modelling the efficient call-by-need evaluation scheme, at work for instance in the Haskell
language and in the Coq proof assistant.

10 Dissemination

Participants: Rémi Douence, Guilhem Jaber, Assia Mahboubi, Kenji Maillard,
Guilaume Munch Maccagnoni, Pierre-Marie Pédrot, Matthieu Sozeau,
Nicolas Tabareau.

Project GALLINETTE 27

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

General chair, scientific chair

• Guillaume Munch-Maccagnoni organizes the first conference on undone science in computer
science (Undone Computer Science), to be held in 2024 in Nantes.

Member of the organizing committees

• Assia Mahboubi has co-organized the workshop "Machine-Checked Mathematics" at the Lorentz
Centre, Leiden, The Netherlands.

• Assia Mahboubi has co-organized the workshop "Certified Symbolic-Numeric Computation" in
Lyon, France, in the frame of the special year on Recent Trends in Computer Algebra.

• Assia Mahboubi has co-organized the joint special session on Machine-Checked Mathematics for
international conferences MFPS XXXIX and Calco 2023.

10.1.2 Scientific events: selection

Chair of conference program committees

• Guillaume Munch-Maccagnoni has served as chair for the program commitee of the first conference
on undone science in computer science (Undone Computer Science).

Member of the conference program committees

• Assia Mahboubi has served on the program committees of the ITP 2023 and POPL’24 international
conferences, and of the LFMTP’23 and TYPES’23 workshops.

• Pierre-Marie Pédrot has served in the program committees of the CPP’23 and POPL’24 conferences,
and of the TYPES’23 workshop.

• Matthieu Sozeau has served on the program committees of the WITS 2024 workshop.

• Guillaume Munch-Maccagnoni has served on the program committee of the ML’23 workshop.

• Kenji Maillard has served in the program committee of the CPP’23, OOPSLA’23 and OOPSLA’24
conferences and the LANMR’23 workshop.

• Guilhem Jaber has served in the program committees of the MFPS’23 and POPL’24 international
conference, and on the FICS’24 and GALOP’24 workshops.

Reviewer

• Pierre-Marie Pédrot was a reviewer for ITP’23, LICS’23 and MFCS’23.

• Guillaume Munch-Maccagnoni was a reviewer for FSCD’23.

• Kenji Maillard was a reviewer for POPL’24 and ESOP’24.

• Guilhem Jaber was a reviewer for LICS’23, FoSSaCS’23 and MFSC’23.

10.1.3 Journal

Member of the editorial boards

• Assia Mahboubi serves on the editorial board of the Journal of Automated Reasoning.

• Pierre-Marie Pédrot was the co-editor of the LIPIcs volume associated to TYPES 2022.

28 Inria Annual Report 2023

Reviewer - reviewing activities

• Guilhem Jaber was a reviewer for LMCS.

10.1.4 Invited talks

• Assia Mahboubi has given invited talks at th IPAM workshop on Machine Assisted Proofs (Los
Angeles, USA) at the Interacciones en la Frontera 2023 on-line seminar (Mexico), at the Intercity
Number Theory seminar (Amsterdam, the Netherlands), at the seminar of philosophy "Formalisa-
tion du calcul et des preuves assistées par ordinateur" (Paris, France).

• Matthieu Sozeau has given an invited lecture at the 2023 Summer School on Proof Theory and its
Applications (Barcelona, Spain).

10.1.5 Leadership within the scientific community

Assia Mahboubi has served in the scientific committee of the GdR Informatique Mathématique.

10.1.6 Research administration

Assia Mahboubi is an elected member of the Commission d’Évaluation Inria and member of the conseil
de laboratoire of the Laboratoire des Sciences du Numérique (LS2N).

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Licence : Julien Cohen, Discrete Mathematics, 48h, L1 (IUT), IUT Nantes, France

• Licence : Julien Cohen, Introduction to proof assistants (Coq), 8h, L2 (PEIP : IUT/Engineering
school), Polytech Nantes, France

• Licence : Julien Cohen, Functional Programming (Scala), 22h, L2 (IUT), IUT Nantes, France

• Master : Julien Cohen, Object oriented programming (Java), 32h, M1 (Engineering school), Polytech
Nantes, France

• Master : Julien Cohen, Functional programming (OCaml), 18h, M1 (Engineering school), Polytech
Nantes, France

• Master : Julien Cohen, Tools for software engineering (proof with Frama-C, test, code management),
20h, M1 (Engineering school), Polytech Nantes, France

• Licence : Rémi Douence, Object Oriented Design and Programming, 45h, L1 (engineers), IMT-
Atlantique, Nantes, France

• Licence : Rémi Douence, Object Oriented Design and Programming Project, 30h, L1 (apprentice-
ship), IMT-Atlantique, Nantes, France

• Master : Rémi Douence, Functional Programming with Haskell, 45h, M1 (engineers), IMT-Atlantique,
Nantes, France

• Master : Rémi Douence, Functional Programming with Haskell, 20h, M1 (apprenticeship), IMT-
Atlantique, Nantes, France

• Master : Rémi Douence, Formal Methods: Model checking with Alloy and from Haskell to Coq, 11h,
M1 (apprenticeship), IMT-Atlantique, Nantes, France

• Master : Rémi Douence, Introduction to scientific research in computer science (Project: compila-
tion in Java of Haskell Class Types), 45h, M2 (apprenticeship), IMT-Atlantique, Nantes, France

Project GALLINETTE 29

• Licence : Hervé Grall, Algorithms and Discrete Mathematics, 25h , L3 (engineers), IMT-Atlantique,
Nantes, France

• Licence : Hervé Grall, Object Oriented Design and Programming, 25h , L3 (engineers), IMT-
Atlantique, Nantes, France

• Licence, Master : Hervé Grall, Modularity and Typing, 40h, L3 and M1, IMT-Atlantique, Nantes,
France

• Master : Hervé Grall, Service-oriented Computing, 40h, M1 and M2, IMT-Atlantique, Nantes, France

• Master : Hervé Grall, Research Project - (Linear) Logic Programming in Coq, 90h (1/3 supervised),
M1 and M2, IMT-Atlantique, Nantes, France

• Licence : Guilhem Jaber, Foundations of Computer Science, 54h, L3, Nantes Université France

• Licence : Guilhem Jaber, Functional Programming, 24h, L3, Nantes Université France

• Master : Guilhem Jaber, Verification and Formal Proofs, 12h, M1, Nantes Université, France

• Master : Guilhem Jaber, Modelisation and Verification of Concurrent Systems, 9h, M2, Nantes
Université, France

• Master : Nicolas Tabareau, Homotopy Type Theory, 24h, M2 LMFI, Université Paris Diderot, France

• Master : Matthieu Sozeau, Proof Assistants, 24h, M2 MPRI, Université Paris Diderot, France

10.2.2 Supervision

• Antoine Allioux defended his PhD in July 2023, Structures supérieures en théorie des types homoto-
piques [28], Université Paris Cité, advisors: Pierre-Louis Curien, Eric Finster, Matthieu Sozeau.

• Martin Baillon has defended his PhD on December 2023, Modèles syntaxiques de la théorie des
types et principes de continuité, Nantes Université, advisors: Assia Mahboubi and Pierre-Marie
Pédrot.

• Enzo Crance has defended his PhD on December 2023, Méta-programmation pour le transfert de
preuve en théorie des types dépendants , Nantes Université, advisors: Denis Cousineau and Assia
Mahboubi.

• PhD in pogress: Sidney Congard, Towards a linear functional translation for borrowing, IMT-A,
advisors: Rémi Douence and Guillaume Munch-Maccagnoni.

• PhD in progress: Pierre Benjamin Giraud, Formalizing extraction of Coq to OCaml, Nantes Uni-
versité, advisors: Pierre-Marie Pédrot, Matthieu Sozeau and Nicolas Tabareau.

• PhD in progress: Josselin Poiret, A Multiverse Type Theory, Nantes Université, advisors: Kenji
Maillard and Nicolas Tabareau.

• PhD in progress: Yann Leray, Putting SProp at work, Nantes Université, advisors: Matthieu Sozeau
and Nicolas Tabareau.

• PhD in progress: Hamza Jaafar, Sémantique des jeux opérationnelle pour le langage de program-
mation OCaml, Nantes Université, advisors: Guilhem Jaber and Nicolas Tabareau.

• Assia Mahboubi is the promoter of the PhD of Alain Chavarri Villarello (Vrij Universiteit Amster-
dam).

• Nicolas Tabareau has co-supervised the internshp of Nils Lauermann and Robin Jourde.

• Guillaume Munch-Maccagnoni has supervised the internship of Jean Caspar, and co-supervised
the internship of Eleonor Mangel.

• Guilhem Jaber and Kenji Maillard have co-supervised the internship of Virgil Marionneau.

• Assia Mahboubi has supervised the internship of Benoît Guillemet.

30 Inria Annual Report 2023

10.2.3 Juries

• Assia Mahboubi has served in the PhD jury of Rebecca Zucchini, Université Paris-Saclay.

• Assia Mahboubi has served in the HDR jury of Filippo A. E. Nuccio Mortarino Majno di Capriglio,
Université Jean Monnet Saint-Étienne.

• Assia Mahboubi has served on the committee of the SIF Gilles Kahn PhD prize.

• Pierre-Marie Pédrot has served in the Master 2 jury of Thomas Traversié, CentraleSupéléc.

• Nicolas Tabareau has served in the PhD jury of Enzo Crance, Inria - MERCE (Mitsubishi Electrics
Research Center Europe).

10.3 Popularization

10.3.1 Articles and contents

Guilhem Jaber participated in the production of a popular science magazine during the residence of
journalists from "Les Autres Possible".

10.3.2 Education

Assia Mahboubi co-coordinates a joint computer science and mathematics departments program for
Art+Science actions in schools at Nantes Université.

10.3.3 Interventions

Assia Mahboubi has given a talk at the Université Ouverte Lyon 1 (Villeurbanne).

11 Scientific production

11.1 Major publications

[1] R. Affeldt, C. Cohen, M. Kerjean, A. Mahboubi, D. Rouhling and K. Sakaguchi. ‘Competing in-
heritance paths in dependent type theory: a case study in functional analysis’. In: IJCAR 2020 -
International Joint Conference on Automated Reasoning. Paris, France, June 2020, pp. 1–19. URL:
https://hal.inria.fr/hal-02463336.

[2] L. Birkedal, T. Dinsdale-Young, A. Guéneau, G. Jaber, K. Svendsen and N. Tzevelekos. ‘Theorems for
free from separation logic specifications’. In: Proceedings of the ACM on Programming Languages
5.ICFP (22nd Aug. 2021), pp. 1–29. DOI: 10.1145/3473586. URL: https://hal.archives-ouver
tes.fr/hal-03510684.

[3] J. Cockx, N. Tabareau and T. Winterhalter. ‘The Taming of the Rew: A Type Theory with Computa-
tional Assumptions’. In: Proceedings of the ACM on Programming Languages. POPL 2021 (2021).
DOI: 10.1145/3434341. URL: https://hal.archives-ouvertes.fr/hal-02901011.

[4] E. Finster, A. Allioux and M. Sozeau. ‘Types are internal infinity-groupoids’. In: LICS 2021. Rome,
Italy, 21st June 2021. URL: https://hal.inria.fr/hal-03133144.

[5] G. Jaber. ‘SyTeCi: Automating Contextual Equivalence for Higher-Order Programs with References’.
In: Proceedings of the ACM on Programming Languages 28 (2020), pp. 1–28. DOI: 10.1145/3371127.
URL: https://hal.archives-ouvertes.fr/hal-02388621.

[6] P.-M. Pédrot. ‘Russian Constructivism in a Prefascist Theory’. In: LICS 2020 - Thirty-Fifth Annual
ACM/IEEE Symposium on Logic in Computer Science. Saarbrücken, Germany: IEEE, July 2020, pp. 1–
14. DOI: 10.1145/3373718.3394740. URL: https://hal.inria.fr/hal-02548315.

[7] P.-M. Pédrot and N. Tabareau. ‘The Fire Triangle’. In: Proceedings of the ACM on Programming
Languages (Jan. 2020), pp. 1–28. DOI: 10.1145/3371126. URL: https://hal.archives-ouvert
es.fr/hal-02383109.

https://www.univ-nantes.fr/sepanouir-sur-les-campus/culture/residence-de-journalistes-retour-sur-deux-mois-dimmersion-sur-le-campus-sciences
https://hal.inria.fr/hal-02463336
https://doi.org/10.1145/3473586
https://hal.archives-ouvertes.fr/hal-03510684
https://hal.archives-ouvertes.fr/hal-03510684
https://doi.org/10.1145/3434341
https://hal.archives-ouvertes.fr/hal-02901011
https://hal.inria.fr/hal-03133144
https://doi.org/10.1145/3371127
https://hal.archives-ouvertes.fr/hal-02388621
https://doi.org/10.1145/3373718.3394740
https://hal.inria.fr/hal-02548315
https://doi.org/10.1145/3371126
https://hal.archives-ouvertes.fr/hal-02383109
https://hal.archives-ouvertes.fr/hal-02383109

Project GALLINETTE 31

[8] L. Pujet and N. Tabareau. ‘Impredicative Observational Equality’. In: POPL 2023 Proceedings of the
50th ACM SIGPLAN Symposium on Principles of Programming Languages. POPL 2023 - 50th ACM
SIGPLAN Symposium on Principles of Programming Languages. Vol. 7. Proceedings of the ACM on
programming languages. Boston, United States, 15th Jan. 2023, p. 74. DOI: 10.1145/3571739. URL:
https://hal.archives-ouvertes.fr/hal-03857705.

[9] L. Pujet and N. Tabareau. ‘Observational Equality: Now For Good’. In: POPL. Philadelphie, United
States, 17th Jan. 2022. URL: https://hal.inria.fr/hal-03367052.

[10] M. Sozeau, S. Boulier, Y. Forster, N. Tabareau and T. Winterhalter. ‘Coq Coq Correct! Verification of
Type Checking and Erasure for Coq, in Coq’. In: Proceedings of the ACM on Programming Languages
(Jan. 2020), pp. 1–28. DOI: 10.1145/3371076. URL: https://hal.archives-ouvertes.fr/hal-
02380196.

[11] N. Tabareau, É. Tanter and M. Sozeau. ‘The Marriage of Univalence and Parametricity’. In: Journal
of the ACM (JACM) 68.1 (15th Jan. 2021), pp. 1–44. DOI: 10.1145/3429979. URL: https://hal.in
ria.fr/hal-03120580.

11.2 Publications of the year

International journals

[12] P. Haselwarter, E. Rivas, A. van Muylder, T. Winterhalter, C. Abate, N. Sidorenco, C. Hriţcu, K.
Maillard and B. Spitters. ‘SSProve: A Foundational Framework for Modular Cryptographic Proofs
in Coq’. In: ACM Transactions on Programming Languages and Systems (TOPLAS) 45.3 (30th Sept.
2023), pp. 1–61. DOI: 10.1145/3594735. URL: https://hal.science/hal-04273257.

[13] L. Pujet and N. Tabareau. ‘Impredicative Observational Equality’. In: Proceedings of the ACM on
Programming Languages. Proceedings of the ACM on programming languages 7.POPL (11th Jan.
2023), p. 74. DOI: 10.1145/3571739. URL: https://hal.science/hal-03857705.

Invited conferences

[14] M. Sozeau. ‘MetaCoq : de la métaprogrammation à l’extraction certifiée pour Coq’. In: JFLA 2024 -
35es Journées Francophones des Langages Applicatifs. Saint-Jacut-de-la-Mer, France, 2024, pp. 1–1.
URL: https://inria.hal.science/hal-04407164.

International peer-reviewed conferences

[15] A. Adjedj, M. Lennon-Bertrand, K. Maillard and L. Pujet. ‘Engineering logical relations for MLTT in
Coq’. In: TYPES 2023 - 29th International Conference on Types for Proofs and Programs. Valencia,
Spain, 2023, pp. 1–3. URL: https://inria.hal.science/hal-04379245.

[16] V. Blot, D. Cousineau, E. Crance, L. Dubois de Prisque, C. Keller, A. Mahboubi and P. Vial. ‘Composi-
tional pre-processing for automated reasoning in dependent type theory’. In: CPP 2023 - Certified
Programs and Proofs. Boston, United States, 2023, pp. 1–15. DOI: 10.1145/3573105.3575676.
URL: https://inria.hal.science/hal-03901019.

[17] C. Cohen, E. Crance and A. Mahboubi. ‘Trocq: Proof Transfer for Free, With or Without Univalence’.
In: ESOP 2024 - 33rd European Symposium on Programming. Luxembourg, Luxembourg, 2024,
pp. 1–29. URL: https://hal.science/hal-04177913.

[18] Y. Forster and F. Jahn. ‘Constructive and Synthetic Reducibility Degrees: Post’s Problem for Many-
one and Truth-table Reducibility in Coq’. In: CSL 2023 - 31st EACSL Annual Conference on Com-
puter Science Logic. Warsaw, Poland, 13th Feb. 2023, pp. 1–21. DOI: 10.4230/LIPIcs.CSL.2023
.16. URL: https://inria.hal.science/hal-03901942.

[19] Y. Forster, F. Jahn and G. Smolka. ‘A Computational Cantor-Bernstein and Myhill’s Isomorphism
Theorem in Constructive Type Theory: Proof Pearl’. In: CPP 2023 - 12th ACM SIGPLAN International
Conference on Certified Programs and Proofs. Boston, United States: ACM, 16th Jan. 2023, pp. 1–8.
DOI: 10.1145/3573105.3575690. URL: https://inria.hal.science/hal-03891390.

https://doi.org/10.1145/3571739
https://hal.archives-ouvertes.fr/hal-03857705
https://hal.inria.fr/hal-03367052
https://doi.org/10.1145/3371076
https://hal.archives-ouvertes.fr/hal-02380196
https://hal.archives-ouvertes.fr/hal-02380196
https://doi.org/10.1145/3429979
https://hal.inria.fr/hal-03120580
https://hal.inria.fr/hal-03120580
https://doi.org/10.1145/3594735
https://hal.science/hal-04273257
https://doi.org/10.1145/3571739
https://hal.science/hal-03857705
https://inria.hal.science/hal-04407164
https://inria.hal.science/hal-04379245
https://doi.org/10.1145/3573105.3575676
https://inria.hal.science/hal-03901019
https://hal.science/hal-04177913
https://doi.org/10.4230/LIPIcs.CSL.2023.16
https://doi.org/10.4230/LIPIcs.CSL.2023.16
https://inria.hal.science/hal-03901942
https://doi.org/10.1145/3573105.3575690
https://inria.hal.science/hal-03891390

32 Inria Annual Report 2023

[20] G. Gilbert, Y. Leray, N. Tabareau and T. Winterhalter. ‘The Rewster: The Coq Proof Assistant with
Rewrite Rules’. In: TYPES 2023 - 29th International Conference on Types for Proofs and Programs.
Valencia, Spain, 2023, pp. 1–3. URL: https://inria.hal.science/hal-04403667.

[21] D. Hirschkoff, G. Jaber and E. Prebet. ‘Deciding contextual equivalence of ν-calculus with effectful
contexts (full version)’. In: Foundations of Software Science and Computation Structures - 26th
International Conference, FoSSaCS 2023, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2023. Paris, France, 22nd Apr. 2023. URL: https://hal.science
/hal-03955303.

[22] A. Mahboubi and G. Melquiond. ‘Manifest Termination’. In: TYPES 2023 - 29th International
Conference on Types for Proofs and Programs. Valencia, Spain, 12th June 2023, pp. 1–3. URL:
https://inria.hal.science/hal-04172297.

[23] A. Mahboubi and M. Piquerez. ‘A First Order Theory of Diagram Chasing’. In: 32nd EACSL Annual
Conference on Computer Science Logic 2024 (CSL’24). CSL 2024 - 32nd EACSL Annual Conference
on Computer Science Logic. Naples, Italy, 2024, pp. 1–19. URL: https://hal.science/hal-0426
6479.

National peer-reviewed Conferences

[24] J. Caspar and G. Munch-Maccagnoni. ‘Modular efficient deconstruction with typed pointer re-
versal’. In: JFLA 2024 - 35es Journées Francophones des Langages Applicatifs. Saint-Jacut-de-la-Mer,
France, 2024, pp. 1–10. URL: https://inria.hal.science/hal-04406342.

[25] S. Congard. ‘Towards a linear functional translation for borrowing’. In: JFLA 2024 - 35es Journées
Francophones des Langages Applicatifs. Saint-Jacut-de-la-Mer, France, 2024, pp. 1–10. URL: https:
//hal.science/hal-04360462.

Conferences without proceedings

[26] G. Gilbert, P.-M. Pédrot, M. Sozeau and N. Tabareau. ‘From Lost to the River: Embracing Sort
Proliferation’. In: TYPES 2023 - 29th International Conference on Types for Proofs and Programs.
Valencia, Spain, 2023, pp. 1–2. URL: https://inria.hal.science/hal-04378939.

[27] G. Munch-Maccagnoni. ‘Resource polymorphism: proposal for integrating first-class resources
into ML’. In: Higher-order, Typed, Inferred, Strict: ML Family Workshop 2023. Seattle, United States,
2023. URL: https://hal.science/hal-04332484.

Doctoral dissertations and habilitation theses

[28] A. Allioux. ‘Higher Structures in Homotopy Type Theory’. Université Paris Cité, 17th July 2023. URL:
https://theses.hal.science/tel-04335842.

Reports & preprints

[29] A. Adjedj, M. Lennon-Bertrand, K. Maillard, P.-M. Pédrot and L. Pujet. Martin-Löf à la Coq. 2024.
DOI: 10.1145/3636501.3636951. URL: https://hal.science/hal-04214008.

[30] R. Affeldt, Y. Bertot, C. Cohen, P. Roux, K. Sakaguchi and E. Tassi. Porting Coq Scripts to the Mathem-
atical Components Library Version 2. Inria Sophia Antipolis - Méditerranée, Université Côte d’Azur;
National Institute of Advanced Industrial Science and Technology (AIST), Japan; ONERA / DTIS,
Université de Toulouse, France, 20th June 2023, pp. 1–12. URL: https://hal.science/hal-0422
5130.

[31] X. Allamigeon, Q. Canu, C. Cohen, K. Sakaguchi and P.-Y. Strub. Design patterns of hierarchies for
order structures. 28th Feb. 2023. URL: https://inria.hal.science/hal-04008820.

[32] Y. Forster, M. Sozeau and N. Tabareau. Verified Extraction from Coq to OCaml. 10th Nov. 2023. URL:
https://inria.hal.science/hal-04329663.

https://inria.hal.science/hal-04403667
https://hal.science/hal-03955303
https://hal.science/hal-03955303
https://inria.hal.science/hal-04172297
https://hal.science/hal-04266479
https://hal.science/hal-04266479
https://inria.hal.science/hal-04406342
https://hal.science/hal-04360462
https://hal.science/hal-04360462
https://inria.hal.science/hal-04378939
https://hal.science/hal-04332484
https://theses.hal.science/tel-04335842
https://doi.org/10.1145/3636501.3636951
https://hal.science/hal-04214008
https://hal.science/hal-04225130
https://hal.science/hal-04225130
https://inria.hal.science/hal-04008820
https://inria.hal.science/hal-04329663

Project GALLINETTE 33

[33] T. Laurent, M. Lennon-Bertrand and K. Maillard. Definitional Functoriality for Dependent (Sub)Types.
23rd Oct. 2023. URL: https://hal.science/hal-04160858.

[34] P.-M. Pédrot. Pursuing Shtuck. 20th Oct. 2023. URL: https://inria.hal.science/hal-042517
54.

[35] M. Sozeau, Y. Forster, M. Lennon-Bertrand, J. B. Nielsen, N. Tabareau and T. Winterhalter. Correct
and Complete Type Checking and Certified Erasure for Coq, in Coq. 21st Apr. 2023. URL: https://i
nria.hal.science/hal-04077552.

11.3 Cited publications

[36] T. Altenkirch, C. McBride and W. Swierstra. ‘Observational equality, now!’ In: Proceedings of the
ACM Workshop on Programming Languages meets Program Verification (PLPV 2007). Freiburg,
Germany, Oct. 2007, pp. 57–68.

[37] H. G. Baker. ‘Lively Linear Lisp: "Look Ma, No Garbage!"’ In: SIGPLAN Not. 27.8 (Aug. 1992), pp. 89–
98. DOI: 10.1145/142137.142162. URL: https://doi.org/10.1145/142137.142162.

[38] M. Bezem and T. Coquand. ‘Loop-checking and the uniform word problem for join-semilattices
with an inflationary endomorphism’. In: Theor. Comput. Sci. 913 (2022), pp. 1–7. DOI: 10.1016
/J.TCS.2022.01.017. URL: https://doi.org/10.1016/j.tcs.2022.01.017.

[39] Coq Development Team, The. The Coq proof assistant reference manual. Version 8.5. 2015. URL:
http://coq.inria.fr.

[40] J.-Y. Girard. ‘Linear Logic’. In: Theoretical Computer Science 50 (1987), pp. 1–102.

[41] G. Gonthier. ‘Formal proofs—the four-colour theorem’. In: Notices of the AMS 55.11 (2008), pp. 1382–
1393.

[42] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. Roux, A. Mahboubi, R. O’Connor,
S. Ould Biha, I. Pasca, L. Rideau, A. Solovyev, E. Tassi and L. Théry. ‘A Machine-Checked Proof
of the Odd Order Theorem’. In: Interactive Theorem Proving. Ed. by S. Blazy, C. Paulin-Mohring
and D. Pichardie. Vol. 7998. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013,
pp. 163–179. DOI: 10.1007/978-3-642-39634-2_14. URL: http://dx.doi.org/10.1007/97
8-3-642-39634-2_14.

[43] T. C. Hales, M. Adams, G. Bauer, D. T. Dang, J. Harrison, T. L. Hoang, C. Kaliszyk, V. Magron, S.
McLaughlin, T. T. Nguyen, T. Q. Nguyen, T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev, A. H. T. Ta,
T. N. Tran, D. T. Trieu, J. Urban, K. K. Vu and R. Zumkeller. ‘A formal proof of the Kepler conjecture’.
In: CoRR abs/1501.02155 (2015). URL: http://arxiv.org/abs/1501.02155.

[44] Y. Lafont. ‘The linear abstract machine’. In: Theoretical Computer Science 59.1 (1988), pp. 157–180.
DOI: https://doi.org/10.1016/0304-3975(88)90100-4. URL: https://www.sciencedire
ct.com/science/article/pii/0304397588901004.

[45] X. Leroy. ‘Formal certification of a compiler back-end or: programming a compiler with a proof
assistant’. In: ACM SIGPLAN Notices 41.1 (2006), pp. 42–54.

[46] P. Martin-Löf. ‘An intuitionistic theory of types: predicative part’. In: Logic Colloquium ’73 Studies
in Logic and the Foundations of Mathematics.80 (1975), pp. 73–118.

[47] E. Moggi. ‘Computational lambda-calculus and monads’. In: Proceedings of the Fourth Annual
IEEE Symposium on Logic in Computer Science (LICS 1989). Pacific Grove, CA, USA: IEEE Computer
Society Press, June 1989, pp. 14–23.

[48] P. Pradic and C. E. Brown. ‘Cantor-Bernstein implies Excluded Middle’. Update: fixed an error on
the applicability of thm 1, added some acks and a ref. Dec. 2021. URL: https://hal.science/ha
l-02103517.

[49] L. Pujet and N. Tabareau. ‘Observational Equality: Now For Good’. In: Proceedings of the ACM on
Programming Languages 6.POPL (Jan. 2022), pp. 1–29. DOI: 10.1145/3498693. URL: https://in
ria.hal.science/hal-03367052.

https://hal.science/hal-04160858
https://inria.hal.science/hal-04251754
https://inria.hal.science/hal-04251754
https://inria.hal.science/hal-04077552
https://inria.hal.science/hal-04077552
https://doi.org/10.1145/142137.142162
https://doi.org/10.1145/142137.142162
https://doi.org/10.1016/J.TCS.2022.01.017
https://doi.org/10.1016/J.TCS.2022.01.017
https://doi.org/10.1016/j.tcs.2022.01.017
http://coq.inria.fr
https://doi.org/10.1007/978-3-642-39634-2_14
http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://arxiv.org/abs/1501.02155
https://doi.org/https://doi.org/10.1016/0304-3975(88)90100-4
https://www.sciencedirect.com/science/article/pii/0304397588901004
https://www.sciencedirect.com/science/article/pii/0304397588901004
https://hal.science/hal-02103517
https://hal.science/hal-02103517
https://doi.org/10.1145/3498693
https://inria.hal.science/hal-03367052
https://inria.hal.science/hal-03367052

34 Inria Annual Report 2023

[50] Univalent Foundations Project. Homotopy Type Theory: Univalent Foundations for Mathematics.
http://homotopytypetheory.org/book, 2013.

http://homotopytypetheory.org/book

	Project-Team GALLINETTE
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Scientific Context
	Enhance the computational and logical power of proof assistants
	Multiverse and Sort Polymorphism
	Extensional Equalities
	Adding Effects in Type Theory

	Tools for Improving Proof Assistants
	MetaProgramming in Coq
	Automatic Transport of Libraries
	Logical Frameworks for Proof Assistants

	Formal Verification and Semantics of Real World Programming Languages
	Semantic foundations of resource management in programming languages
	Interactive semantics

	Formal Verification of Computer Assisted Certification
	Certification of the Trusted Code Base of Coq
	Formally Verified Symbolic Computations
	Erasure/Extraction of Certified Programs

	Application domains
	Highlights of the year
	New software, platforms, open data
	New software
	Ltac2
	Equations
	Math-Components
	Math-comp-analysis
	MetaCoq
	Coq
	memprof-limits
	ocaml-boxroot
	LogRel-Coq
	Trocq

	New results
	Type Theory
	Proof Assistants
	Logical Foundations of Programming Languages
	Program Certifications and Formalisation of Mathematics

	Bilateral contracts and grants with industry
	Bilateral Contracts with Industry

	Partnerships and cooperations
	International initiatives
	Associate Teams in the framework of an Inria International Lab or in the framework of an Inria International Program

	European initiatives
	H2020 projects

	National initiatives

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks
	Leadership within the scientific community
	Research administration

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Articles and contents
	Education
	Interventions

	Scientific production
	Major publications
	Publications of the year
	Cited publications

