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2 Overall objectives

Hycomes was created as a local team of the Rennes - Bretagne Atlantique Inria research center in 2013 and
has been created as an Inria Project-Team in 2016. The team is focused on two topics in cyber-physical
systems design:

• Hybrid systems modeling, with an emphasis on the design of modeling languages in which software
systems, in interaction with a complex physical environment, can be modelled, simulated and
verified. A special attention is paid to the mathematical rigorous semantics of these languages, and
to the correctness (wrt. such semantics) of the simulations and of the static analyses that must be
performed during compilation. The Modelica language is the main application field. The team
aims at contributing language extensions facilitating the modeling of physical domains which are
poorly supported by the Modelica language. The Hycomes team is also designing new structural
analysis methods for hybrid (aka. multi-mode) Modelica models. New simulation and verification
techniques for large Modelica models are also in the scope of the team.

• Contract-based design and interface theories, with applications to requirements engineering in the
context of safety-critical systems design. The objective of our research is to bridge the gap between
system-level requirements, often expressed in natural, constrained or semi-formal languages and
formal models, that can be simulated and verified.

3 Research program

3.1 Hybrid Systems Modeling

Systems industries today make extensive use of mathematical modeling tools to design computer con-
trolled physical systems. This class of tools addresses the modeling of physical systems with models
that are simpler than usual scientific computing problems by using only Ordinary Differential Equations
(ODE) and Difference Equations but not Partial Differential Equations (PDE). This family of tools first
emerged in the 1980’s with SystemBuild by MatrixX (now distributed by National Instruments) followed
soon by Simulink by Mathworks, with an impressive subsequent development.
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In the early 90’s control scientists from the University of Lund (Sweden) realized that the above
approach did not support component based modeling of physical systems with reuse 1. For instance, it
was not easy to draw an electrical or hydraulic circuit by assembling component models of the various
devices. The development of the Omola language by Hilding Elmqvist was a first attempt to bridge this
gap by supporting some form of Differential Algebraic Equations (DAE) in the models. Modelica quickly
emerged from this first attempt and became in the 2000’s a major international concerted effort with the
Modelica Consortium. A wider set of tools, both industrial and academic, now exists in this segment 2.
In the Electronic Design Automation (EDA) sector, VHDL-AMS was developed as a standard [71] and
also enables the use of differential algebraic equations. Several domain-specific languages and tools for
mechanical systems or electronic circuits also support some restricted classes of differential algebraic
equations. Spice is the historic and most striking instance of these domain-specific languages/tools 3.
The main difference is that equations are hidden and the fixed structure of the differential algebraic
results from the physical domain covered by these languages.

Despite the fact that these tools are now widely used by a number of engineers, they raise a number
of technical difficulties. The meaning of some programs, their mathematical semantics, is indeed
ambiguous. A main source of difficulty is the correct simulation of continuous-time dynamics, interacting
with discrete-time dynamics: How the propagation of mode switchings should be handled? How to avoid
artifacts due to the use of a global ODE solver causing unwanted coupling between seemingly non
interacting subsystems? Also, the mixed use of an equational style for the continuous dynamics with
an imperative style for the mode changes and resets, is a source of difficulty when handling parallel
composition. It is therefore not uncommon that tools return complex warnings for programs with many
different suggested hints for fixing them. Yet, these “pathological” programs can still be executed, if
wanted so, giving surprising results — See for instance the Simulink examples in [26], [19] and [20].

Indeed this area suffers from the same difficulties that led to the development of the theory of
synchronous languages as an effort to fix obscure compilation schemes for discrete time equation based
languages in the 1980’s. Our vision is that hybrid systems modeling tools deserve similar efforts in theory
as synchronous languages did for the programming of embedded systems.

3.2 Background on non-standard analysis

Non-Standard analysis plays a central role in our research on hybrid systems modeling [19, 26, 21, 20, 24],
[3]. The following text provides a brief summary of this theory and gives some hints on its usefulness in
the context of hybrid systems modeling. This presentation is based on our paper [2], a chapter of Simon
Bliudze’s PhD thesis [33], and a recent presentation of non-standard analysis, not axiomatic in style, due
to the mathematician Lindström [80].

Non-standard numbers allowed us to reconsider the semantics of hybrid systems and propose a
radical alternative to the super-dense time semantics developed by Edward Lee and his team as part of
the Ptolemy II project, where cascades of successive instants can occur in zero time by using R+×N as a
time index. In the non-standard semantics, the time index is defined as a set T= {n∂ | n ∈ ∗N}, where ∂ is
an infinitesimal and ∗N is the set of non-standard integers. Remark that (1) T is dense in R+, making it
“continuous”, and (2) every t ∈T has a predecessor inT and a successor inT, making it “discrete”. Although
it is not effective from a computability point of view, the non-standard semantics provides a framework
that is familiar to the computer scientist and at the same time efficient as a symbolic abstraction. This
makes it an excellent candidate for the development of provably correct compilation schemes and type
systems for hybrid systems modeling languages.

Non-standard analysis was proposed by Abraham Robinson in the 1960s to allow the explicit manipu-
lation of “infinitesimals” in analysis [93, 58, 53]. Robinson’s approach is axiomatic; he proposes adding
three new axioms to the basic Zermelo-Fraenkel (ZFC) framework. While the need for non-standard
analysis (in addition to the usual or standard analysis) has long agitated the mathematical community,
it is not our purpose to debate such aspects. The important thing for us is that non-standard analysis
allows the use of the non-standard discretization of continuous dynamics “as if” it was operational.

1Origins of Equation-Based Modeling
2SimScape by Mathworks, Amesim by LMS International, now Siemens PLM, and more.
3Such as the Spice3 electronic circuit simulator.

https://www.modelica.org/
http://www.lccc.lth.se/media/LCCC2012/WorkshopSeptember/slides/Astrom.pdf
http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/MANUALS/spice3.html
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Not surprisingly, such an idea is not novel. Iwasaki et al. [73] first proposed using non-standard
analysis to discuss the nature of time in hybrid systems. Bliudze and Krob [34, 33] have also used non-
standard analysis as a mathematical support for defining a system theory for hybrid systems. They discuss
in detail the notion of “system” and investigate computability issues. The formalization they propose
closely follows that of Turing machines, with a memory tape and a control mechanism.

3.3 Structural Analysis of DAE Systems

The Modelica language is based on Differential Algebraic Equations (DAE). The general form of a DAE is
given by:

F (t , x, x ′, x ′′, . . . ) (1)

where F is a system of ne equations { f1, . . . , fne } and x is a finite list of nv independent real-valued, smooth
enough, functions {x1, . . . , xnv } of the independent variable t . We use x ′ as a shorthand for the list of
first-order time derivatives of x j , j = 1, . . . ,nv . High-order derivatives are recursively defined as usual,
and x(k) denotes the list formed by the k-th derivatives of the functions x j . Each fi depends on the scalar
t and some of the functions x j as well as a finite number of their derivatives.

Let σi , j denote the highest differentiation order of variable x j effectively appearing in equation fi , or
−∞ if x j does not appear in fi . The leading variables of F are the variables in the set{

x
(σ j )
j |σ j = max

i
σi , j

}
The state variables of F are the variables in the set{

x
(ν j )
j | 0 ≤ ν j < max

i
σi , j

}

A leading variable x
(σ j )
j is said to be algebraic if σ j = 0 (in which case, neither x j nor any of its derivatives

are state variables). In the sequel, v and u denote the leading and state variables of F , respectively.
DAE are a strict generalization of ordinary differential equations (ODE), in the sense that it may not be

immediate to rewrite a DAE as an explicit ODE of the form v =G(u). The reason is that this transformation
relies on the Implicit Function Theorem, requiring that the Jacobian matrix ∂F

∂v to be full rank. This is, in
general, not the case for a DAE. Simple examples, like the two-dimensional fixed-length pendulum in
Cartesian coordinates [89], exhibit this behaviour.

For a square DAE of dimension n (i.e., we now assume ne = nv = n) to be solved in the neighborhood
of some (v∗,u∗), one needs to find a set of non-negative integers C = {c1, . . . ,cn} such that system

F (C ) = { f (c1)
1 , . . . , f (cn )

n }

can locally be made explicit, i.e., the Jacobian matrix of F (C ) with respect to its leading variables, evaluated
at (v∗,u∗), is nonsingular. The smallest possible value of maxi ci for a set C that satisfies this property is
the differentiation index [45] of F , that is, the minimal number of time differentiations of all or part of the
equations fi required to get an ODE.

In practice, the problem of automatically finding a minimal solution C to this problem quickly
becomes intractable. Moreover, the differentiation index may depend on the value of (v∗,u∗). This is
why, in lieu of numerical nonsingularity, one is interested in the structural nonsingularity of the Jacobian
matrix, i.e., its almost certain nonsingularity when its nonzero entries vary over some neighborhood. In
this framework, the structural analysis (SA) of a DAE returns, when successful, values of the ci that are
independent from a given value of (v∗,u∗).

A renowned method for the SA of DAE is the Pantelides method; however, Pryce’s Σ-method is intro-
duced also in what follows, as it is a crucial tool for our works.

3.3.1 Pantelides method

In 1988, Pantelides proposed what is probably the most well-known SA method for DAE [89]. The main
idea of his work is that the structural representation of a DAE can be condensed into a bipartite graph
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whose left nodes (resp. right nodes) represent the equations (resp. the variables), and in which an edge
exists if and only if the variable occurs in the equation.

By detecting specific subsets of the nodes, called Minimally Structurally Singular (MSS) subsets, the
Pantelides method iteratively differentiates part of the equations until a perfect matching between the
equations and the leading variables is found. One can easily prove that this is a necessary and sufficient
condition for the structural nonsingularity of the system.

The main reason why the Pantelides method is not used in our work is that it cannot efficiently be
adapted to multimode DAE (mDAE). As a matter of fact, the adjacency graph of a mDAE has both its
nodes and edges parametrized by the subset of modes in which they are active; this, in turn, requires
that a parametrized Pantelides method must branch every time no mode-independent MSS is found,
ultimately resulting, in the worst case, in the enumeration of modes.

3.3.2 Pryce’s Sigma-method

Albeit less renowned that the Pantelides method, Pryce’s Σ-method [90] is an efficient SA method for
DAE, whose equivalence to the Pantelides method has already been established. This method consists
in solving two successive problems, denoted by primal and dual, relying on the Σ-matrix, or signature
matrix, of the DAE F .

This matrix is given by:

Σ= (σi j )1≤i , j≤n (2)

where σi j is equal to the greatest integer k such that x(k)
j appears in fi , or −∞ if variable x j does not

appear in fi . It is the adjacency matrix of a weighted bipartite graph, with structure similar to the graph
considered in the Pantelides method, but whose edges are weighted by the highest differentiation orders.
The −∞ entries denote non-existent edges.

The primal problem consists in finding a maximum-weight perfect matching (MWPM) in the weighted
adjacency graph. This is actually an assignment problem for which several standard algorithms exist,
such as the push-relabel algorithm [67] or the Edmonds-Karp algorithm [60] to only give a few. However,
none of these algorithms are easily parametrizable, even for applications to mDAE systems with a fixed
number of variables.

The dual problem consists in finding the component-wise minimal solution (C ,D) where C =
{c1, . . . ,cn} and D = {d1, . . . ,dn}) to a given linear programming problem, defined as the dual of the
aforementioned assignment problem. This is performed by means of a fixpoint iteration (FPI) that makes
use of the MWPM found as a solution to the primal problem, described by the set of tuples {(i , ji )}i∈{1,...,n}:

1. Initialize {c1, . . . ,cn} to the zero vector.

2. For every j ∈ {1, . . . ,n},

d j ← max
i

(σi j + ci )

3. For every i ∈ {1, . . . ,n},

ci ← d ji −σi , ji

4. Repeat Steps 2 and 3 until convergence is reached.

From the results proved by Pryce in [90], it is known that the above algorithm terminates if and only if
it is provided a MWPM, and that the values it returns are independent of the choice of a MWPM whenever
there exist several such matchings. In particular, a direct corollary is that the Σ-method succeeds as long
as a perfect matching can be found between equations and variables.

Another important result is that, if the Pantelides method succeeds for a given DAE F , then the
Σ-method also succeeds for F and the values it returns for C are exactly the differentiation indices for
the equations that are returned by the Pantelides method. As for the values of the d j , being given by
d j = maxi (σi j + ci ), they are the differentiation indices of the leading variables in F (C ).

Working with this method is natural for our works, since the algorithm for solving the dual problem is
easily parametrizable for dealing with multimode systems, as shown in our recent paper [42].
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3.3.3 Block triangular decomposition

Once structural analysis has been performed, system F (C ) can be regarded, for the needs of numerical

solving, as an algebraic system with unknowns x
(d j )
j , j = 1. . .n. As such, (inter)dependencies between its

equations must be taken into account in order to put it into block triangular form (BTF). Three steps are
required:

1. the dependency graph of system F (C ) is generated, by taking into account the perfect matching

between equations f (ci )
i and unknowns x

(d j )
j ;

2. the strongly connected components (SCC) in this graph are determined: these will be the equation
blocks that have to be solved;

3. the block dependency graph is constructed as the condensation of the dependency graph, from the
knowledge of the SCC; a BTF of system F (C ) can be made explicit from this graph.

3.4 Contract-Based Design, Interfaces Theories, and Requirements Engineering

System companies such as automotive and aeronautic companies are facing significant difficulties due
to the exponentially raising complexity of their products coupled with increasingly tight demands on
functionality, correctness, and time-to-market. The cost of being late to market or of imperfections in the
products is staggering as witnessed by the recent recalls and delivery delays that many major car and
airplane manufacturers had to bear in the recent years. The root causes of these design problems are
complex and relate to a number of issues ranging from design processes and relationships with different
departments of the same company and with suppliers, to incomplete requirement specification and
testing.

We believe the most promising means to address the challenges in systems engineering is to employ
formal design methodologies that seamlessly and coherently combine the various viewpoints of the
design space (behavior, time, energy, reliability, ...), that provide the appropriate abstractions to manage
the inherent complexity, and that can provide correct-by-construction implementations. The following
issues must be addressed when developing new approaches to the design of complex systems:

• The overall design flows for heterogeneous systems and the associated use of models across
traditional boundaries are not well developed and understood. Relationships between different
teams inside a same company, or between different stake-holders in the supplier chain, are not
supported by precise mathematical specifications of the components each party is expected to
deliver.

• System requirements capture and analysis is in large part a heuristic process, where informal text
and natural language-based techniques in use today are facing significant challenges [76]. Formal
requirements engineering is in its infancy: mathematical models, formal analysis techniques and
links to system implementation must be developed.

• Dealing with variability, uncertainty, and life-cycle issues, such as extensibility of a product family,
are not well-addressed using available systems engineering methodologies and tools.

The challenge is to address the entire process and not to consider only local solutions of methodology,
tools, and models that ease part of the design.

Contract-based design has been proposed as a new approach to the system design problem that is
rigorous and effective in dealing with the problems and challenges described before, and that, at the
same time, does not require a radical change in the way industrial designers carry out their task as it cuts
across design flows of different types. Indeed, contracts can be used almost everywhere and at nearly all
stages of system design, from early requirements capture, to embedded computing infrastructure and
detailed design involving circuits and other hardware. Intuitively, a contract captures two properties,
respectively representing the assumptions on the environment and the guarantees of the system under
these assumptions. Hence, a contract can be defined as a pair C = (A,G) of assumptions and guarantees
characterizing in a formal way 1) under which context the design is assumed to operate, and 2) what its
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obligations are. Assume/Guarantee reasoning has been known for a long time, and has been used mostly
in software engineering [86]. However, contract-based design is not limited to types and values in a piece
of software. It can also be used to capture its performances (time, memory consumption, energy) and
reliability. This amounts to enrich a component’s interface with, on one hand, formal specifications of
the behavior of the environment in which the component may be instantiated and, on the other hand, of
the expected behavior of the component itself. To leverage contract-based reasoning as a technique of
choice for system engineers, we aim to develop:

• mathematical foundations of contracts, that enable the design of formal verification frameworks;

• System engineering methodologies and tools, that focus on requirements modeling, contract
specification and verification, at multiple abstraction levels.

A detailed bibliography on contract and interface theories for embedded system design can be found
in [5]. In a nutshell, contract and interface theories fall into two main categories:

Assume/guarantee contracts. By explicitly relying on the notions of assumptions and guarantees, A/G-
contracts are intuitive. This makes them appealing for the engineer. In A/G-contracts, assumptions
and guarantees are just properties regarding the behavior of a component and of its environment.
The typical case is when these properties are formal languages or sets of traces. This includes
the class of safety properties [77, 49, 84, 17, 51]. Contract theories were initially developed as
specification formalisms able to refuse some inputs from the environment [59]. A/G-contracts
were advocated in [27] and are is still a very active research topic, with several contributions dealing
with the timed [31] and probabilistic [43, 44] viewpoints in system design, and even hybrid systems
design [88].

Automata theoretic interfaces. Interfaces combine assumptions and guarantees in a single, automata
theoretic specification. Most interface theories are based on Lynch’s Input/Output Automata [83,
82]. Interface Automata [13, 12, 14, 47] focus primarily on parallel composition and compatibility:
two interfaces are compatible if there exists at least one environment where they can work together.
The idea is that the resulting composition exposes as an interface the needed information to
ensure that incompatible pairs of states cannot be reached. This can be achieved by using the
possibility, for an Interface Automaton, to refuse some inputs from the environment in a given
state. This amounts to the implicit assumption that the environment will never produce any of
the refused inputs, when the interface is in this state. Modal Interfaces [91] inherit from both
Interface Automata and the originally unrelated notion of Modal Transition System [79, 16, 35,
78]. Modal Interfaces are strictly more expressive than Interface Automata by decoupling the I/O
orientation of an event and its deontic modalities (mandatory, allowed or forbidden). Informally,
a must transition is offered in every component that realizes the modal interface, while a may
transition is optional. Research on interface theories is still very active. For instance, timed [15, 28,
30, 56, 55, 29], probabilistic [43, 57] and energy-aware [48] interface theories have been proposed
recently.

Requirements Engineering is one of the major concerns in large systems industries today, particularly
so in sectors where certification prevails [94]. Most requirements engineering tools offer a poor structuring
of the requirements and cannot be considered as formal modeling frameworks today. They are nothing
less, but nothing more than an informal structured documentation enriched with hyperlinks.

We see Contract-Based Design and Interfaces Theories as innovative tools in support of Require-
ments Engineering. The Software Engineering community has extensively covered several aspects of
Requirements Engineering, in particular:

• the development and use of large and rich ontologies; and

• the use of Model Driven Engineering technology for the structural aspects of requirements and
resulting hyperlinks (to tests, documentation, PLM, architecture, and so on).

Behavioral models and properties, however, are not properly encompassed by the above approaches. This
is the cause of a remaining gap between this phase of systems design and later phases where formal model
based methods involving behavior have become prevalent. We believe that our work on contract-based
design and interface theories is best suited to bridge this gap.
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3.5 Efficient Symbolic Computation for Sparse Systems

This project consists in exploiting the parsimony of sparse systems to accelerate their symbolic manip-
ulation (quantifiers elimination [52], differential-algebraic reductions [95] etc.). Let us cite two typical
examples as a motivation: Boolean functions (a ∨b ∧¬c) and polynomial systems with inequalities
(x2 + y ≤ 1∧x + y = 0). We seek precisely to decompose these systems, automatically, in order to be able
to manipulate them at an advantageous computational cost (in time and in memory) by attacking the
pieces thus obtained rather than considering the system as a single monolithic block.

The current algorithms suffer from a theoretical complexity that is at best exponential (in the size
of the input) limiting their use to instances of very modest size. The classic approach to overcome this
problem is to develop/use numerical methods (with their limits and intrinsic problems) when possible of
course. We aim to explore a different avenue.

In this project, we wish to exploit the structure of sparse systems to push the symbolic approach
beyond its theoretical limits. The a priori limited application of our methods for dense systems is
compensated by the fact that in practice, the problems are very often structured (in this regard, let
us content ourselves with quoting the SAT solvers which successfully tackle industrial instances of a
theoretically NP-complete problem).

The idea of exploiting the structure to speed up calculations that are a priori complex is not new. It
has notably been developed and successfully used in signal processing via Factor Graphs [81], where one
restricts oneself to local propagation of information, guided by an abstract graph which represents the
structure of the system overall. Our approach is similar: we basically seek to use expensive algorithms
sparingly on only subsystems involving only a small number of variables, thus hoping to reduce the
theoretical worst case. One could then legitimately wonder why it is not enough to apply what has already
been done on Factor Graphs? The difficulty (and the novelty for that matter) lies in the implementation
of this idea for the problems that interest us. Let’s start by emphasizing that the propagation of informa-
tion has a significantly different impact depending on the operator (or quantifier) to be eliminated: a
minimization or a summation do not look like a projection at all! This will obviously not prevent us from
importing good ideas applicable to our problems and vice versa.

More related to symbolic computation, to our knowledge, at least two recent attempts exist: chordal
networks [50] which propose a representation of the ideals of the ring of polynomials (therefore algebraic
sets), and triangular block shapes [97], initiated independently and under development in our team and
which tackle Boolean functions, or, if you will, the algebraic sets over the field of Booleans. The similarity
between the two approaches is striking and suggests that there is a common way of doing things that
could be exploited beyond these two examples. It is this unification that interests us in the first place in
this project.

We identify three research problems to explore: T1. Unify several optimization problems on graphs as
a single problem parameterized by a cost function, we coin such a problem WAP, for weighted adjacency
propagation. T2. Adapt (and possibly improve) the algorithm of [96] to WAP and consequently to all
instances of the single problem detailed in T1. T3. Propose a unified and modular method consisting of:
(1) an elimination algorithm, (2) a data structure and (3) an efficient algorithm to solve the problem (with
an adequate cost function).

The work on chordal networks and our work on Boolean functions immediately become special cases.
For example, for Boolean functions, one could use Binary Decision Diagrams (BDDs) [40] to represent
each piece of the initial system. In fact, the final representation will no longer be a single monolithic BDD
as is currently the case, but rather a graph of BDDs. In the same way, an algebraic set will be represented
by a graph where each node is a Gröbner basis (or any other data structure used to represent systems of
equations).

The structure of the system becomes thus apparent and is exploited to optimize the used represent-
ation, opening the way to a better understanding and therefore to a more efficient and better targeted
manipulation. Let’s remember a simple fact here: symbolic manipulation often solves the problem
exactly (without approximation or compromise). Therefore, pushing the limits of applicability of these
techniques to scale them can only be appreciated and will undoubtedly have a significant impact on all
the areas where they apply and the list is as long as it is varied. (compilation, certification, validation,
synthesis, etc.).
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4 Application domains

The Hycomes team contributes to the design of mathematical modeling languages and tools, to be used
for the design of cyberphysical systems. In a nutshell, two major applications can be clearly identified: (i)
our work on the structural analysis of multimode DAE systems has a sizeable impact on the techniques to
be used in Modelica tools; (ii) our work on the verification of dynamical systems has an impact on the
design methodology for safety-critical cyberphysical systems. These two applications are detailed below.

4.1 Modelica

Mathematical modeling tools are a considerable business, with major actors such as MathWorks, with
Matlab/Simulink, or Wolfram, with Mathematica. However, none of these prominent tools are suitable for
the engineering of large systems. The Modelica language has been designed with this objective in mind,
making the best of the advantages of DAEs to support a component-based approach. Several industries
in the energy sector have adopted Modelica as their main systems engineering language.

Although multimode features have been introduced in version 3.3 of the language [61], proper tool
support of multimode models is still lagging behind. The reason is not a lack of interest from tool vendors
and academia, but rather that multimode DAE systems poses several fundamental difficulties, such
as a proper definition of a concept of solutions for multimode DAEs, how to handle mode switchings
that trigger a change of system structure, or how impulsive variables should be handled. Our work on
multimode DAEs focuses on these crucial issues [25].

Thanks to our IsamDAE software [42, 41], a larger class of Modelica models are expected to be
compiled and simulated correctly. This should enable industrial users to have cleaner and simpler
multimode Modelica models, with dynamically changing structure of cyberphysical systems. On the
longer term, our ambition is to provide efficient code-generation techniques for the Modelica language,
supporting, in full generality, multimode DAE systems, with dynamically changing differentiation index,
structure and dimension.

The Hycomes team also focuses on scalability problems related to the compilation and simulation of
large Modelica models. Digital twins developed by industrial Modelica users in the energy sector tend
to be extremely large models, with up to 106 equations. State-of-the-art Modelica compilers can not
handle such models and users are forced to partition their model into smaller parts and use complex
co-simulation techniques to produce executable digital twins. This puts a heavy burden on digital twin
developers, since both the partitioning and the implementation of cosimulation methods are manual,
finely tailored to the model, and require a high degree of expertise.

The Hycomes team is working on a new generation of algorithms for the compilation of the Modelica
language, that can scale up to large models. The key contributations are modular index-reduction [9]
and block-triangular equation sorting algorithms, that can be applied to incomplete (rectangular) DAE
systems.

4.2 Dynamical Systems Verification

In addition to well-defined operational semantics for hybrid systems, one often needs to provide formal
guarantees about the behavior of some critical components of the system, or at least its main underlying
logic. To do so, we are actively developing new techniques to automatically verify whether a hybrid system
complies with its specifications, and/or to infer automatically the envelope within which the system
behaves safely. The approaches we developed have been already successfully used to formally verify the
intricate logic of the ACAS X, a mid-air collision avoidance system that advises the pilot to go upward
or downward to avoid a nearby airplane which requires mixing the continuous motion of the aircraft
with the discrete decisions to resolve the potential conflict [74]. This challenging example is nothing
but an instance of the kind of systems we are targeting: autonomous smart systems that are designed
to perform sophisticated tasks with an internal tricky logic. What is even more interesting perhaps is
that such techniques can be often "reverted" to actually synthesize missing components so that some
property holds, effectively helping the design of such complex systems.

https://team.inria.fr/hycomes/software/isamdae/
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5 Social and environmental responsibility

The expected impact of our research is to allow both better designs and better exploitation of energy
production units and distribution networks, enabling large-scale energy savings. At least, this is what
we could observe in the context of the FUI ModeliScale collaborative project (2018–2021), focused on
electric grids, urban heat networks and building thermal modeling.

The rationale is as follows: system engineering models are meant to assess the correctness, safety
and optimality of a system under design. However, system models are still useful after the system has
been put in operation. This is especially true in the energy sector, where systems have an extremely long
lifespan (for instance, more than 50 years for some nuclear power plants) and are upgraded periodically,
to integrate new technologies. Exactly like in software engineering, where a software and its model
co-evolve throughout the lifespan of the software, a co-evolution of the system and its physical models
has to be maintained. This is required in order to maintain the safety of the system, but also its optimality.

Moreover, physical models can be instrumental to the optimal exploitation of a system. A typical
example are model-predictive control (MPC) techniques, where the model is simulated, during the
exploitation of the system, in order to predict system trajectories up to a bounded-time horizon. Optimal
control inputs can then be computed by mathematical programming methods, possibly using multiple
simulation results. This has been proved to be a practical solution [64], whenever classical optimal control
methods are ineffective, for instance, when the system is non-linear or discontinuous. However, this
requires the generation of high-performance simulation code, capable of simulating a system much
faster than real-time.

The structural analysis techniques implemented in IsamDAE [42] generate a conditional block de-
pendency graph, that can be used to generate high-performance simulation code : static code can be
generated for each block of equations, and a scheduling of these blocks can be computed, at runtime, at
each mode switching, thanks to an inexpensive topological sort algorithm. Contrarily to other approaches
(such as [63]), no structural analysis, block-triangular decompositions, or automatic differentiation has
to be performed at runtime.

6 Highlights of the year

The most notable result of the Hycomes team, for 2023, is the design and implementation of a modular
structural analysis algorithm for multimode DAE systems, that can scale up to systems with the order
1012 equations. This important breakthrough has been presented at the Modelica’23 conference [9]. It
lifts in effect the bottleneck of the structural analysis in the workflow of Modelica compilers.

7 New software, platforms, open data

7.1 New software

7.1.1 IsamDAE

Name: Implicit Structural Analysis of Multimode DAE systems

Keywords: Structural analysis, Differential algebraic equations, Multimode, Scheduling, Consistent
initialization, Code generation

Scientific Description: Modeling languages and tools based on Differential Algebraic Equations (DAE)
bring several specific issues that do not exist with modeling languages based on Ordinary Differ-
ential Equations. The main problem is the determination of the differentiation index and latent
equations. Prior to generating simulation code and calling solvers, the compilation of a model
requires a structural analysis step, which reduces the differentiation index to a level acceptable by
numerical solvers.

The Modelica language, among others, allows hybrid models with multiple modes, mode-dependent
dynamics and state-dependent mode switching. These Multimode DAE (mDAE) systems are much

https://www.3ds.com/modeliscale
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harder to deal with. The main difficulties are (i) the combinatorial explosion of the number of
modes, and (ii) the correct handling of mode switchings.

The IsamDAE software aims at providing a compilation chain for mDAE-based modeling languages
that make it possible to efficiently generate correct simulation code for multimode models. Novel
structural analysis methods for mDAE systems were designed and implemented, based on an
implicit representation of the varying structure of such systems. Several standard algorithms,
such as J. Pryce’s Sigma-method and the Dulmage-Mendelsohn decomposition, were adapted to
the multimode case, using Binary Decision Diagrams (BDD) to represent the mode-dependent
structure of an mDAE system.

IsamDAE determines, as a function of the mode, the set of latent equations, the leading variables
and the state vector. This is then used to compute a conditional dependency graph (CDG) of the
system, that can be used to generate simulation code with a mode-dependent scheduling of the
blocks of equations. The software is also fit for generating simulation code for the hybrid dynamical
system simulation tool Siconos, as well as handling the structural analysis of the multimode
consistent initialization problem associated with an mDAE system.

Functional Description: IsamDAE (Implicit Structural Analysis of Multimode DAE systems) is a software
library implementing new structural analysis methods for multimode DAE systems, based on an
implicit representation of incidence graphs, matchings between equations and variables, and
block decompositions. The input of the software is a variable dimension multimode DAE system
consisting in a set of guarded equations and guarded variable declarations. It computes a mode-
dependent structural index reduction of the multimode system and is able to produce a mode-
dependent graph for the scheduling of blocks of equations in long modes, check the structural
nonsingularity of the associated consistent initialization problem, or generate simulation code for
the nonsmooth dynamical system simulation tool Siconos.

IsamDAE is coded in OCaml, and uses the following packages: GuaCaml by Joan Thibault, ML-
BDD by Arlen Cox, Menhir by François Pottier and Yann Régis-Gianas, Pprint by François Pottier,
Snowflake by Joan Thibault, XML-Light by Nicolas Cannasse and Jacques Garrigue.

Release Contributions: New features:

* XML representations of the structure of a multimode DAE model are accepted as inputs by the
IsamDAE tool, in order to enable weak coupling with tools based on existing DAE-based languages.
IsamDAE distinguishes between MEL and XML inputs based on the extension of the input file (.mel
versus .mdae.xml).

Bug fixes:

* A better handling of the model structure for consistent initialization prevents subtle bugs that
were observed for a few models and initial events. Specific error messages are returned when initial
equations involve variables that are not active in the corresponding modes.

Performance improvement:

* Better handling of sets of equations/variables labeled with propositional formulas, thanks to an
adapted data structure.

Various:

* Verbosity option -v now takes as a parameter an integer ranging from 0 ("quiet") to 5 ("deep
debug"). The detailed output of CoSTreD is only available in "deep debug" mode.

URL: https://team.inria.fr/hycomes/software/isamdae/

Publications: hal-03768331, hal-02572879, hal-03320499, hal-02476541

Contact: Benoit Caillaud

Participants: Benoit Caillaud, Mathias Malandain, Joan Thibault, Alexandre Rocca, Bertrand Provot

https://team.inria.fr/hycomes/software/isamdae/
https://hal.inria.fr/hal-03768331
https://hal.inria.fr/hal-02572879
https://hal.inria.fr/hal-03320499
https://hal.inria.fr/hal-02476541
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7.1.2 Snowflake

Name: Snowflake : A Generic Symbolic Dynamic Programming framework

Keywords: Ocaml, Symbolic computation, Binary decision diagram

Scientific Description: Complex systems (either physical or logical) are structured and sparse, that is,
they are build from individual components linked together, and any component is only linked to
rather small number of other components with respects to the size of the global system.

RBTF exploits this structure, by over-approximating the relations between components as a tree
(called decomposition tree in the graph literature) each node of this tree being a set of components
of the initial systems. Then, starting from leaves, each sub-system is solved and the solutions are
projected as a new constraints on their parents node, this process is iterated until all sub-systems
are solved. This step allows to condensate all constraints and check their satisfiability. We call this
step the **Forward Reduction Process** (FRP).

Finally, we can propagate all the constraints back into their initial sub-system by performing those
same projections in the reverse direction. That is, each sub-system updates its set of solutions given
the information from its parent then sends the information to its children sub-systems (possibly
none, if its a leaf). We call this step the **Backward Propagation Process** (BPP).

Functional Description: Snowflake interfaces a WAP-solver (Weighted Adjacency Propagation problem),
a functor-based implementation of CoSTreD (Constraint System Tree Decomposition), along with
a minimalist MLBDD (Arlen Cox’s BDD package) toolbox.

Release Contributions: 2022/07 : published Research Report 9478 (https://hal.archives-ouvertes.fr/hal-
03740562/) 2022/06/30 : renamed RBTF into CoSTreD 2022/06/19 : added basic constraint system
export 2022/06/02 : add small graphviz interface 2022/06/02 : added small graphviz interface
2022/06/02 : added sorted test on input to MlbddUtils.subst

URL: https://gitlab.com/boreal-ldd/snowflake/-/wikis/home

Author: Joan Thibault

Contact: Joan Thibault

7.1.3 modularSigma

Name: A modular Sigma-method for the structural analysis of large DAE systems

Keywords: Differential algebraic equations, Modularity

Scientific Description: A key feature of the Modelica language is its object-oriented nature: components
are instances of classes and they can aggregate other components, so that extremely large models
can be efficiently designed as "trees of components". However, the structural analysis of Modelica
models, a necessary step for generating simulation code, often relies on the flattening of this
hierarchical structure, which undermines the scalability of the language and results in widely-used
Modelica tools not being able to compile and simulate such large models. This software implements
a new algorithm for the modular structural analysis of Modelica models. An adaptation of Pryce’s
Sigma-method for non-square DAE systems, along with a carefully crafted notion of component
interface, make it possible to fully exploit the object tree structure of a model. The structural
analysis of a component class can be performed once and for all, only requiring the information
provided by the interface of its child components. The resulting method alleviates the exponential
computation costs that can be yielded by model flattening, hence, its scalability makes it ideally
suited for the modeling and simulation of large cyber-physical systems.

Algorithms implemented in modularSigma are based on the Sigma-method, which reduces the DAE
structural index-reduction problem to two complementary linear programs: the primal problem
amounts to the computation of a maximal-weight perfect matching of the equation-variable
incidence graph of the DAE, while the dual problem consists in the computation of the minimal

https://gitlab.com/boreal-ldd/snowflake/-/wikis/home
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solution of a difference bound matrix (DBM). Modularity is achieved thanks to a decomposition of
both problems, using dynamic programming principles (akin to message passing techniques, that
are often used in statistical estimation) and memoization of the intermediate results.

Functional Description: The software performs the index reduction and the bloc-triangular decom-
position of large DAE systems, defined as the composition, hiding and renaming of incomplete
(rectangular) DAE systems.

News of the Year: The initial purpose of modularSigma has been to benchmark the algorithms detailed
in the paper presented at the Modelica’23 conference.

Publication: hal-04295096

Contact: Benoit Caillaud

Participant: Benoit Caillaud

7.1.4 PosInvSet

Name: Positive Invariant Sets

Keywords: Symbolic computation, Semi-algebraic set, Differential equations

Functional Description: Given a semi-algebraic set S, that is a Boolean combination of equations and
inequalities of polynomials, and a polynomial differential equation, we show that an algorithm can
effectively decide whether S is a positive invariant set for the considered dynamic, that is, if the
initial condition is in S, then the entire trajectory defined by the dynamics belongs to S.

We implemented in Mathematica two different procedures. Both require a backend algorithm for
real quantifiers elimination (like the Cylindrical Algebraic Decomposition). One procedure form a
monolithic request for the entire problem. The other chop the problem into small pieces following
the Boolean structure of the input S.

Release Contributions: Adaptation of the generic procedures to the linear case for scalability. The linear
case means linear differential equations and semi-linear sets for the set S.

Contact: Khalil Ghorbal

8 New results

8.1 A Modular Structural Analysis of DAE Systems

Participants: Albert Benveniste, Benoît Caillaud, Mathias Malandain, Joan Thibault.

System modeling tools are key to the engineering of safe and efficient Cyber-Physical Systems (CPS).
Although ODE-based languages and tools, such as Simulink [85], are widely used in industry, there are
two main reasons why DAE-based modeling is best suited to the modeling of such systems: it enables a
modeling based on first principles of the physics; it is physics-agnostic, and consequently accomodates
arbitrary combinations of physics (mechanics, electrokinetics, hydraulics, thermodynamics, chemical
reactions, etc.).

The pioneering work by Hilding Elmqvist [62] led to the emergence of the Modelica community in the
1990s, and the DAE-based modeling language of the same name [87] has become a de facto standard,
with its object-oriented nature enabling a component-based modeling style. Its combined use with the
port-Hamiltonian paradigm [92] results in a methodology that is instrumental to the scalable modeling
of large systems, additionally ensuring that the model architecture preserves the system architecture, in
stark contrast to ODE-based modeling [22, 23].

https://hal.inria.fr/hal-04295096
https://modelica.org/
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Consequently, DAE-based modeling requires that Modelica tools properly scale up to very large
models. However, although Modelica enables the modeling of extremely large systems, its implementa-
tions [54, 66] are often not capable of compiling and simulating such large models. Scaling has been and
still is a subject for sustained effort by the Modelica community [46], and although HPC issues belong to
the landscape [36], a more specific issue is of uttermost importance for the Modelica language.

In the first steps of the compilation of a Modelica model, its hierarchical structure is flattened, thanks
to a recursive syntactic inlining of the objects composing it. See [87], Section 5.6 for a complete definition
of this flattening process. The result is an unstructured DAE that can be exponentially larger than the
source model. The structural analyses that are required for the generation of simulation code (namely, the
index reduction of the DAE system, followed by a block-triangular form transformation of the reduced-
index system) are then performed on this monolithic DAE model. As the compilation process does not
fully take advantage of the hierarchical nature of the models it has to handle, the modeling capabilities
offered by the Modelica language are undermined by performance issues on the structural analysis
itself [70, 69]. Additionally, model flattening poses a challenge when attempting to extend DAE-based
modeling to higher-order modeling or dynamically changing systems [39, 38, 37].

In [9], a new modular structural analysis algorithm is proposed that takes full advantage of the object
tree structure of a DAE model. The bedrock of this method is a novel concept of structural analysis-
aware interface for components. The essence of a component interface is to capture the necessary
information about a Modelica class that needs to be exposed, in order to perform the structural analysis
of a component comprizing instances of the former class, while hiding away useless information regarding
the equations and all protected features it may contain.

In order to compute a component interface, one has to be able to perform the structural analysis
of the possibly non-square DAE system that this component encapsulates, and to use the interfaces of
the components it aggregates in this analysis. We base our algorithm on Pryce’s Σ-method for index
reduction [90], which essentially consists in the successive solving of two dual linear integer programs.
The striking difference with Pryce’s algorithm is that these problems are solved by parts, in a scalable
manner.

Putting all of this together, it is then possible to perform a modular structural analysis, in which
structural analysis is performed at the class level, and the results can then be instantiated for each
component of the system model, knowing its context. Hence, structural information at the system level is
derived from composing the result of component-level analysis. Modular structural analysis yields huge
gains in terms of memory usage and computational costs, as the analysis of a single large-scale DAE is
replaced with that of multiple smaller subsystems. Moreover, the analysis is performed at the class level,
meaning that a single structural analysis is needed for all system components that are instances of the
same class.

8.2 Fault Diagnosability Analysis of Multi-Mode Systems

Participants: Benoît Caillaud, Mathias Malandain.

A new collaboration between the Hycomes and the University of Linköping (Sweden) has started this
year on the topic of system diagnosis, based on multimode DAE systems.

Fault detection and diagnosis are important for the health monitoring of physical systems. Model-
based approaches for single-mode, smooth, systems is a well-established field, supported by a large
body of literature covering various approaches like structural methods [32], parity space techniques, and
observer-based methods [72].

While single-mode systems are often described using differential algebraic equations (DAEs), the mod-
eling of non-smooth physical systems yields switched DAEs, also known as multimode DAEs (mDAEs),
which combine continuous behaviors, defined as solutions of a set of DAE systems, with discrete mode
changes [98, 25]. Direct application of traditional fault diagnosis methods to all possible configurations
of multi-mode systems quickly becomes intractable, as the number of modes tends to be exponential
in the size of the system. The method proposed by [75] works around this issue by coupling a mode
estimation algorithm with a single-mode diagnosis methodology, akin to just-in-time compilation in
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computer science. This approach unfortunately puts the burden on solving mode estimation problems,
which often turn out to be intractable for the same reason.

Structural fault detectability and isolability is a graph-based method to evaluate diagnosability prop-
erties on DAEs [65]. It is based on the Dulmage-Mendelsohn decomposition (DM), a building block of
the structural analysis of equation systems. In [11], we show how its extension to multimode systems,
introduced in [4], can be applied in the context of structural fault detectability and isolability of mm-
DAEs [68]. Building upon our previous research studies, the methods presented in this paper represent
advancements in diagnostic methodologies for multi-mode systems, providing novel ways to study the
diagnosability of multi-mode systems without enumerating their modes.

The case study used throughout this article is a model of a reconfigurable battery system, in which
switching strategies enable to produce an AC output without relying on a central inverter [18]. This model
is parametrized by the number of battery cells, so that both the inherent complexity associated with the
diagnostics of such systems and the scalability of our approaches can be addressed.

8.3 Mixed Nondeterministic-Probabilistic Automata

Participants: Albert Benveniste.

Graphical models in probability and statistics are a core concept in the area of probabilistic reasoning
and probabilistic programming-graphical models include Bayesian networks and factor graphs. For
modeling and formal verification of probabilistic systems, probabilistic automata were introduced. A
coherent suite of models consisting of Mixed Systems, Mixed Bayesian Networks, and Mixed Automata is
proposed in [8]. This framework extends factor graphs, Bayesian networks, and probabilistic automata
with the handling of nondeterminism. Each of these models comes with a parallel composition, and we
establish clear relations between these three models. Also, we provide a detailed comparison between
Mixed Automata and Probabilistic Automata.

8.4 On Continuous Solutions for Linear Complementarity Systems

Participants: Khalil Ghorbal.

Hybrid systems are dynamical systems alternating between continuous-time dynamics, called modes,
and nonsmooth transitions between modes. Linear complementarity systems (LCS) form a special class
of hybrid systems with an exponential number of modes and a linear differential algebraic equation in
each mode. LCS are for instance used to describe mechanical and electrical systems featuring perfect
contacts or ideal switches. For example, the ideal (Zener) diode is a 1-dimensional LCS with two modes: a
passing mode in one direction and a blocking mode in the other direction. While seemingly simple, little
is known about the existence, and eventually uniqueness, of continuous solutions (in the state space).
The only known sufficient condition is too strong as it requires the existence and uniqueness of solutions
for the underlying linear complementarity problem (LCP) which, for a fixed matrix M and a given vector
q , asks whether there exists a pair of vectors (w, z) satisfying w −M z = q , w, z ≥ 0, and w.z = 0. M is said
to be a Q-matrix when a solution exists for all q . It’s worth noting that characterizing Q-matrices is an
open problem since the sixties even for low dimensions. Motivated by generalizing the known sufficient
conditions for the existence of continuous solutions for LCS, we were naturally led to better understand
Q-matrices. In this work, we focused on the regions where no solution for a given LCP exists. We showed
that such holes occur only in specific locations. We then exploited this property to fully characterize
Q-matrices for n ≤ 3.

Characterizing Q-matrices for any finite dimension n is still an open problem despite a large palette
of attempts ranging from linear algebra to convex analysis all the way to the homology of simplicial
sets. The novelty of our approach [10] relies on using geometric and topological intuitions to locate the
regions for which the LCP doesn’t have a solution. This property allowed us to reduce the spatial case
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to finite planar problems that we were able to enumerate and solve. Our characterization is a program
enumerating a long list of (symbolic) constraints on the entries of the matrix M . The matrix is a Q-matrix
if and only if all the constraints are satisfied. Such approach is for instance useful to generate examples
(or counter-examples) to either solve existing conjectures or to improve our current understanding of the
problem. For instance, we were able to find an example of a non-regular Q-matrix in dimension 3 (the
smallest dimension for which such an example was known was n = 5). This is a joint work with Christelle
Kozaily.

9 Dissemination

9.1 Promoting scientific activities

9.1.1 Scientific events: selection

Member of the conference program committees Albert Benveniste has served on the program commit-
tee of the Modelica’23 conference, that was held in October 2023, in Aachen (Germany).

Khalil Ghorbal has served program committee of the TACAS’23 conference.

9.1.2 Journal

Member of the editorial boards Benoît Caillaud has been appointed member of the editorial board
of Research Directions: Cyber-Physical Systems, a new open-access journal published by Cambridge
University Press. He is also serving on the board of the MDPI Computation journal.

Reviewer - reviewing activities Benoît Caillaud has reviewed papers for the Discrete Event Dynamic
Systems and the IEEE Transactions on Automatic Control journals.

9.1.3 Scientific expertise

Albert Benveniste is member of the French National Academy of Technology. He also serves of the
Scientific Advisory Board of the aeronautic company Safran.

Benoît Caillaud has evaluated proposals submitted for funding to the ANR (the French national
research funding agency).

9.1.4 Research administration

Khalil Ghorbal is the main organizer of 68NQRT, the seminar on formal methods, programming languages
and software engineering of the Inria center of the University of Rennes and of the Language and Software
Engineering department of the Irisa UMR.

9.2 Teaching - Supervision - Juries

9.2.1 Teaching

• Master degree in computer science: Khalil Ghorbal, Category Theory, Monads, and Computation,
at ENS Rennes, France ;

• Agregation informatique: Khalil Ghorbal and Maxime Bridoux, oral examination and lecture pre-
paration, at ENS Rennes, France.

9.2.2 Supervision

• Benoît Caillaud and Khalil Ghorbal are cosupervising the PhD work of Joan Thibault. Joan Thibault
is expected to defend is PhD thesis in 2024, on efficient and scalable data-structures for solving
Boolean constraint systems and some optimization problems on them.

• Khalil Ghorbal is supervising the PhD work of Maxime Bridoux, on the broad topic of efficient
symbolic computation methods for sparse algebraic systems.

https://etaps.org/2023/conferences/
https://www.academie-technologies.fr/
https://www.safran-group.com/
https://anr.fr/
http://68nqrt.inria.fr/
https://www.irisa.fr/en
https://www.ens-rennes.fr/
https://www.ens-rennes.fr/
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10 Scientific production

10.1 Major publications

[1] A. Benveniste, T. Bourke, B. Caillaud, J.-L. Colaço, C. Pasteur and M. Pouzet. ‘Building a Hybrid
Systems Modeler on Synchronous Languages Principles’. In: Proceedings of the IEEE. Design Auto-
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