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2 Overall objectives

The PARADYSE team gathers mathematicians from different communities with the same motivation:
to provide a better understanding of dynamical phenomena involving particles. These phenomena
are described by fundamental models arising from several fields of physics. We shall focus on model
derivation, study of stationary states and asymptotic behaviors, as well as links between different levels
of description (from microscopic to macroscopic) and numerical methods to simulate such models.
Applications include non-linear optics, thermodynamics and ferromagnetism. Research in this direction
has a long history, that we shall only partially describe in the sequel. We are confident that the fact that
we come from different mathematical communities (PDE theory, mathematical physics, probability
theory and numerical analysis), as well as the fact that we have strong and effective collaborations with
physicists, will bring new and efficient scientific approaches to the problems we plan to tackle and will
make our team strong and unique in the scientific landscape. Our goal is to obtain original and important
results on a restricted yet ambitious set of problems that we develop in this document.

3 Research program

3.1 Time asymptotics: Stationary states, solitons, and stability issues

The team investigates the existence of solitons and their link with the global dynamical behavior for
non-local problems such as the Gross–Pitaevskii (GP) equation which arises in models of dipolar gases.
These models, in general, also introduce non-zero boundary conditions which constitute an additional
theoretical and numerical challenge. Numerous results are proved for local problems, and numerical
simulations allow to verify and illustrate them, as well as making a link with physics. However, most
fundamental questions are still open at the moment for non-local problems.

The non-linear Schrödinger (NLS) equation finds applications in numerous fields of physics. We
concentrate, in a continued collaboration with our colleagues from the physics department (PhLAM) at
Université de Lille (U-Lille) in the framework of the Laboratoire d’Excellence CEMPI, on its applications
in non-linear optics and cold atom physics. Issues of orbital stability and modulational instability are
central here (see Section 4.1 below).

Another typical example of problem that the team wishes to address concerns the Landau–Lifshitz
(LL) equation, which describes the dynamics of the spin in ferromagnetic materials. This equation is
a fundamental model in the magnetic recording industry [40] and solitons in magnetic media are of
particular interest as a mechanism for data storage or information transfer [41]. It is a quasilinear PDE
involving a function that takes values on the unit sphere S2 of R3. Using the stereographic projection, it
can be seen as a quasilinear Schrödinger equation and the questions about the solitons, their dynamics
and potential blow-up of solutions evoked above are also relevant in this context. This equation is
less understood than the NLS equation: even the Cauchy theory is not completely understood [30, 39].
In particular, the geometry of the target sphere imposes that the solution has a norm equal to one
everywhere, so in particular the boundary conditions cannot be zero, and, even in dimension one, there
are kink-type solitons having different limits at ±∞.

3.2 Derivation of macroscopic laws from microscopic dynamics

The team investigates, from a microscopic viewpoint, the dynamical mechanism at play in the phe-
nomenon of relaxation towards thermal equilibrium for large systems of interacting particles. For
instance, a first step consists in giving a rigorous proof of the fact that a particle repeatedly scattered by
random obstacles through a Hamiltonian scattering process will eventually reach thermal equilibrium,
thereby completing previous works in this direction by the team. As a second step, models similar to the
ones considered classically will be defined and analyzed in the quantum mechanical setting, and more
particularly in the setting of quantum optics.

Another challenging problem is to understand the interaction of large systems with the boundaries,
which is responsible for most energy exchanges (forcing and dissipation), even though it is concentrated
in very thin layers. The presence of boundary conditions to evolution equations sometimes lacks under-
standing from a physical and mathematical point of view. In order to legitimate the choice done at the

https://en.wikipedia.org/wiki/Soliton
https://phlam.univ-lille.fr/
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macroscopic level of the mathematical definition of the boundary conditions, we investigate systems of
particles with different local interactions. We apply various techniques to understand how diffusive and
driven systems interact with the boundaries.

Finally, we aim at obtaining results on the macroscopic behavior of large scale interacting particle
systems subject to kinetic constraints. In particular, we study the behavior in one and two dimensions of
the Facilitated Exclusion Process (FEP), on which several results have already been obtained. The latter
is a very interesting prototype for kinetically constrained models because of its unique mathematical
features (explicit stationary states, absence of mobile cluster to locally shuffle the configuration). There
are very few mathematical results on the FEP, which was put forward by the physics community as a toy
model for phase separation.

Our goal is to develop collaboration at the interface between probability and PDE theory, and use the
rich PDE background of the team to provide tools to be used on statistical physics problems put forward
by the probability side of the team.

3.3 Numerical methods: analysis and simulations

The team addresses both questions of precision and numerical cost of the schemes for the numerical
integration of non-linear evolution PDEs, such as the NLS equation. In particular, we aim at developing,
studying and implementing numerical schemes with high order that are more efficient for these problems.
We also want to contribute to the design and analysis of schemes with appropriate qualitative properties.
These properties may as well be “asymptotic-preserving” properties, energy-preserving properties, or
convergence to an equilibrium properties. Other numerical goals of the team include the numerical
simulation of standing waves of non-linear non-local GP equations. We also keep on developing numer-
ical methods to efficiently simulate and illustrate theoretical results on instability, in particular in the
context of the modulational instability in optical fibers, where we study the influence of randomness in
the physical parameters of the fibers.

The team also designs simulation methods to estimate the accuracy of the physical description via
microscopic systems, by computing precisely the rate of convergence as the system size goes to infinity.
One method under investigation is related to cloning algorithms, which were introduced very recently
and turn out to be essential in molecular simulation.

4 Application domains

4.1 Optical fibers

In the propagation of light in optical fibers, the combined effect of non-linearity and group velocity
dispersion (GVD) may lead to the destabilization of the stationary states (plane or continuous waves).
This phenomenon, known under the name of modulational instability (MI), consists in the exponential
growth of small harmonic perturbations of a continuous wave. MI has been pioneered in the 60s in the
context of fluid mechanics, electromagnetic waves as well as in plasmas, and it has been observed in
non-linear fiber optics in the 80s. In uniform fibers, MI arises for anomalous (negative) GVD, but it may
also appear for normal GVD if polarization, higher order modes or higher order dispersion are considered.
A different kind of MI related to a parametric resonance mechanism emerges when the dispersion or the
non-linearity of the fiber are periodically modulated.

As a follow-up of our work on MI in periodically modulated optical fibers, we investigate the effect of
random modulations in the diameter of the fiber on its dynamics. It is expected on theoretical grounds
that such random fluctuations can lead to MI and this has already been illustrated for some models of
the randomness. We investigate precisely the conditions under which this phenomenon can be strong
enough to be experimentally verified. For this purpose, we investigate different kinds of random processes
describing the modulations, taking into account the manner in which such modulations can be created
experimentally by our partners of the fiber facility of the PhLAM. This necessitates a careful modeling
of the fiber and a precise numerical simulation of its behavior as well as a theoretical analysis of the
statistics of the fiber dynamics.

This application domain involves in particular S. De Bièvre and G. Dujardin.
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4.2 Ferromagnetism

The Landau–Lifshitz (LL) equation describes the dynamics of the spin in ferromagnetic materials. De-
pending on the properties of the material, the LL equation can include a dissipation term (the so-called
Gilbert damping) and different types of anisotropic terms. The LL equation belongs to a larger class
of non-linear PDEs which are often referred to as geometric PDEs, and some related models are the
Schrödinger map equation and the harmonic heat flow. We focus on the following aspects of the LL
equation.

Solitons In the absence of Gilbert damping, the LL equation is Hamiltonian. Moreover, it is integrable in
the one-dimensional case and explicit formulas for solitons can be given. In the easy-plane case,
the orbital and asymptotic stability of these solitons have been established. However, the stability in
other cases, such as in biaxial ferromagnets, remains an open problem. In higher dimensional cases,
the existence of solitons is more involved. In a previous work, a branch of semitopological solitons
with different speeds has been obtained numerically in planar ferromagnets. A rigorous proof of
the existence of such solitons is established using perturbation arguments, provided that the speed
is small enough. However, the proof does not give information about their stability. We would like
to propose a variational approach to study the existence of this branch of solitons, that would lead
to the existence and stability of the whole branch of ground-state solitons as predicted. We also
investigate numerically the existence of other types of localized solutions for the LL equation, such
as excited states or vortices in rotation.

On the other hand, with the inclusion of the Gilbert damping, the Landau-Lifshitz-Gilbert (LLG)
equation becomes (partially) dissipative. Interestingly, in the one-dimensional case, the same
solitons, referred to as domain walls, emerge as significant structures. Not only do they demonstrate
asymptotic stability, even in the presence of a small magnetic field ([36]), but they also serve as
crucial building blocks for various stable configurations, such as 2-domain wall structures ([35]).
Numerical simulations further suggest that any general solution should decompose over time into
a superposition of domain walls, though this still presents an open problem at the theoretical
level. Exploring the scenario of a notched nanowire ([34]) reveals yet another context where
generalized domain walls manifest. They exhibit an even better asymptotic stability compared to
their non-notched counterparts, which may lead to applications in information storage.

Approximate models An important physical conjecture is that the LL model is to a certain extent univer-
sal, so that the non-linear Schrödinger and Sine-Gordon equations can be obtained as its various
limit cases. In a previous work, A. de Laire has proved a result in this direction and established an
error estimate in Sobolev norms, in any dimension. A next step is to produce numerical simulations
that will enlighten the situation and drive further developments in this direction.

Self-similar behavior Self-similar solutions have attracted a lot of attention in the study of non-linear
PDEs because they can provide some important information about the dynamics of the equation.
While self-similar expanders are related to non-uniqueness and long time description of solutions,
self-similar shrinkers are related to a possible singularity formation. However, there is not much
known about the self-similar solutions for the LL equation. A. de Laire and S. Gutierrez (University
of Birmingham) have studied expander solutions and proved their existence and stability in the
presence of Gilbert damping. We will investigate further results about these solutions, as well as
the existence and properties of self-similar shrinkers.

This application domain involves in particular A. de Laire, G. Dujardin and G. Ferriere.

4.3 Bose-Einstein condensates and nonlinear optics

In quantum physics and nonlinear optics, the Gross-Pitaevskii equation with non-zero boundary con-
ditions is employed to describe the behavior of quantum fluids and Bose-Einstein condensates. The
primary challenges are to comprehend new realistic physical effects, such as nonlocal interactions,
quasilinear effects and variations in the width of the domain.

In order to establish a rigorous understanding of the dynamics of these models, the study of particular
solutions such as dark solitons, which play a key role in the large-time behavior, is a crucial first step.
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For instance, proving the stability of dark solitons, based on various physical considerations, implies
that these structures are good candidates to be controlled experimentally and to be considered in new
applications.

Although the properties of dark solitons are well-known in classical models described by the Gross-
Pitaevskii equation, the situation becomes more intricate when adding terms to model new realistic
physical effects. Each characteristic introduces a range of new theoretical and numerical difficulties. This
complexity emphasizes the need for a careful and detailed examination to enhance our understanding of
these intricate systems.

This application domain involves in particular A. de Laire, G. Dujardin and G. Ferriere.

4.4 Cold atoms

The cold atoms team of the PhLAM Laboratory is reputed for having realized experimentally the so-called
Quantum Kicked Rotor, which provides a model for the phenomenon of Anderson localization. The
latter was predicted by Anderson in 1958, who received in 1977 a Nobel Prize for this work. Anderson
localization is the absence of diffusion of quantum mechanical wave functions (and of waves in general)
due to the presence of randomness in the medium in which they propagate. Its transposition to the
Quantum Kicked Rotor goes as follows: a freely moving quantum particle periodically subjected to a
“kick” will see its energy saturate at long times. In this sense, it “localizes” in momentum space since
its momenta do not grow indefinitely, as one would expect on classical grounds. In its original form,
Anderson localization applies to non-interacting quantum particles and the same is true for the saturation
effect observed in the Quantum Kicked Rotor.

The challenge is now to understand the effects of interactions between the atoms on the localiz-
ation phenomenon. Transposing this problem to the Quantum Kicked Rotor, this means describing
the interactions between the particles with a Gross–Pitaevskii equation, which is a NLS equation with
a local (typically cubic) non-linearity. So the particle’s wave function evolves between kicks following
the Gross–Pitaevskii equation and not the linear Schrödinger equation, as is the case in the Quantum
Kicked Rotor. Preliminary studies for the Anderson model have concluded that in that case the local-
ization phenomenon gives way to a slow subdiffusive growth of the particle’s kinetic energy. A similar
phenomenon is expected in the non-linear Quantum Kicked Rotor, but a precise understanding of the
dynamical mechanisms at work, of the time scale at which the subdiffusive growth will occur and of
the subdiffusive growth exponent is lacking. It is crucial to design and calibrate the experimental setup
intended to observe the phenomenon. The analysis of these questions poses considerable theoretical
and numerical challenges due to the difficulties involved in understanding and simulating the long term
dynamics of the non-linear system. A collaboration of the team members with the PhLAM cold atoms
group is currently under way.

This application domain involves in particular S. De Bièvre and G. Dujardin.

4.5 Modelling shallow water dynamics

The understanding of the propagation of waves in shallow water is of importance for the modelling
of tsunamis and other rogue waves. This requires a better understanding of dispersive shallow water
systems as ABCD systems, that are related to the classical Boussines systems, and classifying particular
travelling waves solutions for these systems. To deal with systems is at forefront of research. Analogous
questions for single equations as KdV equations are well-documented.

A. de Laire and O. Goubet are involved in these topics, together with researchers in Chile : Claudio
Muñoz (Universidad de Chile), María Eugenia Martinez (University of Chile) and Felipe Poblete (Austral
University of Chile). The applications for tsunamis is of interest for people in Chile.

4.6 Qualitative and quantitative properties of numerical methods

Numerical simulation of multimode fibers The use of multimode fibers is a possible way to overcome
the bandwidth crisis to come in our worldwide communication network consisting in singlemode
fibers. Moreover, multimode fibers have applications in several other domains, such as high power fiber
lasers and femtosecond-pulse fiber lasers which are useful for clinical applications of non-linear optical
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microscopy and precision materials processing. From the modeling point of view, the envelope equations
are a system of non-linear non-local coupled Schrödinger equations. For a better understanding of
several physical phenomena in multimode fibers (e.g. continuum generation, condensation) as well as
for the design of physical experiments, numerical simulations are a suitable tool. However, the huge
number of equations, the coupled non-linearities and the non-local effects are very difficult to handle
numerically. Some attempts have been made to develop and make available efficient numerical codes
for such simulations. However, there is room for improvement: one may want to go beyond MATLAB
prototypes, and to develop an alternative parallelization to the existing ones, which could use the linearly
implicit methods that we plan to develop and analyze. In link with the application domain 4.1, we develop
in particular a code for the numerical simulation of the propagation of light in multimode fibers, using
high-order efficient methods, that is to be used by the physics community.

This application domain involves in particular G. Dujardin and A. Roget.

Qualitative and long-time behavior of numerical methods We contribute to the design and analysis
of schemes with good qualitative properties. These properties may as well be “asymptotic-preserving”
properties, energy-preserving properties, decay properties, or convergence to an equilibrium properties.
In particular, we contribute to the design and analysis of numerically hypocoercive methods for Fokker–
Planck equations [38], as well as energy-preserving methods for hamiltonian problems [32].

This application domain involves in particular G. Dujardin.

High-order methods We contribute to the design of efficient numerical methods for the simulation of
non-linear evolution problems. In particular, we focus on a class of linearly implicit high-order methods,
that have been introduced for ODEs and generalized to PDEs [25]. We wish both to extend their analysis
to PDE contexts, and to analyze their qualitative properties in such contexts.

This application domain involves in particular G. Dujardin.

4.7 Modeling of the liquid-solid transition and interface propagation

Analogously to the so-called Kinetically Constrained Models (KCM) that have served as toy models for
glassy transitions, stochastic particle systems on a lattice can be used as toy models for a variety of
physical phenomena. Among them, the kinetically constrained lattice gases (KCLG) are models in which
particles jump randomly on a lattice, but are only allowed to jump if a local constraint is satisfied by the
system.

Because of the hard constraint, the typical local behavior of KCLGs will differ significantly depending
on the value of local conserved fields (e.g. particle density), because the constraint will either be typically
satisfied, in which case the system is locally diffusive (liquid phase), or not, in which case the system
quickly freezes out (solid phase).

Such a toy model for liquid-solid transition is investigated by C. Erignoux, M. Simon and their co-
authors in [3] and [33]. The focus of these articles is the so-called facilitated exclusion process, which is
a terminology coined by physicists for a specific KCLG, in which particles can only jump on an empty
neighbor if another neighboring site is occupied. They derive the macroscopic behavior of the model,
and show that in dimension 1 the hydrodynamic limit displays a phase separated behavior where the
liquid phase progressively invades the solid phase.

Both from a physical and mathematical point of view, much remains to be done regarding these
challenging models: in particular, they present significant mathematical difficulties because of the way
the local physical constraints put on the system distort the equilibrium and steady-states of the model.
For this reason, C. Erignoux and A. Roget are currently working with M. Simon (Institut Camille Jordan,
Université Lyon 1) and A. Shapira (MAP5, Paris) to generate numerical results on generalizations of the
facilitated exclusion process, in order to shine some light on the microscopic and macroscopic behavior
of these difficult models.

This application domain involves in particular C. Erignoux and A. Roget.



8 Inria Annual Report 2023

4.8 Mathematical modeling for ecology

This application domain is at the interface of mathematical modeling and numerics. Its object of study is
a set of concrete problems in ecology. The landscape of the south of the Hauts-de-France region is made
of agricultural land, encompassing forest patches and ecological corridors such as hedges. The issues are

• the study of the invasive dynamics and the control of a population of beetles which damages the
oaks and beeches of our forests;

• the study of native protected species (the purple wireworm and the pike-plum) which find refuge
in certain forest species.

Running numerics on models co-constructed with ecologists is also at the heart of the project. In our
model, the timescales of animals and plants compare. The life cycle of a tree is one year. For animals we
consider mainly insects whose life cycle is also of one year, even for the propagation of insects. Beetle
larvae spend a few years in the earth before moving. As a by-product, the mathematical model may tackle
other major issues such as the interplay between heterogeneity, diversity and invasibility.

The models use Markov chains at a mesoscopic scale and evolution advection-diffusion equations at
a macroscopic scale.

This application domain involves O. Goubet. Interactions with PARADYSE members concerned with
particle models and hydrodynamic limits are planned.

5 New software, platforms, open data

5.1 New software

5.1.1 MM_Propagation

Name: MultiMode Propagation

Keywords: Optics, Numerical simulations, Computational electromagnetics

Functional Description: This C++ software, which is interfaced with MatLab, simulates the propagation
of light in multimode optical fibers. It takes into account several physical effects such as dispersion,
Kerr effect, Raman effect, coupling between the modes. It uses high order numerical methods that
allow for precision at reasonable computational cost.

URL: https://github.com/alexandreroget/MM_Propagation

Contact: Alexandre Roget

6 New results

Participants: Quentin Chauleur, Stephan De Bièvre, André de Laire, Guillaume Du-
jardin, Clément Erignoux, Olivier Goubet, Christopher Langrenez,
Erwan Le Quiniou.

Some of the results presented below overlap several of the main research themes presented in section
3. However, results presented in paragraphs 6.1-6.4 are mainly concerned with research axis 3.1, whereas
paragraphs 6.5-6.8 mostly concern axis 3.2. Paragraphs 6.9-6.13 are related to quantum information and
computing, and Paragraphs 6.14-6.18 concern numerics-oriented results, so that they are all encompassed
in axis 3.3.

https://github.com/alexandreroget/MM_Propagation
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6.1 Exotic traveling waves for a quasilinear Schrödinger equation with nonzero
background

A. de Laire and E. Le Quiniou have studied a quasilinear Schrödinger equation with nonzero conditions
at infinity in dimension one. This quasilinear model corresponds to a weakly nonlocal approximation
of the nonlocal Gross–Pitaevskii equation, and can also be derived by considering the effects of surface
tension in superfluids. When the quasilinear term is neglected, the resulting equation is the classical
Gross–Pitaevskii equation, which possesses a well-known stable branch of subsonic traveling waves
solution, given by dark solitons.

In the preprint [28], they investigate how the quasilinear term affects the traveling-waves solutions.
They provide a complete classification of finite energy traveling waves of the equation, in terms of the two
parameters: the speed and the strength of the quasilinear term. This classification leads to the existence
of dark and antidark solitons, as well as more exotic localized solutions like dark cuspons, compactons,
and composite waves, even for supersonic speeds. Depending on the parameters, these types of solutions
can coexist, showing that finite energy solutions are not unique. Furthermore, they prove that some of
these dark solitons can be obtained as minimizers of the energy, at fixed momentum, and that they are
orbitally stable.

6.2 Travelling waves for the Gross–Pitaevskii equation on the strip

In one space dimension, the Gross-Pitaevskii equation possesses a family of finite energy travelling waves,
called dark solitons. These solitons extend trivially to the strip given by the product space R×TL , where
L > 0 and TL is the torus TL =R/LZ. In this two-dimensional context, the dark solitons are called planar
(or line) dark solitons. However, it is well-known in the physics literature that these planar solitons can be
unstable due to the tendency to develop distortions in their transverse profile. In addition, experimental
observations have shown that the dynamics of planar dark solitons are stable when they are sufficiently
confined in the transverse direction L, but unstable otherwise. In the latter case, the creation of vortices
can occur.

In the articles [20] and [19], A. de Laire, P. Gravejat and D. Smets provide a rigorous framework for
studying this kind of phenomenon. Precisely, they prove the existence of nonconstant finite energy
travelling wave solutions to the Gross-Pitaevskii equation on the strip R×TL , obtained as minimizers of
the energy at fixed momentum. Moreover, by studying the associated variational problem, they deduce
that these minimizers are exactly the planar dark solitons when L is less than a critical value, and that
they are genuinely two-dimensional solutions otherwise. In particular, planar solitons do not minimize
the energy in the presence of a large transverse direction. The proof of the existence of minimizers is
based on the compactness of minimizing sequences, relying on a new symmetrization argument that is
well-suited to the periodic setting.

6.3 Logarithmic Gross-Pitaevskii equation

The logarithmic nonlinearity in the context of Schrödinger equations has recently regained interest in
various domains of physics. For instance, this model may generalize the Gross-Pitaevskii equation, used
in the case of two-body interaction, to the case of three-body interaction. R. Carles and G. Ferriere
study this equation, named the logarithmic Gross-Pitaevskii equation (or logGP), on the whole space
Rd in [12]. As the first mathematical study of this equation in this framework, they focus on its global
wellposedness in the energy space, which turns out to correspond to the energy space for the standard
Gross-Pitaevskii equation with a cubic nonlinearity in small dimensions, and on the characterization of
solitary and traveling waves in the one-dimensional case. This works opens the door to further studies
on this equation, especially on its asymptotic and long-time dynamics : multidimensional solitary and
traveling waves and their orbital stability, scattering, multi-solitons, convergence towards other models...

6.4 The logarithmic Schrödinger equation with spatial white noise on the full space

The logarithmic Schrödinger appears as a fundamental model in quantum gravity and nuclear physics,
and adding a white noise potential can model strong media disorder. In [22], Q. Chauleur and A. Mouzard
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prove the existence and uniqueness of solutions to the stochastic logarithmic Schrödinger. The proof
relies on a particular exponential transform which have proved being useful in several contexts, in
particular in models arising from quantum field theory.

6.5 Asymmetric attractive zero-range process with particle destrucsion at the origin

In [14], C. Erignoux, M. Simon and L. Zhao investigate the macroscopic behavior of asymmetric attractive
zero-range processes on Zwhere particles are destroyed at the origin at a rate of order Nβ, where β ∈R
and N ∈N is the scaling parameter. They prove that the hydrodynamic limit of this particle system is
described by the unique entropy solution of a hyperbolic conservation law, supplemented by a boundary
condition depending on the range of β. Namely, if β≥ 0, then the boundary condition prescribes the
particle current through the origin, whereas if β < 0, the destruction of particles at the origin has no
macroscopic effect on the system and no boundary condition is imposed at the hydrodynamic limit.

6.6 Large deviations principle for the SSEP with weak boundary interactions

Efficiently characterizing non-equilibrium stationary states (NESS) has been in recent years a central
question in statistical physics. The Macroscopic Fluctuations Theory [31] developped by Bertini et
al. has laid out a strong mathematical framework to understand NESS, however fully deriving and
characterizing large deviations principles for NESS remains a challenging endeavour. In [11], C. Erignoux
and his collaborators proved that a static large deviations principle holds for the NESS of the classical
Symmetric Simple Exclusion Process (SSEP) in weak interaction with particles reservoirs. This result
echoes a previous result by Derrida, Lebowitz and Speer [37], where the SSEP with strong boundary
interactions was considered. In [11], it was also shown that the rate function can be characterized both
by a variational formula involving the corresponding dynamical large deviations principle, and by the
solution to a non-linear differential equation. The obtained differential equation is the same as in [37],
with different boundary conditions corresponding to the different scales of boundary interaction.

6.7 Mapping hydrodynamics for the facilitated exclusion and zero-range processes

In [15], C. Erignoux, M. Simon and L. Zhao derive the hydrodynamic limit for two degenerate lattice
gases, the facilitated exclusion process (FEP) and the facilitated zero-range process (FZRP), both in the
symmetric and the asymmetric case. For both processes, the hydrodynamic limit in the symmetric
case takes the form of a diffusive Stefan problem, whereas the asymmetric case is characterized by a
hyperbolic Stefan problem. Although the FZRP is attractive, a property that they extensively use to derive
its hydrodynamic limits in both cases, the FEP is not. To derive the hydrodynamic limit for the latter,
they exploit that of the zero-range process, together with a classical mapping between exclusion and
zero-range processes, both at the microscopic and macroscopic level. Because the FEP is degenerate,
we had to develop new mapping tools to prove hydrodynamic in the asymmetric case. In the symmetric
case, a proof already existed [33] for the hydrodynamic limit, however our mapping arguments further
provide an alternative, simpler proof.

6.8 Stationary fluctuations for the facilitated exclusion process

In [27], C. Erignoux and L. Zhao derive the stationary fluctuations for the Facilitated Exclusion Process
(FEP) in one dimension in the symmetric, weakly asymmetric and asymmetric cases. The proof relies on
the mapping between the FEP and the zero-range process, and extends the same strategy as in previous
works, where hydrodynamic limits were derived for the FEP, to its stationary fluctuations. Their results
thus exploit works on the zero-range process’s fluctuations, but they also provide a direct proof in the
symmetric case, for which they derive a sharp estimate on the equivalence of ensembles for the FEP’s
stationary states.

6.9 Kirkwood-Dirac distributions

The Kirkwood-Dirac (KD) quasiprobability distribution can describe any quantum state with respect to
the eigenbases of two observables A and B. KD distributions behave similarly to classical joint probability
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distributions but can assume negative and nonreal values. In [13] S. De Bièvre provides an in-depth study
of the notion of completely incompatible observables that he recently introduced and of its links to the
support uncertainty and to the Kirkwood-Dirac nonclassicality of pure quantum states. The latter notion
has recently been proven central to a number of issues in quantum information theory and quantum
metrology. In this last context, it was shown that a quantum advantage requires the use of Kirkwood-Dirac
nonclassical states. S. De Bièvre establishes sharp bounds of very general validity that imply that the
support uncertainty is an efficient Kirkwood-Dirac nonclassicality witness for pure states. When adapted
to completely incompatible observables that are close to mutually unbiased ones, this bound allows to
fully characterize the Kirkwood-Dirac classical pure states as the eigenvectors of the two observables.
In [29], De Bièvre, C. Langrenez and D. Arvidsson (Cambridge) provide an analysis of the geometry of
the KD-positive and -nonpositive pure and mixed states. They characterize the dependence of the full
convex set of states with positive KD distributions on the eigenbases of A and B.

6.10 Photon-added/subtracted states: nonclassicality

Photon addition and subtraction render Gaussian states of the quantized optical field non-Gaussian.
In [17], S. De Bièvre and A. Hertz (Toronto-Ottawa) provide a quantitative analysis of the change in the
so-called nonclassicality produced by these processes by analyzing the Wigner negativity and quadrature
coherence scale (QCS) of the resulting states. The QCS is a recently introduced measure of nonclassicality
[PRL 122, 080402 (2019), PRL 124, 090402 (2020)], that we show to undergo a relative increase under
photon addition/subtraction that can be as large as 200%.

6.11 Interferometric measurement of the QCS

In [16], S. De Bièvre and his collaborators from the Université Libre de Bruxelles provided an experimental
procedure for directly accessing the QCS of the quantum state of an optical field, with the help of only
a simple linear interferometer involving two replicas (independent and identical copies) of the state ρ̂
supplemented with photon-number-resolving measurements. The proposed protocol has since been
implemented with success on the cloud quantum computer of Xanadu, by a team of physicists from the
Universities of Toronto and Ottawa.

6.12 Modulational

In [9] S. De Bièvre, G. Dujardin and their collaborators (physicists from the PhLAM laboratory in Lille)
study modulational instability in a dispersion-managed system where the sign of the group-velocity
dispersion is changed at uniformly distributed random distances around a reference length. An analytical
technique is presented to estimate the instability gain from the linearized nonlinear Schrödinger equation,
which is also solved numerically. The comparison of numerical and analytical results confirms the validity
of their approach. Modulational instability of purely stochastic origin appears.

6.13 Approach to equilibrium in quantum systems

Rigorous derivations of the approach of individual elements of large isolated systems to a state of thermal
equilibrium, starting from arbitrary initial states, are exceedingly rare. This is particularly true for
quantum mechanical systems. In [23], S. De Bièvre and his collaborators demonstrate how, through a
mechanism of repeated scattering, an approach to equilibrium of this type actually occurs in a specific
quantum optics system.

6.14 Growth of Sobolev norms and strong convergence for the discrete nonlinear
Schrödinger equation

As it is known, the nonlinear Schrödinger stands as a prime model in order to describe the propagation of
waves in nonlinear optics or the dynamics of a superfluid in Bose-Einstein condensates. Its discretization
in space stands as a first step in order to perform reliable and efficient numerical simulations. Q. Chauleur
studies the convergence of the discrete nonlinear Schrödinger equation on a lattice hZd towards the
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continuous model as the step size of the lattice h tends to zero in [21]. The proof of the convergence
relies on uniform dispersive estimates in order to control the growth of the discrete Sobolev norms of the
solution, as well as bilinear estimates of the Shannon interpolation.

6.15 Numerical computation of dark solitons of a nonlocal nonlinear Schrödinger
equation

The existence and decay properties of dark solitons for a large class of nonlinear nonlocal Gross-Pitaevskii
equations with nonzero boundary conditions in dimension one has been established recently by A. de
Laire and S. López-Martínez in [8]. Mathematically, these solitons correspond to minimizers of the
energy at fixed momentum and are orbitally stable. In the paper [18], A. de Laire, G. Dujardin and S.
López-Martínez provide a numerical method to compute approximations of such solitons for these types
of equations, and give actual numerical experiments for several types of physically relevant nonlocal
potentials. These simulations allow them to obtain a variety of dark solitons, and to comment on their
shapes in terms of the parameters of the nonlocal potential. In particular, they suggest that, given the
dispersion relation, the speed of sound and the Landau speed are important values to understand the
properties of these dark solitons. They also allow them to test the necessity of some sufficient conditions
in the theoretical result proving existence of the dark solitons.

6.16 Linearly implicit high-order numerical methods for evolution problems

G. Dujardin and his collaborator introduced a new class of numerical methods for the time integration
of evolution equations set as Cauchy problems of ODEs or PDEs, in the research direction detailed in
Section 3.3. The systematic design of these methods mixes the Runge–Kutta collocation formalism with
collocation techniques, in such a way that the methods are linearly implicit and have high order. A
specific analysis of Runge–Kutta collocation methods for this purpose was carried out by G. Dujardin
and his collaborator [24]. The fact that these methods are implicit allows to avoid CFL conditions when
the large systems to integrate come from the space discretization of evolution PDEs. Moreover, these
methods proved to be efficient since they only require to solve one linear system of equations at each
time step, and efficient techniques from the literature can be used to do so [25].

6.17 Exponential integrators for the stochastic Manakov system

The Manakov system is a system of dispersive stochastic PDEs modelling the propagation of light in
optical fibers taking into account the polarization mode dispersion effects. In [10], G. Dujardin and
his collaborators developed and analyzed an exponential integrator for the numerical solution of this
stochastic PDE system. In particular, they proved that this exponential integrator has strong order 1/2 for
a truncated nonlinearity and they infered that is also has order 1/2 in probability and order 1/2 almost
surely, for general nonlinearities. Moreover, they provided several numerical experiments illustrating
their theoretical results as well as the efficiency of their numerical integrator.

6.18 Uniform estimates for numerical schemes applied to parabolic problems with
Neumann boundary conditions

In [26], G. Dujardin and his collaborator tackled the problem of proving uniform-in-time order estimates
for a scheme integrating the linear heat equation with homogeneous pure Neumann boundary conditions
on a bounded interval. Despite the lack of consistency of the discretization of the boudary condition
with the Laplace operator, they proved that the scheme they consider is of order 1 in space and time
uniformly-in-time. They applied this result to the question of the numerical computation of stationary
states to nonhomogeneous heat equations.

7 Partnerships and cooperations
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Participants: Quentin Chauleur, Stephan De Bièvre, André de Laire, Guillaume Du-
jardin, Olivier Goubet.

7.1 International research visitors

7.1.1 Visits of international scientists

Salvador López-Martínez

Status Researcher

Institution of origin: Univeridad Autónoma de Madrid

Country: Spain

Dates: July 17-21

Context of the visit: Research collaboration with A. de Laire and G. Dujardin

Mobility program/type of mobility: Research stay

7.1.2 Visits to international teams

Research stays abroad

Clément Erignoux

Visited institution: Università Roma Tre

Country: Italy

Dates: Feb. 6-8, 2023

Context of the visit: Closing conference of Alessandro Giuliani’s ERC grant.

André de Laire

Visited institution: Universidad Autónoma de Madrid

Country: Spain

Dates: Feb. 20-27, 2023

Context of the visit: Research collaboration with S. López-Martínez

Clément Erignoux

Visited institution: Weierstrass Institute Berlin

Country: Germany

Dates: May 11-17, 2023

Context of the visit: Scientific collaboration with Robert Patterson and Julian Kern.

http://www.mat.uniroma3.it/users/giuliani/public_html/ERC2023/index.html
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Clément Erignoux

Visited institution: Newton Institute, Cambridge University

Country: United Kingdom

Dates: July 3-11, 2023

Context of the visit: Invited speaker to the workshop Building a bridge between non-equilibrium statist-
ical physics and biology, collaboration with Robert Jack, Maria Bruna, and James Mason

Olivier Goubet

Visited institution: Universidad de Chile

Country: Chile

Dates: Sep. 8-15, 2023

Context of the visit: Research collaboration with C. Muñoz

Stephan De Bièvre

Visited institution: Cambridge University

Country: UK

Dates: Dec. 1-10, 2023

Context of the visit: Research collaboration with D. Arvidsson

André de Laire

Visited institution: Universidad de Chile

Country: Chile

Dates: Dec. 18-26, 2023

Context of the visit: Research collaboration with C. Muñoz and participation to the Annual Meeting of
the Chilean Mathematical Society

7.2 National initiatives

7.2.1 LabEx CEMPI

Through their affiliation to the Laboratoire Paul Painlevé of Université de Lille, PARADYSE team members
benefit from the support of the LabEx CEMPI. In addition, the LabEx CEMPI is funding the post-doc of
Quentin Chauleur in the team, in an interdisciplinary initiative between PhLAM and LPP.

Title: Centre Européen pour les Mathématiques, la Physique et leurs Interactions

Partners: Laboratoire Paul Painlevé (LPP) and Laser Physics department (PhLAM), Université de Lille

ANR reference: 11-LABX-0007

Duration: February 2012 - December 2024 (the project has been renewed in 2019)

Budget: 6 960 395 euros

Coordinator: Emmanuel Fricain (LPP, Université de Lille)

https://www.newton.ac.uk/event/splw01/
https://www.newton.ac.uk/event/splw01/
https://sites.google.com/uchile.cl/somachi2023/inicio?authuser=0
https://sites.google.com/uchile.cl/somachi2023/inicio?authuser=0
https://cempi.univ-lille.fr/
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The "Laboratoire d’Excellence" CEMPI (Centre Européen pour les Mathématiques, la Physique et leurs
Interactions), a project of the Laboratoire de mathématiques Paul Painlevé (LPP) and the laboratoire
de Physique des Lasers, Atomes et Molécules (PhLAM), was created in the context of the "Programme
d’Investissements d’Avenir" in February 2012. The association Painlevé-PhLAM creates in Lille a research
unit for fundamental and applied research and for training and technological development that covers a
wide spectrum of knowledge stretching from pure and applied mathematics to experimental and applied
physics. The CEMPI research is at the interface between mathematics and physics. It is concerned with
key problems coming from the study of complex behaviors in cold atoms physics and nonlinear optics, in
particular fiber optics. It deals with fields of mathematics such as algebraic geometry, modular forms,
operator algebras, harmonic analysis, and quantum groups, that have promising interactions with several
branches of theoretical physics.

8 Dissemination

Participants: Stephan De Bièvre, André de Laire, Guillaume Dujardin, Clé-
ment Erignoux, Olivier Goubet.

8.1 Promoting scientific activities

8.1.1 Scientific events: organisation

• Nonlinear Analysis and PDE in Lille, held at the Centre Inria de l’Université de Lille, on February
1-3, 2023. Organizers: A. de Laire and P. Gravejat.

• Journée des Doctorants en Mathématiques de la région Hauts-de-France, held at Université de
Technologie de Compiègne, on September 15, 2023. Organizers: S. Biard, M. Davila, A. de Laire, A.
El Mazouni, R. Ernst, B. Testud.

• Colloque à la mémoire d’Ezzeddine Zahrouni, held at the University of Monastir (Tunisia). Organ-
izers: O. Goubet et al.

8.1.2 Journal

Member of the editorial boards

• S. De Bièvre is associate editor of the Journal of Mathematical Physics (since January 2019).

• O. Goubet is the editor-in-chief of the North-Western European Journal of Mathematics.

• O. Goubet is associate editor of ANONA (Advances in Nonlinear Analysis).

• O. Goubet is associate editor of the Journal of Mathematical Study.

Reviewer - reviewing activities All permanent members of the PARADYSE team work as referees for
many of the main scientific publications in analysis, partial differential equations, probability and
statistical physics, depending on their respective fields of expertise.

8.1.3 Invited talks

All PARADYSE team members take active part in numerous scientific conferences, workshops and sem-
inars, and in particular give frequent talks both in France and abroad.

https://indico.math.cnrs.fr/event/8985/
https://indico.math.cnrs.fr/event/9649/
https://dimenza.perso.math.cnrs.fr/zahrouni.html
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8.1.4 Research administration

• S. De Bièvre and A. de Laire are both members of the “Conseil de Laboratoire Paul Painlevé” at
Université de Lille.

• S. De Bièvre is a member of the executive committee of the LabEx CEMPI.

• A. de Laire is a member of the “Fédération de Recherche Mathématique des Hauts-de-France”.

• A. de Laire is a member of the “Domain Board” of the Graduate School MADIS.

• G. Dujardin is a member of the Executive Committee of the CPER WaveTech.

• O. Goubet is a member of the "Conseil de département de mathématiques" at Université de Lille.

• O. Goubet is a member of the "Bureau du HUB numérique" of the I-Site U-Lille.

• O. Goubet, former President of SMAI, is a member of the "Conseil d’Administration de la SMAI".

8.2 Teaching - Supervision - Juries

8.2.1 Teaching

The PARADYSE team teaches various undergraduate level courses in several partner universities. We only
make explicit mention here of the Master courses (level M1-M2) and the doctoral courses.

• Master: A. de Laire, "Analyse numérique pour les EDP", M1 (Université de Lille, 60h).

• Master: A. de Laire, "Modeling", M2 (Université de Lille, 20h).

• Master: A. de Laire, "Prerequisites in Numerical Analysis", M2 (Université de Lille, 20h).

• Master: O. Goubet, "Exemples de problèmes elliptiques et paraboliques", M1 (Université de Lille,
24h).

• Doctoral School: S. De Bièvre, "Quantum information" (Université de Lille, 24h).

8.2.2 Supervision

• During the period April-July 2023, C. Erignoux co-supervised with M. Simon (Lyon 1) the M2
Internship of Hugo Da Cunha (ENS Lyon), titled "Processus d’exclusion facilité en contact avec des
réservoirs".

• During the period April-July 2023, C. Erignoux supervised the M2 Internship of Brune Massoulié
(École Polytechnique), titled "Temps de transience du processus d’exclusion facilité".

• During the period April-September 2023, O. Goubet supervised the M2 Internship of Céline Wang
(ECL and U-Lille), titled "Modélisation mathématique d’une dynamique invasive", and has been su-
pervising her PhD thesis since October 2023, titled "Modèles mathématiques pour la reproduction
et la migration d’espèces forestières".

• During the period May-June 2023, O. Goubet (and C. Calgaro) supervised the M1 internship of
Abdoul Aziz Diallo (U-Lille) on the modelling of the migration of an insect species.

• S. De Bièvre is supervising the PhD thesis of Christopher Langrenez on "KD nonclassicality", during
2022-2025.

• A. de Laire and O. Goubet are supervising the PhD thesis of Erwan Le Quiniou on the "Study of a
quasilinear Gross-Pitaevskii equation", during 2022-2025.

• G. Dujardin co-supervised with D. Cohen the PhD thesis of Andre Berg (University of Umeå, 2018-
2023), entitled "Numerical analysis and simulation of stochastic partial differential equations with
white noise dispersion". The defense took place on September 25, 2023.

https://edmadis.univ-lille.fr/en/organisation-1/madis-structure
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8.2.3 Juries

A. de Laire served as reviewer for the PhD thesis of Anatole Guérin (University Paris-Saclay, June 9, 2023),
entitled "Dispersive and focussing results for the Schrödinger equation and applications to the binormal
fow", supervised by Nicolas Burq and Valeria Banica.

O. Goubet served as reviewer for the PhD thesis of Dieunel Dor (U. Poitiers, December 4, 2023),
entilted "Mathematical models for growing cancer tumors", supervised by Alain Miranville.

O. Goubet served as reviewer for the PhD thesis of Cheikou Oumar Diaw, (U. Cergy, November 30,
2023), entilted "viscosity solutions for degenerated fully nonlinear equations", supervised by Françoise
Demengel.

O. Goubet served as reviewer for the PhD thesis of Lu Li (U. Poitiers, March 10, 2023), entitled "The
PDE type models for the growth of glial cells", supervised by Alain Miranville and Rémy Guillevin
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