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2 Overall objectives

Research in PARKAS focuses on the design, semantics, and compilation of programming languages which
allow going from parallel deterministic specifications to target embedded code executing on sequential
or multi-core architectures. We are driven by the ideal of a mathematical and executable language used
both to program and simulate a wide variety of systems, including real-time embedded controllers in
interaction with a physical environment (e.g., fly-by-wire, engine control), computationally intensive
applications (e.g., video), and compilers that produce provably correct and efficient code.

The team bases its research on the foundational work of Gilles Kahn on the semantics of deterministic
parallelism, the theory and practice of synchronous languages and typed functional languages, synchron-
ous circuits, modern (polyhedral) compilation, and formal models to prove the correctness of low-level
code.
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To realize our research program, we develop languages (LUCID SYNCHRONE, REACTIVEML, LUCY-N,
ZELUS), compilers, contributions to open-source projects (Sundials/ML), and formalizations in Interact-
ive Theorem Provers of language semantics (Vélus and n-synchrony). These software projects constitute
essential “laboratories”: they ground our scientific contributions, guide and validate our research through
experimentation, and are an important vehicle for long-standing collaborations with industry.

3 Research program

3.1 Programming Languages for Cyber-Physical Systems

We study the definition of languages for reactive and Cyber-Physical Systems in which distributed
control software interacts closely with physical devices. We focus on languages that mix discrete-time
and continuous-time; in particular, the combination of synchronous programming constructs with
differential equations, relaxed models of synchrony for distributed systems communicating via periodic
sampling or through buffers, and the embedding of synchronous features in a general purpose ML
language.

The synchronous language SCADE based on synchronous languages principles, is ideal for program-
ming embedded software and is used routinely in the most critical applications. But embedded design
also involves modeling the control software together with its environment made of physical devices
that are traditionally defined by differential equations that evolve on a continuous-time basis and ap-
proximated with a numerical solver. Furthermore, compilation usually produces single-loop code, but
implementations increasingly involve multiple and multi-core processors communicating via buffers
and shared-memory.

The major player in embedded design for cyber-physical systems is undoubtedly SIMULINK, with
MODELICA a new player. Models created in these tools are used not only for simulation, but also for test-
case generation, formal verification, and translation to embedded code. That said, many foundational
and practical aspects are not well-treated by existing theory (for instance, hybrid automata), and current
tools. In particular, features that mix discrete and continuous time often suffer from inadequacies and
bugs. This results in a broken development chain: for the most critical applications, the model of the
controller must be reprogrammed into either sequential or synchronous code, and properties verified
on the source model have to be reverified on the target code. There is also the question of how much
confidence can be placed in the code used for simulation.

We attack these issues through the development of the ZELUS research prototype, industrial collabor-
ations with the SCADE team at ANSYS/Esterel-Technologies, and collaboration with Modelica developers
at Dassault-Systèmes and the Modelica association. Our approach is to develop a conservative extension
of a synchronous language capable of expressing in a single source text a model of the control software
and its physical environment, to simulate the whole using off-the-shelf numerical solvers, and to generate
target embedded code. Our goal is to increase faithfulness and confidence in both what is actually
executed on platforms and what is simulated. The goal of building a language on a strong mathematical
basis for hybrid systems is shared with the Ptolemy project at UC Berkeley; our approach is distinguished
by building our language on a synchronous semantics, reusing and extending classical synchronous
compilation techniques.

Adding continuous time to a synchronous language gives a richer programming model where reactive
controllers can be specified in idealized physical time. An example is the so called quasi-periodic
architecture studied by Caspi, where independent processors execute periodically and communicate
by sampling. We have applied ZELUS to model a class of quasi-periodic protocols and to analyze an
abstraction proposed for model-checking such systems.

Communication-by-sampling is suitable for control applications where value timeliness is paramount
and lost or duplicate values tolerable, but other applications—for instance, those involving video streams—
seek a different trade-off through the use of bounded buffers between processes. We developed the
n-synchronous model and the programming language LUCY-N to treat this issue.

https://www.ansys.com/products/embedded-software/ansys-scade-suite
http://www.mathworks.com/products/simulink
https://www.modelica.org
https://zelus.di.ens.fr
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3.2 Compiling for Sequential and Multi-Core Processors

We develop compilation techniques for sequential and multi-core processors, and efficient parallel
run-time systems for computationally intensive real-time applications (e.g., video and streaming). We
study the generation of parallel code from synchronous programs, compilation techniques based on the
polyhedral model, and the exploitation of synchronous Single Static Assignment (SSA) representations in
general purpose compilers.

We consider distribution and parallelism as two distinct concepts.

• Distribution refers to the construction of multiple programs which are dedicated to run on specific
computing devices. When an application is designed for, or adapted to, an embedded multipro-
cessor, the distribution task grants fine grained—design- or compilation-time—control over the
mapping and interaction between the multiple programs.

• Parallelism is about generating code capable of efficiently exploiting multiprocessors. Typically
this amounts to making (in)dependence properties, data transfers, atomicity and isolation explicit.
Compiling parallelism translates these properties into low-level synchronization and communica-
tion primitives and/or onto a runtime system.

We also see a strong relation between the foundations of synchronous languages and the design of
compiler intermediate representations for concurrent programs. These representations are essential to
the construction of compilers enabling the optimization of parallel programs and the management of
massively parallel resources. Polyhedral compilation is one of the most popular research avenues in this
area. Indirectly, the design of intermediate representations also triggers exciting research on dedicated
runtime systems supporting parallel constructs. We are particularly interested in the implementation of
non-blocking dynamic schedulers interacting with decoupled, deterministic communication channels to
hide communication latency and optimize local memory usage.

While distribution and parallelism issues arise in all areas of computing, our programming language
perspective pushes us to consider four scenarios:

1. designing an embedded system, both hardware and software, and codesign;

2. programming existing embedded hardware with functional and behavioral constraints;

3. programming and compiling for a general-purpose or high-performance, best-effort system;

4. programming large scale distributed, I/O-dominated and data-centric systems.

We work on a multitude of research experiments, algorithms and prototypes related to one or more of
these scenarios. Our main efforts focused on extending the code generation algorithms for synchronous
languages and on the development of more scalable and widely applicable polyhedral compilation
methods.

3.3 Validation and Proof of Compilers

Compilers are complex software and not immune from bugs. We work on validation and proof tools for
compilers to relate the semantics of source programs with the corresponding executable code.

The formal validation of a compiler for a synchronous language, or more generally for a language
based on synchronous block diagrams, promises to reduce the likelihood of compiler-introduced bugs,
the cost of testing, and also to ensure that properties verified on the source model hold of the target
code. Such a validation would be complementary to existing industrial qualifications which certify
the development process and not the functional correctness of a compiler. The scientific interest is in
developing models and techniques that both facilitate the verification and allow for convenient reasoning
over the semantics of a language and the behavior of programs written in it.
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3.4 Probabilistic Reactive Programming

Most embedded systems evolve in an open, noisy environment that they only perceive through noisy
sensors (e.g., accelerometers, cameras, or GPS). Another level of uncertainty comes from interactions
with other autonomous entities (e.g., surrounding cars, or pedestrians crossing the street). Yet, to date,
existing tools for cyber-physical system have had limited support for modeling uncertainty, to simulate
the behavior of the systems, or to infer parameters from noisy observations. The classic approach consists
in hand-coding robust stochastic controllers. But this solution is limited to well-understood and relatively
simple tasks like the lane following assist system. However, no such controller can handle, for example,
the difficult to anticipate behavior of a pedestrian crossing the street. A modern alternative is to rely on
deep-learning techniques. But neural networks are black-box models that are notoriously difficult to
understand and verify. Training them requires huge amounts of curated data and computing resources
which can be problematic for corner-case scenarios in embedded control systems.

Over the last few years, Probabilistic Programming Languages (PPL) have been introduced to describe
probabilistic models and automatically infer distributions of parameters from observed data. Compared
to deep-learning approaches, probabilistic models show great promise: they overtly represent uncertainty,
and they enable explainable models that can capture both expert knowledge and observed data.

A probabilistic reactive language provides the facilities of a synchronous language to write control
software, with probabilistic constructs to model uncertainties and perform inference-in-the-loop. This
approach offers two key advantages for the design of embedded systems with uncertainty: 1) Probabilistic
models can be used to simulate an uncertain environment for early stage design and incremental
development. 2) The embedded controller itself can rely on probabilistic components which implement
skills that are out of reach for classic automatic controllers.

4 Application domains

4.1 Embedded Control Software

Embedded control software defines the interactions of specialized hardware with the physical world. It
normally ticks away unnoticed inside systems like medical devices, trains, aircraft, satellites, and factories.
This software is complex and great effort is required to avoid potentially serious errors, especially over
many years of maintenance and reuse.

Engineers have long designed such systems using block diagrams and state machines to represent the
underlying mathematical models. One of the key insights behind synchronous programming languages
is that these models can be executable and serve as the base for simulation, validation, and automatic
code generation. This approach is sometimes termed Model-Based Development (MBD). The SCADE
language and associated code generator allow the application of MBD in safety-critical applications. They
incorporate ideas from LUSTRE, LUCID SYNCHRONE, and other programming languages.

4.2 Hybrid Systems Design and Simulation

Modern embedded systems are increasingly conceived as rich amalgams of software, hardware, net-
working, and physical processes. The terms Cyberphysical System (CPS) or Internet-of-Things (IoT) are
sometimes used as labels for this point of view.

In terms of modeling languages, the main challenges are to specify both discrete and continuous
processes in a single hybrid language, give meaning to their compositions, simulate their interactions,
analyze the behavior of the overall system, and extract code either for target control software or more
efficient, possibly online, simulation. Languages like Simulink and Modelica are already used in the
design and analysis of embedded systems; it is more important than ever to understand their underlying
principles and to propose new constructs and analyses.



6 Inria Annual Report 2023

5 New software, platforms, open data

5.1 New software

5.1.1 Zelus

Keywords: Numerical simulations, Compilers, Embedded systems, Hybrid systems

Scientific Description: The Zélus implementation has two main parts: a compiler that transforms Zélus
programs into OCaml programs and a runtime library that orchestrates compiled programs and
numeric solvers. The runtime can use the Sundials numeric solver, or custom implementations of
well-known algorithms for numerically approximating continuous dynamics.

Functional Description: Zélus is a new programming language for hybrid system modeling. It is based
on a synchronous language but extends it with Ordinary Differential Equations (ODEs) to model
continuous-time behaviors. It allows for combining arbitrarily data-flow equations, hierarchical
automata and ODEs. The language keeps all the fundamental features of synchronous languages:
the compiler statically ensure the absence of deadlocks and critical races, it is able to generate
statically scheduled code running in bounded time and space and a type-system is used to distin-
guish discrete and logical-time signals from continuous-time ones. The ability to combines those
features with ODEs made the language usable both for programming discrete controllers and their
physical environment.

URL: https://zelus.di.ens.fr

Publications: hal-03051954v1, hal-02333603v1, hal-02426533v1, inria-00554271v1, hal-01242732v1, hal-
00654113v1, hal-00909029v1, hal-01575621v4, hal-01575631v1, hal-00766726v1, hal-00938891v1,
hal-00654112v1, hal-01879026v1, hal-01549183v2, hal-00938866v1

Contact: Marc Pouzet

Participants: Marc Pouzet, Timothy Bourke

Partner: ENS Paris

5.1.2 Vélus

Name: Verified Lustre Compiler

Keywords: Synchronous Language, Compilation, Software Verification, Coq, Ocaml

Functional Description: Vélus is a prototype compiler from a subset of Lustre to assembly code. It
is written in a mix of Coq and OCaml and incorporates the CompCert verified C compiler. The
compiler includes formal specifications of the semantics and type systems of Lustre, as well as the
semantics of intermediate languages, and a proof of correctness that relates the high-level dataflow
model to the values produced by iterating the generated assembly code.

Release Contributions: Vélus 3.0 introduces syntax and semantics for Lustre (previous versions only
treated the normalized form of Lustre). It includes a verified normalization pass that transforms
Lustre programs into NLustre programs.

URL: https://velus.inria.fr

Publications: hal-01817949, hal-03287572, hal-01512286, hal-01403830, tel-03068862, hal-02005639,
hal-02426573, hal-03370264

Contact: Timothy Bourke

Participants: Timothy Bourke, Basile Pesin, Paul Jeanmaire, Marc Pouzet

https://zelus.di.ens.fr
https://hal.inria.fr/hal-03051954v1
https://hal.inria.fr/hal-02333603v1
https://hal.inria.fr/hal-02426533v1
https://hal.inria.fr/inria-00554271v1
https://hal.inria.fr/hal-01242732v1
https://hal.inria.fr/hal-00654113v1
https://hal.inria.fr/hal-00654113v1
https://hal.inria.fr/hal-00909029v1
https://hal.inria.fr/hal-01575621v4
https://hal.inria.fr/hal-01575631v1
https://hal.inria.fr/hal-00766726v1
https://hal.inria.fr/hal-00938891v1
https://hal.inria.fr/hal-00654112v1
https://hal.inria.fr/hal-01879026v1
https://hal.inria.fr/hal-01549183v2
https://hal.inria.fr/hal-00938866v1
https://velus.inria.fr
https://hal.inria.fr/hal-01817949
https://hal.inria.fr/hal-03287572
https://hal.inria.fr/hal-01512286
https://hal.inria.fr/hal-01403830
https://hal.inria.fr/tel-03068862
https://hal.inria.fr/hal-02005639
https://hal.inria.fr/hal-02426573
https://hal.inria.fr/hal-03370264
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5.1.3 ProbZelus

Keywords: Probabilistic Programming, Synchronous Language

Scientific Description: ProbZelus is a probabilistic reactive language which provides the facilities of a
synchronous language to write control software, with probabilistic constructs to model uncertain-
ties and perform inference-in-the-loop.

Functional Description: ProbZelus is built on top of Zelus a dataflow language à la Scade/Lustre and
offers several streaming inference techniques including classic Sequential Monte Carlo (SMC)
algorithms and semi-symbolic inference algorithm based on delayed sampling.

URL: https://github.com/IBM/probzelus

Authors: Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, Michael
Carbin

Contact: Guillaume Baudart

Partners: CSAIL, IBM

5.1.4 presseail

Name: All-in-Lustre Compiler

Keywords: Embedded systems, Compilers, Synchronous Language, Real-time application

Functional Description: The input to the compiler is the rate-synchronous language described in our
ECRTS 2023 article. The compiler generates and Integer Linear Programming (ILP) problem that
includes data dependency and resource constraints. The problem is solved using an external
solver and the resulting schedule is used by the compiler to generate sequential code using a
generalization of the modular clock-driven compilation scheme used in modern Lustre/Scade
compilers. The compiler implements special features for analyzing and eliminating cyclic data
dependencies.

Release Contributions: First version described in the ECRTS 2023 publication.

Contact: Timothy Bourke

5.1.5 SundialsML

Name: Sundials/ML

Keywords: Simulation, Mathematics, Numerical simulations

Scientific Description: Sundials/ML is a comprehensive OCaml interface to the Sundials suite of numer-
ical solvers (CVODE, CVODES, IDA, IDAS, KINSOL). Its structure mostly follows that of the Sundials
library, both for ease of reading the existing documentation and for adapting existing source code,
but several changes have been made for programming convenience and to increase safety, namely:

solver sessions are mostly configured via algebraic data types rather than multiple function calls,

errors are signalled by exceptions not return codes (also from user-supplied callback routines),

user data is shared between callback routines via closures (partial applications of functions),

vectors are checked for compatibility (using a combination of static and dynamic checks), and

explicit free commands are not necessary since OCaml is a garbage-collected language.

Functional Description: Sundials/ML is an OCaml interface to the Sundials suite of numerical solvers
(CVODE, CVODES, IDA, IDAS, KINSOL, ARKODE).

https://github.com/IBM/probzelus
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Release Contributions: Sundials/ML v6.0.0p0 adds support for v5.x and v6.x of the Sundials Suite of
numerical solvers. This includes the latest Arkode features, many vectors, and nonlinear solvers.

URL: http://inria-parkas.github.io/sundialsml/

Publications: hal-01408230v1, hal-01967659v1

Contact: Timothy Bourke

Participants: Jun Inoue, Marc Pouzet, Timothy Bourke

5.1.6 DeepStan

Keywords: Probabilistic Programming, Compilers, Stan, Pyro

Scientific Description: Stan is a probabilistic programming language that is popular in the statistics
community, with a high-level syntax for expressing probabilistic models. Stan differs by nature
from generative probabilistic programming languages like Pyro. DeepStan is a compiler from Stan
to Pyro. Building on Pyro we can extend Stan with support for explicit variational inference guides,
automatic guide generation, and deep probabilistic models.

Functional Description: The compiler is a fork of the Stanc3 compiler with two new backends for Pyro
and NumPyro. The runtime is packaged as an independent Python library and contains the Stan
standard library and thin wrapper for the Pyro/NumPyro runtime.

URL: https://github.com/deepppl

Contact: Guillaume Baudart

Participants: Guillaume Baudart, Louis Mandel

Partner: IBM

5.1.7 Heptagon

Keywords: Compilers, Synchronous Language, Controller synthesis

Functional Description: Heptagon is an experimental language for the implementation of embedded
real-time reactive systems. It is developed inside the Synchronics large-scale initiative, in col-
laboration with Inria Rhones-Alpes. It is essentially a subset of Lucid Synchrone, without type
inference, type polymorphism and higher-order. It is thus a Lustre-like language extended with
hierchical automata in a form very close to SCADE 6. The intention for making this new language
and compiler is to develop new aggressive optimization techniques for sequential C code and
compilation methods for generating parallel code for different platforms. This explains much of
the simplifications we have made in order to ease the development of compilation techniques.

The current version of the compiler includes the following features: - Inclusion of discrete controller
synthesis within the compilation: the language is equipped with a behavioral contract mechanisms,
where assumptions can be described, as well as an "enforce" property part. The semantics of this
latter is that the property should be enforced by controlling the behaviour of the node equipped
with the contract. This property will be enforced by an automatically built controller, which will act
on free controllable variables given by the programmer. This extension has been named BZR in
previous works. - Expression and compilation of array values with modular memory optimization.
The language allows the expression and operations on arrays (access, modification, iterators). With
the use of location annotations, the programmer can avoid unnecessary array copies.

URL: https://gitlab.inria.fr/synchrone/heptagon

Contact: Gwenaël Delaval

Participants: Adrien Guatto, Brice Gelineau, Cédric Pasteur, Eric Rutten, Gwenaël Delaval, Léonard
Gérard, Marc Pouzet

Partners: UGA, ENS Paris, Inria, LIG

http://inria-parkas.github.io/sundialsml/
https://hal.inria.fr/hal-01408230v1
https://hal.inria.fr/hal-01967659v1
https://github.com/deepppl
https://gitlab.inria.fr/synchrone/heptagon
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5.1.8 ZRun

Name: The ZRun Synchronous Language Interpreter

Keywords: Formal semantics, Interpreter, Ocaml, Reactive programming

Functional Description: ZRun is an executable semantics of a synchronous data-flow language. It takes
the form of a purely functional interpreter and is implemented in OCaml. The input of Zrun is
a large subset of the language Zélus, but only its discrete-time (synchronous) subset. The basic
primitives are those of Lustre: a unit non-initialized delay (pre), the initialization operator (->),
the initialized delay (fby), and streams can be defined by mutually recursive definitions. It also
provides richer programming constructs that were introduced in Lucid Synchrone and Scade 6, but
are not in Lustre: the by-case definition of streams, the last computed value of a signal, hierarchical
automata with parameters, stream functions with static parameters that are either know at compile
time or at instanciation time, and two forms of iteratiors on arrays: the "forward" to perform an
iteration in time, the "foreach" to perform an iteration on space.

The objective of this prototype is to give a reference executable semantics that is independent of a
compiler. It can be used, e.g., as an oracle for compiler testing, to execute unfinished programs or
programs that are semantically correct but are statically rejected by the compiler.

Release Contributions: Branch Master (2000) - v1.x. - first-order language, streams, hierarchical auto-
mata, by-case definition of streams, operator last.

Branch Works (2023): - v2.x - static higher-order, hierarchical automata with parameters, valued
signals. - arrays, - "forward" and "foreach" iterations.

URL: https://github.com/marcpouzet/zrun

Contact: Marc Pouzet

6 New results

6.1 Verified compilation of Lustre

Participants: Timothy Bourke, Paul Jeanmaire, Basile Pesin, Marc Pouzet.

Vélus is a compiler for a subset of LUSTRE and SCADE that is specified in the Coq [27] Interactive
Theorem Prover (ITP). It integrates the CompCert C compiler [28, 25] to define the semantics of machine
operations (integer addition, floating-point multiplication, etcetera) and to generate assembly code for
different architectures. The research challenges are to

• to mechanize, i.e., put into Coq, the semantics of the programming constructs used in modern
languages for Model-Based Development;

• to implement compilation passes and prove them correct;

• to interactively verify source programs and guarantee that the obtained invariants also hold of the
generated code.

Work continued this year on this long-running project in two main directions: improving the com-
pilation of shared variables, and developing constructive denotational models to facilitate interactive
verification.

https://github.com/marcpouzet/zrun
https://velus.inria.fr
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Compiling shared variables: This year, in the context of Basile Pesin’s thesis project, we completed
the work on the semantics and compilation of hierarchical state machines and related control structures.
Shared variables, defined with a last value, are a useful enhancment of state machines. They allow access
to the previous value of a variable relative to the whole state machine, rather than just the current state.
Importantly, they permit implicit completion: for a shared variable x, if no explicit definition is given,
then x = last x. This construct was already added to the Coq-based semantics, but it was compiled
away early in the compiler, which often results in unnecessary copying in the generated code. This
year, we modified the compiler so that last variables are carried right through to the back-end passes
which faciliates the elimination of redundant assignments and the associated correctness proofs. This
improvement required changes to all the intermediate languages, semantic definitions, and compilation
algorithms. In particuarly, we found it necessary to modify the Stc intermediate language to include both
‘next‘ and ‘last‘ definitions. In terms of expressivity, only one such form is necesary, but having both
facilitates optimizations and their correctness proofs, at the expense of more complicated semantics and
scheduling. Basile Pesin presented this work at EMSOFT 2023 [17] and defended his thesis in October
2023 [31].

Denotational semantics for program verification: To date we have focused on proving the correct-
ness of compilation passes. This involves specifying semantic models to define the input/output relation
associated with a program, implementing compilation functions to transform the syntax of a program,
and proving that the relation is unchanged by the functions. In addition to specifying compiler correct-
ness, semantic models can also serve as a base for verifying individual programs. The challenge is to
present and manipulate such detailed specifications in interactive proofs. The potential advantage is
to be able to reason on abstract models and to obtain, via the compiler correctness theorem, proofs
that apply to generated code. Making this idea work requires solving several scientific and technical
challenges. It is the subject of Paul Jeanmaire’s thesis.

This year we continued developing a Kahn-style semantics in Coq using C. Paulin-Mohring’s lib-
rary [30]. The model now treats the dataflow core of Lustre as presented in our EMSOFT 2021 article [26]
with the generalization to enumerated types. We show that, under specific conditions, the denota-
tional model satisfies the relational predicates used in the compiler correctness proof. This allows us
to strengthen the overall compiler correctness theorem. Rather than state “If a semantics exists for a
program, then it is preseved by the generated code”, we show that “Under specific conditions, a semantics
exists and it is preserved by the generated code”. The “specific conditions” are, as usual, that the source
program satisfies typing and clock typing rules, but also, that it is not subject to run-time errors. Run-time
errors cannot be ignored in our context of end-to-end proof. The CompCert definitions for several
arithmetic and logical operators are partial, for example, integer division by zero is not defined. Such
partiality simply propogates to the the Vélus relational model, but the denotational model is a total
function and operator failures must thus be modeled explicitly. We expressed the absence of run-time
errors as a predicate over the dynamic behavior of a program. We implemented a simple static analysis,
that nevertheless suffices for many practical programs, and showed that it is a sufficient condition for the
absence of run-time errors. The next version of the Vélus compiler will now print warning messages if
the source program uses features not treated in the denotational model or if the simple static analysis
cannot guarantee the absence of errors. In this case, it becomes the user’s responsability to show that
run-time errors cannot occur. Our denotational model clarifies several points about the clock typing and
Kahn semantics of the function reset operator. We are currently formalizing an alternative model for the
function reset operator to further improve our understanding of this topic. We have started drafting an
article on these results.

Glossary

Interactive Theorem Prover (ITP, also known as a proof assistant) Software for formal specification
and proof, with features for generating and checking proofs, and extracting programs for later
compilation

Model-Based Development (MBD) The specification of control software using block-diagrams,
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state machines, and other high-level constructions allowing programmers to focus on de-
scribing desired behaviour and to rely on automatic code generation to produce low-level
executables.

6.2 Latency-based scheduling of synchronous programs

Participants: Timothy Bourke, Marc Pouzet.

External collaborators: Michel Angot, Vincent Bregeon, and Matthieu Boitrel, (Airbus).
It is sometimes desirable to compile a single synchronous language program into multiple tasks for

execution by a real-time operating system. We have been investigating this question from three different
perspectives.

Scheduling and code generation for periodic streams: In this approach, the top-level node of a Lustre
program is distinguished from inner nodes. It may contain special annotations to specify the triggering
and other details of node instances from which separate “tasks” are to be generated. Special operators
are introduced to describe the buffering between top-level instances. Notably, different forms of the
when and current operators are provided. Some of the operators are under-specified and a constraint
solver is used to determine their exact meaning, that is, whether the signal is delayed by zero, one, or
more cycles of the receiving clock, which depends on the scheduling of the source and destination nodes.
Scheduling is formalized as a constraint solving problem based on latency constraints between some
pairs of input/outputs that are specified by the designer.

This year we presented our previous results at ECRTS 2023 [16]. We also looked more closely at the
possibilty of eliminating inter-period instantaneous cycles by adding constraints to the ILP scheduling
problem. This problem is related to the detection of feedback arc sets for which there are two well-
known encodings. Unfortunately, they can both induce a very large number of additional variables
and constraints in the ILP encoding. This is not surprising since the base problem is NP-hard. We thus
worked on mitigating heuristics. On the positive side, it turns out that our existing data-dependency and
end-to-end latency constraints are readily generalized to allow for “variable concomitance” which may
sometimes be useful for breaking instantanous cycles. In particular, we can require that the end-to-end
latency along a cycle of data dependencies be strictly greater than zero. The ILP solver is then free to
break dependencies by either scheduling the components in different phases or choosing concomitance
values to prevent cycles during microscheduling. We presented these preliminary results at the Synchron
2023 workshop. In the collaboration with Airbus we extended the prototype compiler with a hyper-period
expansion pass to permit an integration with the Lopht compiler. In the collaboration with Airbus we
extended the prototype compiler with a hyper-period expansion pass to permit an integration with the
Lopht compiler.

This work is funded by direct industrial contracts with Airbus.

6.3 The Zelus Language

Participants: Timothy Bourke, Guillaume Baudart, Marc Pouzet, Gregoire Bussone.

Zelus is our laboratory to experiment our research on programming languages for hybrid systems. It
is devoted to the design and implementation of systems that may mix discrete-time/continuous-time
signals and systems between those signals. It is first a synchronous language reminiscent of Lustre and
Lucid Synchrone with the ability to define functions that manipulate continuous-time signals defined
by Ordinary Differential Equations (ODEs) and zero-crossing events. The language is functional in the
sense that a system is a function from signals to signals (not a relation). It provides some features from
ML languages like higher-order and parametric polymorphism as well as dedicated static analyses.
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Distribution of the language The language, its compiler and examples (release 2.1) are on GitHub. It is
also available as an OPAM package. All the installation machinery has been greatly simplified.

The implementation of Zelus is now relatively mature. The language has been used in a collection
of advances projects; the most important of the recent years being the design and implementation of
ProbZelus on top of Zelus. This experiment called for several internal deep changes in the Zelus language.

One of the biggest troubles we faced when implementing Zélus was the lack of a tool to automatically
test the compiler and to prototype language extensions before finding how to incorporate in the language
and how to compile them. This is what motivated first our work on an executable semantics. The tool Zrun
works well now. It is detailled in the Section below. Based on it, we have started a new implementation of
Zélus with the objective that every pass of the compiler can be tested, using Zrun as an oracle.

6.4 A Constructive Synchronous Semantics

Participants: Baptiste Pauget, Marc Pouzet.

External collaborators: Jean-Louis Colaco (ANSYS, Toulouse, France); Michael Mendler (Univ. of
Bamberg, Germany).

In 2023, we have finished an experiment that stated right after the COVID, during the preparation of
a Master course given at University of Bamberg, in July 2020 (M. Pouzet, as an invited Professor). This
work has been presented at the EMSOFT conference this year, in September 2023 and at the SYNCHRON
Workshop, in November 2023, in Kiel (Gernany). It is published in the ACM TECS journal.

The purpose of this work is the definition of a formal and executable semantics for a reactive language
that can be used as an oracle for compiler testing and the formal verification of compiler steps. We have
considered a comprehensive synchronous language with programming constructs that exist in several
compilers (developed at PARKAS and elsewhere): its core is a language subset reminiscent of Lustre,
including the definition of stream functions and streams defined by mutually recursive defitions, the
point-wise application of combinational operations, the delay operator. It is extended with constructs
that do not exist in Lustre, like the by-case definitions of streams, hierarchical automata and the modular
reset. Those construct a part of Vélus, Scade and Zélus (developed at PARKAS), for example, and LustreC
(developed at ENSEEIHT, Toulouse). Two main approaches have been considered for defining the
semantics of a language with such constructs in the litterature: (i) an indirect collapsing semantics based
on a source-to-source translation of high-level constructs into a data-flow core language whose semantics
is precisely specified and is the entry for code generation; (ii) a relational synchronous semantics, either
state-based or stream-based, that applies directly to the source. It defines what is a valid synchronous
reaction but hides, on purpose, if a semantics exists, is unique and can be computed. Hence, it is not
executable and can thus not be used for compiler testing.

In this work, we define an executable semantics for a language that has all the above programming
constructs all together. It applies directly to the source language before static checks and compilation
steps. It is constructive in the sense that the language in which the semantics is defined is a statically typed
functional language with call-by-value and strong normalization, e.g., it is expressible in a proof-assistant
where all functions terminate. It leads to a reference, purely functional, interpreter. This semantics is
modular and can account for possible errors, allowing to establish what property is ensured by each static
verification performed by the compiler. It also clarifies how causality is treated in Scade compared with
Esterel.

This semantics can serve as an oracle for compiler testing and validation; to prototype novel language
constructs before they are implemented, to execute possibly unfinished models or that are correct but
rejected by the compiler; to prove the correctness of compilation steps.

In term of expressiveness, we went a little further with the treatment of array operators and two forms
of iterations, the iteration on time, named forward and the iteration in space, named foreach. The
former has been studied by B. Pauget in his PhD. thesis: it constists in iterating a stream function on an
array, interpreted as a finite stream and is reminiscent of "time refinement" (Caspi et Mikac, 2005; Mandel,
Pouzet and Pasteur, 2015). We also added static parameters and a limited form of higher-order (functions
of functions but no streams of functions). Those extensions are part of the source code distribution.

https://github.com/INRIA/zelus
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Our long term objective is to define an executable semantics for the Zélus language, dealing with
both discrete and continuous-time constructs. For the moment, only the discrete-time subset of Zélus
language is considered. Treating the whole language would lead to the very first operational semantics
for a hybrid systems modeling language.

The semantics is implemented as an interpreter in a purely functional style, in OCaml. The source
code of this development is available at the Zrun repository.

6.5 Design, Semantics and Implementation of a Memory Aware Synchronous data-
flow language for Computer Intensive Reactive Applications

Participants: Baptiste Pauget, Marc Pouzet, Grégoire Bussone.

External collaborators: Jean-Louis Colaco (ANSYS, Toulouse).
In his PhD., Baptiste Pauget studied the design, semantics and compilation of a reactive language

extended with array operators. Those operations are used in classical control systems applications (e.g.,
Kalman filtering, linear algebra operations) and more recent ones that involves optimization algorithms
and machine learning algorithems (e.g., neural networks). Existing languages, e.g., Lustre and Scade
but more widely all the existing block-diagram languages used for model-based design, e.g, Simulink,
are too limited in term of expressiveness and modularity. But more problematically, the generated
code is not as efficient as it should be. The consequence is that designer may have to model its system
in one language (e.g., Simulink, Scade) and to re-implement it into C code. One difficulty is that the
generated code contains many useless copies for arrays that are difficult to remove. This problem exist in
all purely functional language: how to generate code for functional arrays with in-place modifications
and a compile-time static allocation of memory.

Baptiste Pauget has addressed three aspects, with the support of a compiler prototype. (i) He de-
veloped a Hindley-Milner type system specifying sizes in the form of multivariate polynomials. This
proposal makes it possible to verify and infer most sizes in a modular way. (ii) He explored an alternative
compilation method, based on a memory-aware declarative language named MADL. It aims to reconcile
the data flow style with precise specification of memory locations. The modular size description is a
key element of this. In this language, copies must be explicit. Several programming constructs (e.g.,
concat, append, reverse, transpose, etc.) do not generate any code. They define a special view of a
memory location. MADL comes with a original type system that associate a location to every expression.
Type checking ensure that programs can be statically scheduled. (iii) Finally, he proposed an iteration
construction inspired by Sisal which complements current iterators. By treating tables as finite sequences,
it gives access to Scade’s sequential constructions (automata) during iterations. In addition, it makes it
possible to describe in a declarative manner efficient implementations of algorithms such as the Cholesky
decomposition. This controllable compilation is a necessary first step for compiling to GPUs.

In his PhD. thesis started in 2023, Grégoire Bussone pursues this work on the design, semantics and
implentation of a synchronous language, dealing with aggressive optimization techniques.

6.6 Polymorphic Types with Polynomial Sizes

Participants: Baptiste Pauget, Marc Pouzet.

External collaborators: Jean-Louis Colaco (ANSYS, Toulouse).
In this work, we present a compile-time analysis for tracking the size of data-structures in a statically

typed and strict functional language. This information is valuable for static checking and code generation.
Rather than relying on dependent types, we propose a type-system close to that of ML: polymorphism
is used to define functions that are generic in types and sizes; both can be inferred. This approach is
convenient, in particular for a language used to program critical embedded systems, where sizes are

https://zelus.di.ens.fr/zrun/emsoft2023
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indeed known at compile-time. By using sizes that are multivariate polynomials, we obtain a good
compromise between the expressiveness of the size language and its properties (verification, inference).

We define a minimal functional language that is sufficient to capture size constraints in types, present
its dynamic semantics, the type system and inference algorithm. Last, we sketch some practical extensions
that matter for a more realistic language.

This work has been presented at the conference ARRAY (associated with PLDI) in June 2023, the
international workshop SYNCHRON, in December 2023; at a seminar of the GDR GPL (group compilation).
It is published by ACM (ARRAY’23). This work is part of the PhD. thesis of B. Pauget defended in December
2023 [29].

6.7 Translation Validation Techniques for a Synchronous Language Compilers

Participants: Timoty Bourke, Grégoire Bussone, Marc Pouzet.

Grégoire Bussone stated his PhD. in April 2023. He studies the use of translation validation techniques
applied to a realistic synchronous language compiler. The objective is to deal with the compilation
of array operations and, more generally, memory location. Arrays are not supported in Vélus for the
moment. The problem is difficult and occurs in two situations: avoid copies for functional iterators
(e.g., map, fold, transpose, concat, reverse); optimize the representation of the state in the final target
code (e.g., C) and avoid useless copies for states whose lifetime never intersect (a classical situation
that comes for a Scade-like hierarchical automaton where all states are entered by reset). For this work,
we follow a translation validation approach, relying on an untrusted compiler and an independent but
trustable validation step. We also target a richer and type-safe language back-end (here Rust) instead
of C to transmit some of the invariants from the source. In the longer term, the purpose is to be able to
implement and to machine-check the correctness of compilation techniques for a synchronous language
with arrays and their efficient compilation.

During year 2023, several compilation steps that are implemented in the Zélus compiler have been
implemented as translation validation functions proved correct in Coq, notably the inlining, renaming,
scheduling, normalization. Internally, the technique employs the "locally nameless representation"
introduced by Chargueraud. The input language is, for the moment, a simple subset of Zélus. The
treatment of MADL is under way.

6.8 Reactive Probabilistic Programming

Participants: Guillaume Baudart, Marc Pouzet, Grégoire Bussone.

External collaborators: Louis Mandel (IBM), Erik Atkinson, Michael Carbin and Ellie Y. Cheng (MIT),
Waïss Azizian, Marc Lelarge (Inria), Christine Tasson (ISAE-Supaero).

Synchronous languages were introduced to design and implement real-time embedded systems with
a (justified) enphasis on determinacy. Yet, they interact with a physical environment that is only partially
known and are implemented on architectures subject to failures and noise (e.g., channels, variable
communication delays or computation time). Dealing with uncertainties is useful for online monitoring,
learning, statistical testing or to build simplified models for faster simulation. Actual synchronous and
languages provide limited support for modeling the non-deterministic behaviors that are omnipresent
in embedded systems. ProbZelus is a probabilistic extension of the synchronous language Zelus for the
design of reactive probabilistic models in interaction with an environment.

This year we continued this project along three main directions: 1) new semantics models 2) static
analysis for semi-symbolic inference, and 3) embedding ProbZelus ideas in Julia.

Schedule agnostic semantics for reactive probabilistic programming In ProbZelus, the semantics of
probabilistic models is only defined for scheduled equations. This is a significant limitation compared to
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synchronous dataflow languages where sets of mutually recursive equations are not ordered. This is a
key requirement for commercial synchronous data-flow languages where programs are written using a
block diagram graphical interface. Scheduling should not depend on the placement of the blocks which
motivate their definition as mutually recursive equations. Besides, the compiler implements a series of
source-to-source transformations which often introduces new variables in arbitrary order. Scheduling
local declarations is one of the very last compilation passes. The original semantics of ProbZelus is thus
far from what is exposed to the programmer and prevents reasoning about most program transformations
and compilation passes.

Building on existing semantics for deterministic synchronous languages, we proposed two schedule
agnostic semantics for ProbZelus. The key idea is to interpret probabilistic expressions as a stream of
un-normalized density functions which maps random variable values to a result and positive score. The
co-iterative semantics extends the original semantics to interpret mutually recursive equations using
a fixpoint operator. The relational semantics directly manipulates streams and is thus a better fit to
reason about program equivalence. We use the relational semantics to prove the correctness of a program
transformation required to run the Assumed Parameter Filter (APF) an optimized inference algorithm for
state-space models with constant parameters.

A preliminary version of this work is available online [24]. The work on the APF-based inference
engine (static analysis, compilation, runtime) was presented By G. Bussone at the Journées Francophones
des Langages Applicatifs (JFLA) 2023 [18].

Semi-symbolic Inference for Efficient Streaming Probabilistic Programming (with Erik Atkinson,
Michael Carbin, L. Mandel).

Advanced probabilistic inference algorithms combine exact and approximate inference to improve
performance in probabilistic programs, and often use various heuristics and optimizations. The inference
engine tries to compute exact solution as much as possible and falls back to approximate sampling when
symbolic computations fail. The dynamic nature of these systems comes at a cost: 1) The heuristics are
not guaranteed to be globally optimal, and 2) inference behavior is unpredictable.

We propose a new probabilistic language with a semi-symbolic inference engine based on our previous
work on Delayed Sampling and Semi-Symbolic inference. In this language the user can annotate the
program with constraints on the random variable representation (e.g., sampled or symbolic). A specialized
static analysis then checks at compile time if these constraints are satisfiable.

A short version of this work was presented at the VeriProP workshop at the International Conference
on Computer Aided Verification (CAV) 2023 [23].

OnlineSampling.jl (with Marc Lelarge and Waïss Azizian).
We continued our work on OnlineSampling.jl. OnlineSampling.jl is an embedded reactive probab-

ilistic language in Julia. Inspired by ProbZelus we designed a domain specific language for describing
reactive probabilistic models using Julia macros. Following ProbZelus ideas, the inference method is a
Rao-Blackwellised particle filter, a semi-symbolic algorithm which tries to analytically compute closed-
form solutions, and falls back to a particle filter when symbolic computations fail. For Gaussian random
variables with linear relations, we use belief propagation instead of delayed sampling if the factor graph is
a tree. We can thus compute exact solutions for a broader class of models.

This work was accepted at the SPIGM workshop at the International Conference on Machine Learning
(ICML) [20]

7 Bilateral contracts and grants with industry

7.1 Bilateral contracts with industry

Collaboration with Airbus

Participants: Timothy Bourke, Marc Pouzet.
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Our work on multi-clock Lustre programs is funded by contracts with Airbus.

8 Partnerships and cooperations

8.1 National initiatives

8.1.1 ANR

ANR JCJC FidelR

Participants: Timothy Bourke, Basile Pesin, Marc Pouzet, Paul Jeanmaire.

The ANR JCJC project “FidelR” led by T. Bourke began in 2020 and ended in December 2023.

9 Dissemination

9.1 Promoting scientific activities

9.1.1 Scientific events: organisation

• Timothy Bourke presided and organized, with D. Demange as vice-president, the Journées Franco-
phones des Langages Applicatifs (JFLA) 2023.

General chair, scientific chair

• Guillaume Baudart was co-chair with B. Greenman of the Artifact Evaluation Committee of the
OOPSLA 2023 conference.

Member of the conference program committees

• Guillaume Baudart served on the Languages for Inference workshop (LAFI) 2023 program commit-
tee.

• Guillaume Baudart served on the Languages, Compilers, Tools and Theory of Embedded Systems
conference (LCTES) 2023 program committee.

• Guillaume Baudart served on the Forum on specification and Design Languages (FDL) 2023 pro-
gram committee.

• Timothy Bourke served on the International Conference on Embedded Software (EMSOFT) 2023
program committee.

• Timothy Bourke served on the Euromicro Conference on Real-Time Systems (ECRTS) 2023 program
committee.

• Timothy Bourke served on the Workshop on Reactive and Event-Based Languages and Systems
(REBLS) 2023 program committee.

Reviewer

• Timothy Bourke reviewed an article for the International Conference on Interactive Theorem
Proving (ITP) 2023.

• Timothy Bourke reviewed an article for the International Conference on the Principles of Program-
ming Languages (POPL) 2024.
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Reviewer - reviewing activities

• Guillaume Baudart reviewed an article for the ACM Transactions on Software Engineering and
Methodology.

• Timothy Bourke reviewed an article for the Leibniz Transactions on Embedded Systems.

• Timothy Bourke reviewed articles for the ACM Transactions on Embedded Computing Systems.

9.1.2 Scientific expertise

• Timothy Bourke was an expert reviewer for the ANR AAPG 2023 call.

9.2 Teaching - Supervision - Juries

9.2.1 Teaching

• Marc Pouzet is Director of Studies for the CS department, at ENS.

• Licence : Marc Pouzet & Timothy Bourke: “Operating Systems” (L3), Lectures and TDs, ENS, France.

• Master : Marc Pouzet, Guillaume Baudart, & Timothy Bourke, “Models and Languages for Program-
ming Reactive Systems” (M1), Lectures and TDs, ENS, France.

• Master: Marc Pouzet & Timothy Bourke: “Synchronous Systems” (M2), Lectures and TDs, MPRI,
France

• Master: Marc Pouzet: “Synchronous Reactive Languages” (M2), Lectures, Master CPS (Cyber-
physical Systems, led by Giorgio Mover (École Polytechnique).

• Master: Marc Pouzet "The Elements of Computing Systems". Cycle pluridisciplinaire d’études
supérieures (CPES), L2.

• Master: Timothy Bourke: “A Programmer’s introduction to Computer Architectures and Operating
Systems" (M1), École Polytechnique, France

• Master: Timothy Bourke and Basile Pesin presented two lectures and TPs on Synchronous Lan-
guages in Carlos Agon’s course on concurrent models at Sorbonne Université.

• Master: Guillaume Baudart: “Synchronous Programming” (M2), TDs, Université de Paris, France

• Master: Guillaume Baudart: “Probabilistic Programming Languages” (M2), Lectures and TDs, MPRI,
France

• Aggregation: Guillaume Baudart: “Introduction to Software Engineering” (préparation à l’aggrégation
d’informatique), Lectures and TDs, France

• Bachelor: Timothy Bourke: “A Programmer’s introduction to Computer Architectures and Operating
Systems" (L2), École Polytechnique, France

9.2.2 Supervision

• Timothy Bourke supervised the L3 Internship of Vrushank Agrawal on “Model-Based Engineering
of Quadcopter Control Software”.

• Timothy Bourke supervised the M2 (MPRI) Internship of Paul Robert (MPRI)on “"Delay Sensitive
Static Scheduling of Periodic Synchronous Systems".

• Marc Pouzet supervised the M2 (MPRI)Internship of Antoine Grimod on "A clock-calculus for
Zélus".
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9.2.3 Juries

• Timothy Bourke was examiner for PhD defense of Jayanth Krishnamurthy (Université Côté d’Azur)

• Timothy Bourke was examiner for PhD defense of Nicolas Nalpon (INSA Toulouse)

• Timothy Bourke was examiner for PhD defense of Baptiste Pollien (ISAE SUPAERO)

• Timothy Bourke was examiner for PhD defense of Fabien Siron (Université Côté d’Azur)

• Marc Pouzet was reviewer of the HDR of Claire Maiza (Université Grenoble-Alpes)

• Marc Pouzet was reviewer of the HDR of Julien Forget (Université de Lille)

• Marc Pouzet was examiner for the HDR of Jérôme Feret (Ecole normale supérieure and PSL Univer-
sity)

• Marc Pouzet was examiner for PhD defense of Léo Gourdin (Université Grenble-Alpe). Dir: Sylvain
Boulmé et David Monniaux.

• Marc Pouzet was examiner for the PhD of Amaury Maille, Ecole normale supérieure de Lyon. Dir:
Ludovic Henrio and Matthieu Moy.

• Marc Pouzet was examiner for the PhD of Albin Salazar. Ecole normale supérieure and PSL Univer-
sity. Dir: Jérôme Feret.

9.2.4 PhD. Defenses at PARKAS

• Basile Pesin defended his PhD. the 13th of October, 2023 (Jury: Florence Maraninchi (President);
Magnus Myreen, Robert de Simone (Reviewers); Carlos Agon (IRCAM and Sorbonne Université;
Julien Forget, Xavier Leroy (Examiner).

• Baptiste Pauget defended his PhD. the 8th of December, 2023 (Jury: Jean-Louis Giavitto (President);
Albert Cohen, Francois Pottier (Reviewers); Yamine Ait-Ameur, Laure Gonnor (Examiner); Jean-
Louis Colaco, Marc Pouzet (director)

9.2.5 Internal or external Inria responsibilities

• Timothy Bourke served on the Jury for the Inria PARIS CRCN/ISFP Concours.

9.2.6 Education

• Timothy Bourke gave a “Chiche” presentation to the groups at the Lycée Montaigne, Paris 6e.

10 Scientific production

10.1 Major publications

[1] G. Baudart, L. Mandel, E. Atkinson, B. Sherman, M. Pouzet and M. Carbin. ‘Reactive probabilistic
programming’. In: PLDI 2020 - 41th ACM SIGPLAN International Conference in Programming
Language Design and Implementation. London / Virtual, United Kingdom, June 2020. DOI: 10.114
5/3385412.3386009. URL: https://hal.inria.fr/hal-03051954.

[2] T. Bourke, L. Brun, P.-E. Dagand, X. Leroy, M. Pouzet and L. Rieg. ‘A Formally Verified Compiler
for Lustre’. In: PLDI 2017 - 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM. Barcelone, Spain, June 2017. URL: https://hal.inria.fr/hal-0151228
6.
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[3] T. Bourke, F. Carcenac, J.-L. Colaço, B. Pagano, C. Pasteur and M. Pouzet. ‘A Synchronous Look at
the Simulink Standard Library’. In: EMSOFT 2017 - 17th International Conference on Embedded
Software. Seoul, South Korea: ACM Press, Oct. 2017, p. 23. URL: https://hal.inria.fr/hal-01
575631.

[4] T. Bourke, J.-L. Colaço, B. Pagano, C. Pasteur and M. Pouzet. ‘A Synchronous-based Code Generator
For Explicit Hybrid Systems Languages’. In: International Conference on Compiler Construction
(CC). LNCS. London, United Kingdom, July 2015. URL: https://hal.inria.fr/hal-01242732.

[5] T. Bourke, B. Pesin and M. Pouzet. ‘Verified Compilation of Synchronous Dataflow with State Ma-
chines’. In: ACM Transactions on Embedded Computing Systems. EMSOFT 2023: 23rd International
Conference on Embedded Software. Vol. 22. 5s. Hamburg, Germany, 30th Sept. 2023, 137:1–137:26.
DOI: 10.1145/3608102. URL: https://inria.hal.science/hal-04201401.

[6] L. Gérard, A. Guatto, C. Pasteur and M. Pouzet. ‘A modular memory optimization for synchronous
data-flow languages: application to arrays in a lustre compiler’. In: Proceedings of the 13th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers, Tools and Theory for Embed-
ded Systems. Beijing, China: ACM, June 2012, pp. 51–60. DOI: 10.1145/2248418.2248426. URL:
https://hal.inria.fr/hal-00728527.

[7] L. Mandel, F. Plateau and M. Pouzet. ‘Static Scheduling of Latency Insensitive Designs with Lucy-n’.
In: FMCAD 2011 - Formal Methods in Computer Aided Design. Austin, TX, United States, Oct. 2011.
URL: https://hal.inria.fr/hal-00654843.

[8] R. Morisset, P. Pawan and F. Zappa Nardelli. ‘Compiler testing via a theory of sound optimisations
in the C11/C++11 memory model’. In: PLDI 2013 - 34th ACM SIGPLAN conference on Programming
language design and implementation. Seattle, WA, United States: ACM, June 2013, pp. 187–196. DOI:
10.1145/2491956.2491967. URL: https://hal.inria.fr/hal-00909083.

[9] A. Pop and A. Cohen. ‘OpenStream: Expressiveness and Data-Flow Compilation of OpenMP Stream-
ing Programs’. In: ACM Transactions on Architecture and Code Optimization 9.4 (2013). Selected for
presentation at the HiPEAC 2013 Conf. DOI: 10.1145/2400682.2400712. URL: https://hal.in
ria.fr/hal-00786675.

[10] J. Sevcik, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan and P. Sewell. ‘CompCertTSO: A Verified
Compiler for Relaxed-Memory Concurrency’. In: Journal of the ACM (JACM) 60.3 (2013), art. 22:1–50.
DOI: 10.1145/2487241.2487248. URL: https://hal.inria.fr/hal-00909076.

[11] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset and F. Zappa Nardelli. ‘Common compiler
optimisations are invalid in the C11 memory model and what we can do about it’. In: POPL 2015 -
42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Mumbai, India,
Jan. 2015. URL: https://hal.inria.fr/hal-01089047.

10.2 Publications of the year

International journals

[12] J.-L. Colaço, M. Mendler, B. Pauget and M. Pouzet. ‘A Constructive State-based Semantics and
Interpreter for a Synchronous Data-flow Language with State Machines: Application to the Lan-
guage Scade’. In: ACM Transactions on Embedded Computing Systems (TECS) 22.5s (9th Sept. 2023),
Article 152: 1–26. DOI: 10.1145/3609131. URL: https://hal.science/hal-04491219.

[13] I. Rak-amnouykit, A. Milanova, G. Baudart, M. Hirzel and J. Dolby. ‘Principled and practical static
analysis for Python: Weakest precondition inference of hyperparameter constraints’. In: Software:
Practice and Experience 54.3 (2024), pp. 363–393. DOI: 10.1002/spe.3279. URL: https://hal.sc
ience/hal-04489590.

[14] S. Varoumas, B. Pesin, B. Vaugon and E. Chailloux. ‘Programming microcontrollers through high-
level abstractions: The OMicroB project’. In: Journal of Computer Languages 77 (Nov. 2023),
p. 101228. DOI: 10.1016/j.cola.2023.101228. URL: https://hal.sorbonne-universi
te.fr/hal-04279767.
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Invited conferences

[15] G. Baudart and C. Tasson. ‘Programmation réactive probabiliste’. In: 35es Journées Francophones
des Langages Applicatifs (JFLA 2024). Saint-Jacut-de-la-Mer, France, 30th Jan. 2024. URL: https:
//inria.hal.science/hal-04407154.

International peer-reviewed conferences

[16] T. Bourke, V. Bregeon and M. Pouzet. ‘Scheduling and Compiling Rate-Synchronous Programs
with End-To-End Latency Constraints’. In: Leibniz International Proceedings in Informatics. 35th
Euromicro Conference on Real-Time Systems (ECRTS 2023). Vol. 262. 35th Euromicro Conference
on Real-Time Systems (ECRTS 2023). Vienna, Austria, 3rd July 2023, 1:1–1:22. DOI: 10.4230/LIPIc
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National peer-reviewed Conferences

[18] G. Baudart, G. Bussone, L. Mandel and C. Tasson. ‘Filtrer sans s’appauvrir : inférer les paramètres
constants des modèles réactifs probabilistes’. In: Journées Francophones des Langages Applic-
atifs. JFLA 2023 - 34èmes Journées Francophones des Langages Applicatifs. Praz-sur-Arly, France,
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[19] T. Bourke, B. Pesin and M. Pouzet. ‘Analyse de dépendance vérifiée pour un langage synchrone à
flot de données’. In: Journées Francophones des Langages Applicatifs. JFLA 2023 - 34èmes Journées
Francophones des Langages Applicatifs. Praz-sur-Arly, France, 16th Jan. 2023, pp. 101–120. URL:
https://inria.hal.science/hal-03936656.

Conferences without proceedings

[20] W. Azizian, G. Baudart and M. Lelarge. ‘Automatic Rao-Blackwellization for Sequential Monte
Carlo with Belief Propagation’. In: SPIGM@ICML. Honolulu, United States, 28th July 2023. URL:
https://hal.science/hal-04488225.

[21] J.-L. Colaço, B. Pauget and M. Pouzet. ‘Polymorphic Types with Polynomial Sizes’. In: Proceed-
ings 9th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array
Programming (ARRAY 2023). 9th ACM SIGPLAN International Workshop on Libraries, Languages
and Compilers for Array Programming (ARRAY 2023). Orlando, United States: ACM, 6th June 2023,
pp. 36–49. DOI: 10.1145/3589246.3595372. URL: https://hal.science/hal-04491216.

Edition (books, proceedings, special issue of a journal)
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Reports & preprints
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