
2023
ACTIVITY REPORT

Project-Team

PROSECCO

RESEARCH CENTRE

Inria Paris Centre

Programming securely with cryptography

DOMAIN

Algorithmics, Programming, Software and
Architecture

THEME

Security and Confidentiality

Contents

Project-Team PROSECCO 1

1 Team members, visitors, external collaborators 3

2 Overall objectives 4
2.1 Programming securely with cryptography . 4

3 Research program 5
3.1 Symbolic verification of cryptographic applications . 5
3.2 Computational verification of cryptographic applications . 7
3.3 F*: A Higher-Order Effectful Language for Program Verification 7
3.4 Analysis of Rust Programs . 7
3.5 Provably secure web applications . 8
3.6 Design and Verification of next-generation protocols: identity, blockchains, and messaging 8
3.7 Formalizing Law . 8

4 Application domains 9
4.1 High-Assurance Cryptographic Libraries . 9
4.2 Design and Analysis of Protocol Standards . 9
4.3 Web application security . 9
4.4 Formalizing Law . 9

5 Social and environmental responsibility 10
5.1 Footprint of research activities . 10

6 Highlights of the year 10
6.1 Awards . 10

7 New software, platforms, open data 10
7.1 New software . 10

7.1.1 F* . 10
7.1.2 Steel . 11
7.1.3 HACL* . 11
7.1.4 DY* . 11
7.1.5 Hacspec . 12
7.1.6 Aeneas . 13
7.1.7 Charon . 13
7.1.8 mlang . 13
7.1.9 Catala . 14
7.1.10 ProVerif . 15
7.1.11 CryptoVerif . 15
7.1.12 Squirrel . 16
7.1.13 Easycrypt . 16
7.1.14 IPDL . 17

8 New results 17
8.1 Verification of security protocols in the symbolic model . 17
8.2 Verification of security protocols in the computational model 18
8.3 High-Assurance High-Performance Crypto . 19
8.4 Verification of cryptographic protocol implementations in the symbolic model: the DY*

framework . 19
8.5 Extensions to F* . 20
8.6 Formalizing and Implementing Law . 20
8.7 Verification of Rust programs: Aeneas and hacspec . 20

9 Bilateral contracts and grants with industry 21
9.1 Bilateral grants with industry . 21
9.2 Other funding . 21

10 Partnerships and cooperations 21
10.1 International initiatives . 21

10.1.1 Inria associate team not involved in an IIL or an international program 21
10.2 European initiatives . 22

10.2.1 Horizon Europe . 22
10.3 National initiatives . 23

10.3.1 PEPR . 23

11 Dissemination 24
11.1 Promoting scientific activities . 24

11.1.1 Scientific events: organisation . 24
11.1.2 Scientific events: selection . 24
11.1.3 Journal . 24
11.1.4 Invited talks . 24

11.2 Teaching - Supervision - Juries . 25
11.2.1 Teaching . 25
11.2.2 Supervision . 25

12 Scientific production 25
12.1 Major publications . 25
12.2 Publications of the year . 26
12.3 Cited publications . 28

Project PROSECCO 1

Project-Team PROSECCO

Creation of the Project-Team: 2012 July 01

Keywords

Computer sciences and digital sciences

A1.1. – Architectures

A1.1.8. – Security of architectures

A1.2. – Networks

A1.2.8. – Network security

A1.3. – Distributed Systems

A2. – Software

A2.1. – Programming Languages

A2.1.1. – Semantics of programming languages

A2.1.4. – Functional programming

A2.1.7. – Distributed programming

A2.1.11. – Proof languages

A2.2. – Compilation

A2.2.1. – Static analysis

A2.2.5. – Run-time systems

A2.4. – Formal method for verification, reliability, certification

A2.4.2. – Model-checking

A2.4.3. – Proofs

A2.5. – Software engineering

A4. – Security and privacy

A4.3. – Cryptography

A4.3.3. – Cryptographic protocols

A4.5. – Formal methods for security

A4.6. – Authentication

A4.8. – Privacy-enhancing technologies

Other research topics and application domains

B6. – IT and telecom

B6.1. – Software industry

B6.1.1. – Software engineering

B6.3. – Network functions

B6.3.1. – Web

B6.3.2. – Network protocols

B6.4. – Internet of things

https://radar.inria.fr/keywords/2023/computing
https://radar.inria.fr/keywords/2023/other

2 Inria Annual Report 2023

B9. – Society and Knowledge

B9.6.2. – Juridical science

B9.10. – Privacy

Project PROSECCO 3

1 Team members, visitors, external collaborators

Research Scientists

• Bruno Blanchet [Team leader, INRIA, Senior Researcher, from May 2023, HDR]

• Karthikeyan Bhargavan [Team leader, INRIA, Senior Researcher, until Apr 2023, HDR]

• Bruno Blanchet [INRIA, Senior Researcher, until Apr 2023, HDR]

• Vincent Cheval [INRIA, Researcher, until Aug 2023]

• Aymeric Fromherz [INRIA, ISFP]

• Adrien Koutsos [INRIA, Researcher]

• Denis Merigoux [INRIA, Starting Research Position]

• Kristina Sojakova [INRIA, Starting Research Position, until Jun 2023]

Post-Doctoral Fellows

• Lucas Franceschino [INRIA, Post-Doctoral Fellow, until May 2023]

• Charlie Jacomme [INRIA, Post-Doctoral Fellow, until Oct 2023]

PhD Students

• Alain Delaët–Tixeuil [INRIA]

• Son Ho [INRIA]

• Théo Laurent [INRIA]

• Antonin Reitz [INRIA]

• Justine Sauvage [INRIA]

• Théo Vignon [ENS PARIS-SACLAY, from Sep 2023]

• Théophile Wallez [INRIA]

Technical Staff

• Sidney Congard [INRIA, Engineer, until Mar 2023]

• Lucas Franceschino [INRIA, Engineer, from Jun 2023]

• Louis Gesbert [INRIA, Engineer]

• Paul-Nicolas Madelaine [INRIA, Engineer]

Interns and Apprentices

• Justine Banuls [INRIA, Intern, until Jun 2023]

• Rémy Citerin [ENS Paris, from Feb 2023 until Aug 2023]

Administrative Assistants

• Christelle Guiziou [INRIA]

• Christelle Rosello [INRIA, from Apr 2023]

4 Inria Annual Report 2023

Visiting Scientist

• Marie Alauzen [FONDATION INRIA, from Aug 2023 until Sep 2023]

External Collaborators

• Benjamin Beurdouche [MOZILLA]

• Mathieu Durero [DGFIP, from Jul 2023]

• Caroline Flori [DGFIP, from Jul 2023]

• Caroline Fontaine [CNRS, from Oct 2023]

• Damian Poddebniak [Cryspen]

• Jonathan Protzenko [MICROSOFT RESEARCH, from Feb 2023]

2 Overall objectives

2.1 Programming securely with cryptography

In recent years, an increasing amount of sensitive data is being generated, manipulated, and accessed
online, from bank accounts to health records. Both national security and individual privacy have come to
rely on the security of web-based software applications. But even a single design flaw or implementation
bug in an application may be exploited by a malicious criminal to steal, modify, or forge the private
records of innocent users. Such attacks are becoming increasingly common and now affect millions of
users every year.

The risks of deploying insecure software are too great to tolerate anything less than mathematical
proof, but applications have become too large for security experts to examine by hand, and automated
verification tools do not scale. Today, there is not a single widely-used web application for which we can
give a proof of security, even against a small class of attacks. In fact, design and implementation flaws are
still found in widely-distributed and thoroughly-vetted security libraries designed and implemented by
experts.

Software security is in crisis. A focused research effort is needed if security programming and analysis
techniques are to keep up with the rapid development and deployment of security-critical distributed
applications based on new cryptographic protocols and secure hardware devices. The goal of our team
PROSECCO is to draw upon our expertise in cryptographic protocols and program verification to make
decisive contributions in this direction.

Our vision is that, over its lifetime, PROSECCO will contribute to making the use of formal techniques
when programming with cryptography as natural as the use of a software debugger. To this end, our
long-term goals are to design and implement programming language abstractions, cryptographic mod-
els, verification tools, and verified security libraries that developers can use to deploy provably secure
distributed applications. Our target applications include cryptographic libraries, network protocol im-
plementations, web applications, and cloud-based web services. In particular, we aim to verify full
software applications, including both the cryptographic core and the high-level application code. Further-
more, we aim to verify implementations, not just models. Finally, we aim to account for computational
cryptography, not just its symbolic abstraction.

We identify four key focus areas for our research in the short- to medium term.

New programming languages for verified software Building realistic verified applications requires new
programming languages that enable the systematic development of efficient software hand-in-hand with
their proofs of correctness. We design and implement the programming language F*, in collaboration
with Microsoft Research. F* (pronounced F star) is a general-purpose functional programming language
with a state-of-the-art type-and-effect system aimed at program verification. Its type system includes
polymorphism, dependent types, monadic effects, refinement types, and a weakest precondition calculus.
Together, these features allow expressing precise and compact specifications for programs, including

Project PROSECCO 5

functional correctness and security properties. The F* type-checker aims to prove that programs meet
their specifications using a combination of SMT solving and interactive proofs. Programs written in F*
can be translated to efficient OCaml, F#, or C for execution. The main ongoing use cases of F* in our group
are HACL*, a verified cryptographic library, and DY*, a framework for verifying protocol implementations.
Nevertheless, we also consider non-cryptographic security software, for which we also use F* and its
extensions, for instance security-enhanced memory allocators, who are often the last line of defense
against memory vulnerabilities in critical C and C++ software [42].

We also design two frameworks for the analysis of Rust programs (hacspec and Aeneas), by translation
to various theorem provers including F*.

Recently, we extended our work on programming languages to a domain-specific language for imple-
menting law, for instance tax computation, which is also critical as it impacts every citizen. We indeed
noticed that much of the infrastructure and methodologies we developed for cryptographic security
software can be transferred to other domains in need of high-assurance software. The combination of
software engineering and formal methods that we employ at the Prosecco team may thus have a more
general field of application beyond cryptographic software.

Symbolic verification of cryptographic applications We aim to develop our own security verification
tools for models and implementations of cryptographic protocols and security APIs using symbolic
cryptography. Our starting point is the tools we have previously developed: the specialized cryptographic
prover ProVerif and the F* verification system via the DY* framework. These tools are already used to verify
industrial-strength cryptographic protocol implementations and commercial cryptographic hardware.
We plan to extend and combine these approaches to capture more sophisticated attacks on applications
consisting of protocols, software, and hardware, as well as to prove symbolic security properties for such
composite systems.

Computational verification of cryptographic applications We aim to develop our own cryptographic
application verification tools that use the computational model of cryptography. The tools include the
computational provers CryptoVerif and Squirrel, and the F* verification system. Working together, we
plan to extend these tools to analyze, for the first time, cryptographic protocols, security APIs, and their
implementations under fully precise cryptographic assumptions. We also plan to pursue links between
tools, in order to use each tool where it is the strongest.

Building provably secure web applications We aim to develop analysis tools and verified libraries to
help programmers build provably secure web applications. The tools will include static and dynamic
verification tools for client- and server-side JavaScript web applications, their verified deployment within
HTML5 websites and browser extensions, as well as type-preserving compilers from high-level applic-
ations written in F* to JavaScript. In addition, we plan to model new security APIs in browsers and
smartphones and develop the first formal semantics for various HTML5 web standards. We plan to
combine these tools and models to analyze the security of multi-party web applications, consisting of
clients on browsers and smartphones, and servers in the cloud.

3 Research program

3.1 Symbolic verification of cryptographic applications

Despite decades of experience, designing and implementing cryptographic applications remains danger-
ously error-prone, even for experts. This is partly because cryptographic security is an inherently hard
problem, and partly because automated verification tools require carefully-crafted inputs and are not
widely applicable. To take just the example of TLS, a widely-deployed and well-studied cryptographic
protocol designed, implemented, and verified by security experts, the lack of a formal proof about all its
details has regularly led to the discovery of major attacks (including several in PROSECCO) on both the
protocol and its implementations, after many years of unsuspecting use.

As a result, the automated verification for cryptographic applications is an active area of research,
with a wide variety of tools being employed for verifying different kinds of applications.

6 Inria Annual Report 2023

In previous work, we have developed the following approaches:

• ProVerif: a symbolic prover for cryptographic protocol models

• F*: a new language that enables the verification of cryptographic applications

Verifying cryptographic protocols with ProVerif Given a model of a cryptographic protocol, the prob-
lem is to verify that an active attacker, possibly with access to some cryptographic keys but unable to guess
other secrets, cannot thwart security goals such as authentication and secrecy [68]; it has motivated a
serious research effort on the formal analysis of cryptographic protocols, starting with [59] and eventually
leading to effective verification tools, such as our tool ProVerif.

To use ProVerif, one encodes a protocol model in a formal language, called the applied pi-calculus,
and ProVerif abstracts it to a set of generalized Horn clauses. This abstraction is a small approximation: it
just ignores the number of repetitions of each action, so ProVerif is still very precise, more precise than,
say, tree automata-based techniques. The price to pay for this precision is that ProVerif does not always
terminate; however, it terminates in most cases in practice, and it always terminates on the interesting
class of tagged protocols [52]. ProVerif can handle a wide variety of cryptographic primitives, defined
by rewrite rules or by some equations, and prove a wide variety of security properties: secrecy [49, 37],
correspondences (including authentication) [50], and observational equivalences [51]. Observational
equivalence means that an adversary cannot distinguish two processes (protocols); equivalences can be
used to formalize a wide range of properties, but they are particularly difficult to prove. Even if the class
of equivalences that ProVerif can prove is limited to equivalences between processes that differ only by
the terms they contain, these equivalences are useful in practice and ProVerif has long been the only tool
that proves equivalences for an unbounded number of sessions. (Maude-NPA in 2014 and Tamarin in
2015 adopted ProVerif’s approach to proving equivalences.)

Using ProVerif, it is now possible to verify large parts of industrial-strength protocols, such as TLS
[3], Signal [65], JFK [38], and Web Services Security [48], against powerful adversaries that can run an
unlimited number of protocol sessions, for strong security properties expressed as correspondence
queries or equivalence assertions. ProVerif is used by many teams at the international level, and has been
used in more than 140 research papers (references).

Verifying cryptographic applications using F* Verifying the implementation of a protocol has tradition-
ally been considered much harder than verifying its model. This is mainly because implementations have
to consider real-world details of the protocol, such as message formats [72], that models typically ignore.
So even if a protocol has been proved secure in theory, its implementation may be buggy and insecure.
However, with recent advances in both program verification and symbolic protocol verification tools,
it has become possible to verify fully functional protocol implementations in the symbolic model. One
approach is to extract a symbolic protocol model from an implementation and then verify the model, say,
using ProVerif. This approach has been quite successful, yielding a verified implementation of TLS in F#
[47]. However, the generated models are typically quite large and whole-program symbolic verification
does not scale very well.

An alternate approach is to develop a verification method directly for implementation code, using
well-known program verification techniques. We design and implement the programming language F*
[9], [39, 67], in collaboration with Microsoft Research. F* is an ML-like functional programming language
aimed at program verification. Its type system includes polymorphism, dependent types, monadic effects,
refinement types, and a weakest precondition calculus. Together, these features allow expressing precise
and compact specifications for programs, including functional correctness and security properties. The F*
type-checker aims to prove that programs meet their specifications using a combination of SMT solving
and interactive proofs. Programs written in F* can be translated to efficient OCaml, F#, or C for execution
[71]. The main ongoing use case of F* is building a verified, drop-in replacement for the whole HTTPS
stack in Project Everest [45] (a larger collaboration with Microsoft Research). This includes a verified
implementation of TLS 1.2 and 1.3 [46] and of the underlying cryptographic primitives [10]. More recently,
we have built a new symbolic protocol verification framework in F* called DY* [44] and used it to verify
real-world cryptographic protocols like Signal, ACME and Noise.

http://proverif.inria.fr/proverif-users.html

Project PROSECCO 7

3.2 Computational verification of cryptographic applications

Proofs done by cryptographers in the computational model are mostly manual. Our goal is to provide
computer support to build or verify these proofs. In order to reach this goal, we have designed the
automatic tool CryptoVerif, which generates proofs by sequences of games. We already applied it to
important protocols such as TLS [3] and Signal [65] but more work is still needed in order to develop this
approach, so that it is easier to apply to more protocols.

Another tool we develop, called the Squirrel Prover, uses a symbolic approach called the computa-
tionally complete symbolic adversary (CCSA) [40] to verify cryptographic protocols in the computational
model. Squirrel is an interactive theorem prover, hence provides less automation than CryptoVerif, but
allows the user to guide the proof more easily when complex arguments are needed; and it is better-suited
for some protocols, notably for stateful protocols.

A third approach is to directly verify executable cryptographic code by typing. A recent work [60] shows
how to use refinement typechecking to prove computational security for protocol implementations. In
this method, henceforth referred to as computational F*, typechecking is used as the main step to justify
a classic game-hopping proof of computational security. The correctness of this method is based on a
probabilistic semantics of F# programs and crucially relies on uses of type abstraction and parametricity
to establish strong security properties, such as indistinguishability.

In principle, the three approaches—game-based proofs in CryptoVerif, interactive proofs in Squirrel,
and typechecking proofs in F*—are complementary. Understanding how to combine these approaches
remains an open and active topic of research. For example, CryptoVerif can generate OCaml implementa-
tions from CryptoVerif specifications that have been proved secure [53]. We are currently working on this
approach to generate implementations in F*.

3.3 F*: A Higher-Order Effectful Language for Program Verification

F* [9], [39] is a verification system for effectful programs developed collaboratively by Inria and Microsoft
Research. It puts together the automation of an SMT-backed deductive verification tool with the express-
ive power of a proof assistant based on dependent types. After verification, F* programs can be extracted
to efficient OCaml, F#, or C code [71]. This enables verifying the functional correctness and security of
realistic applications. F*’s type system includes dependent types, monadic effects, refinement types, and
a weakest precondition calculus. Together, these features allow expressing precise and compact specifica-
tions for programs, including functional correctness and security properties. The F* type-checker aims to
prove that programs meet their specifications using a combination of SMT solving and interactive proofs.
The main ongoing use case of F* is building a verified, drop-in replacement for the whole HTTPS stack
in Project Everest. This includes verified implementations of TLS 1.2 and 1.3 [46] and of the underlying
cryptographic primitives [10], [70, 69].

3.4 Analysis of Rust Programs

Rust is a modern programming language that provides both performance and memory safety and is well
suited for critical system programming. We develop two frameworks for analyzing Rust programs.

We develop hacspec, a purely functional domain-specific language embedded in Rust for writing
succinct executable specifications, in particular for cryptographic algorithms, which can be translated to
proof back-ends like F⋆ and Coq.

We also develop Aeneas [62], which leverages Rust’s rich region-based type system to eliminate
memory reasoning for a large class of Rust programs, as long as they do not rely on interior mutability or
unsafe code. Doing so, Aeneas relieves the proof engineer of the burden of memory-based reasoning,
allowing them to instead focus on functional properties of their code. Aeneas proposes a new Low-Level
Borrow Calculus (LLBC) that captures a large subset of Rust programs, and a translation from LLBC to a
pure lambda-calculus, which enables the verification of Rust programs through different theorem provers,
such as Lean, Coq, or F⋆.

https://www.rust-lang.org/
https://fstar-lang.org/
https://fstar-lang.org/

8 Inria Annual Report 2023

3.5 Provably secure web applications

Web applications are fast becoming the dominant programming platform for new software, probably
because they offer a quick and easy way for developers to deploy and sell their apps to a large number
of customers. Third-party web-based apps for Facebook, Apple, and Google, already number in the
hundreds of thousands and are likely to grow in number. Many of these applications store and manage
private user data, such as health information, credit card data, and GPS locations. To protect this
data, applications tend to use an ad hoc combination of cryptographic primitives and protocols. Since
designing cryptographic applications is easy to get wrong even for experts, we believe this is an opportune
moment to develop security libraries and verification techniques to help web application programmers.

As a typical example, consider commercial password managers, such as LastPass, RoboForm, and
1Password. They are implemented as browser-based web applications that, for a monthly fee, offer to
store a user’s passwords securely on the web and synchronize them across all of the user’s computers
and smartphones. The passwords are encrypted using a master password (known only to the user) and
stored in the cloud. Hence, no-one except the user should ever be able to read her passwords. When the
user visits a web page that has a login form, the password manager asks the user to decrypt her password
for this website and automatically fills in the login form. Hence, the user no longer has to remember
passwords (except her master password) and all her passwords are available on every computer she uses.

Password managers are available as browser extensions for mainstream browsers such as Firefox,
Chrome, and Internet Explorer, and as downloadable apps for Android and Apple phones. So, seen as a
distributed application, each password manager application consists of a web service (written in PHP or
Java), some number of browser extensions (written in JavaScript), and some smartphone apps (written
in Java or Objective C). Each of these components uses a different cryptographic library to encrypt and
decrypt password data. How do we verify the correctness of all these components?

We propose three approaches. For client-side web applications and browser extensions written in
JavaScript, we propose to build a static and dynamic program analysis framework to verify security
invariants. To this end, we have developed two security-oriented type systems for JavaScript, Defensive
JavaScript [58] and TS* [73], and used them to guarantee security properties for a number of JavaScript
applications. For Android smartphone apps and web services written in Java, we propose to develop
annotated JML cryptography libraries that can be used with static analysis tools like ESC/Java to verify
the security of application code. For clients and web services written in F# for the .NET platform, we
propose to use F* to verify their correctness. We also propose to translate verified F* web applications to
JavaScript via a verified compiler that preserves the semantics of F* programs in JavaScript.

3.6 Design and Verification of next-generation protocols: identity, blockchains, and
messaging

Building on our work on verifying and re-designing pre-existing protocols like TLS and Web Security
in general, with the resources provided by the NEXTLEAP project, we are working on both designing
and verifying new protocols in rapidly emerging areas like identity, blockchains, and secure messaging.
These are all areas where existing protocols, such as the heavily used OAuth protocol, are in need of
considerable re-design in order to maintain privacy and security properties. Other emerging areas, such
as blockchains and secure messaging, can have modifications to existing pre-standard proposals or even
a complete ’clean slate’ design. As shown by Prosecco’s work, newer standards, such as IETF OAuth, W3C
Web Crypto, and W3C Web Authentication API, can have vulnerabilities fixed before standardization is
complete and heavily deployed. We hope that the tools used by Prosecco can shape the design of new
protocols even before they are shipped to standards bodies. We are currently contributing to the design
and analysis of new extensions to the TLS protocol, such as Encrypted Client Hello, new secure messaging
protocol such as IETF Messaging Layer Security (MLS), and to IoT protocols like the IETF Lightweight
Authenticated Key Exchange (LAKE).

3.7 Formalizing Law

In France, income tax is computed from taxpayers’ individual returns, using an algorithm that is authored,
designed and maintained by the French Public Finances Directorate (DGFiP). Owing to the shortcomings

Project PROSECCO 9

of its custom programming language and the technical limitations of the compiler, the algorithm is
proving harder and harder to maintain, relying on ad-hoc behaviors and workarounds to implement
the most recent changes in tax law. As an improvement to this infrastructure, we developed Mlang, an
open-source compiler toolchain that has been thoroughly validated against the private DGFiP test suite.
The DGFiP is now officially transitioning to Mlang for their production system. This line of work has
yielded papers at CC 2020 and JFLA, as well as a successful industrial technology transfer from Inria to
DGFiP.

Building on the work on Mlang, Prosecco has seen the development of a new domain-specific
language, Catala, targeted specifically for legal expert systems. This new domain-specific language
has been built in close collaboration with lawyers, and advertised to that community with a number
of legal-oriented papers [64]. On the formal methods side, the simple and clean design of the Catala
semantics allows for extension into a proper proof platform for the law [57]. Catala has been tested on
the real-world French housing benefits [14, 29] and is currently experimented for use at DGFiP.

4 Application domains

4.1 High-Assurance Cryptographic Libraries

Cryptographic libraries implement algorithms for symmetric and asymmetric encryption, digital sig-
natures, message authentication, hashing, and key exchange. Popular libraries like OpenSSL, NSS, and
BoringSSL are widely used in web browsers, operating system, and cloud services. We aim to apply
our tools and verification techniques to build high-assurance high-performance cryptographic libraries
that can be deployed in mainstream software applications. Our flagship project is HACL*, a verified
cryptographic library that is written in the F* programming language.

4.2 Design and Analysis of Protocol Standards

Cryptographic protocol standards such as TLS, SSH, IPSec, and Kerberos are the trusted base on which
the security of modern distributed systems is built. Our work enables the analysis and verification of
such protocols, both in their design and implementation. We participate in standards organizations
like the IETF and collaborate with industry groups to help them design and deploy secure protocols.
For example, we built and verified models and reference implementations for the well-known TLS 1.3
protocol, using our tools ProVerif and CryptoVerif, before it was standardized at the IETF and contributed
to the protocol’s final design.

4.3 Web application security

Web applications use a variety of cryptographic techniques to securely store and exchange sensitive data
for their users. For example, a website may serve pages over HTTPS, authenticate users with a single
sign-on protocol such as OAuth, encrypt user files on the server-side using XML encryption, and deploy
client-side cryptographic mechanisms using a JavaScript cryptographic library. The security of these
applications depends on the public key infrastructure (X.509 certificates), web browsers’ implementation
of HTTPS and the same origin policy (SOP), the semantics of JavaScript, HTML5, and their various
associated security standards, as well as the correctness of the specific web application code of interest.
We build analysis tools to find bugs in all these artifacts and verification tools that can analyze commercial
web applications and evaluate their security against sophisticated web-based attacks.

4.4 Formalizing Law

Taxes and social benefits are cornerstones of public policies in developed countries. Concretely, in most
places, citizens would fill a form describing their income and family situation, send it to the tax or benefits
agency, and then receive or pay the amount the agency has determined based on the information on
the form. Determining this amount involves a computation specified by the law, that describes the
tax brackets, benefits ceilings, etc. Since this computation is done regularly for a large chunk of the
population, it has been computerized for a long time. However, as these aging government IT systems are

https://www.inria.fr/en/mlang-modernise-tax-calculations
https://gitlab.adullact.net/dgfip/ir-catala

10 Inria Annual Report 2023

becoming harder and harder to maintain, the challenge of accurately computing taxes and benefits in
the context of increased public algorithmic scrutiny remains. Reusing our some of our high-assurance
software methodology from the domain of cryptography, we have built domain-specific languages and
associated tooling to help pairs of programmers and lawyers produce and maintain tax and social benefits
IT systems.

5 Social and environmental responsibility

5.1 Footprint of research activities

Our team’s work focuses on the design, analysis, and implementation of cryptographic protocols. As such,
we are dedicated to improving the security and privacy of all Web users. The output of our research is
used, for example, to protect HTTPS connections used daily by millions of Mozilla Firefox users. On the
whole, we strive to perform ethical research that improves the digital lives of citizens everywhere.

Our research does not by itself have any environmental impact, but our team does travel to con-
ferences, and we regularly host international visitors, which incurs multiple international flights each
year.

6 Highlights of the year

6.1 Awards

• Denis Merigoux won an honorary mention at the ERCIM Cor Baayen Early Career Award 2023.

• Internet Defense Prize at USENIX Security ’23 [26] .

• The first paper on ProVerif, published at CSFW’01 [49], won a test-of-time award at CSF’23.

• Distinguished Paper Awards at CSF’23 [21] and USENIX Security’23 [26, 19, 22] .

7 New software, platforms, open data

7.1 New software

7.1.1 F*

Name: FStar

Keywords: Programming language, Software Verification

Functional Description: F* is a new higher order, effectful programming language (like ML) designed
with program verification in mind. Its type system is based on a core that resembles System Fw
(hence the name), but is extended with dependent types, refined monadic effects, refinement types,
and higher kinds. Together, these features allow expressing precise and compact specifications
for programs, including functional correctness properties. The F* type-checker aims to prove that
programs meet their specifications using an automated theorem prover (usually Z3) behind the
scenes to discharge proof obligations. Programs written in F* can be translated to OCaml, F#, or
JavaScript for execution.

URL: https://www.fstar-lang.org/

Contact: Aymeric Fromherz

Participants: Antoine Delignat-Lavaud, Catalin Hritcu, Cedric Fournet, Chantal Keller, Karthikeyan
Bhargavan, Pierre-Yves Strub, Aymeric Fromherz

https://www.ercim.eu/news/532-2023-cor-baayen-early-career-researcher-award-for-rianne-de-heide
https://www.usenix.org/blog/usenix-announces-winners-2023-internet-defense-prize
https://www.ieee-security.org/CSFWweb/distinguished.html
https://www.ieee-security.org/CSFWweb/distinguished.html
https://www.usenix.org/conference/usenixsecurity23/technical-sessions
https://www.fstar-lang.org/

Project PROSECCO 11

7.1.2 Steel

Name: Steel

Keywords: Program verification, Separation Logic

Functional Description: Steel is a framework for the verification of low-level, concurrent software, and
is implemented in the F* dependently-typed programming language. Steel combines a strong,
expressive concurrent separation logic to reason about complex concurrency patterns with a high
level of automation, mixing custom separation logic decision procedures implemented as F* tactics
with generic SMT solving to provide safety and functional correctness guarantees about Steel
programs. Steel programs can be translated to executable C code to be integrated in unverified
projects.

News of the Year: Development of additional core libraries for Steel. Development of a verified key-value
store, FastVer2, using the framework.

Publications: hal-04104143, hal-02936273, hal-03466397, hal-03626859

Contact: Aymeric Fromherz

Participant: Aymeric Fromherz

7.1.3 HACL*

Name: High Assurance Cryptography Library

Keywords: Cryptography, Software Verification

Functional Description: HACL* is a formally verified cryptographic library in F*, developed by the
Prosecco team at INRIA Paris in collaboration with Microsoft Research, as part of Project Everest.

HACL stands for High-Assurance Cryptographic Library and its design is inspired by discussions
at the HACS series of workshops. The goal of this library is to develop verified C reference imple-
mentations for popular cryptographic primitives and to verify them for memory safety, functional
correctness, and secret independence.

News of the Year: We extended support for SIMD vectorization, and implemented and verified a generic
streaming API for block-based algorithms. The instantiation of this streaming API for hashes
(SHA-2, Blake2) was integrated into CPython.

URL: https://github.com/hacl-star/hacl-star

Publications: hal-04301439, hal-03154278, hal-03154275, hal-02294935, hal-01588421

Contact: Aymeric Fromherz

Participants: Karthikeyan Bhargavan, Aymeric Fromherz

7.1.4 DY*

Name: DY*

Keywords: Software Verification, Cryptographic protocol

Functional Description: DY* is a recently proposed formal verification framework for the symbolic
security analysis of cryptographic protocol code written in the F* programming language. Unlike
automated symbolic provers, DY* accounts for advanced protocol features like unbounded loops
and mutable recursive data structures as well as low-level implementation details like protocol
state machines and message formats, which are often at the root of real-world attacks. Protocols
modeled in DY* can be executed, and hence, tested, and they can even interoperate with real-world
counterparts. DY* extends a long line of research on using dependent type systems but takes

https://hal.inria.fr/hal-04104143
https://hal.inria.fr/hal-02936273
https://hal.inria.fr/hal-03466397
https://hal.inria.fr/hal-03626859
https://github.com/hacl-star/hacl-star
https://hal.inria.fr/hal-04301439
https://hal.inria.fr/hal-03154278
https://hal.inria.fr/hal-03154275
https://hal.inria.fr/hal-02294935
https://hal.inria.fr/hal-01588421

12 Inria Annual Report 2023

a fundamentally new approach by explicitly modeling the global trace-based semantics within
the framework, hence bridging the gap between trace-based and type-based protocol analyses.
With this, one can uniformly, precisely, and soundly model, for the first time using dependent
types, long-lived mutable protocol state, equational theories, fine-grained dynamic corruption,
and trace-based security properties like forward secrecy and post-compromise security. DY* has
been applied to the formal analysis of advanced cryptographic protocols such as Signal, ACME,
Noise and MLS.

News of the Year: We developed the tooling around DY* to tackle more complex protocols, and did case
studies using this new tooling.

In the past, message formats were written by hand in protocol analysis done with DY*, a process
that is both tedious and error-prone. We developed Comparse, a tool to automatically generate
messages formats in F*. The generated message formats are usable in DY*, and correspond to the
ones defined in protocol specifications.

Cryptographic protocols are often analyzed in isolation. However, they are typically deployed
within a stack of protocols, where each layer relies on the security guarantees provided by the
protocol layer below it, and in turn provides its own security functionality to the layer above. We
extended DY* with a new methodology that allows analysts to modularly analyze each layer in a
way that compose to provide security for a protocol stack.

We used DY* to study MLS, a novel secure group messaging protocol. Most cryptographic protocols
within the reach of formal analysis are between a fixed number of participants (often two) that
exchange a fixed number of messages. MLS gives new challenges for analysts, because it supports
group members joining and leaving the group over time, and group members can exchange an
unbounded number of messages. We used DY* to study TreeSync, a sub-protocol of MLS that
specifies the shared group state, defines group management operations, and ensures consistency,
integrity, and authentication for the group state across all members.

URL: https://reprosec.org/

Publications: hal-03178425, hal-03540403, hal-03540824, hal-04255953, hal-04310972

Contact: Karthikeyan Bhargavan

7.1.5 Hacspec

Keywords: Specification language, Rust

Functional Description: Hacspec is a domain specific language embedded inside Rust geared towards
cryptographic specifications. It allows easier communication between formal methods experts
and cryptographers that write their implementations in Rust. Hacspec compiles to various proof
backends including F* and Coq.

News of the Year: Hacspec was re-implemented entirely and renamed as Hax (https://github.com/h
acspec/hax).

Hacspec was aiming at being a specification language for crypto primitives in a DSL embedded in
Rust. Hax extends the scope of the project, targeting a large subset of Rust, and translating it to
various formal backends (such as Coq, F*, EasyCrypt or ProVerif).

We now call Hacspec the functional subset of Rust that can be used, together with a Hacspec stand-
ard library, to write succinct, executable, and verifiable specifications in Rust. These specifications
can be translated into formal languages with hax.

URL: https://hacspec.github.io/

Publication: hal-03176482

Contact: Karthikeyan Bhargavan

Partners: Concordium Blockchain Research Center, Aarhus University, Denmark, Université de Porto

https://reprosec.org/
https://hal.inria.fr/hal-03178425
https://hal.inria.fr/hal-03540403
https://hal.inria.fr/hal-03540824
https://hal.inria.fr/hal-04255953
https://hal.inria.fr/hal-04310972
https://github.com/hacspec/hax
https://github.com/hacspec/hax
https://hacspec.github.io/
https://hal.inria.fr/hal-03176482

Project PROSECCO 13

7.1.6 Aeneas

Keywords: Rust, Compilers, Program verification

Functional Description: Aeneas is a compilation pipeline for safe Rust programs. Aeneas leverages
the Rust type system to compile Rust programs to pure, executable models (i.e., pure, functional
versions of the original Rust programs). The key idea behind Aeneas’ compilation is that, under the
proper restrictions, a Rust function is fully characterized by a forward function, which computes
its return value at call site, and a set of backward functions (one per lifetime), which propagate
changes back into the environment upon ending lifetimes, thus accounting for side effects. Such
forward and backward functions behave similarly to lenses. Relying on theorem provers to state
and prove lemmas about those models, it is then possible to enforce guarantees about the original
programs. For instance, one can prove panic freedom and functional correctness, but also security
guarantees like authentication and confidentiality in the case of cryptographic protocols, and
potentially more.

News of the Year: We expanded the subset of Rust supported by Aeneas in many directions, for instance
by adding better support for arrays, slices, binary operations and, more importantly, loops. We also
added support for several backends: in addition to the original F* backend, it is now possible to
generate Coq, Lean and HOL4 code. For the particular cases of HOL4 and Lean, we implemented
an encoding which allows to define partial functions, and we provide basic proof automation for
the proofs.

URL: https://github.com/AeneasVerif/aeneas

Publication: hal-03931572

Contact: Son Ho

7.1.7 Charon

Keywords: Rust, Compilers

Functional Description: Charon is a driver which retrieves the Rust compiler output (more precisely,
the generated MIR) and translates it to an intermediate language called LLBC (Low Level Borrow
Calculus - an “easy-to-use” version of MIR in practice). Charon is meant as a user-friendly, stable
interface with the Rust compiler, for the purpose of analyzing Rust programs.

News of the Year: We expanded the subset supported by Charon by adding better support for arrays and
slices, const generics, and function pointers and closures. We also performed minor improvements,
for instance in the control flow graph reconstruction to generate more idiomatic code. Charon now
also prints nice debugging messages in case of errors, in particular when it encounters unsupported
features, which pinpoint the location and the cause of the error to the user, so that they can update
their code or file an issue.

URL: https://github.com/AeneasVerif/charon

Publication: hal-03931572

Contact: Son Ho

7.1.8 mlang

Name: Mlang

Keywords: Compilers, Legality

https://github.com/AeneasVerif/aeneas
https://hal.inria.fr/hal-03931572
https://github.com/AeneasVerif/charon
https://hal.inria.fr/hal-03931572

14 Inria Annual Report 2023

Functional Description: In France, income tax is computed from taxpayers’ individual returns, using an
algorithm that is authored, designed and maintained by the French Public Finances Directorate
(DGFiP). This algorithm relies on a legacy custom language and compiler originally designed in
1990, which unlike French wine, did not age well with time. Owing to the shortcomings of the input
language and the technical limitations of the compiler, the algorithm is proving harder and harder
to maintain, relying on ad-hoc behaviors and workarounds to implement the most recent changes
in tax law. Competence loss and aging code also mean that the system does not benefit from any
modern compiler techniques that would increase confidence in the implementation. We overhaul
this infrastructure and present Mlang, an open-source compiler toolchain whose goal is to replace
the existing infrastructure. Mlang is based on a reverse-engineered formalization of the DGFiP’s
system, and has been thoroughly validated against the private DGFiP test suite. As such, Mlang
has a formal semantics, eliminates previous handwritten workarounds in C, compiles to modern
languages (Python), and enables a variety of instrumentations, providing deep insights about the
essence of French income tax computation. The DGFiP is now officially transitioning to Mlang for
their production system.

News of the Year: In 2023, Mlang is still being developed at DGFiP and tested for use in production. The
income tax computation software compiled with Mlang now reproduces 100% of the behavior of
the old tax computation software compiled with the legacy compiler. Extensions of the M language
to soft-code rather than hard-code domain-specific terminology have been developed, and plans
to add function calls are underway to finally get rid of the legacy C codebase.

Publications: hal-02320347, hal-03002266

Contact: Denis Merigoux

Participant: Denis Merigoux

Partner: Direction Générale des Finances Publiques (DGFiP)

7.1.9 Catala

Keywords: Domain specific, Programming language, Law

Functional Description: Catala is a domain-specific programming language designed for deriving
correct-by-construction implementations from legislative texts. Its specificity is that it allows
direct translation from the text of the law using a literate programming style, that aims to foster
interdisciplinary dialogue between lawyers and software developers. By enjoying a formal specific-
ation and a proof-oriented design, Catala also opens the way for formal verification of programs
implementing legislative specifications.

News of the Year: In 2023, the development of Catala has sped up through the work of research en-
gineer Louis Gesbert. The most notable addition is a module system that allows for real code
modularization and separate compilation. The language has also gained its first industrial user,
the DGFiP, with the start of a project to rewrite the income tax computation algorithm : https:
//gitlab.adullact.net/dgfip/ir-catala.

URL: https://catala-lang.org/en

Publications: hal-03712130, hal-03781578, hal-03128248, hal-03159939, hal-02936606, hal-03869335

Contact: Denis Merigoux

Participants: Denis Merigoux, Louis Gesbert, Aymeric Fromherz, Alain Delaet-tixeuil, Raphael Monat

Partner: Université Panthéon-Sorbonne

https://hal.inria.fr/hal-02320347
https://hal.inria.fr/hal-03002266
https://gitlab.adullact.net/dgfip/ir-catala
https://gitlab.adullact.net/dgfip/ir-catala
https://catala-lang.org/en
https://hal.inria.fr/hal-03712130
https://hal.inria.fr/hal-03781578
https://hal.inria.fr/hal-03128248
https://hal.inria.fr/hal-03159939
https://hal.inria.fr/hal-02936606
https://hal.inria.fr/hal-03869335

Project PROSECCO 15

7.1.10 ProVerif

Keywords: Security, Verification, Cryptographic protocol

Functional Description: ProVerif is an automatic security protocol verifier in the symbolic model (so
called Dolev-Yao model). In this model, cryptographic primitives are considered as black boxes.
This protocol verifier is based on an abstract representation of the protocol by Horn clauses. Its
main features are:

It can verify various security properties (secrecy, authentication, process equivalences).

It can handle many different cryptographic primitives, specified as rewrite rules or as equations.

It can handle an unbounded number of sessions of the protocol (even in parallel) and an unbounded
message space.

News of the Year: We released ProVerif version 2.05. The main novelties are that constraints are allowed
in assumptions of queries, lemmas, axioms, and restrictions, and that attacker, table, mess, and
user-defined predicates are allowed in conclusion of lemmas, axioms, and restrictions. We are
working on many extensions (liveness properties, hash consing to save memory, more equational
theories, ...). Stay tuned!

URL: http://proverif.inria.fr/

Publications: hal-03366962, hal-01947972, hal-01423742, hal-01306440, hal-01423760, hal-01102136,
hal-01575920, hal-01528752, hal-01575923, hal-01527671, hal-01575861

Contact: Bruno Blanchet

Participants: Bruno Blanchet, Marc Sylvestre, Vincent Cheval

7.1.11 CryptoVerif

Name: Cryptographic protocol verifier in the computational model

Keywords: Security, Verification, Cryptographic protocol

Functional Description: CryptoVerif is an automatic protocol prover sound in the computational model.
In this model, messages are bitstrings and the adversary is a polynomial-time probabilistic Turing
machine. CryptoVerif can prove secrecy and correspondences, which include in particular authen-
tication. It provides a generic mechanism for specifying the security assumptions on cryptographic
primitives, which can handle in particular symmetric encryption, message authentication codes,
public-key encryption, signatures, hash functions, and Diffie-Hellman key agreements. It also
provides an explicit formula that gives the probability of breaking the protocol as a function of the
probability of breaking each primitives, this is the exact security framework.

News of the Year: The main new features of the year are:

1) CryptoVerif can now translate its assumptions into EasyCrypt, so that these assumptions can
be proved in EasyCrypt from lower-level or more standard assumptions (by Christian Doczkal,
Pierre-Yves Strub, Pierre Boutry, Bruno Blanchet).

2) CryptoVerif can generate implementations of protocols in F*. It also generates F* lemmas for
equational properties assumed in CryptoVerif (by Benjamin Lipp and Bruno Blanchet).

3) The oracle front-end is now the main front-end. Processes input in the channel front-end are
translated into the oracle front-end (by Charlie Jacomme and Bruno Blanchet).

4) We added notions of secrecy as reachability and secrecy for a bit.

5) We added the diff[.,.] construct, already present in ProVerif, which allows to prove indistin-
guishability between two similar protocols.

6) We extended the "move" command so that it can move random number generations and
assignments upwards in the game.

http://proverif.inria.fr/
https://hal.inria.fr/hal-03366962
https://hal.inria.fr/hal-01947972
https://hal.inria.fr/hal-01423742
https://hal.inria.fr/hal-01306440
https://hal.inria.fr/hal-01423760
https://hal.inria.fr/hal-01102136
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01527671
https://hal.inria.fr/hal-01575861

16 Inria Annual Report 2023

These changes are included in CryptoVerif version 2.08 available at https://cryptoverif.inri
a.fr.

URL: http://cryptoverif.inria.fr/

Publications: hal-03113251, hal-03471218, hal-04246199, hal-04253820, hal-01947959, hal-01764527,
hal-02396640, hal-02100345, tel-01112630, hal-01102382, hal-01528752, hal-01575920, hal-01575861,
hal-01575923

Contact: Bruno Blanchet

Participants: Bruno Blanchet, David Cadé, Benjamin Lipp, Pierre-Yves Strub, Christian Doczkal, Pierre
Boutry

7.1.12 Squirrel

Name: Squirrel Prover

Keywords: Proof assistant, Cryptographic protocol

Functional Description: Squirrel is an interactive proof assistant dedicated to the formal verification of
cryptographic protocols in the computational model. It is based on a higher-order probabilistic
logic which supports generic mathematical reasoning as well as cryptographic-specific reasoning.

Concretely, Squirrel allows to specify security protocols in a variant of the applied pi-calculus,
and properties of those protocols using its probabilistic logic. Then, these properties are to be
proved by the users through tactics. Squirrel supports protocols with unbounded replication and
persistent state, and can express both correspondence (e.g. authentication) and indistinguishability
properties (e.g. strong secrecy, unlinkability).

News of the Year: Support for higher-order functions and reasoning. Extension of Squirrel cryptographic
rules to handle key corruption. New user documentation at: https://squirrel-prover.gith
ub.io/documentation/

URL: https://squirrel-prover.github.io/

Publications: hal-03981949, hal-03620358, hal-03172119, hal-03264227

Contact: Adrien Koutsos

Participants: David Baelde, Stephanie Delaune, Charlie Jacomme, Solene Moreau, Adrien Koutsos,
Justine Sauvage, Thomas Rubiano, Clément Herouard

Partners: IRISA, ENS Rennes

7.1.13 Easycrypt

Keywords: Proof assistant, Cryptography

Functional Description: EasyCrypt is a toolset for reasoning about relational properties of probabilistic
computations with adversarial code. Its main application is the construction and verification of
game-based cryptographic proofs. EasyCrypt can also be used for reasoning about differential
privacy.

Release Contributions: This versions introduces a new logic (ehoare) allowing to bound the expectation
of a function in a probabilistic program.

URL: https://github.com/EasyCrypt/easycrypt

Publications: hal-03352062, hal-03469015

Contact: Gilles Barthe

Participants: Benjamin Grégoire, Gilles Barthe, Pierre-Yves Strub, Adrien Koutsos

https://cryptoverif.inria.fr
https://cryptoverif.inria.fr
http://cryptoverif.inria.fr/
https://hal.inria.fr/hal-03113251
https://hal.inria.fr/hal-03471218
https://hal.inria.fr/hal-04246199
https://hal.inria.fr/hal-04253820
https://hal.inria.fr/hal-01947959
https://hal.inria.fr/hal-01764527
https://hal.inria.fr/hal-02396640
https://hal.inria.fr/hal-02100345
https://hal.inria.fr/tel-01112630
https://hal.inria.fr/hal-01102382
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575861
https://hal.inria.fr/hal-01575923
https://squirrel-prover.github.io/documentation/
https://squirrel-prover.github.io/documentation/
https://squirrel-prover.github.io/
https://hal.inria.fr/hal-03981949
https://hal.inria.fr/hal-03620358
https://hal.inria.fr/hal-03172119
https://hal.inria.fr/hal-03264227
https://github.com/EasyCrypt/easycrypt
https://hal.inria.fr/hal-03352062
https://hal.inria.fr/hal-03469015

Project PROSECCO 17

7.1.14 IPDL

Name: Interactive Probabilistic Dependency Logic

Keywords: Verification, Cryptographic protocol

Functional Description: A process calculus for computationally sound approximate reasoning about
distributed cryptographic protocols in a manner both close to the Universal Composability-style
simulation paradigm and amenable for formal verification.

Contact: Kristina Sojakova

8 New results

8.1 Verification of security protocols in the symbolic model

Participants: Vincent Cheval, Charlie Jacomme.

Session equivalence TAMARIN and PROVERIF are both able to verify equivalence properties but are
intuitively limited to the fine-grained diff-equivalence, that is often not well suited for privacy-type
properties such as anonymity and unlinkability. This limitation has always been a hard hurdle to overcome
as the technique did not evolve in more than 15 years. In a paper at CSF’23 [21], we (Vincent Cheval, with
Itsaka Rakotonirina) finally introduced in PROVERIF a new proof technique for verifying equivalence in a
general framework. Our technique is based on the notion of session decomposition, inspired from the
symmetry reductions in [56]. We applied our results on several protocols such as LAK, PACE, a simplified
TLS, . . .

Advanced primitive modelings Real life implementations of cryptographic primitives have many
behaviors and weaknesses that are not captured by classical symbolic modelings. To bridge this gap, we
extensively studied the concretely used hash functions and Authenticated Encryptions with Additional
Data (AEADs) and proposed for each of those primitives novel and more faithful models leading to two
publications at USENIX Security’23, [19] by Vincent Cheval, Cas Cremers, Alexander Dax, Lucca Hirschi,
Charlie Jacomme, and Steve Kremer and [22] by Cas Cremers, Alexander Dax, Charlie Jacomme, and
Mang Zhao. Those new models were notably deployed in PROVERIF and TAMARIN, and were used to
analyze several new protocols for which new subtle weaknesses were discovered.

Applications We performed several major case studies using the new features introduced in PROVERIF.
In EuroS&P’23 [20], we (Vincent Cheval, with José Moreira and Mark Ryan) provided the first formal
verification of two transparency protocols with a precise model of the Merkle tree data structure: transpar-
ent decryption (sometimes called accountable decryption), and certificate transparency. In CSF’23 [18],
we (Vincent Cheval, with Véronique Cortier and Alexandre Debant) proved the end-to-end verifiability
of multiple electronic voting systems: Helios, Belenios, CHVote and SwissPost. All these proofs relied
on a new complete characterization of end-to-end verifiability, a new generic election framework in
which voting protocols can be expressed, and a library of lemmas for the automatic proof of end-to-end
verifiability.

In USENIX Security’23 [25], we (Charlie Jacomme, with Elise Klein, Steve Kremer, and Maïwenn
Racouchot) verified an IETF draft for LAKE EDHOC using our platform SAPIC+ [55]. This platform allows
us to leverage the complementary strengths of PROVERIF, TAMARIN, and DEEPSEC from a single model,
by translating that model to inputs of the various tools. The analysis was carried out with a fine-grained
modeling of possible threat models and compromise, and lead to the discovery of multiple weaknesses,
with the proposal of fixes that were integrated into new versions of the draft.

In USENIX Security’23 [23], we (Charlie Jacomme, with Cas Cremers and Aurora Naska) verified the
session management layer of the Signal application, Sesame, using TAMARIN. This lead to the discovery

http://tamarin-prover.github.io/
http://proverif.inria.fr/
http://proverif.inria.fr/
http://proverif.inria.fr/
http://tamarin-prover.github.io/
http://proverif.inria.fr/
https://sapic-plus.github.io/
http://proverif.inria.fr/
http://tamarin-prover.github.io/
https://deepsec-prover.github.io
http://tamarin-prover.github.io/

18 Inria Annual Report 2023

that guarantees formally proved on the lower layers protocol are not preserved when considering the full
application. We were able to experimentally demonstrate the identified weaknesses, and we proposed
and verified simple fixes to the protocol.

Protocols with probabilistic choice In general, symbolic models are purely non-deterministic (or
possibilistic). For instance, random numbers are abstracted and are assumed to be impossible to guess
by the attacker. While this is generally sensible, it is not always possible to eliminate probabilities
altogether as some protocols specifically rely on non-negligible choices in their specification. In [54], we
(Vincent Cheval, with Raphaëlle Crubillé and Steve Kremer) considered a framework for symbolic protocol
analysis with probabilistic choice. We showed the relations between possibilistic and probabilistic
equivalences and designed a decision procedure for probabilistic trace equivalence. This procedure
has been implemented in DEEPSEC. In 2023, we published a long version of this paper in the Journal of
Computer Security [12].

8.2 Verification of security protocols in the computational model

Participants: Karthikeyan Bhargavan, Bruno Blanchet, Charlie Jacomme, Ad-
rien Koutsos, Justine Sauvage, Kristina Sojakova, Théo Vignon.

CryptoVerif We (Bruno Blanchet) continued the development of CRYPTOVERIF, adding new game
transformations in order to deal with the dynamic compromise of keys, which allowed us to complete
missing proofs of forward secrecy in major previous case studies (TLS 1.3 [3] and WireGuard [66]). We
also added game transformations that guess values, a step often used in cryptographic proofs [31, 30].
This work is accepted at CSF’24.

We (Bruno Blanchet and Charlie Jacomme) showed that CRYPTOVERIF is sound against quantum
adversaries [33].

We (Karthikeyan Bhargavan, Bruno Blanchet, with Benjamin Lipp) developed a translation from
CRYPTOVERIF to F⋆, which allows us to generate running implementations of protocols verified in
CRYPTOVERIF. An important addition with respect to a previous translation to OCaml is that we generate
F⋆ lemmas for equations used as assumptions in CRYPTOVERIF; these lemmas are then proved in F⋆.
We (Bruno Blanchet, with Pierre Boutry, Christian Dockzal, Benjamin Grégoire, and Pierre-Yves Strub)
also developed a translation from the security assumptions used in CRYPTOVERIF to EASYCRYPT [32].
Indeed, the security assumptions in CRYPTOVERIF are often stated in a way that differs from the usual
cryptographic assumptions. This translation allows us to prove the CRYPTOVERIF assumptions from
more standard or lower-level assumptions in EASYCRYPT. This work is accepted at CSF’24. All these
developments are included in CRYPTOVERIF 2.08.

Squirrel SQUIRREL is an interactive theorem prover dedicated to the verification of cryptographic
protocols in the computational model. The SQUIRREL prover, first introduced in [2], encodes crypto-
graphic protocols and their properties into a pure probabilistic logic, and supports generic as well as
cryptographic-specific reasoning.

At LICS’23 [17], we (Adrien Koutsos, with David Baelde and Joseph Lallemand) proposed a complete
re-design of SQUIRREL theoretical foundations, which is less ad hoc, simpler, more general, and sup-
ports higher-order reasoning. Additionally, this new logical presentation was used to allow SQUIRREL

cryptographic rules to support key corruption.
We also have work in progress on techniques to allow users to easily add new cryptographic primitives

and assumptions to SQUIRREL without modifying the tool itself (PhD thesis of Justine Sauvage).
Currently, SQUIRREL only supports the verification of cryptographic protocols in the asymptotic

security model, which limits SQUIRREL reasoning capabilities (some cryptographic arguments are out-of-
scope, e.g. polynomial hybrid arguments) and expressivity (SQUIRREL cannot give a precise bound on the
probability of breaking protocol security). We are working on overcoming these limitations by adapting
SQUIRREL to a concrete security setting (PhD thesis of Théo Vignon).

https://deepsec-prover.github.io
http://cryptoverif.inria.fr/
http://cryptoverif.inria.fr/
http://cryptoverif.inria.fr/
https://fstar-lang.org/
http://cryptoverif.inria.fr/
https://fstar-lang.org/
http://cryptoverif.inria.fr/
https://fstar-lang.org/
http://cryptoverif.inria.fr/
https://github.com/EasyCrypt/easycrypt
http://cryptoverif.inria.fr/
http://cryptoverif.inria.fr/
https://github.com/EasyCrypt/easycrypt
http://cryptoverif.inria.fr/
https://squirrel-prover.github.io/
https://squirrel-prover.github.io/
https://squirrel-prover.github.io/
https://squirrel-prover.github.io/
https://squirrel-prover.github.io/
https://squirrel-prover.github.io/
https://squirrel-prover.github.io/
https://squirrel-prover.github.io/
https://squirrel-prover.github.io/

Project PROSECCO 19

EasyCrypt EASYCRYPT is a theorem prover designed for reasoning about properties of probabilistic com-
putations with adversarial code, using imperative program logics implemented on top of a higher-order
ambient logic. Its main application is the construction and verification of game-based cryptographic
primitives.

While EASYCRYPT is mainly developed outside of Prosecco at PQShield and the SPLiTS Inria team
at Sophia-Antipolis, we (Adrien Koutsos, with Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, and
Pierre-Yves Strub) have presented in CCS’21 [41] an extension of EASYCRYPT with a new program logic
allowing us to reason about the computational worst-case complexity of adversarial programs. This logic
can be used to prove precise relationships between the complexity of cryptographic adversaries and their
success probability, allowing us to obtain fully mechanized cryptographic reductions. We showcased our
approach through a new formalization of the Universal Composability framework. In 2023, we published
a journal version this work at ACM ToPS [11]).

IPDL In [24], we (Kristina Sojakova, with Joshua Gancher, Xiong Fan, Elaine Shi, and Greg Morrisett)
present a novel technique for proving UC-security of a class of cryptographic protocols, based on a
equational calculus at the protocol level, named IPDL.

8.3 High-Assurance High-Performance Crypto

Participants: Karthikeyan Bhargavan, Aymeric Fromherz, Son Ho.

Since 2017, we maintain and distribute the HACL* verified cryptographic library, which is currently
deployed in many mainstream software applications and high-performance networking stacks including
Mozilla Firefox, Linux Kernel, WireGuard VPN, Microsoft WinQuic, Tezos Blockchain, and ElectionGuard.

In ICFP 2023, we (Son Ho, Aymeric Fromherz, and Jonathan Protzenko) published a paper [13], on
using advanced features of F⋆, such as verified meta-programming, to build generic streaming APIs for
cryptographic constructions in HACL⋆.

We (Karthikeyan Bhargavan, with Daniel de Almeida Braga, Natalia Kulatova, Mohammed Sabt,
Pierre-Alain Fouque) also used HACL⋆ to help improve the security of WPA3 implementations that were
vulnerable to side-channel attacks, resulting in a paper at EuroS&P 2023 [15].

8.4 Verification of cryptographic protocol implementations in the symbolic model:
the DY* framework

Participants: Karthikeyan Bhargavan, Théophile Wallez.

In collaboration with colleagues at the University of Stuttgart and IIT Gandhinagar, we developed DY*,
a new formal verification framework for the symbolic security analysis of cryptographic protocol code
written in the F* programming language. Unlike automated symbolic provers, our framework accounts
for advanced protocol features like unbounded loops and mutable recursive data structures, as well as
low-level implementation details like protocol state machines and message formats, which are often at
the root of real-world attacks.

This year, we (Théophile Wallez, Jonathan Protzenko, Benjamin Beurdouche, and Karthikeyan Bhar-
gavan) used DY⋆ to formally model, implement, and analyze the Messaging Layer Security (MLS) standard.
Our work uncovered vulnerabilities [43] and contributed to the published standard (our PhD student
Benjamin Beurdouche is a co-author of the RFC standard). Our research was published at USENIX
Security’23 [26], where it won a Distinguished Paper Award and the 2023 Internet Defense Prize.

We (Théophile Wallez, Jonathan Protzenko, and Karthikeyan Bhargavan) also worked on formally
analyzing the security of message formats used in cryptographic protocols and applied it to several
protocols including TLS 1.3, MLS, and cTLS. We embedded this format reasoning methodology in DY⋆

and published a paper in ACM CCS 2023 [27].

https://github.com/EasyCrypt/easycrypt
https://github.com/EasyCrypt/easycrypt
https://github.com/EasyCrypt/easycrypt
https://fstar-lang.org/

20 Inria Annual Report 2023

8.5 Extensions to F*

Participants: Aymeric Fromherz, Antonin Reitz.

Since 2010, our group contributes to the design, implementation, and application of the F* program-
ming language and verification work.

Since 2020, we work on a framework, called Steel [61], based on concurrent separation logic, for
developing and proving concurrent programs embedded in F*. Steel proposes a new formalism of Hoare
quintuples which involve both separation logic and first-order logic, and enable an efficient verification
condition generation and proof discharge using a combination of tactics and SMT solving.

In collaboration with Microsoft Research, we (Aymeric Fromherz) published a paper at CPP 2023 [16]
about a verified, low-level, concurrent implementation of a key-value store implemented and verified in
Steel.

Antonin Reitz also gave a presentation at the Annual Meeting of the WG "Formal Methods for Security"
about ongoing work on StarMalloc, a verified, hardened, concurrent memory allocator that he develops
in Steel as part of his PhD in collaboration with Aymeric Fromherz.

8.6 Formalizing and Implementing Law

Participants: Justine Banuls, Alain Delaët-Tixeuil, Aymeric Fromherz, Louis Gesbert,
Denis Merigoux.

Since 2021, we develop a new domain-specific language, Catala, targeted specifically for legal expert
systems. This language has been built in close collaboration with lawyers, and advertised to that com-
munity with a number of legal-oriented papers [64, 63]. On the formal methods side, the simple and
clean design of the Catala semantics [8] allows for extension into a proper proof platform for the law [57].

Catala has been tested on the real-world French housing benefits [14, 29] and is currently experi-
mented for use at DGFiP.

8.7 Verification of Rust programs: Aeneas and hacspec

Participants: Son Ho, Aymeric Fromherz, Karthikeyan Bhargavan, Lu-
cas Franceschino.

In collaboration with Jonathan Protzenko and Aymeric Fromherz, Son Ho developed on a new
verification toolchain for Rust programs called Aeneas. Aeneas leverages Rust’s rich region-based type
system to eliminate memory reasoning for a large class of Rust programs, as long as they do not rely
on interior mutability or unsafe code. Doing so, Aeneas relieves the proof engineer of the burden of
memory-based reasoning, allowing them to instead focus on functional properties of their code. Aeneas
proposes a new Low-Level Borrow Calculus (LLBC) that captures a large subset of Rust programs, and
a translation from LLBC to a pure lambda-calculus, which enables the verification of Rust programs
through different theorem provers. Aeneas was presented at ICFP 2022 [62] and RW 23 [35].

Karthikeyan Bhargavan and Lucas Franceschino worked on the development of hacspec, a purely
functional subset of Rust that is used to specify and verify cryptographic algorithms. Specifications in
hacspec can be compiled to F* and Coq, and an EasyCrypt backend is being developed. The hacspec
framework has been used to specify a large set of cryptographic algorithms and is being used as part of
new standardization efforts.

https://gtmfs2023.sciencesconf.org
https://gitlab.adullact.net/dgfip/ir-catala
https://gitlab.adullact.net/dgfip/ir-catala

Project PROSECCO 21

9 Bilateral contracts and grants with industry

9.1 Bilateral grants with industry

Evolution, Semantics, and Engineering of the F* Verification System

Participants: Aymeric Fromherz, Karthikeyan Bhargavan, Théo Laurent.

• Grant from Nomadic Labs - Inria

• PIs: Aymeric Fromherz (earlier, Catalin Hritcu, Exequiel Rivas)

• Duration: March 2019 - April 2023

• Abstract: While the F* verification system shows great promise in practice, many challenging
conceptual problems remain to be solved, many of which can directly inform the further evolution
and design of the language. Moreover, many engineering challenges remain in order to build a
truly usable verification system. This proposal promises to help address this by focusing on the
following 5 main topics:

(1) Generalizing Dijkstra monads, i.e., a program verification technique for arbitrary monadic
effects; (2) Relational reasoning in F*: devising scalable verification techniques for properties of
multiple program executions (e.g., confidentiality, noninterference) or of multiple programs (e.g.,
program equivalence); (3) Making F*’s effect system more flexible, by supporting tractable forms
of effect polymorphism and allowing some of the effects of a computation to be hidden if they do
not impact the observable behavior; (4) Working out more of the F* semantics and metatheory; (5)
Solving the engineering challenges of building a usable verification system.

9.2 Other funding

Cybercampus CIRCUS funding Creating Innovative and Robust Cryptographic Solutions.

Participants: Aymeric Fromherz.

• Partners: Inria Paris/EPI Prosecco, Cryspen.

• Prosecco PI: Aymeric Fromherz

• Abstract: This project aims to build a new integrated development and verification environment
(IDVE) called Circus that is targeted at software developers and security architects. The main
partner for this technical transfer is Cryspen, a new company spun off from Prosecco that aims
to create innovative cryptographic solutions. The Circus IDVE targets the Rust language, and
consists of several tools developed at Prosecco, such as hacspec and Aeneas, while relying on
well-established verification tools for the verification of safety, correctness, and security properties
about critical software.

10 Partnerships and cooperations

10.1 International initiatives

10.1.1 Inria associate team not involved in an IIL or an international program

22 Inria Annual Report 2023

VeriSPro

Participants: Karthikeyan Bhargavan, Aymeric Fromherz, Théophile Wallez.

Title: Verifying Security Properties of Group Messaging Protocols

Duration: From 2022

Coordinator: Abhishek Bichhawat (abhishek.b@iitgn.ac.in)

Partner: IIT Gandhinagar (Inde)

Inria contact: Aymeric Fromherz

Summary: Modern instant messaging systems allow multiple parties to communicate with each other
in pairs and in groups. The security of these conversations depends on complex cryptographic
protocols with subtle security guarantees. These protocols allow the addition and deletion of
members, as well as the exchange of confidential and authentic messages between (current)
members. It is difficult to be confident that these protocols and their implementations are correct.
Formal mechanized security analysis of protocols has been widely accepted as a necessary step
for designing robust cryptographic protocols but has not been previously used to analyze group
messaging. This proposal focuses on formally verifying security properties (like forward secrecy and
post-compromise security) of group messaging protocols. We propose to extend DY*, a symbolic
verification tool, to build a generic formal framework to model group-messaging protocols. We
will model various group messaging protocols and verify different security properties ranging
from authentication of peers in a group to the confidentiality of messages exchanged between the
peers. Finally, we will use our generic framework to empirically compare of performance of those
protocols.

10.2 European initiatives

10.2.1 Horizon Europe

CRYSPEN CRYSPEN project on cordis.europa.eu

Participants: Karthikeyan Bhargavan.

Title: Custom Cryptographic Solutions with Formal Security Guarantees

Duration: From April 1, 2022 to April 30, 2023

Partners: Inria, France

Coordinator: Karthikeyan Bhargavan

Summary: Modern web applications routinely rely on standardized cryptographic protocols and al-
gorithms to protect sensitive user data. Furthermore, with the advent of blockchains, the immin-
ence of quantum computers, and widespread concerns about privacy in an era of surveillance and
machine learning algorithms, enterprises are increasingly turning to sophisticated non-standard
cryptographic solutions customized for specific usage scenarios. Unfortunately, cryptographic
design and implementation is notoriously error-prone with a long history of design flaws, imple-
mentation bugs, and high-profile attacks. This leaves software companies with a difficult choice:
every time they deploy a new crypto standard or an innovative cryptographic application that
improves the security and privacy of their users, they risk exposing embarrassing flaws in their
design or code.

https://dx.doi.org/10.3030/101069446

Project PROSECCO 23

The research results of ERC Circus offer a way out of this conundrum by advocating the use
of formal verification to build cryptographic software with machine-checked proofs of security
and correctness. A landmark output from this project is HACL*, a verified high-performance
cryptographic library which is currently used by mainstream software like Mozilla Firefox, Linux
Kernel, Tezos Blockchain, and ElectionGuard. We propose to establish a company (called Cryspen)
that will transition the research software developed in ERC Circus towards a production-quality
ready-to-use verified cryptographic software stack. In addition, Cryspen will offer a developer-
friendly verification framework that can be used to build new custom cryptographic solutions in
C, Rust, and JavaScript. The goal of this Proof-of-Concept proposal is to fund the initial technical
transfer of research software to Cryspen and the business development of this company. Once
this transfer is complete, Cryspen will be able to offer long-term service contracts to existing and
new users of HACL*, and offer software contracts to enterprises interested in deploying verified
cryptographic software.

10.3 National initiatives

10.3.1 PEPR

PEPR Cybersecurity SVP

Participants: Karthikeyan Bhargavan, Bruno Blanchet (local PI), Vincent Cheval,
Sidney Congard, Lucas Franceschino, Aymeric Fromherz, Son Ho,
Charlie Jacomme, Adrien Koutsos, Théo Laurent, Antonin Reitz,
Justine Sauvage, Kristina Sojakova.

Title: SVP – Verification of Security Protocols

Other partners: IRISA/team SPICY, Inria Nancy/EPI PESTO, Inria Sophia Antipolis/EPI STAMP, LMP -
ENS Paris-Saclay/team INSPIRE.

Duration: July 2022–June 2028

Coordinator: Stéphanie Delaune, IRISA/Équipe SPICY

Summary: The SVP project aims at enabling the analysis of protocols (either already deployed or in the
design phase) at the level of abstract specifications, both symbolic and computational, as well
as implementations. We want to develop techniques and tools allowing the implementation of
solutions whose security will not be questioned in a cyclic way. To achieve this challenge, we
(i) develop new functionalities in existing tools to allow the analysis of more and more complex
protocols ; (ii) build bridges between the different existing proof techniques and associated tools
in order to take advantage of the strengths of each of them ; (iii) validate the techniques and tools
developed within this project on widely deployed protocols and on more recent, fast-growing
applications, such as Internet voting.

PEPR Quantic PQ-TLS

Participants: Karthikeyan Bhargavan (local PI until April 2023), Bruno Blanchet
(local PI from May 2023), Charlie Jacomme.

Title: PQ-TLS: Post-quantum padlock for web browsers

Other partners: Université Rennes I, Université de Limoges, Université de Rouen, Université de Bor-
deaux, Université de Saint-Quentin-en-Yvelines, Université de Saint-Étienne, ENS de Lyon, Inria
(EPI Grace, Caramba, Cosmiq, Cascade), CEA LETI, CNRS (IMB, IRISA, LABSTICC, LHC, LIP, LIX,
LMV, LORIA, XLIM), ANSSI, CryptoNext, PQShield SAS, CryptoExperts

24 Inria Annual Report 2023

Duration: January 2022–December 2026

Coordinator: Pierre Alain-Fouque, Université Rennes I

Summary: The famous “padlock” appearing in browsers when one visits websites whose address is
preceded by “https” relies on cryptographic primitives that would not withstand a quantum com-
puter. This integrated project aims to develop in 5 years post-quantum primitives in a prototype
of “post-quantum lock” that will be implemented in an open source browser. The evolution of
cryptographic standards has already started, the choice of new primitives will be made quickly,
and the transition will be made in the next few years. The objective is to play a driving role in this
evolution and to make sure that the French actors of post-quantum cryptography, already strongly
involved, are able to influence the cryptographic standards of the decades to come.

11 Dissemination

11.1 Promoting scientific activities

11.1.1 Scientific events: organisation

General chair, scientific chair

• Denis Merigoux co-chaired the Workshop on Programming Languages and the Law 2023.

Member of the organizing committees

• Karthikeyan Bhargavan was a co-organizer for the High-Assurance Cryptographic Software (HACS)
workshop 2023.

• Charlie Jacomme was a co-organizer for the GT-MFS (French working group on formal methods for
security) 2023.

• Adrien Koutsos is a co-organizer for the GT-MFS 2024.

• Aymeric Fromherz was a co-organizer for the ICFP Programming Contest 2023.

11.1.2 Scientific events: selection

Member of the conference program committees

• Aymeric Fromherz: PC member for JFLA’23, POPL’24, USENIX Security’24.

• Charlie Jacomme: PC member for USENIX Security’24.

• Adrien Koutsos: PC member for CCS’23.

• Denis Merigoux: PC member for CRCL’23, OOPSLA’23, ICAIL’23, JURIX’23, POPL’24.

11.1.3 Journal

Member of the editorial boards

• Karthikeyan Bhargavan: Associate Editor of ACM Transaction on Privacy and Security (TOPS)

• Denis Merigoux: Editor of the Journal of Cross-disciplinary Research in Computational Law (CRCL)

11.1.4 Invited talks

• Denis Merigoux: Invited talk at CRCL’23

Project PROSECCO 25

11.2 Teaching - Supervision - Juries

11.2.1 Teaching

• Master: Bruno Blanchet, Cryptographic protocols: formal and computational proofs, 27h equival-
ent TD, master M2 MPRI, université Paris VII

• Master: Adrien Koutsos, Cryptographic protocols: formal and computational proofs, 27h equivalent
TD, master M2 MPRI, université Paris VII

11.2.2 Supervision

• PhD in progress: Théo Vignon, Exploring the limits of the CCSA approach to computational security,
since September 2023, supervised by Caroline Fontaine, Guillaume Scerri, and Adrien Koutsos.

• PhD in progress: Alain Delaët-Tixeuil, Interactive verification for programs deriving from legal
specifications, since September 2022, supervised by Sandrine Blazy and Denis Merigoux.

• PhD in progress: Antonin Reitz, A Methodology for Programming and Verifying Secure Systems,
since November 2022, supervised by Bruno Blanchet and Aymeric Fromherz.

• PhD in progress: Justine Sauvage, Games and Logic for the Verification of Cryptographic Protocols,
since September 2022, supervised by Bruno Blanchet, David Baelde, and Adrien Koutsos.

• PhD in progress: Son Ho, Verification of Rust Programs, since September 2020, supervised by
Karthikeyan Bhargavan, Bruno Blanchet, and Jonathan Protzenko.

• PhD in progress: Théophile Wallez, Verification of Cryptographic Protocols, since September 2021,
supervised by Karthikeyan Bhargavan, Bruno Blanchet, and Jonathan Protzenko.

• PhD in progress: Théo Laurent, Dependent types and subtyping, since July 2020, supervised by
David Delahaye, Bruno Blanchet, and Kenji Maillard.

• M2 internship: Rémy Citerin, Coinduction in F* and application to interaction trees, supervised by
Aymeric Fromherz and Théo Laurent.

12 Scientific production

12.1 Major publications

[1] M. Abadi, B. Blanchet and C. Fournet. ‘The Applied Pi Calculus: Mobile Values, New Names, and
Secure Communication’. In: Journal of the ACM (JACM) 65.1 (Oct. 2017), pp. 1–103. DOI: 10.1145
/3127586. URL: https://hal.inria.fr/hal-01636616.

[2] D. Baelde, S. Delaune, C. Jacomme, A. Koutsos and S. Moreau. ‘An Interactive Prover for Protocol
Verification in the Computational Model’. In: SP 2021 - 42nd IEEE Symposium on Security and
Privacy. Proceedings of the 42nd IEEE Symposium on Security and Privacy (S&P’21). San Fransisco
/ Virtual, United States, 23rd May 2021. URL: https://hal.archives-ouvertes.fr/hal-0317
2119.

[3] K. Bhargavan, B. Blanchet and N. Kobeissi. ‘Verified Models and Reference Implementations for the
TLS 1.3 Standard Candidate’. In: 38th IEEE Symposium on Security and Privacy. San Jose, United
States, May 2017, pp. 483–502. DOI: 10.1109/SP.2017.26. URL: https://hal.inria.fr/hal-0
1575920.

[4] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti and P.-Y. Strub. ‘Triple Handshakes and
Cookie Cutters: Breaking and Fixing Authentication over TLS’. In: IEEE Symposium on Security and
Privacy (Oakland). 2014, pp. 98–113. URL: https://hal.inria.fr/hal-01102259.

[5] B. Blanchet. ‘Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif’.
In: Foundations and Trends in Privacy and Security 1.1–2 (Oct. 2016), pp. 1–135. URL: https://hal
.inria.fr/hal-01423760.

https://doi.org/10.1145/3127586
https://doi.org/10.1145/3127586
https://hal.inria.fr/hal-01636616
https://hal.archives-ouvertes.fr/hal-03172119
https://hal.archives-ouvertes.fr/hal-03172119
https://doi.org/10.1109/SP.2017.26
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01102259
https://hal.inria.fr/hal-01423760
https://hal.inria.fr/hal-01423760

26 Inria Annual Report 2023

[6] B. Blanchet, V. Cheval and V. Cortier. ‘ProVerif with Lemmas, Induction, Fast Subsumption, and
Much More’. In: S&P’22 - 43rd IEEE Symposium on Security and Privacy. San Francisco, United
States, 22nd May 2022. URL: https://hal.inria.fr/hal-03366962.

[7] A. Koutsos. ‘The 5G-AKA Authentication Protocol Privacy’. In: EuroS&P 2019 - IEEE European
Symposium on Security and Privacy. Stockholm, Sweden: IEEE, June 2019, pp. 464–479. DOI: 10.11
09/EuroSP.2019.00041. URL: https://hal.inria.fr/hal-03155483.

[8] D. Merigoux, N. Chataing and J. Protzenko. ‘Catala: A Programming Language for the Law’. In:
Proceedings of the ACM on Programming Languages 5.ICFP (Aug. 2021), 77:1–29. DOI: 10.1145/34
73582. URL: https://inria.hal.science/hal-03159939.

[9] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Fournet,
P.-Y. Strub, M. Kohlweiss, J. K. Zinzindohoué and S. Zanella-Béguelin. ‘Dependent Types and Multi-
Monadic Effects in F*’. In: 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). ACM, Jan. 2016, pp. 256–270. URL: https://hal.inria.fr/hal-01265793.

[10] J. K. Zinzindohoué, K. Bhargavan, J. Protzenko and B. Beurdouche. ‘HACL*: A Verified Modern
Cryptographic Library’. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. 2017, pp. 1789–
1806. URL: https://hal.inria.fr/hal-01588421.

12.2 Publications of the year

International journals

[11] M. Barbosa, G. Barthe, B. Grégoire, A. Koutsos and P.-Y. Strub. ‘Mechanized Proofs of Adversarial
Complexity and Application to Universal Composability: Journal pre-print: full version’. In: ACM
Transactions on Privacy and Security 26.3 (30th Aug. 2023), pp. 1–34. DOI: 10.1145/3589962. URL:
https://inria.hal.science/hal-04048217.

[12] V. Cheval, R. Crubillé and S. Kremer. ‘Symbolic protocol verification with dice: Process equivalences
in the presence of probabilities’. In: Journal of Computer Security (12th June 2023), pp. 1–38. DOI:
10.3233/JCS-230037. URL: https://inria.hal.science/hal-04179875.

[13] S. Ho, A. Fromherz and J. Protzenko. ‘Modularity, Code Specialization, and Zero-Cost Abstractions
for Program Verification’. In: Proceedings of the ACM on Programming Languages 7.ICFP (31st Aug.
2023), pp. 385–416. DOI: 10.1145/3607844. URL: https://hal.science/hal-04301439.

[14] D. Merigoux, M. Alauzen and L. Slimani. ‘Rules, Computation and Politics: Scrutinizing Unnoticed
Programming Choices in French Housing Benefits’. In: Journal of Cross-disciplinary Research in
Computational Law 1.4 (2023). URL: https://inria.hal.science/hal-03712130.

International peer-reviewed conferences

[15] D. de Almeida Braga, N. Kulatova, M. Sabt, P.-A. Fouque and K. Bhargavan. ‘From Dragondoom
to Dragonstar: Side-channel Attacks and Formally Verified Implementation of WPA3 Dragonfly
Handshake’. In: EuroS&P 2023 - IEEE 8th European Symposium on Security and Privacy. Delft,
Netherlands: IEEE, 3rd July 2023, pp. 707–723. DOI: 10.1109/EuroSP57164.2023.00048. URL:
https://hal.science/hal-04175322.

[16] A. Arasu, T. Ramananandro, A. Rastogi, N. Swamy, A. Fromherz, K. Hietala, B. Parno and R. Ramamurthy.
‘FastVer2: A Provably Correct Monitor for Concurrent, Key-Value Stores’. In: CPP ’23 - 12th ACM
SIGPLAN International Conference on Certified Programs and Proofs. Boston (MA), United States:
ACM, 16th Jan. 2023, pp. 30–46. DOI: 10.1145/3573105.3575687. URL: https://inria.hal.sc
ience/hal-04104143.

[17] D. Baelde, A. Koutsos and J. Lallemand. ‘A Higher-Order Indistinguishability Logic for Cryptographic
Reasoning’. In: LICS. Boston, United States: IEEE, 26th June 2023, pp. 1–13. DOI: 10.1109/LICS56
636.2023.10175781. URL: https://inria.hal.science/hal-03981949.

https://hal.inria.fr/hal-03366962
https://doi.org/10.1109/EuroSP.2019.00041
https://doi.org/10.1109/EuroSP.2019.00041
https://hal.inria.fr/hal-03155483
https://doi.org/10.1145/3473582
https://doi.org/10.1145/3473582
https://inria.hal.science/hal-03159939
https://hal.inria.fr/hal-01265793
https://hal.inria.fr/hal-01588421
https://doi.org/10.1145/3589962
https://inria.hal.science/hal-04048217
https://doi.org/10.3233/JCS-230037
https://inria.hal.science/hal-04179875
https://doi.org/10.1145/3607844
https://hal.science/hal-04301439
https://inria.hal.science/hal-03712130
https://doi.org/10.1109/EuroSP57164.2023.00048
https://hal.science/hal-04175322
https://doi.org/10.1145/3573105.3575687
https://inria.hal.science/hal-04104143
https://inria.hal.science/hal-04104143
https://doi.org/10.1109/LICS56636.2023.10175781
https://doi.org/10.1109/LICS56636.2023.10175781
https://inria.hal.science/hal-03981949

Project PROSECCO 27

[18] V. Cheval, V. Cortier and A. Debant. ‘Election Verifiability with ProVerif’. In: CSF 2023 - 36th IEEE
Computer Security Foundations Symposium. Dubrovnik, Croatia, 9th July 2023. URL: https://in
ria.hal.science/hal-04177268.

[19] Best Paper
V. Cheval, C. Cremers, A. Dax, L. Hirschi, C. Jacomme and S. Kremer. ‘Hash Gone Bad: Automated
discovery of protocol attacks that exploit hash function weaknesses’. In: 32nd USENIX Security
Symposium. Anaheim, United States, 2023. URL: https://hal.science/hal-03795715.

[20] V. Cheval, J. Moreira and M. Ryan. ‘Automatic verification of transparency protocols’. In: 2023 IEEE
8th European Symposium on Security and Privacy (EuroS&P). 2023 IEEE 8th European Symposium
on Security and Privacy (EuroS&P). Delft, Netherlands: IEEE, 3rd July 2023. DOI: 10.1109/Euro
SP57164.2023.00016. URL: https://inria.hal.science/hal-04219234.

[21] Best Paper
V. Cheval and I. Rakotonirina. ‘Indistinguishability Beyond Diff-Equivalence in ProVerif’. In: 2023
IEEE 36th Computer Security Foundations Symposium (CSF). 2023 IEEE 36th Computer Security
Foundations Symposium (CSF). Dubrovnik, Croatia: IEEE, 10th July 2023, pp. 184–199. DOI: 10.11
09/CSF57540.2023.00036. URL: https://inria.hal.science/hal-04219230.

[22] Best Paper
C. Cremers, A. Dax, C. Jacomme and M. Zhao. ‘Automated Analysis of Protocols that use Authentic-
ated Encryption:How Subtle AEAD Differences can impact Protocol Security’. In: 32nd USENIX
Security Symposium 2023. Anaheim, United States, 9th Aug. 2023. URL: https://inria.hal.sci
ence/hal-04126116.

[23] C. Cremers, C. Jacomme and A. Naska. ‘Formal Analysis of Session-Handling in Secure Messaging:
Lifting Security from Sessions to Conversations’. In: USENIX Security 2023 - 32nd USENIX Security
Symposium. Anaheim, United States, 2023. URL: https://hal.science/hal-03996689.

[24] J. Gancher, K. Sojakova, X. Fan, E. Shi and G. Morrisett. ‘A Core Calculus for Equational Proofs
of Cryptographic Protocols’. In: POPL 2023 - 50th ACM SIGPLAN Symposium on Principles of
Programming Languages. Boston, United States, 15th Jan. 2023. DOI: 10.1145/3571223. URL:
https://inria.hal.science/hal-03917005.

[25] C. Jacomme, E. Klein, S. Kremer and M. Racouchot. ‘A comprehensive, formal and automated
analysis of the EDHOC protocol’. In: USENIX Security ’23 - 32nd USENIX Security Symposium.
Anaheim, CA, United States, 9th Aug. 2023. URL: https://inria.hal.science/hal-03810102.

[26] Best Paper
T. Wallez, J. Protzenko, B. Beurdouche and K. Bhargavan. ‘TreeSync: Authenticated Group Man-
agement for Messaging Layer Security’. In: USENIX Security ’23. Anaheim, United States, 9th Aug.
2023. URL: https://hal.science/hal-04255953.

[27] T. Wallez, J. Protzenko and K. Bhargavan. ‘Comparse: Provably Secure Formats for Cryptographic
Protocols’. In: CCS ’23: ACM SIGSAC Conference on Computer and Communications Security.
Copenhagen, Denmark: ACM, 26th Nov. 2023, pp. 564–578. DOI: 10.1145/3576915.3623201. URL:
https://hal.science/hal-04310972.

National peer-reviewed Conferences

[28] T. Wallez. ‘Vérification symbolique de protocoles cryptographiques en F*: application au sous-
protocole TreeSync de MLS’. In: Journées Francophones des Langages Applicatifs. JFLA 2023 - 34èmes
Journées Francophones des Langages Applicatifs. Praz-sur-Arly, France, 16th Jan. 2023, pp. 243–263.
URL: https://inria.hal.science/hal-03936726.

Conferences without proceedings

[29] D. Merigoux. ‘Experience report: implementing a real-world, medium-sized program derived from
a legislative specification’. In: Programming Languages and the Law 2023 (affiliated with POPL).
Boston (MA), United States, 15th Jan. 2023. URL: https://inria.hal.science/hal-03933574.

https://inria.hal.science/hal-04177268
https://inria.hal.science/hal-04177268
https://hal.science/hal-03795715
https://doi.org/10.1109/EuroSP57164.2023.00016
https://doi.org/10.1109/EuroSP57164.2023.00016
https://inria.hal.science/hal-04219234
https://doi.org/10.1109/CSF57540.2023.00036
https://doi.org/10.1109/CSF57540.2023.00036
https://inria.hal.science/hal-04219230
https://inria.hal.science/hal-04126116
https://inria.hal.science/hal-04126116
https://hal.science/hal-03996689
https://doi.org/10.1145/3571223
https://inria.hal.science/hal-03917005
https://inria.hal.science/hal-03810102
https://hal.science/hal-04255953
https://doi.org/10.1145/3576915.3623201
https://hal.science/hal-04310972
https://inria.hal.science/hal-03936726
https://inria.hal.science/hal-03933574

28 Inria Annual Report 2023

Reports & preprints

[30] B. Blanchet. CryptoVerif: a Computationally-Sound Security Protocol Verifier (Initial Version with
Communications on Channels). RR-9525. Inria Paris, 17th Oct. 2023, p. 166. URL: https://inria
.hal.science/hal-04246199.

[31] B. Blanchet. Dealing with Dynamic Key Compromise in CryptoVerif. 6th Nov. 2023. URL: https://i
nria.hal.science/hal-04271666.

[32] B. Blanchet, P. Boutry, C. Doczkal, B. Grégoire and P.-Y. Strub. CV2EC: Getting the Best of Both Worlds.
4th Dec. 2023. URL: https://inria.hal.science/hal-04321656.

[33] B. Blanchet and C. Jacomme. CryptoVerif: a Computationally-Sound Security Protocol Verifier.
RR-9526. Inria, 23rd Oct. 2023, p. 194. URL: https://inria.hal.science/hal-04253820.

[34] V. Cheval, R. Crubillé and S. Kremer. Symbolic protocol verification with dice: process equivalences
in the presence of probabilities (extended version). 30th May 2023. URL: https://inria.hal.scie
nce/hal-03683907.

[35] S. Ho, J. Protzenko and A. Fromherz. Aeneas: Rust Verification by Functional Translation. Inria Paris,
23rd Apr. 2023. URL: https://hal.science/hal-04136056.

[36] T. Laurent, M. Lennon-Bertrand and K. Maillard. Definitional Functoriality for Dependent (Sub)Types.
23rd Oct. 2023. URL: https://hal.science/hal-04160858.

12.3 Cited publications

[37] M. Abadi and B. Blanchet. ‘Analyzing Security Protocols with Secrecy Types and Logic Programs’.
In: Journal of the ACM 52.1 (Jan. 2005), pp. 102–146. URL: https://bblanche.gitlabpages.inr
ia.fr/publications/AbadiBlanchetJACM7037.pdf.

[38] M. Abadi, B. Blanchet and C. Fournet. ‘Just Fast Keying in the Pi Calculus’. In: ACM Transactions on
Information and System Security (TISSEC) 10.3 (July 2007), pp. 1–59. URL: https://bblanche.git
labpages.inria.fr/publications/AbadiBlanchetFournetTISSEC07.pdf.

[39] D. Ahman, C. Hritcu, K. Maillard, G. Martínez, G. Plotkin, J. Protzenko, A. Rastogi and N. Swamy.
‘Dijkstra Monads for Free’. In: 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL). ACM, Jan. 2017, pp. 515–529. DOI: 10.1145/3009837.3009878. URL: https:
//www.fstar-lang.org/papers/dm4free/.

[40] G. Bana, P. Adaõ and H. Sakurada. ‘Computationally Complete Symbolic Adversary and Com-
putationally Sound Veri?cation of Security Protocols (in Japanese)’. In: Proceedings of The 30th
Symposium on Cryptography and Information Security. CD-ROM (4D1-3), Jan. 2013.

[41] M. Barbosa, G. Barthe, B. Grégoire, A. Koutsos and P. Strub. ‘Mechanized Proofs of Adversarial
Complexity and Application to Universal Composability’. In: CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19,
2021. Ed. by Y. Kim, J. Kim, G. Vigna and E. Shi. ACM, 2021, pp. 2541–2563. DOI: 10.1145/3460120
.3484548. URL: https://doi.org/10.1145/3460120.3484548.

[42] E. D. Berger. ‘Software needs seatbelts and airbags’. In: Communications of the ACM 55.9 (2012),
pp. 48–53.

[43] K. Bhargavan, B. Beurdouche and P. Naldurg. Formal Models and Verified Protocols for Group
Messaging: Attacks and Proofs for IETF MLS. Research Report. Inria Paris, Dec. 2019. URL: https:
//inria.hal.science/hal-02425229.

[44] K. Bhargavan, A. Bichhawat, Q. H. Do, P. Hosseyni, R. Küsters, G. Schmitz and T. Würtele. ‘DY*
: A Modular Symbolic Verification Framework for Executable Cryptographic Protocol Code’. In:
EuroS&P 2021 - 6th IEEE European Symposium on Security and Privacy. Virtual, Austria, Sept. 2021.
URL: https://hal.inria.fr/hal-03178425.

https://inria.hal.science/hal-04246199
https://inria.hal.science/hal-04246199
https://inria.hal.science/hal-04271666
https://inria.hal.science/hal-04271666
https://inria.hal.science/hal-04321656
https://inria.hal.science/hal-04253820
https://inria.hal.science/hal-03683907
https://inria.hal.science/hal-03683907
https://hal.science/hal-04136056
https://hal.science/hal-04160858
https://bblanche.gitlabpages.inria.fr/publications/AbadiBlanchetJACM7037.pdf
https://bblanche.gitlabpages.inria.fr/publications/AbadiBlanchetJACM7037.pdf
https://bblanche.gitlabpages.inria.fr/publications/AbadiBlanchetFournetTISSEC07.pdf
https://bblanche.gitlabpages.inria.fr/publications/AbadiBlanchetFournetTISSEC07.pdf
https://doi.org/10.1145/3009837.3009878
https://www.fstar-lang.org/papers/dm4free/
https://www.fstar-lang.org/papers/dm4free/
https://doi.org/10.1145/3460120.3484548
https://doi.org/10.1145/3460120.3484548
https://doi.org/10.1145/3460120.3484548
https://inria.hal.science/hal-02425229
https://inria.hal.science/hal-02425229
https://hal.inria.fr/hal-03178425

Project PROSECCO 29

[45] K. Bhargavan, B. Bond, A. Delignat-Lavaud, C. Fournet, C. Hawblitzel, C. Hritcu, S. Ishtiaq, M.
Kohlweiss, R. Leino, J. Lorch, K. Maillard, J. Pang, B. Parno, J. Protzenko, T. Ramananandro, A. Rane,
A. Rastogi, N. Swamy, L. Thompson, P. Wang, S. Zanella-Béguelin and J.-K. Zinzindohoué. ‘Everest:
Towards a Verified, Drop-in Replacement of HTTPS’. In: 2nd Summit on Advances in Programming
Languages (SNAPL). May 2017. URL: http://drops.dagstuhl.de/opus/volltexte/2017/711
9/pdf/LIPIcs-SNAPL-2017-1.pdf.

[46] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Pan, J. Protzenko, A. Rastogi, N.
Swamy, S. Zanella-Béguelin and J. K. Zinzindohoué. ‘Implementing and Proving the TLS 1.3 Record
Layer’. In: IEEE Symposium on Security and Privacy (Oakland). 2017.

[47] K. Bhargavan, C. Fournet, R. Corin and E. Zalinescu. ‘Verified Cryptographic Implementations for
TLS’. In: ACM Transactions Inf. Syst. Secur. 15.1 (Mar. 2012), 3:1–3:32. DOI: 10.1145/2133375.213
3378. URL: http://doi.acm.org/10.1145/2133375.2133378.

[48] K. Bhargavan, C. Fournet, A. D. Gordon and N. Swamy. ‘Verified implementations of the information
card federated identity-management protocol’. In: ACM Symposium on Information, Computer
and Communications Security (ASIACCS). 2008, pp. 123–135.

[49] B. Blanchet. ‘An Efficient Cryptographic Protocol Verifier Based on Prolog Rules’. In: 14th IEEE
Computer Security Foundations Workshop (CSFW’01). 2001, pp. 82–96.

[50] B. Blanchet. ‘Automatic Verification of Correspondences for Security Protocols’. In: Journal of
Computer Security 17.4 (July 2009), pp. 363–434. URL: https://bblanche.gitlabpages.inria
.fr/publications/BlanchetJCS08.pdf.

[51] B. Blanchet, M. Abadi and C. Fournet. ‘Automated Verification of Selected Equivalences for Security
Protocols’. In: Journal of Logic and Algebraic Programming 75.1 (2008), pp. 3–51. URL: https://bb
lanche.gitlabpages.inria.fr/publications/BlanchetAbadiFournetJLAP07.pdf.

[52] B. Blanchet and A. Podelski. ‘Verification of Cryptographic Protocols: Tagging Enforces Termination’.
In: Theoretical Computer Science 333.1-2 (Mar. 2005). Special issue FoSSaCS’03., pp. 67–90. URL: ht
tps://bblanche.gitlabpages.inria.fr/publications/BlanchetPodelskiTCS04.html.

[53] D. Cadé and B. Blanchet. ‘Proved Generation of Implementations from Computationally Secure
Protocol Specifications’. In: Journal of Computer Security 23.3 (2015), pp. 331–402.

[54] V. Cheval, R. Crubillé and S. Kremer. ‘Symbolic protocol verification with dice: process equivalences
in the presence of probabilities’. In: CSF’22 - 35th IEEE Computer Security Foundations Symposium.
Haifa, Israel, Aug. 2022, pp. 319–334. URL: https://hal.inria.fr/hal-03700492.

[55] V. Cheval, C. Jacomme, S. Kremer and R. Künnemann. ‘Sapic+ : protocol verifiers of the world,
unite!’ In: USENIX 2022 - 31st USENIX Security Symposium. Boston, United States, Aug. 2022. URL:
https://hal.inria.fr/hal-03693843.

[56] V. Cheval, S. Kremer and I. Rakotonirina. ‘Exploiting Symmetries When Proving Equivalence Prop-
erties for Security Protocols’. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November 11-15, 2019. Ed. by L. Cavallaro,
J. Kinder, X. Wang and J. Katz. ACM, 2019, pp. 905–922. DOI: 10.1145/3319535.3354260.

[57] A. Delaët, D. Merigoux and A. Fromherz. ‘Turning Catala into a Proof Platform for the Law’. In:
Programming Languages and the Law, workshop affiliated with POPL 2022. Jan. 2022. URL: https:
//hal.inria.fr/hal-03447072.

[58] A. Delignat-Lavaud, K. Bhargavan and S. Maffeis. ‘Language-Based Defenses Against Untrusted
Browser Origins’. In: Proceedings of the 22th USENIX Security Symposium. 2013. URL: http://pro
secco.inria.fr/personal/karthik/pubs/language-based-defenses-against-untrust
ed-origins-sec13.pdf.

[59] D. Dolev and A. Yao. ‘On the security of public key protocols’. In: IEEE Transactions on Information
Theory IT–29.2 (1983), pp. 198–208.

[60] C. Fournet, M. Kohlweiss and P.-Y. Strub. ‘Modular Code-Based Cryptographic Verification’. In:
ACM Conference on Computer and Communications Security. 2011.

http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
https://doi.org/10.1145/2133375.2133378
https://doi.org/10.1145/2133375.2133378
http://doi.acm.org/10.1145/2133375.2133378
https://bblanche.gitlabpages.inria.fr/publications/BlanchetJCS08.pdf
https://bblanche.gitlabpages.inria.fr/publications/BlanchetJCS08.pdf
https://bblanche.gitlabpages.inria.fr/publications/BlanchetAbadiFournetJLAP07.pdf
https://bblanche.gitlabpages.inria.fr/publications/BlanchetAbadiFournetJLAP07.pdf
https://bblanche.gitlabpages.inria.fr/publications/BlanchetPodelskiTCS04.html
https://bblanche.gitlabpages.inria.fr/publications/BlanchetPodelskiTCS04.html
https://hal.inria.fr/hal-03700492
https://hal.inria.fr/hal-03693843
https://doi.org/10.1145/3319535.3354260
https://hal.inria.fr/hal-03447072
https://hal.inria.fr/hal-03447072
http://prosecco.inria.fr/personal/karthik/pubs/language-based-defenses-against-untrusted-origins-sec13.pdf
http://prosecco.inria.fr/personal/karthik/pubs/language-based-defenses-against-untrusted-origins-sec13.pdf
http://prosecco.inria.fr/personal/karthik/pubs/language-based-defenses-against-untrusted-origins-sec13.pdf

30 Inria Annual Report 2023

[61] A. Fromherz, A. Rastogi, N. Swamy, S. Gibson, G. Martínez, D. Merigoux and T. Ramananandro.
‘Steel: proof-oriented programming in a dependently typed concurrent separation logic’. In: Pro-
ceedings of the ACM on Programming Languages 5.ICFP (Aug. 2021), pp. 1–30. DOI: 10.1145/3473
590. URL: https://hal.inria.fr/hal-03466397.

[62] S. Ho and J. Protzenko. ‘Aeneas: Rust verification by functional translation’. In: Proceedings of the
ACM on Programming Languages 6.ICFP (Aug. 2022), pp. 711–741. DOI: 10.1145/3547647. URL:
https://hal.science/hal-03931572.

[63] L. Huttner and D. Merigoux. ‘Catala: Moving Towards the Future of Legal Expert Systems’. In:
Artificial Intelligence and Law (Aug. 2022). DOI: 10.1007/s10506-022-09328-5. URL: https:
//hal.inria.fr/hal-02936606.

[64] L. Huttner and D. Merigoux. ‘Traduire la loi en code grâce au langage de programmation Catala’. In:
Intelligence artificielle et finances publiques. Nice, France, Oct. 2020. URL: https://inria.hal.s
cience/hal-03128248.

[65] N. Kobeissi, K. Bhargavan and B. Blanchet. ‘Automated Verification for Secure Messaging Protocols
and Their Implementations: A Symbolic and Computational Approach’. In: 2nd IEEE European
Symposium on Security and Privacy. Paris, France, Apr. 2017, pp. 435–450. DOI: 10.1109/Euro
SP.2017.38. URL: https://hal.inria.fr/hal-01575923.

[66] B. Lipp, B. Blanchet and K. Bhargavan. ‘A Mechanised Cryptographic Proof of the WireGuard Virtual
Private Network Protocol’. In: IEEE European Symposium on Security and Privacy (EuroS&P’19).
Stockholm, Sweden: IEEE Computer Society, June 2019, pp. 231–246. URL: https://hal.inria.f
r/hal-02100345/document.

[67] K. Maillard, D. Ahman, R. Atkey, G. Martínez, C. Hritcu, E. Rivas and É. Tanter. ‘Dijkstra Monads for
All’. In: PACMPL 3.ICFP (2019), 104:1–104:29. DOI: 10.1145/3341708. URL: https://arxiv.org
/abs/1903.01237.

[68] R. Needham and M. Schroeder. ‘Using encryption for authentication in large networks of com-
puters’. In: Communications of the ACM 21.12 (1978), pp. 993–999.

[69] M. Polubelova, K. Bhargavan, J. Protzenko, B. Beurdouche, A. Fromherz, N. Kulatova and S. Zanella-
Béguelin. ‘HACLxN: Verified Generic SIMD Crypto (for all your favourite platforms)’. In: CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications Security. Virtual Event, United
States, Nov. 2020. URL: https://hal.inria.fr/hal-03154275.

[70] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova, K. Bhargavan, B. Beurdouche,
J. Choi, A. Delignat-Lavaud, C. Fournet, N. Kulatova, T. Ramananandro, A. Rastogi, N. Swamy, C.
Wintersteiger and S. Zanella-Béguelin. ‘EverCrypt: A Fast, Verified, Cross-Platform Cryptographic
Provider’. In: SP 2020 - IEEE Symposium on Security and Privacy. San Francisco / Virtual, United
States: IEEE, May 2020, pp. 983–1002. DOI: 10.1109/SP40000.2020.00114. URL: https://hal
.inria.fr/hal-03154278.

[71] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro, P. Wang, S. Zanella-Béguelin, A.
Delignat-Lavaud, C. Hritcu, K. Bhargavan, C. Fournet and N. Swamy. ‘Verified Low-Level Program-
ming Embedded in F*’. In: PACMPL 1.ICFP (Sept. 2017), 17:1–17:29. DOI: 10.1145/3110261. URL:
http://arxiv.org/abs/1703.00053.

[72] T. Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy, T. Chajed, N. Kobeissi and J. Protzenko.
‘EverParse: Verified Secure Zero-Copy Parsers for Authenticated Message Formats’. In: 28th USENIX
Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019. Ed. by N.
Heninger and P. Traynor. USENIX Association, 2019, pp. 1465–1482. URL: https://www.usenix.o
rg/conference/usenixsecurity19/presentation/delignat-lavaud.

[73] N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P.-Y. Strub and G. M. Bierman. ‘Gradual
typing embedded securely in JavaScript’. In: 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL). 2014, pp. 425–438. URL: http://prosecco.inria.fr/perso
nal/karthik/pubs/tsstar-popl14.pdf.

https://doi.org/10.1145/3473590
https://doi.org/10.1145/3473590
https://hal.inria.fr/hal-03466397
https://doi.org/10.1145/3547647
https://hal.science/hal-03931572
https://doi.org/10.1007/s10506-022-09328-5
https://hal.inria.fr/hal-02936606
https://hal.inria.fr/hal-02936606
https://inria.hal.science/hal-03128248
https://inria.hal.science/hal-03128248
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1109/EuroSP.2017.38
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-02100345/document
https://hal.inria.fr/hal-02100345/document
https://doi.org/10.1145/3341708
https://arxiv.org/abs/1903.01237
https://arxiv.org/abs/1903.01237
https://hal.inria.fr/hal-03154275
https://doi.org/10.1109/SP40000.2020.00114
https://hal.inria.fr/hal-03154278
https://hal.inria.fr/hal-03154278
https://doi.org/10.1145/3110261
http://arxiv.org/abs/1703.00053
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
http://prosecco.inria.fr/personal/karthik/pubs/tsstar-popl14.pdf
http://prosecco.inria.fr/personal/karthik/pubs/tsstar-popl14.pdf

	Project-Team PROSECCO
	Team members, visitors, external collaborators
	Overall objectives
	Programming securely with cryptography

	Research program
	Symbolic verification of cryptographic applications
	Computational verification of cryptographic applications
	F*: A Higher-Order Effectful Language for Program Verification
	Analysis of Rust Programs
	Provably secure web applications
	Design and Verification of next-generation protocols: identity, blockchains, and messaging
	Formalizing Law

	Application domains
	High-Assurance Cryptographic Libraries
	Design and Analysis of Protocol Standards
	Web application security
	Formalizing Law

	Social and environmental responsibility
	Footprint of research activities

	Highlights of the year
	Awards

	New software, platforms, open data
	New software
	F*
	Steel
	HACL*
	DY*
	Hacspec
	Aeneas
	Charon
	mlang
	Catala
	ProVerif
	CryptoVerif
	Squirrel
	Easycrypt
	IPDL

	New results
	Verification of security protocols in the symbolic model
	Verification of security protocols in the computational model
	High-Assurance High-Performance Crypto
	Verification of cryptographic protocol implementations in the symbolic model: the DY* framework
	Extensions to F*
	Formalizing and Implementing Law
	Verification of Rust programs: Aeneas and hacspec

	Bilateral contracts and grants with industry
	Bilateral grants with industry
	Other funding

	Partnerships and cooperations
	International initiatives
	Inria associate team not involved in an IIL or an international program

	European initiatives
	Horizon Europe

	National initiatives
	PEPR

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks

	Teaching - Supervision - Juries
	Teaching
	Supervision

	Scientific production
	Major publications
	Publications of the year
	Cited publications

