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1 Team members, visitors, external collaborators
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• Clément Mantoux [INRIA, Post-Doctoral Fellow, until Aug 2023]

• Anant Raj [INRIA, Post-Doctoral Fellow]

• Corbinian Schlosser [INRIA, Post-Doctoral Fellow, from Jul 2023]

• Yang Su [CEA, from Sep 2023]

• Paul Viallard [INRIA, Post-Doctoral Fellow, from Feb 2023]

• Blake Woodworth [INRIA, Post-Doctoral Fellow, until Jun 2023]

PhD Students

• Antoine Bambade [Ecole des Ponts]

• Melih Barsbey [UNIV BOGAZICI, from Aug 2023]

• Andrea Basteri [INRIA]

• Gaspard Beugnot [INRIA]

• Pierre Boudart [INRIA, from Feb 2023]

• Sarah Brood [ENS Paris, from Nov 2023]

• Arthur Calvi [CNRS]

• Theophile Cantelobre [INRIA]

• Benjamin Dupuis [INRIA, from May 2023]

• Bertille Follain [ENS PARIS]

• Gautier Izacard [CNRS, until Jan 2023]

• Remi Jezequel [ENS Paris, until Jan 2023]
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• Marc Lambert [DGA]

• Clément Lezane [UNIV TWENTE]

• Simon Martin [INRIA, from Sep 2023]

• Céline Moucer [ENS PARIS-SACLAY]

• Benjamin Paul-Dubois-Taine [UNIV PARIS SACLAY]

• Dario Shariatian [INRIA, from Oct 2023]

• Lawrence Stewart [INRIA]

Interns and Apprentices

• Eugene Berta [INRIA, Intern, from Apr 2023 until Sep 2023]

• Matthieu Dinot [INRIA, Intern, from Apr 2023 until Aug 2023]

• Benjamin Dupuis [INRIA, Intern, until Mar 2023]

• Krunoslav Lehman Pavasovic [INRIA, Intern, until Mar 2023]

• Simon Martin [ENS Paris, Intern, from Apr 2023 until Aug 2023]

• Sarah Sachs [INRIA, Intern, until Feb 2023]

Administrative Assistants

• Meriem Guemair [INRIA]

• Marina Kovacic [Inria, from Aug 2023]

Visiting Scientists

• Silvere Bonnabel [Ecole des Mines de Paris, from Aug 2023]

• Laurent El Ghaoui [UNIV BERKELEY, from Jun 2023 until Jun 2023, HDR]

• Steffen Grunewalder [UNIV NEWCASTLE, until Jun 2023]

• Cristobal Guzman [Catholic University of Chile]

• Max Kramkimel [NIC, from Mar 2023 until Jul 2023]

• Antônio Horta Ribeiro [UNIV UPPSALA, from Mar 2023 until Jun 2023]

2 Overall objectives

2.1 Statement

Machine learning is a recent scientific domain, positioned between applied mathematics, statistics and
computer science. Its goals are the optimization, control, and modelisation of complex systems from
examples. It applies to data from numerous engineering and scientific fields (e.g., vision, bioinformatics,
neuroscience, audio processing, text processing, economy, finance, etc.), the ultimate goal being to
derive general theories and algorithms allowing advances in each of these domains. Machine learning
is characterized by the high quality and quantity of the exchanges between theory, algorithms and
applications: interesting theoretical problems almost always emerge from applications, while theoretical
analysis allows the understanding of why and when popular or successful algorithms do or do not work,
and leads to proposing significant improvements.
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Our academic positioning is exactly at the intersection between these three aspects—algorithms,
theory and applications—and our main research goal is to make the link between theory and algorithms,
and between algorithms and high-impact applications in various engineering and scientific fields, in
particular computer vision, bioinformatics, audio processing, and text processing.

3 Research program

Machine learning has emerged as its own scientific domain in the last 30 years, providing a good abstrac-
tion of many problems and allowing exchanges of best practices between data oriented scientific fields.
Among its main research areas, there are currently probabilistic models, supervised learning (including
neural networks), unsupervised learning, reinforcement learning, and statistical learning theory. All of
these are represented in the SIERRA team, but the main goals of the team are mostly related to supervised
learning and optimization, and their mutual interactions, as well as with interdisciplinary collaborations.
One particularity of the team is the strong focus on optimization (in particular convex optimization, but
with more works in the non-convex world recently), leading to contributions in optimization which go
beyond the machine learning context.

We have thus divided our research effort in three parts:

1. Convex optimization

2. Non-convex optimization

3. Machine learning.

4 Application domains

Machine learning research can be conducted from two main perspectives: the first one, which has been
dominant in the last 30 years, is to design learning algorithms and theories which are as generic as
possible, the goal being to make as few assumptions as possible regarding the problems to be solved and
to let data speak for themselves. This has led to many interesting methodological developments and
successful applications. However, we believe that this strategy has reached its limit for many application
domains, such as computer vision, bioinformatics, neuro-imaging, text and audio processing, which
leads to the second perspective our team is built on: Research in machine learning theory and algorithms
should be driven by interdisciplinary collaborations, so that specific prior knowledge may be properly
introduced into the learning process, in particular with the following fields:

• Computer vision: object recognition, object detection, image segmentation, image/video pro-
cessing, computational photography. In collaboration with the Willow project-team.

• Bioinformatics: cancer diagnosis, protein function prediction, virtual screening.

• Text processing: document collection modeling, language models.

• Audio processing: source separation, speech/music processing.

• Climate science (satellite imaging).

5 Social and environmental responsibility

As one domain within applied mathematics and computer science, machine learning and artificial
intelligence may contribute positively to the environment for example by measuring climate change
effect or reducing the carbon footprint of other sciences and activities. But it may also contribute
negatively, notably by the ever-increasing sizes of machine learning models. Within the team, we work on
these two aspects through our work on climate science and on frugal algorithms.
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6 Highlights of the year

Recruiting. We happy to welcome to new permanent researches, Michael Jordan and Adrien Taylor.

Team renewal. Our team has been evaluted this year, both by Inria and HCERES (through our ENS
affiliation). Since we reach the end of the 12 year cycle, we have proposed a re-creation of the team, which
is currently being processed.

7 New results

7.1 Solving moment and polynomial optimization problems on Sobolev spaces

Using standard tools of harmonic analysis, we state and solve the problem of moments for positive
measures supported on the unit ball of a Sobolev space of multivariate periodic trigonometric functions.
We describe outer and inner semidefinite approximations of the cone of Sobolev moments. They are
the basic components of an infinite-dimensional moment-sums of squares hierarchy, allowing to solve
numerically non-convex polynomial optimization problems on infinite-dimensional Sobolev spaces,
with global convergence guarantees.

7.2 GloptiNets: Scalable Non-Convex Optimization with Certificates

We present a novel approach to non-convex optimization with certificates, which handles smooth
functions on the hypercube or on the torus. Unlike traditional methods that rely on algebraic properties,
our algorithm exploits the regularity of the target function intrinsic in the decay of its Fourier spectrum.
In [28] we show that by defining a tractable family of models, we allow at the same time to obtain precise
certificates and to leverage the advanced and powerful computational techniques developed to optimize
neural networks. In this way the scalability of our approach is naturally enhanced by parallel computing
with GPUs. Our approach, when applied to the case of polynomials of moderate dimensions but with
thousands of coefficients, outperforms the state-of-the-art optimization methods with certificates, as the
ones based on Lasserre’s hierarchy, addressing problems intractable for the competitors.

7.3 Non-Parametric Learning of Stochastic Differential Equations with Fast Rates of
Convergence

In [44] we propose a novel non-parametric learning paradigm for the identification of drift and diffusion
coefficients of non-linear stochastic differential equations, which relies upon discrete-time observations
of the state. The key idea essentially consists of fitting a RKHS-based approximation of the corresponding
Fokker-Planck equation to such observations, yielding theoretical estimates of learning rates which,
unlike previous works, become increasingly tighter when the regularity of the unknown drift and diffusion
coefficients becomes higher. Our method being kernel-based, offline pre-processing may in principle be
profitably leveraged to enable efficient numerical implementation.

7.4 Efficient Sampling of Stochastic Differential Equations with Positive Semi-Definite
Models

This line of works deals with the problem of efficient sampling from a stochastic differential equation,
given the drift function and the diffusion matrix. The proposed approach leverages a recent model for
probabilities (the positive semi-definite – PSD model) from which it is possible to obtain independent
and identically distributed (i.i.d.) samples at precision ϵ with a cost that is m2d log(1/ϵ) where m is
the dimension of the model, d the dimension of the space. The proposed approach consists in: first,
computing the PSD model that satisfies the Fokker-Planck equation (or its fractional variant) associated
with the SDE, up to error ϵ, and then sampling from the resulting PSD model. Assuming some regularity
of the Fokker-Planck solution (i.e. β-times differentiability plus some geometric condition on its zeros)
We obtain an algorithm that: (a) in the preparatory phase obtains a PSD model with L2 distance ϵ from
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the solution of the equation, with a model of dimension m = ϵ−(d+1)/(β−2s)(log(1/ϵ))d+1 where 1/2 ≤ s ≤ 1
is the fractional power to the Laplacian, and total computational complexity of O(m3.5 log(1/ϵ)) and then
(b) for Fokker-Planck equation, it is able to produce i.i.d. samples with error ϵ in Wasserstein-1 distance,
with a cost that is O(dϵ−2(d+1)/β−2 log(1/ϵ)2d+3) per sample. This means that, if the probability associated
with the SDE is somewhat regular, i.e. β≥ 4d +2, then the algorithm requires O(ϵ−0.88 log(1/ϵ)4.5d ) in the
preparatory phase, and O(ϵ−1/2 log(1/ϵ)2d+2) for each sample. Our results suggest that as the true solution
gets smoother, we can circumvent the curse of dimensionality without requiring any sort of convexity.

7.5 Automated tight Lyapunov analysis for first-order methods

We present a methodology for establishing the existence of quadratic Lyapunov inequalities for a wide
range of first-order methods used to solve convex optimization problems. In particular, we consider i)
classes of optimization problems of finite-sum form with (possibly strongly) convex and possibly smooth
functional components, ii) first-order methods that can be written as a linear system on state-space
form in feedback interconnection with the subdifferentials of the functional components of the objective
function, and iii) quadratic Lyapunov inequalities that can be used to draw convergence conclusions.
We provide a necessary and sufficient condition for the existence of a quadratic Lyapunov inequality
that amounts to solving a small-sized semidefinite program. We showcase our methodology on several
first-order methods that fit the framework. Most notably, our methodology allows us to significantly
extend the region of parameter choices that allow for duality gap convergence in the Chambolle-Pock
method when the linear operator is the identity mapping.

7.6 Provable non-accelerations of the heavy-ball method

In this work, we show that the heavy-ball (HB) method provably does not reach an accelerated con-
vergence rate on smooth strongly convex problems. More specifically, we show that for any condition
number and any choice of algorithmic parameters, either the worst-case convergence rate of HB on
the class of -smooth and -strongly convex quadratic functions is not accelerated (that is, slower than ),
or there exists an -smooth -strongly convex function and an initialization such that the method does
not converge. To the best of our knowledge, this result closes a simple yet open question on one of the
most used and iconic first-order optimization technique. Our approach builds on finding functions for
which HB fails to converge and instead cycles over finitely many iterates. We analytically describe all
parametrizations of HB that exhibit this cycling behavior on a particular cycle shape, whose choice is
supported by a systematic and constructive approach to the study of cycling behaviors of first-order
methods. We show the robustness of our results to perturbations of the cycle, and extend them to class of
functions that also satisfy higher-order regularity conditions.

7.7 Sum-of-Squares Relaxations for Information Theory and Variational Inference

We consider extensions of the Shannon relative entropy, referred to as f -divergences. Three classical
related computational problems are typically associated with these divergences: (a) estimation from
moments, (b) computing normalizing integrals, and (c) variational inference in probabilistic models.
These problems are related to one another through convex duality, and for all them, there are many ap-
plications throughout data science, and we aim for computationally tractable approximation algorithms
that preserve properties of the original problem such as potential convexity or monotonicity. In or-
der to achieve this, we derive a sequence of convex relaxations for computing these divergences from
non-centered covariance matrices associated with a given feature vector: starting from the typically non-
tractable optimal lower-bound, we consider an additional relaxation based on “sums-of-squares”, which
is is now computable in polynomial time as a semidefinite program. We also provide computationally
more efficient relaxations based on spectral information divergences from quantum information theory.
For all of the tasks above, beyond proposing new relaxations, we derive tractable convex optimization
algorithms, and we present illustrations on multivariate trigonometric polynomials and functions on the
Boolean hypercube
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7.8 Two losses are better than one: Faster optimization using a cheaper proxy

We present an algorithm for minimizing an objective with hard-to-compute gradients by using a related,
easier-to-access function as a proxy. Our algorithm is based on approximate proximalpoint iterations
on the proxy combined with relatively few stochastic gradients from the objective. When the difference
between the objective and the proxy is δ-smooth, our algorithm guarantees convergence at a rate
matching stochastic gradient descent on a δ-smooth objective, which can lead to substantially better
sample efficiency. Our algorithm has many potential applications in machine learning, and provides a
principled means of leveraging synthetic data, physics simulators, mixed public and private data, and
more.

7.9 Classifier Calibration with ROC-Regularized Isotonic Regression

Calibration of machine learning classifiers is necessary to obtain reliable and interpretable predictions,
bridging the gap between model confidence and actual probabilities. One prominent technique, isotonic
regression (IR), aims at calibrating binary classifiers by minimizing the cross entropy on a calibration
set via monotone transformations. IR acts as an adaptive binning procedure, which allows achieving a
calibration error of zero, but leaves open the issue of the effect on performance. In this line of work, we
first prove that IR preserves the convex hull of the ROC curve—an essential performance metric for binary
classifiers. This ensures that a classifier is calibrated while controlling for overfitting of the calibration set.
We then present a novel generalization of isotonic regression to accommodate classifiers with K classes.
Our method constructs a multidimensional adaptive binning scheme on the probability simplex, again
achieving a multi-class calibration error equal to zero. We regularize this algorithm by imposing a form of
monotony that preserves the K -dimensional ROC surface of the classifier. We show empirically that this
general monotony criterion is effective in striking a balance between reducing cross entropy loss and
avoiding overfitting of the calibration set.

7.10 Regularization properties of adversarially-trained linear regression

State-of-the-art machine learning models can be vulnerable to very small input perturbations that are
adversarially constructed. Adversarial training is an effective approach to defend against it. Formulated
as a min-max problem, it searches for the best solution when the training data were corrupted by the
worst-case attacks. Linear models are among the simple models where vulnerabilities can be observed
and are the focus of our study. In this case, adversarial training leads to a convex optimization prob-
lem which can be formulated as the minimization of a finite sum. We provide a comparative analysis
between the solution of adversarial training in linear regression and other regularization methods. Our
main findings are that: (A) Adversarial training yields the minimum-norm interpolating solution in the
overparameterized regime (more parameters than data), as long as the maximum disturbance radius is
smaller than a threshold. And, conversely, the minimumnorm interpolator is the solution to adversarial
training with a given radius. (B) Adversarial training can be equivalent to parameter shrinking methods
(ridge regression and Lasso). This happens in the underparametrized region, for an appropriate choice
of adversarial radius and zero-mean symmetrically distributed covariates. (C) For ℓ∞-adversarial train-
ing—as in square-root Lasso—the choice of adversarial radius for optimal bounds does not depend on
the additive noise variance. We confirm our theoretical findings with numerical examples.

7.11 Differentiable Clustering with Perturbed Spanning Forests

We introduce a differentiable clustering method based on stochastic perturbations of minimum-weight
spanning forests. This allows us to include clustering in end-toend trainable pipelines, with efficient
gradients. We show that our method performs well even in difficult settings, such as data sets with high
noise and challenging geometries. We also formulate an ad hoc loss to efficiently learn from partial
clustering data using this operation. We demonstrate its performance on several data sets for supervised
and semi-supervised tasks.
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7.12 On the impact of activation and normalization in obtaining isometric embed-
dings at initialization

In this work, we explore the structure of the penultimate Gram matrix in deep neural networks, which
contains the pairwise inner products of outputs corresponding to a batch of inputs. In several architec-
tures it has been observed that this Gram matrix becomes degenerate with depth at initialization, which
dramatically slows training. Normalization layers, such as batch or layer normalization, play a pivotal
role in preventing the rank collapse issue. Despite promising advances, the existing theoretical results
do not extend to layer normalization, which is widely used in transformers, and can not quantitatively
characterize the role of non-linear activations. To bridge this gap, we prove that layer normalization,
in conjunction with activation layers, biases the Gram matrix of a multilayer perceptron towards the
identity matrix at an exponential rate with depth at initialization. We quantify this rate using the Hermite
expansion of the activation function.

7.13 Kernelized diffusion maps

Spectral clustering and diffusion maps are celebrated dimensionality reduction algorithms built on eigen-
elements related to the diffusive structure of the data. The core of these procedures is the approximation
of a Laplacian through a graph kernel approach, however this local average construction is known to
be cursed by the high-dimension d. In this paper, we build a different estimator of the Laplacian’s
eigenvectors, via a reproducing kernel Hilbert space method, which adapts naturally to the regularity
of the problem. We provide non-asymptotic statistical rates proving that the kernel estimator we build
can circumvent the curse of dimensionality when the problem is well conditioned. Finally we discuss
techniques (Nystrom subsampling, Fourier features) that enable to reduce the computational cost ¨ of
the estimator while not degrading its overall performance

7.14 Convergence rates for non-log-concave sampling and log-partition estimation

Sampling from Gibbs distributions p(x) ∝ exp(−V (x)/ε) and computing their log-partition function
are fundamental tasks in statistics, machine learning, and statistical physics. However, while efficient
algorithms are known for convex potentials V , the situation is much more difficult in the non-convex case,
where algorithms necessarily suffer from the curse of dimensionality in the worst case. For optimization,
which can be seen as a low-temperature limit of sampling, it is known that smooth functions V allow faster
convergence rates. Specifically, for m-times differentiable functions in d dimensions, the optimal rate
for algorithms with n function evaluations is known to be O(n−m/d , where the constant can potentially
depend on m, d and the function to be optimized. Hence, the curse of dimensionality can be alleviated
for smooth functions at least in terms of the convergence rate. Recently, it has been shown that similarly
fast rates can also be achieved with polynomial runtime O(n3.5), where the exponent 3.5 is independent
of m or d . Hence, it is natural to ask whether similar rates for sampling and log-partition computation
are possible, and whether they can be realized in polynomial time with an exponent independent of
m and d . We show that the optimal rates for sampling and log-partition computation are sometimes
equal and sometimes faster than for optimization. We then analyze various polynomial-time sampling
algorithms, including an extension of a recent promising optimization approach, and find that they
sometimes exhibit interesting behavior but no near-optimal rates. Our results also give further insights
on the relation between sampling, log-partition, and optimization problems.

7.15 Nonparametric Linear Feature Learning in Regression Through Regularisation

Representation learning plays a crucial role in automated feature selection, particularly in the context
of high-dimensional data, where non-parametric methods often struggle. In this study, we focus on
supervised learning scenarios where the pertinent information resides within a lower-dimensional linear
subspace of the data, namely the multi-index model. If this subspace were known, it would greatly
enhance prediction, computation, and interpretation. To address this challenge, we propose a novel
method for linear feature learning with non-parametric prediction, which simultaneously estimates
the prediction function and the linear subspace. Our approach employs empirical risk minimisation,
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augmented with a penalty on function derivatives, ensuring versatility. Leveraging the orthogonality
and rotation invariance properties of Hermite polynomials, we introduce our estimator, named RegFeaL.
By utilising alternative minimisation, we iteratively rotate the data to improve alignment with leading
directions and accurately estimate the relevant dimension in practical settings. We establish that our
method yields a consistent estimator of the prediction function with explicit rates. Additionally, we
provide empirical results demonstrating the performance of RegFeaL in various experiments.

7.16 Approximate Heavy Tails in Offline (Multi-Pass) Stochastic Gradient Descent

A recent line of empirical studies has demonstrated that SGD might exhibit a heavy-tailed behavior in
practical settings, and the heaviness of the tails might correlate with the overall performance. In this work,
we investigate the emergence of such heavy tails. Previous works on this problem only considered, up to
our knowledge, online (also called single-pass) SGD, in which the emergence of heavy tails in theoretical
findings is contingent upon access to an infinite amount of data. Hence, the underlying mechanism
generating the reported heavy-tailed behavior in practical settings, where the amount of training data is
finite, is still not well-understood. Our contribution aims to fill this gap. In particular, we show that the
stationary distribution of offline (also called multi-pass) SGD exhibits ‘approximate’ power-law tails and
the approximation error is controlled by how fast the empirical distribution of the training data converges
to the true underlying data distribution in the Wasserstein metric. Our main takeaway is that, as the
number of data points increases, offline SGD will behave increasingly ‘power-law-like’. To achieve this
result, we first prove nonasymptotic Wasserstein convergence bounds for offline SGD to online SGD as
the number of data points increases, which can be interesting on their own. Finally, we illustrate our
theory on various experiments conducted on synthetic data and neural networks. Further details are in
[12].

7.17 Uniform-in-Time Wasserstein Stability Bounds for (Noisy) Stochastic Gradient
Descent

Algorithmic stability is an important notion that has proven powerful for deriving generalization bounds
for practical algorithms. The last decade has witnessed an increasing number of stability bounds for
different algorithms applied on different classes of loss functions. While these bounds have illuminated
various properties of optimization algorithms, the analysis of each case typically required a different
proof technique with significantly different mathematical tools. In this study, we make a novel connection
between learning theory and applied probability and introduce a unified guideline for proving Wasserstein
stability bounds for stochastic optimization algorithms. We illustrate our approach on stochastic gradient
descent (SGD) and we obtain time-uniform stability bounds (i.e., the bound does not increase with
the number of iterations) for strongly convex losses and nonconvex losses with additive noise, where
we recover similar results to the prior art or extend them to more general cases by using a single proof
technique. Our approach is flexible and can be generalizable to other popular optimizers, as it mainly
requires developing Lyapunov functions, which are often readily available in the literature. It also
illustrates that ergodicity is an important component for obtaining time-uniform bounds – which might
not be achieved for convex or non-convex losses unless additional noise is injected to the iterates. Finally,
we slightly stretch our analysis technique and prove time-uniform bounds for SGD under convex and non-
convex losses (without additional additive noise), which, to our knowledge, is novel. Further information
is in [21].

7.18 Learning via Wasserstein-Based High Probability Generalisation Bounds

Minimising upper bounds on the population risk or the generalisation gap has been widely used in
structural risk minimisation (SRM) – this is in particular at the core of PAC-Bayesian learning. Despite its
successes and unfailing surge of interest in recent years, a limitation of the PAC-Bayesian framework is
that most bounds involve a Kullback-Leibler (KL) divergence term (or its variations), which might exhibit
erratic behavior and fail to capture the underlying geometric structure of the learning problem – hence
restricting its use in practical applications. As a remedy, recent studies have attempted to replace the
KL divergence in the PAC-Bayesian bounds with the Wasserstein distance. Even though these bounds
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alleviated the aforementioned issues to a certain extent, they either hold in expectation, are for bounded
losses, or are nontrivial to minimize in an SRM framework. In this work, we contribute to this line of
research and prove novel Wasserstein distance-based PAC-Bayesian generalisation bounds for both batch
learning with independent and identically distributed (i.i.d.) data, and online learning with potentially
non-i.i.d. data. Contrary to previous art, our bounds are stronger in the sense that (i) they hold with
high probability, (ii) they apply to unbounded (potentially heavy-tailed) losses, and (iii) they lead to
optimizable training objectives that can be used in SRM. As a result we derive novel Wasserstein-based
PAC-Bayesian learning algorithms and we illustrate their empirical advantage on a variety of experiments.
More information can be found in [19].

7.19 Efficient Sampling of Stochastic Differential Equations with Positive Semi-
Definite Models

This work deals with the problem of efficient sampling from a stochastic differential equation, given the
drift function and the diffusion matrix. The proposed approach leverages a recent model for probabilities
(the positive semi-definite – PSD model) from which it is possible to obtain independent and identically
distributed (i.i.d.) samples at precision ϵ with a cost that is m2d log(1/ϵ) where m is the dimension of the
model, d the dimension of the space. The proposed approach consists of: first, computing the PSD model
that satisfies the Fokker-Planck equation (or its fractional variant) associated with the SDE, up to error ϵ,
and then sampling from the resulting PSD model. Assuming some regularity of the Fokker-Planck solution
(i.e. β-times differentiability plus some geometric condition on its zeros) We obtain an algorithm that:
(a) in the preparatory phase obtains a PSD model with L2 distance ϵ from the solution of the equation,
with a model of dimension m = ϵ−(d+1)/(β−2s)(log(1/ϵ))d+1 where 1/2 ≤ s ≤ 1 is the fractional power to
the Laplacian, and total computational complexity of O(m3.5 log(1/ϵ)) and then (b) for Fokker-Planck
equation, it is able to produce i.i.d. samples with error ϵ in Wasserstein-1 distance, with a cost that is
O(dϵ−2(d+1)/β−2 log(1/ϵ)2d+3) per sample. This means that, if the probability associated with the SDE is
somewhat regular, i.e. β≥ 4d +2, then the algorithm requires O(ϵ−0.88 log(1/ϵ)4.5d ) in the preparatory
phase, and O(ϵ−1/2 log(1/ϵ)2d+2) for each sample. Our results suggest that as the true solution gets
smoother, we can circumvent the curse of dimensionality without requiring any sort of convexity. More
information can be found in [14].

7.20 Generalization Guarantees via Algorithm-dependent Rademacher Complexity

Algorithm- and data-dependent generalization bounds are required to explain the generalization behavior
of modern machine learning algorithms. In this context, there exists information theoretic generalization
bounds that involve (various forms of) mutual information, as well as bounds based on hypothesis set
stability. We propose a conceptually related, but technically distinct complexity measure to control
generalization error, which is the empirical Rademacher complexity of an algorithm- and data-dependent
hypothesis class. Combining standard properties of Rademacher complexity with the convenient struc-
ture of this class, we are able to (i) obtain novel bounds based on the finite fractal dimension, which (a)
extend previous fractal dimension-type bounds from continuous to finite hypothesis classes, and (b)
avoid a mutual information term that was required in prior work; (ii) we greatly simplify the proof of a
recent dimension-independent generalization bound for stochastic gradient descent; and (iii) we easily
recover results for VC classes and compression schemes, similar to approaches based on conditional
mutual information. More information can be found in [17].

7.21 Generalization Bounds using Data-Dependent Fractal Dimensions

Providing generalization guarantees for modern neural networks has been a crucial task in statistical
learning. Recently, several studies have attempted to analyze the generalization error in such settings by
using tools from fractal geometry. While these works have successfully introduced new mathematical
tools to apprehend generalization, they heavily rely on a Lipschitz continuity assumption, which in
general does not hold for neural networks and might make the bounds vacuous. In this work, we address
this issue and prove fractal geometry-based generalization bounds without requiring any Lipschitz
assumption. To achieve this goal, we build up on a classical covering argument in learning theory and
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introduce a data-dependent fractal dimension. Despite introducing a significant amount of technical
complications, this new notion lets us control the generalization error (over either fixed or random
hypothesis spaces) along with certain mutual information (MI) terms. To provide a clearer interpretation
to the newly introduced MI terms, as a next step, we introduce a notion of ‘geometric stability’ and link our
bounds to the prior art. Finally, we make a rigorous connection between the proposed data-dependent
dimension and topological data analysis tools, which then enables us to compute the dimension in a
numerically efficient way. We support our theory with experiments conducted on various settings. More
information can be found in [4].

7.22 Algorithmic Stability of Heavy-Tailed SGD with General Loss Functions

Heavy-tail phenomena in stochastic gradient descent (SGD) have been reported in several empirical
studies. Experimental evidence in previous works suggests a strong interplay between the heaviness
of the tails and generalization behavior of SGD. To address this empirical phenomena theoretically,
several works have made strong topological and statistical assumptions to link the generalization error to
heavy tails. Very recently, new generalization bounds have been proven, indicating a non-monotonic
relationship between the generalization error and heavy tails, which is more pertinent to the reported
empirical observations. While these bounds do not require additional topological assumptions given that
SGD can be modeled using a heavy-tailed stochastic differential equation (SDE), they can only apply to
simple quadratic problems. In this work, we build on this line of research and develop generalization
bounds for a more general class of objective functions, which includes non-convex functions as well.
Our approach is based on developing Wasserstein stability bounds for heavy-tailed SDEs and their
discretizations, which we then convert to generalization bounds. Our results do not require any nontrivial
assumptions; yet, they shed more light to the empirical observations, thanks to the generality of the loss
functions. More information can be found in [15].

7.23 Algorithmic Stability of Heavy-Tailed Stochastic Gradient Descent on Least
Squares

Heavy-tail phenomena in stochastic gradient descent (SGD) have been reported in several empirical
studies. Experimental evidence in previous works suggests a strong interplay between the heaviness
of the tails and generalization behavior of SGD. To address this empirical phenomena theoretically,
several works have made strong topological and statistical assumptions to link the generalization error to
heavy tails. Very recently, new generalization bounds have been proven, indicating a non-monotonic
relationship between the generalization error and heavy tails, which is more pertinent to the reported
empirical observations. While these bounds do not require additional topological assumptions given that
SGD can be modeled using a heavy-tailed stochastic differential equation (SDE), they can only apply to
simple quadratic problems. In this work, we build on this line of research and develop generalization
bounds for a more general class of objective functions, which includes non-convex functions as well.
Our approach is based on developing Wasserstein stability bounds for heavy-tailed SDEs and their
discretizations, which we then convert to generalization bounds. Our results do not require any nontrivial
assumptions; yet, they shed more light to the empirical observations, thanks to the generality of the loss
functions. More information can be found in [13].

7.24 Cyclic and Randomized Stepsizes Invoke Heavier Tails in SGD than Constant
Stepsize

Cyclic and randomized stepsizes are widely used in the deep learning practice and can often outperform
standard stepsize choices such as constant stepsize in SGD. Despite their empirical success, not much is
currently known about when and why they can theoretically improve the generalization performance. We
consider a general class of Markovian stepsizes for learning, which contain i.i.d. random stepsize, cyclic
stepsize as well as the constant stepsize as special cases, and motivated by the literature which shows
that heaviness of the tails (measured by the so-called “tail-index”) in the SGD iterates is correlated with
generalization, we study tail-index and provide a number of theoretical results that demonstrate how
the tail-index varies on the stepsize scheduling. Our results bring a new understanding of the benefits of
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cyclic and randomized stepsizes compared to constant stepsize in terms of the tail behavior. We illustrate
our theory on linear regression experiments and show through deep learning experiments that Markovian
stepsizes can achieve even a heavier tail and be a viable alternative to cyclic and i.i.d. randomized stepsize
rules. More information can be found in [5].

7.25 An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems

In this work, we revisit the problem of solving large-scale semidefinite programs using randomized
first-order methods and stochastic smoothing. We introduce two oblivious stochastic mirror descent
algorithms based on a complementary composite setting. One algorithm is designed for non-smooth
objectives, while an accelerated version is tailored for smooth objectives. Remarkably, both algorithms
work without prior knowledge of the Lipschitz constant or smoothness of the objective function. For the
non-smooth case with M−bounded oracles, we prove a convergence rate of O(M /

p
T ). For the L-smooth

case with a feasible set bounded by D , we derive a convergence rate of O(L2D2/(T 2
p

T )+ (D2
0 +σ2)/

p
T ),

where D0 is the starting distance to an optimal solution, and σ2 is the stochastic oracle variance. These
rates had only been obtained so far by either assuming prior knowledge of the Lipschitz constant or the
starting distance to an optimal solution. We further show how to extend our framework to relative scale
and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.

7.26 Vision Transformers, a new approach for high-resolution and large-scale map-
ping of canopy heights

Accurate and timely monitoring of forest canopy heights is critical for assessing forest dynamics, biod-
iversity, carbon sequestration as well as forest degradation and deforestation. Recent advances in deep
learning techniques, coupled with the vast amount of spaceborne remote sensing data offer an unpreced-
ented opportunity to map canopy height at high spatial and temporal resolutions. Current techniques for
wall-to-wall canopy height mapping correlate remotely sensed 2D information from optical and radar
sensors to the vertical structure of trees using LiDAR measurements. While studies using deep learning
algorithms have shown promising performances for the accurate mapping of canopy heights, they have
limitations due to the type of architectures and loss functions employed. Moreover, mapping canopy
heights over tropical forests remains poorly studied, and the accurate height estimation of tall canopies is
a challenge due to signal saturation from optical and radar sensors, persistent cloud covers and some-
times the limited penetration capabilities of LiDARs. Here, we map heights at 10 m resolution across the
diverse landscape of Ghana with a new vision transformer (ViT) model optimized concurrently with a
classification (discrete) and a regression (continuous) loss function. This model achieves better accuracy
than previously used convolutional based approaches (ConvNets) optimized with only a continuous loss
function. The ViT model results show that our proposed discrete/continuous loss significantly increases
the sensitivity for very tall trees (i.e., > 35m), for which other approaches show saturation effects. The
height maps generated by the ViT also have better ground sampling distance and better sensitivity to
sparse vegetation in comparison to a convolutional model. Our ViT model has a RMSE of 3.12m in
comparison to a reference dataset while the ConvNet model has a RMSE of 4.3m.

8 Bilateral contracts and grants with industry

8.1 Bilateral grants with industry

• Alexandre d’Aspremont, Francis Bach, Martin Jaggi (EPFL): Google Focused award.

• Francis Bach: Gift from Facebook AI Research.
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9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Associate Teams in the framework of an Inria International Lab or in the framework of an Inria
International Program

FOAM

Title: First-Order Accelerated Methods for Machine Learning.

Duration: 2020 -> present

Coordinator: Cristobal Guzman (crguzmanp@mat.uc.cl)

Partners: Pontificia Universidad Católica de Chile Santiago (Chili)

Inria contact: Alexandre d’Aspremont

Summary: Our main interest is to investigate novel and improved convergence results for first-order
iterative methods for saddle-points, variational inequalities and fixed points, under the lens of
PEP. Our interest in improving first-order methods is also deeply related with applications in
machine learning. Particularly in sparsity-oriented inverse problems, optimization methods are
the workhorse for state of the art results. On some of these problems, a set of new hypothesis and
theoretical results shows improved complexity bounds for problems with good recovery guarantees
and we plan to extend these new performance bounds to the variational framework.

4TUNE

Title: Adaptive, Efficient, Provable and Flexible Tuning for Machine Learning

Duration: 020 ->

Coordinator: Peter Grünwald (pdg@cwi.nl)

Partners: CWI

Inria contact: Adrien Taylor

Summary: The long-term goal of 4TUNE is to push adaptive machine learning to the next level. We aim
to develop refined methods, going beyond traditional worst-case analysis, for exploiting structure
in the learning problem at hand. We will develop new theory and design sophisticated algorithms
for the core tasks of statistical learning and individual sequence prediction. We are especially
interested in understanding the connections between these tasks and developing unified methods
for both. We will also investigate adaptivity to non-standard patterns encountered in embedded
learning tasks, in particular in iterative equilibrium computations.

9.1.2 Visits of international scientists

Inria International Chair Laurent El Ghaoui (U.C. Berkeley)

Other international visits to the team Antônio Horta Ribeiro (University of Upsalla)

Steffen Grunewalder (University of Newcastle)
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9.2 European initiatives

9.2.1 Horizon Europe

DYNASTY DYNASTY project on cordis.europa.eu

Title: Dynamics-Aware Theory of Deep Learning

Duration: From October 1, 2022 to September 30, 2027

Partners:

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),
France

Inria contact: Umut SIMSEKLI

Coordinator:

Summary: The recent advances in deep learning (DL) have transformed many scientific domains and
have had major impacts on industry and society. Despite their success, DL methods do not obey
most of the wisdoms of statistical learning theory, and the vast majority of the current DL techniques
mainly stand as poorly understood black-box algorithms.

Even though DL theory has been a very active research field in the past few years, there is a signi-
ficant gap between the current theory and practice: (i) the current theory often becomes vacuous
for models with large number of parameters (which is typical in DL), and (ii) it cannot capture
the interaction between data, architecture, training algorithm and its hyper-parameters, which
can have drastic effects on the overall performance. Due to this lack of theoretical understanding,
designing new DL systems has been dominantly performed by ad-hoc, ’trial-and-error’ approaches.

The main objective of this proposal is to develop a mathematically sound and practically rel-
evant theory for DL, which will ultimately serve as the basis of a software library that provides
practical tools for DL practitioners. In particular, (i) we will develop error bounds that closely
reflect the true empirical performance, by explicitly incorporating the dynamics aspect of train-
ing, (ii) we will develop new model selection, training, and compression algorithms with reduced
time/memory/storage complexity, by exploiting the developed theory.

To achieve the expected breakthroughs, we will develop a novel theoretical framework, which will
enable tight analysis of learning algorithms in the lens of dynamical systems theory. The outcomes
will help relieve DL from being a black-box system and avoid the heuristic design process. We
will produce comprehensive open-source software tools adapted to all popular DL libraries, and
test the developed algorithms on a wide range of real applications arising in computer vision,
audio/music/natural language processing.

9.2.2 H2020 projects

SEQUOIA SEQUOIA project on cordis.europa.eu

Title: Robust algorithms for learning from modern data

Duration: From September 1, 2017 to August 31, 2023

Partners:

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),
France

Inria contact: Francis BACH

Coordinator:

https://dx.doi.org/10.3030/101039676
https://dx.doi.org/10.3030/724063
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Summary: Machine learning is needed and used everywhere, from science to industry, with a growing
impact on many disciplines. While first successes were due at least in part to simple supervised
learning algorithms used primarily as black boxes on medium-scale problems, modern data pose
new challenges. Scalability is an important issue of course: with large amounts of data, many
current problems far exceed the capabilities of existing algorithms despite sophisticated computing
architectures. But beyond this, the core classical model of supervised machine learning, with
the usual assumptions of independent and identically distributed data, or well-defined features,
outputs and loss functions, has reached its theoretical and practical limits.

Given this new setting, existing optimization-based algorithms are not adapted. The main objective
of this proposal is to push the frontiers of supervised machine learning, in terms of (a) scalability to
data with massive numbers of observations, features, and tasks, (b) adaptability to modern com-
puting environments, in particular for parallel and distributed processing, (c) provable adaptivity
and robustness to problem and hardware specifications, and (d) robustness to non-convexities
inherent in machine learning problems.

To achieve the expected breakthroughs, we will design a novel generation of learning algorithms
amenable to a tight convergence analysis with realistic assumptions and efficient implementations.
They will help transition machine learning algorithms towards the same wide-spread robust use
as numerical linear algebra libraries. Outcomes of the research described in this proposal will
include algorithms that come with strong convergence guarantees and are well-tested on real-life
benchmarks coming from computer vision, bioinformatics, audio processing and natural language
processing. For both distributed and non-distributed settings, we will release open-source software,
adapted to widely available computing platforms.

REAL REAL project on cordis.europa.eu

Title: Reliable and cost-effective large scale machine learning

Duration: From April 1, 2021 to March 31, 2026

Partners:

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),
France

Inria contact: Alessandro Rudi

Coordinator:

Summary: In the last decade, machine learning (ML) has become a fundamental tool with a growing
impact in many disciplines, from science to industry. However, nowadays, the scenario is changing:
data are exponentially growing compared to the computational resources (post Moore’s law era),
and ML algorithms are becoming crucial building blocks in complex systems for decision making,
engineering, science. Current machine learning is not suitable for the new scenario, both from a
theoretical and a practical viewpoint: (a) the lack of cost-effectiveness of the algorithms impacts
directly the economic/energetic costs of large scale ML, making it barely affordable by universities
or research institutes; (b) the lack of reliability of the predictions affects critically the safety of the
systems where ML is employed. To deal with the challenges posed by the new scenario, REAL will
lay the foundations of a solid theoretical and algorithmic framework for reliable and cost-effective
large scale machine learning on modern computational architectures. In particular, REAL will
extend the classical ML framework to provide algorithms with two additional guarantees: (a) the
predictions will be reliable, i.e., endowed with explicit bounds on their uncertainty guaranteed
by the theory; (b) the algorithms will be cost-effective, i.e., they will be naturally adaptive to the
new architectures and will provably achieve the desired reliability and accuracy level, by using
minimum possible computational resources. The algorithms resulting from REAL will be released
as open-source libraries for distributed and multi-GPU settings, and their effectiveness will be
extensively tested on key benchmarks from computer vision, natural language processing, audio
processing, and bioinformatics. The methods and the techniques developed in this project will

https://dx.doi.org/10.3030/947908
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help machine learning to take the next step and become a safe, effective, and fundamental tool in
science and engineering for large scale data problems.

NN-OVEROPT NN-OVEROPT project on cordis.europa.eu

Title: Neural Network : An Overparametrization Perspective

Duration: From November 1, 2021 to October 31, 2024

Partners:

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),
France

• THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS (UNIVERSITY OF ILLINOIS),
United States

Inria contact: Francis Bach

Coordinator:

Summary: In recent times, overparametrized models where the number of model parameters far exceeds
the number of training samples available are the methods of choice for learning problems and
neural networks are amongst the most popular overparametrized methods used heavily in practice.
It has been discovered recently that overparametrization surprisingly improves the optimization
landscape of a complex non-convex problem, i.e., the training of neural networks, and also has
positive effects on the generalization performance. Despite improved empirical performance of
overparametrized models like neural networks, the theoretical understanding of these models is
quite limited which hinders the progress of the field in the right direction. Any progress in the
understanding of the optimization as well as generalization aspects for theses complex models
especially neural networks will lead to big technical advancement in the field of machine learning
and artificial intelligence. During the Marie Sklodowska-Curie Actions Individual Fellowship-Global
Fellowship (MSCA-IF-GF), I plan to study the optimization problem arising while training overpara-
metrized neural networks and generalization in overparametrized neural networks. The end goal
for this project is to provide better theoretical understanding of the optimization landscape while
training overparametrized models as a result of which to provide better optimization algorithms
for training as well as to study the universal approximation guarantees of overparametrized models.
We also aim to study the implicit bias induced by optimization algorithms while training overpara-
metrized complex models. To achieve the objective discussed above, I will be using tools from
traditional optimization theory, statistical learning theory, gradient flows, as well as from statistical
physics.

10 Dissemination

10.1 Promoting scientific activities

10.1.1 Journal

Member of the editorial boards

• A. d’Aspremont, Section Editor, SIAM Journal on the Mathematics of Data Science.

• F. Bach, co-editor-in-chief, Journal of Machine Learning Research

• F. Bach: Series Editor, Adaptive Computation and Machine Learning, MIT Press, since 2016.

https://dx.doi.org/10.3030/101030817
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Reviewer - reviewing activities

• Adrien Taylor: Mathematical Programming.

• Adrien Taylor: SIAM Journal on Optimization.

• Adrien Taylor: Transactions on Automatic Control.

• Adrien Taylor: Journal of Optimization Theory and Applications.

10.1.2 Invited talks

• Alessandro Rudi: StatML Summer School in Causality and Statistical Learning, Oxford, July 2023

• Alessandro Rudi: 7th London Symposium on Information Theory, University College of London,
May 2023

• Alessandro Rudi: PhD school on PSD Models, Scuola Normale Superiore, Italy, Jan 2023

• Alessandro Rudi: Optimization and Statistical Learning Workshop, Les Houches, France, Jan 2023

• Francis Bach: Optimization and Statistical Learning workshop, les Houches. January 2023

• F. Bach: FOCM conference, June 2023

• F. Bach: ICIAM conference, plenary talk, Tokyo, June 2023

• F. Bach: GSI conference, keynote speaker, Saint Malo, September 2023

• F. Bach: NCCR Symposium, Zurich, September 2023

• F. Bach: GDR RSD Summer School on Distributed Learning, Lyon, September 2023

• F. Bach: "IA et commandement militaire" Day, September 2023

• F. Bach: POP23 - Future Trends in Polynomial OPtimization, Toulouse, October 2023

• U. Simsekli: MIT, Boston, July 2023

• U. Simsekli: Flatiron Institute, New York, July 2023

• U. Simsekli: Berkeley University, Berkeley, July 2023

• M. Jordan: Distinguished Lecture, Indian Institute of Science, Bangalore, India, July 2023

• M. Jordan: Turing Lectures, International Centre for Theoretical Science, Bangalore, India, July 2023

• M. Jordan: Leonardo da Vinci Lectures (Lezioni Leonardesche), Milan, October 2023

10.1.3 Scientific expertise

• F. Bach: President of the board of ICML (until July 2023)

• F. Bach: Member of the Scientific Council of the Société Informatique de France, since 2022.
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10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Master: Alexandre d’Aspremont, Optimisation convexe: modélisation, algorithmes et applications
cours magistraux 21h (2011-Present), Master M2 MVA, ENS PS.

• Master : Francis Bach, Learning theory from first principles, 27h, Master M2 MASH, Université
Paris Dauphine PSL, France.

• Master: Alessandro Rudi, Umut Simsekli. Introduction to Machine Learning, 52h, L3, ENS, Paris.

• Master: Alessandro Rudi, Kernel Methods 10h, Master M2 MVA, ENS PS.

• Master: Adrien Taylor. Convex Optimization, 21h, M1, ENS, Paris.

• Master : Umut Simsekli. Deep Learning, 21h, M2, Ecole Polytechnique, Palaiseau, France

10.2.2 Supervision

• PhD in progress: Benjamin Dupuis, current PhD Student, supervised by Umut Simsekli

• PhD in progress: Dario Shariatian, current PhD Student, co-supervised by Umut Simsekli and Alain
Durmus

• PhD in progress: Andrea Basteri, current PhD Student, co-supervised by Alessandro Rudi and
Fancis Bach

• PhD in progress: Pierre Boudart, current PhD Student, co-supervised by Alessandro Rudi, Pierre
Gaillard and Alexandre d’Aspremont

• PhD in progress: Theophile Cantelobre, current PhD student, co-supervised by Alessandro Rudi,
Benjamin Guedj

• PhD in progress: Gaspard Beugnot, current PhD student, co-supervised by Alessandro Rudi, Julien
Mairal

• PhD in progress: Antoine Bambade supervised by Jean Ponce (WILLOW), Justin Carpentier (WIL-
LOW), and Adrien Taylor.

• PhD in progress: Baptiste Goujaud supervised by Eric Moulines (École Polytechnique), Aymeric
Dieuleveut (École Polytechnique), and Adrien Taylor.

• PhD in progress: Céline Moucer supervised by Francis Bach and Adrien Taylor.

• PhD in progress: Bertille Follain supervised by F. Bach and U. Simsekli.

• PhD in progress: Marc Lambert supervised by F. Bach and S. Bonnabel.

• PhD in progress: Ivan Lerner, co-advised with Anita Burgun et Antoine Neuraz.

• PhD in progress: Lawrence Stewart, co-advised by Francis Bach and Jean-Philippe Vert.

• PhD in progress: Gautier Izacard, co-advised by Alexandre d’Aspremont and Edouard Grave (Meta).

• PhD in progress: Cle‘ment Lezane, co-advised by Alexandre d’Aspremont and Cristobal Guzman.

• PhD in progress: Sarah Brood, co-advised by Alexandre d’Aspremont and Philippe Ciais.

• PhD in progress: Arthur Calvi, co-advised by Alexandre d’Aspremont and Philippe Ciais.

• PhD in progress: Benjamin Dubois-Taine, co-advised by Alexandre d’Aspremont and Alessandro
Rudi.

• PhD defended: Rémi Jezequel, April 18, 2023



Project SIERRA 19

10.2.3 Juries

• F. Bach: PHD examiner for Paul Youssef (Laboratoire d’Informatique de Grenoble)

• A. d’Aspremont: PHD examiner for Hippolyte Labarrière (U. de Toulouse)

• A. d’Aspremont: PHD examiner for Lucie Neirac (IP Paris)

10.3 Popularization

10.3.1 Education

A. d’Aspremont: Geospatial data and AI, Step in Stem, EJM Paris.

10.3.2 Interventions

A. d’Aspremont: rencontres de l’avenir, St Raphaël.

11 Scientific production

11.1 Major publications

[1] A. Askari, A. d’Aspremont and L. E. Ghaoui. ‘Approximation Bounds for Sparse Programs’. In: SIAM
Journal on Mathematics of Data Science 4.2 (1st June 2022), pp. 514–530. DOI: 10.1137/21M13986
77. URL: https://hal.archives-ouvertes.fr/hal-03165622.

[2] T. Cantelobre, C. Ciliberto, B. Guedj and A. Rudi. Measuring dissimilarity with diffeomorphism
invariance. 24th Feb. 2022. DOI: 10.48550/arXiv.2202.05614. URL: https://hal.inria.fr
/hal-03573479.

[3] R.-A. Dragomir, A. Taylor, A. d’Aspremont and J. Bolte. ‘Optimal Complexity and Certification of
Bregman First-Order Methods’. In: Mathematical Programming 194.1 (1st July 2022), pp. 41–83.
DOI: 10.1007/s10107-021-01618-1. URL: https://hal.inria.fr/hal-02384167.

[4] B. Dupuis, G. Deligiannidis and U. Şimşekli. ‘Generalization Bounds using Data-Dependent Fractal
Dimensions’. In: Proceedings of Machine Learning Research. International Conference on Machine
Learning (ICML 2023). Honolulu, United States, 10th July 2023. URL: https://inria.hal.scien
ce/hal-04438550.

[5] M. Gürbüzbalaban, Y. Hu, U. Şimşekli and L. Zhu. ‘Cyclic and Randomized Stepsizes Invoke Heavier
Tails in SGD than Constant Stepsize’. In: Transactions on Machine Learning Research Journal (2023).
URL: https://inria.hal.science/hal-04478948.

[6] L. Hodgkinson, U. Şimşekli, R. Khanna and M. W. Mahoney. ‘Generalization Bounds using Lower
Tail Exponents in Stochastic Optimizers’. In: International Conference on Machine Learning.
Baltimore, United States, 2022. URL: https://hal.inria.fr/hal-03935798.

[7] S. Kolouri, K. Nadjahi, S. Shahrampour and U. Simsekli. ‘Generalized Sliced Probability Metrics’.
In: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Singapore, Singapore: IEEE, 23rd May 2022, pp. 4513–4517. DOI: 10.1109/ICASSP43922
.2022.9746016. URL: https://hal.inria.fr/hal-03935833.

[8] T. Lauvaux, C. Giron, M. Mazzolini, A. d’Aspremont, R. Duren, D. Cusworth, D. Shindell and P. Ciais.
‘Global assessment of oil and gas methane ultra-emitters’. In: Science 375.6580 (4th Feb. 2022),
pp. 557–561. DOI: 10.1126/science.abj4351. URL: https://hal.archives-ouvertes.fr/h
al-03565371.

[9] S. H. Lim, Y. Wan and U. Şimşekli. ‘Chaotic Regularization and Heavy-Tailed Limits for Deterministic
Gradient Descent’. In: Advances in Neural Processing Systems. New Orleans, United States, 2022.
URL: https://hal.inria.fr/hal-03935819.

[10] U. Marteau-Ferey, F. Bach and A. Rudi. ‘Non-parametric Models for Non-negative Functions’.
working paper or preprint. July 2020. URL: https://hal.inria.fr/hal-02891640.
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[11] S. Park, U. Şimşekli and M. A. Erdogdu. ‘Generalization Bounds for Stochastic Gradient Descent via
Localized ε-Covers’. In: Advances in Neural Processing Systems. Baltimore, United States, 19th Sept.
2022. URL: https://hal.inria.fr/hal-03935856.

[12] K. L. Pavasovic, A. Durmus and U. Simsekli, eds. Approximate Heavy Tails in Offline (Multi-Pass)
Stochastic Gradient Descent. Advances in Neural Information Processing Systems. 27th Oct. 2023.
URL: https://inria.hal.science/hal-04478942.

[13] A. Raj, M. Barsbey, M. Gürbüzbalaban, L. Zhu and U. Şimşekli. ‘Algorithmic Stability of Heavy-
Tailed Stochastic Gradient Descent on Least Squares’. In: Algorithmic Learning Theory. Singapore,
Singapore, 2023. URL: https://inria.hal.science/hal-04478947.

[14] A. Raj, U. Şimşekli and A. Rudi, eds. Efficient Sampling of Stochastic Differential Equations with
Positive Semi-Definite Models. Advances in Neural Information Processing Systems. 2023. URL:
https://inria.hal.science/hal-04478943.

[15] A. Raj, L. Zhu, M. Gürbüzbalaban and U. Şimşekli. ‘Algorithmic Stability of Heavy-Tailed SGD with
General Loss Functions’. In: International Conference on Machine Learning. Honolulu, United
States, 2023. URL: https://inria.hal.science/hal-04478946.

[16] V. Roulet and A. D’Aspremont. ‘Sharpness, Restart and Acceleration’. In: SIAM Journal on Optimiza-
tion 30.1 (Oct. 2020), pp. 262–289. DOI: 10.1137/18M1224568. URL: https://hal.archives-ou
vertes.fr/hal-02983236.

[17] S. Sachs, T. van Erven, L. Hodgkinson, R. Khanna and U. Simsekli. ‘Generalization Guarantees via
Algorithm-dependent Rademacher Complexity’. In: Conference on Learning Theory. Bangalore
(Virtual event), India, 4th July 2023. URL: https://inria.hal.science/hal-04478945.

[18] M. Sefidgaran, A. Gohari, G. Richard and U. Şimşekli. ‘Rate-Distortion Theoretic Generalization
Bounds for Stochastic Learning Algorithms’. In: COLT 2022 - 35th Annual Conference on Learning
Theory. Vol. 178. Proceedings of Machine Learning Research. London, United Kingdom, 2nd July
2022. URL: https://hal.telecom-paris.fr/hal-03759597.

[19] P. Viallard, M. Haddouche, U. Şimşekli and B. Guedj. ‘Learning via Wasserstein-Based High Probab-
ility Generalisation Bounds’. In: NeurIPS 2023 - Thirty-seventh Conference on Neural Information
Processing Systems. New Orleans, United States, 7th June 2023. DOI: 10.48550/arXiv.2306.043
75. URL: https://hal.science/hal-04121624.

[20] B. Woodworth, F. Bach and A. Rudi. Non-Convex Optimization with Certificates and Fast Rates
Through Kernel Sums of Squares. 8th Apr. 2022. DOI: 10.48550/arXiv.2204.04970. URL: https:
//hal.inria.fr/hal-03635236.

[21] L. Zhu, M. Gurbuzbalaban, A. Raj and U. Simsekli, eds. Uniform-in-Time Wasserstein Stability
Bounds for (Noisy) Stochastic Gradient Descent. Advances in Neural Information Processing Systems.
2023. URL: https://inria.hal.science/hal-04478941.

11.2 Publications of the year

International journals

[22] F. Bach and A. Rudi. ‘Exponential convergence of sum-of-squares hierarchies for trigonometric
polynomials’. In: SIAM Journal on Optimization (2023). DOI: 10.1137/22m1540818. URL: https:
//hal.science/hal-03843458.

[23] B. Goujaud, A. Dieuleveut and A. Taylor. ‘Counter-Examples in First-Order Optimization: A Con-
structive Approach’. In: IEEE Control Systems Letters 7 (2023), pp. 2485–2490. DOI: 10.1109/LCSYS.
2023.3286277. URL: https://hal.science/hal-04384238.

[24] M. Lambert, S. Bonnabel and F. Bach. ‘The limited-memory recursive variational Gaussian approx-
imation (L-RVGA)’. In: Statistics and Computing 33.70 (2023). DOI: 10.1007/s11222-023-10239-
x. URL: https://inria.hal.science/hal-03501920.

[25] M. Lambert, S. Bonnabel and F. Bach. ‘Variational Gaussian approximation of the Kushner optimal
filter’. In: Lecture Notes in Computer Science (1st Aug. 2023). DOI: 10.1007/978-3-031-38271-0
_39. URL: https://hal.science/hal-04218385.
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[26] A. Taylor and Y. Drori. ‘An optimal gradient method for smooth convex minimization’. In: Mathem-
atical Programming, Series A 199.1-2 (May 2023), pp. 557–594. DOI: 10.1007/s10107-022-01839
-y. URL: https://inria.hal.science/hal-03154583.

[27] P. Viallard, P. Germain, A. Habrard and E. Morvant. ‘A General Framework for the Practical Disinteg-
ration of PAC-Bayesian Bounds’. In: Machine Learning (2023). URL: https://hal.science/hal-
03143025.

International peer-reviewed conferences

[28] G. Beugnot, J. Mairal and A. Rudi. ‘GloptiNets: Scalable Non-Convex Optimization with Certificates’.
In: NeurIPS 2023 - 37th Conference on Neural Information Processing Systems. New Orleans, United
States, Dec. 2023, pp. 1–21. URL: https://inria.hal.science/hal-04138843.

[29] E. Gorbunov, A. Taylor, S. Horváth and G. Gidel. ‘Convergence of Proximal Point and Extragradient-
Based Methods Beyond Monotonicity: the Case of Negative Comonotonicity’. In: Proceedings of the
40th International Conference on Machine Learning, PMLR 202:11614-11641, 2023. ICML 2023 -
40th International Conference on Machine Learning. Honolulu, Hawai, United States, 23rd July
2023. DOI: 10.48550/arXiv.2210.13831. URL: https://hal.science/hal-04384208.

[30] B. Goujaud, A. Dieuleveut and A. Taylor. ‘On Fundamental Proof Structures in First-Order Optimiz-
ation’. In: Conference on Decision and Control, Tutorial sessions. Marina Bay Sands, Singapore:
arXiv, 2023. DOI: 10.48550/arXiv.2310.02015. URL: https://hal.science/hal-04384178.

[31] K. L. Pavasovic, A. Durmus and U. Simsekli. ‘Approximate Heavy Tails in Offline (Multi-Pass)
Stochastic Gradient Descent’. In: Neural Information Processing Systems (NeurIPS), Spotlight
Presentation, 2023. New Orleans (LA), United States, 27th Oct. 2023. URL: https://hal.science
/hal-04271020.

[32] L. Stewart, F. Bach, Q. Berthet and J.-P. Vert. ‘Regression as Classification: Influence of Task Formu-
lation on Neural Network Features’. In: AISTATS 2023 - 26th International Conference on Artificial
Intelligence and Statistics. Vol. 206. Valence, Spain, 2023. URL: https://hal.science/hal-0384
6706.

[33] P. Viallard, M. Haddouche, U. Şimşekli and B. Guedj. ‘Learning via Wasserstein-Based High Prob-
ability Generalisation Bounds’. In: NeurIPS 2023 Workshop on Optimal Transport and Machine
Learning (OTML’23). New Orleans, United States, 16th Dec. 2023. URL: https://hal.science/ha
l-04273718.

[34] P. Viallard, M. Haddouche, U. Şimşekli and B. Guedj. ‘Learning via Wasserstein-Based High Probab-
ility Generalisation Bounds’. In: NeurIPS 2023 - Thirty-seventh Conference on Neural Information
Processing Systems. New Orleans, United States, 7th June 2023. DOI: 10.48550/arXiv.2306.043
75. URL: https://hal.science/hal-04121624.

Conferences without proceedings

[35] P. Viallard. ‘Bornes de généralisation : quand l’information mutuelle rencontre les bornes PAC-
Bayésiennes et désintégrées’. In: CAp 2023 - Conférence sur l’Apprentissage Automatique. Stras-
bourg, France, 3rd July 2023. URL: https://hal.science/hal-04093184.

Reports & preprints

[36] F. Bach. High-dimensional analysis of double descent for linear regression with random projections.
28th Feb. 2023. URL: https://hal.science/hal-04008311.

[37] F. Bach. On the relationship between multivariate splines and infinitely-wide neural networks.
6th Feb. 2023. URL: https://hal.science/hal-03974669.

[38] F. Bach. Sum-of-Squares Relaxations for Information Theory and Variational Inference. 15th Sept.
2023. URL: https://hal.science/hal-03703475.

[39] F. Bach. Sum-of-squares relaxations for polynomial min-max problems over simple sets. 25th June
2023. URL: https://hal.science/hal-04140288.
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[40] A. Bambade, F. Schramm, S. E. Kazdadi, S. Caron, A. Taylor and J. Carpentier. Companion Re-
port of PROXQP: an Efficient and Versatile Quadratic Programming Solver for Real-Time Robotics
Applications and Beyond. INRIA, Sept. 2023. URL: https://inria.hal.science/hal-04196897.

[41] A. Bambade, F. Schramm, S. E. Kazdadi, S. Caron, A. Taylor and J. Carpentier. PROXQP: an Efficient
and Versatile Quadratic Programming Solver for Real-Time Robotics Applications and Beyond.
1st Sept. 2023. URL: https://inria.hal.science/hal-04198663.

[42] A. Bambade, F. Schramm, A. Taylor and J. Carpentier. QPLayer: efficient differentiation of convex
quadratic optimization. 19th June 2023. URL: https://inria.hal.science/hal-04133055.

[43] E. Berta, F. Bach and M. Jordan. Classifier Calibration with ROC-Regularized Isotonic Regression.
20th Nov. 2023. URL: https://hal.science/hal-04295601.

[44] R. Bonalli and A. Rudi. Non-Parametric Learning of Stochastic Differential Equations with Fast Rates
of Convergence. 24th May 2023. URL: https://hal.science/hal-04381810.

[45] I. Fayad, P. Ciais, M. Schwartz, J.-P. Wigneron, N. Baghdadi, A. de Truchis, A. d’Aspremont, F.
Frappart, S. Saatchi, A. Pellissier-Tanon and H. Bazzi. Vision Transformers, a new approach for
high-resolution and large-scale mapping of canopy heights. 22nd Apr. 2023. URL: https://hal.sc
ience/hal-04230906.

[46] B. Follain, U. Şimşekli and F. Bach. Nonparametric Linear Feature Learning in Regression Through
Regularisation. 24th July 2023. URL: https://hal.science/hal-04170331.

[47] B. Goujaud, A. Taylor and A. Dieuleveut. Provable non-accelerations of the heavy-ball method. 2023.
DOI: 10.48550/arXiv.2307.11291. URL: https://hal.science/hal-04384188.

[48] S. D. Gupta, R. Freund, X. A. Sun and A. Taylor. Nonlinear conjugate gradient methods: worst-case
convergence rates via computer-assisted analyses. 2023. DOI: 10.48550/arXiv.2301.01530. URL:
https://hal.science/hal-04384219.

[49] D. Holzmüller and F. Bach. Convergence Rates for Non-Log-Concave Sampling and Log-Partition
Estimation. 6th Mar. 2023. URL: https://hal.science/hal-04018103.

[50] Z. Kobeissi and F. Bach. Temporal Difference Learning with Continuous Time and State in the
Stochastic Setting. 2nd June 2023. URL: https://inria.hal.science/hal-03574645.

[51] F. Léger and P.-C. Aubin-Frankowski. Gradient descent with a general cost. 14th Dec. 2023. URL:
https://hal.science/hal-04344054.

[52] C. Lezane, C. Guzmán and A. d’Aspremont. An Oblivious Stochastic Composite Optimization Al-
gorithm for Eigenvalue Optimization Problems. 30th June 2023. URL: https://hal.science/hal
-04230909.

[53] S. Martin, F. Bach and G. Biroli. On the Impact of Overparameterization on the Training of a Shallow
Neural Network in High Dimensions. 4th Nov. 2023. URL: https://hal.science/hal-04270390.

[54] L. Montaut, Q. Le Lidec, A. Bambade, V. Petrík, J. Sivic and J. Carpentier. Differentiable Collision
Detection: a Randomized Smoothing Approach. 14th Apr. 2023. URL: https://hal.science/hal-
03780482.

[55] K. Nadjahi, V. de Bortoli, A. Durmus, R. Badeau and U. Şimşekli. Approximate Bayesian computation
with the sliced-Wasserstein distance. 16th Jan. 2024. DOI: 10.1109/icassp40776.2020.9054735.
URL: https://hal.science/hal-03945515.

[56] M. Upadhyaya, S. Banert, A. Taylor and P. Giselsson. Automated tight Lyapunov analysis for first-
order methods. 2023. DOI: 10.48550/arXiv.2302.06713. URL: https://hal.science/hal-04
384212.

[57] B. Woodworth, K. Mishchenko and F. Bach. Two Losses Are Better Than One: Faster Optimization
Using a Cheaper Proxy. Feb. 2023. URL: https://inria.hal.science/hal-03977083.
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