
2023
ACTIVITY REPORT

Project-Team

STAMP

RESEARCH CENTRE

Inria Centre
at Université Côte d’Azur

Safety Techniques based on Formalized
Mathematical Proofs

DOMAIN

Algorithmics, Programming, Software and
Architecture

THEME

Proofs and Verification

Contents

Project-Team STAMP 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 2

3 Research program 3
3.1 Theoretical background . 3

4 Application domains 4
4.1 Mathematical Components . 4

4.2 Proofs in cryptography . 4

4.3 Proofs for robotics . 4

5 Highlights of the year 5
5.1 Awards . 5

6 New software, platforms, open data 5
6.1 New software . 5

6.1.1 Coq . 5

6.1.2 coq-elpi . 6

6.1.3 ELPI . 6

6.1.4 Easycrypt . 7

6.1.5 Hierarchy Builder . 7

6.1.6 Jasmin . 8

6.1.7 Trocq . 9

6.1.8 VsCoq . 9

7 New results 10
7.1 Formal proof of post-quantum cryptographic primitive . 10

7.2 CryptoVerif to EasyCrypt . 10

7.3 Extending the Jasmin compiler . 11

7.4 Collisions between trajectories and polygonal obstacles . 11

7.5 Instance saturation in Hierarchy Builder . 12

7.6 New type class solver . 12

7.7 Automation for separation logic in Coq . 12

7.8 Porting to Mathcomp 2 . 12

7.9 Trocq : Proof Transfer for Free . 12

7.10 VsCoq: a user interface for Coq . 13

7.11 Handling subsets and subtypes in Hierarchy Builder . 13

7.12 Handling enriched categories in Hierarchy Builder . 13

7.13 Abel Galois Theorem . 13

7.14 Lebesgue measure and integration . 14

7.15 Building finite fields via irreducible polynomials . 14

7.16 Formal study of double-word arithmetic algorithms . 14

7.17 Formal study of the Fast Fourier Transform . 14

7.18 Simplification of a constructive version of Tarski’s system of geometry 15

8 Bilateral contracts and grants with industry 15
8.1 Bilateral contracts with industry . 15

9 Partnerships and cooperations 15
9.1 International initiatives . 15

9.1.1 Inria associate team not involved in an IIL or an international program 15
9.2 International research visitors . 15

9.2.1 Visits of international scientists . 15
9.3 National initiatives . 16

9.3.1 ANR . 16
9.3.2 PEPR . 16
9.3.3 Inria Challenges . 16

10 Dissemination 16
10.1 Promoting scientific activities . 17

10.1.1 Scientific events: organisation . 17
10.1.2 Invited talks . 17
10.1.3 Research administration . 17

10.2 Teaching - Supervision - Juries . 17
10.2.1 Teaching . 17
10.2.2 Supervision . 18
10.2.3 Juries . 18

10.3 Popularization . 18
10.3.1 Internal or external Inria responsibilities . 18
10.3.2 Articles and contents . 18

11 Scientific production 18
11.1 Major publications . 18
11.2 Publications of the year . 19
11.3 Other . 20
11.4 Cited publications . 20

Project STAMP 1

Project-Team STAMP

Creation of the Project-Team: 2019 November 01

Keywords

Computer sciences and digital sciences

A2.1.11. – Proof languages

A2.4.3. – Proofs

A4.5. – Formal methods for security

A7.2. – Logic in Computer Science

A7.2.3. – Interactive Theorem Proving

A7.2.4. – Mechanized Formalization of Mathematics

A8.3. – Geometry, Topology

A8.4. – Computer Algebra

A8.10. – Computer arithmetic

Other research topics and application domains

B6.1. – Software industry

B9.5.1. – Computer science

B9.5.2. – Mathematics

https://radar.inria.fr/keywords/2023/computing
https://radar.inria.fr/keywords/2023/other

2 Inria Annual Report 2023

1 Team members, visitors, external collaborators

Research Scientists

• Yves Bertot [Team leader, INRIA, Senior Researcher, HDR]

• Cyril Cohen [INRIA, Researcher]

• Benjamin Grégoire [INRIA, Researcher, until Jun 2023]

• Laurence Rideau [INRIA, Researcher]

• Enrico Tassi [INRIA, Researcher]

• Laurent Théry [INRIA, Researcher]

Post-Doctoral Fellows

• Pierre Boutry [INRIA, until Aug 2023]

• Jean-Christophe Léchenet [INRIA, until Sep 2023]

• Paolo Torrini [INRIA, Post-Doctoral Fellow, from Jun 2023]

PhD Students

• Davide Fissore [UNIV COTE D’AZUR, from Oct 2023]

• Swarn Priya [UNIV COTE D’AZUR, until Jan 2023]

• Quentin Vermande [UNIV COTE D’AZUR, from Oct 2023]

Technical Staff

• Maxime Dénès [INRIA, Engineer, until Aug 2023]

• Thomas Portet [INRIA, Engineer, from Feb 2023]

• Romain Tetley [INRIA, Engineer, from Oct 2023]

Administrative Assistant

• Christine Foggia [INRIA, from Mar 2023]

2 Overall objectives

Computers and programs running on these computers are powerful tools for many domains of human
activities. In some of these domains, program errors can have enormous consequences. It will become
crucial for all stakeholders that the best techniques are used when designing these programs.

We advocate using higher-order logic proof assistants as tools to obtain better quality programs and
designs. These tools make it possible to build designs where all decisive arguments are explicit, ambiguity
is alleviated, and logical steps can be verified precisely. In practice, we are intensive users of the Coq
system and we participate actively to the development of this tool, in collaboration with other teams at
Inria, and we also take an active part in promoting its usage by academic and industrial users around the
world.

Many domains of modern computer science and engineering make a heavy use of mathematics. If we
wish to use proof assistants to avoid errors in designs, we need to develop corpora of formally verified
mathematics that are adapted to these domains. Developing libraries of formally verified mathematics
is the main motivation for our research. In these libraries, we wish to capture not only the knowledge

Project STAMP 3

that is usually recorded in definitions and theorems, but also the practical knowledge that is recorded in
mathematical practice, idioms, and work habits. Thus, we are interested in logical facts, algorithms, and
notation habits. Also, the very process of developing an ambitious library is a matter of organization, with
design decisions that need to be evaluated and improved. Refactoring of libraries is also an important
topic. Among all higher-order logic based proof assistants, we contend that those based on Type theory
are the best suited for this work on libraries, thanks to their strong capabilities for abstraction and modular
re-use.

The interface between mathematics, computer science and engineering is large. To focus our activities,
we will concentrate on applications of proof assistants to two main domains: cryptography and robotics.
We also develop specific tools for proofs in cryptography, mainly around a proof tool named EasyCrypt.

3 Research program

3.1 Theoretical background

The proof assistants that we consider provide both a programming language, where users can describe
algorithms performing tasks in their domain of interest, and a logical language to reason about the
programs, thus making it possible to ensure that the algorithms do solve the problems for which they
were designed. Trustability is gained because algorithms and logical statements provide multiple views of
the same topic, thus making it possible to detect errors coming from a mismatch between expected and
established properties. The verification process is itself a logical process, where the computer can bring
rigor in aligning expectations and guarantees.

The foundations of proof assistants rest on the very foundations of mathematics. As a consequence,
all aspects of reasoning must be made completely explicit in the process of formally verifying an algorithm.
All aspects of the formal verification of an algorithm are expressed in a discourse whose consistency is
verified by the computer, so that unclear or intuitive arguments need to be replaced by precise logical
inferences.

One of the foundational features on which we rely extensively is Type Theory. In this approach a very
simple programming language is equiped with a powerful discipline to check the consistency of usage:
types represent sets of data with similar behavior, functions represent algorithms mapping types to other
types, and the consistency can be verified by a simple computer program, a type-checker. Although they
can be verified by a simple program, types can express arbitrary complex objects or properties, so that
the verification work lives in an interesting realm, where verifying proofs is decidable, but finding the
proofs is undecidable.

This process for producing new algorithms and theorems is a novelty in the development of mathem-
atical knowledge or algorithms, and new working methods must be devised for it to become a productive
approach to high quality software development. Questions that arise are numerous. How do we avoid
requiring human assistance to work on mundane aspects of proofs? How do we take advantage of all
the progress made in automatic theorem proving? How do we organize the maintenance of ambitious
corpora of formally verified knowledge in the long term?

To acquire hands-on expertise, we concentrate our activity on three aspects. The first one is found-
ational: we develop and maintain a library of mathematical facts that covers many aspects of algebra
and analysis. In the past, we applied this library to proofs in group theory, but it is increasingly used for
many different areas of mathematics and by other teams around the world, from combinatorics to elliptic
cryptography, for instance. The second aspect is applicative: we develop a specific tool for proofs in
cryptography, where we need to reason on the probability that opponents manage to access information
we wish to protect. For this activity, we develop a specific proof system, relying on a wider set of automatic
tools, with the objective of finding the tools that are well adapted to this domain and to attract users
that are initially specialists in cryptography but not in formal verification. The third domain is robotics,
as we believe that the current trend towards more and more autonomous robots and vehicles will raise
questions of safety and trustability where formal verification can bring significant added value.

4 Inria Annual Report 2023

4 Application domains

4.1 Mathematical Components

The Mathematical Components library is the main by-product of an effort started almost two decades ago
to provide a formally verified proof for a major theorem in group theory. Because this major theorem had
a proof published in books of several hundreds of pages, with elements coming from character theory,
other coming from algebra, and some coming from real analysis, it was an exercise in building a large
library, with results in many domains, and in establishing clear guidelines for further increase and data
search.

This library has proved to be a useful repository of mathematical facts for a wide area of applications,
so that it has a growing community of users in many countries (Denmark, France, Germany, Japan,
Singapore, Spain, Sweden, UK, USA) and for a wide variety of topics (transcendental number theory,
elliptic curve cryptography, articulated robot kinematics, recently block chain foundations).

Interesting questions on this library range around the importance of decidability and proof irrelevance,
the way to structure knowledge to automatically inherit theorems from one topic to another, the way
to generate infrastructure to make this automation efficient and predictable. In particular, we want to
concentrate on adding a new mathematical topic to this library: real analysis and then complex analysis
(Mathematical Components Analysis).

On the front of automation, we are convinced that a higher level language is required to describe
similarities between theories, to generate theorems that are immediate consequences of structures, etc,
and for this reason, we invest in the development of a new language on top of the proof assistant (ELPI,
Embeddable Lambda Prolog Interpreter).

4.2 Proofs in cryptography

When we work on cryptography, we are interested in the formal verification of proofs showing that
some cryptographic primitives provide good guarantees against unwanted access to information. Over
the years we have developed a technique for this kind of reasoning that relies on a programing logic
(close to Hoare logic) with probabilistic aspects and the capability to establish relations between several
implementations of a problem. The resulting programming logic is called probabilistic relational Hoare
logic. We also study questions of side-channel attacks, where we wish to guarantee that opponents cannot
gain access to protected knowledge, even if they observe specific features of execution, like execution
time (to which the answer lies in constant-time execution) or partial access to memory bits (to which the
answer lies in masking).

For this domain of application, we choose to work with a specific proof tool (EasyCrypt), which com-
bines powerful first-order reasoning and use of automatic tools, with a specific support for probabilistic
relational Hoare Logic. The development of this EasyCrypt proof tool is one of the objectives of our team.

When it comes to formal proofs of resistance to side-channel attacks, we contend that it is necessary to
verify formally that the compiler used in the production of actually running code respects the resistance
properties that were established in formally verified proofs. One of our objectives is to develop such a
compiler (Jasmin) and show its strength on a variety of applications.

The pair of tools EasyCrypt and Jasmin has also proved its worth in the formal verification of correct-
ness for post-quantum cryptography.

4.3 Proofs for robotics

Robots are man-made artifacts where numerous design decisions can be argued based on logical or
mathematical principles. For this reason, we wish to use this domain of application as a focus for our
investigations. The questions for which we are close to providing answers involve precision issues in
numeric computation, obstacle avoidance and motion planning (including questions of graph theory),
articulated limb kinematics and dynamics, and balance and active control.

From the mathematical perspective, these topics require that we improve our library to cover real
algebraic geometry, computational geometry, real analysis, graph theory, and refinement relations
between abstract algorithms and executable programs.

Project STAMP 5

In the long run, we hope to exhibit robots where pieces of software and part of the design have been
subject to formal verification.

5 Highlights of the year

5.1 Awards

• Swarn Priya has been one of the winners of the Young Talents "Pour les femmes et la science"
L’Oréal-UNESCO 2023 prize. She defended her PhD [18] in November.

• The paper ¨Typing High-Speed Cryptography against Spectre v1" [10] has obtained a Distinguished
Paper Award at the IEEE Symposium on Security and Privacy.

6 New software, platforms, open data

6.1 New software

6.1.1 Coq

Name: The Coq Proof Assistant

Keywords: Proof, Certification, Formalisation

Scientific Description: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and
co-inductive families, an impredicative sort and a hierarchy of predicative universes, making it a
very expressive logic. The calculus allows to formalize both general mathematics and computer
programs, ranging from theories of finite structures to abstract algebra and categories to program-
ming language metatheory and compiler verification. Coq is organised as a (relatively small) kernel
including efficient conversion tests on which are built a set of higher-level layers: a powerful proof
engine and unification algorithm, various tactics/decision procedures, a transactional document
model and, at the very top an integrated development environment (IDE).

Functional Description: Coq provides both a dependently-typed functional programming language
and a logical formalism, which, altogether, support the formalisation of mathematical theories
and the specification and certification of properties of programs. Coq also provides a large and
extensible set of automatic or semi-automatic proof methods. Coq’s programs are extractible to
OCaml, Haskell, Scheme, ...

Release Contributions: An overview of the new features and changes, along with the full list of contrib-
utors is available at https://coq.inria.fr/refman/changes.html#version-8-18 .

News of the Year: Coq version 8.18 integrates changes to several parts of the system : kernel, spe-
cification language, type inference, notation, tactics, Ltac2 language, commands and options,
command-line tools, CoqIDE, standard library, infrastructure and dependencies, extraction. See
https://coq.inria.fr/refman/changes.html#version-8-18 for an overview of the new features and
changes, along with the full list of contributors.

URL: http://coq.inria.fr/

Contact: Matthieu Sozeau

Participants: Yves Bertot, Frédéric Besson, Tej Chajed, Cyril Cohen, Pierre Corbineau, Pierre Courtieu,
Maxime Dénès, Jim Fehrle, Julien Forest, Emilio Jesús Gallego Arias, Gaëtan Gilbert, Georges
Gonthier, Benjamin Grégoire, Jason Gross, Hugo Herbelin, Vincent Laporte, Olivier Laurent, Assia
Mahboubi, Kenji Maillard, Érik Martin-Dorel, Guillaume Melquiond, Pierre-Marie Pedrot, Clément
Pit-Claudel, Kazuhiko Sakaguchi, Vincent Semeria, Michael Soegtrop, Arnaud Spiwack, Matthieu
Sozeau, Enrico Tassi, Laurent Théry, Anton Trunov, Li-Yao Xia, Theo Zimmermann

Partners: CNRS, Université Paris-Sud, ENS Lyon, Université Paris-Diderot

http://coq.inria.fr/

6 Inria Annual Report 2023

6.1.2 coq-elpi

Keywords: Metaprogramming, Extension

Scientific Description: Coq-elpi provides a Coq plugin that embeds ELPI. It also provides a way to embed
Coq terms into lambdaProlog using the Higher-Order Abstract Syntax approach (HOAS) and a way
to read terms back. In addition to that it exports to ELPI a set of Coq primitives, e.g. printing a
message, accessing the environment of theorems and data types, defining a new constant and so on.
For convenience it also provides a quotation and anti-quotation for Coq’s syntax in lambdaProlog.
E.g. {{nat}} is expanded to the type name of natural numbers, or {{A -> B}} to the representation of a
product by unfolding the -> notation. Finally it provides a way to define new vernacular commands
and new tactics.

Functional Description: Coq plugin embedding ELPI

Release Contributions: - parsing/execution separation

News of the Year: - Separation of parsing/execution for modern UIs. - Application of type-checking to
solve type class instances using an ELPI program. - Application of coercion to insert explicit type
casts using an ELPI program.

Publications: hal-01897468, hal-01637063

Contact: Enrico Tassi

Participants: Enrico Tassi, Davide Fissore

6.1.3 ELPI

Name: Embeddable Lambda Prolog Interpreter

Keywords: Constraint Programming, Programming language, Higher-order logic

Scientific Description: The programming language has the following features

- Native support for variable binding and substitution, via a Higher Order Abstract Syntax (HOAS)
embedding of the object language. The programmer does not need to care about technical devices
to handle bound variables, like De Bruijn indices.

- Native support for hypothetical context. When moving under a binder one can attach to the bound
variable extra information that is collected when the variable gets out of scope. For example when
writing a type-checker the programmer needs not to care about managing the typing context.

- Native support for higher-order unification variables, again via HOAS. Unification variables of the
meta-language (lambdaProlog) can be reused to represent the unification variables of the object
language. The programmer does not need to care about the unification-variable assignment map
and cannot assign to a unification variable a term containing variables out of scope, or build a
circular assignment.

- Native support for syntactic constraints and their meta-level handling rules. The generative
semantics of Prolog can be disabled by turning a goal into a syntactic constraint (suspended goal).
A syntactic constraint is resumed as soon as relevant variables get assigned. Syntactic constraints
can be manipulated by constraint handling rules (CHR).

- Native support for backtracking, to ease implementation of search.

- The constraint store is extensible. The host application can declare non-syntactic constraints and
uses custom constraint solvers to check their consistency.

- Clauses are graftable. The user is free to extend an existing program by inserting/removing clauses,
both at runtime (using implication) and at "compilation" time by accumulating files.

Most of these features come with lambdaProlog. Constraints and propagation rules are novel in
ELPI.

https://hal.inria.fr/hal-01897468
https://hal.inria.fr/hal-01637063

Project STAMP 7

Functional Description: ELPI implements a variant of lambdaProlog enriched with Constraint Handling
Rules, a programming language well suited to manipulate syntax trees with binders and unification
variables.

ELPI is a research project aimed at providing a programming platform for the so called elaborator
component of an interactive theorem prover.

ELPI is designed to be embedded into larger applications written in OCaml as an extension language.
It comes with an API to drive the interpreter and with an FFI for defining built-in predicates and
data types, as well as quotations and similar goodies that come in handy to adapt the language to
the host application.

Release Contributions: - Faster separate compilation/linking

News of the Year: - Time complexity improvement of separate compilation/linking of program units,
which is now pseudo linear. - The runtime was made re-entrant, allowing multiple Elpi instances
to live in the same process. - New deep-indexing data structure based on discrimination trees.

URL: https://github.com/lpcic/elpi/

Publications: hal-03800154, hal-01176856, hal-01410567, hal-01897468

Contact: Enrico Tassi

Participants: Enrico Tassi, Claudio Sacerdoti Coen

6.1.4 Easycrypt

Keywords: Proof assistant, Cryptography

Functional Description: EasyCrypt is a toolset for reasoning about relational properties of probabilistic
computations with adversarial code. Its main application is the construction and verification of
game-based cryptographic proofs. EasyCrypt can also be used for reasoning about differential
privacy.

Release Contributions: This version introduces a new logic (ehoare) allowing to bound the expectation
of a function in a probabilistic program.

News of the Year: The major release (2023.09) has been published. This release include the a new logic
for bounding the expectation of function in a probabilistic program.

URL: https://github.com/EasyCrypt/easycrypt

Publications: hal-03352062, hal-03469015

Contact: Gilles Barthe

Participants: Benjamin Grégoire, Gilles Barthe, Pierre-Yves Strub, Adrien Koutsos

6.1.5 Hierarchy Builder

Keywords: Coq, Metaprogramming

Scientific Description: It is nowadays customary to organize libraries of machine checked proofs around
hierarchies of algebraic structures. One influential example is the Mathematical Components
library on top of which the long and intricate proof of the Odd Order Theorem could be fully
formalized. Still, building algebraic hierarchies in a proof assistant such as Coq requires a lot
of manual labor and often a deep expertise in the internals of the prover. Moreover, according
to our experience, making a hierarchy evolve without causing breakage in client code is equally
tricky: even a simple refactoring such as splitting a structure into two simpler ones is hard to get
right. Hierarchy Builder is a high level language to build hierarchies of algebraic structures and
to make these hierarchies evolve without breaking user code. The key concepts are the ones of

https://github.com/lpcic/elpi/
https://hal.inria.fr/hal-03800154
https://hal.inria.fr/hal-01176856
https://hal.inria.fr/hal-01410567
https://hal.inria.fr/hal-01897468
https://github.com/EasyCrypt/easycrypt
https://hal.inria.fr/hal-03352062
https://hal.inria.fr/hal-03469015

8 Inria Annual Report 2023

factory, builder and abbreviation that let the hierarchy developer describe an actual interface for
their library. Behind that interface the developer can provide appropriate code to ensure retro
compatibility. We implement the Hierarchy Builder language in the hierarchy-builder addon for
the Coq system using the Elpi extension language.

Functional Description: Hierarchy Builder is a high level language for Coq to build hierarchies of algeb-
raic structures and to make these hierarchies evolve without breaking user code. The key concepts
are the ones of factory, builder and abbreviation that let the hierarchy developer describe an actual
interface for their library. Behind that interface the developer can provide appropriate code to
ensure retro compatibility.

Release Contributions: Support for hierarchy of morphisms and bugfixes. Adding compatibility with
Coq 8.16

News of the Year: - Major performance improvements in handling large hierarchies (e.g. MathComp 2.0)

URL: https://github.com/math-comp/hierarchy-builder

Publication: hal-02478907

Contact: Enrico Tassi

Participants: Enrico Tassi, Cyril Cohen

Partners: University of Tsukuba, Onera

6.1.6 Jasmin

Name: Jasmin compiler and analyser

Keywords: Cryptography, Static analysis, Compilers

Functional Description: The Jasmin programming language smoothly combines high-level and low-
level constructs, so as to support “assembly in the head” programming. Programmers can control
many low-level details that are performance-critical: instruction selection and scheduling, what
registers to spill and when, etc. The language also features high-level abstractions (variables,
functions, arrays, loops, etc.) to structure the source code and make it more amenable to formal
verification. The Jasmin compiler produces predictable assembly and ensures that the use of
high-level abstractions incurs no run-time penalty.

The semantics is formally defined to allow rigorous reasoning about program behaviors. The
compiler is formally verified for correctness (the proof is machine-checked by the Coq proof
assistant). This ensures that many properties can be proved on a source program and still apply to
the corresponding assembly program: safety, termination, functional correctness. . .

Jasmin programs can be automatically checked for safety and termination (using a trusted static
analyzer). The Jasmin workbench leverages the EasyCrypt toolset for formal verification. Jasmin
programs can be extracted to corresponding EasyCrypt programs to prove functional correctness,
cryptographic security, or security against side-channel attacks (constant-time).

Release Contributions: 2023.06.0 is a major release of Jasmin. It contains a few noteworthy changes:
- local functions now use call and ret instructions, - experimental support for the ARMv7 (i.e.,
Cortex-M4) architecture, - a few aspects of the safety checker can be finely controlled through
annotations or command-line flags, - shift and rotation operators have a simpler semantics.

As usual, it also brings in various fixes and improvements, such as bit rotation operators and
automatic slicing of the input program.

News of the Year: On June 2023, a major release (2023.06.0) has been published.

URL: https://github.com/jasmin-lang/jasmin

https://github.com/math-comp/hierarchy-builder
https://hal.inria.fr/hal-02478907
https://github.com/jasmin-lang/jasmin

Project STAMP 9

Publications: hal-04106448, hal-04218417, hal-03844366, hal-03430789, hal-03352062, hal-02404581,
hal-02974993, hal-01649140

Contact: Jean-Christophe Léchenet

Participants: Gilles Barthe, Benjamin Grégoire, Adrien Koutsos, Vincent Laporte, Jean-Christophe
Léchenet, Swarn Priya, Santiago Arranz Olmos

Partners: The IMDEA Software Institute, Ecole Polytechnique, Universidade do Minho, Universidade do
Porto, Max Planck Institute for Security and Privacy

6.1.7 Trocq

Keywords: Proof synthesis, Proof transfer, Coq, Elpi, Logic programming, Parametricity, Univalence

Functional Description: Trocq is a prototype of a modular parametricity plugin for Coq, aiming to
perform proof transfer by translating the goal into an associated goal featuring the target data struc-
tures as well as a rich parametricity witness from which a function justifying the goal substitution
can be extracted.

The plugin features a hierarchy of parametricity witness types, ranging from structure-less relations
to a new formulation of type equivalence, gathering several pre-existing parametricity translations,
including univalent parametricity and CoqEAL, in the same framework.

This modular translation performs a fine-grained analysis and generates witnesses that are rich
enough to preprocess the goal yet are not always a full-blown type equivalence, allowing to perform
proof transfer with the power of univalent parametricity, but trying not to pull in the univalence
axiom in cases where it is not required.

The translation is implemented in Coq-Elpi and features transparent and readable code with
respect to a sequent-style theoretical presentation.

News of the Year: We released the first version of Trocq, for demo purposes and to support the claims
made in the associated paper. Trocq is able to translate non trivial goals between isomorphic or
partially isomorphic representations.

URL: https://github.com/coq-community/trocq

Publication: hal-04177913

Contact: Cyril Cohen

Participants: Cyril Cohen, Enzo Crance, Assia Mahboubi

Partner: Mitsubishi Electric R&D Centre Europe, France

6.1.8 VsCoq

Name: VsCoq

Keywords: Coq, User Interfaces

Functional Description: VsCoq is an extension for Visual Studio Code (VS Code) and VSCodium which
provides support for the Coq Proof Assistant.

VsCoq is distributed in two flavours:

- VsCoq Legacy (required for Coq < 8.18, compatible with Coq >= 8.7) is based on the original VsCoq
implementation by C.J. Bell. It uses the legacy XML protocol spoken by CoqIDE.

- VsCoq (recommended for Coq >= 8.18) is a full reimplementation around a language server which
natively speaks the LSP protocol.

https://hal.inria.fr/hal-04106448
https://hal.inria.fr/hal-04218417
https://hal.inria.fr/hal-03844366
https://hal.inria.fr/hal-03430789
https://hal.inria.fr/hal-03352062
https://hal.inria.fr/hal-02404581
https://hal.inria.fr/hal-02974993
https://hal.inria.fr/hal-01649140
https://github.com/coq-community/trocq
https://hal.inria.fr/hal-04177913

10 Inria Annual Report 2023

Release Contributions: We have mainly been working on stability and bug fixes, in this release you’ll
find :

- Some improvements to performance on large files. - Fixing document state invalidation bugs. -
Goal view improvements.

News of the Year: The first version (2.0.1) of VsCoq based on the LSP protocol has been released on
September, 2023.

URL: https://github.com/coq-community/vscoq

Contact: Laurent Théry

7 New results

7.1 Formal proof of post-quantum cryptographic primitive

Participants: José Bacelar Almeida (INESC TEC), Manuel Barbosa (University
of Porto & INESC TEC), Gilles Barthe (MPI-SP & IMDEA), Chris-
tian Doczkal (MPI-SP), Jelle Don (Centrum Wiskunde & Informat-
ica), François Dupressoir (University of Bristol), Serge Fehr (Leiden
University), Benjamin Grégoire, Yu-Hsuan Huang (Leiden Univer-
sity), Andreas Hülsing (Eindhoven University), Vincent Laporte (Pesto),
Yi Lee (MPI-SP), Jean-Christophe Léchenet, Matthias Meijers (Eind-
hoven University), Tiago Oliveira (MPI-SP), Hugo PachecoUniver-
sidade do Minho & INESC TEC] , Miguel Quaresma (MPI-SP),
Peter Schwabe (MPI-SP & Radboud University), Antoine Séré (LIX),
Pierre-Yves Strub (PQShield), Xiaodi Wu (University of Maryland).

In July 2022, NIST announced the first batch of “winners” of the post-quantum project, i.e., schemes
that will be forwarded to standardization [25]. This first batch contained three signature schemes
(CRYSTALS-Dilithium [28, 32], Falcon [33], and SPHINCS+ [26, 29]), and only one key-encapsulation
mechanism (KEM): the lattice-based scheme CRYSTALS-Kyber [27, 30].

We have started the formal verification of three of those primitives (CRYSTALS-Dilithium, SPHINCS+,
and CRYSTALS-Kyber) following different directions.

For Kyber, we give a (readable) formal specification in the EasyCrypt proof assistant, which is syn-
tactically very close to the pseudocode description of the scheme as given in the most recent version of
the NIST submission. We also provide high-assurance open-source implementations of Kyber written in
the Jasmin language, along with machine-checked proofs that they are functionally correct with respect
to the EasyCrypt specification. To make this possible it was necessary to extend the Jasmin language. This
work has been published in [11].

For CRYSTALS-Dilithium and SPHINCS+, instead of proving the functional correctness of an im-
plementation we have started to prove the semantic security of the schemes, i.e the correctness of the
specification. The work on SPHINCS+ has been published in [17]. The work on CRYSTALS-Dilithium has
been published in [12]. To accomplish this work we have extended EasyCrypt with a new logic allowing to
bound the expectation of a function in a probabilistic program.

7.2 CryptoVerif to EasyCrypt

Participants: Bruno Blanchet (Prosecco), Pierre Boutry, Christian Doczkal (MPI-SP),
Benjamin Gre‘goire, Pierre-Yves Strub (PQShield).

We continue our study of approaches to combine two mechanized tools to verify protocols. We
developed a translation from CryptoVerif to EasyCrypt that allows cryptographic assumptions that cannot

https://github.com/coq-community/vscoq

Project STAMP 11

be proved in CryptoVerif to be translated to EasyCrypt and proved there. We used the translation to prove
different hypotheses assumed in CryptoVerif:

• The reduction of the N query formulation of the Computational/Gap Diffie-Hellman (CDH/GDH)
games in CryptoVerif to the standard, single-query formulation. The obtained bounds are better
than what can be obtained by a direct hybrid argument.

• The reduction from the N participant games (e.g. insider or outsider adversaries) for authenticated
Key encapsulation mechanisms (KEM) to 1 or 2 participant games.

We completed the translation to cover a wider range of the language that CryptoVerif uses for specifying
assumptions on cryptographic primitives. This work [22] has been accepted for publication in CSF 2024.

7.3 Extending the Jasmin compiler

Participants: Basavesh Ammanaghatta Shivakumar (MPI-SP), Santiago Arranz Ol-
mos (MPI-SP), Gilles Barthe (MPI-SP & IMDEA), Benjamin Grégoire,
Vincent Laporte (Pesto), Jean-Christophe Léchenet, Tiago Olivi-
era (MPI-SP), Swarn Priya, Peter Schwabe (MPI-SP & Radboud Univer-
sity), Lucas Tabary-Maujean (ENS Paris-Saclay).

We have extended Jasmin with a new back-end for arm-v7. The main difficulty was to generalize the
compiler to be independent from the architecture (different pointer size, different calling convention,
different instruction set and so on). Before that, the only back-end was for x86-64 with avx2 extension.
This generalization is an important step, because it will allow to easily add other back-ends, in particular
we plan to add RISC-V.

The language has been extended with new features for security.

• The compiler can introduce code that zeroizes the stack at the end of export functions. Three
strategies are currently supported: ‘unrolled‘ (the code is a sequence of writes as long as needed),
‘loop‘ (the code is a loop) and ‘loopSCT‘ (same as ‘loop‘ but with a ‘LFENCE‘ at the end to defend
against Spectre attacks).

• Protection against Spectre attacks: We have proposed, analyzed, implemented and evaluated an
approach for writing efficient cryptographic implementations that are protected against Spectre v1
attacks in Jasmin. Our approach ensures speculative constant-time. Speculative constant-time is
enforced by means of a (value-dependent) information flow type system and the use of primitives
allowing to implement speculative load hardening protection. This work has been published in [10].

7.4 Collisions between trajectories and polygonal obstacles

Participants: Yves Bertot, Laurent Théry.

In an effort to synthesize several years of investigations around the computation of robot trajectories,
we developed a Coq model for a program that takes as input a description of obstacles and a pair of points
and produces as output a trajectory for a robot from one point to the other between these obstacles. The
obstacles are given by a collection of straight line segments and the produced trajectory is composed
of straight line segments and Bézier curves, so that the trajectory is smooth. An article describing the
different phases of the program is submitted for publication [21]. This Coq mod l is actually a program
that can be run inside Coq. Thanks to the extraction tool, the same program can also be run in a web
page. Proofs of correctness for this program are under construction.

https://csf2024.ieee-security.org/
https://stamp.gitlabpages.inria.fr/trajectories.html
https://stamp.gitlabpages.inria.fr/trajectories.html

12 Inria Annual Report 2023

7.5 Instance saturation in Hierarchy Builder

Participants: Yves Bertot, Cyril Cohen, Thomas Portet, Enrico Tassi.

In the initial revision of Hierarchy Builder, definitions needed to be added in a precise order, otherwise
instances of structures would be missing in the final graph of inheritance. We developed an extension that
verifies all the instances that would be missing and includes them. Thanks to this extension the Hierarchy
Builder program is more robust, as the user does not need to respect a specific order of definitions
anymore.

7.6 New type class solver

Participants: Davide Fissore, Enrico Tassi.

We are developing a new type class solver for Coq by compiling type class instances into rules for the
Elpi programming language. Currently we are validating a prototype implementation on the Std++ and
TLC Coq libraries, two widely used libraries that rely on type classes.

7.7 Automation for separation logic in Coq

Participants: Davide Fissore, Enrico Tassi, Robbert Krebbers (Radboud University),
Ike Mulder (Radboud University).

We are trying to use the Elpi programming language to automate proofs in separation logic. Diaframe
is an existing automatic prover based on Coq type classes that suffers from the limitations of the current
Coq solver. We have improved the indexing data structures used by Elpi in order to make them scale to
larger inputs. Also, we are trying to use partial evaluation in order to specialize, ahead of time, the rules
used for type class search in the context of separation logic.

7.8 Porting to Mathcomp 2

Participants: Reynald Affeldt (AIST Japan), Yves Bertot, Cyril Cohen,
Pierre Roux (Onera), Kazuhiko Sakaguchi (Galinette), Enrico Tassi.

We ported the entire Mathcomp ecosystem to the new major release (version 2) of the mathematical
components library. Most software have been released, and Mathcomp analysis and Abel are ported but
not released yet. The details of the port are described in [19]

7.9 Trocq : Proof Transfer for Free

Participants: Cyril Cohen, Enzo Crance (Galinette), Assia Mahboubi (Galinette)
.

In interactive theorem proving, a range of different representations may be available for a single
mathematical concept, and some proofs may rely on several representations. Without automated support
such as proof transfer, theorems available with different representations cannot be combined, without
manual input from the user. Tools with such a purpose exist, but in proof assistants based on dependent

Project STAMP 13

type theory, it still requires human effort to prove transfer, whereas it is obvious and often left implicit
on paper. We present Trocq, a new proof transfer framework, based on a generalization of the univalent
parametricity translation, thanks to a new formulation of type equivalence. This translation takes care to
avoid dependency on the axiom of univalence for transfers in a delimited class of statements, and may be
used with relations that are not necessarily isomorphisms. We motivate and apply our framework on a
set of examples designed to show that it unifies several existing proof transfer tools. The article [23] also
discusses an implementation of this translation for the Coq proof assistant, in the Coq-Elpi metalanguage.

7.10 VsCoq: a user interface for Coq

Participants: Maxime Dénès, Thomas Portet, Enrico Tassi, Romain Tetley,
Laurent Théry.

A rewrite of the VSCoq extension has been completed this year. This leads to the publication of
the release V2.0.1 in September. This effort is meant to continue for a few years and provide a modern
and stable user interface for Coq. Maxime Dénès and Enrico Tassi have worked in regular sprints since
February, helping Romain Tetley to dive into the Coq language server.

7.11 Handling subsets and subtypes in Hierarchy Builder

Participants: Cyril Cohen, Quentin Vermande.

We are experimenting with new design patterns to automate the conversion between sets and types,
to automatically prove set membership and to automatically cast between types even when an external
proof is required. The result of these experiments will be integrated in Hierarchy Builder in order to
extend its expressiveness, in particular in the formalization of topology, number theory and category
theory.

This is ongoing work without any publication yet. Early experiments were presented during meetings
of the Liberabaci projects.

7.12 Handling enriched categories in Hierarchy Builder

Participants: Cyril Cohen, Enrico Tassi, Paolo Torrini.

We have been working since June 2023 on the CoREACT project, which addresses the development of
applied category theory in Coq. Our workload involves using the Hierarchy Builder (HB) and improving it
to match the project goal. HB is useful in the formalization of complex algebraic hierarchies, making it
possible to automate inheritance and to manage efficiently hierarchy evolution relative to a type subject.
First we extended HB in order to support reasoning about enriched categories. In fact, the subject
localization associated with enrichment has made it necessary to implement an appropriate connector
that we call wrapper, allowing the user to benefit from the automation provided by HB without having
to resort to mathematically unnatural formulations. Part of our initial work also involved clarifying the
operational meaning of wrapping with respect to the informal semantics of HB. Then, since October, we
moved on to formalize categorical theories that make use of related notions, notably double categories
and internal categories. We have currently provided two alternative characterizations of double categories
and we are proving their equivalence, as part of the development of a Coq library.

7.13 Abel Galois Theorem

https://github.com/coq-community/vscoq

14 Inria Annual Report 2023

Participants: Cyril Cohen, Quentin Vermande.

We extended the Abel-Galois theorem to the case of the positive characteristic. This involved the
generalization of several definitions and lemmas, and in particular the contribution of Hilbert Theorem
90 in its additive version.

7.14 Lebesgue measure and integration

Participants: Reynald Affeldt (AIST Japan), Cyril Cohen.

The construction of the Lebesgue integral and its measure has been completed and published in [9].
This paper describes the techniques of formalization that were needed to obtained comfortably usable
definitions.

7.15 Building finite fields via irreducible polynomials

Participants: Cyril Cohen, Joshua Cohen (Princeton University), Laurent Théry.

We have introduced a construction for finite fields in the Mathcomp Library. We have first defined
polynomials of a given size from which we have derived the standard module structure. Then, we use the
theory of irreducible polynomials to get to finite fields. This contribution has been added to Mathcomp
version 1.19.

7.16 Formal study of double-word arithmetic algorithms

Participants: Tom Hubrecht (ENS Paris), Claude-Pierre Jeannerot (Aric), Vincent Le-
fèvre (Aric), Nicolas Louvet (ENS Lyon), Jean-Michel Muller (CNRS),
Joris Picot (ENS Lyon), Laurence Rideau, Laurent Théry, Paul Zimmer-
mann (Caramba).

We have continued our collaboration inside the ANR Nuscap about double-word arithmetic. First, an
article on the work on the formalization of algorithms for euclidian norm has been published [8]. Second,
we have started a formalization in Coq+Flocq of the proofs given in [34] (with an extended version in [35]).
This paper describes algorithms for the correct rounding of the power function x y in the binary64 IEEE
754 format, for all rounding modes. We have verified (and amended with the help of the authors) all the
paper proofs given in the article. The formal proofs are available on github. For this work we also had to
formalize the correctness of the FastTwoSum algorithm with directed roundings given in [36].

7.17 Formal study of the Fast Fourier Transform

Participants: Nicolas Brisebarre (CNRS), Laurence Rideau, Laurent Théry.

We have continued our collaboration inside the ANR Nuscap about the Fast Fourier Algorithm. First
we have a formal proof of the relative error of the Cooley-Tukey Fast Fourier Transform given in [31].
Second, we have developed a certified Fast Fourier algorithm that is executable inside Coq. It uses
a complex-number interval arithmetic built on top of the Coq interval library. It is used to get a toy
implementation of a multiplication algorithm for complex-number polynomials.

https://github.com/thery/ExpFloat
https://coqinterval.gitlabpages.inria.fr/

Project STAMP 15

7.18 Simplification of a constructive version of Tarski’s system of geometry

Participants: Pierre Boutry.

In work that was started in Pierre Boutry’s thesis, we study how Tarski’s work on axioms for reasoning
in geometry can be made constructive. This is a follow-up of work on the same topic from 2020. We
progressed on the independence of the new axioms. The current state has been presented at ADG [13].

8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

Participants: Benjamin Grégoire, Swarn Priya, Yves Bertot.

The STAMP team participates with the Grace team (Inria Saclay) in the JASMIN contract funded in
the framework of the Inria-Nomadic Labs collaboration for research related to the Tezos blockchain. This
contract funds the PhD thesis of Swarn Priya.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Inria associate team not involved in an IIL or an international program

FLAVOR

Participants: Yves Bertot, Cyril Cohen, Laurence Rideau, Enrico Tassi,
Laurent Théry.

Title: Formal Library of Analysis for the Verification of Robots

Duration: 2020 ->

Coordinator: Reynald Affeldt (reynald.affeldt@aist.go.jp)

Partners:

• National Institute of Advanced Industrial Science and Technology Tokyo (Japan)

Inria contact: Yves Bertot

Summary: The objective is to apply formal methods based on Coq to software and designs that are
concerned with robots. Covered topics concern mathematical formalization for real analysis,
control theory, kinematic chains, and motion planning.

9.2 International research visitors

9.2.1 Visits of international scientists

International visits to the team

16 Inria Annual Report 2023

Robbert Krebbers

Status Professor

Institution of origin: Radboud University Nijmegen

Country: the Netherlands

Dates: June 12-16, 2023

Context of the visit: Work on merging mathematical components and Stdpp libraries

Mobility program/type of mobility: research stay and lecture

9.3 National initiatives

9.3.1 ANR

• Scrypt "Compilation sécurisée de primitives cryptographiques" started on February 1st, 2019,
for 48 months, with a grant of 100 kEuros. Other partners are Inria team Celtique (Inria Rennes
Bretagne Atlantique), Ecole polytechnique, and AMOSSYS SAS. The corresponding researcher for
this contract is Benjamin Grégoire. This action was used to fund post-doctoral researchers.

• NuSCAP "Numerical Safety for Computer-Aided Proofs", started on February 1st, 2021 for 48
months, with a grant covering travel costs. Other partners are CNRS-LIP, Sorbonne University LIP6,
and CNRS-LAAS. The corresponding researcher for this contract is Laurence Rideau.

• CoREACT “Coq-based Rewriting: towards Executable Applied Category Theory”, started on March
1st, 2023, for 48 months, with a grant of 67,3 kEuros for STAMP, funding a post-doc, instruments
and material costs and travel costs. Other partners are IRIF (Université Paris Cité), LIP (ENS-Lyon)
and LIX (École Polytechnique). The corresponding researcher for this contract is Cyril Cohen.

9.3.2 PEPR

• SVP PEPR Cybersecurity. We participate in a project concerned with the verification of security
protocols. Partners in this project are CNRS IRISA Rennes (coordinator Stéphanie Delaune), Inria,
University of Paris-Saclay, University of Lorraine, University of Côte d’Azur, ENS Rennes. The funds
allocated to our team in this collaboration are 333 kEuros. The corresponding researcher for this
contract is Benjamin Grégoire. This action will be used to fund researchers (doctoral students or
post-doctoral researchers).

9.3.3 Inria Challenges

• Liber Abaci. Yves Bertot coordinates the Inria challenge Liber Abaci on the use of a Type-theory
based proof assistant to improve mathematics education for the first years of higher education
(undergraduate mathematics).

10 Dissemination

Participants: Yves Bertot, Pierre Boutry, Cyril Cohen, Benjamin Grégoire, En-
rico Tassi, Laurence Rideau.

https://liberabaci.gitlabpages.inria.fr

Project STAMP 17

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

General chair, scientific chair

• Yves Bertot and Enrico Tassi organized and chaired the program committee for the Coq workshop
in July in Bialystok.

• Cyril Cohen is in the steering committee of ITP (Interactive Theorem Proving) since September.

• Cyril Cohen has been workshop chair for the conferences CPP 2023 (Certified Programs and Proofs),
CADE 29 (Conference on Automated Deduction) and ITP 2923 (Interactive Theorem Proving).

• Enrico Tassi is in the steering committee of LFMTP (Logical Frameworks and Metalanguages,
Theory and Practice).

• Enrico Tassi has been member of COQ 2023 (Coq Workshop), COQPL 2024 (Coq for Programming
Languages), CADE 29 (Conference on Automated Deduction) and CPP 2024 (Certified Programs
and Proofs).

Reviewer

• Pierre Boutry did a review for ThEdu 2024 (Theorem proving and Education).

• Yves Bertot reviewed a chapter for a book in honor of Herman Geuvers.

10.1.2 Invited talks

• Benjamin Grégoire gave an invited talk at the GDR-SI (Sécurité Informatique) in June.

• Yves Bertot gave an invited talk at the conference ThEdu, Theorem Proving in Education in Rome
in July.

10.1.3 Research administration

Cyril Cohen has created and is now a co-administrator of the Coq Zulip chat.

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Yves Bertot and Nicolas Magaud (Université de Strasbourg) gave a course on using Coq to teach
mathematics at the summer school "Proof assistants and teaching" in Val d’Ajol in June.

• Yves Bertot gave a course on using Coq for mathematics at the summer school "Interactions of
Proof Assistants and Mathematics" in Regensburg, Germany, in September. The teaching material
for these courses is available here.

• Yves Bertot gave an introductory course on Coq in the framework of Inria Academy in October.

• Pierre Boutry and Julien Narboux (Université de Strasbourg) gave a tutorial on GeoCoq [14] at ADG
2023.

https://gdr-securite.irisa.fr/journees/
https://www.uc.pt/en/congressos/thedu/ThEdu23/
https://pat2023.icube.unistra.fr/
https://www-sop.inria.fr/members/Yves.Bertot/Regensburg_lectures/

18 Inria Annual Report 2023

10.2.2 Supervision

• Enrico Tassi has co-supervised (with Jesper Bentson) the master thesis "Expanding Coq with
Type Aware Code Completion" by Hjalte Dalland, Jakob Israelsen and Simon Kristensen, ITU
Copenhagen.

• Enrico Tassi has supervised the master thesis "Type-class solver in Type Theory via Logic Program-
ming" by Davide Fissore, UCA-DS4H, until Davide Fissore registered for a PhD program.

• Yves Bertot and Cyril Cohen supervise the thesis of Quentin Vermande (Université Côte d’Azur)
starting in September.

• Yves Bertot and Enrico Tassi supervise the thesis of Davide Fissore (Université Côte d’Azur) starting
in October.

• Yves Bertot and Benjamin Grégoire supervised the thesis of Swarn Priya (Université Côte d’Azur)
until November.

10.2.3 Juries

• Yves Bertot was member of the jury with report duty (rapporteur) for Rebecca Zucchini (University
of Paris-Saclay) in June.

• Yves Bertot was member of the jury for Mohit Tekriwal (University of Michigan at Ann Arbor) in
June and for Loïc Germerie-Guizouarn (Université Côte d’Azur) in December.

• Enrico Tassi was member of the jury for Enzo Crance (Université de Nantes) in December.

10.3 Popularization

10.3.1 Internal or external Inria responsibilities

Laurence Rideau is member of the editorial board of Interstices.

10.3.2 Articles and contents

• Yves Bertot wrote an article for a technical magazine aimed at programming hobbyists and profes-
sionals. This article is available as a preprint on hal [24].

11 Scientific production

11.1 Major publications

[1] B. Ammanaghatta Shivakumar, G. Barthe, B. Grégoire, V. Laporte, T. Oliveira, S. Priya, P. Schwabe
and L. Tabary-Maujean. ‘Typing High-Speed Cryptography against Spectre v1’. In: 2023 IEEE
Symposium on Security and Privacy (SP). SP 2023- IEEE Symposium on Security and Privacy. San
Francisco, United States, May 2023, pp. 1592–1609. DOI: 10.1109/SP46215.2023.10179418. URL:
https://hal.science/hal-04106448.

[2] S. Bernard, C. Cohen, A. Mahboubi and P.-Y. Strub. ‘Unsolvability of the Quintic Formalized in
Dependent Type Theory’. In: ITP 2021 - 12th International Conference on Interactive Theorem
Proving. Rome / Virtual, France, 29th June 2021. URL: https://inria.hal.science/hal-03136
002.

[3] C. Cohen, K. Sakaguchi and E. Tassi. ‘Hierarchy Builder: algebraic hierarchies made easy in Coq
with Elpi’. In: FSCD 2020 - 5th International Conference on Formal Structures for Computation
and Deduction. 167. Paris, France, 2020, 34:1–34:21. DOI: 10.4230/LIPIcs.FSCD.2020.34. URL:
https://inria.hal.science/hal-02478907.

https://interstices.info/
https://doi.org/10.1109/SP46215.2023.10179418
https://hal.science/hal-04106448
https://inria.hal.science/hal-03136002
https://inria.hal.science/hal-03136002
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://inria.hal.science/hal-02478907

Project STAMP 19

[4] B. Grégoire, J.-C. Léchenet and E. Tassi. ‘Practical and sound equality tests, automaticallyDeriving
eqType instances for Jasmin’s data types with Coq-Elpi’. In: CPP ’23: 12th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs. CPP 2023: Proceedings of the 12th ACM
SIGPLAN International Conference on Certified Programs and Proofs. Boston MA USA, France:
ACM, 16th Jan. 2023, pp. 167–181. DOI: 10.1145/3573105.3575683. URL: https://inria.hal
.science/hal-03800154.

[5] J.-M. Muller and L. Rideau. ‘Formalization of double-word arithmetic, and comments on "Tight and
rigorous error bounds for basic building blocks of double-word arithmetic"’. In: ACM Transactions
on Mathematical Software 48.1 (Mar. 2022), pp. 1–24. DOI: 10.1145/3484514. URL: https://hal
.science/hal-02972245.

11.2 Publications of the year

International journals

[6] R. Affeldt and C. Cohen. ‘Measure Construction by Extension in Dependent Type Theory with
Application to Integration’. In: Journal of Automated Reasoning 67.3 (Sept. 2023), p. 28. DOI: 10.10
07/s10817-023-09671-5. URL: https://inria.hal.science/hal-04183173.

[7] M. Barbosa, G. Barthe, B. Grégoire, A. Koutsos and P.-Y. Strub. ‘Mechanized Proofs of Adversarial
Complexity and Application to Universal Composability: Journal pre-print: full version’. In: ACM
Transactions on Privacy and Security 26.3 (30th Aug. 2023), pp. 1–34. DOI: 10.1145/3589962. URL:
https://inria.hal.science/hal-04048217.

[8] V. Lefèvre, N. Louvet, J.-M. Muller, J. Picot and L. Rideau. ‘Accurate calculation of Euclidean Norms
using Double-word arithmetic’. In: ACM Transactions on Mathematical Software 49.1 (21st Mar.
2023), pp. 1–34. DOI: 10.1145/3568672. URL: https://hal.science/hal-03482567.

International peer-reviewed conferences

[9] R. Affeldt, C. Cohen and A. Saito. ‘Semantics of Probabilistic Programs using s-Finite Kernels in Coq’.
In: CPP 2023 - Certified Programs and Proofs. CPP 2023: Proceedings of the 12th ACM SIGPLAN
International Conference on Certified Programs and Proofs. Boston, United States, 2023. DOI:
10.1145/3573105.3575691. URL: https://inria.hal.science/hal-03917948.

[10] B. Ammanaghatta Shivakumar, G. Barthe, B. Grégoire, V. Laporte, T. Oliveira, S. Priya, P. Schwabe
and L. Tabary-Maujean. ‘Typing High-Speed Cryptography against Spectre v1’. In: 2023 IEEE
Symposium on Security and Privacy (SP). SP 2023- IEEE Symposium on Security and Privacy. San
Francisco, United States, May 2023, pp. 1592–1609. DOI: 10.1109/SP46215.2023.10179418. URL:
https://hal.science/hal-04106448.

[11] J. Bacelar Almeida, M. Barbosa, G. Barthe, B. Grégoire, V. Laporte, J.-C. Léchenet, T. Oliveira, H.
Pacheco, M. Quaresma, P. Schwabe, A. Séré and P.-Y. Strub. ‘Formally verifying Kyber: Episode IV:
Implementation correctness’. In: ACR Transactions on Cryptographic Hardware and Embedded
Systems. CHES 2023 - Conference on Cryptographic Hardware and Embedded Systems. Vol. 2023. 3.
Praha, Czech Republic, 9th June 2023, pp. 164–193. DOI: 10.46586/tches.v2023.i3.164-193.
URL: https://inria.hal.science/hal-04218417.

[12] M. Barbosa, G. Barthe, C. Doczkal, J. Don, S. Fehr, B. Grégoire, Y.-H. Huang, A. Hülsing, Y. Lee
and X. Wu. ‘Fixing and Mechanizing the Security Proof of Fiat-Shamir with Aborts and Dilithium’.
In: Lecture Notes in Computer Science. CRYPTO 2023 - 43rd International Cryptology Conference.
Vol. LNCS-14085. Advances in Cryptology – CRYPTO 2023 : 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20–24, 2023, Proceedings, Part V. Santa
Barbara, United States, 20th Aug. 2023, pp. 358–389. DOI: 10.1007/978-3-031-38554-4_12. URL:
https://hal.science/hal-04315311.

[13] P. Boutry, S. Kastenbaum and C. Saintier. ‘Towards an Independent Version of Tarski’s System of
Geometry’. In: 14th International Conference on Automated Deduction in Geometry. Belgrade,
Serbia, 20th Sept. 2023. URL: https://hal.science/hal-04324071.

https://doi.org/10.1145/3573105.3575683
https://inria.hal.science/hal-03800154
https://inria.hal.science/hal-03800154
https://doi.org/10.1145/3484514
https://hal.science/hal-02972245
https://hal.science/hal-02972245
https://doi.org/10.1007/s10817-023-09671-5
https://doi.org/10.1007/s10817-023-09671-5
https://inria.hal.science/hal-04183173
https://doi.org/10.1145/3589962
https://inria.hal.science/hal-04048217
https://doi.org/10.1145/3568672
https://hal.science/hal-03482567
https://doi.org/10.1145/3573105.3575691
https://inria.hal.science/hal-03917948
https://doi.org/10.1109/SP46215.2023.10179418
https://hal.science/hal-04106448
https://doi.org/10.46586/tches.v2023.i3.164-193
https://inria.hal.science/hal-04218417
https://doi.org/10.1007/978-3-031-38554-4_12
https://hal.science/hal-04315311
https://hal.science/hal-04324071

20 Inria Annual Report 2023

[14] P. Boutry and J. Narboux. ‘Tutorial Laboratory - GeoCoq to formalize high-school geometry prob-
lems’. In: ADG 2023 - Automated Deduction in Geometry 2023. Belgrade, Serbia, 2023. URL: https:
//hal.science/hal-04230732.

[15] B. Grégoire, J.-C. Léchenet and E. Tassi. ‘Practical and sound equality tests, automatically – Deriving
eqType instances for Jasmin’s data types with Coq-Elpi’. In: CPP ’23: 12th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs. CPP 2023: Proceedings of the 12th ACM
SIGPLAN International Conference on Certified Programs and Proofs. Boston MA USA, France:
ACM, 16th Jan. 2023, pp. 167–181. DOI: 10.1145/3573105.3575683. URL: https://inria.hal
.science/hal-03800154.

Scientific book chapters

[16] Y. Bertot and L. C. Paulson. ‘Inductive Predicates’. In: Proof Assistants and Their Applications to
Mathematics and Computer Science. 04. 2023, p. 37. URL: https://inria.hal.science/hal-04
311869.

Edition (books, proceedings, special issue of a journal)

[17] M. Barbosa, F. Dupressoir, B. Grégoire, A. Hülsing, M. Meijers and P.-Y. Strub, eds. Machine-Checked
Security for XMSS as in RFC 8391 and SPHINCS +. 2023. DOI: 10.1007/978-3-031-38554-4_14.
URL: https://hal.science/hal-04315335.

Doctoral dissertations and habilitation theses

[18] S. Priya. ‘Formally computer-verified protections against timing-based side-channel attacks’. Uni-
versité Côte d’Azur, 22nd Nov. 2023. URL: https://hal.science/tel-04331805.

Reports & preprints

[19] R. Affeldt, Y. Bertot, C. Cohen, P. Roux, K. Sakaguchi and E. Tassi. Porting Coq Scripts to the Mathem-
atical Components Library Version 2. Inria Sophia Antipolis - Méditerranée, Université Côte d’Azur;
National Institute of Advanced Industrial Science and Technology (AIST), Japan; ONERA / DTIS,
Université de Toulouse, France, 20th June 2023, pp. 1–12. URL: https://hal.science/hal-0422
5130.

[20] X. Allamigeon, Q. Canu, C. Cohen, K. Sakaguchi and P.-Y. Strub. Design patterns of hierarchies for
order structures. 28th Feb. 2023. URL: https://inria.hal.science/hal-04008820.

[21] Y. Bertot. Safe smooth paths between straight line obstacles. 28th Nov. 2023. URL: https://inria
.hal.science/hal-04312815.

[22] B. Blanchet, P. Boutry, C. Doczkal, B. Grégoire and P.-Y. Strub. CV2EC: Getting the Best of Both Worlds.
4th Dec. 2023. URL: https://inria.hal.science/hal-04321656.

[23] C. Cohen, E. Crance and A. Mahboubi. Trocq: Proof Transfer for Free, With or Without Univalence.
12th July 2023. URL: https://hal.science/hal-04177913.

11.3 Other

Scientific popularization

[24] Y. Bertot. ‘Prouvez que vos programmes fonctionnels n’ont pas de bugs avec Coq Première partie’.
In: Programmez ! 256 (2023), p. 35. URL: https://inria.hal.science/hal-04219914.

11.4 Cited publications

[25] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey, J. Lichtinger, C. Miller, D. Moody, R.
Peralta, R. Perlner, A. Robinson, D. Smith-Tone and Y.-K. Liu. Status Report on the Third Round of
the NIST Post-Quantum Cryptography Standardization Process. NISTIR 8413. https://csrc.nis
t.gov/publications/detail/nistir/8413/final. 2022.

https://hal.science/hal-04230732
https://hal.science/hal-04230732
https://doi.org/10.1145/3573105.3575683
https://inria.hal.science/hal-03800154
https://inria.hal.science/hal-03800154
https://inria.hal.science/hal-04311869
https://inria.hal.science/hal-04311869
https://doi.org/10.1007/978-3-031-38554-4_14
https://hal.science/hal-04315335
https://hal.science/tel-04331805
https://hal.science/hal-04225130
https://hal.science/hal-04225130
https://inria.hal.science/hal-04008820
https://inria.hal.science/hal-04312815
https://inria.hal.science/hal-04312815
https://inria.hal.science/hal-04321656
https://hal.science/hal-04177913
https://inria.hal.science/hal-04219914
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/publications/detail/nistir/8413/final

Project STAMP 21

[26] J.-P. Aumasson, D. J. Bernstein, W. Beullens, C. Dobraunig, M. Eichlseder, S. Fluhrer, S.-L. Gazdag,
A. Hülsing, P. Kampanakis, S. Kölbl, T. Lange, M. M. Lauridsen, F. Mendel, R. Niederhagen, C.
Rechberger, J. Rijneveld, P. Schwabe and B. Westerbaan. SPHINCS+ – Submission to the NIST post-
quantum project, v.3.1. Round-3 submission to the NIST PQC standardization project. https://s
phincs.org/data/sphincs+-r3.1-specification.pdf. 2022.

[27] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler
and D. Stehlé. CRYSTALS-KYBER: Algorithm Specifications And Supporting Documentation (version
3.02). Round-3 submission to the NIST PQC standardization project. https://pq-crystals.org
/kyber/data/kyber-specification-round3-20210804.pdf. 2021.

[28] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler and D. Stehlé. CRYSTALS-
DILITHIUM: Algorithm Specifications and Supporting Documentation (Version 3.1). Round-3 sub-
mission to the NIST PQC standardization project. https://pq-crystals.org/dilithium/dat
a/dilithium-specification-round3-20210208.pdf. 2021.

[29] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld and P. Schwabe. ‘The SPHINCS+
Signature Framework’. In: ACM CCS 2019: 26th. Ed. by L. Cavallaro, J. Kinder, X. Wang and J. Katz.
London, UK, Nov. 2019, pp. 2129–2146. DOI: 10.1145/3319535.3363229.

[30] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe and D. Stehlé.
‘CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM’. In: 2018 IEEE European Symposium
on Security and Privacy, EuroS&P 2018. https://eprint.iacr.org/2017/634. IEEE, 2018,
pp. 353–367.

[31] N. Brisebarre, M. Joldes, J.-M. Muller, A.-M. Naneş and J. Picot. ‘Error analysis of some operations
involved in the Cooley-Tukey Fast Fourier Transform’. In: ACM Transactions on Mathematical
Software 46.2 (May 2020), pp. 1–34. DOI: 10.1145/3368619. URL: https://hal.science/hal-0
1949458.

[32] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler and D. Stehlé. ‘CRYSTALS-
Dilithium: A Lattice-Based Digital Signature Scheme’. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems 2018.1 (2018). https://tches.iacr.org/index.php/TCHES/
article/view/839, pp. 238–268. DOI: 10.13154/tches.v2018.i1.238-268.

[33] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ricosset, G. Seiler,
W. Whyte and Z. Zhang. FALCON: Fast-Fourier Lattice-based Compact Signatures over NTRU (Spe-
cification v1.2). Round-3 submission to the NIST PQC standardization project. https://falcon-
sign.info/falcon.pdf. 2020.

[34] T. Hubrecht, C.-P. Jeannerod and P. Zimmermann. ‘Towards a correctly-rounded and fast power
function in binary64 arithmetic’. In: 2023 IEEE 30th Symposium on Computer Arithmetic (ARITH
2023). Vol. 2023 IEEE 30th Symposium on Computer Arithmetic (ARITH). Portland, Oregon (USA),
United States, Sept. 2023. URL: https://inria.hal.science/hal-04326201.

[35] T. Hubrecht, C.-P. Jeannerod and P. Zimmermann. ‘Towards a correctly-rounded and fast power
function in binary64 arithmetic, extended version’. This is the extended version of an article
published in the proceedings of ARITH 2023. July 2023. URL: https://inria.hal.science/hal-
04159652.

[36] P. Zimmermann. ‘Note on FastTwoSum with Directed Roundings’. working paper or preprint. Sept.
2023. URL: https://inria.hal.science/hal-03798376.

https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://doi.org/10.1145/3319535.3363229
https://eprint.iacr.org/2017/634
https://doi.org/10.1145/3368619
https://hal.science/hal-01949458
https://hal.science/hal-01949458
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.13154/tches.v2018.i1.238-268
https://falcon-sign.info/falcon.pdf
https://falcon-sign.info/falcon.pdf
https://inria.hal.science/hal-04326201
https://inria.hal.science/hal-04159652
https://inria.hal.science/hal-04159652
https://inria.hal.science/hal-03798376

	Project-Team STAMP
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Theoretical background

	Application domains
	Mathematical Components
	Proofs in cryptography
	Proofs for robotics

	Highlights of the year
	Awards

	New software, platforms, open data
	New software
	Coq
	coq-elpi
	ELPI
	Easycrypt
	Hierarchy Builder
	Jasmin
	Trocq
	VsCoq

	New results
	Formal proof of post-quantum cryptographic primitive
	CryptoVerif to EasyCrypt
	Extending the Jasmin compiler
	Collisions between trajectories and polygonal obstacles
	Instance saturation in Hierarchy Builder
	New type class solver
	Automation for separation logic in Coq
	Porting to Mathcomp 2
	Trocq : Proof Transfer for Free
	VsCoq: a user interface for Coq
	Handling subsets and subtypes in Hierarchy Builder
	Handling enriched categories in Hierarchy Builder
	Abel Galois Theorem
	Lebesgue measure and integration
	Building finite fields via irreducible polynomials
	Formal study of double-word arithmetic algorithms
	Formal study of the Fast Fourier Transform
	Simplification of a constructive version of Tarski's system of geometry

	Bilateral contracts and grants with industry
	Bilateral contracts with industry

	Partnerships and cooperations
	International initiatives
	Inria associate team not involved in an IIL or an international program

	International research visitors
	Visits of international scientists

	National initiatives
	ANR
	PEPR
	Inria Challenges

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Invited talks
	Research administration

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Internal or external Inria responsibilities
	Articles and contents

	Scientific production
	Major publications
	Publications of the year
	Other
	Cited publications

