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Administrative Assistant

• Joyce Soares Brito [INRIA]
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• Arnaud Golfouse [LMF, from Oct 2023]
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• Thibaut Balabonski [Université Paris-Saclay, LMF]
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• Chantal Keller [Université Paris-Saclay, LMF]

2 Overall objectives

The general objective of the Toccata project is to promote formal specification and computer-assisted
proof in the development of software that requires high assurance in terms of safety and correctness
with respect to its intended behavior. Such safety-critical software appears in many application domains
like transportation (e.g. aviation, aerospace, railway, automotive), communication (e.g. internet, smart-
phones), health devices, data management on clouds (confidentialty issues), etc. The number of tasks
performed by software is quickly increasing, together with the number of lines of code involved. Given the
need of high assurance of safety in the functional behavior of such applications, the need for automated
(in the sense computer-assisted) methods and techniques to bring guarantee of safety became a major
challenge. In the past and at present, the most widely used approach to check safety of software is to apply
heavy test campaigns, which take a large part of the costs of software development. Yet these campaigns
cannot ensure that all the bugs are caught, and remaining bugs may have catastrophic consequences.

Generally speaking, software verification approaches pursue three goals: (1) verification should be
sound, in the sense that no bugs should be missed, (2) verification should not produce false alarms, or
as few as possible, (3) it should be as automatic as possible. Reaching all three goals at the same time
is a challenge. A large class of approaches emphasizes goals (2) and (3): testing, run-time verification,
symbolic execution, model checking, etc. Static analysis, such as abstract interpretation, emphasizes
goals (1) and (3). Deductive verification emphasizes (1) and (2). The Toccata project is mainly interested
in exploring the deductive verification approach, although we also combine with the other techniques
occasionally.

In the past decade, significant progress has been made in the domain of deductive program verifica-
tion. This is emphasized by some success stories of application of these techniques on industrial-scale
software. For example, the Atelier B system was used to develop part of the embedded software of the
Paris metro line 14 [41] and other railway-related systems; a formally proved C compiler was developed
using the Coq proof assistant [61]; the L4-verified project developed a formally verified micro-kernel with
high security guarantees, using analysis tools on top of the Isabelle/HOL proof assistant [59]. A bug in the
JDK implementation of TimSort was discovered using the KeY environment [58] and a fixed version was
proved sound. Another sign of recent progress is the emergence of deductive verification competitions
(e.g. VerifyThis [42]). Finally, recent trends in the industrial practice for development of critical software
is to require more and more guarantees of safety, e.g. the DO-178C standard for developing avionics
software adds to the former DO-178B the use of formal models and formal methods. It also emphasizes
the need for certification of the analysis tools involved in the process.

3 Research program

Panorama of Deductive Verification There are two main families of approaches for deductive verific-
ation. Methods in the first family build on top of mathematical proof assistants (e.g. Coq, Isabelle) in
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which both the model and the program are encoded; the proof that the program meets its specification is
typically conducted in an interactive way using the underlying proof construction engine. Methods from
the second family proceed by the design of standalone tools taking as input a program in a particular
programming language (e.g. C, Java) specified with a dedicated annotation language (e.g. ACSL [40],
JML [49]) and automatically producing a set of mathematical formulas (the verification conditions) which
are typically proved using automatic provers (e.g. Z3 [63], Alt-Ergo [50], CVC5 [39]).

The first family of approaches usually offers a smaller Trusted Code Base (TCB) than the second, but
also demands more work to perform the proofs (because of their interactive nature) and makes them less
easy to adopt by industry. Moreover, they generally do not allow to directly analyze a program written
in a mainstream programming language like Java or C. The second kind of approaches has benefited in
the past years from the tremendous progress made in SAT and SMT solving techniques, allowing more
impact on industrial practices, but suffers from a lower level of trust: in all parts of the proof chain (the
model of the input programming language, the VC generator, the back-end automatic prover), potential
errors may appear, compromising the guarantee offered. Moreover, while these approaches are applied
to mainstream languages, they usually support only a subset of their features.

Overall Goals of the Toccata Project One of our original skills is the ability to conduct proofs by using
automatic provers and proof assistants at the same time, depending on the difficulty of the program, and
specifically the difficulty of each particular verification condition. We thus believe that we are in a good
position to propose a bridge between the two families of approaches of deductive verification presented
above. Establishing this bridge is one of the goals of the Toccata project: we want to provide methods and
tools for deductive program verification that can offer both a high amount of proof automation and a
high guarantee of validity.

In industrial applications, numerical calculations are very common (e.g. control software in trans-
portation). Typically they involve floating-point numbers. Some of the members of Toccata have an
internationally recognized expertise on deductive program verification involving floating-point com-
putations. Our past work includes a new approach for proving behavioral properties of numerical C
programs using Frama-C/Jessie [35], various examples of applications of that approach [47], the use of
the Gappa solver for proving numerical algorithms [54], an approach to take architectures and compilers
into account when dealing with floating-point programs [48, 65]. We also contributed to the Handbook
of Floating-Point Arithmetic [64]. A representative case study is the analysis and the proof of both the
method error and the rounding error of a numerical analysis program solving the one-dimension acoustic
wave equation [45] [44]. Our experience led us to a conclusion that verification of numerical programs
can benefit a lot from combining automatic and interactive theorem proving [46, 47, 56, 57]. Verification
of numerical programs is another main axis of Toccata.

Let us conclude with more general considerations: we want to keep on with general audience actions
(see Section 11.3), and industrial transfer through sustained long-term collaboration with industrial
partners (Section 4). Our scientific programme detailed below is structured into the following four axes.

1. Foundations and spreading of deductive program verification;

2. Reasoning on mutable memory in program verification;

3. Verification of Computer Arithmetic;

4. Spreading Formal Proofs.

3.1 Foundations and spreading of deductive program verification

This axis covers the fundational studies we pursue regarding deductive verification. A non-exhaustive list
of subjects we want to address is as follows.

• The search for improved methods to generate verification conditions, relying for example on new
calculi, on better notion of abstraction, or on automatic discovery of invariants.

• Uniform approaches to obtain correct-by-construction programs and libraries, in particular by
automatic extraction of executable code (in OCaml, C, CakeML, etc.) from verified programs,
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Figure 1: The Why3 ecosystem in 2023.

and including innovative general methods like advanced ghost code, ghost monitoring, etc. A
representative publication is the presentation of a new notion called ghost monitors [5].

• Improvement of automated reasoning techniques: methods dedicated to deductive verification, so
as to improve proof automation; improved combination of interactive provers and fully automated
ones, proof by reflection.

• Providing feedback in case of proof failures, e.g. based on generation of counterexamples, or
symbolic execution.

A significant part of the work achieved in this axis is related to the Why3 toolbox and its ecosystem,
displayed on Figure 1. The red background boxes represent tools that we develop ourselves, whereas
blue background ones are developed by others. SPARK2014 is developed by AdaCore. Frama-C and Wp
are developed by CEA-list and directly produce logical formulas to be passed to provers. TIS-Analyzer is
developed by TrustInSoft and J3 is a collaboration between TrustInSoft and us. We develop the frontends
micro-C and micro-Python mainly for teaching purpose. The front-end for Ladder programs is a software
developed internally by MERCE. Yellow background boxes represent libraries of specifications of logic
datatypes with their logical properties. A representative publication is an article on abstraction and
genericity features of Why3 [8].
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3.2 Reasoning on mutable memory in program verification

This axis concerns specifically the techniques for reasoning on programs where memory aliasing is the
central issue. It covers the methods based on type-based alias analysis and related memory models,
on specific program logics such as separation logics, and extended model-checking. It concerns the
application on analysis of C or C++ codes, on Ada codes involving pointers, but also concurrent programs
in general. The main topics are:

• The study of advanced type systems dedicated to verification, for controlling aliasing, and their use
for obtaining easier-to-prove verification conditions. Modern typing systems in the style of Rust,
involving ownership and borrowing, are considered. A representation publication is a paper [10]
on the semantic foundation of the verification of Rust programs.

• The design of front-ends of Why3 for the proofs of programs where aliasing cannot be fully con-
trolled statically, via adequate memory models, aiming in particular at extraction to C; and also for
concurrent programs.

• The continuation of fruitful work on concurrent parameterized systems, and its corresponding
specific SMT-based model-checking. A reference publication is [6].

3.3 Verification of Computer Arithmetic

This axis, which bridges the domains of computer arithmetic and of formal verification, is a major
originality of Toccata. The main topics are as follows.

• We are studying the fundamental blocks of formalizing floating-point computations, algorithms,
and error analysis.

• A significant effort is dedicated to verification of numerical programs written in mainstream lan-
guages such as C or Ada. This involves combining specifications in real numbers and computation
in floating-point, and underlying automated reasoning techniques with floating-point numbers and
real numbers. We also contributed to the automation of reasoning on floating-point numbers [7].

• Related to the formalization of mathematics, we aim at verifying numerical analysis programs, in
particular numerical schemes for solving partial differential equations. A representative publication
is a paper on the formalization of Lebesgue integration [3] and a paper on certified approximations
of integrals [9].

Boldo and Melquiond are authors of a reference book [4] on the formal verification of numerical
programs.

3.4 Spreading Formal Proofs

The general goal of this axis, which was a new one proposed in 2019, was to encourage spreading of
deductive verification through actions showing how our methods and tools can be used on programs that
we develop ourselves. Since this axis is dedicated to applications in a general manner, positioning barely
makes sense since a vast majority of research groups in computer science in the world would claim to
conduct case studies and large-scale applications.

Representative of these significant case studies are the automated analysis of Debian packages
installation [1] and the automated analysis of Ladder programs [2].

4 Application domains

4.1 Industrial Transfer Actions

The application domains we target involve safety-critical software, that is where a high-level guarantee of
soundness of functional execution of the software is wanted. Currently our industrial collaborations or
impact mainly belong to the domain of transportation: aerospace, aviation, railway, automotive.
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Transfer to the community of Atelier B in the context of the FUI project LCHIP, we investigated the
use of Why3 and Alt-Ergo as an alternative back-end for checking proof obligations generated by
Atelier B, whose main applications are railroad-related.

ProofInUse-AdaCore collaboration: transfer to the community of Ada development Since the creation
of the ProofInUse joint lab in 2014, with AdaCore company, we have a growing impact on the com-
munity of industrial development of safety-critical applications written in Ada. See that web page
for a an overview of AdaCore’s customer projects, in particular those involving the use of the SPARK
Pro tool set. This impact involves both the use of Why3 for generating VCs on Ada source codes,
and the use of Alt-Ergo for performing proofs of those VCs. This action allowed AdaCore company
to get new customers, in particular the domains of application of deductive formal verification are
from the historical domain of aerospace (e.g. this link or this link) but went beyond: application in
automotive (e.g. Denso, Toyata), medical and security (e.g. Nvidia). A joint publication of Nvidia
and AdaCore [34] in 2023 exposes, with their own words, the benefit of using high level verification
for securing Nvidia chips.

ProofInUse-TrustInSoft collaboration In 2017 we started to collaborate with the TrustInSoft company
for the verification of C and C++ codes. We started with a CIFRE thesis funding, which explored
the use of Why3 to design verified and reusable C libraries [68], and then with a bilateral contract
towards the design of the J3 plugin in TIS-Analyzer, bringing deductive verification techniques in
this platfrom, including counterexamples when proofs fail. The impact on TrustInSoft customers is
not yet easily identifiable; it will hopefully increase in particular in the context of the new project
Décysif led by TrustInSoft.

ProofInUse-MERCE collaboration In 2019 we started to collaborate with Mitsubishi Electric R&D Centre
Europe in Rennes, France. The R&D programme is two-fold: first the verification of Ladder pro-
grams for PLCs, second the verification of numerical C codes. MERCE has now a mature platform
for Ladder verification, which has yet to be made really usable by development teams. This work
received the FMICS best paper award in 2021. The work of numerical programs is increasing
in importance. We have preliminary results on log-sum-exp functions [30] and a CIFRE thesis
started in 2023, aiming at designing better proof environments for verifying programs with complex
numeric computations. A patent entitled Automatic implementation of formally-verified numerical
programs has been filled in 2022 at EPO.

CIFRE thesis with Tarides The CIFRE thesis of Clément Pascutto with Tarides, in 2020–2023, brought
mature tooling for verifying function contracts and invariants on OCaml at runtime. The resulting
tool, ortac, efficiently addresses the problem of capturing prestates in order to evaluation function
postconditions [55]. Tarides continues the development of ortac and uses it on its own code base.

CIFRE thesis with OCamlPro The CIFRE thesis of Léo Andrès with OCamlPro, in 2021–2024, targets
the compilation of OCaml to WebAssembly (Wasm for short), as an alternative to its compilation
to JavaScript. It requires some extensions to Wasm, such as Wasm-GC, and the thesis already
confirmed the adequacy of such extensions [17]. A by-product of the thesis is the implementation
of a new, efficient interpreter for Wasm, owi.

Generally speaking, we believe that our increasing industrial impact is a representative success for our
general goal of spreading deductive verification methods to a larger audience, and we are firmly engaged
into continuing such kind of actions in the next years.

4.2 Other socio-economic impact

We believe our impact is not limited to industrial actions per se.
A first point is that during the years, the young students that we train, either as a PhD position or a

temporary engineer positions, easily got positions in private companies. Indeed we believe we can say
that we contributed to the creation of jobs in several companies.

Another important part of our social impact is our work with high school students. With new cur-
ricula including more computer science than ever before, it was important to provide good reference

https://www.atelierb.eu/en/
https://www.adacore.com/proofinuse
https://www.adacore.com/
https://www.adacore.com/industries
https://www.adacore.com/papers/latitude-adopts-ada-and-spark-for-light-launcher-software-in-new-space-industry
https://www.adacore.com/papers/masten-space-systems-is-using-ada-and-spark-to-land-on-the-moon
https://www.adacore.com/press/denso-spark-automotive-research
https://www.adacore.com/press/toyota-itc-japan-selects-spark-pro-language-and-toolset-for-high-reliabilit
https://www.adacore.com/papers/ada-and-spark-at-welch-allyn
https://www.adacore.com/papers/nvidia-adoption-of-spark-new-era-in-security-critical-software-development
https://trust-in-soft.com/
http://www.mitsubishielectric-rce.eu/
http://www.mitsubishielectric-rce.eu/
https://tarides.com/
https://github.com/ocaml-gospel/ortac
https://github.com/ocaml-gospel/ortac
https://github.com/OCamlPro/owi


8 Inria Annual Report 2023

books. With this in mind, we have contributed three books aimed at high school and preparatory school
students [37, 36, 38].

The impact is not limited to books: we also helped a teacher to design a lesson to learn the basic
notions of program verification (say: loop invariants) using the Why3 tool (article IREMI). We are also
part each year of stands at “Fête de la science” in November or special events towards girls. We also often
go to (high) schools for presenting either our job or our research (except during the Covid pandemic).

The social impact in national education is finally made highly evident by our implication in the
organization of the new agrégation d’informatique which is in charge to select and recruit the best
high-level teachers for the new programmes.

5 Social and environmental responsibility

5.1 Footprint of research activities

Our research activities make use of standard computers for developing software and developing formal
proofs. We have no use of specific large size computing resources. Though, we are making use of external
services for continuous integration. A continuous integration methodology for mature software like Why3
is indeed mandatory for ensuring a safe software engineering process for maintenance and evolution. We
make the necessary efforts to keep the energy consumption of such a continuous integration process as
low as possible.

Ensuring the reproducibility of proofs in formal verification is essential. It is thus mandatory to replay
such proofs regularly to make sure that our changes in our software do not loose existing proofs. For
example, we need to make sure that the case studies in formal verification that we present in our gallery
are reproducible. We also make the necessary efforts to keep the energy consumption for replaying proofs
low, by doing it only when necessary.

As widely accepted nowadays, the major sources of environmental impact of research is travel to
international conferences by plane, and renewal of electronic devices. The number of travels we made in
2022 remained very low with respect to previous years, of course because of the Covid pandemic, and the
fact that many conferences were now proposed online participation. We intend to continue limiting the
environmental impact of our travels. Concerning renewal of electronic devices, that is mainly laptops
and monitors, we have always been careful on keeping them usable for as long time as possible.

5.2 Impact of research results

Our research results aims at improving the quality of software, in particular in mission-critical contexts.
As such, making software safer is likely to reduce the necessity for maintenance operations and thus
reducing energy costs.

Our efforts are mostly towards ensuring the safety of functional behavior of software, but we also
increasingly consider the verification of their time or memory consumption. Reducing those would
naturally induce a reduction in energy consumption.

Our research never involve any processing of personal data, and consequently we have no concern
about preserving individual privacy, and no concern with respect to the RGPD (Règlement Général sur la
Protection des Données).

Recently, S. Boldo was in the program committee of the first PROPL workshop (Programming for
the Planet ) to see how we may help topics such as climate analysis, modelling, forecasting, policy, and
diplomacy.

6 Highlights of the year

• S. Boldo and G. Melquiond, together with C. P. Jeannerod and J.-M. Muller, published a reference
survey (86 pages) on Floating-Point Arithmetic [12] in the journal Acta Numerica.

https://iremi.univ-reunion.fr/spip.php?article1160
https://toccata.gitlabpages.inria.fr/toccata/gallery/index.en.html
https://popl24.sigplan.org/home/propl-2024
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7 New software, platforms, open data

7.1 New software

7.1.1 Alt-Ergo

Name: Automated theorem prover for software verification

Keywords: Software Verification, Automated theorem proving

Functional Description: Alt-Ergo is an automatic solver of formulas based on SMT technology. It is
especially designed to prove mathematical formulas generated by program verification tools, such
as Frama-C for C programs, or SPARK for Ada code. Initially developed in Toccata research team,
Alt-Ergo’s distribution and support are provided by OCamlPro since September 2013.

Release Contributions: the "SAT solving" part can now be delegated to an external plugin, new experi-
mental SAT solver based on mini-SAT, provided as a plugin. This solver is, in general, more efficient
on ground problems, heuristics simplification in the default SAT solver and in the matching (instan-
tiation) module, re-implementation of internal literals representation, improvement of theories
combination architecture, rewriting some parts of the formulas module, bugfixes in records and
numbers modules, new option "-no-Ematching" to perform matching without equality reasoning
(i.e. without considering "equivalence classes"). This option is very useful for benchmarks coming
from Atelier-B, two new experimental options: "-save-used-context" and "-replay-used-context".
When the goal is proved valid, the first option allows to save the names of useful axioms into a
".used" file. The second one is used to replay the proof using only the axioms listed in the corres-
ponding ".used" file. Note that the replay may fail because of the absence of necessary ground
terms generated by useless axioms (that are not included in .used file) during the initial run.

URL: https://alt-ergo.ocamlpro.com/

Contact: Sylvain Conchon

Participants: Alain Mebsout, Évelyne Contejean, Mohamed Iguernelala, Stéphane Lescuyer, Sylvain
Conchon

Partner: OCamlPro

7.1.2 CoqInterval

Name: Interval package for Coq

Keywords: Interval arithmetic, Coq

Functional Description: CoqInterval is a library for the proof assistant Coq.

It provides several tactics for proving theorems on enclosures of real-valued expressions. The proofs
are performed by an interval kernel which relies on a computable formalization of floating-point
arithmetic in Coq.

The Marelle team developed a formalization of rigorous polynomial approximation using Taylor
models in Coq. In 2014, this library has been included in CoqInterval.

URL: https://coqinterval.gitlabpages.inria.fr/

Publications: hal-00180138, hal-00797913, hal-01086460, hal-01289616, hal-01630143

Contact: Guillaume Melquiond

Participants: Assia Mahboubi, Érik Martin-Dorel, Guillaume Melquiond, Jean-Michel Muller, Laurence
Rideau, Laurent Théry, Micaela Mayero, Mioara Joldes, Nicolas Brisebarre, Thomas Sibut-Pinote

https://alt-ergo.ocamlpro.com/
https://coqinterval.gitlabpages.inria.fr/
https://hal.inria.fr/hal-00180138
https://hal.inria.fr/hal-00797913
https://hal.inria.fr/hal-01086460
https://hal.inria.fr/hal-01289616
https://hal.inria.fr/hal-01630143
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7.1.3 Coquelicot

Name: The Coquelicot library for real analysis in Coq

Keywords: Coq, Real analysis

Functional Description: Coquelicot is library aimed for supporting real analysis in the Coq proof as-
sistant. It is designed with three principles in mind. The first is the user-friendliness, achieved
by implementing methods of automation, but also by avoiding dependent types in order to ease
the stating and readability of theorems. This latter part was achieved by defining total function
for basic operators, such as limits or integrals. The second principle is the comprehensiveness of
the library. By experimenting on several applications, we ensured that the available theorems are
enough to cover most cases. We also wanted to be able to extend our library towards more generic
settings, such as complex analysis or Euclidean spaces. The third principle is for the Coquelicot
library to be a conservative extension of the Coq standard library, so that it can be easily combined
with existing developments based on the standard library.

URL: http://coquelicot.saclay.inria.fr/

Contact: Sylvie Boldo

Participants: Catherine Lelay, Guillaume Melquiond, Sylvie Boldo

7.1.4 Cubicle

Name: The Cubicle model checker modulo theories

Keywords: Model Checking, Software Verification

Functional Description: Cubicle is an open source model checker for verifying safety properties of array-
based systems, which corresponds to a syntactically restricted class of parametrized transition
systems with states represented as arrays indexed by an arbitrary number of processes. Cache
coherence protocols and mutual exclusion algorithms are typical examples of such systems.

URL: https://github.com/cubicle-model-checker/cubicle

Contact: Sylvain Conchon

Participants: Alain Mebsout, Sylvain Conchon

7.1.5 Flocq

Name: The Flocq formalization of floating-point arithmetic for the Coq proof assistant

Keywords: Floating-point, Arithmetic code, Coq

Functional Description: The Flocq library for the Coq proof assistant is a comprehensive formalization
of floating-point arithmetic: core definitions, axiomatic and computational rounding operations,
high-level properties. It provides a framework for developers to formally verify numerical applica-
tions.

Flocq is currently used by the CompCert verified compiler to support floating-point computations.

URL: https://flocq.gitlabpages.inria.fr/

Publications: inria-00534854, hal-00743090, hal-00862689, hal-01091186, hal-01091189, hal-01632617

Contact: Sylvie Boldo

Participants: Guillaume Melquiond, Pierre Roux, Sylvie Boldo

http://coquelicot.saclay.inria.fr/
https://github.com/cubicle-model-checker/cubicle
https://flocq.gitlabpages.inria.fr/
https://hal.inria.fr/inria-00534854
https://hal.inria.fr/hal-00743090
https://hal.inria.fr/hal-00862689
https://hal.inria.fr/hal-01091186
https://hal.inria.fr/hal-01091189
https://hal.inria.fr/hal-01632617
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7.1.6 Gappa

Name: The Gappa tool for automated proofs of arithmetic properties

Keywords: Floating-point, Arithmetic code, Software Verification, Constraint solving

Functional Description: Gappa is a tool intended to help formally verifying numerical programs dealing
with floating-point or fixed-point arithmetic. It has been used to write robust floating-point filters
for CGAL and it is used to verify elementary functions in CRlibm. While Gappa is intended to be
used directly, it can also act as a backend prover for the Why3 software verification plateform or as
an automatic tactic for the Coq proof assistant.

URL: https://gappa.gitlabpages.inria.fr/

Publications: inria-00070739, inria-00344518, inria-00070330, tel-01094485, inria-00071232, inria-00432726,
ensl-00379167, ensl-00200830, hal-01110666, hal-01110669, hal-01632617

Contact: Guillaume Melquiond

Participant: Guillaume Melquiond

7.1.7 Why3

Name: The Why3 environment for deductive verification

Keywords: Formal methods, Trusted software, Software Verification, Deductive program verification

Functional Description: Why3 is an environment for deductive program verification. It provides a
rich language for specification and programming, called WhyML, and relies on external theorem
provers, both automated and interactive, to discharge verification conditions. Why3 comes with a
standard library of logical theories (integer and real arithmetic, Boolean operations, sets and maps,
etc.) and basic programming data structures (arrays, queues, hash tables, etc.). A user can write
WhyML programs directly and get correct-by-construction OCaml programs through an automated
extraction mechanism. WhyML is also used as an intermediate language for the verification of C,
Java, or Ada programs.

URL: https://www.why3.org/

Contact: Claude Marche

Participants: Andriy Paskevych, Claude Marche, François Bobot, Guillaume Melquiond, Jean-Christophe
Filliâtre, Levs Gondelmans, Martin Clochard

Partners: CNRS, Université Paris-Sud

7.1.8 Coq

Name: The Coq Proof Assistant

Keywords: Proof, Certification, Formalisation

Scientific Description: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and
co-inductive families, an impredicative sort and a hierarchy of predicative universes, making it a
very expressive logic. The calculus allows to formalize both general mathematics and computer
programs, ranging from theories of finite structures to abstract algebra and categories to program-
ming language metatheory and compiler verification. Coq is organised as a (relatively small) kernel
including efficient conversion tests on which are built a set of higher-level layers: a powerful proof
engine and unification algorithm, various tactics/decision procedures, a transactional document
model and, at the very top an integrated development environment (IDE).

https://gappa.gitlabpages.inria.fr/
https://hal.inria.fr/inria-00070739
https://hal.inria.fr/inria-00344518
https://hal.inria.fr/inria-00070330
https://hal.inria.fr/tel-01094485
https://hal.inria.fr/inria-00071232
https://hal.inria.fr/inria-00432726
https://hal.inria.fr/ensl-00379167
https://hal.inria.fr/ensl-00200830
https://hal.inria.fr/hal-01110666
https://hal.inria.fr/hal-01110669
https://hal.inria.fr/hal-01632617
https://www.why3.org/
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Functional Description: Coq provides both a dependently-typed functional programming language
and a logical formalism, which, altogether, support the formalisation of mathematical theories
and the specification and certification of properties of programs. Coq also provides a large and
extensible set of automatic or semi-automatic proof methods. Coq’s programs are extractible to
OCaml, Haskell, Scheme, ...

Release Contributions: An overview of the new features and changes, along with the full list of contrib-
utors is available at https://coq.inria.fr/refman/changes.html#version-8-18 .

News of the Year: Coq version 8.16 integrates changes to the Coq kernel and performance improvements
along with a few new features. See the detailed changes at https://coq.inria.fr/refman/changes.html#version-
8-16 for an overview of the new features and changes, along with the full list of contributors.

URL: http://coq.inria.fr/

Contact: Matthieu Sozeau

Participants: Yves Bertot, Frédéric Besson, Tej Chajed, Cyril Cohen, Pierre Corbineau, Pierre Courtieu,
Maxime Dénès, Jim Fehrle, Julien Forest, Emilio Jesús Gallego Arias, Gaëtan Gilbert, Georges
Gonthier, Benjamin Grégoire, Jason Gross, Hugo Herbelin, Vincent Laporte, Olivier Laurent, Assia
Mahboubi, Kenji Maillard, Érik Martin-Dorel, Guillaume Melquiond, Pierre-Marie Pedrot, Clément
Pit-Claudel, Kazuhiko Sakaguchi, Vincent Semeria, Michael Soegtrop, Arnaud Spiwack, Matthieu
Sozeau, Enrico Tassi, Laurent Théry, Anton Trunov, Li-Yao Xia, Theo Zimmermann

Partners: CNRS, Université Paris-Sud, ENS Lyon, Université Paris-Diderot

7.1.9 creusot

Name: Creusot

Keywords: Rust, Specification language, Deductive program verification

Functional Description: Creusot is a tool for deductive verification of Rust code. It allows you to an-
notate your code with specifications, invariants and assertions and then verify them formally and
automatically, proving, mathematically, that your code satisfies your specifications.

Creusot works by translating Rust code to WhyML, the verification and specification language
of Why3. Users can then leverage the full power of Why3 to (semi)-automatically discharge the
verification conditions.

Release Contributions: This is the first version, providing the main process to go from a Rust program
annotated with Pearlite specifications to a set of verifications conditions to be discharged by
external SMT solvers.

URL: https://github.com/xldenis/creusot/

Publications: hal-03737878, hal-03526634, hal-02962804

Contact: Xavier Denis

Participants: Xavier Denis, Jacques-Henri Jourdan, Claude Marche

Partners: Université Paris-Saclay, CNRS

7.1.10 coq-num-analysis

Name: Numerical analysis Coq library

Keywords: Coq, Numerical analysis, Real analysis

http://coq.inria.fr/
https://github.com/xldenis/creusot/
https://hal.inria.fr/hal-03737878
https://hal.inria.fr/hal-03526634
https://hal.inria.fr/hal-02962804
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Scientific Description: These Coq developments are based on the Coquelicot library for real analysis.
Version 1.0 includes the formalization and proof of: (1) the Lax-Milgram theorem, including
results from linear algebra, geometry, functional analysis and Hilbert spaces, (2) the Lebesgue
integral, including large parts of the measure theory,the building of the Lebesgue measure on
real numbers, integration of nonnegative measurable functions with the Beppo Levi (monotone
convergence) theorem, Fatou’s lemma, the Tonelli theorem, and the Bochner integral with the
dominated convergence theorem.

Functional Description: Formal developments and proofs in Coq of numerical analysis problems. The
current long-term goal is to formally prove parts of a C++ library implementing the Finite Element
Method.

News of the Year: The formalization in Coq of simplicial Lagrange finite elements is almost complete.
This include the formalizations of the definitions and main properties of monomials, their rep-
resentation using multi-indices, Lagrange polynomials, the vector space of polynomials of given
maximum degree (about 6 kloc). This also includes algebraic complements on the formalization of
the definitions and main properties of operators on finite families of any type, the specific cases of
abelian monoids (sum), vector spaces (linear combination), and affine spaces (affine combination,
barycenter, affine mapping), sub-algebraic structures, and basics of finite dimension linear algebra
(about 22 kloc). A new version (2.0) of the opam package will be available soon, and a paper will
follow.

We have also contributed to the Coquelicot library by adding the algebraic structure of abelian
monoid, which is now the base of the hierarchy of canonical structures of the library.

URL: https://lipn.univ-paris13.fr/coq-num-analysis/

Publications: hal-01344090, hal-01391578, hal-03105815, hal-03471095, hal-03516749, hal-03889276

Contact: Sylvie Boldo

Participants: Sylvie Boldo, François Clement, Micaela Mayero, Vincent Martin, Stéphane Aubry, Florian
Faissole, Houda Mouhcine, Louise Leclerc

Partners: LIPN (Laboratoire d’Informatique de l’Université Paris Nord), LMAC (Laboratoire de Math-
ématiques Appliquées de Compiègne)

7.2 Open data

The use of data in the Toccata is quite simple and perfectly open. First of all, we never make use of any
personal data, so we have no issue in being conforming to European rules such as RGPD.

Our data is in fact mainly made of programs, but also and importantly equipped with formal specific-
ations. These specifications are often completed with additional formal annotations in the code itself so
as the make the code automatically provable conforming to its specifications. The most important kind
of such internal annotations are the loop invariants. Exposing such loop invariants is always a crucial
information to make the proofs automatic and reproducible. One may even say that loop invariants
are the central arguments for the correctness of an algorithm. Given the importance of such data for
reproducibility of proofs, we decided to make it available openly. This is why we decided to build a gallery
of verified programs that is augmented regularly.

Other similar anontated programs are part of the tests suites of our tools, and are typically rechecked
regularly in continuous integration processes. This for example the case for Why3 and Creusot. Such a
practice is crucial to maintain the reproducibility of proofs in a long term, when the tools themselves
evolve.

8 New results

8.1 Foundations and Spreading of Deductive Program Verification

https://lipn.univ-paris13.fr/coq-num-analysis/
https://hal.inria.fr/hal-01344090
https://hal.inria.fr/hal-01391578
https://hal.inria.fr/hal-03105815
https://hal.inria.fr/hal-03471095
https://hal.inria.fr/hal-03516749
https://hal.inria.fr/hal-03889276
https://toccata.gitlabpages.inria.fr/toccata/gallery/
https://toccata.gitlabpages.inria.fr/toccata/gallery/
https://gitlab.inria.fr/why3/why3/-/tree/master/examples?ref_type=heads
https://github.com/xldenis/creusot/tree/master/creusot/tests/should_succeed


14 Inria Annual Report 2023

Participants: Andrei Paskevich, Antoine Lanco, Claude Marché, Clément Pas-
cutto, Guillaume Melquiond, Jean-Christophe Filliâtre, Léo Andrès,
Quentin Garchery, Solène Moreau, Sylvain Conchon, Xavier Denis.

Programming language semantics A representative fundational work is those of Balabonski, Lanco,
and Melquiond who devised a call-by-need lambda-calculus enabling strong reduction (i.e. reduction
inside the body of abstractions) and guarantees that arguments are only evaluated if needed and at
most once [11] [60]. This calculus uses explicit substitutions and subsumes the existing strong-call-
by-need strategy, but allows for more reduction sequences, and often shorter ones, while preserving
the neededness. The calculus is strongly normalizing. Moreover, by adding some restrictions to it, the
calculus gains the diamond property and only performs reduction sequences of minimal length, which
makes it systematically better than the existing strategies. The Abella proof assistant has been used to
formalize part of this calculus.

Improving Verification Condition Generation Continuation-passing style allows us to devise an ex-
tremely economical abstract syntax for a generic algorithmic language. This syntax is flexible enough
to naturally express conditionals, loops, (higher-order) function calls, and exception handling. It is
type-agnostic and state-agnostic, which means that we can combine it with a wide range of type and
effect systems. Paskevich [31] shows how programs written in the continuation-passing style can be
augmented in a natural way with specification annotations, ghost code, and side-effect discipline. He
defines the rules of verification condition generation for this syntax, and shows that the resulting formulas
are nearly identical to what traditional approaches, like the weakest precondition calculus, produce for
the equivalent algorithmic constructions. This amounts to a minimalistic yet versatile abstract syntax for
annotated programs for which one can compute verification conditions without sacrificing their size,
legibility, and amenability to automated proof, compared to more traditional methods. This makes it
an excellent candidate for internal code representation in program verification tools, a subject of the
on-going PhD thesis of P. Patault.

Inference of invariants The discovery of invariants is another important topic. A fully automatic
generation of invariants was studied in collaboration with an industrial partner: we devised an original
abstract interpretation based approach using a domain of parametrized binary decision diagrams [27].

Formal Specification Language for C code ACSL, short for ANSI/ISO C Specification Language, is meant
to express precisely and unambiguously the expected behavior of a piece of C code. It plays a central
role in Frama-C, as nearly all plug-ins eventually manipulate ACSL specifications, either to generate
properties that are to be verified, or to assess that the code is conforming to these specifications. It is
thus very important to have a clear view of ACSL’s semantics in order to be sure that what you check with
Frama-C is really what you mean. Marché contributed to a chapter [28] of the Frama-C book, describing
the language in an agnostic way, independently of the various verification plug-ins that are implemented
in the Frama-C platform. It contains many examples and exercises that introduce the main features of
the language and insists on the most common pitfalls that users, even experienced ones, may encounter.

8.2 Reasoning on mutable memory in program verification

Participants: Andrei Paskevich, Armaël Guéneau, Claude Marché, Clément Pas-
cutto, Guillaume Melquiond, Jean-Christophe Filliâtre, Léo Andrès,
Sylvain Conchon, Xavier Denis.

Verification of Rust programs One of the major success of Toccata during the last years is represented
by the results obtained concerning the verification of Rust programs. Rust is a fairly recent programming



Project TOCCATA 15

language for system programming, bringing static guarantees of memory safety through a strong owner-
ship policy. This feature opens promising advances for deductive verification of Rust code. The project
underlying the PhD thesis of Denis [52], supervised by Jourdan and Marché, is to propose techniques
for the verification of Rust program, using a translation to a purely-functional language. The challenge
of this translation is the handling of mutable borrows: pointers which control of aliasing in a region of
memory. To overcome this, we used a technique inspired by prophecy variables to predict the final values
of borrows [51]. This method is implemented in a standalone tool called Creusot [53]. The specification
language of Creusot features the notion of prophecy mentioned above, which is central for the specifica-
tion of behavior of programs performing memory mutation. Prophecies also permit efficient automated
reasoning for verifying about such programs. Moreover, Rust provides advanced abstraction features
based on a notion of traits, extensively used in the standard library and in user code. The support for traits
is another main feature of Creusot, because it is at the heart of its approach, in particular for providing
complex abstraction of the functional behavior of programs [53]. An important step to take further in the
applicability of Creusot on a wide variety of Rust code is to support iterators, which are ubiquitous and in
fact idiomatic in Rust programming (for example, every for loop is in fact internally desugared into an
iterator). Denis and Jourdan [20] proposed a new approach to simplify the specifications of Rust code in
presence of iterators, and to also make the proofs more automatic.

Reasoning on Memory Separation using Arithmetic Paskevich and Filliâtre [26] proposed an approach
that helps to improve automation of proofs for certain classes of pointer-manipulating programs. It
consists in mapping a recursive data structure onto a numerical domain, in such a way that ownership
and separation properties can be expressed in terms of simple arithmetic inequalities. In addition to
making the proof simpler, this provides for a clearer and more natural specification.

Reasoning on Resources Ownership can also be used to reason about resources other than program
memory. Guéneau, Jourdan et al. [24] present formal reasoning rules for verifying amortized complexity
bounds in a language with thunks. Thunks can be used to construct persistent data structures with good
amortized complexity, by suspending expensive computations and memoizing their result. Based on
the notion of time credits and debits, this work presents a complete machine-checked reconstruction of
Okasaki’s reasoning rules on thunks in a rich separation logic with time credits, and demonstrates their
applicability by verifying several of Okasaki’s data structures.

Ownership and Well-Bracketedness Ability to reason about ownership is also fertile ground for design-
ing reasoning principles that capture powerful semantic properties of programs. In particular, Guéneau
et al. [25] show that it is possible to capture well-bracketedness in a Hoare-style program logic based on
separation logic, providing proof rules to show correctness of well-bracketed programs both directly and
also through defining unary and binary logical relations models based on this program logic.

Multi-language verification Most of the existing verification tools and systems focus on programs that
are written in a single programming language. In practice, however, programs are often composed of
components written in different programming languages, interacting through a foreign function interface
(FFI). Guéneau et al. [22] develop a novel multi-language program verification system, dubbed Melocoton,
for reasoning about OCaml, C, and their interactions through the OCaml FFI. Melocoton consists of
the first formal semantics of (a large subset of) the OCaml FFI—previously only described in prose in
the OCaml manual—as well as the first program logic to reason about the interactions of programs
components written in OCaml and C. The Melocoton program logic is based on separation logic and
expressive enough to express fine-grained transfers of ownership between the different languages. It has
been fully mechanized in Coq on top of the Iris separation logic framework.

Capability Machines A capability machine is a type of CPU allowing fine-grained privilege separation
using capabilities, machine words that represent certain kinds of authority. Guéneau et al. [13] present
a mathematical model and accompanying proof methods that can be used for formal verification of
functional correctness of programs running on a capability machine, even when they invoke and are
invoked by unknown (and possibly malicious) code. They use a program logic called Cerise for reasoning
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about known code, and an associated logical relation, for reasoning about unknown code. The logical
relation formally captures the capability safety guarantees provided by the capability machine. The Cerise
program logic, logical relation, and all the examples considered in the paper have been mechanized
using the Iris program logic framework in the Coq proof assistant. In subsequent work, they show that
this approach enables the formal verification of full-system security properties under multiple attacker
models: different security objectives of the full system can be verified under a different choice of trust
boundary (i.e. under a different attacker model) [69]. The proposed verification approach is modular,
and is robust: code outside the trust boundary for a given security objective can be arbitrary, unverified
attacker-provided code.

Distributed Programs and Concurrency Our work regarding concurrent programs is mostly repres-
ented by new methods based on model-checking, and implemented in the Cubicle tool. The Model
Checking Modulo Theories (MCMT) framework is a powerful model checking technique for verifying
safety properties of parameterized transition systems. In MCMT, logical formulas are used to repres-
ent both transitions and sets of states and safety properties are verified by an SMT-based backward
reachability analysis. To be fully automated, the class of formulas handled in MCMT is restricted to
cubes, i.e. existentially quantified conjunction of literals. While being very expressive, cubes cannot
define properties with a global termination condition, usually described by a universally quantified
formula. Conchon and Korneva [19] presented the Cubicle Fuzzy Loop (CFL), a fuzzing-based extension
for Cubicle. To prove safety, Cubicle generates invariants, making use of forward exploration strategies
like BFS or DFS on finite model instances. However, these standard algorithms are quickly faced with
the state explosion problem due to Cubicle’s purely nondeterministic semantics. This causes them to
struggle at discovering critical states, hindering invariant generation. CFL replaces this approach with a
powerful DFS-like algorithm inspired by fuzzing. Cubicle’s purely nondeterministic execution loop is
modified to provide feedback on newly discovered states and visited transitions. This feedback is used
by CFL to construct schedulers that guide the model exploration. Not only does this provide Cubicle
with a bigger variety of states for generating invariants, it also quickly identifies unsafe models. As a
bonus, it adds testing capabilities to Cubicle, such as the ability to detect deadlocks. The first experiments
yielded promising results. CFL effectively allows Cubicle to generate crucial invariants, useful to handle
hierarchical systems, while also being able to trap bad states and deadlocks in hard-to-reach areas of
such models.

8.3 Verification of Computer Arithmetic

Participants: Claude Marché, Guillaume Melquiond, Houda Mouhcine, Josué Mor-
eau, Paul Bonnot, Paul Geneau de Lamarlière, Sylvie Boldo.

Error analysis for Logarithm-Sum-Exponential We have a long tradition of study of various subtle
algorithms involving numerical computations, and verified properties regarding accuracy in particular
when using floating-point numbers. A set of numerical programs that we studied this year is related to
combination of exponential and logarithm functions, Bonnot et al. [30] provide certified bounds on the
accuracy of the log-sum-exp function known in the context of Machine Learning [62]. Writing a formal
proof offers the highest possible confidence in the correctness of a mathematical library. This comes at
a large cost though, since formal proofs require taking into account all the details, even the seemingly
insignificant ones, which makes them tedious to write. This issue is compounded by the fact that the
objects whose properties we need to verify (floating-point numbers) are not the ones we would like to
reason about (real numbers and integers). Geneau, Melquiond and Faissole [21] explore some ways of
reducing the overhead of formal proofs in the setting of mathematical libraries, so as to let the user focus
on the details that really matter.

Automating the reasoning on Floating-Point Numbers and Real Numbers Performing a formal veri-
fication inside a proof system such as Coq might be a costly endeavor. In some cases, it might be much
more efficient to turn the whole process of proof generation and proof checking into the evaluation of



Project TOCCATA 17

a boolean formula, accompanied with a proof that, if this formula evaluates to true, then the original
property holds. This approach has long been used for proofs that involve computations on large integers.
Martin-Dorel, Melquiond and Roux [14] have shown that computational reflection can also be achieved
using floating-point arithmetic, despite the inherent round-off errors, thus leveraging the large computing
power of the floating-point units for formal proofs.

Survey on Floating-Point Arithmetic Boldo et al. published a survey on floating-point arithmetic [12] as
an open-access journal paper in Acta Numerica in order to spread the knowledge on computer arithmetic.

Formalization of Mathematics The correctness of programs solving partial differential equations may
rely on mathematics yet unformalized, such as Sobolev spaces. Boldo et al. [43] therefore formalized the
mathematical concept of Lebesgue integration and the associated results in Coq (σ-algebras, measures,
simple functions, and integration of non-negative measurable functions, up to the full formal proofs
of the Beppo Levi Theorem and Fatou’s Lemma). Boldo et al. [29, 18] extended this formalization with
Tonelli’s theorem, stating that the (double) integral of a nonnegative measurable function of two variables
can be computed by iterated integrals, and allowing to switch the order of integration.

Manifest Termination In formal systems combining dependent types and inductive types, such as Coq,
non-terminating programs are frowned upon. They can indeed be made to return impossible results,
thus endangering the consistency of the system, although the transient usage of a non-terminating Y
combinator, typically for searching witnesses, is safe. To avoid this issue, the definition of a recursive
function is allowed only if one of its arguments is of an inductive type and any recursive call is performed
on a syntactically smaller argument. If there is no such argument, the user has to artificially add one,
e.g., an accessibility property. Free monads can still be used to address general recursion and elegant
methods make possible to extract partial functions from sophisticated recursive schemes. The latter yet
rely on an inductive characterization of the domain of a function, and of its computational graph, which
in turn might require a substantial effort of specification and proof. This leads to a rather frustrating
situation when computations are involved. Indeed, the user first has to formally prove that the function
will terminate, then the computation can be performed, and finally a result is obtained (assuming the user
waited long enough). But since the computation did terminate, what was the point of proving that it would
terminate? Mahboubi and Melquiond [23] investigated how users of proof assistants based on variants of
the Calculus of Inductive Constructions could benefit from manifestly terminating computations.

8.4 Spreading Formal Proofs

Participants: Andrei Paskevich, Antoine Lanco, Armaël Guéneau, Claude Marché,
Clément Pascutto, Guillaume Melquiond, Houda Mouhcine, Jean-
Christophe Filliâtre, Josué Moreau, Léo Andrès, Paul Bonnot,
Paul Geneau de Lamarlière, Solène Moreau, Sylvain Conchon,
Sylvie Boldo, Xavier Denis, Yacine El Haddad.

Specifying, Testing, and Verifying OCaml programs Our work on OCaml programs is not limited
to purely static verification: we worked on runtime assertion checking for OCaml. In behavioural
specifications of imperative languages, postconditions may refer to the prestate of the function, usually
with an old operator. Therefore, code performing runtime verification has to record prestate values
required to evaluate the postconditions, typically by copying part of the memory state, which causes
severe verification overhead, both in memory and CPU time. Filliâtre and Pascutto [55, 67] consider
the problem of efficiently capturing prestates in the context of Ortac, a runtime assertion checking
tool for OCaml. Their contribution is a postcondition transformation that reduces the subset of the
prestate to copy. They formalize this transformation, and they provide proof that it is sound and improves
the performance of the instrumented programs. They illustrate the benefits of this approach with a
maze generator. Benchmarks show that unoptimized instrumentation is not practicable, while their
transformation restores performances similar to the program without any runtime check.

https://github.com/ocaml-gospel/ortac
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Leveraging Formal Specifications to Generate Fuzzing Suites When testing a library, developers typ-
ically first have to capture the semantics they want to check. They then write the code implementing
these tests and find relevant test cases that expose possible misbehaviours. In this work, Osborne and
Pascutto [66, 67] present a tool that automatically takes care of these last two steps by automatically
generating fuzz testing suites from OCaml interfaces annotated with formal behavioral specifications.
They also show some ongoing experiments on the capabilities and limitations of fuzzing applied to
real-world libraries.

Compiling OCaml to WebAssembly As part of his CIFRE PhD with OCamlPro, Léo Andrès formalizes a
compilation scheme from OCaml to WebAssembly. This on-going work already validated several Wasm
extensions [17]. A by-product of the thesis is the implementation of a new, efficient interpreter for Wasm,
owi. Léo collaborates with José Fragoso Santos and Filipe Marques (Universidade de Lisboa, Portugal),
who are using owi for concolic execution of WebAssembly programs.

9 Bilateral contracts and grants with industry

We have bilateral contracts which are closely related to a joint effort called the ProofInUse consortium.
The objective of ProofInUse is to provide verification tools, based on mathematical proof, to industry
users. These tools are aimed at replacing or complementing the existing test activities, whilst reducing
costs.

This consortium is a follow-up of the former LabCom ProofInUse between Toccata and the SME
AdaCore, funded by the ANR programme “Laboratoires communs”, from April 2014 to March 2017.

9.1 ProofInUse-AdaCore Collaboration

Participants: Claude Marché (contact), Jean-Christophe Filliâtre, Andrei Paskevich,
Guillaume Melquiond, Solène Moreau.

This collaboration is a joint effort of the Inria project-team Toccata and the AdaCore company which
provides development tools for the Ada programming language. It is funded by a 5-year bilateral contract
from Jan 2019 to Dec 2023.

The SME AdaCore is a software publisher specializing in providing software development tools
for critical systems. A previous successful collaboration between Toccata and AdaCore enabled Why3
technology to be put into the heart of the AdaCore-developed SPARK technology.

The objective of ProofInUse-AdaCore is to significantly increase the capabilities and performances
of the Spark/Ada verification environment proposed by AdaCore. It aims at integration of verification
techniques at the state-of-the-art of academic research, via the generic environment Why3 for deductive
program verification developed by Toccata.

9.2 ProofInUse-MERCE Collaboration

Participants: Claude Marché (contact), Guillaume Melquiond, Paul Bonnot,
Paul Geneau de Lamarlière.

This bilateral contract is part of the ProofInUse effort. This collaboration joins efforts of the Inria
project-team Toccata and the company Mitsubishi Electric R&D (MERCE) in Rennes. It is funded by a
bilateral contract of 3 years and 6 months from Nov 2019 to April 2023.

MERCE has strong and recognized skills in the field of formal methods. In the industrial context of
the Mitsubishi Electric Group, MERCE has acquired knowledge of the specific needs of the development
processes and meets the needs of the group in different areas of application by providing automatic
verification and demonstration tools adapted to the problems encountered.

The objective of ProofInUse-MERCE is to significantly improve on-going MERCE tools regarding the
verification of Programmable Logic Controllers and also regarding the verification of numerical C codes.

https://github.com/OCamlPro/owi
https://proofinuse.gitlabpages.inria.fr/
http://www.spark-2014.org/proofinuse
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9.3 ProofInUse-TrustInSoft Collaboration

Participants: Claude Marché (contact), Guillaume Melquiond, Raphaël Rieu-Helft,
Paul Bonnot.

This bilateral contract is part of the ProofInUse effort. This collaboration joins efforts of the Inria
project-team Toccata and the company TrustInSoft in Paris. It is funded by a bilateral contract of 24
months from Dec 2020 to Nov 2022.

TrustInSoft is an SME that offers the TIS-Analyzer environment for analysis of safety and security
properties of source codes written in C and C++ languages. A version of TIS-Analyzer is available online,
under the name TaaS (TrustInSoft as a Service).

The objective of ProofInUse-TrustInSoft is to integrate Deductive Verification in the platform TIS-
Analyzer, under the form of a new plug-in called J-cube. One specific interest resides in the generation of
counterexample to help the user in case of proof failure.

9.4 Action “Plan de relance” Toccata-TrustInSoft

Participants: Claude Marché (contact), Raphaël Rieu-Helft.

Toccata and the company TrustInSoft set up a research action in the context of the national “plan de
relance”. It is funded for 24 months from January 2022 to December 2023. The funding covers the leave of
R. Rieu-Helft for 80% time as an invited researcher in Toccata.

The objective of this action is to extend the ProofInUse-TrustInSoft collaboration towards two axes: a
refinement of the J-cube memory model incorporating a static separation analysis, and the support of
the C++ language.

9.5 CIFRE contract with Tarides company

Participants: Jean-Christophe Filliâtre (contact), Clément Pascutto.

Clément Pascutto started a CIFRE PhD in June 2020, under the supervision of Jean-Christophe Filliâtre
(at Toccata) and Thomas Gazagnaire (at Tarides). The subject of the PhD is the dynamic and deductive
verification of OCaml programs and its application to distributed data structures.

9.6 CIFRE contract with OCamlPro company

Participants: Jean-Christophe Filliâtre (contact), Léo Andrès.

Léo Andrès started a CIFRE PhD in October 2021, under the supervision of Jean-Christophe Filliâtre
(at Toccata) and Pierre Chambart and Vincent Laviron (at OCamlPro). The subject of the PhD is the
design, formalization, and implementation of a garbage collector for WebAssembly.

10 Partnerships and cooperations

10.1 European initiatives

10.1.1 H2020 projects

EMC2, ERC Synergy project EMC2 project on cordis.europa.eu

https://taas.trust-in-soft.com/
https://dx.doi.org/10.3030/810367
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Title: Extreme-scale Mathematically-based Computational Chemistry

Duration: From September 1, 2019 to February 28, 2026

Partners:

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),
France

• ECOLE NATIONALE DES PONTS ET CHAUSSEES (ENPC), France

• CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS (CNRS), France

• SORBONNE UNIVERSITE, France

Inria contact: Laura GRIGORI (Alpines)

Coordinator:

Summary: Molecular simulation has become an instrumental tool in chemistry, condensed matter phys-
ics, molecular biology, materials science, and nanosciences. It will allow to propose de novo design
of e.g. new drugs or materials provided that the efficiency of underlying software is accelerated by
several orders of magnitude.

The ambition of the EMC2 project is to achieve scientific breakthroughs in this field by gathering
the expertise of a multidisciplinary community at the interfaces of four disciplines: mathematics,
chemistry, physics, and computer science. It is motivated by the twofold observation that, i)
building upon our collaborative work, we have recently been able to gain efficiency factors of up
to 3 orders of magnitude for polarizable molecular dynamics in solution of multi-million atom
systems, but this is not enough since ii) even larger or more complex systems of major practical
interest (such as solvated biosystems or molecules with strongly-correlated electrons) are currently
mostly intractable in reasonable clock time. The only way to further improve the efficiency of
the solvers, while preserving accuracy, is to develop physically and chemically sound models,
mathematically certified and numerically efficient algorithms, and implement them in a robust and
scalable way on various architectures (from standard academic or industrial clusters to emerging
heterogeneous and exascale architectures).

EMC2 has no equivalent in the world: there is nowhere such a critical number of interdisciplinary
researchers already collaborating with the required track records to address this challenge. Under
the leadership of the 4 PIs, supported by highly recognized teams from three major institutions in
the Paris area, EMC2 will develop disruptive methodological approaches and publicly available
simulation tools, and apply them to challenging molecular systems. The project will strongly
strengthen the local teams and their synergy enabling decisive progress in the field.

FRESCO, ERC Consolidator project

Title: Fast and Reliable Symbolic Computation

Duration: November 2021 – October 2026

Coordinator: Assia Mahboubi

Website

Using computers to formulate conjectures and consolidate proof steps pervades all mathematics
fields, even the most abstract. Most computer proofs are produced by symbolic computations, using
computer algebra systems. However, these systems suffer from severe, intrinsic flaws, rendering com-
putational correction and verification challenging. The FRESCO project aims to shed light on whether
computer algebra could be both reliable and fast. Researchers will disrupt the architecture of proof
assistants, which serve as the best tools for representing mathematics in silico, enriching their pro-
gramming features while preserving their compatibility with their logical foundations. They will also
design novel mathematical software that should feature a high-level, performance-oriented programming
environment for writing efficient code to boost computational mathematics.

https://fresco.gitlabpages.inria.fr/
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10.2 National initiatives

10.2.1 ANR NuSCAP

Participants: Guillaume Melquiond (contact), Sylvie Boldo.

The last twenty years have seen the advent of computer-aided proofs in mathematics and this trend
is getting more and more important. They request various levels of numerical safety, from fast and
stable computations to formal proofs of the computations. Hovewer, the necessary tools and routines
are usually ad hoc, sometimes unavailable, or inexistent. On a complementary perspective, numerical
safety is also critical for complex guidance and control algorithms, in the context of increased satellite
autonomy. We plan to design a whole set of theorems, algorithms and software developments, that will
allow one to study a computational problem on all (or any) of the desired levels of numerical rigor. Key
developments include fast and certified spectral methods and polynomial arithmetic, with subsequent
formal verifications. There will be a strong feedback between the development of our tools and the
applications that motivate it.

The project led by École Normale Supérieure de Lyon (LIP) has started in February 2021 and lasts
for 4 years. Partners: Inria (teams Aric, Galinette, Lfant, Marelle, Toccata), École Polytechnique (LIX),
Sorbonne Université (LIP6), Université Sorbonne Paris Nord (LIPN), CNRS (LAAS).

10.2.2 ANR GOSPEL

Participants: Jean-Christophe Filliâtre (contact), Andrei Paskevich,
Armaël Guéneau.

A specification language extends a programming language by allowing code and specifications to be
written in a single document. Examples include SparkAda, JML, and ACSL, which extend Ada, Java, and C
with syntax for specifications.

By offering a specification language to programmers, one encourages them to document, test, and
verify their code as they write it, not as a separate step that is too easily postponed. From a technical
point of view, the presence of specifications makes it possible to test or verify each module independently
and is the key to scalability. From a pragmatic point of view, embedding specifications in the code allows
them to be automatically distributed (via a package management system) to every programmer; this is
the key to practical adoption.

The GOSPEL project proposes to develop Gospel, a specification language that extends the program-
ming language OCaml; to develop an ecosystem of tools based on Gospel; and to demonstrate and
validate these tools via several case studies.

The project led by Inria Paris has started in October 2022 and lasts for 4 years. Partners: Inria Paris
(team Cambium), Université Paris-Saclay (LMF), Tarides, Nomadic Labs.

10.2.3 Project “SecurEval” of PEPR Cybersécurité

Participants: Sylvain Conchon (contact).

The SecureVal project aims to design new tools, benefiting from new digital technologies, to verify the
absence of hardware and software vulnerabilities, and carry out the proof of compliance required.

In order to deal effectively with modern digital systems, code analysis techniques, which originated
in the world of critical systems, must be overhauled to adapt to the objectives of security assessments
and to scale up to complex systems, combining dedicated functionalities and third-party libraries. For
example, the design of new fault models, the support of emerging languages, the visualization of formal

https://nuscap.gitlabpages.inria.fr/index.html
https://www.cnrs.fr/fr/presentation-de-la-strategie-nationale-cyber-7-projets-retenus-dans-le-cadre-du-programme-et
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guarantees, the use of learning techniques to automate repetitive actions or optimize the extraction of
relevant information, or the development of approaches combining static and dynamic analyses.

The project is led by CEA-List, it started in 2022 and lasts for 6 years.

10.2.4 Project I-Demo “Décysif”

The grant covers 3 PhD positions and 24 months of engineer position.
The Décysif project is a very new project started in december 2023, for 4 years. Its general goal is

the promotion of formal verification for critical systems regarding cybersecurity. This project will fund
our future research on Rust program verification, and it contains a workpackage dedicated towards
industrialization of the Creusot tool.

The project is led by TrustInSoft company, with AdaCore and OCamlPro as other partners.

10.2.5 Inria Project LiberAbaci

Participants: Sylvie Boldo (contact).

The Défi Inria LiberAbaci is a collaborative project aimed at improving the accessibility of the Coq
interactive proof system for an audience of mathematics students in the early academic years.

The head is Yves Bertot and the involved teams are: Cambium (Paris), Camus (Strasbourg), Gal-
linette (Nantes) PiCube (Paris), Spades (Grenoble), Stamp (Sophia Antipolis), Toccata (Saclay), LIPN
(Villetaneuse).

11 Dissemination

Participants: Andrei Paskevich, Antoine Lanco, Armaël Guéneau, Claude Marché,
Guillaume Melquiond, Jean-Christophe Filliâtre, Josué Moreau,
Sylvain Conchon, Sylvie Boldo.

11.1 Promoting scientific activities

11.1.1 Scientific events: organisation

Member of the conference program committees

• S. Boldo, 30th IEEE Symposium on Computer Arithmetic, ARITH’2023

• S. Boldo, 15th NASA Formal Methods Symposium, NFM’2023

• S. Boldo, 14th International Conference on Interactive Theorem Proving, ITP’2023

• S. Conchon, 27th International Conference on Engineering of Complex Computer Systems, ICECSS
2023

• S. Conchon, Formal Methods in Computer Aided Design, FMCAD 2023

• G. Melquiond, 30th IEEE Symposium on Computer Arithmetic, ARITH’2023

• S. Boldo, 31st IEEE Symposium on Computer Arithmetic, ARITH’2024

• S. Boldo, 1st workshop on Programming for the Planet, PROPL’2024

• S. Boldo, 35th Journées Francophones des Langages Applicatifs, JFLA’24

https://decysif.fr/
https://liberabaci.gitlabpages.inria.fr/
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11.1.2 Journal

Member of the editorial boards

• S. Boldo: member of the editorial board of IEEE Transactions on Emerging Topics in Computing
(TETC), 2023.

• J.-C. Filliâtre: member of the editorial board of the Journal of Functional Programming, since 2011.

• J.-C. Filliâtre: member of the editorial board of the journal Formal Aspects of Computing, since
2021.

• G. Melquiond: member of the editorial board of Reliable Computing, since 2019.

• A. Paskevich, member of the editorial board of Formal Methods in System Design, since 2021.

11.1.3 Invited talks

• S. Boldo was invited speaker at the JFLA (Journées Francophones des Langages Applicatifs) in
Praz-sur-Arly in February 2023.

• S. Boldo and A. Guéneau were invited speaker at the GT SCALP (a subgroup of the GDR IM) in
Orléans in Novembre 2023.

• J.-C. Filliâtre, Why3, une plateforme pour la vérification déductive [16], Journées FAC 2023, Toulouse,
France

• J.-C. Filliâtre, [33] Structures de données semi-persistantes, Collège de France, mars 2023

• G. Melquiond, “Numerical Computations and Formal Proofs”, Certified and Symbolic-Numeric
Computation, May 22–26, 2023, web page

11.1.4 Leadership within the scientific community

• S. Boldo, elected chair of the ARITH working group of the GDR-IM (a CNRS subgroup of computer
science) with L.-S. Didier (Univ. Toulon).

• S. Boldo, steering committee member of the IEEE International Symposium on Computer Arith-
metic.

• J.-C. Filliâtre, chair of IFIP WG 1.9/2.15 verified Software.

11.1.5 Scientific expertise

• S. Conchon, member of a recruitment committee for a full assistant professor position in computer
science at Sorbonne University, 2023.

• S. Conchon, member of a recruitment committee for a full professor position in computer science
at Paris-Cité University, 2023.

11.1.6 Research administration

• S. Boldo, steering committee member of the IEEE International Symposium on Computer Arith-
metic from 2019 to 2023.

• S. Boldo, president of the concours de l’agrégation d’informatique, 2022-2024.

• G. Melquiond, member of the Bureau du Comité des Projets of Inria-Saclay

https://rtca2023.github.io/pages_Lyon/m2.html
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11.2 Teaching - Supervision - Juries

11.2.1 Teaching

• S. Conchon and J.-C. Filliâtre, DIU Enseigner l’Informatique au Lycée, 2 weeks, rectorat de Versailles
(together with T. Balabonski and K. Nguyen).

• J.-C. Filliâtre, Langages de programmation et compilation, 25h, L3, École Normale Supérieure,
France.

• J.-C. Filliâtre, Les bases de l’algorithmique et de la programmation, 15h, L3, École Polytechnique,
France.

• J.-C. Filliâtre, Compilation, 18h, M1, École Polytechnique, France.

• A. Guéneau, Programmation avancée, 12h, L3, ENS Paris-Saclay, France.

• A. Lanco, Introduction à l’informatique, 24h, L1, Université Paris-Saclay, France.

• A. Lanco, Programmation fonctionnelle, 24h, L2, Université Paris-Saclay, France.

• A. Lanco, Projet, 20h, L3, Université Paris-Saclay, France.

• A. Lanco, Sécurité des systèmes d’information, 24h, M1, Université Paris-Saclay, France.

• C. Marché, Proofs of Programs, 12h, M2, Master Parisien de Recherche en Informatique (MPRI).

• G. Melquiond, Initiation à la recherche, 12h, M1, MPRI, École Normale Supérieure Paris-Saclay,
France.

• J. Moreau, Algorithmique, 16h, L3, Université Paris-Saclay, France.

• A. Paskevich, Vérification Déductive, 12h, M1, MPRI, Université Paris-Saclay, France.

• A. Paskevich, Programmation système, 56h, BUT2, IUT d’Orsay, Université Paris-Saclay, France.

11.2.2 Supervision

• PhD: A. Lanco, “Stratégies pour la réduction forte”, since Oct. 2019, supervised by T. Balabonski and
G. Melquiond. Defended in December 2023 [60].

• PhD: C. Pascutto, “Runtime and Deductive Verification of OCaml programs and applications to
Mergeable Data Structures”, since June 2020, supervised by J.-C. Filliâtre. Defended in 2023 [67].

• PhD: X. Denis, “Deductive program verification for Rust”, since Oct. 2020, supervised by J.-
H. Jourdan and C. Marché. Defended in December 2023 [52].

• PhD in progress: L. Andrès, “Formalization of a garbage collector for WebAssembly”, since Oct.
2021, supervised by J.-C. Filliâtre.

• PhD in progress: H. Mouhcine, “Preuves formelles en mathématiques appliquées: vérification d’un
générateur de formules de quadrature”, since Oct 2021, supervised by S. Boldo, F. Clément, and
M. Mayero.

• PhD in progress: J. Moreau, “A low-level programming language for formally verified computer
algebra”, since Oct. 2022, supervised by G. Melquiond.

• PhD in progress: P. Geneau de Lamarlière, “Design of formally verified floating-point components”,
since Sep. 2022, supervised by G. Melquiond.

• PhD in progress: P. Patault, “Conception et étude d’un langage de programmation adapté à la
vérification déductive”, since Oct. 2023, supervised by J.-C. Filliâtre and A. Paskevich.

• PhD in progress: A. Golfouse, “Vérification de programme Rust avancée: invariants de types, code
fantôme, possession fantôme et algèbre de ressources, concurrence et aliasing”, since Oct. 2023,
supervised by J.-H. Jourdan and A. Guéneau.

https://jhjourdan.gitlabpages.inria.fr/prog3-l3-ensps/
https://marche.gitlabpages.inria.fr/lecture-deductive-verif/
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11.2.3 Juries

• S. Boldo, reviewer of the habilitation of Guillaume Revy (U. Perpignan, 19 July 2023)

• S. Boldo, reviewer for a PhD at University of Melbourne, Australia in August 2023. Note this is an
anonymous review.

• S. Boldo, member (maybe president) of the PhD defense of El-Mehdi El Arar (U. Paris-Saclay, 19
December 2023)

• S. Conchon, reviewer of the PhD defense of N. Nalpon, INSA Toulouse, March 13th 2023.

• S. Conchon, member and president of the PhD defense of D. Nizard, Université Paris-Saclay, April
12th 2023.

• S. Conchon, reviewer of the PhD defense of L. Sguerra, Mines Paris - PSL, April 19th 2023.

• S. Conchon, reviewer of the PhD defense of G. Raimondi, University of Rennes, December 18th
2023.

• C. Marché, reviewer of the PhD defense of W. Ouédraogo, Institut Polytechnique de Paris, Sep 15th,
2023.

• G. Melquiond, member of the jury of the PhD defense of Enzo Crance (U. Nantes, Dec 19th, 2023).

11.3 Popularization

11.3.1 Articles and contents

• S. Boldo, Le dilemme du fabricant de tables [32], popularization journal La Recherche

11.3.2 Interventions

• S. Boldo, animation of a stand at “Fête de la science” each year.

12 Scientific production

12.1 Major publications

[1] B. Becker, N. Jeannerod, C. Marché, Y. Régis-Gianas, M. Sighireanu and R. Treinen. ‘The CoLiS
Platform for the Analysis of Maintainer Scripts in Debian Software Packages’. In: International
Journal on Software Tools for Technology Transfer (2022). URL: https://inria.hal.science/ha
l-03737886.

[2] C. Belo Lourenço, D. Cousineau, F. Faissole, C. Marché, D. Mentré and H. Inoue. ‘Automated Formal
Analysis of Temporal Properties of Ladder Programs’. In: International Journal on Software Tools
for Technology Transfer 24.6 (2022), pp. 977–997. DOI: 10.1007/s10009-022-00680-0. URL:
https://inria.hal.science/hal-03737869.

[3] S. Boldo, F. Clément, F. Faissole, V. Martin and M. Mayero. ‘A Coq Formalization of Lebesgue
Integration of Nonnegative Functions’. In: Journal of Automated Reasoning 66 (2022), pp. 175–213.
DOI: 10.1007/s10817-021-09612-0. URL: https://inria.hal.science/hal-03471095.

[4] S. Boldo and G. Melquiond. Computer Arithmetic and Formal Proofs: Verifying Floating-point
Algorithms with the Coq System. ISTE Press - Elsevier, Dec. 2017. URL: https://hal.inria.fr/h
al-01632617.

[5] M. Clochard, C. Marché and A. Paskevich. ‘Deductive Verification with Ghost Monitors’. In: POPL
2020 - 47th ACM SIGPLAN Symposium on Principles of Programming Languages. New Orleans,
United States, 2020. DOI: 10.1145/3371070. URL: https://hal.inria.fr/hal-02368284.

https://inria.hal.science/hal-03737886
https://inria.hal.science/hal-03737886
https://doi.org/10.1007/s10009-022-00680-0
https://inria.hal.science/hal-03737869
https://doi.org/10.1007/s10817-021-09612-0
https://inria.hal.science/hal-03471095
https://hal.inria.fr/hal-01632617
https://hal.inria.fr/hal-01632617
https://doi.org/10.1145/3371070
https://hal.inria.fr/hal-02368284


26 Inria Annual Report 2023

[6] S. Conchon, G. Delzanno and A. Ferrando. ‘Declarative Parameterized Verification of Distributed
Protocols via the Cubicle Model Checker’. In: Fundamenta Informaticae 178.4 (9th Feb. 2021),
pp. 347–378. DOI: 10.3233/FI-2021-2010. URL: https://inria.hal.science/hal-0347667
5.

[7] S. Conchon, M. Iguernlala, K. Ji, G. Melquiond and C. Fumex. ‘A Three-tier Strategy for Reasoning
about Floating-Point Numbers in SMT’. In: Computer Aided Verification. 2017. URL: https://hal
.inria.fr/hal-01522770.

[8] J.-C. Filliâtre and A. Paskevich. ‘Abstraction and Genericity in Why3’. In: ISoLA 2021 - 9th Inter-
national Symposium On Leveraging Applications of Formal Methods, Verification and Validation.
Vol. 12476. Rhodes, Greece, 2020. DOI: 10.1007/978-3-030-61362-4_7. URL: https://hal.in
ria.fr/hal-02696246.

[9] A. Mahboubi, G. Melquiond and T. Sibut-Pinote. ‘Formally Verified Approximations of Definite
Integrals’. In: Journal of Automated Reasoning 62.2 (Feb. 2019), pp. 281–300. DOI: 10.1007/s1081
7-018-9463-7. URL: https://hal.inria.fr/hal-01630143.

[10] Y. Matsushita, X. Denis, J.-H. Jourdan and D. Dreyer. ‘RustHornBelt: a semantic foundation for
functional verification of Rust programs with unsafe code’. In: PLDI 2022 - 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation. San Diego CA
USA, United States: ACM, 9th June 2022, pp. 841–856. DOI: 10.1145/3519939.3523704. URL:
https://inria.hal.science/hal-03777103.

12.2 Publications of the year

International journals

[11] T. Balabonski, A. Lanco and G. Melquiond. ‘A strong call-by-need calculus’. In: Logical Methods in
Computer Science 19.1 (Mar. 2023), p. 39. DOI: 10.46298/lmcs-19(1:21)2023. URL: https://in
ria.hal.science/hal-03409681.

[12] S. Boldo, C.-P. Jeannerod, G. Melquiond and J.-M. Muller. ‘Floating-point arithmetic’. In: Acta
Numerica 32 (May 2023), pp. 203–290. DOI: 10.1017/S0962492922000101. URL: https://hal.s
cience/hal-04095151.

[13] A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese and L. Birkedal. ‘Cerise:
Program Verification on a Capability Machine in the Presence of Untrusted Code’. In: Journal of the
ACM (JACM) (14th Sept. 2023). DOI: 10.1145/3623510. URL: https://hal.science/hal-0382
6854.

[14] É. Martin-Dorel, G. Melquiond and P. Roux. ‘Enabling Floating-Point Arithmetic in the Coq Proof
Assistant’. In: Journal of Automated Reasoning 67.33 (16th Sept. 2023). DOI: 10.1007/s10817-023
-09679-x. URL: https://inria.hal.science/hal-04114233.

[15] G. Melquiond and R. Rieu-Helft. ‘WhyMP, a Formally Verified Arbitrary-Precision Integer Library’. In:
Journal of Symbolic Computation 115 (Mar. 2023), pp. 74–95. DOI: 10.1016/j.jsc.2022.07.007.
URL: https://inria.hal.science/hal-03233220.

Invited conferences

[16] J.-C. Filliâtre. ‘Why3, une plateforme pour la vérification déductive’. In: Journées FAC 2023. Toulouse,
France, 5th Apr. 2023. URL: https://inria.hal.science/hal-04060570.

International peer-reviewed conferences

[17] L. Andrès, P. Chambart and J.-C. Filliâtre. ‘Wasocaml: compiling OCaml to WebAssembly’. In: IFL
2023 - The 35th Symposium on Implementation and Application of Functional Languages. Braga,
Portugal, 29th Aug. 2023. URL: https://inria.hal.science/hal-04311345.

https://doi.org/10.3233/FI-2021-2010
https://inria.hal.science/hal-03476675
https://inria.hal.science/hal-03476675
https://hal.inria.fr/hal-01522770
https://hal.inria.fr/hal-01522770
https://doi.org/10.1007/978-3-030-61362-4_7
https://hal.inria.fr/hal-02696246
https://hal.inria.fr/hal-02696246
https://doi.org/10.1007/s10817-018-9463-7
https://doi.org/10.1007/s10817-018-9463-7
https://hal.inria.fr/hal-01630143
https://doi.org/10.1145/3519939.3523704
https://inria.hal.science/hal-03777103
https://doi.org/10.46298/lmcs-19(1:21)2023
https://inria.hal.science/hal-03409681
https://inria.hal.science/hal-03409681
https://doi.org/10.1017/S0962492922000101
https://hal.science/hal-04095151
https://hal.science/hal-04095151
https://doi.org/10.1145/3623510
https://hal.science/hal-03826854
https://hal.science/hal-03826854
https://doi.org/10.1007/s10817-023-09679-x
https://doi.org/10.1007/s10817-023-09679-x
https://inria.hal.science/hal-04114233
https://doi.org/10.1016/j.jsc.2022.07.007
https://inria.hal.science/hal-03233220
https://inria.hal.science/hal-04060570
https://inria.hal.science/hal-04311345


Project TOCCATA 27

[18] S. Boldo, F. Clément, V. Martin, M. Mayero and H. Mouhcine. ‘A Coq Formalization of Lebesgue
Induction Principle and Tonelli’s Theorem’. In: Proceedings of the 25th International Symposium on
Formal Methods. 25th International Symposium on Formal Methods (FM 2023). Vol. 14000. Lecture
Notes in Computer Science. Lübeck, Germany, 3rd Mar. 2023, pp. 39–55. DOI: 10.1007/978-3-03
1-27481-7_4. URL: https://inria.hal.science/hal-03889276.

[19] S. Conchon and A. Korneva. ‘The Cubicle Fuzzy Loop: A Fuzzing-Based Extension for the Cubicle
Model Checker’. In: Software Engineering and Formal Methods. Vol. 14323. Lecture Notes in
Computer Science. Eindhoven, Netherlands: Springer Nature Switzerland, 31st Oct. 2023, pp. 30–46.
DOI: 10.1007/978-3-031-47115-5_3. URL: https://inria.hal.science/hal-04394062.

[20] X. Denis and J.-H. Jourdan. ‘Specifying and Verifying Higher-order Rust Iterators’. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Vol. 13994. Lecture Notes in
Computer Science. Paris, France: Springer, 20th Apr. 2023, pp. 93–110. DOI: 10.1007/978-3-031-
30820-8_9. URL: https://hal.science/hal-03827702.

[21] P. Geneau de Lamarlière, G. Melquiond and F. Faissole. ‘Slimmer Formal Proofs for Mathematical
Libraries’. In: 30th IEEE International Symposium on Computer Arithmetic. 2023 IEEE 30th Sym-
posium on Computer Arithmetic (ARITH 2023). Portland (Oregon), United States, 4th Sept. 2023,
p. 4. URL: https://inria.hal.science/hal-04165169.

[22] A. Guéneau, J. Hostert, S. Spies, M. Sammler, L. Birkedal and D. Dreyer. ‘Melocoton: A Program
Logic for Verified Interoperability Between OCaml and C’. In: Proceedings of the ACM. OOPSLA 2023
- Object-Oriented Programming, Systems, Languages & Applications 2023. Cascais, Portugal: ACM,
22nd Oct. 2023. DOI: 10.1145/3622823. URL: https://inria.hal.science/hal-04203298.

[23] A. Mahboubi and G. Melquiond. ‘Manifest Termination’. In: TYPES 2023 - 29th International
Conference on Types for Proofs and Programs. Valencia, Spain, 12th June 2023, pp. 1–3. URL:
https://inria.hal.science/hal-04172297.

[24] F. Pottier, A. Guéneau, J.-H. Jourdan and G. Mével. ‘Thunks and Debits in Separation Logic with
Time Credits’. In: Proceedings of the ACM. POPL 2024 - 51st ACM SIGPLAN Symposium on Principles
of Programming Languages. Vol. 8. POPL. Londres, United Kingdom: ACM, Jan. 2024. URL: https:
//hal.science/hal-04238691.

[25] A. Timany, A. Guéneau and L. Birkedal. ‘The Logical Essence of Well-Bracketed Control Flow’. In:
Proceedings of the ACM. POPL 2024 - 51st ACM SIGPLAN Symposium on Principles of Programming
Languages. Londres, United Kingdom: ACM, 17th Jan. 2024. URL: https://hal.science/hal-04
271457.

National peer-reviewed Conferences

[26] J.-C. Filliâtre and A. Paskevich. ‘L’arithmétique de séparation’. In: JFLA 2023 - 34èmes Journées
Francophones des Langages Applicatifs. Praz-sur-Arly, France, 31st Jan. 2023, pp. 274–283. URL:
https://inria.hal.science/hal-03886759.

[27] C. Marché and D. Cousineau. ‘De l’avantage de nuancer les décisions binaires’. In: JFLA 2024 -
35es Journées Francophones des Langages Applicatifs. Saint-Jacut de la Mer, France, 2024. URL:
https://inria.hal.science/hal-04342273.

Scientific book chapters

[28] A. Blanchard, C. Marché and V. Prévosto. ‘Formally Expressing what a Program Should Do: the
ACSL Language’. In: Guide to Software Verification with Frama-C - Core Components, Usages, and
Applications. Springer, 2024. URL: https://inria.hal.science/hal-04265707.

Reports & preprints

[29] S. Boldo, F. Clément, V. Martin, M. Mayero and H. Mouhcine. Lebesgue Induction and Tonelli’s
Theorem in Coq. RR-9457. Institut National de Recherche en Informatique et en Automatique
(INRIA), 10th Jan. 2023, p. 17. URL: https://inria.hal.science/hal-03564379.

https://doi.org/10.1007/978-3-031-27481-7_4
https://doi.org/10.1007/978-3-031-27481-7_4
https://inria.hal.science/hal-03889276
https://doi.org/10.1007/978-3-031-47115-5_3
https://inria.hal.science/hal-04394062
https://doi.org/10.1007/978-3-031-30820-8_9
https://doi.org/10.1007/978-3-031-30820-8_9
https://hal.science/hal-03827702
https://inria.hal.science/hal-04165169
https://doi.org/10.1145/3622823
https://inria.hal.science/hal-04203298
https://inria.hal.science/hal-04172297
https://hal.science/hal-04238691
https://hal.science/hal-04238691
https://hal.science/hal-04271457
https://hal.science/hal-04271457
https://inria.hal.science/hal-03886759
https://inria.hal.science/hal-04342273
https://inria.hal.science/hal-04265707
https://inria.hal.science/hal-03564379


28 Inria Annual Report 2023

[30] P. Bonnot, B. Boyer, F. Faissole, C. Marché and R. Rieu-Helft. Formally Verified Bounds on Rounding
Errors in Concrete Implementations of Logarithm-Sum-Exponential Functions. RR-9531. Inria, Dec.
2023. URL: https://inria.hal.science/hal-04343157.

[31] A. Paskevich. Flexible Verification Conditions with Continuations and Barriers. 12th Sept. 2023. URL:
https://inria.hal.science/hal-04115885.

12.3 Other

Scientific popularization

[32] S. Boldo, N. Brisebarre and J.-M. Muller. ‘Le dilemme du fabricant de tables’. In: La Recherche 572
(Jan. 2023). URL: https://inria.hal.science/hal-03932037.

Educational activities

[33] J.-C. Filliâtre. ‘Structures de données semi-persistantes’. Doctoral. France, 30th Mar. 2023. URL:
https://inria.hal.science/hal-04055882.

12.4 Cited publications

[34] AdaCore. NVIDIA: Adoption of SPARK Ushers in a New Era in Security-Critical Software Developmen.
web publication https://www.adacore.com/papers/nvidia-adoption-of-spark-new-era
-in-security-critical-software-development. 2023.

[35] A. Ayad and C. Marché. ‘Multi-Prover Verification of Floating-Point Programs’. In: Fifth Interna-
tional Joint Conference on Automated Reasoning. Ed. by J. Giesl and R. Hähnle. Vol. 6173. Lecture
Notes in Artificial Intelligence. Edinburgh, Scotland: Springer, July 2010, pp. 127–141. URL: http:
//hal.inria.fr/inria-00534333.

[36] T. Balabonski, S. Conchon, J.-C. Filliâtre and K. Nguyen. Numérique et Sciences Informatiques, 24
leçons avec exercices corrigés. Terminale. Ellipses, 2020. URL: https://hal.inria.fr/hal-0302
3099.

[37] T. Balabonski, S. Conchon, J.-C. Filliâtre and K. Nguyen. Numérique et Sciences Informatiques, 30
leçons avec exercices corrigés. Première. Ellipses, 2019. URL: https://inria.hal.science/hal-0
2379073.

[38] T. Balabonski, S. Conchon, J.-C. Filliâtre, K. Nguyen and L. Sartre. Informatique - MP2I/MPI - CPGE
1re et 2e années - Cours et exercices corrigés. Ellipses, 2022. URL: https://hal.inria.fr/hal-03
886751.

[39] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed, M. Mohamed,
A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli and Y. Zohar. ‘cvc5: A
Versatile and Industrial-Strength SMT Solver’. In: Tools and Algorithms for the Construction and
Analysis of Systems. Ed. by D. Fisman and G. Rosu. Vol. 13243. Lecture Notes in Computer Science.
Springer, 2022, pp. 415–442.

[40] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy and V. Prevosto. ACSL: ANSI/ISO C Specifica-
tion Language, version 1.4. 2009.

[41] P. Behm, P. Benoit, A. Faivre and J.-M. Meynadier. ‘METEOR : A successful application of B in a
large project’. In: Proceedings of FM’99: World Congress on Formal Methods. Ed. by J. M. Wing,
J. Woodcock and J. Davies. Lecture Notes in Computer Science (Springer-Verlag). Springer Verlag,
Sept. 1999, pp. 369–387.

[42] F. Bobot, J.-C. Filliâtre, C. Marché and A. Paskevich. ‘Let’s Verify This with Why3’. In: International
Journal on Software Tools for Technology Transfer (STTT) 17.6 (2015), pp. 709–727. URL: http://ha
l.inria.fr/hal-00967132/en.

[43] S. Boldo, F. Clément, F. Faissole, V. Martin and M. Mayero. ‘A Coq Formalization of Lebesgue
Integration of Nonnegative Functions’. In: Journal of Automated Reasoning 66 (2022), pp. 175–213.
URL: https://hal.inria.fr/hal-03471095.

https://inria.hal.science/hal-04343157
https://inria.hal.science/hal-04115885
https://inria.hal.science/hal-03932037
https://inria.hal.science/hal-04055882
https://www.adacore.com/papers/nvidia-adoption-of-spark-new-era-in-security-critical-software-development
https://www.adacore.com/papers/nvidia-adoption-of-spark-new-era-in-security-critical-software-development
http://hal.inria.fr/inria-00534333
http://hal.inria.fr/inria-00534333
https://hal.inria.fr/hal-03023099
https://hal.inria.fr/hal-03023099
https://inria.hal.science/hal-02379073
https://inria.hal.science/hal-02379073
https://hal.inria.fr/hal-03886751
https://hal.inria.fr/hal-03886751
http://hal.inria.fr/hal-00967132/en
http://hal.inria.fr/hal-00967132/en
https://hal.inria.fr/hal-03471095


Project TOCCATA 29

[44] S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond and P. Weis. ‘Formal Proof of a Wave
Equation Resolution Scheme: the Method Error’. In: Interactive Theorem Proving. Vol. 6172. Lecture
Notes in Computer Science. Springer, 2010, pp. 147–162. URL: http://hal.inria.fr/inria-00
450789/en.

[45] S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond and P. Weis. ‘Wave Equation Numer-
ical Resolution: a Comprehensive Mechanized Proof of a C Program’. In: Journal of Automated
Reasoning 50.4 (Apr. 2013), pp. 423–456. URL: http://hal.inria.fr/hal-00649240/en/.

[46] S. Boldo, J.-C. Filliâtre and G. Melquiond. ‘Combining Coq and Gappa for Certifying Floating-
Point Programs’. In: 16th Symposium on the Integration of Symbolic Computation and Mechanised
Reasoning. Vol. 5625. Lecture Notes in Artificial Intelligence. Grand Bend, Canada: Springer, July
2009, pp. 59–74.

[47] S. Boldo and C. Marché. ‘Formal verification of numerical programs: from C annotated programs
to mechanical proofs’. In: Mathematics in Computer Science 5 (4 2011), pp. 377–393. URL: http:
//hal.inria.fr/hal-00777605.

[48] S. Boldo and T. M. T. Nguyen. ‘Proofs of numerical programs when the compiler optimizes’. In:
Innovations in Systems and Software Engineering 7 (2 2011), pp. 151–160. URL: http://hal.inria
.fr/hal-00777639.

[49] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino and E. Poll. ‘An
overview of JML tools and applications’. In: International Journal on Software Tools for Technology
Transfer (STTT) 7.3 (June 2005), pp. 212–232.

[50] S. Conchon, A. Coquereau, M. Iguernlala and A. Mebsout. ‘Alt-Ergo 2.2’. In: SMT Workshop: In-
ternational Workshop on Satisfiability Modulo Theories. Oxford, United Kingdom, July 2018. URL:
https://hal.inria.fr/hal-01960203.

[51] X. Denis. Deductive program verification for a language with a Rust-like typing discipline. Internship
report. Université de Paris, Sept. 2020. URL: https://hal.archives-ouvertes.fr/hal-02962
804.

[52] X. Denis. ‘Deductive Verification of Rust Programs’. PhD thesis. Université Paris-Saclay, 2023.

[53] X. Denis, J.-H. Jourdan and C. Marché. ‘Creusot: a Foundry for the Deductive Verication of Rust
Programs’. In: International Conference on Formal Engineering Methods - ICFEM. Lecture Notes in
Computer Science. Madrid, Spain: Springer, 2022. URL: https://hal.inria.fr/hal-03737878.

[54] F. de Dinechin, C. Lauter and G. Melquiond. ‘Certifying the floating-point implementation of an
elementary function using Gappa’. In: IEEE Transactions on Computers 60.2 (2011), pp. 242–253.
URL: http://hal.inria.fr/inria-00533968/en/.

[55] J.-C. Filliâtre and C. Pascutto. ‘Optimizing Prestate Copies in Runtime Verification of Function
Postconditions’. In: 22nd International Conference on Runtime Verification. 2022. URL: https://h
al.inria.fr/hal-03690675v1.

[56] C. Fumex, C. Marché and Y. Moy. Automated Verification of Floating-Point Computations in Ada
Programs. Research Report RR-9060. Inria, Apr. 2017, p. 53. URL: https://hal.inria.fr/hal-0
1511183.

[57] C. Fumex, C. Marché and Y. Moy. ‘Automating the Verification of Floating-Point Programs’. In:
Verified Software: Theories, Tools, and Experiments. Revised Selected Papers Presented at the 9th
International Conference VSTTE. Ed. by A. Paskevich and T. Wies. Lecture Notes in Computer
Science 10712. Heidelberg, Germany: Springer, Dec. 2017. URL: https://hal.inria.fr/hal-01
534533/.

[58] S. de Gouw, J. Rot, F. S. de Boer, R. Bubel and R. Hähnle. ‘OpenJDK’s Java.utils.Collection.sort() Is
Broken: The Good, the Bad and the Worst Case’. In: Computer Aided Verification: 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. Ed. by D.
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