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1 Team members, visitors, external collaborators

Research Scientists

• Julia Lawall [Team leader, INRIA, Senior Researcher, HDR]

• Jean-Pierre Lozi [INRIA, Researcher]

PhD Students

• Papa Assane Fall [INRIA]

• Victor Laforet [INRIA, from Oct 2023]

• Himadri Pandya [INRIA]

Technical Staff

• Tomas Faltin [INRIA, Engineer, from Mar 2023]

• Keisuke Nishimura [INRIA, Engineer, from Oct 2023]

Interns and Apprentices

• Constantin Gierczak-Galle [INRIA, Intern, from Mar 2023 until Jul 2023]

• Magnus Helle Kalland [INRIA, Intern, from Jul 2023 until Sep 2023]

• Victor Laforet [INRIA, Intern, from Mar 2023 until Aug 2023]

Administrative Assistant

• Nelly Maloisel [INRIA]

Visiting Scientists

• Tathagata Roy [IIIT Kalyani, from Dec 2023]

• Tathagata Roy [IIIT Kalyani, from Feb 2023 until Sep 2023]

• Tathagata Roy [IIIT Kalyani, until Jan 2023]

2 Overall objectives

The focus of Whisper is on how to develop (new) and improve (existing) infrastructure software. In-
frastructure software (also called systems software) is the software that underlies all computing. Such
software allows applications to access resources and provides essential services such as memory manage-
ment, synchronization and inter-process interactions. Starting bottom-up from the hardware, examples
of infrastructure software include operating systems, virtual machine hypervisors, managed runtime
environments, and standard libraries. For such software, efficiency and correctness are fundamental.
Any overhead will impact the performance of all supported applications. Any failure will prevent the
supported applications from running correctly. Whisper addresses these dual problems of infrastructure
software performance and correctness, both in a given instance of the software and as the software
evolves.

In terms of methodology, Whisper is at the interface of the domains of operating systems, software
engineering and programming languages. Our approach is to combine the study of problems in the
development of real-world infrastructure software with concepts in programming language design and
implementation, e.g., of domain-specific languages, and knowledge of low-level system behavior. A focus
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of our work is on providing support for legacy code, while taking the needs and competences of ordinary
system developers into account. We will put an emphasis on achieving measurable improvements in
performance and correctness in practice, and on feeding these improvements back to the infrastructure-
software developer community.

We focus on two main axes. The first axis, system performance, targets the performance of applica-
tions, in both bare-metal and virtual environments, based on the impact of operating-system services.
This direction not only involves proposing new algorithms, but also designing tools and methodologies
to help developers understand the system behavior. When addressing these areas, we will explore the
use of DSLs, when appropriate, to enhance the usability, configurability, reliability, and robustness of the
proposed approaches. The second axis, system re-engineering, targets the quality of legacy infrastructure
software. Infrastructure software tends to evolve faster than many of its users are able to keep up with,
leading to massive ecosystem fragmentation. Building on tools such as Coccinelle for automating wide-
spread code changes, we will investigate how to facilitate and improve the reliability of the maintenance
of such variants, for example in terms of identifying, adapting, and applying relevant bug fixes.

3 Research program

The research program of the Whisper team is designed around two main axes: system performance and
system re-engineering.

3.1 System performance

Our work on system performance focuses on scheduling, virtualization, synchronization, and the interac-
tions between them. A task scheduler decides which runnable task should be able to execute on a CPU,
and, in a multicore setting, on which core that execution should take place. As the task scheduler de-
termines how much CPU time the tasks of an application receive, as well as whether the chosen CPU has
effcient access to needed hardware resources (network, accelerators, caches, etc.), it has a large impact
on application performance. In a general-purpose programming setting, the task scheduler is typically
located in the operating system kernel, and is expected to serve the needs of all applications. It has no
knowledge of future application behavior. Such a setting raises many challenges. We are currently focus-
ing on four main issues: scheduling and virtualization, making locks aware of scheduler preemptions,
control over scheduling from the user level, and task scheduling for heterogeneous architectures.

Virtualization decomposes the system support into one or more standard operating systems, known
as guest OSes, that in turn run on a minimalistic operating system, known as a hypervisor, which provides
isolation between the guest OSes and provides access to the hardware. A guest OS schedules application
tasks based on its view of the set of available CPUs, but these CPUs are actually just tasks that are in
turn scheduled by the hypervisor on the physical CPUs of the machine. This dual level of scheduling
introduces the risk of contradictory scheduling strategies. We are investigating the impact of this dual
level of scheduling on the performance of applications in a highly multicore setting.

Effcient lock algorithms are key to ensuring application scalability on multi-core architectures [22,
25], [5]. Two families of lock algorithms exist: (1) with blocking locks, tasks sleep in a wait list until the
lock is free, whereas (2) with spin locks, tasks busy-wait on the value of an atomic boolean variable that
records whether or not the lock is free. While blocking locks consume less CPU, they are also less reactive,
as acquiring the lock requires waking up the acquiring task, which entails a context switch. Spin locks,
on the other hand, are very reactive, as the lock is acquired by a busy-waiting task as soon as the lock is
released. But spinlocks may perform very poorly in overloaded scenarios, because spinning tasks can
preempt the lock-holding task, preventing any progress on the critical path. We would like to turn spin
locks into blocking locks in an overloaded scenario, relying on BPF to safely inject code into the kernel to
detect when the Linux kernel scheduler preempts the lock holder.

Recently, several frameworks has been developed (notably, ghOSt from Google [27] and sched-ext
from Meta [20]) that allow the user level to inject new schedulers into the Linux kernel. We would like
to investigate how such a framework can be used to improve performance, using scheduling-decision-
making processes that are not feasible in the kernel. For example, machine learning could be beneficial
for inferring task properties and guiding scheduling accordingly, but is not practical in the kernel, due
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to the latency involved, memory constraints, and the lack of kernel support for floating point numbers.
Our goal would be to provide a proof-of-concept, as it is not our focus to develop new machine-learning
algorithms. We will also consider whether it can be useful to export other kinds of operating system
services to user level, such as memory management. Finally, we will consider whether it is possible to
design a generic kernel interface for exporting to the user level performance-critical operating-system
services. This work is in collaboration with Alain Tchana and Renaud Lachaize of the Erods team at LIG,
as part of the Inria Défi OS

The heuristics for scheduling employed by the Linux kernel have evolved over time, primarily in
a homogeneous setting, where all cores have similar properties. Today, heterogeneous computing is
becoming more prevalent, combining powerful processors for compute-intensive tasks with slower, more
energy-efficient, processors for lighter weight tasks. Such an architecture is found in the big.LITTLE
processors from Arm, typically used in mobile environments, and is now moving to desktop computing,
with the Alder Lake architecture from Intel. We will assess the degree to which the Linux kernel task
scheduler is able to effectively support such architectures and propose improvements, in terms of both
meeting application performance requirements and saving energy. This work is in collaboration with
David Bromberg and Djob Mvondo of the WIDE team at Inria-Rennes, as part of the Inria Défi OS.

3.2 System re-engineering

In the area of system re-engineering, we are interested in improving the quality of infrastructure software
as well as in automating the transformations required to make it possible to use such software in new
settings. Our work builds on our previous work on Coccinelle [2], a program transformation system for C
code that has been extensively used on the Linux kernel and other C infrastructure software.

We are extending Coccinelle to C++ and to Rust. The extension to C++ reuses the existing Coccinelle
implementation, simply adding the C++-specific constructs. The goal of this work, in collaboration with
Michele Martone of the Leibniz Super computing center, is to consider how Coccinelle can be used to
adapt existing HPC software for use on GPUs, by introducing the use of calls to relevant libraries. The
extension to Rust, on the other hand, is a complete re-implementation of Coccinelle, to benefit from tools
being developed by the Rust community for parsing and pretty printing (Rust Analyzer and rustfmt) Rust
code. The reuse of these tools has made it possible to quickly develop a preliminary implementation for
the full Rust language. In the future, we may consider how to generalize this process to other languages,
addressing the challenge that generic parsing tools may not present information in a way that is suitable
for program transformation, for example in the choice of non-terminals.

We are considering how Coccinelle can be used to facilitate long-term software maintenance. Many
software projects are obliged to maintain multiple variants, e.g., to meet the demands of users who rely
on the properties of old variants. An essential part of software maintenance is thus to apply new bug
fixes to these old variants. Intervening changes in the software, however, may imply that fixes can not be
applied to older versions directly. We are looking into how Coccinelle can be used to collect and exploit
information about recent code changes, to adapt new bug fixes to older source code.

Today, there are numerous tools for scanning infrastructure software for common types of vulner-
abilities, such as NULL pointer dereferences and buffer overflows. Avoiding such issues, however, is
not sufficient to ensure that the code behaves correctly; the code must also implement the intended
algorithm. Checking algorithmic properties, however, is much more challenging, because each service
implements its own algorithm. Formal verification tools such as Frama-C [21] can make it possible to
express and verify such properties, but remain challenging to use, particularly for developers without
experience in formal verification. The challenge is compounded by the fact that the code may evolve
frequently, making any proofs quickly out of date. We are investigating how to design tools that can
facilitate proofs about Linux kernel code, both in how to extract relevant parts of the code base, to reduce
the amount of code that has to be considered by the proving process, and in how proofs can be evolved in
response to changes in the code base, analogous to the adaptation of bug fixes over multiple versions.
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4 Application domains

4.1 Linux

Linux is an open-source operating system that is used in settings ranging from embedded systems to
supercomputers. Linux kernel v6.1, released in December 2022, comprises over 23 million lines of code,
and supports 23 different families of CPU architectures, around 50 file systems, and thousands of device
drivers. Linux is also in a rapid stage of development, with new versions being released roughly every 2.5
months. Recent versions have each incorporated around 13,500 commits, from around 1500 developers.
These developers have a wide range of expertise, with some providing hundreds of patches per release,
while others have contributed only one. Overall, the Linux kernel is critical software, but software in
which the quality of the developed source code is highly variable. These features, combined with the
fact that the Linux community is open to contributions and to the use of tools, make the Linux kernel an
attractive target for software researchers. Tools that result from research can be directly integrated into
the development of real software, where it can have a high, visible impact.

Starting from the work of Engler et al. [24], numerous research tools have been applied to the Linux
kernel, typically for finding bugs [23, 33, 30, 37] or for computing software metrics [28, 43]. In our
work, we have studied generic C bugs in Linux code [8], bugs in function protocol usage [31, 32], issues
related to the processing of bug reports [41] and crash dumps [26], and the problem of backporting [38,
42], illustrating the variety of issues that can be explored on this code base. Unique among research
groups working in this area, we have furthermore developed numerous contacts in the Linux developer
community. These contacts provide insights into the problems actually faced by developers and serve as
a means of validating the practical relevance of our work.

4.2 Device Drivers

Device drivers are essential to modern computing, to provide applications with access, via the operating
system, to physical devices such as keyboards, disks, networks, and cameras. Development of new
computing paradigms, such as the internet of things, is hampered because device driver development is
challenging and error-prone, requiring a high level of expertise in both the targeted OS and the specific
device. Furthermore, implementing just one driver is often not sufficient; today’s computing landscape is
characterized by a number of OSes, e.g., Linux, Windows, MacOS, BSD and many real time OSes, and
each is found in a wide range of variants and versions. All of these factors make the development, porting,
backporting, and maintenance of device drivers a critical problem for device manufacturers, industry
that requires specific devices, and even for ordinary users.

The last twenty years have seen a number of approaches directed towards easing device driver
development. Réveillère et al. propose Devil [36], a domain-specific language for describing the low-level
interface of a device. Chipounov et al. propose RevNic, [19] a template-based approach for porting device
drivers from one OS to another. Ryzhyk et al. propose Termite, [39, 40] an approach for synthesizing
device driver code from a specification of an OS and a device. Currently, these approaches have been
successfully applied to only a small number of toy drivers. Indeed, Kadav and Swift [29] observe that these
approaches make assumptions that are not satisfied by many drivers; for example, the assumption that a
driver involves little computation other than the direct interaction between the OS and the device. At the
same time, a number of tools have been developed for finding bugs in driver code. These tools include
SDV [18], Coverity [24], CP-Miner, [34] PR-Miner [35], and Coccinelle [7]. These approaches, however,
focus on analyzing existing code, and do not provide guidelines on structuring drivers.

In summary, there is still a need for a methodology that first helps the developer understand the
software architecture of drivers for commonly used operating systems, and then provides tools for the
maintenance o0f existing drivers.

4.3 Multicore computing

Today, multicore computing is fundamental across a wide variety of industries. Applications such
as machines learning, scientific computing, image processing, etc., run large numbers of threads on
highly multicore processors. Such applications must furthermore contend with a variety of hardware
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architectures, with different CPU and memory topologies, CPU capacities, access to external resources
such as storage, networking and accellerators, etc. Virtualization facilitates hardware sharing, but
complicates access to and reasoning about hardware resources. Our work on system performance targets
helping multicore applications run more efficiently, and helping developers understand their application
performance, to enable them to find appropriate solutions.

5 Highlights of the year

5.1 Awards

The paper "OFence: Pairing Barriers to Find Concurrency Bugs in the Linux Kernel," by Baptiste Lepers,
Josselin Giet, Julia Lawall, and Willy Zwaenepoel, received a Best Paper award at EuroSys 2023. This work
grew out of our Inria Associated Team CGS that ended in 2022.

6 New software, platforms, open data

6.1 New software

6.1.1 Coccinelle

Keywords: Code quality, Evolution, Infrastructure software

Functional Description: Coccinelle is a tool for code search and transformation for C programs. It has
been extensively used for bug finding and evolutions in Linux kernel code. Extensions to support
C++ and Rust are in progress. A prototype has been developed for Java.

URL: https://coccinelle.gitlabpages.inria.fr/website/

Contact: Julia Lawall

Participants: Gilles Muller, Julia Lawall, Nicolas Palix, Rene Rydhof Hansen, Thierry Martinez

Partner: IRILL

6.1.2 Coccinelle for Rust

Keyword: Rust

Functional Description: Coccinelle is a tool for program matching and transformation, relying on rules
expressed as fragments of source code, amounting to semantic patch. Coccinelle for Rust brings
the power of Coccinelle to software written in the Rust programming language. Just as Coccinelle
was designed around the practical needs for software evolution in the Linux kernel, Coccinelle for
Rust has benefited from feedback from the Rust for Linux community.

URL: https://gitlab.inria.fr/coccinelle/coccinelleforrust,https://rust-for-linux
.com/coccinelle-for-rust

Contact: Julia Lawall

Participants: Julia Lawall, Tathagata Roy

6.1.3 schedgraph

Keywords: Task scheduling, Linux kernel

Functional Description: Schedgraph is a collection of tools for visualizing Linux kernel scheduling
traces.

URL: https://gitlab.inria.fr/schedgraph/schedgraph

https://coccinelle.gitlabpages.inria.fr/website/
https://gitlab.inria.fr/coccinelle/coccinelleforrust, https://rust-for-linux.com/coccinelle-for-rust
https://gitlab.inria.fr/coccinelle/coccinelleforrust, https://rust-for-linux.com/coccinelle-for-rust
https://gitlab.inria.fr/schedgraph/schedgraph
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Publication: hal-04001993v1

Author: Julia Lawall

Contact: Julia Lawall

6.1.4 Coccinelle for C++

Keywords: C++, Program transformation

Functional Description: Coccinelle is a tool for matching and transformation of C source code (ht-
tps://coccinelle.gitlabpages.inria.fr/website/). Coccinelle for C++ is an extension of Coccinelle to
handle C++ code.

URL: https://coccinelle.gitlabpages.inria.fr/website/

Publications: hal-01890314v1, hal-03266521v2

Authors: Julia Lawall, Michele Martone

Contact: Julia Lawall

7 New results

7.1 Finding Concurrency Bugs in the Linux Kernel

Participants: Baptiste Lepers (University of Neuchâtel), Josselin Giet (ENS/Inria),
Julia Lawall (Whisper), Willy Zwaenepoel (University of Sydney).

Knowing which functions may execute concurrently is key to finding concurrency-related bugs.
Existing tools infer the possibility of concurrency using dynamic analysis or by pairing functions that use
the same locks. Code that relies on more relaxed concurrency controls is, by and large, out of the reach of
such tools.

The paper "OFence: Pairing Barriers to Find Concurrency Bugs in the Linux Kernel" [11], by Baptiste
Lepers, Josselin Giet, Julia Lawall, Willy Zwaenepoel, published at EuroSys 2023, proposes a new heuristic
to automatically infer the possibility of concurrency in lockless code that relies on memory barriers
(memory fences). Understanding the relationships between such barriers is made complex by the fact
that barriers do not have a unique identifier and do not have a clearly delimited scope. To infer the
possibility of concurrency between barriers, this paper proposes a novel heuristic based on matching
objects accessed before and after barriers. This approach is based on the observation that barriers work
in pairs: if a write memory barrier orders writes to a set of objects, then there should be a read barrier that
orders reads to the same set of objects. This pairing strategy allows OFence to infer which barriers are
meant to run concurrently and, in turn, check the code surrounding the barriers for concurrency-related
bugs. As a example of such a bug, OFence focuses on bugs related to the incorrect placement of reads
or writes relative to barriers. When it detects incorrect read or write placements in the code, OFence
automatically produces a patch to fix them.

Using OFence, we have found and fixed 12 incorrect ordering constraints that could have resulted in
hard-to-debug data corruption or kernel crashes. The patches have been merged in the mainline kernel.
None of the bugs could have been found using existing static analysis heuristics.

The paper received a EuroSys 2023 Best Paper award.

7.2 IO performance in a virtualized setting

https://hal.inria.fr/hal-04001993v1
https://coccinelle.gitlabpages.inria.fr/website/
https://hal.inria.fr/hal-01890314v1
https://hal.inria.fr/hal-03266521v2
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Participants: Damien Thenot (Inria Benagil), Jean-Pierre Lozi (Whisper),
Gaël Thomas (Inria Benagil).

Optimizing IO in a type I hypervisor such as Xen is difficult because of the cost of exchanging data
between a VM and the driver. The paper "FastXenBlk: High-Performance Virtualized Disk IOs Without
Compromising Isolation" [12], by Damien Thenot, Jean-Pierre Lozi, and Gaël Thomas, published at the
Industry Track of Middleware 2023, addresses this challenge by proposing FastXenBlk, a new IO driver for
Xen. FastXenBlk uses three mechanisms to improve IO performance. First, it uses several threads that
poll multiple virtual IO queues that are exposed to a guest in order to execute IOs in parallel. Second, it
batches requests in order to minimize the number of hypercalls to Xen. And third, it uses kernel bypass in
order to avoid system calls during IOs. FastXenBlk is evaluated using the FIO benchmark with different
access patterns and IO sizes. The evaluation shows that FastXenBlk consistently improves the latency
and the throughput for all workloads as compared to tapdisk, the driver currently used in production, by
a factor of up to 3×.

7.3 Trusted Execution Environments

Participants: Peterson Yuhala (University of Neuchâtel), Pascal Felber (University
of Neuchâtel), Hugo Guiroux (Oracl Labs), Jean-Pierre Lozi (Whis-
per), Alain Tchana (Grenoble INP), Valerio Schiavoni (University of
Neuchâtel), Gaël Thomas (Inria Benagil).

Trusted execution environments like Intel SGX provide enclaves, which offer strong security guaran-
tees for applications. Running entire applications inside enclaves is possible, but this approach leads to a
large trusted computing base (TCB). As such, various tools have been developed to partition programs
written in languages such as C or Java into trusted and untrusted parts, which are run in and out of
enclaves, respectively. However, those tools depend on language-specific taint-analysis and partitioning
techniques. They cannot be reused for other languages and there is thus a need for tools that transcend
this language barrier. The paper "SecV: secure code partitioning via multi-language secure values" [13],
by Peterson Yuhala, Pascal Felber, Hugo Guiroux, Jean-Pierre Lozi, Alain Tchana, Valerio Schiavoni, and
Gaël Thomas, published at Middleware 2023, addresses this challenge by proposing a multi-language
technique to specify sensitive code or data, as well as a multilanguage tool to analyse and partition the
resulting programs for trusted execution environments like Intel SGX. The approach leverages GraalVM’s
Truffle framework, which provides a language-agnostic abstract syntax tree (AST) representation for pro-
grams, to provide special AST nodes called secure nodes that encapsulate sensitive program information.
Secure nodes can easily be embedded into the ASTs of a wide range of languages via Truffle’s polyglot
API.The technique includes a multi-language dynamic taint tracking tool to analyse and partition applic-
ations based on our generic secure nodes. An extensive evaluation with micro- and macro-benchmarks
shows that the technique can be used for two languages (Javascript and Python), and that partitioned
programs can obtain up to 14.5% performance improvement as compared to unpartitioned versions.

7.4 Graph query languages

Participants: Jean-Pierre Lozi (Whisper), Tomáš Faltín (Whisper).

Reachability queries checking the existence of a path from a source node to a target node are funda-
mental operators for querying and processing graph data. Current approaches for index-based evaluation
of reachability queries either focus on plain reachability or constraint-based reachability with only altern-
ation of labels. The paper "A Reachability Index for Recursive Label-Concatenated Graph Queries" [14],
by Chao Zhang, Angela Bonifati, Hugo Kapp, Vlad Ioan Haprian, and Jean-Pierre Lozi, published at ICDE
2023, studies, for the first time, the problem of index-based processing for recursive label-concatenated
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reachability queries, referred to as RLC queries. These queries check the existence of a path that can satisfy
the constraint defined by a concatenation of at most k edge labels under the Kleene plus. Many practical
graph database and network analysis applications exhibit RLC queries. However, their evaluation remains
prohibitive in current graph database engines. This paper introduces the RLC index, the first reachability
index to efficiently process RLC queries. The RLC index checks whether the source vertex can reach an
intermediate vertex that can also reach the target vertex under a recursive label-concatenated constraint.
The paper proposes an indexing algorithm to build the RLC index, which guarantees the soundness and
the completeness of query execution and avoids recording redundant index entries. Comprehensive
experiments on real-world graphs show that the RLC index can significantly reduce both the offline
processing cost and the memory overhead of transitive closure, while improving query processing up to
six orders of magnitude over online traversals. Finally, the open-source implementation of the RLC index
significantly outperforms current mainstream graph engines for evaluating RLC queries.

Graph engines play a crucial role in modern data analytics pipelines, serving as a middleware for
handling complex queries across various domains, such as financial fraud detection. Graph queries
enable flexible exploration and analysis, akin to SQL in relational databases. Among the most expressive
and powerful constructs of graph querying are regular path queries (RPQs). RPQs enable support for
variable-length path patterns based on regular expressions, such as (p1:Person)-/:Knows+/->(p2:Person),
which searches for non-empty paths of any length between two persons. The paper "Distributed Asyn-
chronous Regular Path Queries (RPQs) on Graphs" [10], by Tomáš Faltín, Vasileios Trigonakis, Ayoub
Berdai, Luigi Fusco, Călin Iorgulescu, Jinsoo Lee, Jakub Yaghob, Sungpack Hong, and Hassan Chafi,
published at the Middleware 2023 industry track, introduces a novel design for distributed RPQs that
builds on top of distributed asynchronous pipelined traversals to enable (i) memory control of path
explorations, with (ii) great performance and scalability. They show that with sixteen machines, their
approach outperforms Neo4j by 91× on average and a relational implementation of the same queries in
PostgreSQL by 230×, while maintaining low memory consumption.

8 Bilateral contracts and grants with industry

8.1 Bilateral grants with industry

Oracle, 2022-2023, 100 000 dollar gift.

Participants: Julia Lawall (Whisper), Jean-Pierre Lozi (Whisper), Himadri Chhaya-
Shailesh, Calin Iorgulescu (Oracle Labs).

This donation is the third and final in a series of donations from Oracle to support research on kernel-
level task schedulers in the Whisper team. Our main work in this area has centered around the PhD of
Himadri Chhaya-Shailesh on identifying and resolving bottlenecks in application performance when
running in virtual machines, due to the dual level of scheduling between the guest and the host operating
systems. Specifically, we are investigating how to address the problem of "phantom" vCPUs, that appear
to the guest operating system to be available CPUs but that in reality have been preempted by the host
operating system, thus causing the application execution to stall.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Participation in other International Programs

Participants: Julia Lawall (Whisper), Michele Martone (Leibniz Supercomputing
Center).
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This is a BayFrance collaboration grant (5000 euros), managed by the Leibniz Supercomputing Center,
permitting trips between Paris and Munich in 2023-2024. The subject of the collaboration is the extension
of Coccinelle to C++ to enable the transformation of HPC code, particularly focusing on transformations
to make such code run effectively on GPUs.

9.2 International research visitors

9.2.1 Visits of international scientists

Other international visits to the team

Tathagata Roy

Status intern

Institution of origin: IIIT Kalyani

Country: India

Dates: June, July, December 2023

Context of the visit: Design and development of Coccinelle for Rust.

Mobility program/type of mobility: research stay

9.2.2 Visits to international teams

Research stays abroad

• Jean-Pierre Lozi visited the team of Willy Zwaenepoel of the University of Sydney for 2 weeks
(February 17 - March 3, 2023). This visit was supported by the Inria associate team CSG.

• Julia Lawall visited Michele Martone of the Leibniz Supercomputing Centre in Garching bei
München, Germany for one week (October 15-21). This visit was supported by a BayFrance
collaboration grant (Section 9.1.1).

9.3 National initiatives

9.3.1 ANR
VeriAmos

Participants: Xavier Rival (Antique (PI)), Nicolas Palix (UGA (Erods)),
Gilles Muller (Whisper), Julia Lawall (Whisper),
Keisuke Nishimura (Whisper).

• Awarded in 2018, duration 2018 - 2022 (extended through June 2024)

• Members: Inria (Antique, Whisper), UGA (Erods)

• Funding: ANR, 121,739 euros.

• Objectives:

General-purpose Operating Systems, such as Linux, are increasingly used to support high-level
functionalities in the safety-critical embedded systems industry with usage in automotive, medical
and cyber-physical systems. However, it is well known that general purpose OSes suffer from bugs.
In the embedded systems context, bugs may have critical consequences, even affecting human
life. Recently, some major advances have been done in verifying OS kernels, mostly employing
interactive theorem-proving techniques. These works rely on the formalization of the programming

https://www.bayern-france.org/fr/
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language semantics, and of the implementation of a software component, but require significant
human intervention to supply the main proof arguments. The VeriAmos project is attacking this
problem by building on recent advances in the design of domain-specific languages and static
analyzers for systems code. We are investigating whether the restricted expressiveness and the
higher level of abstraction provided by the use of a DSL will make it possible to design static
analyzers that can statically and fully automatically verify important classes of semantic properties
on OS code, while retaining adequate performance of the OS service. As a specific use-case, the
project targets I/O scheduling components.

EMASS

Participants: Matthieu Lemerre (CEA, EMASS PI), Sébastien Bardin (CEA),
Frédéric Recoules (CEA), Xavier Rival (Antique (Inria PI)),
Julia Lawall (Whisper), Keisuke Nishimura (Whisper), Kos-
matov Nikolai (Thales RT), Delphine Longuet (Thales RT), Ro-
main Soulat (Thales RT).

• Awarded in 2023, duration 42 months (2023 - 2026).

• Members: Inria (Antique, Whisper), CEA, Thales RT

• Funding: ANR, 162,720 euros awarded to Inria.

• Objectives: Current systems programs, like OS kernels, hypervisors, or core libraries found in
the bottom layer of every application stack, are today mostly written in systems programming
languages, such as C, C++, or assembly, that give programmers low-level control over resource
management at the expense of safety. This leads to frequent memory corruption errors in systems
programs, which is one of the major cybersecurity issues today. Backed by the consortium’s strong
experience in advanced memory analyses (shape analyses), source and binary-level program
analysis for security, software engineering by scalable static analysis on industrial case studies, and
OS kernel verification, we want to provide an effective solution to this problem, even for the most
challenging systems software, i.e., OS kernels and hypervisors.

The EMASS project targets a solution to this problem relying on a static analysis of memory, using
types as a base abstraction. Our goal is to be able to automatically verify the most challenging
systems code, by developing a scalable compositional analysis, and by tackling other important
security properties such as non-interference between the tasks of the OS, or functional contracts on
the OS system calls, with the guidance of a low amount of intuitive type annotations. The project
will result in strong scientific results in type-based static analysis, and in the EMASS toolkit, a
pragmatic open-source solution for verifying and certifying secure systems software without formal
methods expertise, whose practical use will be validated in challenging industrial case studies.

The contribution of the Whisper team will focus on using our tools such as Coccinelle [2] and
Prequel [3] to find challenging case studies, and on developing strategies for continuous verification
of systems software.

DiVa: DIsaggregated VirtuAlization

Participants: Gaël Thomas (Inria Benagil (DiVa PI)), Mathieu Bacou (Inria Ben-
agil), Vivien Quema (Grenoble INP), Jean-Pierre Lozi (Whisper), Ju-
lia Lawall (Whisper), Alain Tchana (Grenoble INP), Daniel Hagi-
mont (INP Toulouse), Boris Teabe (INP Toulouse), Julien Sopena (Sor-
bonne University).

• Awarded in 2023, duration 7 years (2023-2030)
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• Members: Inria (Benagil, Whisper), Grenoble INP, INP Toulouse, Sorbonne University

• Funding: ANR-PEPR, 321,839 euros.

• Objectives: Cloud infrastructures are currently undergoing major changes with the advent of
disaggregated and edge clouds. The objective of the DiVA (DIsaggregated VirtuAlization) project is
to prepare the system stack for these next generations of cloud infrastructures. In order to use these
infrastructures more efficiently and to avoid wasting hardware resources, we propose to revisit the
system mechanisms at the basis of any cloud infrastructure.

In the context of disaggregated infrastructures, it becomes possible, at the scale of a few clusters
of machines, to fully mutualize hardware resources. In detail, using the recent CXL protocol, any
processor on any machine in the cluster can transparently access any hardware resource (memory,
network, disk, accelerator) on any other server. This evolution calls for new hypervisors and
operating system designs because virtual machines will become elastic (i.e., it will be possible to
add new resources to a virtual machine at runtime) and distributed (i.e., the hardware resources
used by a virtual machine are physically distributed). In the DiVA project, we will therefore (i)
define new virtualization interfaces in order to allow a virtual machine to dynamically allocate or
release hardware resources, (ii) study new scheduling and placement mechanisms in the guest
operating system in order to efficiently use these distributed resources, (iii) study how we could use
programmable networks to optimize the performance of virtual machines, and (iv) study how we
could design transparent replication mechanisms since, in this distributed context, faults are no
longer an exception but become the norm.

In the context of edge infrastructures, small clusters of machines are connected by slow networks
to powerful data centers. The small clusters perform computations close to the data sources,
which avoids expensive data transfers, while having the possibility to use the computing power
of a data center. This evolution requires revisiting several system mechanisms to support greater
heterogeneity in terms of hardware and software architecture, and to support slow edge/core cloud
network communication. In the DiVA project, we will therefore (i) design new virtual machine
migration mechanisms in order to migrate virtual machines between heterogeneous machines
(instruction set and hypervisor), (ii) transparently optimize the data paths of multi-tier applications
distributed between the cloud and the edge in order to minimize the cloud/edge network links, and
(iii) define new virtualization interfaces to optimize micro virtual machines with a short lifetime.

In the context of DiVa, Jean-Pierre Lozi is leading a task on rack-scale scheduling, with the goal
of making it possible for the scheduler to transparently migrate tasks across machines, while
preserving access to open files and network connections.

10 Dissemination

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

Member of the organizing committees

• Jean-Pierre Lozi was a sponsorship chair of EuroSys 2023.

10.1.2 Scientific events: selection

Chair of conference program committees

• Julia Lawall was a program chair of the 2023 USENIX Annual Technical Conference (ATC).

Member of the conference program committees

• Julia Lawall was a member of the program committee of the following conferences that took place
in 2023: GPCE, ICPC, ICSME, ICSE, TFP.
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• Julia Lawall was a member of the program committee of the following workshops that took place in
2023: DIMES, Scheme, ML, ASE Journal First, EuroSys Doctoral Wokshop; ESEC-FSE ideas, visions,
and reflections.

• Jean-Pierre Lozi was a member of the program committee of the following conferences that took
place in 2023: USENIX ATC, EuroSys.

10.1.3 Journal

Member of the editorial boards

• Julia Lawall is a member of editorial board of Science of Computer Programming.

Reviewer - reviewing activities

• Jean-Pierre Lozi did a review for ACM Transactions on Computer Systems (TOCS).

10.1.4 Invited talks

• Julia Lawall gave an invited keynote talk at the Journées nationales of the GDR Security.

• Julia Lawall gave an invited keynote talk at ASE 2023 on "Automating Software Evolution in the
Linux Kernel".

• Julia Lawall gave an invited keynote talk at GPCE 2023 on "Coccinelle: Impact and Internals".

• Jean-Pierre Lozi gave a talk at the University of Sydney on "Published and ongoing works in the
Whisper team".

10.1.5 Leadership within the scientific community

• Julia Lawall is a member of the co-pilotage of IFIP France.

• Julia Lawall is the secretary of IFIP TC2 (Software: Theory and Practice) and is the French represent-
ative to IFIP TC2.

• Julia Lawall is on the advisory board of Software Heritage.

10.2 Teaching - Supervision - Juries

10.2.1 Supervision

• Julia Lawall and Jean-Pierre Lozi co-supervise the PhD of Himadri Chhaya-Shailesh at Inria Paris.

• Jean-Pierre Lozi and Julia Lawall co-supervise the PhD of Victor Laforet at Inria Paris.

• Alain Tchana, Renaud Lachaize, and Jean-Pierre Lozi co-supervise the PhD of Papa Assane Fall at
the University of Grenoble (Erods).

• David Bromberg, Djob Mvondo and Julia Lawall co-supervise the PhD of Cesaire Honoré at the
University of Rennes (Inria WIDE).

• David Bromberg, Djob Mvondo and Julia Lawall co-supervise the PhD of Amélie Gonzalez at the
University of Rennes (Inria WIDE).

• Jean-Pierre Lozi co-supervised the PhD of Tomáš Faltín at Charles University (completed December
2023).

https://www.softwareheritage.org/
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10.2.2 Juries

• Jean-Pierre Lozi was a member of the PhD jury of Yohan Pipereau (Telecom Sud-Paris).

• Julia Lawall was a member of the PhD jury of Florian Vanhems at the University of Lille.

10.3 Popularization

10.3.1 Interventions

• Julia Lawall gave a talk on "Graphing Tools for Scheduler Tracing" at the Kernel devroom of (FOS-
DEM 2023).

• Julia Lawall gave a talk on "Graphing Tools for Scheduler Tracing" at (Linux Lund 2023).

• Julia Lawall gave a talk on "Coccinelle for Rust" at (Kangrejos 2023).

• Julia Lawall gave a talk on "Graphing Tools for Scheduler Tracing" at the Tracing Microconference
at the (2023 Linux Plumbers Conference).

• Julia Lawall gave a talk on "Coccinelle for Rust" at the Rust Microconference at the (2023 Linux
Plumbers Conference).
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