
2024
ACTIVITY REPORT

Project-Team

EPICURE

RESEARCH CENTRE

Inria Centre at Rennes
University

IN PARTNERSHIP WITH:

Université de Rennes

Semantic analysis and compilation for
secure execution environments

IN COLLABORATION WITH: Institut de recherche en informatique et
systèmes aléatoires (IRISA)

DOMAIN

Algorithmics, Programming, Software and
Architecture

THEME

Proofs and Verification

Contents

Project-Team EPICURE 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3

3 Research program 3

4 Application domains 4
4.1 Internet of Things . 4
4.2 High-assurance blockchains . 5

5 Social and environmental responsibility 5

6 New software, platforms, open data 5
6.1 New software . 5

6.1.1 necro . 5
6.1.2 Timbuk . 6
6.1.3 dmap . 6
6.1.4 sexp_decode . 6
6.1.5 CompcertSSA . 6
6.1.6 plantinator . 7
6.1.7 Salto Static Analyser . 7

7 New results 7
7.1 Skeletal Semantics . 7
7.2 Static Analysis of Functional Programs . 8
7.3 Relational domains for algebraic data types and arrays . 8
7.4 Verification of Functional Programs using Tree Automata and Shallow Horn Clauses 8
7.5 Machine checked proof of an rBPF virtual machine . 9
7.6 Hardware Support for Cryptographic Constant-time Programming 9
7.7 Verified Compilation . 9
7.8 Static analysis of smart contracts . 10
7.9 An information flow logic based on partial equivalence relations 10
7.10 Static detection of sensibility to the evaluation order . 11
7.11 Back to the trees: Identifying plants with Human intelligence 11
7.12 Non-Deterministic Abstract Machines as Semantic Models 12

8 Bilateral contracts and grants with industry 12
8.1 Bilateral contracts with industry . 12

9 Partnerships and cooperations 13
9.1 International initiatives . 13

9.1.1 Visits to international teams . 13
9.2 National initiatives . 13

9.2.1 PEPR Cybersécurité Secureval . 13

10 Dissemination 13
10.1 Promoting scientific activities . 14

10.1.1 Scientific events: organisation . 14
10.1.2 Scientific events: selection . 14
10.1.3 Journal . 14
10.1.4 Invited talks . 14
10.1.5 Leadership within the scientific community . 14
10.1.6 Scientific expertise . 15

10.1.7 Research administration . 15
10.2 Teaching - Supervision - Juries . 15

10.2.1 Teaching . 15
10.2.2 Supervision . 16
10.2.3 Juries . 16

10.3 Popularization . 17
10.3.1 Productions (articles, videos, podcasts, serious games, ...) 17
10.3.2 Others science outreach relevant activities . 17

11 Scientific production 17
11.1 Major publications . 17
11.2 Publications of the year . 18
11.3 Cited publications . 20

Project EPICURE 1

Project-Team EPICURE

Creation of the Project-Team: 2022 June 01

Keywords

Computer sciences and digital sciences

A2.1. – Programming Languages

A2.2. – Compilation

A2.2.1. – Static analysis

A2.2.5. – Run-time systems

A2.2.9. – Security by compilation

A2.4. – Formal method for verification, reliability, certification

A2.4.1. – Analysis

A2.4.3. – Proofs

A4.4. – Security of equipment and software

A4.5. – Formal methods for security

Other research topics and application domains

B6.1.1. – Software engineering

B6.4. – Internet of things

B6.6. – Embedded systems

https://radar.inria.fr/keywords/2024/computing
https://radar.inria.fr/keywords/2024/other

2 Inria Annual Report 2024

1 Team members, visitors, external collaborators

Research Scientists

• Thomas Jensen [Team leader, INRIA, Senior Researcher]

• Frédéric Besson [INRIA, Researcher]

• Simon Castellan [INRIA, Researcher]

• Benoit Montagu [INRIA, Researcher]

• Alan Schmitt [INRIA, Senior Researcher]

Faculty Members

• Sandrine Blazy [UNIVERSITE DE RENNES, Professor]

• Delphine Demange [UNIVERSITE DE RENNES, Associate Professor]

• Benjamin Farinier [UNIVERSITE DE RENNES, Associate Professor]

• Thomas Genet [UNIVERSITE DE RENNES, Professor]

PhD Students

• Santiago Bautista [ENS Rennes, ATER, until Aug 2024]

• Sebastien Bonduelle [INRIA, from Sep 2024]

• Clement Chavanon [INRIA]

• Alexandre Drewery [INRIA]

• Jean-Loup Hatchikian-Houdot [INRIA]

• Romeo La Spina [UNIVERSITE DE RENNES]

• Tony Law [UNIVERSITE DE RENNES]

• Théo Losekoot [INRIA, from Sep 2024 until Oct 2024]

• Théo Losekoot [UNIVERSITE DE RENNES, until Aug 2024]

• Malo Revel [UNIVERSITE DE RENNES]

Technical Staff

• Aurore Alcolei [INRIA, Engineer, until Aug 2024]

• Pierre Lermusiaux [INRIA, Engineer]

• Victoire Noizet [INRIA, Engineer, until Jun 2024]

Project EPICURE 3

Interns and Apprentices

• Sebastien Bonduelle [ENS RENNES, Intern, from Feb 2024 until Jun 2024]

• Yu-Hui Chiang [INRIA, Intern, from May 2024 until Jul 2024]

• Lysa Dahmani [INRIA, Intern, from Apr 2024 until Jul 2024]

• Tom Goalard [CNRS, Intern, from May 2024 until Jul 2024]

• Rayane Jelidi–Daniel [INRIA, Intern, from May 2024 until Jul 2024]

• Sibylle Jullien [INRIA, Intern, from Jun 2024 until Jul 2024]

• Charlotte Thomas [INRIA, Intern, from May 2024 until Jul 2024]

Administrative Assistant

• Lydie Mabil [INRIA]

2 Overall objectives

The security of the software that surrounds us is, more than ever, a scientific challenge of utmost societal
importance. More and more software is produced to operate on an increasingly varied number of devices
and to provide increasingly complex functionality. There is a pressing need to provide the science and
technology for engineering software so that it becomes safe and secure, in addition to providing the
desired functionality. This need is not new and a multitude of programming languages, semantic theories,
formal methods, verification tools and techniques have been developed and contribute to meet this need.
One of the challenges with this state of affairs is exactly the multitude of languages in which to express
the algorithms that we develop, and in particular the distance between those languages for which it is
comparatively easy to develop correct and secure software, and those that actually get executed in our
computers, telephones, pacemakers, cars, smart home IoT devices etc..

No one single silver bullet will solve the problem of developing secure software worthy of the user’s
trust. We are however convinced that a cornerstone of the answer is programming language semantics,
i.e., a mathematically robust yet flexible formalism for defining the behaviour of a program. The goal
of the EPICURE project is to contribute with semantics-based methods for producing safe and secure
software by

• defining new semantic frameworks that will provide more accurate models of modern execution
platforms, and which can facilitate the semantic definition of the above-mentioned multitude of
programming languages,

• designing formally verified analysis and compilation schemes, with the specific aim of being able
to analyse and verify properties of programs written in high-level languages, and to compile both
program and the verified properties down to low-level executable representations,

• demonstrate the impact of language-based tools on software security by showing how they can
improve the correctness, safety and security of critical software found in modern execution en-
vironments, such as the Java virtual machine, the Tezos blockchain written in OCaml, and small
operating systems for the IoT such as RIOT.

3 Research program

The overall goal of the EPICURE project is to guarantee the security and safety of key software com-
ponents of execution platforms, including those used in the IoT and blockchains. Our contribution
to this goal will be to develop semantics-based, formally verifiable program analyses and compilation
techniques for improving and enforcing software security and safety. The main open challenges in the
field include:

4 Inria Annual Report 2024

• providing mechanised formalisations of modern programming languages (such as Rust, JavaScript,
Web Assembly) which facilitate the reasoning about these languages and their tools,

• faithfully modeling architectures on which they execute, taking into account features such as
out-of-order execution and trust-enhancing mechanisms such as enclaves and trust zones,

• designing program processing tools such as analyses and compilers, the correctness of which can
be verified mechanically,

• developing scalable analyses for proving security properties of high-level programs, and compiling
programs and their proofs down to low-level executables, the security of which is guaranteed by
the compilation process.

The EPICURE project is structured into the following research axes:

• Semantics and their mechanisation.

• Program analysis.

• Trustworthy compilation.

• Secure execution platforms.

The axis on semantics and their mechanisation will investigate frameworks for defining semantics,
in particular the recently proposed skeletal semantics and the notion of causal semantics. We will
pay particular attention to the semantics of intermediate representations used in compilers and to the
semantic description of low-level languages, e.g. eBPF. In the axis on program analysis, we plan to conduct
work both on the foundations of static analysis and abstract interpretation and on the development of
specific analyses, in particular for higher-order polymorphic functional programs. A special attention will
be given to the problem of translating results of an analysis from a high-level language to its compiled
(low-level) version. In the strand on trustworthy compilation we will pursue the effort on mechanised
verification of optimising compilers. We will also examine the security impact of compilation with respect
to different (passive and active) attacker models. The intended application areas for these techniques are
the Internet of Things and high-assurance block chains.

4 Application domains

The intended application of the scientific results outlined in the previous sections is to improve the safety
and security of execution platforms, taken in a broad sense ranging from virtual machines to hardware
processors. We will improve on analyses and compilation techniques for verifying and producing safer
code, as we will improve on the key software tools and components that implement the execution
platform. In this section we outline a number of more concrete applications that we intend to investigate.

4.1 Internet of Things

The Internet of Things offers a large and diverse domain of application for our formal methods. The
limitations of the devices populating the IoT mean that a different kind of algorithms are deployed but
the security and privacy concerns remain, and are even accentuated by the relative weak protection
mechanisms offered by the underlying hardware. In particular, the IoT relies on cryptographic primitives
for secure communication and software updates but these primitives are often different from what is
used on standard execution platforms due to the limited computing resources. The question of secure
compilation and the techniques that we expect to develop can be transferred to the IoT but the security
properties might be harder to verify because of optimisations.

On the application level, the distributed and asynchronous nature of the IoT has led to new program-
ming paradigms and novel uses of existing languages (such as JavaScript) that pose new verification
challenges, in particular the verification of coordinating programs written in different complex languages
in a multitier framework. A multitier language unifies within a single formalism and a single execu-
tion environment the programming of the different tiers of distributed applications. On the web, this

Project EPICURE 5

paradigm unifies the client tier, the server tier, and the database tier. We thus want to investigate how our
techniques can be brought to bear on multitier programming languages. In particular, we propose to
investigate the design of program analyses for a multitier language for the IoT.

4.2 High-assurance blockchains

Because they enable the distributed management of virtual assets—such as property rights, proofs of
payments— blockchain systems play a growing, critical role in our societies. Blockchain-based systems,
like Ethereum or Tezos, are equipped with so-called contracts. A contract is a program which is executed
by a virtual machine (VM) over the blockchain. The effect of a contract is to update values and assets
stored in the blockchain. Thus, any failure in the safety, availability, or security in the VM of a system
like Tezos could have dramatic consequences on industries, on public infrastructures, and eventually on
people. The pieces of code that lie at the foundations of the Tezos system are entrusted with the safety and
security of all the managed assets. The Tezos core software is thus expected to attain the highest levels of
clarity and quality, and to get as close as possible to zero defects. This is where formal methods—and in
particular static analyses—can help, by giving guarantees about the dynamic behaviour of programs, in an
automatic way. The expressive type system of OCaml—the implementation language of Tezos—already
provides static safety guarantees by ensuring data is used in a consistent way. In collaboration with
Nomadic Labs, we will provide OCaml programs with additional guarantees, by answering questions such
as “can a program raise an exception?”, “can a program break some user-defined invariant?”, or “which
data might be modified by a program?”. Those questions are beyond the scope of the OCaml type system,
but are within reach of abstract interpretation-based static analyses. The endeavour of supporting all the
features of OCaml is beyond the scope of this project. Instead, we will target a representative subset of
the pure fragment of the OCaml language, in which the core of Tezos’s VM is written.

5 Social and environmental responsibility

EPICURE runs the INRIA exploratory action "Back to the trees" which aims to use probabilistic pro-
gramming and Bayesian inference to produce a plant identification tool that is reliable, educational and
convivial, built together with botanist collectives.

6 New software, platforms, open data

6.1 New software

6.1.1 necro

Name: necro

Keywords: Semantics, Programming language, Specification language

Functional Description: The goal of the project is to provide a tool to manipulate skeletal semantics, a
format to represent the semantics of programming languages. This tool has been mostly developed
by Victoire Noizet.

URL: http://skeletons.inria.fr/necro.html

Publication: tel-03855276v1

Contact: Alan Schmitt

Participant: Alan Schmitt

http://skeletons.inria.fr/necro.html
https://hal.inria.fr/tel-03855276v1

6 Inria Annual Report 2024

6.1.2 Timbuk

Keywords: Automated deduction, Ocaml, Program verification, Tree Automata, Term Rewriting Systems

Functional Description: Timbuk is a tool designed to compute or over-approximate sets of terms reach-
able by a given term rewriting system. The library also provides an OCaml top-level with all usual
functions on Bottom-up Nondeterministic Tree Automata.

URL: http://people.irisa.fr/Thomas.Genet/timbuk/index.html

Contact: Thomas Genet

Participant: Thomas Genet

6.1.3 dmap

Name: dependent maps library in OCaml

Keywords: Ocaml, Library, Data structures

Functional Description: dmap is an OCaml library that implements immutable maps, for which the
type of data may depend on the key they are associated with.

URL: https://gitlab.inria.fr/bmontagu/dmap

Contact: Benoit Montagu

Participant: Benoit Montagu

6.1.4 sexp_decode

Keywords: Ocaml, Library

Functional Description: sexp_decode is an OCaml library of monadic combinators for decoding S-
expressions (as defined in the Csexp library) into structured data.

URL: https://gitlab.inria.fr/bmontagu/sexp_decode

Contact: Benoit Montagu

Participant: Benoit Montagu

6.1.5 CompcertSSA

Keywords: Optimizing compiler, Formal methods, Proof assistant, SSA

Functional Description: CompcertSSA is built on top of the Compcert verified C compiler, by adding
a middle-end based on the SSA form (Static Single Assignment) : conversion to SSA, SSA-based
optimizations, and destruction of SSA.

URL: https://compcertssa.gitlabpages.inria.fr/

Publications: hal-01378393, hal-01193281, hal-02904204, hal-03899435, hal-01110783, hal-01097677,
hal-01110779

Contact: Delphine Demange

Participants: Sandrine Blazy, Delphine Demange, Yon Fernandez De Retana, David Pichardie, Leo
Stefanesco

http://people.irisa.fr/Thomas.Genet/timbuk/index.html
https://gitlab.inria.fr/bmontagu/dmap
https://gitlab.inria.fr/bmontagu/sexp_decode
https://compcertssa.gitlabpages.inria.fr/
https://hal.inria.fr/hal-01378393
https://hal.inria.fr/hal-01193281
https://hal.inria.fr/hal-02904204
https://hal.inria.fr/hal-03899435
https://hal.inria.fr/hal-01110783
https://hal.inria.fr/hal-01097677
https://hal.inria.fr/hal-01110779

Project EPICURE 7

6.1.6 plantinator

Name: plantinator

Keywords: Data management, Algebraic Data Types, Decision

Functional Description: Plantinator is a database management software for morphological data about
plants as well as automatic identification key generator

URL: https://botascopia.inria.fr

Contact: Simon Castellan

6.1.7 Salto Static Analyser

Keywords: Static analysis, Ocaml, Abstract interpretation

Scientific Description: Static analyser for OCaml programs, that supports recursive algebraic data types
(including GADT and non regular types), first-class functions, first-class exceptions, dynamic
exceptions, first-class modules, mutable data types (mutable records, arrays), and base types such
as integers, floating point numbers, characters, and strings.

The analyser infers for every program point an abstract value that represents an over-approximation
of the set of values that this program point can compute, and of the exceptions that can be raised.

Functional Description: Detection of uncaught exceptions, possible exit codes, undefined behaviours
in OCaml programs. This static analyser is based on the theory of abstract interpretation.

News of the Year: Extension of the scope of features supported by the analyser, and support for a large
part of the OCaml standard library. Analysis of whole projects that are built using the dune build
system.

URL: https://salto.gitlabpages.inria.fr/

Publications: hal-04547480, hal-04410771, hal-04769799

Contact: Benoit Montagu

Participants: Benoit Montagu, Pierre Lermusiaux, Thomas Jensen, Thomas Genet

7 New results

7.1 Skeletal Semantics

Participants: Martin Andrieux, , Thomas Jensen, , Victoire Noizet, , Vincent Rébis-
coul, , Alan Schmitt.

The work on skeletal semantics [41], a modular and formal way to describe semantics or programming
languages, has continued during 2024. Links to papers and tools can be found at the dedicated website.

Victoire Noizet continued her work on the development of Skel, the skeletal semantics language, and
on the development of Necro, a tool to manipulate skeletal semantics. Vincent Rébiscoul has continued
working on static analyses for skeletal semantics. He is designing a framework that can automatically
derive a control-flow analysis from the definition of a language as a skeletal semantics. The goal of the
approach is to automatically derive the correctness of the analysis from the correctness of its components.
Vincent defended his PhD Thesis in May 2024 [28].

Martin Andrieux (an M1 student) did a research project on a skeletal semantics of Python, based on
the formal semantics written by Raphaël Monat [39]. His work was presented at the French conference
JFLA 2024 [26].

https://botascopia.inria.fr
https://salto.gitlabpages.inria.fr/
https://hal.inria.fr/hal-04547480
https://hal.inria.fr/hal-04410771
https://hal.inria.fr/hal-04769799
https://skeletons.inria.fr

8 Inria Annual Report 2024

7.2 Static Analysis of Functional Programs

Participants: Thomas Genet, Thomas Jensen, Pierre Lermusiaux, Benoit Montagu,
Tom Goalard.

The Salto project aims at developing a static analyser for OCaml programs based on abstract inter-
pretation. A primary goal is to detect possibly uncaught exceptions in OCaml programs.

In 2024, the scope of the Salto prototype analyser was extended, to the point where it is able to take
real OCaml programs as input, that call the OCaml standard library. Large subsets of the OCaml language,
of its base types, and of its standard library are now supported. A lot of effort was spent to properly
support the alias modules feature. The prototype analyser can automatically discover the structure and
dependencies of an OCaml project based on the dune build system, and analyse it as a whole. More
advanced features, such as objects, recursive modules, and liberal definitions of recursive values remain
to be supported.

The internship of Tom Goalard (ENS Rennes, L3), permitted to test, find bugs and implement fixes in
the abstract domains used in Salto. The technique of property-based testing was used, relying on the
QCheck library implemented in OCaml.

A research article [23] was accepted for publication and presented at ESOP 2024, that describes the
theory underlying the Salto static analyser, and that presents some experimental results.

A larger audience article about the Salto project [36] was published in the ERCIM News journal.

7.3 Relational domains for algebraic data types and arrays

Participants: Santiago Bautista, Thomas Jensen, Benoit Montagu.

As a follow-up of his Ph.D. work, Santiago Bautista designed an abstract domain that can express
relations between values that are built from scalar values, (non-recursive) algebraic data types and
functional arrays [12]. This abstract domain can express function summaries for first-order functional
programs that manipulate integers, algebraic data types and functional arrays, and can serve as a basis
for the modular static analysis of such programs.

7.4 Verification of Functional Programs using Tree Automata and Shallow Horn
Clauses

Participants: Théo Losekoot, Thomas Genet, Thomas Jensen.

We develop a specific theory and the related tools for analyzing functional programs manipulating
algebraic data types. The domain and the co-domain of such functions are (generally) infinite set of
terms. We use tree automata to finitely represent such infinite sets of terms. We have already shown
how to exploit those informations using a dedicated type system associating regular language types to
variables, expressions, etc. of a program. By automatically inferring such types we perform fully automatic
verification of safety properties of tree-processing higher-order functional programs. Experiments are
detailed here. Such regular abstractions are powerful but cannot represent relations between the input
and the output of a function.

In [38], we used convoluted tree automata to finitely approximate the infinite input-output relation
of first-order functions manipulating algebraic data types. This year, we designed a new formalism to
represent relations: Shallow Horn Clauses (SHoCs). Shallow Horn clauses are a restriction of Horn clauses
and can represent all the relations recognized by convoluted tree automata. They can also represent
relations that are out of reach of convoluted tree automata. Interestingly, in spite of their improved
expressivity, SHoCs are still closed by boolean operations and provide a more compact representation

https://salto.gitlabpages.inria.fr/
https://salto.gitlabpages.inria.fr/
https://salto.gitlabpages.inria.fr/
https://etaps.org/2024/conferences/esop/
https://salto.gitlabpages.inria.fr/
https://salto.gitlabpages.inria.fr/
http://people.irisa.fr/Thomas.Genet/timbuk/timbuk4/experiments.html

Project EPICURE 9

of relations [34]. Using SHoCs makes the verification of relational properties more efficicient . This has
published and presented at the SAS’24 conference [24].

7.5 Machine checked proof of an rBPF virtual machine

Participants: Frédéric Besson, Shenghao Yuan, Jean-Pierre Talpin.

The rBPF virtual machine adapts the eBPF (extended Berkeley Packet Filters) technology to resource
constrained devices running the RIOT micro-kernel. Typically, eBPF programs are untrusted user-
provided programs that are used to monitor the kernel behaviour.

As the VM runs with kernel privileges on micro-controllers which rarely feature hardware memory
protection, isolation is an essential property that is needed to ensure system integrity against potentially
malicious programs.

In previous works, we have shown how to derive, within the Coq proof assistant, the verified C
implementation of an eBPF virtual machine from a Gallina specification [42]. We have augmented the
virtual machine with a verified JIT compiler for straighline code [25]. One challenge is to augment the
CompCert semantics so that the C code may call binary code that is dynamically generated in memory
while still abiding to the calling conventions. The JIT compiler substantially improves the performance
for arithmetic intensive benchmarks.

7.6 Hardware Support for Cryptographic Constant-time Programming

Participants: Frédéric Besson, Jean-Loup Hatchikian Houdot, Pierre Wilke, Guil-
laume Hiet.

Cryptographic constant-time is a programming discipline for protecting against timing attacks. This
discipline forbids branching or performing memory accesses depending on secrets. Protecting memory
accesses using software only countermeasures is error-prone and costly. We have proposed a new cache
locking mechanism which ensures that locked addresses can be accessed in constant-time. To avoid
cache misses, locked address cannot be evicted. To avoid any leakage of information, the meta-data of
the cache (dirty-bit, LRU tag) are also protected. We have a formal proof that our cache locking is secure
even in the presence of an attacker able to run arbitrary code at any moment and able to observe every
memory access. Our benchmarks show that our cache locking enable constant-time code running with
very low overheard [19].

7.7 Verified Compilation

Participants: Sandrine Blazy, Delphine Demange, Tony Law, Roméo La Spina.

In 2024, we continued our work on verified compilation using the Coq proof assistant, focusing
on formalizing dataflow solvers, new intermediate representations for dataflow circuits and a domain
specific language for packet filtering.

We formalized specific dataflow solvers inspired by the work of Bourdoncle, in which an iteration
order is pre-computed, based on the structure of the control-flow graph of programs. Central to the proof
of correctness is the general notion of a Weak Topological Ordering. Our correctness proofs are valid
for any such ordering. The first solver implements an iterative strategy over the ordering, the second
solver implements a recursive strategy. Our solvers are extractable to OCaml code. Our formalization
is fully compatible with the interface of dataflow solvers within the verified, optimizing C CompCert
compiler. We conducted practical experiments on the wide range of forward and backward analyses from

https://people.irisa.fr/Thomas.Genet/AutoForestation/shocs/benchmarks/index.html

10 Inria Annual Report 2024

CompCert, demonstrating the practicality of our solvers in terms of efficiency and precision. A research
article [20] was accepted for publication at ESOP 2025, that describes our formalization and experiments.

New results on dataflow circuits propose a mechanized formal semantics: rather than following a static
schedule predetermined at generation time, the execution of the components in a circuit is constrained
solely by the availability of their input data. Circuit components are modeled as abstract computing
units, asynchronously connected with each other through unidirectional, unbounded FIFO. We formalize
sufficient conditions to achieve the determinacy of circuits executions: all possible schedules of such
circuits lead to a unique observable behavior. Moreover, we provide two equivalent views for circuits.
The first one is a direct and natural representation as graphs of components. The second is a core,
structured term calculus, which enables constructing and reasoning about circuits in a inductive way. We
prove that both representations are semantically equivalent. We experimentally validate its relevance by
applying our general semantic framework to dataflow circuits generated with Dynamatic, a recent HLS
tool exploiting dataflow circuits to generate dynamically scheduled, elastic circuits. A research article [21]
was accepted for publication at OOPSLA 2025, that describes our formalization and experiments.

We have developed a CompCert backend for a domain specific language for packet filtering [18].
The compiler is using a BDD-based intermediate representation where the nodes are atomic formulae.
The size (and the depth) are reduced by optimising the ordering of the BDD nodes while taking into
account infeasible path due to incompatible arithmetic constraints. The experiements show that the
optimisations may be costly but significantly improve the code size. They also show that, in term of
throughput, the generated code outperforms the network packet filter (nft) and is competitive with the
optimised implementation of nftset.

7.8 Static analysis of smart contracts

Participant: Thomas Jensen.

This work [15] concerns the design and implementation from scratch of MichelsonLiSA1, a static
analyzer based on abstract interpretation for the verification of smart contracts executing on the Tezos
blockchain. It shows how LiSA (Library for Static Analysis) facilitates this task, also for low-level languages
such as Michelson.

Once deployed in blockchain, smart contracts become immutable: attackers can exploit bugs and vul-
nerabilities in their code, that cannot be replaced with a bug-free version. For this reason, the verification
of smart contracts before they are deployed in blockchain is important. However, the development of
verification tools is not easy, especially if one wants to obtain guarantees by using formal methods. This
work describes the development, from scratch, of a static analyzer based on abstract interpretation for
the verification of real-world Tezos smart contracts. The analyzer is generic with respect to the property
under analysis. This paper shows taint analysis as a concrete instantiation of the analyzer, at different
levels of precision, to detect untrusted cross-contract invocation.

Joint work with Univeristy of Venezia, University of Parma and University of Verona.

7.9 An information flow logic based on partial equivalence relations

Participant: Thomas Jensen.

Information flow control (IFC) is a key element for ensuring that programs do not leak confidential
data, and a number of enforcement mechanisms (based on static analysis, run-time monitoring, or
combinations thereof) have been proposed. The type-based approach to IFC initiated by Volpano et al. is
traditionally presented in terms of statically dividing program variables (or, more generally, components
of data structures, such as record fields) into high and low security, together with a program logic for
proving non-interference However, for many purposes, just classifying data as secret or public is too

https://etaps.org/2025/conferences/esop/
https://2025.splashcon.org/track/OOPSLA

Project EPICURE 11

coarse to express and prove natural security policies that one would want to impose on code that inspects
confidential data.

In [14] we present a relational program logic for reasoning about information flow properties formal-
ised in an assertion language based on partial equivalence relations. We define and prove the soundness
of the logic, a proof technique for precise, logic-based information flow properties. The logic extends
Hoare logic and its unary state predicates to binary PER-based predicates for relating observationally
equivalent states. A salient feature of the logic is that it is capable of reasoning about programs that test
on secret data in a secure manner.

Joint work with the Andrzej Filinski and Ken Friis Larsen from University of Copenhagen.

7.10 Static detection of sensibility to the evaluation order

Participant: Benoit Montagu, Thomas Jensen, Sebastien Bonduelle.

Some programming language semantics do not specify a precise evaluation order of sub-expressions.
This is the case, for instance, of the C programming language and of OCaml, in which the order of
evaluation of the arguments passed to a function can be liberally chosen by the compiler. While this
underspecified behaviour gives more freedom to compiler implementors, for example to implement
advanced program optimisations, this might be seen as a difficulty for programmers: A program can have,
indeed, several semantics. This issue is even more important for the designers of a static analyser for such
programming languages: Because a static analyser must over-approximate all the possible executions of
a program, the freedom in the order of evaluation either incurrs a cost in the analysis (to browse all the
possible evaluation orders a compiler might choose), or asks the designers to choose a specific evaluation
order (e.g., by mimicking the choices made by a specific compiler).

The goal of the Master internship of Sébastien Bonduelle was to lay the foundations for a static
analysis, that would detect which parts of a program might exhibit different observable behaviours when
different evaluation orders are chosen. During the internship, he focused on a small imperative language,
and designed an analysis that takes inspiration from information flow analyses. In his Ph.D. work, that
started in September 2024, Sébastien Bonduelle will design and implement an effective analysis that
detects such problematic cases. Starting from the tiny imperative language, the goal is then to extend
the analysis to larger languages, that support algebraic data types, exceptions, dynamic allocation, and
first-class functions. This work could lead, ultimately, to an analysis for OCaml programs, that could be
integrated in the Salto static analyser.

7.11 Back to the trees: Identifying plants with Human intelligence

Participant: Simon Castellan, Aurore Alcolei.

Plant descriptions have been recorded by botanists since a few thousands years. Identifying the charac-
teristic criteria of a species, (invariants under all the individuals of that species), as well as describing
precise morphology with words, proved to be a difficult endeavour. As a result, each botanist tend to
use their own vocabulary and way of describing species. Moreover descriptions tend not to be uniform.
We show how to use basic tools from type theory and probabilistic programming can help account for
morphological diversity in a way that can be understood by a machine.

By providing a compositional metalanguage to describe traits as types, we empower botanists to work
together to create a probabilistic representation of plants that accounts for diverse form of polymorphism
in plants. Each description becomes a probabilistic element of that type. This data can then be turned
automatically into identification keys to help people learn plant identification.

New results showing how to use probabilistic programming to convert between different type, to turn
a scientific description into an informal one are being investigated.

12 Inria Annual Report 2024

7.12 Non-Deterministic Abstract Machines as Semantic Models

Participant: Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenget,
Alan Schmitt.

In complement to skeletal semantics, we explore the definition and formalization of the semantics of
programming languages through the specification of non-deterministic abstract machines and the study
of their properties.

In 2024, we finalized our work on a fully abstract encoding of the λ-calculus in a process-calculus
using non-deterministic abstract machines in a journal paper [13].

We also showed that non-deterministic abstract machines can express the full semantics of the λ-
calculus, where computation is allowed anywhere. The abstract machine can then be restricted to recover
well-known machines corresponding to reductions strategies [17, 30].

Finally, we showed that complex features of process calculi, such as name restriction or join patterns,
can be faithfully described by non-deterministic abstract machines. To this end, we extended our previous
work on zipper semantics with a new derivation strategy [22, 32].

8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

Salto: static analyses for OCaml programs

Participants: Thomas Genet, Thomas Jensen, Pierre Lermusiaux, Benoît Montagu.

Title: Salto

Industrial partner: Nomadic Labs

Date/Duration: two years (Nov 2022 – Oct 2024)

Participants: Thomas Genet, Thomas Jensen, Pierre Lermusiaux, Benoît Montagu

Additional infos/keywords: As part of the Inria-Nomadic Labs partnership, the EPICURE research team
is working on the development of Salto, a static analyzer for OCaml programs. The goal of this
analyzer is to help the Nomadic Labs engineers improve the trust on their OCaml code-base, that
implements the runtime system for the Tezos blockchain. The Salto static analyzer builds upon
abstract interpretation techniques and recent work on control-flow analyses [40] and regular tree
languages [37] that are developed in our research team. The aim of the Salto static analyzer is to
detect whether an OCaml program might violate some safety properties, such as: May a program
raise some uncaught exception? May a program violate some user-defined assertion or invariant?
May a program access some data outside the bounds of an array? May a program perform some
undesired arithmetic overflow?

Development of Salto

Participants: Pierre Lermusiaux, Benoît Montagu.

Title: Salto

Industrial partner: OCaml Software Foundation

Date/Duration: one year (Nov 2024 – Oct 2025)

https://www.nomadic-labs.com/
https://salto.gitlabpages.inria.fr/
https://ocaml.org/
https://tezos.com/
https://ocaml-sf.org/

Project EPICURE 13

Participants: Pierre Lermusiaux, Benoît Montagu

Additional info/keywords: The OCaml Software Foundation supported the development of the Salto
static analyser thanks to a one year grant, to fund a research engineer. The goal is to broaden the
scope of the analyser, improve its precision and its efficiency, and experimenting with new ideas,
so that the analyser can be released to the OCaml community in the near future.

9 Partnerships and cooperations

9.1 International initiatives

9.1.1 Visits to international teams

Research stays abroad

Sandrine Blazy

Visited institution: Newton Institute

Country: United Kingdom

Dates: 1-11 October

Context of the visit: invited to the Big Specification Prorgamme

Mobility program/type of mobility: research stay, invited talk

Sandrine Blazy, Delphine Demange, Tony Law

Visited institution: EPFL

Country: Switzerland

Dates: 25-29 February

Context of the visit: collaboration with Clément Pit-Claudel

Mobility program/type of mobility: research stay, invited talk

9.2 National initiatives

9.2.1 PEPR Cybersécurité Secureval

Participants: Thomas Jensen, Frederic Besson, Sandrine Blazy, Benjamin Farinier,
Alexandre Drewery, Clement Chavanon.

The Secureval project concerns the assessment of the security of digital systems. Digital system
security assessment relies on compliance and vulnerability analyses to provide recognized cybersecurity
assurances. Innovative tools will be designed around new digital technologies in order to verify the
absence of hardware and software vulnerabilities, and to carry out the required proof of conformity.
EPICURE contributes with research on advanced static analysis and verified compilation techniques.

10 Dissemination

Participants: Alan Schmitt, Sandrine Blazy, Benoît Montagu, Thomas Jensen,
Frédéric Besson, Delphine Demange, Simon Castellan, Thomas Genet.

https://www.pepr-secureval.com/

14 Inria Annual Report 2024

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

• Alan Schmitt: Steering Committee of JFLA

• Sandrine Blazy: Steering Committee of ACM SIGPLAN CPP, steering committee of ACM SIGPLAN
POPL

Member of the organizing committees

• Benoît Montagu: Artifact Evaluation co-Chair for ICFP 2024

10.1.2 Scientific events: selection

Chair of conference program committees

• Sandrine Blazy: PC co-chair of ACM SIGPLAN CPP 2024 and 2025

Member of the conference program committees

• Sandrine Blazy: program committee member of ProLaLa 2024, FMTea 2024 and PriSC 2025

• Benoît Montagu: program committee member of IFL 2024

• Thomas Jensen: program committee member of ACM ICFP 2024

• Frédéric Besson: programm committee member of ACM CCS 2024, WEB conference

Reviewer

• Benoît Montagu: external reviewer for ICFP 2024

• Benoît Montagu: program committee member for the GT-MFS (Méthodes Formelles pour la
Sécurité)

10.1.3 Journal

Member of the editorial boards

• Sandrine Blazy: member of the editorial board of the LMCS journal

10.1.4 Invited talks

• "From operational semantics to verified compilation", Sandrine Blazy, ETAPS unifying speaker,
Luxembourg, April 2024

• "30 years as an academic", Sandrine Blazy, ETAPS mentoring workshop, April 2024

• "Compilation vérifiée : vers du logiciel zéro défaut", Sandrine Blazy, Colloquium d’informatique,
Sorbonne Université, Paris, November 2024

• "Program analysis for software security", Thomas Jensen, 1st International Summer School on
Abstract Interpretation, Lipari, Italy, September 2024.

10.1.5 Leadership within the scientific community

Thomas Jensen is director of the Laboratoire d’Excellence CominLabs.

https://icfp24.sigplan.org/
https://ifl24.cs.ru.nl/

Project EPICURE 15

10.1.6 Scientific expertise

• Alan Schmitt, Member of Conseil Scientifique of LMF, Formal Methods Laboratory, Paris Saclay

• Sandrine Blazy, Member of the International Scientific Advisory Board (ISAB) of the Flanders
Strategic Research Program in Cybersecurity,

10.1.7 Research administration

• Sandrine Blazy is deputy director of the IRISA CNRS laboratory.

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Licence: Alan Schmitt, L3 INFO, 8h, ENS Rennes, France

• Master: Alan Schmitt, Advanced Semantics, 32h, M2, ENS Rennes, France

• Master: Alan Schmitt, Preparation of Agregation exam, 50h, M2, ENS Rennes, France

• Licence : Benoît Montagu, Programmation de Confiance, 36h, L3, Université Rennes, France

• Master : Benoît Montagu, Analyse et Conception Formelles, 24h, M1, Université Rennes, France

• Master : Benoît Montagu, Software Security, 6.5h, M2, ENS Rennes, France

• Licence : Frédéric Besson, Programmation Fonctionnelle, 28h, L3, Insa, France

• Master : Frédéric Besson, Programmation et Se‘curite‘, 21h, M2, CentraleSupele, France

• Licence : Delphine Demange, Programmation Impérative, 55h, L1, Université de Rennes, France

• Licence : Delphine Demange, Algorithmique et Complexité, 40h, L1, Université de Rennes, France

• Licence : Sandrine Blazy, Programmation de Confiance, 55h, L3, Université Rennes, France

• Master : Sandrine Blazy, Mechanized Semantics, 32h, M1, Université Rennes, France

• Doctorate : Sandrine Blazy, Compiler Verification, MOVEP (MOdeling and VErification of Parallel
processes) summer school, 3h, Rennes, France

• Master : Thomas Jensen, Software Security, 20 h, University of Rennes

• Master : Thoams Jensen, Software security, 24h, University of Copenhagen

• Master : Simon Castellan, Sobriété numérique, 20h, ENS Rennes

• Licence : Thomas Genet, Algorithmique et complexité, 40h, L1, Université de Rennes, France

• Licence : Thomas Genet, Sécurité des logiciels et des protocoles, 30h, L3, Université de Rennes,
France

• Master : Thomas Genet, Analyse et Conception Formelles, 38h, M1, Université Rennes, France

• Master : Thomas Genet, Blockchains, 12h, M2, Université Rennes, France

• Master : Thomas Genet, Blockchains, 9h, M2, IMT Atlantique, France

16 Inria Annual Report 2024

10.2.2 Supervision

• L3 internship, Yu-Hui Leana Chiang: Alan Schmitt

• PhD defended, Vincent Rébiscoul: “Analyses Statiques pour Sémantiques Squelettiques”, Thomas
Jensen and Alan Schmitt

• L3 internship, Tom Goalard: Benoit Montagu

• M2 internship, Sébastien Bonduelle: Benoît Montagu and Thomas Jensen

• PhD (ongoing), Sébastien Bonduelle, "Analyses statiques de flux d’information par interprétation
abstraite": Benoît Montagu and Thomas Jensen

• PhD defended: Solène Mirliaz, "Static relational cost analysis for superscalar architectures",
12/2024.

• PhD in progress: Clément Chavanon, "Refinement of formal specifications for secure environe-
ments" since September 2023, Sandrine Blazy and Frédéric Besson.

• PhD in progress: Alexandre Drewery, "Analyse statique incrémentale pour la sécurité logicielle",
Thomas Jensen

• PhD in progress: Romeo La Spina, "Analyse de flot de données et de dépendances pour la compila-
tion optimisante vérifiée", Sandrine Blazy and Delphine Demange.

• PhD in progress: Tony Law, "Formally verified high-level synthesis", Sandrine Blazy and Del-
phine Demange.

• PhD in progress: Alain Delaët-Tixieuil, "Verified compilation for a language describing the law",
Sandrine Blazy and Denis Merigoux.

• PhD defended, Théo Losekoot: “Automatic Program Verification by Inference of Relational Models”,
Thomas Genet and Thomas Jensen.

• Phd defended, Jean-Loup Hatchkian-Houdot: "Mécanisme de sécurité contre les attaques tem-
porelles via une coopération entre logiciel et matériel embarqué", Frédéric Besson, Pierre Wilke,
Guillaume Hier.

• PhD in progress, Malo Revel: “Proving regular theorems on functional programs”, Thomas Genet
and Thomas Jensen.

10.2.3 Juries

• Sandrine Blazy: jury member (president) for the PhD defense of Matthieu Baty, CentraleSupelec,
December 2024.

• Sandrine Blazy: jury member (president) for the PhD defense of Thaïs Baudon, ENS Lyon, October
2024.

• Sandrine Blazy: jury member for the PhD defense of Nathanaëlle Courant, University Paris cité,
September 2024.

• Sandrine Blazy: jury member (president) for the PhD defense of Henrik Plate, Rennes University,
September 2024.

• Sandrine Blazy: jury member (president) for the PhD defense of Quentin Le Dilavrec, Rennes
University, Februaryc2024.

• Alan Schmitt, jury member (reviewer and president) for the HDR defense of Cinzia di Giusto, March
2024, Université de Nice Côte d’Azur

Project EPICURE 17

• Alan Schmitt, jury member (reviewer) for the PhD defense of Mickaël Laurent, June 2024, Université
Paris Cité

• Alan Schmitt, jury member (reviewer) for the PhD defense of Giovanni Fabbretti, October 2024,
Université Grenoble Alpes

• Alan Schmitt, jury member (reviewer) for the PhD defense of Colin Gonzáles Duburc, November
2024, Université Paris Cité

• Alan Schmitt, jury member (reviewer) for the PhD defense of Nicolas Chappe, November 2024,
École Normale Supérieure de Lyon

• Alan Schmitt, jury member (reviewer) for the PhD defense of Loïc Sylvestre, November 2024,
Sorbonne Université

• Alan Schmitt, jury member (reviewer) for the PhD defense of Houda Mouhcine, December 2024,
Université Paris-Saclay

• Thomas Jensen, jury member (reviewer) for the PhD defense of Francesco Parolini, June 2024,
Sorbonne Université.

• Thomas Jensen, jury member (reviewer) for the PhD defense of Denis Mazzucato, December 2024,
ENS Rennes.

10.3 Popularization

10.3.1 Productions (articles, videos, podcasts, serious games, ...)

• Article in ERCIM News on the Salto static analyser [36]

• Article in ERCIM News on the SCRATCHS project [35]

10.3.2 Others science outreach relevant activities

• Alan Schmitt, presentation of the work of a researcher, classe de première NSI, Lycée Assomption,
May 2024

• Thomas Genet: "Bug, virus, pirates. So many threats and no solution? Yes, mathematics.", given in
5 High Schools close to Rennes.

11 Scientific production

11.1 Major publications

[1] O. Andreescu, T. Jensen, S. Lescuyer and B. Montagu. ‘Inferring frame conditions with static cor-
relation analysis’. In: Proceedings of the ACM on Programming Languages 3.POPL (2nd Jan. 2019),
pp. 1–29. DOI: 10.1145/3290360. URL: https://hal.inria.fr/hal-02413262.

[2] A. Barrière, S. Blazy, O. Flückiger, D. Pichardie and J. Vitek. ‘Formally verified speculation and
deoptimization in a JIT compiler’. In: Proceedings of the ACM on Programming Languages 5.POPL
(4th Jan. 2021), p. 26. DOI: 10.1145/3434327. URL: https://hal.science/hal-03185848.

[3] A. Barrière, S. Blazy and D. Pichardie. ‘Formally Verified Native Code Generation in an Effectful JIT -
or: Turning the CompCert Backend into a Formally Verified JIT Compiler’. In: Proceedings of the
ACM on Programming Languages (Jan. 2023). DOI: 10.1145/3571202. URL: https://hal.inria
.fr/hal-03882598.

[4] F. Besson, S. Blazy, A. Dang, T. Jensen and P. Wilke. ‘Compiling Sandboxes: Formally Verified
Software Fault Isolation’. In: ESOP 2019 - 28th European Symposium on Programming. Vol. 11423.
LNCS. Prague, Czech Republic: Springer, 6th Apr. 2019, pp. 499–524. DOI: 10.1007/978-3-030-1
7184-1_18. URL: https://hal.inria.fr/hal-02316189.

https://doi.org/10.1145/3290360
https://hal.inria.fr/hal-02413262
https://doi.org/10.1145/3434327
https://hal.science/hal-03185848
https://doi.org/10.1145/3571202
https://hal.inria.fr/hal-03882598
https://hal.inria.fr/hal-03882598
https://doi.org/10.1007/978-3-030-17184-1_18
https://doi.org/10.1007/978-3-030-17184-1_18
https://hal.inria.fr/hal-02316189

18 Inria Annual Report 2024

[5] F. Besson, A. Dang and T. Jensen. ‘Information-Flow Preservation in Compiler Optimisations’. In:
CSF 2019 - 32nd IEEE Computer Security Foundations Symposium. Hoboken, United States: IEEE,
25th June 2019, pp. 1–13. URL: https://hal.inria.fr/hal-02180303.

[6] M. Bodin, P. Gardner, T. Jensen and A. Schmitt. ‘Skeletal Semantics and their Interpretations’. In:
Proceedings of the ACM on Programming Languages 44 (2019), pp. 1–31. DOI: 10.1145/3290357.
URL: https://hal.inria.fr/hal-01881863.

[7] S. Castellan and P. Clairambault. ‘The Geometry of Causality: Multi-Token Geometry of Interaction
and its Causal Unfolding’. In: Proceedings of the ACM on Programming Languages (Jan. 2023). URL:
https://hal.science/hal-03286443.

[8] T. Haudebourg, T. Genet and T. Jensen. ‘Regular Language Type Inference with Term Rewriting -
extended version’. In: Proceedings of the ACM on Programming Languages. International Confer-
ence on Functional Programming (ICFP) 4.ICFP (2020), pp. 1–29. DOI: 10.1145/3408994. URL:
https://hal.inria.fr/hal-02795484.

[9] P. Lermusiaux and B. Montagu. ‘Detection of Uncaught Exceptions in Functional Programs by
Abstract Interpretation’. In: Programming Languages and Systems, 33rd European Symposium
on Programming, ESOP 2024, Lecture Notes in Computer Science. ESOP 2024 - 33rd European
Symposium on Programming. Vol. 14577. Lecture Notes in Computer Science. Luxembourg, Lux-
embourg, 5th Apr. 2024, pp. 391–420. DOI: 10.1007/978-3-031-57267-8_15. URL: https://ha
l.science/hal-04547480.

[10] B. Montagu and T. Jensen. ‘Stable relations and abstract interpretation of higher-order programs’.
In: Proceedings of the ACM on Programming Languages 4.ICFP (2nd Aug. 2020), pp. 1–30. DOI:
10.1145/3409001. URL: https://hal.inria.fr/hal-02916996.

[11] B. Montagu and T. Jensen. ‘Trace-Based Control-Flow Analysis’. In: PLDI 2021 - 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation. Virtual, Canada:
ACM, 20th June 2021, pp. 1–15. DOI: 10.1145/3453483.3454057. URL: https://hal.inria.fr
/hal-03266981.

11.2 Publications of the year

International journals

[12] S. Bautista, T. Jensen and B. Montagu. ‘An input–output relational domain for algebraic data types
and functional arrays’. In: Formal Methods in System Design (13th June 2024). DOI: 10.1007/s107
03-024-00456-z. URL: https://hal.science/hal-04612474 (cit. on p. 8).

[13] M. Biernacka, D. Biernacki, S. Lenglet, P. Polesiuk, D. Pous and A. Schmitt. ‘Fully Abstract Encodings
of Lambda-Calculus in HOcore through Abstract Machines’. In: Logical Methods in Computer
Science 20.3 (3rd July 2024), pp. 1–45. DOI: 10.46298/lmcs-20(3:3)2024. URL: https://inria
.hal.science/hal-04638249 (cit. on p. 12).

[14] A. Filinski, K. F. Larsen and T. Jensen. ‘Axiomatising an information flow logic based on partial
equivalence relations’. In: International Journal on Software Tools for Technology Transfer 26.4
(25th June 2024), pp. 445–461. DOI: 10.1007/s10009-024-00756-z. URL: https://inria.hal
.science/hal-04827704 (cit. on p. 11).

[15] L. Olivieri, L. Negrini, V. Arceri, T. Jensen and F. Spoto. ‘Design and Implementation of Static Analyses
for Tezos Smart Contracts’. In: Distributed Ledger Technologies: Research and Practice (29th Jan.
2024), pp. 1–23. DOI: 10.1145/3643567. URL: https://inria.hal.science/hal-04827693
(cit. on p. 10).

https://hal.inria.fr/hal-02180303
https://doi.org/10.1145/3290357
https://hal.inria.fr/hal-01881863
https://hal.science/hal-03286443
https://doi.org/10.1145/3408994
https://hal.inria.fr/hal-02795484
https://doi.org/10.1007/978-3-031-57267-8_15
https://hal.science/hal-04547480
https://hal.science/hal-04547480
https://doi.org/10.1145/3409001
https://hal.inria.fr/hal-02916996
https://doi.org/10.1145/3453483.3454057
https://hal.inria.fr/hal-03266981
https://hal.inria.fr/hal-03266981
https://doi.org/10.1007/s10703-024-00456-z
https://doi.org/10.1007/s10703-024-00456-z
https://hal.science/hal-04612474
https://doi.org/10.46298/lmcs-20(3:3)2024
https://inria.hal.science/hal-04638249
https://inria.hal.science/hal-04638249
https://doi.org/10.1007/s10009-024-00756-z
https://inria.hal.science/hal-04827704
https://inria.hal.science/hal-04827704
https://doi.org/10.1145/3643567
https://inria.hal.science/hal-04827693

Project EPICURE 19

Invited conferences

[16] S. Blazy. ‘From Mechanized Semantics to Verified Compilation: the Clight Semantics of CompCert’.
In: Lecture Notes in Computer Science. FASE 2024 - 27th International Conference on Fundamental
Approaches to Software Engineering. Vol. 14573. Lecture Notes in Computer Science. Luxembourg,
Luxembourg: Springer Nature Switzerland, 6th Apr. 2024, pp. 1–21. DOI: 10.1007/978-3-031-57
259-3_1. URL: https://inria.hal.science/hal-04553834.

International peer-reviewed conferences

[17] M. Biernacka, D. Biernacki, S. Lenglet and A. Schmitt. ‘Optimizing a Non-Deterministic Abstract
Machine with Environments’. In: 9th International Conference on Formal Structures for Computa-
tion and Deduction (FSCD 2024). FSCD 2024 - 9th International Conference on Formal Structures
for Computation and Deduction. Tallinn, Estonia: Schloss Dagstuhl – Leibniz-Zentrum für Inform-
atik, 2024, pp. 1–22. DOI: 10.4230/LIPIcs.FSCD.2024.11. URL: https://inria.hal.science
/hal-04643294 (cit. on p. 12).

[18] C. Chavanon, F. Besson and T. Ninet. ‘PfComp: A Verified Compiler for Packet Filtering Leveraging
Binary Decision Diagrams’. In: 13th ACM SIGPLAN International Conference on Certified Programs
and Proofs - CPP 2024. London, United Kingdom: ACM, 9th Jan. 2024, pp. 89–102. DOI: 10.1145/3
636501.3636954. URL: https://inria.hal.science/hal-04893360 (cit. on p. 10).

[19] J.-L. Hatchikian-Houdot, P. Wilke, F. Besson and G. Hiet. ‘Formal Hardware/Software Models
for Cache Locking Enabling Fast and Secure Code’. In: ESORICS 2024, 29th European Symposium
on Research in Computer Security, Bydgoszcz, Poland, September 16–20, 2024, Proceedings, Part
III. ESORICS 2024 - 29th European Symposium on Research in Computer Security. Vol. 14984.
Lecture Notes in Computer Science. Bydgoszcz, Poland: Springer Nature Switzerland, 6th Sept.
2024, pp. 153–173. DOI: 10.1007/978-3-031-70896-1_8. URL: https://hal.science/hal-04
804914 (cit. on p. 9).

[20] R. La Spina, D. Demange and S. Blazy. ‘Formal Verification of WTO-based Dataflow Solvers’. In:
34th European Symposium on Programming. Hamilton, Canada, 3rd May 2025. URL: https://ha
l.science/hal-04851724 (cit. on p. 10).

[21] T. Law, D. Demange and S. Blazy. ‘A Mechanized Semantics for Dataflow Circuits’. In: Proceedings of
the ACM on Programming Languages, Issue OOPSLA 1. ACM SIGPLAN International Conference on
Systems, Programming, Languages, and Applications: Software for Humanity. Singapore, Singapore,
12th Oct. 2025. URL: https://hal.science/hal-04851772 (cit. on p. 10).

[22] S. Lenglet and A. Schmitt. ‘Leaf-First Zipper Semantics’. In: FORTE 2024, LNCS. FORTE 2024 -
44th International Conference on Formal Techniques for Distributed Objects, Components, and
Systems. Groningen, Netherlands, 2024. DOI: 10.1007/978-3-031-62645-6_7. URL: https://i
nria.hal.science/hal-04571340 (cit. on p. 12).

[23] P. Lermusiaux and B. Montagu. ‘Detection of Uncaught Exceptions in Functional Programs by
Abstract Interpretation’. In: Programming Languages and Systems, 33rd European Symposium
on Programming, ESOP 2024, Lecture Notes in Computer Science. ESOP 2024 - 33rd European
Symposium on Programming. Vol. 14577. Lecture Notes in Computer Science. Luxembourg, Lux-
embourg, 5th Apr. 2024, pp. 391–420. DOI: 10.1007/978-3-031-57267-8_15. URL: https://ha
l.science/hal-04547480 (cit. on p. 8).

[24] T. Losekoot, T. Genet and T. Jensen. ‘Verification of programs with ADTs using Shallow Horn
Clauses’. In: Lecture Notes in Computer Science. Static Analysis Symposium. Vol. 31st Static Analysis
Symposium. 14995. Pasadena (CA), United States: Springer, 2024. URL: https://inria.hal.sci
ence/hal-04820358 (cit. on p. 9).

[25] S. Yuan, F. Besson and J.-P. Talpin. ‘End-to-End Mechanized Proof of a JIT-Accelerated eBPF Virtual
Machine for IoT’. In: CAV 2024 - 36th International Conference on Computer Aided Verification.
Vol. 14681. Lecture Notes in Computer Science. Montreal, Canada: Springer Nature Switzerland,
26th July 2024, pp. 325–347. DOI: 10.1007/978-3-031-65627-9_16. URL: https://inria.hal
.science/hal-04762503 (cit. on p. 9).

https://doi.org/10.1007/978-3-031-57259-3_1
https://doi.org/10.1007/978-3-031-57259-3_1
https://inria.hal.science/hal-04553834
https://doi.org/10.4230/LIPIcs.FSCD.2024.11
https://inria.hal.science/hal-04643294
https://inria.hal.science/hal-04643294
https://doi.org/10.1145/3636501.3636954
https://doi.org/10.1145/3636501.3636954
https://inria.hal.science/hal-04893360
https://doi.org/10.1007/978-3-031-70896-1_8
https://hal.science/hal-04804914
https://hal.science/hal-04804914
https://hal.science/hal-04851724
https://hal.science/hal-04851724
https://hal.science/hal-04851772
https://doi.org/10.1007/978-3-031-62645-6_7
https://inria.hal.science/hal-04571340
https://inria.hal.science/hal-04571340
https://doi.org/10.1007/978-3-031-57267-8_15
https://hal.science/hal-04547480
https://hal.science/hal-04547480
https://inria.hal.science/hal-04820358
https://inria.hal.science/hal-04820358
https://doi.org/10.1007/978-3-031-65627-9_16
https://inria.hal.science/hal-04762503
https://inria.hal.science/hal-04762503

20 Inria Annual Report 2024

National peer-reviewed Conferences

[26] M. Andrieux and A. Schmitt. ‘Skeletal Semantics of a Fragment of Python’. In: 35es Journées
Francophones des Langages Applicatifs (JFLA 2024). Saint-Jacut-de-la-Mer, France, 2024. URL:
https://inria.hal.science/hal-04406392 (cit. on p. 7).

Edition (books, proceedings, special issue of a journal)

[27] D. Demange and A. Guatto, eds. JFLA 2024 - 35es Journées Francophones des Langages Applicatifs.
35es Journées Francophones des Langages Applicatifs (JFLA 2024). Jan. 2024, pp. 1–328. URL:
https://inria.hal.science/hal-04407194.

Doctoral dissertations and habilitation theses

[28] V. Rébiscoul. ‘Analyses statiques pour sémantiques squelettiques’. Université de Rennes, 14th May
2024. URL: https://theses.hal.science/tel-04849514 (cit. on p. 7).

Reports & preprints

[29] E. Bannier, S. Castellan, S. Derrien, F. Galassi, L. Garnier, L. Hoyet, A. l’Azou, N. Lahaye, M. J.-M.
Macé, O. Martineau, A. Masson, T. Maugey, B. Ninassi, E. Rohou, M. Simonin and F. Taïani. Reducing
GHG emissions from business travel: A collaborative approach at IRISA/Inria. Groupe de travail «
missions » IRISA / Centre Inria de l’Université de Rennes, Mar. 2024, pp. 1–16. URL: https://univ
-rennes.hal.science/hal-04506138.

[30] M. Biernacka, D. Biernacki, S. Lenglet and A. Schmitt. Optimizing a Non-Deterministic Abstract
Machine with Environments. May 2024. URL: https://inria.hal.science/hal-04568253
(cit. on p. 12).

[31] S. Castellan and P. Clairambault. Disentangling Parallelism and Interference in Game Semantics.
2024. URL: https://hal.science/hal-03182043.

[32] S. Lenglet and A. Schmitt. Leaf-First Zipper Semantics. Apr. 2024. URL: https://inria.hal.scie
nce/hal-04537440 (cit. on p. 12).

[33] P. Lermusiaux and B. Montagu. Detection of Uncaught Exceptions in Functional Programs by Abstract
Interpretation (Extended Version). RR-9536. Inria, 8th Apr. 2024, p. 38. URL: https://inria.hal
.science/hal-04410771.

[34] T. Losekoot, T. Genet and T. Jensen. Verification of programs with ADTs using Shallow Horn Clauses
– extended version. 9th Aug. 2024. URL: https://inria.hal.science/hal-04669706 (cit. on
p. 9).

Scientific popularization

[35] F. Besson, C. Le Du and P. Wilke. ‘Side-Channel Resistant Applications through Co-designed Hard-
ware/ Software: the SCRATCHS Project’. In: ERCIM News. Special theme: Software Security October
2024.139 (2024). URL: https://inria.hal.science/hal-04894615 (cit. on p. 17).

[36] P. Lermusiaux and B. Montagu. ‘The Salto Project: Static Analysis of OCaml Programs by Abstract
Interpretation’. In: ERCIM News. Special theme: Software Security October 2024.139 (1st Oct. 2024),
p. 24. URL: https://hal.science/hal-04769799 (cit. on pp. 8, 17).

11.3 Cited publications

[37] T. Haudebourg, T. Genet and T. Jensen. ‘Regular Language Type Inference with Term Rewriting -
extended version’. In: Proceedings of the ACM on Programming Languages. International Confer-
ence on Functional Programming (ICFP) 4.ICFP (2020), pp. 1–29. DOI: 10.1145/3408994. URL:
https://inria.hal.science/hal-02795484 (cit. on p. 12).

https://inria.hal.science/hal-04406392
https://inria.hal.science/hal-04407194
https://theses.hal.science/tel-04849514
https://univ-rennes.hal.science/hal-04506138
https://univ-rennes.hal.science/hal-04506138
https://inria.hal.science/hal-04568253
https://hal.science/hal-03182043
https://inria.hal.science/hal-04537440
https://inria.hal.science/hal-04537440
https://inria.hal.science/hal-04410771
https://inria.hal.science/hal-04410771
https://inria.hal.science/hal-04669706
https://inria.hal.science/hal-04894615
https://hal.science/hal-04769799
https://doi.org/10.1145/3408994
https://inria.hal.science/hal-02795484

Project EPICURE 21

[38] T. Losekoot, T. Genet and T. Jensen. ‘Automata-Based Verification of Relational Properties of
Functions over Algebraic Data Structures’. In: Lipics. Rome, Italy: Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, June 2023, pp. 1–21. DOI: 10.4230/LIPIcs.FSCD.2023.7. URL: https:
//inria.hal.science/hal-04216680 (cit. on p. 8).

[39] R. Monat. ‘Static Type and Value Analysis by Abstract Interpretation of Python Programs with Native
C Libraries’. PhD Thesis. Sorbonne Université, 2021 (cit. on p. 7).

[40] B. Montagu and T. Jensen. ‘Trace-Based Control-Flow Analysis’. In: PLDI 2021 - 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation. Virtual, Canada:
ACM, June 2021, pp. 1–15. DOI: 10.1145/3453483.3454057. URL: https://inria.hal.scienc
e/hal-03266981 (cit. on p. 12).

[41] L. Noizet and A. Schmitt. ‘Semantics in Skel and Necro’. In: ICTCS 2022 - Italian Conference on
Theoretical Computer Science. CEUR Workshop Proceedings. Rome, Italy, Sept. 2022, pp. 1–17. URL:
https://inria.hal.science/hal-03784478 (cit. on p. 7).

[42] S. Yuan, F. Besson, J.-P. Talpin, S. Hym, K. Zandberg and E. Baccelli. ‘End-to-end Mechanized Proof
of an eBPF Virtual Machine for Micro-controllers’. In: CAV 2022 - 34th International Conference on
Computer Aided Verification. Haifa, Israel, Aug. 2022, pp. 1–23. URL: https://inria.hal.scienc
e/hal-03888082 (cit. on p. 9).

https://doi.org/10.4230/LIPIcs.FSCD.2023.7
https://inria.hal.science/hal-04216680
https://inria.hal.science/hal-04216680
https://doi.org/10.1145/3453483.3454057
https://inria.hal.science/hal-03266981
https://inria.hal.science/hal-03266981
https://inria.hal.science/hal-03784478
https://inria.hal.science/hal-03888082
https://inria.hal.science/hal-03888082

	Project-Team EPICURE
	Team members, visitors, external collaborators
	Overall objectives
	Research program
	Application domains
	 Internet of Things
	High-assurance blockchains

	Social and environmental responsibility
	New software, platforms, open data
	New software
	necro
	Timbuk
	dmap
	sexp_decode
	CompcertSSA
	plantinator
	Salto Static Analyser

	New results
	Skeletal Semantics
	Static Analysis of Functional Programs
	Relational domains for algebraic data types and arrays
	Verification of Functional Programs using Tree Automata and Shallow Horn Clauses
	Machine checked proof of an rBPF virtual machine
	Hardware Support for Cryptographic Constant-time Programming
	Verified Compilation
	Static analysis of smart contracts
	An information flow logic based on partial equivalence relations
	Static detection of sensibility to the evaluation order
	Back to the trees: Identifying plants with Human intelligence
	Non-Deterministic Abstract Machines as Semantic Models

	Bilateral contracts and grants with industry
	Bilateral contracts with industry

	Partnerships and cooperations
	International initiatives
	Visits to international teams

	National initiatives
	PEPR Cybersécurité Secureval

	Dissemination
	Promoting scientific activities
	Scientific events: organisation
	Scientific events: selection
	Journal
	Invited talks
	Leadership within the scientific community
	Scientific expertise
	Research administration

	Teaching - Supervision - Juries
	Teaching
	Supervision
	Juries

	Popularization
	Productions (articles, videos, podcasts, serious games, ...)
	Others science outreach relevant activities

	Scientific production
	Major publications
	Publications of the year
	Cited publications

