
2024
ACTIVITY

REPORT

Project-Team
GEOMERIX

RESEARCH CENTRE

Inria Saclay Centre at
Institut Polytechnique de
Paris

IN PARTNERSHIP WITH:
CNRS, Institut Polytechnique de
Paris

Geometry-driven Numerics

IN COLLABORATION WITH: Laboratoire d’informatique de
l’école polytechnique (LIX)

DOMAIN
Perception, Cognition and
Interaction

THEME
Interaction and visualization



Contents
Project-Team GEOMERIX 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 3

3 Research program 5
3.1 Geometry for Euclidean shape processing . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Geometry for simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Geometry for dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Geometry for data science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Application domains 14

5 Highlights of the year 15
5.1 Thematic programs organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Awards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Distinctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 HdR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 New software, platforms, open data 15
6.1 Open Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 New software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.2.1 MFS-chol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 New results 16
7.1 Geometry for Euclidean shape processing . . . . . . . . . . . . . . . . . . . . . . . 16

7.1.1 SING: Stability-Incorporated Neighborhood Graph . . . . . . . . . . . . . . 16
7.1.2 Stochastic Computation of Barycentric Coordinates . . . . . . . . . . . . . 17
7.1.3 PoNQ: a Neural QEM-based Mesh Representation . . . . . . . . . . . . . . 17
7.1.4 Biharmonic Coordinates and their Derivatives for Triangular 3D Cages . . . 18
7.1.5 A Survey on Cage-based Deformation of 3D Models . . . . . . . . . . . . . 18
7.1.6 BallMerge: High-quality Fast Surface Reconstruction via Voronoi Balls . . 18
7.1.7 DynBioSketch: A tool for sketching dynamic visual summaries in biology,

and its application to infection phenomena . . . . . . . . . . . . . . . . . . 19
7.1.8 Ricci flow-based brain surface covariance descriptors for diagnosing Alzheimer’s

disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.1.10 Versatile Curve Design by Level Set with Quadratic Convergence . . . . . . 20

7.2 Geometry for simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2.1 Hybrid LBM-FVM Solver for Two-phase Flow Simulation . . . . . . . . . . 21
7.2.2 Kinetic Simulation of Turbulent Multifluid Flows . . . . . . . . . . . . . . . 21
7.2.3 Lightning-fast Method of Fundamental Solutions . . . . . . . . . . . . . . . 22
7.2.4 TwisterForge: Controllable and Efficient Animation of Virtual Tornadoes . 22
7.2.5 Volcanic Skies: coupling explosive eruptions with atmospheric simulation to

create consistent skyscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.3 Geometry for dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.3.1 ADAPT: Multimodal Learning for Detecting Physiological Changes under
Missing Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.3.2 Multimodal Learning for Detecting Stress under Missing Modalities . . . . 23
7.4 Geometry for data science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.4.1 On the bottleneck stability of rank decompositions of multi-parameter per-
sistence modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



7.4.2 Signed Barcodes for Multi-parameter Persistence via Rank Decompositions
and Rank-Exact Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.4.3 Intrinsic Interleaving Distance for Merge Trees . . . . . . . . . . . . . . . . 24
7.4.4 On the stability of multigraded Betti numbers and Hilbert functions . . . . 25
7.4.5 Efficient computation of topological integral transforms . . . . . . . . . . . 25
7.4.6 Differentiability and Optimization of Multiparameter Persistent Homology . 26
7.4.7 Fine-tuning 3D foundation models for geometric object retrieval . . . . . . 26
7.4.8 DeBaRA: Denoising-Based 3D Room Arrangement Generation . . . . . . . 26
7.4.9 Smoothed Graph Contrastive Learning via Seamless Proximity Integration 27
7.4.10 To Supervise or Not to Supervise: Understanding and Addressing the Key

Challenges of Point Cloud Transfer Learning . . . . . . . . . . . . . . . . . 27
7.4.11 Self-Supervised Dual Contouring . . . . . . . . . . . . . . . . . . . . . . . . 27
7.4.12 Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features 28
7.4.13 Unsupervised Representation Learning for Diverse Deformable Shape Collections 28
7.4.14 RIVQ-VAE: Discrete Rotation-Invariant 3D Representation Learning . . . . 29
7.4.15 Deformation Recovery: Localized Learning for Detail-Preserving Deformations 29
7.4.16 Memory-Scalable and Simplified Functional Map Learning . . . . . . . . . . 29

8 Bilateral contracts and grants with industry 30
8.1 Bilateral contracts with industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8.1.1 Contract with Sanofi Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.2 Contract with DASSAULT SYSTEMES . . . . . . . . . . . . . . . . . . . . 30
8.1.3 MEDITWIN with DASSAULT SYSTEMES . . . . . . . . . . . . . . . . . . 30

9 Partnerships and cooperations 31
9.1 International research visitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9.1.1 Visits of international scientists . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.1.2 Visits to international teams . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9.2 European initiatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.2.1 Horizon Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9.3 National initiatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10 Dissemination 33
10.1 Promoting scientific activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10.1.1 Scientific events: organisation . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10.1.2 Scientific events: selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10.1.3 Journal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10.1.4 Invited talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10.1.5 Research administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

10.2 Teaching - Supervision - Juries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10.2.1 Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10.2.2 Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10.2.3 Juries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11 Scientific production 35
11.1 Major publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11.2 Publications of the year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
11.3 Cited publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



Project GEOMERIX 1

Project-Team GEOMERIX
Creation of the Project-Team: 2022 September 01

Keywords
Computer sciences and digital sciences

A3.4.1. – Supervised learning
A3.4.2. – Unsupervised learning
A3.4.4. – Optimization and learning
A3.4.6. – Neural networks
A5.5. – Computer graphics
A5.5.1. – Geometrical modeling
A5.5.4. – Animation
A6.1.4. – Multiscale modeling
A6.1.5. – Multiphysics modeling
A6.2.5. – Numerical Linear Algebra
A6.2.6. – Optimization
A6.2.8. – Computational geometry and meshes
A6.5.1. – Solid mechanics
A6.5.2. – Fluid mechanics
A8.3. – Geometry, Topology
A8.7. – Graph theory
A8.12. – Optimal transport
A9.2. – Machine learning

Other research topics and application domains

B9.2.2. – Cinema, Television
B9.2.3. – Video games
B9.5.1. – Computer science
B9.5.2. – Mathematics
B9.5.3. – Physics
B9.5.5. – Mechanics
B9.5.6. – Data science

https://radar.inria.fr/keywords/2024/computing
https://radar.inria.fr/keywords/2024/other


2 Inria Annual Report 2024
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2 Overall objectives
Historical context. Geometry has been a unifying formalism for science: predictive models of
the world around us have often been derived using geometric notions which formalize observable
symmetries and experimental invariants. Tools such as differential geometry and tensor calculus
quickly became invaluable in describing the complexity of natural phenomena and mechanical
systems through concise equations, condensing local and global properties into simple relations
between measurable quantities. Today, geometry (be it Euclidean or not) is at the core of many
current physical theories: general relativity, electromagnetism (E&M), gauge theory, quantum
mechanics, as well as solid and fluid mechanics, all have strong underlying structures that are
best described and elucidated through geometric notions like differential forms, curvatures, vector
bundles, connections, and covariant derivative. Geometry also creeps up in unexpected fields such
as number theory and functional analysis, offering new insights and even breakthroughs, e.g., the
use of algebraic geometry to address Fermat’s last theorem.

Geometry in Digital Sciences. In sharp contrast, the role of geometry was mostly ignored
at the inception of computer science. Yet, it has now become clear that digital sciences are imbued
with an overwhelming amount of fundamentally geometric and topological concepts. Some are
rather obvious, when dealing with the modeling of Euclidean shapes in computer graphics or the
analysis of images in computer vision for instance; some are more subtle, such as the “manifold
hypothesis” underlying a number of supervised or unsupervised learning techniques; and some are
only nascent, such as the fields of Information Geometry (basically, the geometry used to understand
probability distributions), Geometric Statistics (new statistical methodology for non-Euclidean
entities), and Topological Data Analysis (where algebraic topology is used as a tool to enhance
data analysis pipelines). In fact, even the discretization of physical theories needed to offer fast
numerical simulation has brought geometry back to the forefront after it was understood that
the loss of numerical fidelity in standard numerical methods is due to a fundamental failure to
preserve geometric or topological structures of the underlying continuous models: partial differential
equations (PDEs) modeling our physical world are typically encoding invariants and structures that
are independent of the choice of coordinates used to express the equations and the tensors involved
in them; but invariance to the choice of basis is often lost during discretization, as numerical
approximations will in general not capture, let alone preserve, the key geometric structures that
exist in the continuous case. Seeing these numerical issues through the lens of geometry is thus not
just of academic interest: failure to maintain geometric invariants has serious consequences for the
accuracy and stability of solutions.

Rationale. Given the unusual reach of geometry and its rich literature, there is an opportunity
to assemble a team of experts in geometry and its vernacular, to help broadly impact digital science
and technology. We thus propose the creation of a new project-team whose core scientific
mission is to use geometry as a bedrock for the development of numerical tools and
algorithms: we wish to exploit the properties of infinite-dimensional and finite-dimensional spaces
that are related with distance, shape, size, and relative position, and bringing them to bear on
computational discretizations and algorithms for analysis, processing, and simulation. Adhering
to geometric structures and invariants as a guiding principle for computations is a rich source of
both theoretical and practical challenges, allowing to combine concepts and results from different
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areas of geometry broadly construed to produce new computational tools with solid mathematical
foundations. While our team will be very focused in terms of the mathematical foundations and
tools upon which it builds, it will also be very broad in terms of applications given the pervasiveness
of geometry in sciences and technology. This makes for an unusual, yet powerful scientific setup that
will facilitate interdisciplinary projects through the common use of geometric foundations and their
specialized terminology. It will also allow us to contribute sporadically to pure and computational
mathematics when appropriate in order to push our scientific mission forward.

Positioning. We see GeomeriX as first and foremost Inria Saclay’s graphics team, but with
wider objectives afforded by the broad relevance of geometry. It is worth noting that graphics has
evolved to the point where it often intersects with applied mathematics, machine learning, vision,
and computational science in some of its efforts, and GeomeriX intends to continue this trend.

Objectives. Our project-team’s overall scientific objective is to contribute, through a geometric
perspective, both foundational and practical methods for geometric data processing. In particular,
we seek the development of predictive computational tools by drawing from the many facets of
geometry and topology: whether it be discrete geometry, basic differential geometry or exterior
calculus, symplectic geometry, persistent homology or sheaf theory, optimal transport, Riemannian
or conformal geometry, these topics of geometry inform and guide both our discretizations and
algorithmic designs towards computing. Note that we do not plan to merely adapt and exploit
geometric concepts and understanding for numerical purposes, as our focus on digital data may
even result in contributions to these mathematical fields, extending the current body of knowledge.
While we intentionally leave the range of our mathematical foundations open so as not to restrict
our potential team-wide explorations, we concentrate our research on four concrete themes,
which we believe can be most significantly impacted by a geometric approach to
developing new numerical tools:

1⃝ Euclidean shape processing: from computer graphics to geometry processing and vision,
the analysis and manipulation of low-dimensional shapes (2D and 3D) is an important
endeavor with applications covering a wide range of areas from entertainment and classical
computer-aided design, to reverse engineering and biomedical engineering. Our project-team
intends to lead efforts in this competitive field, with key contributions in shape matching,
geometric analysis, and discrete calculus on meshes.

2⃝ Simulation: traditional finite-element treatments of various physical models have had
tremendous success. Recently, a number of geometric integrators have upended the field,
either through structure-preserving integration which offers improved statistical predictability
by respecting the geometric properties of the exact flow of the differential equations, or
through novel discretizations of the state space. We intend to continue introducing novel
integration methods for increasingly complex multiphysics systems, as well as exploiting the
use of learning methods to accelerate simulation.

3⃝ Dynamical systems: we intend to leverage the geometric nature of dynamical systems to
investigate and promote high-dimensional data analysis for dynamics: the study of dynamical
systems from a limited number of observations of the state of a given system (for example,
time series or a sparse set of trajectories) offers a unique opportunity to develop scalable
computational tools to detect or characterize unusual features and coherent structures.
Meanwhile, the study of dynamical systems from a combinatorial point of view opens up the
possibility of characterizing their invariant sets and assessing their stability.

4⃝ Data science: finally, we are intent on exploring the underlying role of geometry in machine
learning and statistical analysis. This role has been put forward in the recent years, with
the emergence of approaches such as geometric deep learning or topological data analysis,
whose aim is to leverage the underlying geometry or topology of the data to enhance the
performance, robustness, or explainability of the methods used for their analysis. We
will pursue investigations toward this goal, concentrating our efforts on topics related to
explainable feature design, geometric feature learning, geometry-driven learning, and geometry
for categorical and mixed data types.

Evidently, our research efforts may at times lie across multiple of these themes given our multi-
disciplinary objectives, and it is our hope that we will all eventually participate in the four themes.
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3 Research program
Below we introduce the details of our four research themes, in four separate subsections. In each
subsection, we first present the scientific focus and research objectives of the corresponding theme,
then we detail the research topics we intend to address and how we plan to leverage topology
and geometry for each one of them. For each theme, we list the most likely contributors, and
organize the various subtopics within each theme from short to long-term goals, based on our
current expectations and focus.

3.1 Geometry for Euclidean shape processing
Euclidean space is the default setting of classical geometry in two or three dimensions. Shapes in 3D
space are of particular interest as they represent the typical objects we interact with. Geometry
processing is an area of research focusing on these low-dimensional shapes in Euclidean space,
with the goal to design algorithms, data structures, as well as analysis tools for their digital
acquisition, reconstruction, analysis, manipulation, synthesis, classification, transmission, and
animation. Digital shapes are typically discretized through either point clouds, triangle meshes, or
polygonal meshes for surfaces, and through tetrahedron or polytopal meshes for volumes. Analyzing
and manipulating these digital representations already involve fundamental difficulties in terms of
efficiency, scalability, and robustness to arbitrary sampling, for which computational geometry and
computer graphics have generated a number of key algorithms. Simple surface meshes in 3D also
offer a simple context in which to define discrete notions of basic topological properties (quantities
preserved through arbitrary stretching, such as Euler characteristic, genus, Betti numbers, etc) and
relevant geometric properties (normal, curvatures, covariant derivatives, parallel transport, etc).
Yet the digital counterpart of the low-dimensional case of Euclidean geometry is far from being
settled or complete: it remains obviously relevant in a number of scientific fields on which we plan
to focus. A few research directions of particular interest are described below.

Operator-based methods for shape analysis We plan to develop novel approaches for
representing and manipulating geometric concepts as linear functional operators. Specifically we will
focus on tools for shape matching, design and analysis of differential quantities such as vector fields
or cross fields, shape deformation and shape comparison, where functional approaches have recently
been shown to provide a natural and discretization-agnostic representation [122, 55, 56, 132]. This
“functional” point of view is classical in many scientific areas, including dynamical systems (where
the pullback with respect to a map is closely related to the Koopman or composition operator,
allowing the study ergodicity or mixing property of non-linear maps through the spectral properties
of a linear operator), differential geometry (where vector fields are often defined by their action
on real-valued functions) and representation theory among others. However, it has only recently
been adopted in geometry processing with tremendous and constantly growing potential in both
axiomatic or even learning-based approaches [110, 100, 83]. We will continue developing efficient
and robust algorithms by considering shapes as functional spaces and by representing various
geometric operations as linear operators acting on appropriate real-valued functions. In addition
to the efficiency and robustness of methods obtained by considering this linear operator point of
view of geometry processing and dynamical systems, another very significant advantage of these
techniques is that they allow to express many different geometric operations in a common language.
This means, for example, that it makes it easy to define the pushforward of a vector field with
respect to a map by simply considering a composition of appropriate discrete operators. Despite
the significant recent success of tools within this area, especially related to the functional map
framework [123], there does not exist a unified coherent theoretical framework in which different
geometric concepts can be represented and manipulated via their functional equivalents. Our
main long-term goal therefore would be to establish a novel field within geometry processing by
creating both a computational framework and a coherent theoretical formalism in which all of the
different basic geometric operations can be expressed, and thus in which different concepts can
“communicate” with one another. We believe that such a formalism and associated computational
tools, already quite well developed, will not only greatly extend the scope of applicability of many
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existing geometry processing pipelines, but will also help expand this language to novel concepts,
and ultimately help pave the way towards representation-agnostic geometric data manipulation.

Discrete metrics and applications. While three-dimensional shapes are often encoded via their
Euclidean embedding, numerous research efforts have focused on studying and discretizing their
intrinsic metric. Regge calculus [130], an early approach to numerical relativity without coordinates,
proposed the use of edge lengths to encode a piecewise-Euclidean metric per simplex, from which the
Riemann curvature tensor can be easily computed to derive local areas or curvatures. This early work
led to a series of alternative metric representations: tip angles, for instance, are known to encode
the intrinsic geometry of a triangle mesh up to a scaling, while local measurements (an angle [131]
or a length cross-ratio [113] per edge) later formed the basis of circle patterns [59, 105] as well as
conformal representations [137]; the discrete Laplace-Beltrami cotan formula [126] also determines
the edge lengths of a triangle mesh (and thus its discrete metric) up to a global scaling [149]. More
recently, generalized notions of metrics were proposed; for instance, [97] presented a characterization
of an augmented discrete metric resulting from the orthogonal primal-dual structure of weighted
triangulations. Common to many of these various metric characterizations is the existence of convex
energies which allow to efficiently compute these metrics from various boundary conditions. We
intend to investigate the discrete treatment of metric for low-dimensional manifolds as a counterpart
to the discretization of antisymmetric tensors (differential forms), which is far less studied — and
a discrete theory unifying symmetric and anti-symmetric tensors remains elusive despite recent
advances [96]. Moreover, the metric of a surface is known in the continuous realm to induce Hodge
stars and a canonical torsion-free Levi-Civita connection (or parallel transport), but this picture
is far less clear for discrete manifolds, even if the construction of arbitrary-order discrete Hodge
stars and metric connections are well understood by now. A few research directions on generalized
metrics seem particularly interesting due to their likelihood of resulting in novel algorithmic and
computational frameworks:

• Metric-dependent meshing: Given a set of metric-based operators, optimized mesh structures
can be designed to offer optimal accuracy akin to Hodge-star mesh optimization for the
augmented weighted metric proposed in [119]. Another interesting research question is the
existence and construction of intrinsic Delaunay triangulation, the most common discrete
shape representation, with respect to a particular metric [60].

• Metric-aware sampling: Metric-dependent descriptors such as the pair correlation function
are particularly efficient in characterizing statistical properties of point distributions for
texture synthesis [84]. Extending this framework to arbitrary non-flat domains through
Multi-Dimensional Scaling (MDS) seem particularly promising.

• Shape characterization: Highly convoluted embeddings like the cortical surface of the brain
and its functional connectivity graph are naturally hyperbolic in nature [65]. However,
investigating a link between cortical folding and the volumetric fiber bundle structure from
a pure geometric viewpoint through a hyperbolic metric characterization has surprisingly
not be done in brain analysis, despite striking visual similarities between brain folding and
geometric realizations of the hyperbolic plane (see [142] and Taimin, a’s crochet model). We are
hoping that this intrinsic metric characterization can be investigated through recent discrete
hyperbolic parametrization tools [92], which may also lead to other shape classification
techniques in more general contexts.

• Piecewise-linear maps: We also wish to study the classification of the deformation of a triangle
mesh through its induced metric change in the embedding space. Developing an approach to
decompose such a diffeomorphic piecewise-linear map into canonical geometric transformations
through either linear algebra or convex minimization could offer new discrete equivalences
for conformal, equiareal, and curvature-preserving maps between triangulations, with direct
applications to mesh parameterization and more general processing of discrete meshes.

• Geodesic abstractions: curve-network representations [95] based on a few geodesics to describe
a shape provide a compact encoding of surfaces. While it is increasingly useful for artistic
depictions, we also want to study its relevance as a compact compression scheme from which
the shape and its metric can be derived with controllable precision.
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• Metric-dependent cage: Finally, we also want to understand how to define optimized metric-
dependent cages for intuitive & expressive deformation and animation of complex shapes [140],
and how these cages can be understood as polygonal or polyhedral cells to locally simplify a
simplicial complex.

Discrete differential and tensor calculus. When working on low-dimensional spaces, the use
of meshes (as opposed to just point clouds) pays dividends as it allows for the development of
discrete versions of Exterior Calculus (see DEC [79] or FEEC [53]), where k-dimensional integrals
can be directly evaluated in k-cells, and differentiation can formally achieved through the boundary
operator: the concept of chains and cochains from algebraic topology forms the basis of a discrete
analog of Cartan’s exterior calculus of differential forms, providing crucial numerical tools such
as a discrete de Rham cohomology and a discrete Helmholtz-Hodge decomposition that precisely
mimick their continuous counterparts. Moreover, finite elements of arbitrary order can be associated
with these discrete forms through subdivision [94] to provide a powerful Isogeometric Analysis
(IGA). Recent developments [111, 93] have offered also a discrete approach to tangent vector
fields. While DEC encodes vector fields as 1-forms, processing tangent vectors and, more generally,
directional fields sampled at vertices of discrete surfaces requires the development of discrete (metric)
connections [76, 111] (which can be seen as discrete equivalent to the Christoffel symbols) to handle
the non-linearity of non-flat domains. From these connections can be derived the usual continuous
notions of covariant derivatives or Killing operator, and these discrete operators demonstrate the
same intimate link between geometry and topology as exemplified by the hairy ball theorem (Hopf
index theorem). While these operators apply equally well on discrete three-manifolds, much remains
to do: properly defining the notion of curvature matrix-valued 2-form or torsion vector-valued 2-form
in 3D and checking that these definitions provide consistent Bianchi identities (i.e., there exists
an exterior covariant derivative satisfying fundamental geometric and topological properties) is an
exciting research direction. Not only will it allow to deal with the line singularities in hexahedral
meshing robustly, but it will also provide a Bochner Laplacian (also called the vector Laplacian) in
3D devoid of the type of spurious modes that discrete Laplacians over flat domains can introduce if
one does not enforce a proper discrete deRham complex. Such a tensor calculus for three-manifolds
may allow us to explore possible applications in the context of general relativity in the longer
term. Finally, the design of simplicial or cell meshes that guarantee accurate computations while
approximating a given domain well remains an important endeavor for practical applications.

3.2 Geometry for simulation
Mathematical models of the evolution in time of mechanical systems generally involve systems
of differential equations. Simulating a physical system consists in figuring out how to move the
system forward in time from a set of initial conditions, allowing the computation of an actual
trajectory through classical methods such as fourth-order Runge-Kutta or Newmark schemes.
However, a geometric — instead of a traditional numerical-analytic — approach to the problem of
time integration is particularly pertinent [98]: the very essence of a mechanical system is indeed
characterized by its symmetries and invariants (e.g., momenta), thus preserving these geometric
notions into the discrete computational setting is of paramount importance if one wants discrete
time integration to properly capture the underlying continuous motion. Considering mechanics from
a variational point of view goes back to Euler, Lagrange and Hamilton [86], and Poincaré famously
stated that geometry and physics are “indissociable”. The variational principle most important
for continuous mechanics is due to Hamilton, and is often called Hamilton’s principle or the
least action principle: it states that a dynamical system always finds an optimal course from one
position to another. One consequence is that we can recast the traditional way of thinking about
an object accelerating in response to applied forces, into a geometric viewpoint: the path followed
by the object between two space-time positions has optimal geometric properties, analogous to
the notion of geodesics on curved surfaces. This point of view is equivalent to Newton’s laws in
the context of classical mechanics, but is broad enough to encompass physical models ranging to
E&M and quantum mechanics [116]. While the idea of discretizing variational formulations of
mechanics is standard for elliptic problems using Galerkin Finite Element methods for instance, only
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recently did it get used to derive variational time-stepping algorithms for mechanical systems [115].
These variational integrators have been shown to be remarkably versatile, powerful, and general for
simulations of physical phenomena when compared to traditional numerical time stepping methods:
the symplectic character of variational integrators guarantees good statistical predictability through
accurate preservation of the geometric properties of the exact flow of the differential equations. We
endeavor to continue contributing to this particular application of geometry and extend it further,
as we foresee a number of interesting scientific developments and industrial applications.

State-space discretization of statistical physics. Kinetic equations are used to describe a
variety of phenomena in various scientific fields, ranging from rarefied gas dynamics and plasma
physics to biology and socio-economics, and appear naturally when one considers a statistical
description of a large particle system evolving in time. In incompressible fluid simulation, kinetic
solvers based on the lattice Boltzmann method (LBM) have generated growing interest due to
their use of the Boltzmann transport equation and to its unusual state-space discretization based
on a computationally-efficient lattice [135]: compared to macroscopic solvers directly integrating
Navier-Stokes equations, LBM totally bypasses the difficult issue of discretizing advection to high
order, and absence of global pressure solves makes for extremely efficient parallel implementations,
which are now surpassing alternative discretizations [108]. However, the numerical treatment of
the collision operator of the Boltmann equation has not reached maturity; most surprising is the
complete absence of geometric approaches to deal with Boltzmann equations. One should be able
to formulate a variational approach to LBM based on Hamilton’s principle to derive a systematic
integrator with guaranteed accuracy and structure-preserving properties. Moreover, while dealing
with isothermal and incompressible flows is a good starting point, the kinetic standpoint of fluid
dynamics is not theoretically restricted to this case: far more complex physical systems, from
compressible flow (with shocks), to thermal conductivity, to even acoustics for example, can
be handled; but far less is known on how to handle these more involved cases computationally,
because no systematic numerical approach to handle Boltzmann equations is known. Success in
our geometric approach to LBM should offer a much better handle to deal with these difficult
cases: between new Hermite regularization tools [61, 75] and the recent introduction of variational
integrators for non-equilibrium thermodynamical systems mentioned above should provide the
necessary theoretical foundations to establish a geometric solver for this generalized case.

Learning-aided simulation. Computational physics is experiencing a tectonic shift as data-
driven approaches are quickly becoming mainstream. While we do not adhere to the idea being
floated that numerical integration could be simply “learned” to improve current solvers, the fact
is that many machine learning tools may have profound influence in practical applications using
simulation. Long standing problems such as the design of perfectly matched layers (PML, an
artificial absorbing layer for transport equations used to reduce the domain of simulation without
suffering from reflected waves [73]) or flux limiters in high resolution schemes [144] (to avoid
the spurious oscillations (wiggles) that would otherwise occur due to shocks or sharp changes)
could be found through training, and applied at very low numerical cost. We are curious to see
if geometry can help design better architectures or approaches for this type of learning-aided
simulation, by helping with better loss functions (with soft constraints) or better architectures (to
enforce hard constraints) that account for the importance of structure preservation. Learning the
highly non-linear and chaotic dynamics of fluids is also an interesting direction: we believe that one
can infer predictive high-frequency details of a turbulent flow from a low-resolution simulation as
it is an attractive alternative to non-linear turbulence modeling, extending the computationally-
expensive Reynolds-Averaged Navier-Stokes (RANS [51]), Large-Eddy Simulation (LES [103]), or
Detached-Eddy Simulation (DES [136]) models used in CFD. Many other learning efforts in the
domain of simulation are being explored, in particular towards the goal of allowing real-time design
of shapes that satisfy some physical properties, such as lowest drag for improved aerodynamics or
highest stiffness for a light cantilever.
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Geometric integration of physical systems and multiphysics. Although the use of geometric
integrators for differential equations in computational physics has recently brought off many
numerical improvements, the large body of knowledge in differential geometric mechanics remains
vastly under-utilized in discrete mechanics. Many mechanical systems require geometric objects
such as diffeomorphisms, vector fields, or (principal) connections for which no structure-preserving
discretization exists. Hydrodynamics, for instance, has well established and rich differential
geometric foundations, but rare are the numerical methods that take advantage of this rich
body of knowledge as yet. Yet, satisfying a form of “particle relabeling” symmetry [116] on a
discrete level could directly enforce Kelvin’s circulation theorem, a momentum preservation as
important as angular momentum preservation for rigid bodies. Relativity is another example, albeit
much more involved, where structure-preserving numerics would strongly impact the scientific
community: having discretizations automatically enforcing Bianchi’s identities would not only
simplify the numerical procedures involved in gravitational theory (as spectral accuracy would no
longer be required to avoid spurious modes), but could in fact result in conservation of energy and
angular momentum. Moreover, multiphysics (coupled mechanical systems involving more than
one simultaneously occurring physical field) can be consistently described through constrained
variational principles: a simple, yet already interesting example is the case of the equations of
motion for the garden hose, where rod dynamics coupled with fluid motion was only fully modeled
(along with its nonlinear solutions of traveling-wave type) a few years back [128] through such
a geometric treatment. Now that a variational formulation of nonequilibrium thermodynamics
extending Hamilton’s principle to include irreversible processes has been proposed [90], we are
particularly interested in advancing further the arsenal of computational methods for physical
simulation.

3.3 Geometry for dynamical systems
Dynamical systems – whether physical, biological, chemical, or social – are ubiquitous in nature, and
their study deals with the concept of change, rate of change, rate of rate of change, etc. Dynamical
systems are often better elucidated and modeled through topology and geometry. Whether we
consider a continuous-time dynamical system (flow) or discrete-time dynamical system (map),
the geometric theory of dynamical systems studies phase portraits: on the state-space manifold
(a geometric model for the set of all possible states of the system), the global behavior of the
dynamical system is determined by a cellular structure of basins enclosed by separatrices, each
basin being dominated by a different specific behavior or fate. A system’s trajectories on the
state-space manifold determine velocity vectors by differentiation; conversely, velocity vectors
determine trajectories by integration. Bifurcations can also be understood as geometric models for
the controlled change of one system into another, while the rate of divergence of trajectories in phase
space measures a system’s stability. Given this overwhelming relevance of geometry in dynamical
systems, we intend to dedicate some of our activities to develop geometry-based computational
tools to study time series and dynamical systems: while classic dynamical systems theory has
established solid foundations to study structures in steady and time-periodic flows and maps, new
tools are needed to analyze the complexity of time series or aperiodic large-scale flows from sampled
trajectories, and to automatically generate a simplified skeleton of the overall dynamics of a system
from input data. We discuss a few directions we are interested in further impacting next.

Time series. Geometric methods play an important part in the study of time series. Of particular
interest are time-delay embeddings, which are generically able to capture the underlying state
space and dynamics from which the time series data have been acquired, by the Takens embedding
theorem [139]. Such embeddings transform discrete time series into point clouds in Euclidean space,
so that the underlying geometry of the point cloud reflects the geometry of the phase space the
data originate from. By doing so, questions related to the seasonality or anomalous behavior of
the time series are naturally reformulated into questions about the geometry or topology of their
embeddings [125]. Beside this approach, other more direct methods apply geometric or topological
tools in the original physical or frequency domain, which, despite its simplicity, has proven to be
relevant in various contexts [78, 82]. A common thread to all these developments is their restriction
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to numerical time series, including (but not restricted to) data for which geometry plays an obvious
role—e.g. inertial or gyroscopic sensor data. With potential medical applications in mind, one
of our main long-term goals will be to adapt and extend these approaches to handle categorical
data, in connection to the item Geometry for categorical and mixed data types in the Geometry
for data science theme. We also plan to find principled methods to tuning the various parameters
involved in the techniques, e.g. the window size in time-delay embeddings: we will seek to optimize
or learn these parameters automatically, in connection to the item Geometry-driven learning in the
Geometry for data science theme. We will also seek to make these parameters adaptive, e.g. using
time-varying window sizes in time-delay embeddings of irregular time series, in order to obtain
more accurate data representations and improved learning performance.

Coherent structures. Another interesting area in need of new numerical methods concerns
coherent structures, i.e., persisting features of a flow over long periods that tend to favor or inhibit
material transport between distinct flow regions. While there is no universally agreed-upon definition
for coherent structures (there exist ergodicity-based [64], observer-based [117], and probabilistic [88]
approaches to their definition), most variants and associated computational methods assume a fine
knowledge of the Eulerian velocity field in space and time to deduce a good approximation of the
flow. However, flows are often known only as a set of sparse particle trajectories in time (an example
is the trajectory of buoys in the ocean). Such a sparse sampling of the dynamical system does
not lend itself well to a geometric analysis of transport, so topological methods have recently been
proposed to extract structures from a sparse set of trajectories by measuring their entanglement [141,
52, 148] based on the theory of braid groups, a classical area of topology. Coherent regions can then
be defined as containing particles that possibly mix with other particles within the region itself but
do not mix with particles outside the region; the set of trajectories arising from the particles within
a coherent region forms a coherent bundle. Even if the use of braid groups offers sound foundations
and numerical tools for the definition of coherent structures in 2D, there has been only limited
efforts in developing practical and scalable computational tools for the efficient analysis of flow
structures in 3D, offering a clear opportunity for us to try new geometric insights.

Invariant sets. Much of the theory of dynamical systems revolves around the existence and
structure of invariant sets, which by definition are subsets of the state space that are invariant
under the action of the dynamics. Invariant sets come in many different forms (stationary solutions,
periodic orbits, connecting orbits, chaotic invariant sets, etc), and their structure can be very
complicated and can undergo drastic changes under perturbations of the system, thus making their
study difficult. This is all the more true in practical applications, where the systems are only known
through space and/or time discretizations. Conley index theory [74] overcomes these issues by
restricting the focus to invariant sets that admit an isolating neighborhood, and by introducing a
topological invariant—the Conley index—that characterizes whether such isolated invariant sets
are attracting, repelling, or saddle-like. It is defined as the homotopy type of a pair of compact
subsets of the neighborhood, and it is proven to be independent of the choice of neighborhood—thus
characterizing the invariant set itself. We are interested in the study of invariant sets in the discrete
space and continuous time setting, where the space is typically described by a simplicial complex
and the dynamics by a combinatorial vector (or multivector) field. Building upon Forman’s seminal
work in combinatorial dynamical systems [85], recent advances [57, 109] have shown that isolated
invariant sets and their Conley indices can be properly defined even in this setting, and that they
can be related to the dynamics of some upper semicontinuous acyclic multivalued map defined
on the geometric realization of the simplicial complex; in simpler terms, not only can Conley
index theory be adapted to the combinatorial setting, but it also connects to its classical analog in
the underlying space. Two important questions for applications arise from this line of work: (1)
how to compute the invariant sets and their Conley indices (including choosing relevant isolating
neighboroods) efficiently? (2) how do they behave under perturbations of the input vector field or
simplicial complex? These questions have just started to be addressed [80, 81], mostly through
the lens of single-parameter topological persistence theory, developed in the context of topological
data analysis. We intend to push this direction further, notably using multi-parameter persistence
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theory to cope with some of the key difficulties such as the choice of isolating neighborhoods.

3.4 Geometry for data science
The last decade has seen the advent of machine learning (ML), and in particular deep learning
(DL), in a large variety of fields, including some directly connected to geometry. For instance,
DL-based approaches have become increasingly popular in geometry processing [129] due to their
ability to outperform state-of-the-art, domain-specific methods by leveraging the ever-increasing
amounts of available labeled data. On the downside, DL approaches suffer from a general lack of
explainability. Moreover, their performances can be disappointing on small data due to their large
numbers of parameters; this is especially true with end-to-end learning pipelines, which tend to
require humongous amounts of training data to learn the right data representation. Finally, DL is
by essence tied to Euclidean data representations, and as such it requires intermediate transforms in
order to be applicable to non-Euclidean data types such as graphs or probability measures. Because
of these limitations, we are seeing a rise of geometric and topological methods for data science
in general, and for ML and DL in particular, whose aim is to help address the aforementioned
challenges as well as others. For instance, geometric deep learning [62] tries to generalize deep
neural models to non-Euclidean domains. This includes for instance using information geometry to
apply deep neural models in probability spaces. Topological data analysis (TDA) [121] is another
popular approach to enhance ML and DL methods. It contributes to data science in at least
three different ways: first, by providing data mining tools that can help users uncover hidden
structures in data; second, by providing generic descriptors for geometric data that can be turned
into features for ML and DL with provable stability properties; third, by integrating itself deeply
into existing ML methods or DL architectures to enhance their performances or to analyze their
behavior [70, 112]. Other contributions of geometry to data science at large include: the use of
Forman’s Ricci curvature and its corresponding Ricci flow in networks, to understand the networks’
properties and growth [145]; the application of the Hodge-Hemholtz decomposition to statistical
ranking problems with sparse response data, with theoretical connections to both PageRank and
LASSO [102]; the use of Reeb graphs or Morse-Smale complexes in statistical inference [72] as well
as in data visualization [143]. These important developments reinforce our argument that geometry
and topology have their role to play in the elaboration of the next-generation data analysis tools.
We plan to focus on a few research directions related to these developments, which are of particular
interest in our view.

Deep learning for large-scale 3D geometric data analysis. We first propose to develop
efficient algorithms and mathematical tools for analyzing large geometric data collections using Deep
Learning techniques. This includes 3D shapes represented as triangle or quad meshes, volumetric
data, point clouds possibly embedded in high-dimensions, and graphs representing geometric (e.g.
proximity) data. Our project is motivated by the fact that large annotated collections of geometric
models have recently become available [69, 147], and that machine learning algorithms applied to
such collections have shown promising initial results, both for data analysis as well as synthesis. We
believe that these results can be significantly extended by building on recent advances in geometry
processing, optimization and learning. Our ultimate goal is to design novel deep learning techniques
capable both of handling geometric data directly and of combining and integrating different data
sources into a unified analysis pipeline. A key challenge in this project is the fact that geometric
data can come in a myriad different representations, such as point clouds and meshes among others,
with variable sampling and discretization. Furthermore, geometric shapes can undergo both rigid
and non-rigid deformations. Unfortunately, most existing deep learning approaches focus only
on a particular type of representations and deformation classes (e.g., considering purely extrinsic
or purely intrinsic methods). Instead we propose to place special focus on designing learning
techniques capable of handing diverse multimodal data sources undergoing arbitrary deformations,
in a coherent theoretical and practical framework. Moreover we propose to develop novel powerful
interactive tools for analysis and annotation, to help harness user input, and also provide better
mechanisms for exploration of variability in the data [132, 124].
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Explainable geometric and topological features for data. Another of our goals is to design
geometric and topological features that can capture richer content from the data, while maintaining
the robustness and stability properties that the existing features enjoy. If we can make our features
rich enough so that they characterize the input data (or their underlying geometric structures,
assuming such structures exist) completely, then we will be able to leverage them in the context of
explainable AI, to compute pre-images with guarantees on the corresponding interpretations. In
cases where our features cannot completely describe the data, we will study the geometry of the
fibers of the feature extraction step, in order to quantify the discrepancy that may appear between
different interpretations of the same feature. We envision two complementary approaches for this:

• The first approach relies on feature aggregation. In the context of TDA for instance, one
may consider using multiple filtrations (or filter functions on a fixed simplicial complex),
computing their corresponding topological descriptors, then aggregating these descriptors
together to form a feature vector.

• The second approach relies on more elaborate geometric and topological tools to design
the features. The idea is to encode the joint effect of multiple geometric and topological
constructions on the data, in a more integrated way than just by aggregating the corresponding
features. By encoding more complex effects, we hope to extract a richer content using smaller
constructions.

Research on the first approach in TDA started with [77, 91], who proved that, in the special case
where the data are sampled from some subanalytic compact sets in Euclidean space Rn, the compact
sets themselves are fully described by the aggregated features obtained by orthogonal projections
onto lines. This follows from a more fundamental result on the invertibility of the Radon transforms
of constructible functions [134], to which the above aggregated features belong. This initial result
has sparked a thriving new direction of research, exploring larger and larger classes of compact
sets [101, 114, 120]. Many important questions arise from this line of work, some of which have been
partially addressed, including: what kind of stability or robustness properties do these aggregated
features enjoy? Can the size of the collection of filter functions used be reduced, to become finite
and (more importantly) independent of the compact set under consideration? Can the aggregated
features be computed efficiently? Can non-Euclidean compact sets, such as manifolds or length
spaces, be considered as well, with similar guarantees?

The second approach is related to the development of multi-parameter persistence [66], which is
undeniably the most widely open and long-standing research topic in TDA today. The core challenge
is to define computationally tractable algebraic invariants that can capture as much of the joint
structure of multiple topological constructions as possible. The notorious difficulty of this question
comes from the fact that the algebraic objects underlying multi-parameter topological constructions
are significantly more complicated than the ones underlying single-parameter constructions. The
question also connects to notoriously hard problems in other areas of pure mathematics, such
as the classification of isomorphism classes of indecomposable poset representations in quiver
representation theory for instance. It can benefit from these connections, as mathematical tools that
have been developed for those problems can be imported into the TDA literature—several promising
such imports have been made in the recent past, including from representation theory [58] and
from sheaf theory [104]. In turn, mathematical and algorithmic advances made in multi-parameter
persistence may benefit these other areas of mathematics as well. This is clearly a high-risk and
long-term research topic, but if successful, it may eventually have an enormous impact on TDA
and related areas.

Geometric feature learning. Geometry and topology have played a key role in the design of
feature extraction pipelines for certain types of data. The numerous existing geometric features
for geometry processing (shape contexts [87], differential and integral invariants [127], heat or
wave kernel signatures [54, 138], etc.) are a sign of the importance of this topic for the computer
graphics community. Meanwhile, the TDA community has developed generic feature extraction
pipelines, based on combinatorial constructions and their algebraic invariants, which have proven to
be useful in a variety of application domains [121]. All these approaches are, however, handcrafted,
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with hyperparameters being tuned via manual, grid, or random search. Our goal is to make
these approaches transition from a paradigm of feature engineering to that of feature learning, in
order to set up end-to-end learning pipelines for improved performances and adaptability. Two
complementary directions are considered:

• designing piecewise-smooth variants of the existing pipelines, with a fine control over the
underlying stratification. This will make it possible to apply variational optimization methods,
typically stochastic (sub-)gradient descent, and to optimize the gradient sampling steps for
improved convergence rates.

• designing novel pipelines based on a combination of geometric/topological tools and deep
learning, in order to get the best out of both worlds.

Research in the first direction is still in its infancy. Promising theoretical advances were made
recently, towards understanding the piecewise differentiability of the basic topological persistence
operator in full generality [107], as well as towards optimizing its parameters using classical
stochastic gradient descent [67]. Can the knowledge gained in these studies about the underlying
stratification of the operator be leveraged to optimize the gradient sampling step and thus improve
the convergence rates? Can these results be extended to more advanced pipelines, such as the one
for Mapper or for zigzags and multi-parameter persistence?

The idea behind the second direction is to integrate topological or geometric layers into neural
network architectures such as auto-encoders or GANs for feature extraction — the challenge being
to determine how to do it in the appropriate way, so that we can make the most of this combination.
This question connects to the research topic Geometry-driven learning described further down in
this section.

Geometry-driven learning. Most of the contributions of geometry and topology to machine
learning until recently have been to the design of pre-processing steps (e.g. feature extraction) to
enhance the performances of the learning pipeline. There is now a thriving effort of the community
toward integrating geometric and/or topological computations deeper into the core of the pipeline.
This includes for instance: ToMATo [70], which integrates a TDA-based feedback loop into density
based algorithms to improve their stability and robustness; topological regularizers [71, 99], which
add topology-based regularization terms to the loss in supervised statistical learning; topological
layers [68, 89, 106], which are meant to be incorporated into neural networks. Meanwhile, geometry
and topology have been used to analyze the behavior of neural networks [133, 63]. This exciting line
of work is just emerging, and our intent is to push this direction further, in particular to address
the following important questions:

• How can we generalize the use of topological layers in neural networks? This question
is connected to the differentiability of the TDA pipeline, addressed in the research topic
Geometric feature learning. Inded, generalizing the current (nascent) framework for differential
calculus and optimization with the TDA pipeline will be key to designing both generic and
effective topological layers. Another more practical aspect of the question is to evaluate the
contribution of topological layers as initial or intermediate layers, depending on the neural
network architecture that they are combined with and on the data they are applied to.

• The same question arises for topological regularizers, with similar theoretical and practical
challenges.

• The development of richer families of geometric and topological descriptors, undertaken in the
item Richer geometric and topological features for data, will eventually lead to the question of
generalizing the current differentiable framework to these new descriptors, in order to make
them as widely applicable as the current descriptors, and also to the practical question of
determining how to best combine them with existing loss functions, regularizers, or neural
network architectures.

• The aforementioned contributions and research directions concern mostly supervised learning.
Can we contribute as well to unsupervised learning problems, including clustering (as ToMATo
does already for density-based clustering), dimensionality reduction, or unsupervised feature



14 Inria Annual Report 2024

learning? This question connects also to the research topic Geometric feature learning
described previously. One direction we may explore is the design of geometric or topological
layers to be inserted in unsupervised neural network architectures such as auto-encoders or
GANs.

• Finally, as TDA is concerned primarily with topology, an obvious (yet still wide open) question
to ask is whether it can contribute to the current effort towards generating neural network
architectures automatically.

Geometry for categorical and mixed data types. Categorical data types are notoriously
hard to deal with in the context of ML and AI. Indeed, most of the existing ML toolbox has been
designed specifically to work with numerical variables, usually sitting in some vector or metric space.
By contrast, spaces of categorical data do not naturally come equipped with a linear structure
nor a metric. More importantly, these spaces are discrete by nature, so choices of metrics or
(dis-)similarity measures can be scarce, with limited effects on the learning efficiency. To make
things worse, categorical variables are often mixed with numerical variables, and choosing a proper
weighting for them is a challenge in its own right. Meanwhile, categorical variables play an important
part in many applications: for instance, in precision medicine, where the monitoring of patients
relies on collected longitudinal data that include not only numerical variables such as temperature
or blood pressure, but also categorical variables such as illness antecedents or symptoms lists. Thus,
handling categorical and mixed data types represents an important challenge today. Unfortunately,
with very few exceptions [146], it has been mostly overlooked so far in the development of topological
methods for ML and AI, so our goal will be to help fix this situation. The standard approach for
handling categorical variables is to define a proper vector representation, then to apply—either
off-the-shelf or with minor adaptations—an analysis method designed for numerical variables to
the new data representation. A prototypical instance of this approach is Multiple Correspondance
Analysis for dimensionality reduction [50], which applies classical PCA to the one-hot encoding
matrix of the input data. A variant of the approach replaces the vector representation by a suitable
metric or (dis-)similarity measure on the initial categorical variables or on some transformed version
of those. For instance, in clustering, one can define a metric on the input data, e.g. Jaccard or
Hamming distance, then apply a hierarchical bottom-up clustering algorithm such as single-linkage
to the resulting distance matrix. This variant seems quite appropriate for geometric or topological
methods, since the latter typically work with metric or (dis-)similarity spaces. The challenge is to
determine with which metrics or (dis-)similarity measures, and on which data types, geometric or
topological methods will be provably better.

A more refined version of the approach learns the new data representation instead of engineering
it, which is particularly relevant when end-to-end learning pipelines are sought for. The methods are
usually taylored to a specific data type, for instance word2vec [118] computes word embeddings for
text data using a two-layer neural network. Our developments in the research topic Geometry-driven
learning will make it possible to combine TDA layers with such networks, and thus to benefit from
the most recent advances on representation learning for these data types. The challenge will be to
understand when and how to make the most of this combination.

4 Application domains
Our work aims at a wide range of applications covering 3D shape analysis and processing, simulation,
and data science in general. While we typically focus on contributions that are of a fundamental,
mathematical and algorithmic nature, we seek collaborations with academics and industrial from
applied fields, who can use our tools on practical and concrete problems. Here are a few examples
of collaborations:

• In the context of 3D geometry processing, we collaborate with Dassault Systèmes for a) the
PhD of Lucas Brifault on the design of novel geometric representations for shapes through
measure theory and b) the PhD of Mariem Mezghanni on the design of physical simulation
layers for 3D modeling.
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• In the context of personalized medicine, we collaborate with statisticians and medical doctors
to incorporate our geometric and topological features into learning pipelines to design better
dynamic treatment regimens (AEx PreMediT).

• In a collaboration with the French Ministry of Defense, we seek to develop tools to analyze
multimodal time series data in order to predict the appearance of G-LOCs among fighter jet
pilots in training or in operation (PhD of Julie Mordacq).

Beside these few illustrative examples, GeomeriX also maintains regular collaborations with
Sanofi, EDF, Danone R&D, Immersion Tools, as well as with several key players in the world-wide
tech industry, including Ansys, Adobe Research, Disney/Pixar, NVidia.

5 Highlights of the year
5.1 Thematic programs organization

• Mathieu Desbrun, in collaboration with Jacques-Olivier Lachaud (Université de Savoie Mont-
Blanc), organized the Year of Geometry under the auspices of CNRS’ GdR Informatique
Fondamentale et ses Mathématique. Two workshops (one on AI for Geometry, one on
Geometry in Industry), two Young Researchers in Geometry meetings, and a 5-day capstone
conference at CIRM in Luminy were organized for this year-long effort.

5.2 Awards
• Jiong Chen and Mathieu Desbrun received a Best Paper award at the ACM SIGGRAPH

2024 conference in Denver, CO, the premier conference in graphics, for their paper on
preconditioning of boundary integral equations [20].

5.3 Distinctions
• Steve Oudot was an Invited Speaker at the 9th European Congress of Mathematics (ECM), a

quadriennal event that, together with the International Congress of Mathematicians, constitute
the two main events of the mathematics community — see details here.

5.4 HdR
• Pooran Memari defended her Habilitation à diriger des recherches at Institut Polytechnique

de Paris on September 5, 2024. Title: "Points, Patterns, and Shapes Towards Accessible
Geometric Modeling." The corresponding HdR Jury was composed of:

– David Coeurjolly, Directeur de recherche au CNRS, Université de Lyon (Examiner)
– Stefanie Hahmann, Professor at Université de Grenoble - Ensimag (Examiner)
– Leif Kobbelt, Professor of Computer Science, RWTH Aachen University (Reviewer)
– Sylvain Lefebvre, Directeur de recherche, Inria Nancy (Reviewer)
– Daniele Panozzo, Associate Professor of Computer Science, New York University (Re-

viewer)

6 New software, platforms, open data
Although software production and maintenance is not a priority for our team, code is systematically
used to develop proof-of-concept implementations, both for reproducibility and to facilitate techno-
logy transfer. We adopt an opportunistic approach to code development depending on the project
being carried out and the will of the main developers of the software: while many projects limit
their involvement in code sharing to a minimum just in order to prove the usefulness and reliability

https://www.ecm2024sevilla.com/index.php/programme/invited-speakers
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of their contributions, others have large applicability and therefore deserve more time and effort to
be devoted in order to provide full-fledged software packages. In particular, our research sometimes
yields new packages in well-established libraries such as Cgal in computational geometry or Gudhi
in topological data analysis, to which we contribute either directly or indirectly.

6.1 Open Source Code
• Ballmerge Surface Reconstruction CGAL package with Telecom Paris, TU Wien, TU Delft,

was released in 2024.

• We have released several packages in github associated with the papers published by Maks
Ovsjanikov and Mathieu Desbrun (and their collaborators). All of these packages are freely
available and provide open-source implementations for nearly all the published papers.

6.2 New software
6.2.1 MFS-chol

Name: Lightning-fast Method of Fundamental Solutions

Keywords: 3D, Boundary element method

Functional Description: The method of fundamental solutions (MFS) and its associated bound-
ary element method (BEM) are commonly used due to the reduced dimensionality they offer:
for three-dimensional linear problems, they only require variables on the domain boundary
to solve and evaluate the solution throughout space, making them a valuable tool in a wide
variety of applications. However, MFS and BEM have poor computational scalability and
huge memory requirements for large-scale problems, limiting their applicability and efficiency
in practice. By leveraging connections with Gaussian Processes and exploiting the sparse
structure of the inverses of boundary integral matrices, we introduce a variational precon-
ditioner that can be computed via a sparse inverse-Cholesky factorization in a massively
parallel manner. We show that applying our preconditioner to the Preconditioned Conjugate
Gradient algorithm greatly improves the efficiency of MFS or BEM solves, up to four orders
of magnitude in our series of tests.

Release Contributions: N/A

Publication: hal-04589038v1

Contact: Mathieu Desbrun

Participants: Jiong Chen, Mathieu Desbrun

7 New results
We list our new results for each of the four themes that our team is articulated around.

7.1 Geometry for Euclidean shape processing
7.1.1 SING: Stability-Incorporated Neighborhood Graph

Participants: Pooran Memari, Steve Oudot.

https://www.cgal.org/
https://hal.inria.fr/hal-04589038v1
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In collaboration with Diana Marin, Stefan Ohrhallinger and Michael Wimmer (TU Wien) and
Amal Dev Parakkat (Telecom, IP-Paris).

We introduce the Stability-Incorporated Neighborhood Graph (SING) [38], a novel density-aware
structure designed to capture the intrinsic geometric properties of a point set. We improve upon the
spheres-of-influence graph by incorporating additional features to offer more flexibility and control
in encoding proximity information and capturing local density variations. Through persistence
analysis on our proximity graph, we propose a new clustering technique and explore additional
variants incorporating extra features for the proximity criterion. Alongside the detailed analysis
and comparison to evaluate its performance on various datasets, our experiments demonstrate
that the proposed method can effectively extract meaningful clusters from diverse datasets with
variations in density and correlation. Our application scenarios underscore the advantages of the
proposed graph over classical neighborhood graphs, particularly in terms of parameter tuning.

7.1.2 Stochastic Computation of Barycentric Coordinates

Participants: Mathieu Desbrun.

In collaboration with Fernando de Goes (Pixar).

In this work [22], we present a practical and general approach for computing barycentric
coordinates through stochastic sampling. Our key insight is a reformulation of the kernel integral
defining barycentric coordinates into a weighted least-squares minimization that enables Monte
Carlo integration without sacrificing linear precision. Our method can thus compute barycentric
coordinates directly at the points of interest, both inside and outside the cage, using just proximity
queries to the cage such as closest points and ray intersections. As a result, we can evaluate
barycentric coordinates for a large variety of cage representations (from quadrangulated surface
meshes to parametric curves) seamlessly, bypassing any volumetric discretization or custom solves.
To address the archetypal noise induced by sample-based estimates, we also introduce a denoising
scheme tailored to barycentric coordinates. We demonstrate the efficiency and flexibility of
our formulation by implementing a stochastic generation of harmonic coordinates, mean-value
coordinates, and positive mean-value coordinates.

7.1.3 PoNQ: a Neural QEM-based Mesh Representation

Participants: Mathieu Desbrun, Nissim Maruani, Maks Ovsjanikov.

In collaboration with Pierre Alliez (Inria Sophia).

Although polygon meshes have been a standard rep resentation in geometry processing, their
irregular and combinatorial nature hinders their suitability for learning based applications. In this
work [39], we introduce a novel learnable mesh representation through a set of local 3D sample
Points and their associated Normals and Quadric error metrics (QEM) w.r.t. the underlying shape,
which we denote PoNQ. A global mesh is directly derived from PoNQ by efficiently leveraging the
knowledge of the local quadric errors. Besides marking the first use of QEM within a neu ral shape
representation, our contribution guarantees both topological and geometrical properties by ensuring
that a PoNQ mesh does not self-intersect and is always the bound ary of a volume. Notably, our
representation does not rely on a regular grid, is supervised directly by the target sur face alone,
and also handles open surfaces with boundaries and/or sharp features. We demonstrate the efficacy
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of PoNQ through a learning-based mesh prediction from SDF grids and show that our method
surpasses recent state-of-the-art techniques in terms of both surface and edge-based metrics.

7.1.4 Biharmonic Coordinates and their Derivatives for Triangular 3D Cages

Participants: Jiong Chen.

In collaboration with Jean-Marc Thiery and Élie Michel (Adobe).

This work [32] extends biharmonic coordinates, which were previously derived for 2D shape
deformation, into three dimensions. The key contribution is deriving closed-form mathematical
expressions for biharmonic coordinates and their derivatives specifically for 3D triangular cages.
At the heart of this work is the development of closed-form expressions that calculate how the
Euclidean distance integrates over a triangle, along with the derivatives of this integration. The
significance of this advancement is twofold: it completes a gap in the theory of generalized barycentric
coordinates, and it enables practical applications in 3D shape manipulation. These applications
include creating various types of biharmonic deformations, solving shape deformation problems
through variational methods, and providing efficient closed-form solutions for the recently developed
Somigliana coordinates. This work ultimately bridges a theoretical gap while offering practical
tools for 3D shape manipulation and deformation.

7.1.5 A Survey on Cage-based Deformation of 3D Models

Participants: Jiong Chen.

In collaboration with Daniel Ströter, Johannes Sebastian Mueller-Roemer, Sebastian Besler, Andre
Stork and Dieter W. Fellner (Technical University of Darmstadt), Jean-Marc Thiery and Tamy
Boubekeur (Adobe), Kai Hormann and Qingjun Chang (University of Italian Switzerland).

In this work [30], we review the advancement of 3D cage-based deformation. Cage-based
deformation enables users to quickly manipulate 3D geometry by deforming the cage. Due to
their utility, cage-based deformation techniques increasingly appear in many geometry modeling
applications. For this reason, the computer graphics community has invested a great deal of effort in
the past decade and beyond into improving automatic cage generation and cage-based deformation.
Recent advances have significantly extended the practical capabilities of cage-based deformation
methods. As a result, there is a large body of research on cage-based deformation. In this report,
we provide a comprehensive overview of the current state of the art in cage-based deformation
of 3D geometry. We discuss current methods in terms of deformation quality, practicality, and
precomputation demands. In addition, we highlight potential future research directions that
overcome current issues and extend the set of practical applications. In conjunction with this survey,
we publish an application to unify the most relevant deformation methods. Our report is intended
for computer graphics researchers, developers of interactive geometry modeling applications, and
3D modeling and character animation artists.

7.1.6 BallMerge: High-quality Fast Surface Reconstruction via Voronoi Balls

Participants: Pooran Memari.
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In collaboration with Amal Dev Parakkat (Telecom, IP-Paris), Stefan Ohrhallinger and Michael
Wimmer (TU Wien) and Elmar Eisemann (TU Delft).

This work [28] introduces a Delaunay-based algorithm for reconstructing the underlying surface of
a given set of unstructured points in 3D. The implementation is very simple, and it is designed to
work in a parameter-free manner. The solution builds upon the fact that in the continuous case, a
closed surface separates the set of maximal empty balls (medial balls) into an interior and exterior.
Based on discrete input samples, our reconstructed surface consists of the interface between Voronoi
balls, which approximate the interior and exterior medial balls. An initial set of Voronoi balls is
iteratively processed, merging Voronoi-ball pairs if they fulfil an overlapping error criterion. Our
complete open-source reconstruction pipeline performs up to two quick linear-time passes on the
Delaunay complex to output the surface, making it an order of magnitude faster than the state
of the art while being competitive in memory usage and often superior in quality. We propose
two variants (local and global), which are carefully designed to target two different reconstruction
scenarios for watertight surfaces from accurate or noisy samples, as well as real-world scanned data
sets, exhibiting noise, outliers, and large areas of missing data. The results of the global variant are,
by definition, watertight, suitable for numerical analysis and various applications (e.g., 3D printing).
Compared to classical Delaunay-based reconstruction techniques, our method is highly stable and
robust to noise and outliers, evidenced via various experiments, including on real-world data with
challenges such as scan shadows, outliers, and noise, even without additional preprocessing. The
code for this work has been released as a package in the open-source Computational Geometry
Algorithms Library (CGAL).

7.1.7 DynBioSketch: A tool for sketching dynamic visual summaries in biology, and
its application to infection phenomena

Participants: Pooran Memari.

In collaboration with Pauline Olivier, Tara Butler, Pascal Guehl, Renaud Chabrier and Marie-Paule
Cani (LIX, Ecole Polytechnique) and Jean-Luc Coll (Institute for Advanced Biosciences, Grenoble
Alpes University).

Having simple methods of illustration is essential to scientific thinking. To complement the abstract
sketches regularly used in cell biology, we propose DynBioSketch [26], an easy-to-use digital
modeling and animation tool, enabling biologists to resort to less simplified representations when
necessary without having to call professional artists. DynBioSketch is an interactive sketching
system dedicated to the design and communication of biological phenomena at the cellular scale that
can be illustrated in a few minutes of animation. Our model integrates 3D modeling, pattern-based
design of 3D shape distributions, and sketch-based animation. These elements can be combined
to create complex scenarios such as the infection phenomenon on which we focus, allowing a
narrative design adapted to communication between researchers or educational applications in
biology. Our results, along with a user study conducted with biology researchers, highlight the
potential of DynBioSketch in enabling the direct design of dynamic visual summaries that convey
relevant information, as shown in our infection case study. By bridging the gap between abstract
representations used by experts and more illustrative depictions, DynBioSketch opens a new avenue
for communicating biological concepts.

7.1.8 Ricci flow-based brain surface covariance descriptors for diagnosing Alzheimer’s
disease

Participants: Pooran Memari.
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In collaboration with Fatemeh Ahmadi, Mohamad-Ebrahim Shiri, Behroz Bidabad, Maral Sedaghat
(Math department of Amirkabir University of Technology).

Automated feature extraction from MRI brain scans and diagnosis of Alzheimer’s disease are
ongoing challenges. With advances in 3D imaging technology, 3D data acquisition is becoming
more viable and efficient than its 2D counterpart. Rather than using feature-based vectors, in this
work [17], for the first time, we suggest a pipeline to extract novel covariance-based descriptors
from the cortical surface using the Ricci energy optimization. The covariance descriptors are
components of the nonlinear manifold of symmetric positive-definite matrices, thus we focus on
using the Gaussian radial basis function to apply manifold-based classification to the 3D shape
problem. Applying this novel signature to the analysis of abnormal cortical brain morphometry
allows for diagnosing Alzheimer’s disease. Experimental studies performed on about two hundred
3D MRI brain models, gathered from Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
demonstrate the effectiveness of our descriptors in achieving remarkable classification accuracy.

7.1.9

Participants: Pooran Memari.

In collaboration with Charline Grenier and Basile Sauvage (Strasbourg University).

In this work [35], we present an interactive tool to control the parameters of the procedural model
introduced by Grenier et al. [2022]. Procedural textures generate large, detailed textures with
minimal memory usage, but can be difficult to control. Our tool simplifies this by allowing users to
adjust noise through spectral parameters and color maps through ink volumes and color adjacency.
Using a constrained optimal transport framework, colors are treated as cells in a weighted Voronoi
diagram, while noise acts as a probability measure. Ink volumes are enforced as hard constraints,
enabling intuitive and efficient control over color relationships in procedural textures.

7.1.10 Versatile Curve Design by Level Set with Quadratic Convergence

Participants: Jiong Chen.

In collaboration with Xiaohu Zhang, Shuang Wu, Hujun Bao and Jin Huang (Zhejiang University),
and Yao Jin (Zhejiang Sci-Tech University).

In this work [33], we present an efficient and versatile approach to curve design based on an
implicit representation known as the level set. While previous works have explored the use of the
level set to generate curves with minimal length, they typically have limitations in accommodating
additional conditions for rich and robust control. To address these challenges, we formulate curve
editing with constraints like smoothness, interpolation, tangent control, etc., via a level set based
variational problem by constraining the values or derivatives of the level set function. However, the
widely used gradient flow strategy converges very slowly for this complicated variational problem
compared to the classical geodesic one. Thus, we propose to solve it via Newton’s method enhanced
by local Hessian correction and a trust-region strategy. As a result, our method not only enables
versatile control, but also excels in terms of performance due to nearly quadratic convergence
and almost linear complexity in each iteration via narrow band acceleration. In practice, these
advantages effectively benefit various applications, such as interactive curve manipulation, boundary
smoothing for surface segmentation and path planning with obstacles as demonstrated.
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7.2 Geometry for simulation

7.2.1 Hybrid LBM-FVM Solver for Two-phase Flow Simulation

Participants: Mathieu Desbrun.

In collaboration with Wei Li and Xiaopei Liu (Shanghaitech University)

In this work [25], we introduce a hybrid LBM-FVM solver for two-phase fluid flow simulations
in which interface dynamics is modeled by a conservative phase-field equation. Integrating fluid
equations over time is achieved through a velocity-based lattice Boltzmann solver which is improved
by a central-moment multiple-relaxation-time collision model to reach higher accuracy. For interface
evolution, we propose a finite-volume-based numerical treatment for the integration of the phase-field
equation: we show that the second-order isotropic centered stencils for diffusive and separation
fluxes combined with the WENO-5 stencils for advective fluxes achieve similar and sometimes
even higher accuracy than the state-of-the-art double-distribution function LBM methods as
well as the DUGKS-based method, while requiring less computations and a smaller amount of
memory. Benchmark tests (such as the 2D diagonal translation of a circular interface), along with
quantitative evaluations on more complex tests (such as the rising bubble and Rayleigh-Taylor
instability simulations) allowing comparisons with prior numerical methods and/or experimental
data, are presented to validate the advantage of our hybrid solver. Moreover, 3D simulations
(including a dam break simulation) are also compared to the time-lapse photography of physical
experiments in order to allow for more qualitative evaluations.

7.2.2 Kinetic Simulation of Turbulent Multifluid Flows

Participants: Mathieu Desbrun.

In collaboration with Wei Li (Tencent)

Despite its visual appeal, the simulation of separated multiphase flows (i.e., streams of fluids
separated by interfaces) faces numerous challenges in accurately reproducing complex behaviors such
as guggling, wetting, or bubbling. These difficulties are especially pronounced for high Reynolds
numbers and large density variations between fluids, most likely explaining why they have received
comparatively little attention in Computer Graphics compared to single- or two-phase flows. In
this work [24], we present a full LBM solver for multifluid simulation. We derive a conservative
phase field model with which the spatial presence of each fluid or phase is encoded to allow for the
simulation of miscible, immiscible and even partially-miscible fluids, while the temporal evolution of
the phases is performed using a D3Q7 lattice-Boltzmann discretization. The velocity field, handled
through the recent high-order moment-encoded LBM (HOME-LBM) framework to minimize its
memory footprint, is simulated via a velocity-based distribution stored on a D3Q27 or D3Q19
discretization to offer accuracy and stability to large density ratios even in turbulent scenarios, while
coupling with the phases through pressure, viscosity, and interfacial forces is achieved by leveraging
the diffuse encoding of interfaces. The resulting solver addresses a number of limitations of kinetic
methods in both computational fluid dynamics and computer graphics: it offers a fast, accurate,
and low-memory fluid solver enabling efficient turbulent multiphase simulations free of the typical
oscillatory pressure behavior near boundaries. We present several numerical benchmarks, examples
and comparisons of multiphase flows to demonstrate our solver’s visual complexity, accuracy, and
realism.
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7.2.3 Lightning-fast Method of Fundamental Solutions

Participants: Jiong Chen, Mathieu Desbrun.

In collaboration with Florian Schaefer (Georgia Tech)

The method of fundamental solutions (MFS) and its associated boundary element method (BEM)
have gained popularity in computer graphics due to the reduced dimensionality they offer: for
three-dimensional linear problems, they only require variables on the domain boundary to solve
and evaluate the solution throughout space, making them a valuable tool in a wide variety of
applications. However, MFS and BEM have poor computational scalability and huge memory
requirements for large-scale problems, limiting their applicability and efficiency in practice. By
leveraging connections with Gaussian Processes and exploiting the sparse structure of the inverses
of boundary integral matrices, we introduce in this work [20] a variational preconditioner that
can be computed via a sparse inverse-Cholesky factorization in a massively parallel manner. We
show that applying our preconditioner to the Preconditioned Conjugate Gradient algorithm greatly
improves the efficiency of MFS or BEM solves, up to four orders of magnitude in our series of tests.

7.2.4 TwisterForge: Controllable and Efficient Animation of Virtual Tornadoes

Participants: Jiong Chen.

In collaboration with James Gain (University of Cape Town), Jean-Marc Chomaz and Marie-Paule
Cani (LIX, Ecole Polytechnique)

In this work [44], we introduce a layered approach for creating and animating realistic virtual
tornadoes in computer graphics. The method centers on two types of cureves: a 3D curve to
intitialize the tornado’s core as a vortex filament and 2D profile curves to control the surrounding
funnel shape. The core evolves dynamically subject to the Biot-Savart law, bending and twisting
driven by its initial curvature, while the funnel profile represents the Stokes stream function and
dictates the radial and axial air motion around the core. These two components, together, capture
the rotation, sliding, and uplift of the tornado’s air volume. Our method achieves visually plausible
animations of tornadoes, capable of interacting with uneven terrain, destroying infrastructure, and
transporting debris, offering a controllable and realistic solution for visual effects and interactive
applications.

7.2.5 Volcanic Skies: coupling explosive eruptions with atmospheric simulation to
create consistent skyscapes

Participants: Jiong Chen.

In collaboration with Cilliers Pretorius and James Gain (University of Cape Town), Maud Lastic,
Damien Rohmer and Marie-Paule Cani (LIX, Ecole Polytechnique), and Guillaume Cordonnier
(Inria).

Explosive volcanic eruptions rank among the most terrifying natural phenomena, and are thus
frequently depicted in films, games, and other media, usually with a bespoke once-off solution. In
this work [29], we introduce the first general-purpose model for bi-directional interaction between
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the atmosphere and a volcano plume. In line with recent interactive volcano models, we approximate
the plume dynamics with Lagrangian disks and spheres and the atmosphere with sparse layers of
2D Eulerian grids, enabling us to focus on the transfer of physical quantities such as temperature,
ash, moisture, and wind velocity between these sub-models. We subsequently generate volumetric
animations by noise-based procedural upsampling keyed to aspects of advection, convection, moisture,
and ash content to generate a fully-realized volcanic skyscape. Our model captures most of the
visually salient features emerging from volcano-sky interaction, such as windswept plumes, enmeshed
cap, bell and skirt clouds, shockwave effects, ash rain, and sheathes of lightning visible in the dark.

7.3 Geometry for dynamical systems

7.3.1 ADAPT: Multimodal Learning for Detecting Physiological Changes under
Missing Modalities

Participants: Julie Mordacq, Steve Oudot.

In collaboration with Vicky Kalogeiton (Vista, LIX), Leo Milecki and Maria Vakalopoulou (Centrale
Supelec).

Multimodality has recently gained attention in the medical domain, where imaging or video
modalities may be integrated with biomedical signals or health records. Yet, two challenges remain:
balancing the contributions of modalities, especially in cases with a limited amount of data available,
and tackling missing modalities. To address both issues, in this work [40] we introduce the AnchoreD
multimodAl Physiological Transformer (ADAPT), a multimodal, scalable framework with two key
components: (i) aligning all modalities in the space of the strongest, richest modality (called anchor)
to learn a joint embedding space, and (ii) a Masked Multimodal Transformer, leveraging both
inter- and intra-modality correlations while handling missing modalities. We focus on detecting
physiological changes in two real-life scenarios: stress in individuals induced by specific triggers and
fighter pilots’ loss of consciousness induced by g-forces. We validate the generalizability of ADAPT
through extensive experiments on two datasets for these tasks, where we set the new state of the
art while demonstrating its robustness across various modality scenarios and its high potential for
real-life applications.

7.3.2 Multimodal Learning for Detecting Stress under Missing Modalities

Participants: Julie Mordacq, Steve Oudot.

In collaboration with Vicky Kalogeiton (Vista, LIX), Leo Milecki and Maria Vakalopoulou (Centrale
Supelec).

Dealing with missing modalities is critical for many real-life applications. In this work [48], we
propose a scalable framework for detecting stress induced by specific triggers in multimodal data
with missing modalities. Our method has two key components: (i) aligning all modalities in the
space of the strongest modality (the video) for learning a joint embedding space and (ii) a Masked
Multimodal Transformer, leveraging inter- and intra-modality correlations while handling missing
modalities. We validate our method through experiments on the StressID dataset, where we set the
new state of the art while demonstrating its robustness across various modality scenarios and its
high potential for real-life applications.



24 Inria Annual Report 2024

7.4 Geometry for data science
7.4.1 On the bottleneck stability of rank decompositions of multi-parameter persist-

ence modules

Participants: Steve Oudot.

In collaboration with Magnus botnan (Vrije Universiteit Amsterdam), Steffen Oppermann (NTNU)
and Luis Scoccola (University of Oxford).

A significant part of modern topological data analysis is concerned with the design and study
of algebraic invariants of poset representations—often referred to as persistence modules. One
such invariant is the minimal rank decomposition, which encodes the ranks of all the structure
morphisms of the persistence module by a single ordered pair of rectangle-decomposable modules,
interpreted as a signed barcode. This signed barcode generalizes the concept of persistence barcode
from one-parameter persistence to any number of parameters, raising the question of its bottleneck
stability. We show in this work [19] that the minimal rank decomposition is not stable under
the natural notion of signed bottleneck matching between signed barcodes. We remedy this by
turning our focus to the rank exact decomposition, a related signed barcode induced by the minimal
projective resolution of the module relative to the so-called rank exact structure, which we prove to
be bottleneck stable under signed matchings. As part of our proof, we obtain two intermediate
results of independent interest: we compute the global dimension of the rank exact structure on
the category of finitely presentable multi-parameter persistence modules, and we prove a bottleneck
stability result for hook-decomposable modules. We also give a bound for the size of the rank exact
decomposition that is polynomial in the size of the usual minimal projective resolution, we prove
a universality result for the dissimilarity function induced by the notion of signed matching, and
we compute, in the two-parameter case, the global dimension of a different exact structure related
to the upsets of the indexing poset. This set of results combines concepts from topological data
analysis and from the representation theory of posets, and we believe is relevant to both areas.

7.4.2 Signed Barcodes for Multi-parameter Persistence via Rank Decompositions
and Rank-Exact Resolutions

Participants: Steve Oudot.

In collaboration with Magnus botnan (Vrije Universiteit Amsterdam) and Steffen Oppermann
(NTNU).

In this work [18], we introduce the signed barcode, a new visual representation of the global
structure of the rank invariant of a multi-parameter persistence module or, more generally, of
a poset representation. Like its unsigned counterpart in one-parameter persistence, the signed
barcode decomposes the rank invariant as a Z-linear combination of rank invariants of indicator
modules supported on segments in the poset. We develop the theory behind these decompositions,
both for the usual rank invariant and for its generalizations, showing under what conditions they
exist and are unique. We also show that, like its unsigned counterpart, the signed barcode reflects
in part the algebraic structure of the module: specifically, it derives from the terms in the minimal
rank-exact resolution of the module, i.e., its minimal projective resolution relative to the class of
short exact sequences on which the rank invariant is additive. To complete the picture, we show
some experimental results that illustrate the contribution of the signed barcode in the exploration
of multi-parameter persistence modules.

7.4.3 Intrinsic Interleaving Distance for Merge Trees
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Participants: Steve Oudot.

In collaboration with Ellen Gasparovic (Union College), Elizabeth Munch (Michigan State Univer-
sity), Katharine Turner (Australian National University), Bei Wang (University of Utah) and Yusu
Wang (University of California).

A merge tree is a type of graph-based topological summary that tracks the evolution of connected
components in the sublevel sets of scalar functions. Merge trees enjoy widespread applications in
data analysis and scientific visualization. In this work [21], we consider the problem of comparing
two merge trees via the notion of interleaving distance in the metric space setting. We investigate
several theoretical properties of such a metric. In particular, we show that the interleaving distance
is intrinsic on the space of labeled merge trees and provide an algorithm to construct metric
1-centers for collections of labeled merge trees. We further prove that the intrinsic property of the
interleaving distance also holds for the space of unlabeled merge trees. Our results provide practical
recipes for performing statistics on merge trees.

7.4.4 On the stability of multigraded Betti numbers and Hilbert functions

Participants: Steve Oudot.

In collaboration with Luis Scoccola (University of Oxford).

Multigraded Betti numbers are one of the simplest invariants of multiparameter persistence modules.
This invariant is useful in theory—it completely determines the Hilbert function of the module and
the isomorphism type of the free modules in its minimal free resolution—as well as in practice—it is
easy to visualize, and it is one of the main outputs of current multiparameter persistent homology
software, such as RIVET. However, to the best of our knowledge, no stability result with respect to
the interleaving distance has been established for this invariant so far, and this potential lack of
stability limits its practical applications. In this work [27] we prove a stability result for multigraded
Betti numbers, using an efficiently computable bottleneck-type dissimilarity function we introduce.
Our notion of matching is inspired by recent work on signed barcodes and allows matching bars
of the same module in homological degrees of different parity, in addition to matchings bars of
different modules in homological degrees of the same parity. Our stability result is a combination
of Hilbert’s syzygy theorem, Bjerkevik’s bottleneck stability for free modules, and a novel stability
result for projective resolutions. We also prove, in the two-parameter case, a 1-Wasserstein stability
result for Hilbert functions with respect to the 1-presentation distance of Bjerkevik and Lesnick.

7.4.5 Efficient computation of topological integral transforms

Participants: Steve Oudot.

In collaboration with Vadim Lebovici (University of Oxford) and Hugo Passe (École Normale
Supérieure de Lyon).

Topological integral transforms have found many applications in shape analysis, from prediction
of clinical outcomes in brain cancer to analysis of barley seeds. Using Euler characteristic as a
measure, these objects record rich geometric information on weighted polytopal complexes. While
some implementations exist, they only enable discretized representations of the transforms, and
they do not handle weighted complexes (such as for instance images). Moreover, recent hybrid
transforms lack an implementation. In this work [37], we introduce eucalc, a novel implementation
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of three topological integral transforms - the Euler characteristic transform, the Radon transform,
and hybrid transforms - for weighted cubical complexes. Leveraging piecewise linear Morse theory
and Euler calculus, the algorithms significantly reduce computational complexity by focusing on
critical points. Our software provides exact representations of transforms, handles both binary and
grayscale images, and supports multi-core processing. It is publicly available as a C++ library with
a Python wrapper. We present mathematical foundations, implementation details, and experimental
evaluations, demonstrating eucalc’s efficiency.

7.4.6 Differentiability and Optimization of Multiparameter Persistent Homology

Participants: Steve Oudot.

In collaboration with Luis Scoccola (University of Oxford), Siddharth Setlur (ETH Zürich), David
Loiseaux and Mathieu Carrière (Datashape, Inria Sophia-Antipolis).

Real-valued functions on geometric data—such as node attributes on a graph—can be optimized
using descriptors from persistent homology, allowing the user to incorporate topological terms in
the loss function. When optimizing a single real-valued function (the one-parameter setting), there
is a canonical choice of descriptor for persistent homology: the barcode. The operation mapping
a real-valued function to its barcode is differentiable almost everywhere, and the convergence
of gradient descent for losses using barcodes is relatively well understood. When optimizing a
vector-valued function (the multiparameter setting), there is no unique choice of descriptor for
multiparameter persistent homology, and many distinct descriptors have been proposed. This
calls for the development of a general framework for differentiability and optimization that applies
to a wide range of multiparameter homological descriptors. In this work [41] we develop such a
framework and show that it encompasses well-known descriptors of different flavors, such as signed
barcodes and the multiparameter persistence landscape. We complement the theory with numerical
experiments supporting the idea that optimizing multiparameter homological descriptors can lead
to improved performances compared to optimizing one-parameter descriptors, even when using the
simplest and most efficiently computable multiparameter descriptors.

7.4.7 Fine-tuning 3D foundation models for geometric object retrieval

Participants: Maks Ovsjanikov.

In collaboration with Jarne van den Herrewegen, Tom Tourwé, and Francis Wyffels (from Oqton
AI; and AI and Robotics Lab, IDLab-AIRO, Ghent University-imec, Belgium).

This work [23] introduces fine-tuning strategies for 3D foundation models to enhance geometric
object retrieval. Foundation models like ULIP-2 (Xue et al., 2023) have advanced 3D deep learning
by leveraging large-scale data and multi-modal architectures, combining 2D image and text branches
to enhance representation learning. Despite their success in tasks like shape classification, their
3D encoders and adaptability to new downstream tasks remain underexplored, particularly for
applications like 3D object retrieval. This paper addresses this gap, demonstrating strong 3D-to-
3D retrieval performance across seven datasets, rivaling state-of-the-art view-based methods. It
evaluates pre-trained and fine-tuned models, comparing supervised and self-supervised fine-tuning,
and introduces a crucial methodology to stabilize transfer learning from 3D foundation models.

7.4.8 DeBaRA: Denoising-Based 3D Room Arrangement Generation
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Participants: Léopold Maillard, Maks Ovsjanikov.

In collaboration with Nicolas Sereyjol-Garros, and Tom Durand (Dassault Systèmes).

This work [46] presents a novel denoising-based approach for generating 3D room arrangements.
Generating realistic and diverse layouts of furnished indoor 3D scenes is challenging due to complex
object interactions, limited data, and spatial constraints. DeBaRA, a score-based model, addresses
this by enabling precise, controllable arrangement generation with 3D spatial awareness. It supports
applications like scene synthesis, completion, and re-arrangement, and incorporates a Self Score
Evaluation procedure for better integration with external LLMs. Experiments show DeBaRA
significantly outperforms state-of-the-art methods.

7.4.9 Smoothed Graph Contrastive Learning via Seamless Proximity Integration

Participants: Maysam Behmanesh, Maks Ovsjanikov.

This work [34] introduces a smoothed graph contrastive learning (SGCL) technique for unsuper-
vised representation learning on graphs, while leveraging proximity integration. Standard graph
contrastive learning (GCL) aligns node representations by classifying node pairs as positives or
negatives, typically treating all negatives equally in the contrastive loss. The Smoothed Graph Con-
trastive Learning model (SGCL) improves this by leveraging the geometric structure of augmented
graphs to include proximity information for positive and negative pairs, regularizing the learning
process. SGCL uses three smoothing techniques to adjust penalties in the contrastive loss and
employs a batch-generating strategy to efficiently train on large-scale graphs. Extensive experiments
show SGCL outperforms recent baselines in unsupervised settings across various benchmarks.

7.4.10 To Supervise or Not to Supervise: Understanding and Addressing the Key
Challenges of Point Cloud Transfer Learning

Participants: Souhail Hadgi, Maks Ovsjanikov.

In collaboration with Lei Li (Technical University of Munich).

This work [36] examines the challenges of point cloud transfer learning and proposes solutions. Clas-
sical transfer learning has significantly advanced 2D image analysis but has seen limited applicability
in 3D data processing. While contrastive learning has gained prominence for point cloud transfer
learning, existing methods have been studied only in limited scenarios, with little understanding of
when and why they are effective. This work conducts the first in-depth investigation of supervised
and contrastive pre-training strategies for 3D tasks, showing that layer-wise feature analysis reveals
insights into the utility of trained networks. Based on these findings, a geometric regularization
strategy is proposed to enhance the transferability of supervised pre-training, addressing key
challenges in point cloud transfer learning.

7.4.11 Self-Supervised Dual Contouring

Participants: Ramana Sundararaman, Roman Klokov, Maks Ovsjanikov.
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This work [42] introduces a self-supervised dual contouring framework. Learning-based isosurface
extraction methods offer robust alternatives to axiomatic techniques but often rely on supervised
training with axiomatically computed ground truths, inheriting their biases. To address this, Self-
Supervised Dual Contouring (SDC) introduces a self-supervised training scheme for the Neural Dual
Contouring framework. SDC employs novel self-supervised loss functions to optimize mesh vertices
by enforcing consistency with distances to the generated mesh. SDC surpasses data-driven methods
in capturing intricate details and handling input irregularities. Additionally, the self-supervised
objective regularizes Deep Implicit Networks (DINs), improving the quality of implicit functions
and detail preservation across input modalities. SDC also enhances single-view reconstruction by
enabling joint training of the predicted SDF and output mesh.

7.4.12 Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features

Participants: Maks Ovsjanikov.

In collaboration with Thomas Wimmer and Peter Wonka (from Technical University of Munich
and KAUST).

This work [43] focuses on few-shot 3D keypoint detection using back-projected 2D features. Specific-
ally, in this work, we propose to explore 2D foundation models for the task of keypoint detection on
3D shapes. A unique characteristic of keypoint detection is that it requires semantic and geometric
awareness while demanding high localization accuracy. To address this problem, we propose, first,
to back-project features from large pre-trained 2D vision models onto 3D shapes and employ them
for this task. We show that we obtain robust 3D features that contain rich semantic information
and analyze multiple candidate features stemming from different 2D foundation models. Second,
we employ a keypoint candidate optimization module which aims to match the average observed
distribution of keypoints on the shape and is guided by the back-projected features. The resulting
approach achieves a new state of the art for few-shot keypoint detection on the KeyPointNet dataset,
almost doubling the performance of the previous best methods.

7.4.13 Unsupervised Representation Learning for Diverse Deformable Shape Collec-
tions

Participants: Souhaib Attaiki, Maks Ovsjanikov.

In collaboration with Sara Hahner and Jochen Garcke (Fraunhofer SCAI, Sankt Augustin, Germany,
and Institute for Numerical Simulation, University of Bonn, Germany).

This work [45] explores unsupervised learning methods for diverse deformable shape collections.
Namely, we introduce a novel learning-based method for encoding and manipulating 3D surface
meshes. Our method is specifically designed to create an interpretable embedding space for
deformable shape collections. Unlike previous 3D mesh autoencoders that require meshes to be in
a 1-to-1 correspondence, our approach is trained on diverse meshes in an unsupervised manner.
Central to our method is a spectral pooling technique that establishes a universal latent space,
breaking free from traditional constraints of mesh connectivity and shape categories. The entire
process consists of two stages. In the first stage, we employ the functional map paradigm to
extract point-to-point (p2p) maps between a collection of shapes in an unsupervised manner. These
p2p maps are then utilized to construct a common latent space, which ensures straightforward
interpretation and independence from mesh connectivity and shape category. Through extensive
experiments, we demonstrate that our method achieves excellent reconstructions and produces
more realistic and smoother interpolations than baseline approaches.
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7.4.14 RIVQ-VAE: Discrete Rotation-Invariant 3D Representation Learning

Participants: Maks Ovsjanikov.

In collaboration with Mariem Mezghanni and Malika Boulkenafed (Dassault Systèmes).

This work [47] presents RIVQ-VAE, a framework for discrete rotation-invariant 3D representation
learning. Building local surface representations for 3D shapes has gained attention in 3D vision,
structuring complex shapes into sequences of simpler local geometries. Inspired by 2D discrete
representation learning, recent methods use regular grids with discrete codes from a learnable
codebook. However, these methods overlook local rigid self-similarities and orientation ambiguities,
requiring large codebooks to capture variability in geometry and pose. To address this, a novel
generative model is proposed, embedding local geometries in a rotation- and translation-invariant
manner. This compact approach reduces redundancies, enabling the codebook to represent a wider
range of structures. Careful architecture design ensures meaningful shape recovery and global
consistency, with experiments showing significant performance improvements over baselines.

7.4.15 Deformation Recovery: Localized Learning for Detail-Preserving Deformations

Participants: Ramana Sundararaman, Maks Ovsjanikov.

In collaboration with Nicolas Donati (Ansys, France), Simone Melzi (University of Milano-Bicocca,
Italy), Etienne Corman (Université de Lorraine, CNRS, Inria).

This work [31] proposes a novel data-driven approach for designing high-quality shape deformations
using a coarse localized input signal, eliminating the need for global shape encoding. Observing
that detail-preserving deformations can often be estimated without global context, we represent
deformations using Jacobians in a one-ring neighborhood as input to a neural network. A series
of MLPs with feature smoothing learns the Jacobian for detail-preserving deformations, and
embeddings are recovered through a standard Poisson solve. This localized approach makes
each point a training example, enabling lightweight supervision. Trained on a shape class, the
method generalizes across object categories and supports tasks like refining shape correspondence,
unsupervised deformation and mapping, and shape editing.

7.4.16 Memory-Scalable and Simplified Functional Map Learning

Participants: Robin Magnet, Maks Ovsjanikov.

This work [49] propose a memory-scalable and efficient functional map learning pipeline. Deep
functional maps have become a leading framework for non-rigid shape matching, with recent
advancements promoting consistency between functional and pointwise maps to improve accuracy.
However, these methods rely on large dense matrices from soft pointwise maps, limiting efficiency
and scalability. To address this, we propose a new method that avoids storing pointwise maps by
leveraging the functional map structure. Additionally, we introduce a differentiable map refinement
layer adapted from an axiomatic refinement algorithm, which can be used during training to
enforce consistency between refined and initial maps. This approach is simpler, more efficient, and
numerically stable, achieving near state-of-the-art results in challenging scenarios.
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8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry
8.1.1 Contract with Sanofi Inc.

Participants: Maks Ovsjanikov.

Title: Machine learning approaches for cryo-EM

Partner Institution(s): Sanofi Inc.

Date/Duration: 2023-2024

Additionnal info/keywords: Cryogenic electron microscopy (cryo-EM) allows the structure
determination of antibody fragments bound to pharmaceutically relevant targets to accelerate
drug discovery. The process of cryo-EM data analysis is time consuming and requires user
input. To accelerate the rate of structure solution by cryo-EM, this project investigates
machine learning approachesto fit and model the atomic coordinates of antibody fragments
into the cryo-EM density.
The project funds one post-doctoral researcher for 2 years, jointly between Sanofi Inc., and
Ecole Polytechnique (the employer of Maks Ovsjanikov).

8.1.2 Contract with DASSAULT SYSTEMES

Participants: Maks Ovsjanikov.

Title: Generative Models for the Guided Synthesis of Complex and Functional 3D Scenes

Partner Institution(s): DASSAULT SYSTEMES

Date/Duration: 2023-2026

Additionnal info/keywords: This thesis focuses on machine learning applied to 3D computer
vision, specifically addressing challenges related to the automatic synthesis of 3D environments.
The project funds one PhD student for 3 years.

8.1.3 MEDITWIN with DASSAULT SYSTEMES

Participants: Maks Ovsjanikov, Mathieu Desbrun.

Title: MEDITWIN: Virtual human twins for medical applications

Partner Institution(s): DASSAULT SYSTEMES

Date/Duration: 2023-2028

Additionnal info/keywords: In the context of IPCEI on Health called MEDITWIN, Geomerix
has started working on geometric measure theory and reduced models (Desbrun) and non-rigid
registration (Ovsjanikov), with one student and two postdocs to be hired soon.
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9 Partnerships and cooperations

9.1 International research visitors
9.1.1 Visits of international scientists

Other international visits to the team

Diana Marin

Status: PhD

Institution of origin: TU Wien

Country: Austria

Dates: End of January – April 2024

Context of the visit: Research collaboration leading to a publication in ACM Siggraph Asia

Mobility program/type of mobility: Research stay, under the supervision of Pooran Memari

9.1.2 Visits to international teams

Sabbatical programme

• Maks Ovsjanikov Visiting Researcher, Google DeepMind, Paris.

9.2 European initiatives
9.2.1 Horizon Europe

ERC Consolidator grant VEGA

Participants: Maks Ovsjanikov.

Title: VEGA: Universal Geometric Transfer Learning

Partner Institution(s): • European Research Concil (ERC)

Date/Duration: 2024-2028

Additionnal info/keywords: In this project, we propose to develop a theoretical and practical
framework for transfer learning with geometric 3D data. Most existing learning-based
approaches, aimed at analyzing 3D data, are based on training neural networks from scratch
for each data modality and application. Our main goal will be to develop universally-applicable
methods by combining powerful pre-trainable modules with effective multi-scale analysis and
fine-tuning, given minimal task-specific data. The overall key to our study will be analyzing
rigorous ways, both theoretically and in practice, in which solutions can be transferred and
adapted across problems, semantic categories and geometric data types.

9.3 National initiatives
Contrat de recherche Inria - SHOM
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Participants: Steve Oudot.

Title: Traitement de nuage de points bathyémtriques (SMF et Lidar) par l’approche apprentissage
automatique

Partner Institution(s): • Service Hydrographique et Océanographique de la Marine (SHOM),
Brest, France

Date/Duration: 2024-2028

Additionnal info/keywords: Ce projet a pour objectif de mieux appréhender, à l’aide de
l’apprentissage automatique, la donnée bathymétrique sous forme de nuages de points pour
améliorer la description des fonds marins et des zones côtières. Ce sujet est en lien avec le
traitement des erreurs ponctuelles de la donnée bathymétrique et également avec l’utilisation
de cette donnée pour la génération de modèles numériques de terrain.

AEx PreMediT

Participants: Steve Oudot.

Title: Precision Medicine using Topology

Partner Institution(s): • CRESS, Hôtel-Dieu, France

Date/Duration: 2022-2025

Additionnal info/keywords: While recent advances in machine learning are opening promising
prospects for precision medicine, the sometimes small size, sparsity, or partly categorical
nature of the data involved pose some crucial challenges. The goal of PreMediT is to address
these challenges by integrating information about the geometric and topological structure of
the data into the machine learning pipelines.

ANR AI Chair AIGRETTE

Participants: Maks Osjanikov.

Title: Analyzing Large Scale Geometric Data Collections

Partner Institution(s): • ANR

Date/Duration: 2020-2024

Additionnal info/keywords: Motivated by the deluge of 3D data using geometric representations
(point clouds, triangle, quad meshes, graphs...) that are ill-suited for modern applications, we
are developing efficient algorithms and mathematical tools for analyzing diverse geometric
data collections.
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10 Dissemination
10.1 Promoting scientific activities
10.1.1 Scientific events: organisation

General chair, scientific chair

• Mathieu Desbrun (cochairing with Jacques-Olivier Lachaud) for Year of Geometry, funded
by the GDR IFM, with its capstone Geometry and Computing conference at the CIRM in
October 2024.

Member of the organizing committees

• Steve Oudot co-organizer (with Claire Amiot, Thomas Brüstle, Sergio Estrada and Luis
Scoccola) of BIRS workshop Representation Theory and Topological Data Analysis (24w5241),
April 7-12, Banff, Canada.

10.1.2 Scientific events: selection

Member of the conference program committees

• Pooran Memari for ACM Siggraph 2024

• Pooran Memari for Eurographics 2024

• Steve Oudot for International Symposium on Computational Geometry (SoCG) 2024

10.1.3 Journal

Member of the editorial boards

• Pooran Memari Associate Editor of Computer Graphics Forum (CGF), since April 2021.

• Pooran Memari Associate Editor of Graphical Models Journal, Elsevier, April 2023 – May
2024.

• Mathieu Desbrun Associate Editor of ournal of Geometric Mechanics, AIMS, 2024.

• Maks Ovsjanikov Associate Editor, Transactions on Visualization and Computer Graphics
journal, since 2020.

• Steve Oudot Associate Editor of Journal of Computational Geometry.

10.1.4 Invited talks

• Pooran Memari Invited talk at the Geometry & Computing conference, CIRM Luminy,
October 2024.

• Mathieu Desbrun, invited talk at the annual GDR IFM meeting in 2024.

• Steve Oudot Invited speaker at the 9th European Congress of Mathematics (9ECM), Seville,
July 2024.

• Steve Oudot Plenary speaker at the 21st International Conference on Representations of
Algebras (ICRA), Shanghai, August 2024.

• Steve Oudot Invited speaker at the workshop Representation theory - combinatorial aspects
and applications to TDA, NTNU, Trondheim, December 2024.

• Steve Oudot Seminar speaker in the Mathematical Institute of the University of Oxford,
January 2024.
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10.1.5 Research administration

• Maks Ovsjanikov Fellow of ELLIS, senior member of the European society for top AI
researchers, since 2023.

• Pooran Memari Member of the Board of the French Chapter of Eurographics (EGFR), since
October 2024.

• Pooran Memari Co-responsible for the Interaction, Graphics & Design (IGD) master’s program
at IP-Paris, since September 2024.

• Steve Oudot member of the Conseil Académique of IP Paris, representing Inria

10.2 Teaching - Supervision - Juries
10.2.1 Teaching

• Master: Steve Oudot, Computational Geometry and Topology, 18h eq-TD, M2, MPRI;

• Master: Maks Ovsjanikov, Geometry Processing and Geometric Deep Learning, M2, MVA;

• Master: Steve Oudot, Topological data analysis, 45h eq-TD, M1, École polytechnique, France;

• Master: Mathieu Desbrun, Digital Representation and Analysis of Shapes, M2, École poly-
technique, France;

• Master: Mathieu Desbrun, Computer Animation, M2, École polytechnique, France;

• Master: Pooran Memari, Digital Representation and Analysis of Shapes, M2, École polytech-
nique, France;

• Master: Pooran Memari, Computer Science refresher course at Artificial Intelligence and
Advanced Visual Computing Master Program, M2, École polytechnique, France;

• Master: Maks Ovsjanikov, Artificial Intelligence and Advanced Visual Computing, École
polytechnique, France;

• Undergrad-Master: Steve Oudot, Algorithms for data analysis in C++, 22.5h eq-TD, L3/M1,
École Polytechnique, France.

10.2.2 Supervision

• PhD in progress: Julie Mordacq, Analyse Topologique des Données et Apprentissage Machine
pour analyser et prédire des transitions de phase en n-dimensions, Institut Polytechnique de
Paris. Started Sept. 2022. Steve Oudot and Vicky Kalogeiton (Vista, LIX).

• PhD in progress: Jingyi Li, Invariants algébriques effectifs pour la persistance multi-paramètre,
Institut Polytechnique de Paris. Started Nov. 2023. Steve Oudot.

• PhD: Souhaib Attaiki, LIX. defended: March 2024?. Maks Ovsjanikov.

• PhD in progress: Nasim Bagheri Shouraki, Application of neurocognition to study the
effectiveness of geometric tactile 2D patterns in navigation maps and instructions for Visually
Impaired Individuals, IP Paris. Start date: October 2024. Pooran Memari and Panos Mavros
(Telecom Paris).

• PhD in progress: Theo Braune, École Polytechnique, Palaiseau. Mathieu Desbrun.

• PhD: Diego Gomez, École Polytechnique, Palaiseau. Defended: September 2024?. Maks
Ovsjanikov.

• PhD in progress: Souhail Hadgi, École Polytechnique, Palaiseau. Maks Ovsjanikov.



Project GEOMERIX 35

• PhD: Robin Magnet, LIX. Defended: May 2024?. Maks Ovsjanikov.

• PhD in progress: Leopold Maillard, Dassault Systèmes. Maks Ovsjanikov.

• PhD in progress: Tim Scheller, École Polytechnique, Palaiseau. Maks Ovsjanikov.

10.2.3 Juries

• Mathieu Desbrun reviewer and jury member for Colin Weil-Duflos, Université Savoie Mont-
Blanc.

• Pooran Memari Admission Jury for Masters & PhD-Track IGD (Interaction, Graphics &
Design), IP-Paris, since 2020.

• Pooran Memari PhD Jury for Clément Chomicki, Université Gustave Eiffel, LIGM UMR8049
(28/11/2024).

• Pooran Memari PhD Jury for Bastien Doignies, Université Lyon 1 (25/11/2024).

• Pooran Memari Recruitment Committee for Assistant Professors at LORIA, Faculty of
Sciences and Technologies, University of Lorraine (5/2024).

• Pooran Memari is a member of the Jury d’admission Masters & PhD Track IGD (Interaction,
Graphics & Design), IP-Paris (Since 2020).

11 Scientific production
11.1 Major publications
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