
2024
ACTIVITY REPORT

Project-Team

MUSCLEES

RESEARCH CENTRE

Inria Paris Centre at Sorbonne
University

IN PARTNERSHIP WITH:

CNRS, Sorbonne Université

Mathematical Understanding across Scales
of Complex Living Ecosystems with
Emerging Structures

IN COLLABORATION WITH: Laboratoire Jacques-Louis Lions (LJLL)

DOMAIN

Digital Health, Biology and Earth

THEME

Modeling and Control for Life Sciences



Contents

Project-Team MUSCLEES 1

1 Team members, visitors, external collaborators 3

2 Overall objectives 4

3 Research program 5
3.1 Axis 1 – Multiscale study of interacting particle systems . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Micro-Meso: Graph limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Micro-Meso: Beyond mean-field limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.3 Scaling limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Axis 2 – Stochastic models for biological systems . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Regulation Mechanisms of Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Stochastic Chemical Reaction Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Axis 3 – Theoretical analysis of nonlinear partial differential equations (PDE) modelling
various structured population dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1 Adaptive phenotype-structured cell population dynamics . . . . . . . . . . . . . . . . 12
3.3.2 Around graphon dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Analysis of non-local advection-diffusion models for active particles . . . . . . . . . 14
3.3.4 Analysis of systems with cross-diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Axis 4 – Mathematical epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.1 Vector-borne diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.2 Infectious diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Axis 5 – Development and analysis of mathematical models for living systems confronted
with experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5.1 Individual-based models for micro-colony growth . . . . . . . . . . . . . . . . . . . . 19
3.5.2 Energy-driven models of tissue organisation and architecture . . . . . . . . . . . . . 20
3.5.3 A traffic model for the interkinetic nuclear migration (IKNM) . . . . . . . . . . . . . . 21
3.5.4 Models for collective behavior in gregarious fish . . . . . . . . . . . . . . . . . . . . . 22
3.5.5 Mathematical models of retinal biochemistry . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.6 Modelling the Retinal Pigment Epithelium in Age-Related Macular Degeneration . . 23

4 Application domains 24
4.1 Emergence of collective phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Living biological tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Mathematical models for epidemic spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Social and environmental responsibility 29
5.1 Footprint of research activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Social responsibilities within the community . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Highlights of the year 29

7 New results 31
7.1 Axis 1 – Multiscale study of interacting particle systems . . . . . . . . . . . . . . . . . . . . . 31

7.1.1 Large-population limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.2 Scaling limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Axis 2 – Stochastic models for biological and chemical systems . . . . . . . . . . . . . . . . . 32
7.3 Axis 3 – Theoretical analysis of nonlinear partial differential equations (PDE) modelling

various structured population dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3.1 Modelling phenotypic divergence in cancer and in the emergence of multicellularity

by phenotype-structured equations of cell population dynamics . . . . . . . . . . . . 33
7.3.2 Analysis of non-local advection-diffusion models for active particles . . . . . . . . . 34

7.4 Axis 4 – Mathematical epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



7.4.1 Biological control of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.4.2 Control of infectious diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.5 Axis 5 – Development and analysis of mathematical models for biological tissues confronted
to experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.5.1 Modeling of milling and schooling in gregarious fish. . . . . . . . . . . . . . . . . . . 36
7.5.2 3D Modeling of biological tissue emergence and repair . . . . . . . . . . . . . . . . . 37
7.5.3 Modelling the Retinal Pigment Epithelium in Age-Related Macular Degeneration . . 38
7.5.4 Mathematical models of retinal biochemistry . . . . . . . . . . . . . . . . . . . . . . . 38

8 Partnerships and cooperations 38
8.1 International initiatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8.1.1 Inria associate team not involved in an IIL or an international program . . . . . . . . 38
8.1.2 STIC/MATH/CLIMAT AmSud projects . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Dissemination 40
9.1 Promoting scientific activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

9.1.1 Scientific events: selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1.2 Journal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1.3 Invited talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1.4 Scientific expertise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.1.5 Research administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.2 Teaching - Supervision - Juries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2.1 Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.2.2 Juries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9.3 Popularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.3.1 Productions (articles, videos, podcasts, serious games, ...) . . . . . . . . . . . . . . . . 42
9.3.2 Participation in Live events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10 Scientific production 42
10.1 Major publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.2 Publications of the year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.3 Cited publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



Project MUSCLEES 1

Project-Team MUSCLEES

Creation of the Project-Team: 2024 June 01

Keywords

Computer sciences and digital sciences

A3. – Data and knowledge

A3.1. – Data

A3.1.1. – Modeling, representation

A3.4. – Machine learning and statistics

A3.4.6. – Neural networks

A3.4.7. – Kernel methods

A6. – Modeling, simulation and control

A6.1. – Methods in mathematical modeling

A6.1.1. – Continuous Modeling (PDE, ODE)

A6.1.2. – Stochastic Modeling

A6.1.3. – Discrete Modeling (multi-agent, people centered)

A6.1.4. – Multiscale modeling

A6.1.5. – Multiphysics modeling

A6.2. – Scientific computing, Numerical Analysis & Optimization

A6.2.1. – Numerical analysis of PDE and ODE

A6.2.2. – Numerical probability

A6.2.3. – Probabilistic methods

A6.2.4. – Statistical methods

A6.2.6. – Optimization

A6.3. – Computation-data interaction

A6.3.1. – Inverse problems

A6.3.2. – Data assimilation

A6.4. – Automatic control

A6.4.1. – Deterministic control

A6.4.4. – Stability and Stabilization

A6.4.6. – Optimal control

Other research topics and application domains

B1.1.2. – Molecular and cellular biology

B1.1.5. – Immunology

B1.1.6. – Evolutionnary biology

B1.1.7. – Bioinformatics

B1.1.8. – Mathematical biology

https://radar.inria.fr/keywords/2024/computing
https://radar.inria.fr/keywords/2024/other


2 Inria Annual Report 2024

B1.2. – Neuroscience and cognitive science

B2. – Health

B2.2. – Physiology and diseases

B2.2.3. – Cancer

B2.2.4. – Infectious diseases, Virology

B2.2.6. – Neurodegenerative diseases

B2.3. – Epidemiology

B2.4. – Therapies

B2.4.1. – Pharmaco kinetics and dynamics

B2.4.2. – Drug resistance

B2.6.3. – Biological Imaging

B9.6.4. – Management science



Project MUSCLEES 3

1 Team members, visitors, external collaborators

Research Scientists

• Pierre-Alexandre Bliman [Team leader, INRIA, Senior Researcher, from Jun 2024, HDR]

• Luca Alasio [INRIA, Researcher, from Jun 2024]

• Jean Clairambault [Retired, Emeritus, from Jun 2024, HDR]

• Sophie Hecht [CNRS, Researcher, from Jun 2024]

• Diane Peurichard [INRIA, Researcher, from Jun 2024]

• Nastassia Pouradier Duteil [INRIA, Researcher, from Jun 2024]

• Philippe Robert [INRIA, Senior Researcher, from Jun 2024, HDR]

Faculty Members

• Bernard Cazelles [SORBONNE UNIVERSITE, Professor Delegation, from Jun 2024, HDR]

• Benoît Perthame [SORBONNE UNIVERSITE, Professor, from Jun 2024, HDR]

Post-Doctoral Fellows

• Pauline Chassonnery [brgm - SERVICE GEOLOGIQUE NATIONAL, from Jun 2024]

• Hiroshi Horii [Sorbonne Université, from Jun 2024]

• Suney Toste Regalado [INRIA, Post-Doctoral Fellow, from Jun 2024]

PhD Students

• Elena Ambrogi [INRIA, from Jun 2024 until Sep 2024]

• Naoufel Cresson [INRIA, from Oct 2024]

• Naoufel Cresson [Inria]

• Manon De La Tousche [SORBONNE UNIVERSITE, from Jun 2024]

• Charles Elbar [SORBONNE UNIVERSITE, from Jun 2024 until Sep 2024]

• Marcel Fang [Sorbonne Université, from Oct 2024]

• Marcel Fang [SORBONNE UNIVERSITE, from Jun 2024 until Sep 2024]

• Lucie Laurence [INRIA, from Sep 2024]

• Lucie Laurence [SORBONNE UNIVERSITE, from Jun 2024 until Aug 2024]

• Thi Nguyen [SORBONNE UNIVERSITE, from Jun 2024 until Sep 2024]

• Assane Savadogo [Univ Nazi Boni, from Jun 2024]

Administrative Assistant

• Meriem Guemair [INRIA]



4 Inria Annual Report 2024

IBM

SDE
ODE PDE

Stochastic

effects

Deterministic 

effects

Individual

scale

Population

scale

Reaction

Networks

- Modeling

- Analysis

(existence, uniqueness, stability)

- Long time behavior

- Control

- Modeling

- Validation of models on experimental data

- Numerical simulations

- Software development

- Modeling

- Analysis

(existence, uniqueness, stability)

- Long time behavior

Living tissues,

Cell populations

Figure 1: Scheme of the team activities

2 Overall objectives

MUSCLEES is the evolution of the MAMBA Inria project-team, headed by Marie Doumic (now head of the
Inria project-team MERGE in Saclay) during 9 years (2014-2022); which was in turn a continuation of the
BANG Inria project-team, headed by Benoît Perthame during 11 years (2003-2013). Just as its scientific
ascendants, this new project-team aims at developing, analyzing, controlling, observing, identifying and
simulating models involving dynamics of phenomena encountered in various biological systems.

The nature of the corresponding populations involved is very diverse, as well as the nature of the
interactions between their members. They may contain chemical species, cells, molecules, neurons,
bacteria, (human or animal) individuals. We are interested for example in cell motion, (physiological
or tumor) cell development, binding/unbinding of macro-molecules, bacteria micro-colony growth,
tissue development, repair, ageing and degeneration, epidemic spread, vector control, together with
methodological questions related to these aspects.

In accordance with the context, we will use stochastic or deterministic models, systems of ordinary
(possibly defined on graphs) or partial differential equations, and agent-based approaches. We will
also consider the link between models of different types, exploring the behavior across different scales,
and will appeal to tools from control theory to treat issues of (optimal or non-optimal) control, state
observation or parametric identification.

In Fig. 1, we give an overview of the different research axes of the MUSCLEES team. The horizontal
axis distinguishes schematically between the stochastic and deterministic descriptions, while the vertical
axis indicates the description scale. At the heart of our research lie the different applications that drive our
mathematical studies: living tissues/cell populations, reaction networks and epidemiology (in green in
Fig. 1). All our efforts, even the most theoretical ones, will be motivated by biological questions/challenges
with applications in these different fields. The MUSCLEES team proposes to tackle these challenges
from different and complementary angles, attempting to provide generalizations and unified points of
view in the study of biological systems: Axis 2 (in dark red in Fig. 1) is devoted to the understanding
of the role of stochasticity in biological systems through the development and analysis of Stochastic
Differential Equations (SDE) for reaction networks; Axes 3 and 4 (in blue in Fig. 1) aim to provide
a theoretical understanding of continuum models widely used to describe biological systems at the
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population scale, essentially by use of Ordinary Differential Equations (ODE) for the applications to
mathematical epidemiology (dark blue in Fig. 1), or of Partial Differential Equations (PDE) for various
applications (in light blue in Fig. 1); and Axis 5, the most interdisciplinary axis of our research team, is
entirely devoted to the development of valid agent-based models directly confronted to in vitro/in vivo
data for bacterial growth and tissue development and ageing (orange in Fig. 1). Lastly, Axis 1 (in red
arrows in Fig. 1) represents one of the fundamental perspectives to link all our research activities. It is
devoted to establishing the link between the various modelling viewpoints taken in the other research
axes, by deriving, as rigorously as possible, the continuum (ODE, SDE, PDE) models from microscopic
agent-based descriptions.

The MUSCLEES project-team gathers researchers with complementary skills and interests in ap-
plied mathematics (partial differential equations, stochastic processes, control theory). Our goal is to
incorporate the different knowledges present in the team as well as expertise obtained from first hand
collaborators specialists of the considered applications, in order to provide firm mathematical ground
to the representation, understanding, numerical assessment and control of the biological systems of
interest. As a peculiarity, we also intend to locate these questions in the larger framework of analysis
methods. We will always attempt to unify as much as possible the specific application domains within
a common formalism, with scales ranging from individual decision to collective behaviour: this vision
and methodology go far beyond the specific applications we have listed. Altogether, the team ambitions
to provide a deep Mathematical Understanding across Scales of Complex Living Ecosystems with
Emerging Structures, whence the acronym: MUSCLEES. Our planned activities are exposed below. As
a rule, they are activities already currently in progress or whose realisation will be undertaken soon.
Longer-term actions or perspectives are mentioned specifically, whenever needed.

3 Research program

The research program is organized along the five following axes.

• Axis 1 – Multiscale study of interacting particle systems

• Axis 2 – Stochastic models for biological systems

• Axis 3 – Theoretical analysis of nonlinear partial differential equations (PDE) modelling various
structured population dynamics

• Axis 4 – Mathematical epidemiology

• Axis 5 – Development and analysis of mathematical models for biological tissues confronted to
experimental data

The logic of this structure is as follows. A first perspective is related to the various scales. Axis 1 is
related to the passage from microscopic to mesoscopic scales (these terms are recalled in the beginning
of the Section 3.1). The passage to the macroscopic scale and/or the study of the corresponding models
is the core of the Axes 2 (stochastic models), 3 (deterministic PDEs) and 4 (deterministic ODEs). In this
respect, Axis 5 holds a special place, as it is devoted to the precise confrontation of measured data and
model, for some of the problems studied in Axis 3. In a complementary manner, Axes 1, 2 and 3 are of a
more theoretical nature, and Axes 4 and 5 more focused on specific applications.

3.1 Axis 1 – Multiscale study of interacting particle systems

MUSCLEES permanent members involved: Pierre-Alexandre Bliman, Sophie Hecht, Benoît Perthame,
Diane Peurichard, Nastassia Pouradier Duteil

A growing literature has been devoted to the precise mathematical understanding of the mechanisms
subtending pattern formation in multi-agent systems. This subject was initially brought forth by pioneer-
ing articles on statistical physics-oriented models for biological systems, and subsequently cemented
by a wealth of contributions in the fields of automation theory and engineering. In the midst of this
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broad academical trend, a research current led by the works of Hegselman and Krause [112] on bounded
confidence models, and the groundbreaking papers of Cucker and Smale [82] on emergent behaviours,
started to focus more specifically on the problems of consensus or alignment.

Multi-agent systems refer to systems of N ∈N agents represented by points in a given configuration
space (most often, the Euclidean space Rd ), which evolve according to coupled dynamics of the form

ẋi (t ) = 1

N

N∑︂
i=1

φi j (x j (t )−xi (t )). (1)

Here, the vector (x1(t ), . . . , xN (t )) ∈ (Rd )N represents the collection of all the states of the agents at some
time t ≥ 0, while the maps φi j : Rd → Rd , encode pairwise interactions between agents, which usually
depend on their relative distance and orientation, but could also depend on the individual nature of the
agents, which is encoded in the indexing φi j .

Depending on the nature of the interaction functions φi j , these models can be roughly classified in
two categories. In the first one, interactions are pre-determined by a given interaction network, which
represents the inherent structure of the population’s interactions. Then each pairwise interaction φi j is
non-zero if and only if the edge (i , j ) is part of the underlying graph of interactions. The second approach
considers the particle interactions as functions only of the particle’s positions: φi j :=φ. In this case, there
is no underlying network.

Mathematically, one of the main challenges in the study of these systems is their multi-scale aspect.
Indeed, the reason that such systems have been introduced is to link local interactions to global behavior.
Moreover, in numerous applications these systems are very high dimensional, as they are composed
of many individuals, all potentially interacting. Studying and simulating interacting particle systems
becomes a particularly challenging problem when the dimension of the system increases. This is referred
to as the “curse of dimensionality”, a term coined by Bellman in the context of dynamic optimization
of high-dimensional systems. One way around this problem is to move away from the microscopic
viewpoint where each agent is considered individually, and consider instead the mean-field limit, which
provides a kinetic description of the system. This approach consists of approximating the influence of
all agents on any given individual by one averaged effect, which amounts to studying a single partial
differential equation (PDE), instead of a large system of coupled ordinary differential equations (ODE).

As several limiting processes can be considered when one passes from an ‘agent-based’ description of
a system to a ‘continuous’ one, let us make clear some nomenclature that we will employ throughout
this document. We will refer to as ‘microscopic’ the models of agent-based type, i.e systems of ODE that
describe the evolution of each agent in a population (each described by individual variables such as
position, speed, size, etc). We will first be interested in taking the limit of large number of individuals
from our agent-based models, leading to continuum (possibly non-local) PDE models describing the
evolution of the agents’ probability distribution (structured in space, time, possibly size etc). We will
refer to these models as ‘mesoscopic’, where ‘mesoscopic’ is to be understood here as an intermediate
scale, describing populations composed of an ideally infinite number of agents but still expressed at the
individual scale (no rescaling of time or space, i.e interactions still expressed at the agents’ scale). On
the other hand, we will refer to as ‘macroscopic’ the PDE models obtained after rescaling in time and
space the mesoscopic models, in various regimes (diffusion limit, hydrodynamic limit etc) and under
proper assumptions on the order of the agents’ interactions. According to the assumptions made on the
interactions, these ‘macroscopic’ models will correspond to different microscopic dynamics.

3.1.1 Micro-Meso: Graph limits

MUSCLEES permanent members involved: Pierre-Alexandre Bliman, Nastassia Pouradier Duteil

In 2014, Medvedev used techniques from the recent theory of graph limit to derive rigorously the
continuum limit of dynamical models on deterministic graphs [134]. The limiting equation, so-called
“graphon equation” now describes the evolution of the particle’s positions x(t , s) as a function of time
t and of the “continuous index” s ∈ I (representing the particle’s individual identities, in an infinite
population):

∂t x(t , s) =
∫︂

I
φ(s, s′, x(t , s′)−x(t , s)).d s′ (2)
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In [56], we extended this idea to a collective dynamics model with time-varying weights, adopting the
graph point of view described above. We showed that this approach is more general than the mean-field
one, and the Graph Limit can be derived for a much greater variety of models.

Our work will involve deriving graph limits for systems of particles that can be structured along a trait
that characterizes their interactions, such as volume, mass or phenotype. Among the open problems that
we aim to address in collaboration with Nathalie Ayi (LJLL, Sorbonne University), one of them concerns
the graph limit for multi-agent systems evolving on weighted random graphs. More specifically, we will
consider that the interactions between agents are given by φi j (x j (t )−xi (t )) := ξi jφ(x j (t )−xi (t )), where
(ξi j )i , j are random variables whose laws are probability distributions on R+ that depend on the indices
i , j . Graphs with random topologies are often used to model systems such as neuronal networks, coupled
lasers and communication or power networks. In [134], the continuum limit of collective dynamics on
random graphs was derived for graphs whose edge weights ξi j can be either 0 (i.e. there is no edge) or 1.
Our aim will be to generalize this results to random weighted graphs, whose weights can be given by any
positive real number. Results will then possibly be extended to temporal random graphs, whose edge
weights evolve in time as in blinking systems.

In a parallel direction, we will explore the possibilities of the graph-limit formalism in the framework
of epidemiological models on graph. A first step was done in [92] by deriving the graph limit of an epi-
demiological model on graphs, which results in a system of coupled structured PDEs for the susceptible,
infected and recovered populations. The graph-limit approach will allow us to ask ourselves fundamental
analytical and modeling questions regarding the role of the interaction network in the spread of an
epidemic. It will also give us the possibility to address control and optimal control problems aiming to
minimize the infected population by controlling the graphon (i.e. the continuous interaction network).
Another possibility will be to address inverse problems in order to infer the graph structure based on the
epidemic spread. This project will link the research of team members involved in Sections 3.1 and 3.4.

3.1.2 Micro-Meso: Beyond mean-field limits

MUSCLEES permanent members involved: Sophie Hecht, Diane Peurichard, Nastassia Pouradier Duteil

When the interaction between particles is independent of each particle’s individual nature, i.e. φi j =φ,
the particles are said to be exchangeable, or indistinguishable. In this case, the classical approach to
link microscopic and mesoscopic models is a limit process called “mean-field limit”, and consists of
approximating the population by a sum of localized point masses, and then of sending the number of
agents to infinity, while sending each individual mass to zero [94]. In this way, the total mass of the
population is conserved throughout the limit process, and everything can be done in the framework of
probability measures. The limit PDE is typically a non-linear transport equation of the type

∂tµ(t , x)+∇· (︁V [µ(t , ·)](x)µ(t , x)
)︁= 0, V [µ(t , ·)](x) =

∫︂
Rd
φ(y −x)dµ(t , y),

in which µ(t , ·) ∈P (Rd ) represents the particle distribution at time t , and the non-local velocity V [µt ]
represents the averaged effect of the whole population on each individual. However, this approach has
a main drawback: it does not take into account the intrinsic volume of the individuals, since they are
approximated by their centers of mass. As a result, in many cases the limiting PDE fails to reproduce
the behavior of the microscopic system, in particular when modeling congestion effects due to size
constraints.

This is a major modeling limitation, and resolving it is crucial. Several works have highlighted a
discrepancy between the microscopic and continuum modeling approaches. For instance, in the context
of emergency crowd evacuation, microscopic models are able to reproduce the well-known effect of arch
formation in front of exits, resulting in congestion and dramatic slow-down of the crowd’s evacuation
[132]. This effect still eludes all natural continuum limits. Another example can be found in the modeling
of cell division: microscopic models capture the fact that the cell population is naturally pushed outwards
at the birth of a new daughter cell because of its added volume. This effect is lost in continuum models,
as there is no concept of individual size.

The goal of this part of the project is to address this issue. We will first focus on the simple situation of
a population of agents whose only interactions are due to “non-overlapping” constraints: if two agents
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are within a certain distance (representing their diameter), they exert a repulsive force on each other; if
their distance is greater than this diameter, there is no interaction. Despite the simplicity of this setting,
the micro-macro limit is highly non-trivial due to the role of the agents’ size in the dynamics. Indeed, in
the continuum description, the information on the agents’ size is lost, and the condition on the agent-to-
agent distance no longer makes sense, as the concept of individual agents is gone. However, intuitively,
one would expect that this distance condition would correspond to a density condition in the continuum
setting: interactions take place if and only if the local density is above a critical threshold. We will explore
these questions on systems with identical particles (same and fixed sizes), and take a particular interest
in how non-overlapping configurations translate into local density constraints at the population level.

In order to gain insights into the role of the individual particle sizes and shapes on the macroscopic
structures generated at the population level, we will consider another approach where the particle density
distribution for the mean-field limit is structured in space and sizes. In current works (to be submitted),
we showed that under reasonable assumptions for the interaction kernel ψr,s , the limit PDE describing
the particle distribution µ(t , x,r ) (depending on time, space and radius) is of the type:

∂tµ(t , x,r )−∇x ·
(︁
µ(t , x,r )∇x

∫︂
R+
ψr,s ∗x µ(t , x, s)d s

)︁−σ∆xµ(t , x,r ) = 0. (3)

Proving the convergence of the particle system to the limit PDE with the added radial structure in the
density distribution is challenging and is a work in collaboration with Marc Hoffman (Université Paris
Dauphine).

3.1.3 Scaling limits

MUSCLEES permanent members involved: Sophie Hecht, Benoît Perthame, Diane Peurichard, Nastassia
Pouradier Duteil

In order to link the mesoscopic and the macroscopic model it is common to consider a scaling limit.
Depending of the variable of the system the scaling can vary (small particle compared to space, slow
division compared to the mechanical interaction, etc).

Meso-Macro: the limit of small particles – compressible case Going back to the mesoscopic equation
(3) structured in size and space, we will consider a scaling where the size of the particles becomes small
compared to the space itself, while keeping the interaction of order 1 (compressible limit). Under these
scaling assumptions, we can formally compute that the equation becomes:

∂t n(t , x,r )−∇x ·
(︁
n(t , x,r )

∫︂
αr,s∇x n(t , x, s)d s

)︁−σ∆x n(t , x,r ) = 0 with αr,s =
∫︂
ψr,s (x)d x,

where the particle distribution is now denoted by n(t , x,r ). The tools to rigorously derive the macro-
scopic equation requires compacity for the density. Thanks to the diffusion term we can easily find space
compacity, and in the case where σ= 0, energy estimates can allow to recover the result. The difficulty
for the convergence resides in finding the compacity according to the size variable density. A recent
idea allowed us to circumvent this problem. We now aim to extend the result when considering particle
growth and division. In order to do this we will focus on the fact that the equation is a mixed between a
reaction diffusion equation and a growth-fragmentation equation.

Meso-macro: The incompressible limit Another limiting process that can be considered is the so-called
‘incompressible limit’, where the pressure of the system is scaled to become singular. A possible way to
study such regime is to work directly at the continuum (macroscopic) level and consider the continuous
equation

∂t n(t , x)−∇x ·
(︁
n(t , x)∇x p(n(t , x)

)︁= 0,

where p represents the pressure of the system depending of the density, the incompressible limit consists
in rendering p singular. A classical example is the choice p(n) = γ

γ−1 nγ−1 with γ→+∞. This type of
limit has been widely studied in the past decade [57, 58, 70] and still provides interesting and difficult
problems. For one species we can note the case where the velocity of the system in the Brinkman case
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allows a rotational component. In the multiple-species case we can consider the case where the motility
rate of the species are different.

Meso-Macro: the link between compressible and incompressible limits This part of the project will
be devoted to the study of the link between the two types of limits considered previously, namely the
compressible and incompressible limits of mesoscopic models. To this aim, we will consider as starting
point multiphase flow models for tumor growth based on mixture theory, well studied by members of the
teams. According to the mixture theory, a tissue is modeled as a multiphase flow (different types of cells,
liquid, molecules) through a porous media (extra-cellular matrix). In mathematical terms, this leads to
strongly nonlinear degenerate parabolic Cahn-Hilliard equations [151] for the cell density ϕ(t , x) as

∂tϕ(t , x)+div[ϕ(t , x)M(ϕ(t , x))∇ν(t , x)] = 0, ν=∇V (ϕ)+δ∆ϕ,

where M represents the mobility, V describes the interactions between cells, and δ is the surface tension
parameter. Our aim is to derive such equations from mesoscopic (kinetic) models and to understand
relations between compressible and incompressible models.

Cells may also change their phenotype. Migration, invasion and the epithelial-mesanchymal trans-
ition (EMT) are basic principles of the way cells can initiate a collective movement in a living tissue
as described above. This is particularly important for the initialisation of metastases in cancer. With
the Inserm team, Laboratoire de Biologie du Cancer et Thérapeutique, Saint-Antoine hospital, we will
develop a model of invasion through membranes in breast cancer.

3.2 Axis 2 – Stochastic models for biological systems

MUSCLEES permanent members involved: Benoît Perthame, Philippe Robert

This line of research investigates models where a stochastic component, the so-called, and somewhat
ambiguous notion, “noise” of the biological literature, plays an important role. This is for example the case
for gene expression in bacterial cells, see [158], or in some neural networks to represent the occurrence
of spiking events, see [160]. The stochastic framework is due to dynamics of binding/unbinding of
pairs of macro-molecules within biological cells. It can be also when a small subset of enzymes has
an important impact on the dynamic of the macromolecules, so that the classical law of mass action
is not anymore relevant to represent the system. This is a quite different perspective from classical
mathematical biological models for population processes where, essentially, a macroscopic view is used,
with branching processes in particular.

Scaling approaches are used to investigate these models. The scaling parameter being either the
total number of interacting macromolecules, the number of cells, or the factor of the time-scale of
fast processes . . . Functional laws of large numbers, functional central limit theorems, and averaging
principles are the main technical results which can be proved to have a qualitative description of these
systems.

3.2.1 Regulation Mechanisms of Gene Expression

MUSCLEES permanent members involved: Philippe Robert

The central dogma of molecular biology states that the genetic information flows only in one way,
from DNA to RNAs, and to proteins. The production of proteins is a central process of biological cells. It
can be described as a two-step process. In the first step, macro-molecules polymerases produce RNAs
with genes of the DNA. This is the transcription step. The second step is the production of proteins itself
from mRNAs, messenger RNAs, a subset of RNAs, with macro-molecules ribosomes. This is the translation
step. An additional feature of this process is that it is consuming an important fraction of energy resources
of the cell, to build chains of amino-acids or chains of nucleotides in particular. See [62, 150, 158].

In the context of prokaryotic cells, like bacterial cells or archaeal cells. The cytoplasm of these cells
is not as structured as eukaryotic cells, like mammalian cells for example, so that most of the macro-
molecules of these cells can potentially collide with each other. This key biological process can be, roughly,
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described as resulting of multiple encounters/collisions of several types of macro-molecules of the cell:
polymerases with DNA, ribosomes with mRNAs, or proteins with DNA, . . .

The fact that the cytoplasm of a bacterial cell is a disorganized medium has important implications on
the internal dynamics of these organisms. Numerous events are triggered by random events associated
to thermal noise. When the external conditions are favorable, these cells can nevertheless multiply
via division at a steady pace. A central question is of understanding how the cell adapts to different
environments (scarce resources or rich environment).

Important regulation mechanisms of gene expression of bacterial cells are achieved with RNAs. Up
to now little is known on the efficiency of this type of regulation from a quantitative point of view. The
ambitious goal is of designing and investigating stochastic models integrating the transcription and
translation steps as well as the flows of amino-acids within the cell. One of the difficulties is the number of
different chemical species involved: genes, RNAs, tRNAs, sRNAs, rRNAs, proteins, Amino-acids, ppGppp,
RelA, . . . All of them having an important role in this regulation. A scaling approach is investigated to
study these multi-dimensional Markov processes. This is a collaboration with Vincent Fromion of the
laboratory BioSys "Biology of systems" of Inrae. The main goal of these studies is to evaluate the efficiency
of these regulation mechanisms in the cell for the adaptation to changes of environment: switching times,
impact of the variation of the flows of amino-acids, . . . , and the dependence on the production rates of
ppGppp, RelA and sRNAs among others.

3.2.2 Stochastic Chemical Reaction Networks

MUSCLEES permanent members involved: Philippe Robert

The goal of the research project of this section is of investigating a generalization of the law of mass
action for biological systems.

For example, if three chemical species A , B and C are involved in a chemical reaction of the type,

A+B⇀C , (4)

the classical law of mass action states that the concentration xM (t) of the chemical specy M at time t
satisfies the relation

d xC (t )

d t
= kxA(t )xB (t ).

The ODE in this case is a quadratic functional of the state vector. In a deterministic context, the famous
results by Horn, Johnson and Feinberg give, for some specific topologies, a satisfactory description of
the stable states of these networks. See [105] for example. It turns that this description is suitable for
systems for which the orders of magnitude of the different chemical species are comparable and that the
stochastic components merely vanish. These assumptions are nevertheless not true in some biological
settings, when, for example, reactions are driven by a small number of enzymes but with a large reaction
rate.

As already mentioned, due to dynamics of binding/unbinding of pairs of macro-molecules within
biological cells, it is natural to consider models of chemical reaction networks for which collisions of
chemical species occur in a random way. In the above example, it will be assumed that a given couple
of A and B particles will collide at rate k, so that if XM (t ) is the number of particles of type M at time t ,
then, at time t , a particle of type C is created at rate k X A(t)XB (t). The process (X A(t), XB (t), Xc (t)) is a
Markov process, if we assume that there are external arrivals of A and B particles, it is natural to study the
convergence in distribution of this Markov process. There are several conjectures in this domain.

Up to now there are few results in such a random context. The reference [47] shows, by using the
results of the deterministic case that the invariant distribution has a product form expression for a specific
set of topologies. A challenging question is of extending stability results for networks for which no such
product formula holds. New tools, such as scaling techniques, have to be developed to study these
important problems.

3.2.3 Neural Networks

MUSCLEES permanent members involved: Benoît Perthame, Philippe Robert



Project MUSCLEES 11

This application domain of this line of research is described in the subsection “Neuroscience” of Sec-
tion 4.1.

Interacting Hawkes processes When the number of nodes of a neural network is fixed (i.e. not large),
one of the challenging questions is of determining the asymptotic, temporal, behavior of a neural network
composed of inhibitory and excitatory neural cells. In general mathematical models of neural networks
assume excitatory nodes. A classical example is the self-excitatory neural cell, the integrate and fire model.
However, experiments have shown that inhibitory cells play a key role in the procedures of learning.
See [176] for example.

A typical, simple, evolution of a node i of the network R could be of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
dXi (t ) =−Xi (t )dt + ∑︂

j∈R\{i }
W j i (t−)N j (dt )−Xi (t−)Ni (dt )

dZi (t ) =−γZi (t )dt +Ni (dt ),

dWi j (t ) = Bi Zi (t−)N j (dt )+B j Z j (t−)N j (dt )−δW j i (t )dt ,

where Bi∈R, Bi>0 if i is excitatory and inhibitory otherwise.

— Xi (t ) is the membrane potential of i at time t ;

— Wi j (t ) is the synaptic weight of the link i − j at time t ;

— Ni (dt ) is a point process with intensity β(Xi (t )), it is associated to the spike train of i ;

— Zi (t ) encodes the past spiking activity of node i at time t .

The asymptotic of the matrix of synaptic weights (Wi j (t)) when t gets large is the main quantity of
interest. Up to now there are few theoretical results to determine the conditions under which a given link
is asymptotically “weak”, when its weight converges to 0, or “strong” when it grows without bound.

Mean-field neural networks For large neural networks as described before, mean-field limits have been
established in a number of situations. The resulting probability distributions satisfy nonlinear PDEs
which can be of Integrate&Fire type, renewal type or combinations. The specific non-linearities raise
severe difficulties in terms of analysis and numerics, as global existence vs finite blow-up, asymptotic
analysis, understanding of synchronisation or convergence to steady state. ŁMotivated either by their
mathematical interest of questions asked by biologists, we will continue our analysis of this large class of
problems (see, e.g., [118]) in several directions:

— analyze the current models introduced in biophysics (N. Brunel) to take into account spike-triggered
adaptation. The difficulty here is the degeneracy of the equations, which leads to several long term
problems involving a PhD thesis,

— define solutions of structured equations (see Section 3.3) with infinite number of variables, in
relations to Wold processes (in the spirit described above for Hawkes processes, a short term
programm),

— explain anti-phase synchronisation in networks à la Wilson-Cowan vs experimental observations.
A collaboration with D. Avitabile and D. Salort has begun and results are encouraging.

3.3 Axis 3 – Theoretical analysis of nonlinear partial differential equations (PDE)
modelling various structured population dynamics

MUSCLEES permanent members involved: Luca Alasio, Jean Clairambault, Benoît Perthame, Nastassia
Pouradier Duteil

Since the seminal paper by McKendrick for medical applications [35], to account for relevant hetero-
geneity in the variables under study (most often populations of individuals such as proteins, cells, animal
species, etc.), continuous models in biology rely on equations structured by different variables, age, size,
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physiological trait... The interest of studying these equations stems from the mathematical structure of
these equations (which are neither conservative, nor self-adjoint), their non-linearities and the complex
behaviour of solutions.

3.3.1 Adaptive phenotype-structured cell population dynamics

MUSCLEES permanent members involved: Jean Clairambault, Benoît Perthame, Nastassia Pouradier
Duteil

Initially developed for adaptive dynamics in theoretical ecology and cell population biology models
in [87] and in [89], phenotype-structured equations are here studied in the context of cell populations
confronted to a changing environment, in particular in the case of cancer and its treatments. Some of
these models, developed within the former Inria team, have been reviewed in the survey [79]. A more
general and extended recent state of the art on phenotype-structured population dynamics is reported
in [128].

Our research will focus on the analysis of such phenotype-structured equations, and more particularly,
on their long-time behavior, of which little is known. Indeed, the different mathematical terms such as
advection (modeling cell differentiation), diffusion (modeling epimutations) and non-local source terms
(modeling population growth and phenotype selection) tend to have antagonistic effects. One of the
main mathematical challenges consists of understanding the effect of coupling such phenomena on the
long-time behavior of the solution.

Interacting cell populations: Tumour-immune interactions Preferred models rely on structured equa-
tions of the nonlocal Lotka-Volterra type with exchanges of bidirectional inhibitory messages between the
two populations in the form of weighted integrals acting as added death terms in the logistic part of the
net proliferation rate (i.e., nonlocal death term in the net rate ‘birth minus death’). The heterogeneous
tumour cell population density n(t , x) is structured according to a tumour malignancy continuous pheno-
type x, here identified to ‘stemness’. Focusing for the sake of this presentation on adaptive immunity, the
effector cells, at contact with tumour cells, T-cell population density ℓ(t , y) and the naive cells, present in
lymphoid organs, T-cell population density p(t , y), unique source term of the effector T-cell population
ℓ(t , y), are structured according to an anti-tumour efficacy phenotype y . The action of Antigen Presenting
Cells (APCs), which instruct naive T-cells with the tumour aggressiveness phenotype x is represented
below by the weighted integral χ(t , y). The model runs as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂n

∂t
(t , x) = [︁

R(x,ρ(t ))−µ(x)ϕ(t , x)
]︁

n(t , x)

∂ℓ

∂t
(t , y) = p(t , y)−

(︃
ν(y)ρ(t )

1+h.IC I (t )
+k1

)︃
ℓ(t , y),

∂p

∂t
(t , y) =αχ(t , y)p(t , y)−k2p2(t , y),

with total tumour cell mass at time t

ρ(t ) =
∫︂ 1

0
n(t , x)d x,

and

ϕ(t , x) =
∫︂ 1

0
ψ(x, y)ℓ(t , y)d y, χ(t , y) =

∫︂ 1

0
ω(x, y)n(t , x)d x, ω(x, y) = 1

s
e−|x−y |/s , ψ(x, y) = 1

s1
e−|x−y |/s1 .

We study this system in the framework of the PhD thesis of Zineb Kaid at Tlemcen University, Algeria,
and of a collaboration with Camille Pouchol at Université Paris-Cité. The first question concerns the large
time behaviour of the system, depending in particular on functions µ(x) (sensitivity of tumour cells to
the action of T-cells) and ν(y) (sensitivity of T-cells to PD-ligands), without treatment. We also study its
behaviour with added constant control IC I (for Immune Checkpoint Inhibitors, see 4.2, Tumour-immune
cell interactions), aiming in particular at representing reversal from escape to extinction or equilibrium in
the cancer cell population. Some analytical results on phenotype concentration in x have been reached
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already in the case where ϕ = ϕ(t) is independent of x (then representing more innate, due to NK-
lymphocytes, than adaptive immunity), however the general case remains to be fully explored. Adding
the effect of time-scheduled immunotherapies (in particular anti-PD1 immune checkpoint inhibitors
IC I (t )) and their optimisation, following the optimal control methodology of [156], will be the ultimate
object of this study. We may also include small parameters, e.g. in the initial distributions, and study the
limiting constrained Hamilton-Jacobi equation (see below).

Asymptotics: population convergence, trait divergence and trait concentration Plasticity, and ‘bet
hedging’ in cancer have been modelled, in the framework of Frank Ernesto Alvarez Borges’s PhD thesis
at Paris-Dauphine University, by a phenotype-structured reaction-advection-diffusion equation [46] in
which the structure variables are viability, fecundity - with a trade-off condition between them - and
plasticity, this last variable tuning in a nondecreasing mode a Laplacian that represents nongenetic
instability of the other two phenotype variables. The asymptotics of the model, which has been inspired
by the Bouin-Calvez cane toad equation, yields phenotypic divergence between viability and fecundity
traits, while the plasticity trait asymptotically decreases. The main equation, where z = (x, y,θ) with
x=viability, y=fecundity, θ=plasticity, runs as:

∂t n +∇· {V n − A(θ)∇n} = (r (z)−d(z)ρ(t ))n,

where

(V n − A(θ)∇n) ·n = 0 for all z ∈ ∂D

and

n(0, z) = n0(z) for all z ∈ D =Ω× [0,1],with Ω := {C (x, y) ≤ K },

defining a trade-off between traits x and y .
This model, applied with the aim to investigate the emergence of dimorphism in trait-monomorphic

cell populations, is intended to represent both ‘bet hedging’ in cancer populations exposed to cellular
stress, and emergence of multicellularity in evolution/development, in the perspective of the atavistic
theory of cancer (see above Sec 4.2). This reaction-advection-diffusion setting explores the frequent
and reversible phenomenon of epimutations (due in particular to the reversible graft of methyl and
acetyl radicals on DNA and histones, changing the expression of genes without altering the DNA by any
mutation in the sequence of bases) in very plastic cancer cell populations - and also, in the early stages
of animal development from a zygote to a multicellular individual, when evolving cell populations are
also plastic, i.e., frequently capable of differentiations, de-differentiations and transdifferentiations, all
reversible phenomena - in isogenic cell populations, i.e., without mutations. How such (usually costly,
responding to life-threatening cellular stress) reversible phenomena may, under prolonged environmental
evolutionary pressure, lead to rare mutations yielding - usually locally in Cartesian space - new strains
actually found in tumours, is to the best of our knowledge a completely open domain of research. In
principle, transitions from frequent reversible epimutations to rare established mutations could naturally
be studied by piecewise deterministic Markov processes (PDMPs). Using the framework of constrained
Hamilton-Jacobi equations mentioned below is another possibility, developed in the next paragraph.

The constrained Hamilton-Jacobi equation. For phenotypically structured equations representing
large populations under the pressure of selection, it has been established that a class of asymptotic limits
are the constrained Hamilton-Jacobi equations [152, 74]. This is the case for the rare mutations limit or
for highly concentrated initial data in models as (5). In that case, and including mutations, the problem is
to find the solution S(t , x), and the Lagrange multipliers (ρ(t ),ϕ(t )) such that

∂t S(t , x) = R(x,ρ(t ),ϕ(t ))+|∇S(t , x)|2, max
x

S(t , x) = 0, ∀t ≥ 0.

In this framework, an open question is to understand how this limit equation is able to represent
the transition from monomorphic (the maximum of S(t , ·) is achieved at a single point) to dimorphic
populations (the maximum of S(t , ·) is achieved at two points). Is this as smooth as observed in numerical
simulations including mutations or does branching emerge from a small, but growing mutant population?
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3.3.2 Around graphon dynamics

MUSCLEES permanent members involved: Nastassia Pouradier Duteil

As introduced in Section 3.1.1, a possible way to describe infinite-dimensional non-exchangeable
particle systems is the so-called graphon equation (2). In this equation, the particles’ non-exchangeable
nature comes from the dependence of the interaction function φ on the particles’ “continuous index”
s: often, φ(s, s′, x(t , s′)− x(t , s)) = σ(s, s′)φ̃(x(t , s′)− x(t , s)), where the function σ, known as “graphon”,
encodes the graph relation between the continuous particles. Whereas in Section 3.1.1, we focus on
deriving the graph limit equation as a mesoscopic limit of particle systems, here we propose to analyse
further this graph-limit framework, and to use it to investigate open problems (more specifically, in
control theory) that have so far eluded the community in other frameworks.

Graphon Control for Consensus. One of the main questions regarding the finite-dimensional particle
system (1) involves understanding its large-time asymptotics, and, more specifically, finding necessary
and sufficient conditions on the underlying network (encoded in the functionsφi j (x j −xi ) =σi j φ̃(x j −xi ))
for convergence to consensus. This is a highly non-trivial problem, even if sufficient conditions are known
(for instance, connectedness of the underlying graph). Related to this problem, many communities are
interested in controlling system (1) in order to achieve consensus. Generally, the control is introduced
as an additive term ui , so that (1) becomes: ẋi (t) = 1

N

∑︁N
i=1φi j (x j (t)− xi (t))+ui (t). This amounts to

influencing each individual’s trajectory (or that of a selection of individuals, referred to as “leaders”)
in order to drive the group to the desired state. However, here, we propose to embrace a different
approach and act instead on the network itself, that is on the coefficients σi j . Due to the combinatorial
complexity of the problem in its discrete setting (1), we will instead study the continuous graphon
dynamics (2) and consider the following control problem: Which interaction functions σ(s, s′) allow to
reach consensus most efficiently? This work is conducted in collaboration with Nathalie Ayi, Laurent
Boudin and Emmanuel Trélat of Sorbonne University’s Jacques-Louis Lions Laboratory.

Measure theoretic generalisation of graphon dynamics. Another description of system (2) would in-
volve introducing a particle density µ(t , x, s) describing the probability of finding particle with continuous
index s at position x at time t . Given a reference measure ω ∈P (I ) encoding the individual statuses of
the initial distribution of agents, we define measure graphons as Cauchy problems of the form

∂tµ(t , x, s)+∇x ·
(︁
v(t ,µ(t , ·, ·), x, s)µ(t , x, s)

)︁= 0,

with µ(0, ·, ·) = µ0 ∈ P (I ) satisfying πI #µ0 = ω (πI # denoting the projection onto the first marginal),
and v : [0,T ]×P (I ×Rd )× I ×Rd is a non-local velocity field. If the reference measure is given by
ω(s) = 1

N

∑︁N
i=1δ( i

N − s), one recovers a discrete particle system of the form (1). On the other hand, if the
reference measure is given by the Lebesgue measure dλ on I ,µ0 models a continuum of agents with evenly
distributed weights. The flexibility of this modeling approach is that it can allow us to model situations in
which agents are given different weights, for instanceω(s) =ψ(s)dλ(s), for some functionψ. It also allows
to model a crowd composed of leaders and followers, for instance with ω(s) = 1

N

∑︁N
i=1δ(s − i

N )+dλ(s).
The first aim of this project, conducted in collaboration with Benoît Bonnet (LAAS-CNRS, Université de
Toulouse) will be to prove the well-posedness of such an equation, which is not straightforward as we
impose no regularity of the vector field v with respect to the continuous index s. We will also extend this
model to describe population transfers, by introducing a source term in the right-hand side.

3.3.3 Analysis of non-local advection-diffusion models for active particles

MUSCLEES permanent members involved: Luca Alasio

Systems of self-propelled interacting particles provide an individual-based description of the motion
of agents ranging from bacteria to colloidal surfers [148, 170]. Different approaches to the derivation of
macroscopic equations from particle dynamics have been considered, and the corresponding limit PDEs
exhibit a variety of possible structures and behaviours [69]. This work is concerned with the analytical
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study of some of the above-mentioned PDE models, focusing on regularity and convergence to stationary
states. The simplest example is given by the following non-local advection-diffusion equation:

∂t f +Pediv
(︁
(1−ρ) f e(θ)

)︁= De∆ f +∂2
θ f , (5)

where ρ(t , x) = ∫︁ 2π
0 f (t , x,θ)dθ is the angle-independent density and e(θ) = (cosθ, sinθ), with periodic

boundary conditions both in the space variable x ∈ (0,2π)2 and the angle variable θ ∈ (0,2π). The
constant parameters Pe ∈ R and De > 0 are called the Péclet number and spatial diffusion coefficient,
respectively. Further details and a preliminary existence theory can be found in [68]. In collaboration with
Simon Schulz (SNS Pisa) and Jessica Guerand (U. Montpellier), we have proven regularity properties, the
Harnack inequality, and exponential convergence to stationary states for weak solutions of equation (5).
We apply De Giorgi’s method and differentiate the equation with respect to the time variable iteratively
to show that weak solutions become smooth away from the initial time. This strategy requires that we
obtain improved integrability estimates in order to cater for the presence of the non-local drift. The
instantaneous smoothing effect observed for weak solutions is shown to also hold for very weak solutions
arising from merely distributional initial data; the proof of this result relies on a uniqueness theorem
à la Michel Pierre for low-regularity solutions. The convergence to stationary states is proved using
the method of contractive stochastic semigroups (Doeblin–Harris approach), taking advantage of the
aforementioned Harnack inequality. This is the first step towards the study of more sophisticated models,
for example we are interested in the following:

∂t f +Pediv
(︁
(1−ρ) f e(θ)

)︁= De div
(︁
(1−ρ)∇ f + f ∇ρ)︁+∂2

θ f , (6)

where the diffusion terms may degenerate to zero. Its microscopic dynamics corresponds to a discrete
jump process in position and a continuous Brownian motion in angle. The numerical exploration in [69]
shows interesting phase separation effects which connote further analytical challenges.

3.3.4 Analysis of systems with cross-diffusion

MUSCLEES permanent members involved: Luca Alasio

Cross-diffusion systems are related to several models in Mathematical Biology and in Kinetic Theory,
for example the SKT model in Population Dynamics [166], tumour growth models [81], and multi-species
agent-based models [40]. In collaboration with M. Bruna, S. Fagioli and S. Schulz, we have been studying a
family of PDE systems with dominant degenerate diffusion, plus cross-diffusion and drift terms. Existence,
uniqueness, stability and long-time asymptotics for related systems with standard diffusion have been
established in the literature, however the case of degenerate diffusion is considerably harder and requires
the development of new techniques. For example, a class of systems with degenerate diffusion has
been recently studied taking advantage of their gradient flow structure (in the Wasserstein sense) [114,
73]. This structural condition is not always satisfied and we aim to develop alternative approaches
under less restrictive assumptions. This is possible thanks to the combination of functional analytic
techniques (compactness, lower semi-continuity), Lyapunov functionals, and fixed point results. Study of
the long-time asymptotics and stationary states is ongoing. The next steps include further exploration of
the connections between degenerate-parabolic and hyperbolic systems. Splitting methods constitute a
promising research direction, leading to challenging questions on suitable BV estimates for the solution.
We also consider the behaviour of solutions when one species is “frozen”, i.e. it does not evolve in
time. Such species acts as a spatially heterogeneous obstacle to the evolution of the other components.
Finally, efficient model comparison requires new continuous dependence results allowing the study of
non-local terms such as interaction potentials describing collective behaviour (in the absence of strong
parabolicity).

3.4 Axis 4 – Mathematical epidemiology

MUSCLEES permanent members involved: Pierre-Alexandre Bliman, Benoît Perthame

Epidemiology is “the study of the spread of diseases, in space and time, with the objective to trace
factors that are responsible for, or contribute to, their occurrence" [88]. We address here this issue with a
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specific control-theoretic flavor: we are interested not only on modeling of infectious diseases [48, 117,
67], but also control and observation issues. Two different directions of research are developed below,
corresponding to the two topics described in Section 4.3.

3.4.1 Vector-borne diseases

MUSCLEES permanent members involved: Pierre-Alexandre Bliman, Benoît Perthame

Modeling, analysis and control design of release strategies in metapopulation setting In order to take
into account the disturbing effects of migration of mosquitoes between treated and untreated areas, we
plan to study multi-site configurations, in meta-population approach. A meta-population is ‘a set of local
populations within some larger area, where typically migration, from one local population to at least
some other patches, is possible’ [110]. The meta-population models are systems of differential equations
defined on graphs whose vertices represent the different patches, and whose edges specify the population
transfers [50]. So far, such setting has been used mainly to model human movements [54, 65], the latter
being usually responsible for disease transport at a much greater distance than mosquitoes. While most
studies focus on the analysis of epidemiological models according to the values of their parameters, fewer
study the issues related to disease control through elaborated actions, specified through either open- or
closed-loop (i.e. based on measurement) strategies. We will adopt this perspective to define effective
methods of release of sterile males, or of mosquitoes infected on purpose by the bacterium Wolbachia.

We consider a class of controlled meta-population models under the general form

ẋi = Fi (xi , xS,i )xi − ((L⊗ I )x)i +mi (t ), ẋS,i =Λi (t )+FS,i (xi , xS,i )xi − ((LS ⊗ I )xS )i +mS,i (t ), (7)

i = 1, . . . ,n. For studying e.g. the Sterile Insect Technique (see [64]), xi and xS,i are vectors whose com-
ponents represent the numbers of wild and sterile mosquitoes in the patch i , according to their sex and
life stage. The matrix-valued functions Fi ,FS,i represent globally the birth and death processes as they
occur locally in patch i , including the effects of interaction between the two populations (during mating
and early development), which allows to envision reduction or extinction of the targeted population. The
n ×n-matrices L,LS are Laplacian matrices that model the displacement of the mosquitoes from one
patch to the others, and external migrations are modeled as additive perturbations mi ,mS,i .

The rate of release of sterile males in patch i per time unit is Λi (t) ≥ 0. Generally speaking, our
objective is to derive release strategies ensuring elimination or control of the population under certain
level in some of the targeted patches, and fulfilling adequate constraints (due e.g. to limited production
rate). This amounts to determine the number of sterile males to release in these specific subdomains, but
also possibly in connected subdomains playing the role of ‘buffer zones’. The basic reproduction number,
which must be kept low to avoid epidemic burst, is related to the linearized behavior of the system in
the vicinity of the disease-free trajectory. Seeing migration as a structured perturbation of this linear
system, we intend to analyze the robustness of thresholds defined based on this number, and to propose
control laws aiming at allocating the releases in a complex, heterogeneous, metapopulation model, so
that they reduce the epidemiological risk in the worst perturbation configuration. We plan to exploit the
peculiarities of the positive systems to tackle these robust control issues [167, 101, 80].

Optimization of killing and replacement policies in heterogeneous contexts Most mathematical
modeling of killing and replacement strategies, as the use of the bacterium Wolbachia, focus on spatially
homogeneous systems and propose to model the time dynamics of mosquito populations thanks to the
study of differential systems. In this setting, the influence of the releases on the time dynamics of mosquito
populations has already been extensively studied (see e.g. [45] for SIT (Sterile Insect Technique) and [106,
104] for replacement strategy by Wolbachia). However, for practical applications, it is important to take
into account the space variables and other phenomena like seasonality, heterogeneities, migration. . .
Moreover, the use of optimal control theory in coordination with actors in the field should be very
interesting to improve the efficiency of the strategies and to minimize their cost.

The study of the dynamics taking into account the spatial variable has started only recently. For the
replacement strategy a first simple model of the spatial spread of Wolbachia was proposed by Barton
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& Turelli in [60]. In their simplified approach, the total population is assumed to be constant and the
dynamics of the proportion of infected mosquitoes u ∈ [0,1] is governed by a bistable reaction-diffusion
equation. Using such a simple one-dimensional model, a first attempt to study the influence of spatial
heterogeneities in the spread has been proposed in [143]; in particular, it has been proved that strong
variations in the densities of wild mosquitoes, due for instance to vegetation, may block replacement. Up
to our knowledge this is the only study of this kind for replacement strategy.

Our aim here is to perform well-fitted killing or sterile insect strategies so that blocking phenomenon
occurs. In a mathematical language, we consider the following bistable reaction-diffusion equation

∂t u −∂xx u = g (u)−µ(x)u1{0<x<L} in (0,∞)×R (8)

where g is a bistable reaction term (such as g (u) := u(1−u)(u −θ) for example), and the killing term
µ(x)1{0<x<L} represents a killing strategy with a rate µ(x) over (0,L).

When µ(x) =C is constant over (0,L), it has been proved in [43] that if C is large enough, that is, if one
performs a sufficiently sharp killing strategy in a localized area, then there exists a heteroclinic steady
state connecting 1 to 0, that is, a blocking phenomenon occurs. We then have two questions that come
up very naturally : one concerning how to optimize this strategy, and a second concerning how to extend
these results to higher dimensions.

In particular the two-dimensional problem is very relevant for field interventions where one would
have to protect a certain area (e.g. a village) from a wave of mosquitoes arriving from an infected area
(e.g. a swamp). Beyond the construction of a static barrier in the two-dimensional setting, it would be
interesting to show the effectiveness of a rolling carpet strategy (generalizing the results of [43]) to expand
a mosquito free area and progressively clear the mosquito population in a region (for instance a whole
island or a pre-defined intervention region).

In order to optimize the killing strategies, we need to determine what is the best µ, among the class
of admissible death rates satisfying 0 ≤ µ ≤ C , guaranteeing the existence of a heteroclinic solution
connecting 0 to 1, and with minimal integral

∫︁ L
0 µ? Does it exist? Is it "bang-bang" (that is, µ = 0 or C

almost everywhere)? This problem has recently been solved when there is no constraint on the support
(that is, L =+∞) in [34]. We want to address it when L <+∞ and with direct methods, enabling us to
consider more general dependence with respect to the growth rate.

In a second step, we would like to optimize the sterile male strategy. The mathematical model for this
strategy is

∂t u −∂xx u = u

u +µ(x)1{0<x<L}
g (u) in (0,∞)×R, (9)

that is, µ(x) represents our input of sterile males, that decreases the fecundity.
We aim at using our recent progress on similar topics in order to solve these questions [99, 133, 144].

Optimisation of release strategies in time-varying setting - seasonality We now want to take into
account seasonality (i.e. rainfall, humidity and temperature variations) in our models, since it is known to
play a key role in the dynamics of mosquito populations.

Some weather dependent mosquito models have been developed, mainly with Temperature-dependent
parameters (see for instance [98, 75] and references therein) and very few with temperature and rainfall-
dependent parameters (see [172] and references therein). However, in general, these last models are
quite complex: they relied on statistical approaches, and on the user’s subjective choices, such that the
calibration (of many parameters), with respect to the environmental parameters, is not generic and might
not be able to provide a unique set of valuable values. We firmly believe that simple (but not too simple)
models can rapidly provide useful and reliable information to help field experts to manage vector control
campaigns.

We will first adapt the Barton-Turelli model [60] in order to take into account seasonality effects. This
leads to the equation

ut −uxx =µ(t )g (u),

where g is a bistable reaction term and µ is T−periodic and positive. Alikakos, Bates and Chen [42]
proved the existence and attractivity of pulsating traveling waves, that is, time-global solutions of the
form u(t , x) = U (x − ct , t) with U (−∞, t) = 1, U (+∞, t) = 0, and t ↦→ U (z, t) is T−periodic for all z ∈ R,



18 Inria Annual Report 2024

under some hypothesis on the non-existence and stability of intermediate steady states, that we believed
to be satisfied in our framework.

Ding and Matano [91, 90] recently proved that the solutions of the Cauchy problem always converges
as t →+∞ for compactly supported initial data. Moreover, Polacik described further [154] the basins of
attraction of the steady states. Namely, consider an initial datum 1[−L,L] at time t0 (more general families
of initial data could be considered), then there exists a critical size L = L∗(t0) such that the solution of the
Cauchy problem converges to 1 at large times if L > L∗(t0), while it converges to 0 if L < L∗(t0).

We will then investigate the dependence of this critical size L∗(t0) with respect to t0 and try to
characterize the best time of the year to release Wolbachia infected mosquitoes, that is, the t0 minimizing
L∗(t0). This is a difficult problem, since L∗(t0) is defined implicitly. First, we believe we could characterize
the quantity L∗(t0) through some adjoint function by using some Pontryagin maximum principle style
arguments. Second, such a characterization might help to construct a relevant algorithm in order to
investigate this problem numerically. Lastly, we could investigate the following related problem: maximize∫︁
Ru(t0 +T, x)d x with respect to u(t0) in a given class of functions. This problem has been addressed in

the homogeneous framework by Nadin and Toledo [144].

3.4.2 Infectious diseases

MUSCLEES permanent members involved: Pierre-Alexandre Bliman

Using reinfections for identifiability and observability While the loss of immunity has been modeled
and studied in the framework of compartmental models, the phenomena of reinfection, and particularly
the counting of the number of reinfections, have been little studied to date. Dynamics induced by
reinfections with different strains [49, 36], in presence of vaccination of incomplete eficiency [51] or with
partial and temporary immunity [109] have been studied. A modified SIRS system was proposed in [116]
with an infinite set of differential equations capable of counting the number of reinfections, that we
extended and studied in [103]1. In the simple case of an SIS model, this consists in ‘unfolding’ the system

Ṡ =µN −βS
I

N
+γI −µS, İ =βS

I

N
− (γ+µ)I , (10)

where N (t ) represents the total population S(t )+ I (t ), in

Ṡi = γIi−1 −βSi
I

N
−µSi , İ i =βSi

I

N
− (γ+µ)Ii , i ≥ 1, (11)

with here I (t) := ∑︁
i≥1 Ii (t), N (t) := ∑︁

i≥1(Si (t)+ Ii (t)) and by convention γR0(t) := µN (t). This ‘micro-
scopic’ interpretation of the ‘macroscopic’ behavior in (10) keeps track of the number of reinfections,
accounted for by the index i .

We have shown [103] that revealing this underlying structure allows to access many information on
the structure of the infection numbers in the population at endemic equilibrium, and enriches drastically
the capacity to identify and observe system (10). Our plan is to extend this work and study the effects of
disease characteristics (susceptibility, infectivity, waning immunity. . . ) depending upon the past number
of infections, on the dynamics of the epidemics. In particular, one is interested in understanding what
knowledge on these quantities can be gained by appropriate measurements. This topic is part of a more
general reflection that we intend to pursue, on the observability and identifiability issues in epidemiology.
Seroprevalence data are other nonstandard data of which we plan to study the benefit.

Multi-strain problems: modelling and analysis The Covid-19 pandemic has revived, by enriching and
renewing them, many questions relating to understanding the dynamics of infectious diseases and the
means of combating them [93]. Rapidly, the evolution of the pandemic has been shaped by two different
phenomena: the appearance of variant viruses competing with the ‘historic’ virus; and the progress of
the vaccination campaigns. We are interested here in analyzing the corresponding dynamics. Related
contributions have been published before the appearance of Covid-19, seeking to characterize endemic

1This type of infinite-dimensional systems is reminiscent of Becker-Döring system [96].
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behavior in long time [115, 147, 59]. The first contributions published after the emergence of Covid-19
[107, 53] (see also [145]) consider, on the contrary, the shorter time scale of an epidemic episode, but
describe incompletely the complex cross-immunity (complete or partial, permanent or transient) which
however seems crucial.

We will also be interested by the interplay of vaccination. Usually the influence of the latter is
considered on the long duration of an endemic infection [51, 66]. On the contrary, our approach here will
be oriented towards the control of an epidemic outbreak. Drawing inspiration from the current pandemic,
we will consider a vaccine providing an immunity different for every strain of infection, as well as the
possibility of a waning protection.

We will also be interested by heterogeneous population models [95], structured in susceptibility
and/or infectivity, or in number of individual contacts (for example from models of ‘effective contacts’,
see [136]).

Modelling and analysis issues of the commutations in complex urban environments Modeling in
pertinent and efficient way how the spread of an infection is influenced and shaped by the fact that the
effective individuals are in fact individualized, is a considerable issue in mathematical epidemiology. The
basic deterministic compartmental models, like the SIR model, take the step to consider homogeneous,
perfectly mixed, populations, where the probability of encounter between two individuals is uniform.
This ‘gas theory model’ is simple, but unrealistic when the size or the spatial extension of the population
is large (which is precisely the assumptions permitting to consider deterministic models rather than
stochastic ones. . . ). Heterogeneity cannot be ignored.

Alternative points of view exist [117, 52, 50], which basically transfer the homogeneity and perfect-
mixing assumption to sub-populations, defined by some structuring trait, e.g. their age, susceptibility,
infectiousness, contact numbers, place of residence, etc. Adopting such point of view amounts in fact to
consider perfect mixing of homogeneous sub-populations.

We are particularly interested here in how to render mobility, typically urban mobility, whose regular
patterns aggregate various characteristics, e.g. social class, age, residence. . . Usually, modelling mobility
is done through an Eulerian description: infection is described in every location, with sub-populations
transferred from other places, leading to meta-population setting much in the spirit of (7) (but with
only host population). This makes it complicated to follow the individuals of a given group along their
displacements, once they have been mixed with other groups. To have this ability, it is natural to consider
the groups of individuals with a given infectious status that come from location i and are present at
location j at time t . This is indeed neither simple, nor economical.

In fact a Lagrangian setting seems more natural. We will adopt this view, and focus on the description,
and the analysis, of epidemic spread during the perfect mixing of different homogeneous classes of
the population, indexed by p ∈P . The displacements of any class p ∈P , are now integrally described
by a function lp (t) that give the location of sub-population p at time t , and each class then evolves
according to the presence of the other sub-populations present together at the same point, with whom
cross-infection is possible. The effective location of their encounter is quite abstract: physically, it may be
as well a public transport system.

We want to compare the complexity of the different modelling settings and achieve comparative study
of their behavior, with regard to the value of the basic offspring number, the epidemic final size, the level
of endemic equilibrium and so on.

3.5 Axis 5 – Development and analysis of mathematical models for living systems
confronted with experimental data

MUSCLEES permanent members involved: Luca Alasio, Sophie Hecht, Diane Peurichard, Nastassia
Pouradier Duteil

3.5.1 Individual-based models for micro-colony growth

MUSCLEES permanent members involved: Sophie Hecht, Diane Peurichard
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Individual-based models allow the description of a population at the microscopic level. These
models consider each particle as autonomous entities and define their dynamics according to their local
environments. For this reason it is an ideal tool to confront mathematical models and experimental
data. In a previous work [97], we have developed a model to study growth of micro-colonies of elongated
bacteria such as E. coli. In this paper, bacteria are represented by sphero-cylinders characterized by their
length, their orientation and the position of their center of mass. The motion of bacteria is supposed
to be only due to steric interaction with their close neighbors to prevent the overlapping of cells during
growth and division (passive motion). This repulsion is realized via a potential based on Hertzian theory.
Fragmentation occurs when the increment of length of a bacteria reaches a given threshold, distributed
according to an experimental law. A key aspect of the paper is to propose a model taking into account
asymmetric friction and a non-uniform distribution of mass along the length of bacteria, which impact
the movement of particles. These two mechanisms were shown to improve significantly the comparison
between experimental data and numerical simulations, yet we failed to reproduce one of the primordial
characteristics such as the high density of bacteria in the microcolony (where all the space within the
convex envelope of the colony seems occupied). This property is not reproduced to date in the models
proposed in the literature [97, 100].

A discussion with the experimenter Nicolas Desprat (ABCD biophysics Lab - ENS) highlighted the
possible impact of the deformation of bacteria in a micro-colony. After observation, it appears that at the
point of inflexion in the colony, bacteria are often curved. The small deformation observed could be the
key to the dense character of the colonies and modify their global organisations. It is therefore interesting
to consider the deformable character of bacteria in order to best reproduce the organization observed
experimentally. To do this, many approaches are possible [113, 135]. We will consider an individual-based
model where each bacterium is modeled by a string of spheres linked with spring and angular spring. This
description will allow local bending for the bacterium. We will then test different modelling assumptions
in order to reproduced as close as possible observed phenomena during the micro-colony growth.

After deriving the new model, we will study the influence of the different parameters and compare
numerical simulations with experimental data. This work will be a collaboration with the biophysics
laboratory of Nicolas Desprat, giving us access to datasets of micro-colony of strains of Escherichia coli
and Pseudomonas aeruginous growing between glass and agarose. On these datasets, segmentation has
been previously performed to track individual bacteria as spherocylinder. However, the purpose of this
study requires to identify bacteria as deformable solids. Thus, a first step to compare experimental data
to numerical simulations will be to develop new segmentation process, adapting techniques existing for
clustered nuclei. In a second part, the comparison will require the development of new tools to better
quantify the evolution of the colony. Among the quantifiers we found to study the growth of bacterial
structure, we found the one related to the shape of the colony. In the literature, the quantifiers used
to characterize the shape often consist in comparing the colony to an ellipse. However, the colonies,
although elongated, have shapes that are not necessarily ellipsoidal. To develop a new sophisticated
quantifier an idea is to consider the modes of the elliptical Fourier transform of the envelope of a colony
in order to characterize its shape [37]. Similar work will be done on other quantifiers characterising the
local organisation, bending, four cell array arrangement, etc...

3.5.2 Energy-driven models of tissue organisation and architecture

MUSCLEES permanent members involved: Sophie Hecht, Diane Peurichard

This research axis is in the frame of a long standing collaboration with a team of biologists from
RESTORE (Toulouse), which led to the ANR grant ENERGENCE (2023-2026) recently awarded to D. Peur-
ichard. The goal here is to propose a general framework to understand the combined role of mechanics
and energy exchanges in tissue development, repair and decline. To our knowledge, very few mathem-
atical models have been proposed for tissue organization combining both energetical and mechanical
interactions, while numerous evidences suggest that energy exchanges and mechanical forces can feed-
back on each other at different stages of tissue life, and that large perturbations of one or the other are
associated with degeneration and diseases. Therefore, we propose to build a complete framework to
theoretically and numerically model the complex interplay between energy and mechanics at different
spatiotemporal scales. We will focus on adipose tissue (AT) as a relevant biological model because its
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architecture is relatively simple and largely dependent on energy exchanges (food supplies), and as a
target with the world-wide development of obesity’s epidemic.

This project will rely on a synthetic approach based on a dual use of mathematical modelling and in-
vitro/in-vivo experiments. We will propose a new view of biological tissues as complex ecological/social
systems whose architecture emergence is driven by few key determinants, interacting together mech-
anically and constantly exchanging energy/matter with their environment. We will aim to first develop
individual-based models (IBM), which promises exciting theoretical and experimental challenges such
as the determination of complex feedback loops between energy intakes and local growth laws, and the
study of metastable states and phase transitions applied to changes in energy fluxes, modelling cafeteria
diet and food deprivation. The biological calibration of the IBM via in vitro and in vivo experiments (per-
formed at the RESTORE lab) will go through determining how energy is distributed among the different
agents and their interactions. A user-friendly interface will also be developed based on the IBM and will
be used to resolve some unsolved questions such as how the AT architecture is modified by the amplitude,
frequency and length of energy intake modifications.

In a second aspect of the ENERGENCE project, we will tackle the important challenges contained
in the derivation of a Continuum Model (CM) from our IBM, in order to obtain a computationally
efficient CM containing as much as possible the mechanisms of the microscale. Numerous technical and
conceptual barriers will have to be lifted in this more theoretical part of the project, due to the nature of
our IBM, the presence of correlations between the agents at the microscale and the complex mechanical
and energetical feedback loops. If successful, this model will be the first continuum description of two
immiscible fluids composed of cells and (anisotropic) fiber elements obtained from an agent-based
description, and promises exciting new and invaluable insights into how specific microscopic effects
translate at the macroscale. Our CM will rely on the complete and valid IBM and, if successful, will enable
to study the interplay between energy balance and whole tissue architecture during a lifespan and at the
organ scale (long-term and large-scale effects).

The impacts of the highly interdisciplinary ANR project ENERGENCE are twofold. On the biological
viewpoint, the energy/mechanics coupling view of tissue emergence and changes will provide a new
understanding of aging at different spatio-temporal scales that will pave the way for new rejuvenative
therapies to treat age-related dysfunctions, and also impact the tissue engineering field in which meta-
bolism remains often overlooked. On the mathematical viewpoint, the ENERGENCE project will provide
involved numerical treatments and innovative sensitivity analysis methods for IBM, and tackle important
theoretical challenges related to the derivation of continuous biphasic fluid models from IBM, promising
exciting new understanding of the micro- macro- link. Although focused on adipose tissue, the theory and
the mathematical modelling developed in this project will be general enough to apply to other biological
systems such as muscle tissues and, if successful, will constitute the basis for collaborations with other
European research teams through the building of an ERC Synergy.

The ENERGENCE project involves several members of our project team MUSCLEES and will be
completely integrated in the team activities: the development and parametric analysis of Agent-Based
Models will rely on the expertise of S. Hecht together with D. Peurichard, the challenges of deriving
PDE models from IBM will be completely integrated in Axis 1 of the team (together with S. Hecht, N.
Pouradier-Duteil, B. Perthame), and the analysis of the resulting PDE models will be enriched by the
results of the team in Axes 2 and 3. By combining biological experiments and mathematical modelling to
study the multi-scale and temporal effects of metabolism and mechanics, the ENERGENCE project will
be one of the most applicative activities of MUSCLEES, and, if successful, will represent a significant step
forward to understand the emergence of metastable organized structures in living matter.

3.5.3 A traffic model for the interkinetic nuclear migration (IKNM)

MUSCLEES permanent members involved: Sophie Hecht

In the past years, members of MUSCLEES have studied the cell cycle with age structured transport
equations [78, 63]. These models considered the transition between the different phases of the cell cycle
depending of the cell age. However, recent works [111] have highlighted that the transition between these
phases are likely to be impacted by the moving positions of the nuclei. Thus, we will introduce a space
structured model in order to consider the influence of the movement of nuclei on the cell cycle and its



22 Inria Annual Report 2024

transition.
As mentioned in section 4.2, in pseudo-stratified epithelium, nuclei undergo IKNM during the cell

cycle. Namely, nuclei in the phase G2 move toward the apical membrane to divide while nuclei in G1 move
in the opposite direction to return in the depth of the tissue. The nuclei in S do not have a clear direction
in their motion. This phenomenon can be viewed as a one-dimensional traffic problem. Therefore we
will model this system with a 3 species, bidirectional PDE system. The transition between the phases
will be modeled by reaction terms and boundary conditions. We will study the new system of equations
and answer the classical question of existence and uniqueness. Additionally we will focus on the long
time behaviour, understanding the range of parameters leading to a slowdown of growth with realistic
distributions of the nuclei in the different cell phases.

The model will be compared to experimental data provided by Jean-Paul Vincent’s laboratory in the
Francis Crick Institute (Epithelial Cell Interactions Laboratory). Existing data of the distribution of the
nuclei in the different phases in the apical/basal axis at different times of development will allow to
tune the different parameters of the model. The model will then allow us to test hypothesis proposed
in a previous work [111] where we developed a microscopic model. In this paper, we conjectured a
mechanism to explain the transition between G1 and S phase but were limited in the test due to the small
number of nuclei we could consider due to computational cost. The new model we proposed would
allow a further study of the influence of this mechanism.

3.5.4 Models for collective behavior in gregarious fish

MUSCLEES permanent members involved: Nastassia Pouradier Duteil

Many living systems exhibit fascinating dynamics of collective behavior during locomotion, from
bacterial colonies to human crowds. The emergence of such complex spatio-temporal patterns can be
described using local, short-range interactions between nearest neighbours. Fish schools are a typical
example of this kind of self-organization: in order to perceive the position or kinematics of close neighbors,
fish rely essentially on vision and sensing of hydrodynamic disturbances. However, the role of each of
these senses is not clearly elucidated today. Our objective is to model the visual interaction within a group
of animals experiencing a dynamic visual disturbance (temporal variation of the ambient light intensity).
Previous experiments have revealed a correlation between illumination and group cohesion, measured
in terms of geometric parameters (polarization, rotational moment, nearest-neighbour distance).

In collaboration with a team of experimental physicists of the PMMH laboratory of ESPCI and
Sorbonne University, we aim to study this behaviour using mathematical models of collective motion.
Numerical simulations could elucidate the influence of illumination on the field of view of the fish
(distance or angle of the cone of vision), and the role of density in the emergence or not of strong
rotational motion when increasing light intensity. The model used will be a variation of the Persistant
Turning Walker model, a system of coupled ordinary differential equations in which each fish’s angular
velocity evolves in time due to alignement with its closest neighbors, attraction towards the group, and
random perturbations.

3.5.5 Mathematical models of retinal biochemistry

MUSCLEES permanent members involved: Luca Alasio, Benoît Perthame, Philippe Robert

Modelling the canonical visual cycle. The visual cycle is the process allowing rod cells to return to the
dark state after exposure to light. The main biochemical contributors are: (1) isomers of vitamin A, which
is the essential photosensitive molecules [120]. They interact with RPE enzymes and they are transported
back to the rod, where they recombine with opsins; (2) rhodopsins (densely packed membrane proteins),
consist of an opsin, embedded in the lipid bilayer of cell membranes, forming a pocket where vitamin A
lies; all-trans retinal dissociates after photo-excitation [141]; (3) enzymes, binding proteins and membrane
transporters responsible for the main steps of the visual cycle (further details in [120]). The current
“gold standard” in terms of mathematical description of the visual cycle was established in [122], where
Lamb and Pugh derived a simplified ODE system for the evolution of the concentration of rhodopsin.
The only two unknowns in their model are total concentrations of opsin and of 11-cis-retinal (no space
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dependence). The specific geometry of photoreceptors requires a more sophisticated model to represent
the visual cycle accurately. The derivation of new models for AMD and STGD will have the model in [39] as
starting point. Our model refinement will provide an improved description of all-trans-retinal diffusivity,
which is hydrophobic and can diffuse freely into the aqueous cytoplasm only in presence of a suitable
binder. On the other hand, all-trans-retinal can diffuse on the lipid membrane discs. We plan to derive
effective equations independent of single membrane discs (starting from the homogenisation results
in [108]). The non-uniform distribution of rhodopsins and illumination will reflect into non-uniform
and/or stochastic terms at the the level of membrane discs.

Modelling the formation of A2E. A2E is a toxic byproduct of the visual cycle. We plan to study both
individual-based models and macroscopic differential equations representing the condensation of retinal
near membrane discs. We plan to strengthen our collaboration with C. Schwarz (U. Tubingen) with
regards to new measurements from two-photon ophthalmoscopy. We plan to derive a stochastic model
for the evolution of the concentration of A2E in membrane discs, outer segments and RPE cells. Two
molecules of vitamin A are needed for A2E production, hence quadratic reaction terms are expected.
Rescaling the model in time appears to be necessary since the probability of formation of A2E is low and
accumulation takes place over long time scales (years). This relates to the long–time asymptotic analysis,
with a possible reformulation in terms of ODEs/PDEs and coupling with our model of the visual cycle.
Accumulation of A2E in RPE cells is a consequence of phagocytosis of outer segments, thus it will be
useful to couple our model with those obtained in [129] for retinal metabolic regulation. The starting
point will be a numerical exploration, setting the base for parameter tuning.

3.5.6 Modelling the Retinal Pigment Epithelium in Age-Related Macular Degeneration

MUSCLEES permanent members involved: Luca Alasio, Benoît Perthame

Biomedical context. We visually perceive the world in a way that is heavily dependent on sophisticated
and delicate biochemical mechanisms, and their disruption has a detrimental impact on a human’s
life. Age-related Macular Degeneration (AMD) affects the centre of the visual field and it has become
increasingly prevalent in our ageing society, thus causing a spike of academic and pharmaceutical interest.
Globally, there will be nearly 300 million AMD patients by 2040 [178], resulting in a major public health
problem (we focus on dry, non-neovascular AMD, not on the wet, vascular type). Interdisciplinary
collaboration is crucial in order to deepen the understanding of AMD; we are currently working with M.
Paques (H. Quinze-Vingts, SU) and his group, L. Almeida (CNRS, LJLL). We focus on the layer of retinal
pigment epithelium (RPE) in the retina.

The RPE cell layer supports photoreceptors providing nutrients, contributing to the visual cycle
and to phagocytosis of outer segments [139]. RPE cells enable photoreceptor cell renewal, which is
essential because outer segments contain high levels of unsaturated lipids, [61] subject to oxidation in
the presence of light, as well as other (potentially harmful) photo-reactive molecules [123, 72]. Our goals
include: (1) modelling RPE senescence, discontinuity and degeneration in AMD; (2) studying the actin
cable dynamics for the closure of small lesions; (3) exploring the hypothesis of myosin inhibition and
senescence to explain large lesions; (4) exploring the links with drusen formation and A2E accumulation,
which have been connected to macular degeneration and other lesions [168], as well as changes in RPE
cell morphology and organisation [171].

Modelling and simulation of the RPE mosaic in AMD. As AMD progresses, the tissue deteriorates
and larger, permanent lesions can occur. We are working under the hypothesis that the discontinuity
enlargement is related to the cumulative effect of the tissue bio-mechanics and retraction forces of each
cell around the lesions. RPE cells do not typically reproduce and, in normal conditions, if one of them
dies the neighbours expand to fill the gap to maintain the tissue integrity. We will model the formation of
lesions and explore how RPE dysfunction, oxidative stress, and chronic inflammation contribute to the
development and growth of lesions. The model will include the evolution and impact of varying lesion
sizes, as well as the role of drusen. A suitable starting point for the model derivation are the so-called
multi-phase thresholding scheme (first introduced for one phase by Merriman, Bence and Osher in 1992),
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representing the tensions and the actin cable dynamics through motion by mean curvature (see e.g. [138,
102]). A complementary modelling approach is related to a new family of structured models obtained by
S. Hecht and D. Peurichard involving both position and radius variables for each cell.

The group of Prof. Michel Paques (Hopital National de la vision Quinze-Vingts) is performing ex-
periments and collecting data from high resolution in-vivo and ex-vivo retinal imaging, in animals and
humans [149]. These include histological markings allowing to detail the size and morphology of each
cell of the retinal pigment epithelium that can be used for a direct comparison with in silico models.
AMD can be studied at different space and time scales. The connection between different scales will
be modelled taking into account several contributing factors, including the following: (1) regions of
hypo- and hyper- contracted cells will be studied in relation to myosin dysfunction; (2) feedback between
inflammatory host response and accumulation of molecular damage [163]; (3) migration of peripheral
RPE cells to compensate for the loss of central RPE cells due to ageing [86]; (4) detrimental effects of
excessive concentrations of all-trans retinal and A2E [169, 38, 130]; (5) distinction between normal ageing
effects, senescence, and pathological formation of drusen [137].

4 Application domains

• Section 4.1 explores general questions related to the Emergence of collective phenomena;

• Section 4.2 considers special occurrences of these questions in the context of Living biological
tissues, particularly for tissue growth and development and cancer cell proliferation;

• Section 4.3 presents Mathematical models for epidemic spread.

These three sections are of course not airtight, and multiple links can be drawn between them. Indeed,
Section 4.2 is concerned with Living biological tissues, whose behaviour by nature also contain aspects
of collective dynamics (Section 4.1). Similarly, collective behaviour is present in the epidemiological
issues developed in Section 4.3. We have in mind to exploit and deepen the corresponding ties, between
different topics and between the team members.

4.1 Emergence of collective phenomena

How do globally organized patterns emerge in a system driven only by local interactions? Such behavior
is ubiquitous in many systems, and understanding the emergence of patterns has numerous applications
in biological or social networks, cells’ organization in tissues, and neurosciences. Collective dynamics
models have been developed to explain the emergence of global patterns in a population from local
interaction rules between neighboring agents — a fascinating effect called “self-organization” (see [55, 82,
85, 112, 174] and references within). This general topic breaks down in several more precise subjects.

Biological and social networks Collective phenomena can emerge from local interactions in biological
and social networks. Social animals tend to organize themselves into highly coherent groups, such as
schools of fish, bird flocks, swarms of insects, herds of sheep, or even human crowds. Much research
is currently undertaken in various scientific communities (including biologists, sociologists, computer
scientists and mathematicians) to understand how and why certain types of collective behavior (such
as flocking [82], alignment [174], or consensus [112]) are observed. Despite this surge of interest, many
questions remain open and our research aims to address some of them. In particular, can the emergence
of global behavior such as consensus be predicted from initial conditions? Are there sufficient or necessary
conditions on the interaction network ensuring convergence to a coherent asymptotic state?

Bacterium colony growth Bacteria are unicellular organisms, whose biomass exceeds that of all other
living organisms, and on which our survival is dependent. In the human body, the number of bacteria
almost equals the one of cells. Despite the fact that most of the bacteria are harmless, some pathogenic
strains are the cause of infectious diseases such as tuberculosis, cholera, bacterial meningitis, and
salmonella among others. It makes it essential to understand in which way bacteria multiply and disrupt
the normal functions of our bodies. Numerous studies have been done to grasp how a bacterium,
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from a single organism, develops into organized micro-colonies and biofilm structures [97, 100]. Still,
some phenomena are not explained. At early stages of the development, going from one bacterium to a
structured micro-colony, we will investigate mechanisms leading to poorly understood properties, such as
the elongated shape of the colonies, the four cell arrays arrangement and the high density [164]. At latter
stages of development, we will question the impact of these microscopic phenomena on macroscopic
structures.

Cell population dynamics: the classic homogeneous case Self-organization is often observed in cell
population dynamics, both within a single cell population or between two or more distinct populations.
Interestingly, the forward and backward epithelial-mesenchymal cellular transitions (EMT-MET), which
play a crucial role in embryonic development, tissue repair and cancer metastasis, can be modeled either
as a transition between three homogeneous cell populations (epithelial, mesenchymal and hybrid), or
as the evolution of a single heterogeneous cell population, structured by an epithelial-to-mesenchymal
phenotype. In order to achieve self-organization, cell populations often display local communication
strategies, whether it be within a cell population or between different cell types. For instance, chemotaxis
refers to the directed movement of cells in response to a chemical gradient produced by neighbouring
cells (Keller-Segel-type models). Mechanosensing is another well-established cell-cell communication
strategy, that relies simply on mechanical constraints. Communication between cells can also be driven
by the secretion and subsequent binding of ligands, as in the case of the EMT-MET [173].

When considering interactions between several cell populations, interactions may be mutualistic
as in the case of cancer cell populations and trophic healthy cell populations (breast cancer and adipo-
cytes [155], or leukaemic cells and supporting somatic cells [146] for instance), or cells can be in com-
petition (in particular tumour-immune interactions [44, 127]). This latter aspect will continue to be one
of our present objectives in modelling cancer cell populations. We will address it in the sequel in the
adapted framework of heterogeneous cell populations.

Cell population dynamics: heterogeneous cell populations and trait-structured models One of the
main challenges when modeling a single cell population is to take into account the biological variability,
aka intrinsic heterogeneity, of the population. A now classic way of modelling, introduced in adaptive
dynamics, firstly in theoretical ecology, then in cell population dynamics, is to use continuous trait (or
phenotype)-structured population dynamics settings.

How to deal with them depends on the heterogeneity question at stake and on the choice of traits
used to structure an adaptive cell population: should they be well-identified biological molecules or gene
expression determinants, (e.g., specific to a given drug and a given population under drug exposure [157])?
Or should they be hidden, but general and linked to cell fates, in other words potentials to develop such
and such a trait or phenotype [46, 76, 77, 121, 165], as in theoretical ecology models (viability, fecundity,
plasticity of individuals)?

Due to the lack of measurable markers of relevant biological variability (i.e., heterogeneity) recorded
in continuous time from experimental teams, we are often bound to stick to their more hidden and
abstract version. However, this will certainly never free us from keeping watch over incoming biological
developments amenable to at least partly identify possible molecular markers of such a priori abstract
phenotypes.

Of note, in the framework of adaptive structured cell population dynamics, emergence of phenotypes
is always reversible. Which means that, according to changes in the cell population environment, new
phenotypes may appear, and they can equally disappear if the environment changes. In other words,
we address the question of cell differentiations, not mutations, recalling that cell differentiations occur
in an isogenic cell population, not modifying its genome, only gene expressions due to the action of
epigenetic enzymes, whereas mutations change the genome by modifying its constituting base pairs in
the sequences ATGC.

Some of the questions that we aim to address by means of mathematical modelling by structured
population models, in particular in the context of the EMT-MET (reversible phenotype transition) and
phenotype divergence (reversible evolution between phenotype monomorphism and dimorphism) are
the following: Can different cell phenotypes co-exist at the same time in a population, and if only some of
them persist, which are they? What effect do growth and death of the population have on the phenotype
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distribution of the population? What effect do growth and environmental changes have on transient
phenomena, such as the hysteretic behaviour observed in the Epithelial-Mesenchymal Transition, and
on asymptotic behaviour of the cell populations? What role can be attributed to phenotype plasticity in
such transient or established phenomena?

Neuroscience In neuroscience, learning and memory are usually associated with long-term changes of
connection strength between neurons. In this context, synaptic plasticity refers to the set of mechanisms
driving the dynamics of neuronal connections, called synapses and represented by a scalar value, the syn-
aptic weight. A Spike-Timing Dependent Plasticity (STDP) rule is a biologically-based model representing
the time evolution of the synaptic weight as a functional of the past spiking activity of adjacent neurons.

There is a rich mathematical literature on biological neural networks but mainly when the connectivity
of the network is fixed, i.e. when the synaptic weights are constant. In a series of articles [160, 161, 159,
175], a new, general, mathematical framework to study the phenomenon of synaptic plasticity associated
to STDP rules has been introduced and analyzed for a system composed of two neuronal cells connected
by a single synapse whose weight is time-varying.

Experiments show that long-term synaptic plasticity evolves on a much slower timescale than the
cellular mechanisms driving the activity of neuronal cells. A scaling model has been introduced and
limiting results have been proved. The central result obtained is an averaging principle for the stochastic
process associated to the synaptic weight.

We plan to investigate mathematical models of plastic synapticity in a more general network. The
question is of determining under which conditions the coordinates of the matrix of synaptic weights of a
given subset S of cells grow without bound or not. This property can be expressed by the fact that the
cells of S exhibit a collective behavior.

A difficult modelling problem in this context is of having a priori two scaling parameters with two
different types of convergence: Averaging principles or mean-field approximations.

1. The factor of the time-scale of fast cellular processes;
The main assumption is that the timescale of the time evolution of the synaptic weights is slow.
This is the framework of [159]. This scaling leads to a possible averaging principle.

2. The number of nodes of the network.
A given neural cell receives an input from a large number of cells and to each of them is associated
a synaptic weight. This scaling, with appropriate symmetry properties of the topology, may give a
mean-field approximation of the network.

Both of these parameters should be large, and are a priori uncorrelated. A central question is to determine
how possible scaling results can give an insight on the plastic synapticity at the level of such a network.

4.2 Living biological tissues

Pseudo-stratified epithelial tissue development Understanding how tissue growth and development is
regulated is crucial in biology. Both proliferation and regulation of cells’ growth are fundamental for the
development of healthy tissues in animals and plants. Pseudo-stratified epithelium tissues are composed
of narrow and elongated cells arranged in a packed one-layer tissue. The positions of the nuclei are
variable along the depth of the tissue. Each cell is connected to the so-called basal and apical surface.
During development, each cell follows a series of events leading to cell division. This process, known
as the cell cycle, is composed of four steps: G1, where the cell prepares for DNA replication; S, where
the DNA is replicated; G2, where the cell prepares to divide; and mitosis M, where the cell divides. In
pseudostratified epithelia, the nuclei move along the apical/basal axis during the inter-kinetic phases
G1 and G2 [71]. This motion is called inter-kinetic nuclear migration (IKNM). The IKNM has become a
point of interest in the past years with numerous studies being published [119]. Some of the questions we
will aim to answer with the development and analysis of mathematical models are the following. Are the
motions in G1 and G2 active or passive motions? How is the IKNM impacted by the increase of crowding
during the tissue development? Which mechanism allows the transition of the cell in the different phases
of the cell cycle?
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Energy driven development of tissue architecture One of the main socio-economic challenges in the
twenty-first century is to ensure that increasing lifespan is accompanied by the prevention of decline
to achieve similar or greater increases in health. Organized architecture that supports organ function
emerges rapidly and locally during the first period of life (during development), where the extracellular
matrix (ECM) plays a key role by giving rise to the mechanical macrostructure. This 3D architecture is
then globally maintained during the maturity period, before progressively declining corresponding to
degeneration and loss of functions. Throughout all these steps, the evolving architecture and its constant
turn-over is powered by energy exchanges through metabolism. Numerous evidences suggest that energy
exchanges and mechanical forces can feedback on each other and that large perturbations of one or
the other are associated with degeneration and diseases. Therefore, understanding the dynamics of
biological tissues at different spatiotemporal scales requires to account simultaneously for energy
exchanges and mechanical considerations, a view that is currently lacking. We will aim to bridge this
gap by taking a particular focus on the complex interplay between metabolism and mechanics in tissue
development and ageing via the dual use of mathematical modelling and in vitro/in vivo experiments.

Living tissues as multiphase flows At the continuum (macroscopic) level, a living tissue might be seen
as a multiphase flow (different types of cells, liquid, molecules) through a porous media (extra-cellular
matrix), a view encompassed in the so-called mixture theory (see [83]). In mathematical terms, this leads
to strongly nonlinear degenerate parabolic Cahn-Hilliard (PDE) equations [151]. Although widely used
in the literature to describe the mechanical properties of living tissues, it remains unclear how these
continuum models (at the population level) can be obtained from a mechanical description at the cell
level. We will take an interest in the derivation of such models from mesoscopic (kinetic) models, in order
to understand the relation between compressible and incompressible porous-medium models.

Tumour-immune cell interactions and immunotherapies In a model of tumour-immune cell interac-
tions under development, the behaviour of interacting heterogeneous cell populations is described by a
set of coupled PDEs of the nonlocal Lotka-Volterra type. The cell population densities are structured by a
continuous trait (aka phenotype) standing for malignancy identified to a potential of de-differentiation
(so-called ‘stemness’), in tumour cells, and, similarly, a continuous trait representing anti-tumour ag-
gressiveness in immune cells. As modern immunotherapeutic drugs, in particular Immune Checkpoint
Inhibitors, have recently been introduced as boosters of such aggressiveness, i.e., of cancer cell kill
by T-lymphocytes, and even more recently also by NK-lymphocytes, their impact on tumour-immune
interactions is represented in the present model under development by a target in the effector lympho-
cyte population. Questions at stake are: Can we model in a relevant way and mathematically analyse
these interactions between cell populations, so as to obtain a qualitative description of the so-called
immunoediting, that is known to yield extinction, equilibrium or escape in the tumour cell population?
Can we show ‘proof of concept’ situations in which the impact of immunotherapies can reverse tumour
escape towards extinction, or at least equilibrium? Can we design theoretical optimised strategies to
deliver time-scheduled immunotherapies to attain this goal? Can we analyse these interactions and their
therapeutic control by immunotherapies in terms of concentration (or not) of the traits?

Phenotypic divergence in cancer and in the emergence of multicellularity The question of under-
standing the cancer disease from an integrative physiology and long-time evolution point of view has
stimulated many authors for quite a long time. In this respect, the atavistic theory of cancer, presented
in [84, 177], proposes that tumours represent, roughly speaking, a reverse evolution to a previous, incoher-
ent, disorganised and very plastic state of multicellularity in animals, which the authors call Metazoa 1.0.
This theory involves a billion year-long evolutionary perspective of the emergence of multicellularity from
collections of unicellular beings to the first organised animals, so-called Urmetazoa [142]. Phenotypic
divergence under environmental constraints is involved in both evolutionary/developmental and cancer
biology. In the former, it is the fundamental phenomenon by which cell differentiation yields new cell
types with emerging functions, leading in particular to multicellular beings such as animals (aka metazoa).
In the latter, the process of bet hedging in cancer is a response to cellular stress to describe the multiple
fates of a plastic cancer cell population as a fail-safe strategy to face deadly insults, e.g., due to anticancer
drugs. The question of phenotypic divergence in an isogenic cell population is thus crucial. We will



28 Inria Annual Report 2024

address it by phenotype-structured PDEs of the reaction-advection-diffusion type [46, 76, 77, 121, 165],
and explore what mechanisms (mutations, differentiation, selection) are responsible for concentration of
the population around a unique phenotype (a singleton in phenotypic space); or, on the contrary, for
continuous or discrete heterogeneity of the population, the discrete cases being represented by discrete
sets of phenotypes, cases among which divergence stricto sensu, leading to a doubleton (phenotypic
dimorphism), is the simplest one.

Elastic description of the Retinal Pigment Epithelium (RPE). A further modelling effort is necessary in
order to capture both biological and mechanical features of the RPE monolayer, with specific attention to
topological changes such as lesion formation, closure and fusion. So far, hybrid models combining elastic
deformations and motion by mean curvature seem very promising in terms of analysis, simulation, and
qualitative adherence to experimental data.

4.3 Mathematical models for epidemic spread

The still lasting pandemic of Covid-19, coming after the pandemic of H1N1 (2009) and outbreaks of
other severe infectious diseases such as SRAS, MERS and Ebola fever, as well as the spread of viruliferous
mosquitoes in temperate regions of the world and the increase of the corresponding health risk, tragically
illustrates the importance of emerging and reemerging infectious diseases. As noticed by the epidemiolo-
gist S. Morse [140], “most emergent viruses are zoonotic, with natural animal reservoirs a more frequent
source of new viruses than is the sudden evolution of a new entity. The most frequent factor in emergence
is human behavior that increases the probability of transfer of viruses from their endogenous animal
hosts to man". This increase is likely to continue in the near future, due to destruction of ecosystems
by deforestation, urbanization, industrial agriculture and economic globalization [162], requiring new
efforts for understanding the spread of infectious diseases and for improving their control.

Vector-borne epidemics Every year, around 700,000 deaths are due to diseases transmitted by (female)
mosquitoes, like malaria, yellow fever, dengue, Zika, chikungunya, Nile virus. . . They are indeed the
most dangerous animals for humankind. For many of these diseases, no efficient remedy or vaccine
presently exists, and an essential strategy to control vector-borne disease outbreaks consists in the control
of mosquito vector populations that transmit these diseases (Aedes species for the diseases previously
cited).

The insecticides, which have non-specific actions and strongly affect biodiversity, are now recognized
as a highly unsatisfying solution, and innovative methods of biological control are being searched for and
tested. Among these, the sterile or incompatible insect techniques (SIT/IIT) and replacement strategies
(Wolbachia) attract strong attention. SIT is based on the release of male insects after their sterilization
(traditionally by means of irradiation): sterile males will mate with wild females without producing
any offspring, reducing or suppressing the wild population. The sterile insects are not self-replicating
and, therefore, cannot become established in the environment. On the other hand, Wolbachia is a
natural intracellular bacterial symbiont, maternally transmitted to offspring. Some of its strains cause a
drastic decrease in the capacity to transmit dengue, zika or chikungunya of the mosquitoes, directly (by
interfering with their vector competence) or indirectly (by shortening lifespan, etc.). Contrary to SIT, this
offers theoretically a permanent protection against the outbreaks.

The application in the field of these promising techniques to control mosquitoes is not easy, and
models are a useful tool to study the various issues at stake, and to propose and scale control strategies. In
particular, it is important to take into account the spatial extension (and possible heterogeneities) of the
operation and other aspects like the seasonality, migration from outside the treated domain, release of
mosquitoes imperfectly treated, effects of the treatment on the epidemic risk and so on. The uncertainties
on the biological processes and the imprecision of the measures make the whole issue quite intricate,
and we intend to see what control science has to say to solve the related problems.

Infectious diseases The progress of the pandemic of Covid-19 has highlighted on a scale never seen
before the complexity and intricateness of the factors that shape the spread of an epidemic, from the
biological aspects at various scales (from virus to world population), to the economic, social and politic
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aspects, without forgetting the many feedback loops binding them2. Our interest is to participate to
the understanding and disentanglement of the important factors, to the design and analysis of relevant
mathematical models, and to their use to shape adequate control strategies.

For the accomplishment of this task, we plan to take advantage of a reservoir of tools and ideas from
control theory, in addition to the more classical techniques developed in mathematical epidemiology.
This is a point in common with our other topic of interest previously mentioned, the vector-borne
diseases. First, we will routinely consider control issues — not only in the sense of controlling a disease,
but using the term as in “control theory”. The control inputs we will encounter represent the available
“means of action” on the epidemic, typically vaccination campaigns or social distancing measures (or
sterile mosquito releases in the case of vector-borne diseases previously mentioned). Constraints on
the intensity of the input variables like the duration of lockdown periods are pertinent (total number of
released mosquitoes for the control of vector-borne diseases), but also on the state variables, e.g. on a
maximal room occupancy rate in Intensive Treatment Units (maximal number of female mosquitoes,
to limit both nuisance and epidemiological risk in the vector-borne diseases context). Optimal control
involves non-conventional cost functions, such as the peak of infectious people (peak of female mosquito
population. . . ) or the time spent above a given value, which do not lead to Bolza problem. Robustness
issues are also important in this context where the reality is imperfectly described by approximate models.

Second, we will pay particular attention to the models, the data and their cross-relations. Contrary
to the engineering sciences, where models come from a combination of general principles and empirical
laws, there is no such situation in mathematical epidemiology. In fact, it is not fully clear what are the
key phenomena and quantities that influence decisively such complex situations, and thus deserve to
be included in a model. On the other hand, the data themselves are imprecise and questionable, due to
reasons that range from the evolving biological reality and our imperfect knowledge, to the characteristics
of the data collection process by the Health system. In this context, we will be specially interested in
questions of observability and identifiability (“given a model of the system and specific input-output
experiments supposed error free, is it possible to determine uniquely the actual system state value and
the parameters of the model ?"), and of observation and identification, their realization counterparts
(“given a model observable or identifiable, how to practically estimate the state or parameter values ?").

5 Social and environmental responsibility

5.1 Footprint of research activities

All members of the team decided to carefully review his or her trip policy (especially by air), in order to
reduce carbon footprint.

5.2 Social responsibilities within the community

Several members of MUSCLEES are active in the “Pôle écoute” of the Jacques-Louis Lions laboratory.
Nastassia Pouradier Duteil is part of the mentoring program of Ecole Polytechnique for PhD students

organized by “Association Femmes et Sciences”.

6 Highlights of the year

Note : Readers are advised that the Institute does not endorse the text in the “Highlights of the year” section,
which is the sole responsibility of the team leader.

• Benoit Perthame has been elected president of the European Society for Mathematical and Theor-
etical Biology (ESMTB).

• Charles Elbar has defended his PhD thesis “Etude mathématique d’équations de type Cahn-Hilliard
dégénérées" at Laboratoire Jacques-Louis Lions, Sorbonne Université in May.

2A new trans-disciplinary research domain has recently emerged, termed Behavioural Epidemiology of Infectious Diseases [131].
The referred ‘behaviour’ includes the spontaneous changes at individual and collective, but also the political decisions and their
consequences.
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• Elena Ambrogi has defended her PhD thesis “PDEs for Neural Networks with internal states" at
Laboratoire Jacques-Louis Lions, Sorbonne Université in June.

• Nga Nguyen has defended her PhD thesis “Spatial modeling of invasion dynamics: applications to
biological control of Aedes spp.(Diptera culicidae)” at Université Sorbonne Paris Nord in June.

• Marcel Fang has defended his PhD thesis “Modelling, Analysis, Observability and Identifiability of
Epidemic Dynamics with Reinfections” at Laboratoire Jacques-Louis Lions, Sorbonne Université in
December.

• Assane Savadogo has defended his PhD thesis “Etude et simulation numérique de modèles math-
ématiques sur les maladies infectieuses et de modèles éco-épidémiologiques” at Université Nazi
Boni (Bobo Dioulasso, Burkina) in December.

• Lucie Laurence has defended her PhD thesis “A Scaling Approach to Stochastic Chemical Reaction
Networks” at Inria in December.

• The team got a project (FISH) accepted at last ANR JCJC. It will last three years (2025-2027).

At the end of 2024, Inria’s top management enacted a new “contrat d’objectifs, de moyens et de
performance” (COMP), which defines Inria’s objectives for the period 2024–2028. We are very
unhappy and concerned about the content of this document and the way it was imposed.

• Neither the staff nor their representative bodies were given the opportunity to participate in (or
influence) the drafting of this document.

• The document defines Inria’s main mission as “contributing to the digital sovereignty of the Nation
through research and innovation” and proposes to amend Inria’s founding decree to reflect this new
definition. We strongly believe that our primary mission is (and should remain) the advancement
of human knowledge through research. Research is not a means to achieve “digital sovereignty”,
whatever that may mean. Research should not be associated with any particular nation, whatever
that nation may be.

• The document announces the creation of a funding agency within Inria. France already has an
independent funding agency, the ANR. The creation of a new funding agency within a research
institute is unnecessary and a waste of resources. It is also likely to create confusion, opacity, and
conflicts of interest.

• Many aspects of the document reflect a desire to drive research in a top-down manner, for example
through the selection of “strategic partner institutions” and “strategic themes”. This threatens the
fundamental freedom of researchers to choose their research topics and collaborations. under-
estimated.

• The document indicates that all of Inria’s research should have “dual nature”, that is, both civilian
and military applications. While some of the institute’s research may have military applications,
the vast majority of it is independent of the military, and should remain so.

• The document announces a desire to place all of Inria in a “restricted regime area” (ZRR), which
means that the hiring of researchers and interns will be reviewed and possibly vetoed by the
Fonctionnaire Sécurité Défense. This creates administrative delays, subjects hiring to opaque
criteria, and discourages the hiring of foreign nationals, thus harming research and collaboration.

• Staff opposition to these policies, which has been expressed in several votes and petitions, has been
largely ignored.



Project MUSCLEES 31

7 New results

7.1 Axis 1 – Multiscale study of interacting particle systems

Participants: Nastassia Pouradier Duteil, Diane Peurichard, Sophie Hecht, Ben-
oit Perthame.

7.1.1 Large-population limits

Participants: Nastassia Pouradier Duteil.

Mean-field limit of non-exchangeable multi-agent systems over hypergraphs with unbounded rank.
Interacting particle systems are known for their ability to generate large-scale self-organized structures
from simple local interaction rules between each agent and its neighbors. In addition to studying their
emergent behavior, a main focus of the mathematical community has been concentrated on deriving
their large-population limit. In particular, the mean-field limit consists of describing the limit system
by its population density in the product space of positions and labels. The strategy to derive such
limits is often based on a careful combination of methods ranging from analysis of PDEs and stochastic
analysis, to kinetic equations and graph theory. In this article, we focus on a generalization of multi-agent
systems that includes higher-order interactions, which has largely captured the attention of the applied
community in the last years. In such models, interactions between individuals are no longer assumed
to be binary (i.e. between a pair of particles). Instead, individuals are allowed to interact by groups so
that a full group jointly generates a non-linear force on any given individual. The underlying graph of
connections is then replaced by a hypergraph, which we assume to be dense, but possibly non-uniform
and of unbounded rank. For the first time in the literature, we show that when the interaction kernels
are regular enough, then the mean-field limit is determined by a limiting Vlasov-type equation, where
the hypergraph limit is encoded by a so-called UR-hypergraphon (unbounded-rank hypergraphon),
and where the resulting mean-field force admits infinitely-many orders of interactions. This work, in
collaboration with David Poyato (University of Granada) and Nathalie Ayi, (Sorbonne University) is
presented in the pre-publication [23].

Large-population limits of non-exchangeable particle systems. A particle system is said to be non-
exchangeable if two particles cannot be exchanged without modifying the overall dynamics. Because
of this property, the classical mean-field approach fails to provide a limit equation when the number of
particles tends to infinity. In this review, we present novel approaches for the large-population limit of
non-exchangeable particle systems, based on the idea of keeping track of the identities of the particles.
These can be classified in two categories. The non-exchangeable mean-field limit describes the evolution
of the particle density on the product space of particle positions and labels. Instead, the continuum limit
allows to obtain an equation for the evolution of each particle’s position as a function of its (continuous)
label. In the review article [22], we expose each of these approaches in the frameworks of static and
adaptive networks.

7.1.2 Scaling limits

Participants: Sophie Hecht, Benoit Perthame, Diane Peurichard.

From a nonlocal mean-field to a porous medium system without self-diffusion Systems describing the
long-range interaction between individuals have attracted a lot of attention in the last years, in particular
in relation with living systems. These systems are quadratic, written under the form of transport equations
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with a nonlocal self-generated drift. In [8], we established the localisation limit, that is the convergence of
nonlocal to local systems, when the range of interaction tends to 0. These theoretical results are sustained
by numerical simulations. The major new feature in our analysis is that we do not need diffusion to gain
compactness, but we rely on a full rank assumption on the interaction kernels. In turn, we prove existence
of weak solutions for the resulting system, a cross-diffusion system of quadratic type.

Scaling limits for a model with growth, division and cross-diffusion Originally motivated by the
morphogenesis of bacterial microcolonies, we explore in [27] models through different scales for a
spatial population of interacting, growing and dividing particles. We start from a microscopic stochastic
model, write the corresponding stochastic differential equation satisfied by the empirical measure, and
rigorously derive its mesoscopic (mean-field) limit. Under smoothness and symmetry assumptions for
the interaction kernel, we then obtain entropy estimates, which provide us with a localization limit at
the macroscopic level. Finally, we perform a thorough numerical study in order to compare the three
modeling scales.

A Hamilton-Jacobi approach to nonlocal kinetic equations In [14], highly concentrated patterns have
been observed which occur in a spatially heterogeneous, nonlocal, model of BGK type implementing
a velocity-jump process. We study both a linear and a nonlinear case and describe the concentration
profile. In particular, we analyse a hyperbolic (or high frequency) regime that can be interpreted both
as a local (microscopic) or as a nonlocal (macroscopic) rescaling. We consider a Hopf-Cole transform
and derive a Hamilton-Jacobi equation. The concentrations are then explained as a consequence of the
stationary points of the Hamiltonian that is spatially heterogeneous like the velocity-jump process.

Nonlocal Cahn-Hilliard equation with degenerate mobility: Incompressible limit and convergence
to stationary states The link between compressible models of tissue growth and the Hele-Shaw free
boundary problem of fluid mechanics has recently attracted a lot of attention. In most of these models,
only repulsive forces and advection terms are taken into account. In order to take into account long
range interactions, in [9], we include for the first time a surface tension effect by adding a nonlocal term
which leads to the degenerate nonlocal Cahn-Hilliard equation, and study the incompressible limit of the
system. The degeneracy and the source term are the main difficulties.

7.2 Axis 2 – Stochastic models for biological and chemical systems

Participants: Lucie Laurence, Philippe Robert.

A Scaling Approach to Stochastic Chemical Reaction Networks. In [124], we have investigated the
asymptotic properties of Markov processes associated to stochastic chemical reaction networks (CRNs)
driven by the kinetics of the law of mass action. Their transition rates exhibit a polynomial dependence
on the state variable, with possible discontinuities of the dynamics along the boundary of the state space.
As a natural choice to study stability properties of CRNs, the scaling parameter considered in this paper is
the norm of the initial state. Compared to existing scalings of the literature, this scaling does not change
neither the topology of a CRN, nor its reactions constants. Functional limit theorems with this scaling
parameter can be used to prove positive recurrence of the Markov process. This scaling approach also
gives interesting insights on the transient behavior of these networks, to describe how multiple time
scales drive the time evolution of their sample paths for example. General stability criteria are presented
as well as a possible framework for scaling analyses. Several simple examples of CRNs are investigated
with this approach. A detailed stability and scaling analyses of a CRN with slow and fast timescales is
worked out.

Analysis of Stochastic Chemical Reaction Networks with a Hierarchy of Timescales In[125] we invest-
igate a class of stochastic chemical reaction networks with n≥1 chemical species S1, . . . , Sn , and whose
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complexes are only of the form ki Si , i=1,. . . , n, where (ki ) are integers. The time evolution of these CRNs
is driven by the kinetics of the law of mass action. A scaling analysis is done when the rates of external
arrivals of chemical species are proportional to a large scaling parameter N . A natural hierarchy of fast
processes, a subset of the coordinates of (Xi (t )), is determined by the values of the mapping i ↦→ki . We
show that the scaled vector of coordinates i such that ki=1 and the scaled occupation measure of the
other coordinates are converging in distribution to a deterministic limit as N gets large. The proof of this
result is obtained by establishing a functional equation for the limiting points of the occupation measure,
by an induction on the hierarchy of timescales and with relative entropy functions.

Stochastic Chemical Reaction Networks with Discontinuous Limits and AIMD processes In [126] we
study a class of stochastic chemical reaction networks (CRNs) for which chemical species are created
by a sequence of chain reactions. We prove that under some convenient conditions on the initial state,
some of these networks exhibit a discrete-induced transitions (DIT) property: isolated, random, events
have a direct impact on the macroscopic state of the process. If this phenomenon has already been
noticed in several CRNs, in auto-catalytic networks in the literature of physics in particular, there are
up to now few rigorous studies in this domain. A scaling analysis of several cases of such CRNs with
several classes of initial states is achieved. The DIT property is investigated for the case of a CRN with four
nodes. We show that on the normal timescale and for a subset of (large) initial states and for convenient
Skorohod topologies, the scaled process converges in distribution to a Markov process with jumps, an
Additive Increase/Multiplicative Decrease (AIMD) process. This asymptotically discontinuous limiting
behavior is a consequence of a DIT property due to random, local, blowups of jumps occurring during
small time intervals. With an explicit representation of invariant measures of AIMD processes and time-
change arguments, we show that, with a speed-up of the timescale, the scaled process is converging in
distribution to a continuous deterministic function. The DIT property analyzed in this paper is connected
to a simple chain reaction between three chemical species and is therefore likely to be a quite generic
phenomenon for a large class of CRNs.

7.3 Axis 3 – Theoretical analysis of nonlinear partial differential equations (PDE)
modelling various structured population dynamics

Participants: Jean Clairambault, Benoît Perthame, Nastassia Pouradier Duteil,
Lia Sela.

7.3.1 Modelling phenotypic divergence in cancer and in the emergence of multicellularity by phenotype-
structured equations of cell population dynamics

Participants: Jean Clairambault, Lia Sela.

Phenotype divergence and cooperation. The question of understanding the cancer disease from an
integrative physiology and long-time evolution point of view has stimulated many authors for quite a
long time. In this respect, the atavistic theory of cancer - to which we do not limit our point view, but
which offers a coherent framework for our theoretical developments - proposes that tumours represent,
roughly speaking, a reverse evolution to a previous, incoherent, disorganised and very plastic state of
multicellularity in animals, which the authors call Metazoa 1.0. This theory involves a billion year-long
evolutionary perspective of the emergence of multicellularity from collections of unicellular beings to the
first organised animals, so-called Urmetazoa. Phenotypic divergence under environmental constraints is
involved in both evolutionary/developmental and cancer biology. In the former, it is the fundamental
phenomenon by which cell differentiation yields new cell types with emerging functions, leading in
particular to multicellular beings such as animals (aka metazoa). In the latter, the process of bet hedging
in cancer is a response to cellular stress to describe the multiple fates of a plastic cancer cell population
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as a fail-safe strategy to face deadly insults, e.g., due to anticancer drugs. The question of phenotypic
divergence in an isogenic cell population is thus crucial. We address it by phenotype-structured PDEs
of the reaction-advection-diffusion type, and explore what mechanisms (mutations, differentiation,
selection) are responsible for concentration of the population around a unique phenotype (a singleton
in phenotypic space); or, on the contrary, for continuous or discrete heterogeneity of the population,
the discrete cases being represented by discrete sets of phenotypes, cases among which divergence
stricto sensu, leading to a doubleton (phenotypic dimorphism), is the simplest one. To this principle
of phenotype divergence has been added in [10] a point of view on cooperation between divergent cell
species, following prisoner’s dilemma settings, largely due to Frank Ernesto Alvarez Borges - it was a
chapter of his PhD thesis, defended in December 2023 under the supervision of Stephane Mischler,
Dauphine University. This point of view, as mentioned above, applies to both cancer and the constitution
of animal multicellularity in evolutionary biology. To clarify the connections between these two fields of
research - often mentioned in the scientific literature on cancer, seldom developed -, the notion of animal
body plan (Bauplan, plan corporel/organisationnel) is studied in a popularisation paper (in French, with
English abstract) [33]. The question of interactions between phenotype-structured cell populations has
given rise to the PhD thesis of Lia Sela, begun in October 2024, supervised by Emmanuel Trelat (LJLL),
Jean Clairambault and Jean-Philippe Foy (CRSA, INSERM, St Antoine Hospital), in the framework of the
Programme Doctoral Interdisciplinaire en Cancerologie (PDIC) of Sorbonne University. The two cell
populations considered are oral epithelial cells, subject to possible - but not mandatory - cancerisation
on the one hand, and on the other hand, populations of resident macrophages in the oral cavity. The
simplified continuous phenotypes considered in a first step are a global malignancy one for epithelial
cells, and a M2/M1 axis characterisation for macrophages.

7.3.2 Analysis of non-local advection-diffusion models for active particles

Participants: Luca Alasio.

Existence and regularity results. In connection with section 3.3.3 of the Research Program, new results
have been obtained in the study of two models for the evolution of the density of active particles in a
periodic setting. In both models, the unknown densties depend on tie, space and angle, where the latter
is considered as a structure variable.

In a first work in collaboration with S. Schulz and J. Guerand [21], we establish regularity and, under
suitable assumptions, convergence to stationary states for weak solutions of a parabolic equation with a
non-linear non-local drift term. We apply De Giorgi’s method and differentiate the equation with respect
to the time variable iteratively to show that weak solutions become smooth away from the initial time.
This strategy requires that we obtain improved integrability estimates in order to cater for the presence of
the non-local drift. The instantaneous smoothing effect observed for weak solutions is shown to also
hold for very weak solutions arising from distributional initial data; the proof of this result relies on a
uniqueness theorem in the style of M. Pierre for low-regularity solutions. The convergence to stationary
states is proved under a smallness assumption on the drift term.

In a second work with S. Schulz [41], we study regularity and uniqueness of weak solutions of a
degenerate parabolic equation, arising as the limit of a stochastic lattice model of self-propelled particles.
The angle-average of the solution appears as a coefficient in the diffusive and drift terms, making the
equation nonlocal. We prove that, under unrestrictive non-degeneracy assumptions on the initial data,
weak solutions are smooth for positive times. Our method rests on deriving a drift-diffusion equation for
a particular function of the angle-averaged density and applying De Giorgi’s method to show that the
original equation is uniformly parabolic for positive times. We employ a Galerkin approximation to justify
rigorously the passage from divergence to non-divergence form of the equation, which yields improved
estimates by exploiting a cancellation. By imposing stronger constraints on the initial data, we prove
the uniqueness of the weak solution, which relies on Duhamel’s principle and gradient estimates for the
periodic heat kernel to derive L∞ estimates for the angle-averaged density.
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7.4 Axis 4 – Mathematical epidemiology

Participants: Pierre-Alexandre Bliman, Marcel Fang, Nga Nguyen, Assane Savadogo,
Manon de la Tousche.

7.4.1 Biological control of vectors

Participants: Pierre-Alexandre Bliman, Nga Nguyen, Manon de la Tousche.

Efficacy of the Sterile Insect Technique in the presence of inaccessible areas: A study using two-patch
models The Sterile Insect Technique (SIT) is one of the sustainable strategies for the control of disease
vectors, which consists of releasing sterilized males that will mate with the wild females, resulting in a
reduction and, eventually a local elimination, of the wild population. The implementation of the SIT in
the field can become problematic when there are inaccessible areas where the release of sterile insects
cannot be carried out directly, and the migration of wild insects from these areas to the treated zone may
influence the efficacy of this technique. However, we can also take advantage of the movement of sterile
individuals to control the wild population in these unreachable places. In [3], we derived a two-patch
model for Aedes mosquitoes with discrete diffusion between the treated area and the inaccessible zone.
We investigated two different release strategies (constant and impulsive periodic releases), and by using
the monotonicity of the model, we showed that if the number of released sterile males exceeds some
threshold, the technique succeeds in driving the whole population in both areas to extinction. This
threshold depends not only on the biological parameters of the population but also on the diffusion
between the two patches.

Basic offspring number and robust feedback design for the biological control of vectors by sterile
insect release technique Sterile Insect Technique (SIT) is a promising control method against insect
pests and insect vectors. It consists in releasing males previously sterilized in laboratory, in order to
reduce or eliminate a specific wild population. We studied in [24] the implementation by feedback
control of SIT-based elimination campaign of Aedes mosquitoes. We provided state-feedback and output-
feedback control laws and establish their convergence, as well as their robustness properties. In this
design procedure, a pivotal role is played by the average number of secondary female insects produced by
a single female insect, called basic offspring number, and by the use of properties of monotone systems.
Illustrative simulations were provided.

Optimal Control Approach for Implementation of Sterile Insect Techniques The vector or pest control
is essential to reduce the risk of vector-borne diseases or crop losses. Among the available biological
control tools, the sterile insect technique (SIT) is one of the most promising. However, SIT-control cam-
paigns must be carefully planned in advance in order to render desirable outcomes. In [2], we designed
SIT-control intervention programs that can avoid the real-time monitoring of the wild population and
require to mass-rear a minimal overall number of sterile insects, in order to induce a local elimination of
the wild population in the shortest time. Continuous-time release programs were obtained by applying
an optimal control approach, and then laying the groundwork of more practical SIT-control programs
consisting of periodic impulsive releases.

Feasibility and optimization results for elimination by mass-trapping in a metapopulation model
Having in mind the issue of control of insects vectors or insects pests, we considered in [4] a metapop-
ulation model with patches linearly interconnected, and explore the global effects of the (on purpose)
increase of mortality in some of them. Based on previous results by Y. Takeuchi et al., we showed that
under appropriate conditions, the sign of the stability modulus of the Jacobian of the system at the origin
determines the asymptotic behaviour of the solutions. If it is non-positive, then the population becomes
extinct in every patch. Conversely, if it is positive, then there exists a unique nonnegative equilibrium,
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which is positive and globally asymptotically stable. In the latter case, given a subset of ’controlled’
patches where human intervention is allowed, through mass-trapping for instance, we studied whether
the introduction of additional linear mortality in some of them can result in population elimination in
every patch. We characterized this possibility by an algebraic property on the Jacobian at the origin of
a so-called residual system. We then assessed the minimal globally asymptotically stable equilibrium
that may be attained in this way, and when elimination is possible, we studied the optimization problem
consisting in achieving this task while minimizing a certain cost function, chosen as a nondecreasing and
convex function of the mortality rates added in the controlled patches. We showed that such minimization
problem admits a global minimizer, which is unique in the relevant cases. An interior point algorithm
was proposed to compute the numerical solution.

7.4.2 Control of infectious diseases

Participants: Pierre-Alexandre Bliman, Marcel Fang, Assane Savadogo.

A framework for the modelling and the analysis of epidemiological spread in commuting populations
In [25], we established a framework for the mathematical modelling and the analysis of the spread of an
epidemic in a large population commuting regularly, typically along a time-periodic pattern, as is roughly
speaking the case in populous urban center. We consider a large number of distinct homogeneous
groups of individuals of various sizes, called subpopulations, and focus on the modelling of the changing
conditions of their mixing along time and of the induced disease transmission. We propose a general
class of models in which the ’force of infection’ plays a central role, which attempts to ’reconcile’ the
classical modelling approaches in mathematical epidemiology, based on compartmental models, with
some widely used analysis results (including those by P. van den Driessche and J. Watmough in 2002),
established for apparently less structured systems of nonlinear ordinary-differential equations. We take
special care in explaining the modelling approach in details, and provide analysis results that allow to
compute or estimate the value of the basic reproduction number for such general periodic epidemic
systems.

7.5 Axis 5 – Development and analysis of mathematical models for biological tissues
confronted to experimental data

Participants: Nastassia Pouradier Duteil, Diane Peurichard.

7.5.1 Modeling of milling and schooling in gregarious fish.

Participants: Nastassia Pouradier Duteil.

The study of collective behavior has attracted much attention in the last twenty years, both among
mathematicians and experimentalists, with the aim of explaining how local interactions between the
group members lead to the emergence of global patterns, a phenomenon referred to as self-organization.
Importantly, a group’s capacity to transition between different global configurations is related to its
survival capacity. For example, fish schools adopt different collective behaviors when foraging for food or
facing predators.

However, the mechanisms provoking phase transition in a group of interacting agents are often
difficult to identify experimentally. We have initiated a collaboration with R. Godoy-Diana and B. Thiria
of the laboratory PMMH of ESPCI, in order to focus on exploring the effect of two main mechanisms
in the collective behavior of gragarious fish (Hemmigramus rhodostomus): (i) the individuals’ fields of
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vision; and (ii) the population’s heterogeneity. Both mechanisms are particularly challenging to study
exclusively through numerical experiments, which justifies the tight collaboration between the two teams.
First results were obtained during the internship of A. Savalle (May-July 2024). We proved that a simple
agent-based model with just two forces (self-propulsion and alignment dynamics) is able to reproduce
the milling behavior of the group when the interactions are non-symmetric, due to the directed field of
vision of each individual.

7.5.2 3D Modeling of biological tissue emergence and repair

Participants: Diane Peurichard.

A combined in-silico / in-vivo approach reveals that an early transient decrease in fiber cross-linking
unlocks adult regeneration. The decline in regeneration efficiency after birth in mammals is a signi-
ficant roadblock for regenerative medicine in tissue repair. We previously developed a computational
agent based-model (ABM, cf [153]) that recapitulates mechanical interactions between cells and the
extracellular-matrix (ECM), to investigate key drivers of tissue repair in adults. In [15], we perform a
time calibration alongside a parameter sensitivity analysis of the model to discover that an early and
transient decrease in ECM cross-linking guides tissue repair toward regeneration. Consistent with the
computational model, transient inhibition or stimulation of fiber cross-linking for the first six days after
subcutaneous adipose tissue (AT) resection in adult mice led to regenerative or scar healing, respectively.
Therefore, this work positions the computational model as a predictive tool for tissue regeneration that
with further development will behave as a digital twin of our in vivo model. In addition, it opens new
therapeutic approaches targeting ECM cross-linking to induce tissue regeneration in adult mammals.

Modeling of spinal cord regeneration in axolotl. Axolotls are uniquely able to completely regenerate
the spinal cord after amputation. The underlying governing mechanisms of this regenerative response
have not yet been fully elucidated. We previously found that spinal cord regeneration is mainly driven
by cell-cycle acceleration of ependymal cells, recruited by a hypothetical signal propagating from the
injury. However, the nature of the signal and its propagation remain unknown. In [5], we developed
and analyzed a computational model to investigate whether the regeneration-inducing signal can follow
a reaction-diffusion process. By developing a theory of the regenerating outgrowth in the limit of fast
reaction-diffusion, we demonstrated that control of regenerative response solely relies on cell-to-signal
sensitivity and the signal reaction-diffusion characteristic length. This study lays foundations for further
identification of the signal controlling regeneration of the spinal cord.

3D modelling of fiber networks. The extracellular-matrix (ECM) is a complex interconnected three-
dimensional network that provides structural support for the cells and tissues and defines organ architec-
ture as key for their healthy functioning. However, the intimate mechanisms by which ECM acquire their
three-dimensional architecture are still largely unknown. In [6], we studied this question by means of a
simple three-dimensional individual based model of interacting fibres able to spontaneously crosslink or
unlink to each other and align at the crosslinks. We show that such systems are able to spontaneously
generate different types of architectures. We provide a thorough analysis of the emerging structures by an
exhaustive parametric analysis and the use of appropriate visualization tools and quantifiers in three
dimensions. The most striking result is that the emergence of ordered structures can be fully explained
by a single emerging variable: the number of links per fibre in the network. If validated on real tissues,
this simple variable could become an important putative target to control and predict the structuring of
biological tissues, to suggest possible new therapeutic strategies to restore tissue functions after disrup-
tion, and to help in the development of collagen-based scaffolds for tissue engineering. Moreover, the
model reveals that the emergence of architecture is a spatially homogeneous process following a unique
evolutionary path, and highlights the essential role of dynamical crosslinking in tissue structuring.
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7.5.3 Modelling the Retinal Pigment Epithelium in Age-Related Macular Degeneration

Participants: Luca Alasio.

Towards a mechanistic approach to study the growth of lesions. In agreement with section 3.5.6 of the
Research Program, we are collaborating with the group of Prof. M. Pâques at Hôpital National des Quinze-
Vingts in order to model the evolution and growth of lesions in dry Age-Related Macular Degeneration.
During a short visit in spring 2024, S. Gazzoni contributed to the numerical exploration of viscoelastic
effects in the Retinal Pigment Epithelium (RPE). The PhD project of N. Cresson, co-supervised by Dr. L.
Alasio and Prof. M. Szopos (Université Paris Cité), is aligned with this research direction. We are currently
working on the refinement of macroscopic (elastic) models reproducing RPE deformations qualitatively,
as well as on the rigorous framework and well-posedness analysis of the corresponding nonlinear system
of PDEs. We continue the study of efficient and robust methods for numerical simulations, with particular
attention to parameter calibration and to integration of clinical data in the model. We obtained ver
encouraging preliminary results with simulations in FreeFEM of significant cases involving fusion of
lesions, asymmetric growth and foveal sparing.

7.5.4 Mathematical models of retinal biochemistry

Participants: Luca Alasio.

Towards better models for the visual cycle. In agreement with section 3.5.5 of the Research Program, we
are investigating improved models for the dynamics of the visual cycle in photoreceptors. In the summer
of 2024, L. Alasio supervised the internship of N. Antonelli-Dziri (L3 student, Sorbonne Polytech). The
internship focused on simulation and comparison of different ODE models for the key biochemical steps
in the visual cycle. Preliminary results obtained in this context have promoted an ongoing collaboration
with Dr. C. Schwarz (University of Tubingen), who contributed to the formulation of ODE models for the
visual cycle in the past, and is currently planning new experiments with the aim of making the study of
such biochemical phenomena more quantitative. Further analysis is required, but the current results are
encouraging.

8 Partnerships and cooperations

8.1 International initiatives

8.1.1 Inria associate team not involved in an IIL or an international program

MOCOVEC

Title: Modelling and Biological Control of Vector-Borne Diseases: the case of Malaria and Dengue

Program: Associate Team

Duration: 5 years – (2020-2024)

Local supervisor: Pierre-Alexandre Bliman

Participants: Pierre-Alexandre Bliman.

Partners: • Centres Inria de Paris, Lyon, Nancy-Grand Est



Project MUSCLEES 39

• Department of Biostatistics, Institute of Biosciences, Unesp, Brazil

• Institute for Theoretical Physics, Unesp, Brazil

• Center of Mathematics, Computation and Cognition, UFABC, Brazil

• Institute of Mathematics and Statistics, USP, Brazil

Summary Taking into account all the infectious disease spread worldwide, vector-borne diseases ac-
count for over 17%. For a huge part of them, no efficient vaccine is available, and control efforts
must be done on the vector population. Focusing on dengue and malaria, two diseases transmitted
by vector mosquito and which cause high morbidity and mortality around the world, this project
aims to model disease transmission, its spread and control, in a context of climatic and environ-
mental change. For this, the main drives of disease transmission will be addressed to understand
which factors modulate the spatio-temporal patterns observed, especially in Brazil. Combining
techniques of data analysis with mathematical models and control theory, the plan is to work on
data analysis to define potential biotic and abiotic factors that drives malaria and dengue disease
dynamics; to study and model the effects of seasonality on the spread of the diseases; to understand
spatial aspects of the transmission through the setup of models capable to account for nonlocal and
heterogeneous aspect; and to analyse alternative approaches of mosquito control, especially the
biological control methods based on sterile mosquitoes or on infection by bacterium that reduces
the vectorial capacity.

8.1.2 STIC/MATH/CLIMAT AmSud projects

BIO-CIVIP

Title: Biological Control of Insect Vectors and Insect Pests

Program: STIC-AmSud

Duration: 2 years – (2024-2025)

Local supervisor: Pierre-Alexandre Bliman

Participants: Pierre-Alexandre Bliman, Nga Nguyen, Manon de la Tousche.

Partners:

• Brazil

– Universidade Federal Fluminense, Niteroi

– Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de Botucatu

– Universidade de São Paulo

– Universidade Federal de Rio de Janeiro

– Fundação Oswaldo Cruz, Rio de Janeiro

• Chile

– Universidad de Chile, Santiago

– Universidad Técnica Federico Santa Maria, Valparaiso

• Colombia

– Universidad Autónoma de Occidente, Cali

– Universidad del Valle, Cali

• France

– Institut de Mathématiques de Bordeaux - UMR 5152

– Laboratoire Jacques-Louis Lions, UMR 7598
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– Laboratoire de Mathématiques et Applications, UMR 7348

– Laboratoire d’analyse, géométrie et application, UMR 7539

– Centres de recherche Inria Paris, Nancy-Grand Est, Lyon

– CIRAD, Montpellier

– UMR MISTEA (INRAE/SupAgro), Montpellier

• Paraguay

– LCCA-NIDTEC, Polytechnic School, National University of Asuncion

Inria contact: Pierre-Alexandre Bliman

Summary: The project BIO-CIVIP is concerned with the mathematical study of new biological con-
trol strategies. It concerns on the one hand insect vectors of important diseases that put at risk
considerable portions of the human population, and on the other hand insect pests that damage
crops and food production. Generally speaking, biological control methods aim at controlling
pests or vectors using other organisms. Building on the similarities of the control methods and the
potential synergy between the two fields, our goal is to elaborate and analyze mathematical models
adapted to several specific applications of interest, and to evaluate qualitatively and quantitatively
different control strategies. Our efforts will aim in particular at understanding the key aspects and
parameters of insect vector and pest dynamics in their temporal and spatial spread, testing control
principles and concepts, estimating feasibility and robustness, identifying risks and reducing cost.

9 Dissemination

9.1 Promoting scientific activities

9.1.1 Scientific events: selection

Reviewer Pierre-Alexandre Bliman has been reviewer for the conference European Control Conference
2024.

9.1.2 Journal

Member of the editorial boards Philippe Robert is Associate Editor of the journal “Stochastic Models”
Jean Clairambault is member of the editorial board of the journal “Mathemaical Modelling of Natural

Phenomena”

Reviewer - reviewing activities Pierre-Alexandre Bliman has been reviewer for the journals Automatica,
Bulletin of Mathematical Biology, IEEE Control Systems Letters (L-CSS), Mathematical Methods in the
Applied Sciences, Nonlinear Analysis: Hybrid Systems, Systems and Control Letters.

Nastassia Pouradier Duteil has been reviewer for the journals Kinetic and Related Models, Mathemat-
ical Control and Related Fields, Foundations of Computational Mathematics, Networks and Heterogeneous
Media.

Diane Peurichard has been reviewer for the journals MATCOM, Nonlinearity, Journal of Physics A,
Journal of the Royal Society Interface

Jean Clairambault has been reviewer for the journals Applied Mathematical Modelling, Cancers,
Journal of Mathematical Biology, Mathematical Medicine and Biology, Molecular Medicine,npj Systems
Biology and Applications, PLoS Computational Biology, Scientific Reports

9.1.3 Invited talks

Lucie Laurence has given a talk at the SPT-CRN conference in Pulla, Italia, 10/06-14/06.
Philippe Robert has given a seminar at Toulouse at the IRIT on September 13, in Tolede, for the

ECMTB conference, 22/07-26/07 and at the online seminar Morn Seminar 23/05. Philippe Robert has
given lectures at the Journées Math Bio Santé 2024, Nantes, 24/06-28/06.
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Marcel Fang presented a contribution at the 15th Conference on Dynamical Systems Applied to
Biology and Natural Sciences, DSABNS 2024, in February.

Manon De La Tousche presented a contribution at the 15th Conference on Dynamical Systems Applied
to Biology and Natural Sciences, DSABNS 2024, in February.

Pierre-Alexandre Bliman gave seminars at Université Mohamed 6 Polytechnique, Maroc in July; and
at Department of Mathematics and Applications, University of Naples Federico II in September. He
presented contributions at the conference “Numerical Analysis and Modelling in Applied Sciences (NA-
MAS)”, Gaeta, Italy, in September, and (online)in the Conférence Maths and Decision: Mini-Symposium
Biologiacal Complex Systems, Rabat, Marocco (online) in December.

Nastassia Pouradier Duteil gave presentations at the workshops “Alhambra PDE days” (University of
Granada), “Collective models for networked particle systems” (University of Pavia), “Variational Analysis,
Models and Methods in Measure Spaces” (CIRM). She gave a course at the Kinmat Summer School
“Kinetic description of collective dynamics and related emergent phenomena” (Bedlewo, Poland). She
also gave a seminar at the “Laurent Schwarz seminars” at Ecole Polytechnique.

Diane Peurichard gave presentations at the conferences GIMC SIMAI Young (Naples, Italy), ECMTB2024
(Toledo, Spain), ’International Summer school on mathematical biology’ (Shanghai, China), workshop
MATIDY (IHP, Paris), Plant Biology Workshop (Lyon), GDR Mecanobiology (Metz).

Jean Clairambault has given an in-presence talk to the on-invitation workshop “Modelling Complexity
in Mechanics and Applied Mathematics: Theory, Experiments, and Simulations” in Ortigia, Syracuse,
Italy, September 2024, and another one to the online “Mathematical Modelling in Biomedicine” scientific
seminar, RUDN University, Moscow, February 2024.

Sophie Hecht gave a presentation at the GdT Normand on biomathematics in May 2024.

9.1.4 Scientific expertise

Diane Peurichard is member of the commission d’évaluation (CE) Inria, of the commission des emplois
scientifiques (CES) Inria Paris, of the commité de suivi doctoral (CSD) Inria Paris, and of the pole ecoute,
LJLL, Sorbonne Université.

9.1.5 Research administration

Diane Peurichard is coordinator of the ANR project ENERGENCE.
Nastassia Pouradier Duteil is coordinator of the ANR project FISH.
Pierre-Alexandre Bliman is coordinator of the ANR project NOCIME and of the STIC AMSUd project

BIO-CIVIP.

9.2 Teaching - Supervision - Juries

Lucie Laurence is teaching assistant in the course “Mathematics for scientists”, in L1 at Jussieu.
Marcel Fang has been teaching assistant in Licence at Sorbonne Université.
Manon de la Tousche has been teaching assistant in Licence at Sorbonne Université.
Philippe Robert is teaching the master M2 course ‘Modèles Stochastiques de la Biologie Moléculaire‘”

at Sorbonne Université.
Nastassia Pouradier Duteil has been teaching the M1 course “Ordinary Differential Equations : Theory

and Numerical Approximation” at the ISMP institute of Porto Novo, Benin. She has been teaching the
course “Essential Mathematics” within the DU “Retour aux Etudes Supérieures pour les Personne Exilées”
(Sorbonne University). She also supervised an M1-research project for the course “Travaux Encadrés de
Recherche” (Sorbonne University).

Diane Peurichard has given a M2 course (4h) at Université de Strasbourg in the master Physique
Cellulaire, a 4h M2 course in the master M2 Biosanté (CARe, Toulouse). She also did exercice course (L1)
at Sorbonne university and supervised student project (L3) at Sorbonne university.

Sophie Hecht has been teaching a teaching assistant in L1 and L3 at Sorbonne Universite and has
given ’colle’ in classe preparatoire Henri IV.
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9.2.1 Supervision

Pierre-Alexandre Bliman has been PhD supervisor of Marcel Fang, Assane Savadogo and Manon De La
Tousche.

Nastassia Pouradier Duteil has supervised the M2-level internship of A. Savalle.
Diane Peurichard has supervised the post-doctorate of S. Toste (co-supervised with RESTORE,

Toulouse) and the post-doctorate of H. Horii (together with Sophie Hecht).
Sophie Hecht has supervised the post-doctorate of H. Horii (together with Diane Peurichard).

9.2.2 Juries

Philippe Robert has been a reviewer of the PhD document “Stochastic analysis of unreliable large-scale
storage systems” by Soukaina El Masmari, University of Casablanca, Morocco. He has been a member of
the jury for the PhD defense of Lucie Laurence in December

Diane Peurichard has been in the CRCN/ISFP juries for Inria Saclay and Inria Nancy as a member of
the commission d’évaluation (CE), campaign 2024. She was also member of the jury for the Prix Junior
Maryam Mirzakhani 2024 of the fondation Hadamar, rewarding three young students (license, master)
for a first research work.

Sophie Hecht has been in the jury for the recruitment of a MdC at Université Paris Nord.

9.3 Popularization

Sophie Hecht has given an outreach presentation at the Lycée Viollet Le Duc to highschool students.
Diane Peurichard participated in the RJMI (Rendez-Vous des Jeunes Mathematiciennes et Inform-

aticiennes) in the form of ’Speed meetings’ with several groups of young students (Inria Paris). She also
participated in online speed meetings with young students (lycéennes) with the association ’femmes et
mathématiques’

9.3.1 Productions (articles, videos, podcasts, serious games, ...)

Nastassia Pouradier Duteil was the first guest in Nathalie Ayi’s podcast “Tête-à-tête chercheuse(s)”,
seeking to promote a diversified image of mathematical researchers. She is now one of the permanent
hosts of the podcast.

9.3.2 Participation in Live events

Nastassia Pouradier Duteil gave an outreach presentation for high school and university students at the
Classes Préparatoires “Les Lazaristes”.
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Scientific popularization
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