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Team PARKAS

Creation of the Team: 2024 January 01
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1 Team members, visitors, external collaborators

Research Scientist

• Timothy Bourke [INRIA, Researcher]

Faculty Members

• Marc Pouzet [Team leader, Ecole normale supérieure, Professor]

• Paul Feautrier [DI-ENS, Emeritus]

Post-Doctoral Fellow

• Paul Jeanmaire [INRIA, from Oct 2024]

PhD Students

• Gregoire Bussone [ENS PARIS]

• Paul Jeanmaire [ENS PARIS, until Aug 2024]

• Charles de Haro [‘Ecole normale supérieure, from Aug 2024, Cosupervised with the ANTIQUE
Team]

Technical Staff

• Remy Citerin [INRIA, Engineer, from Aug 2024 until Oct 2024]

• Loic Sylvestre [INRIA, Engineer, from Dec 2024]

Interns and Apprentices

• Lubin Bailly [Ecole normale supérieure, Intern, from Mar 2024 until Jul 2024]

• Hector Denis-Blanchardon [INRIA, Intern, from Apr 2024 until Sep 2024]

• Tita Philine Rosemeyer [INRIA, Intern, until Mar 2024]

• Charles de Haro [Ecole normale supérieure de Rennes, Intern, from Feb 2024 until Aug 2024,
Cosupervised with the ANTIQUE team.]

Administrative Assistants

• Laurence Bourcier [INRIA]

• Nelly Maloisel [INRIA]

2 Overall objectives

Research in PARKAS focuses on the design, semantics, and compilation of programming languages which
allow going from parallel deterministic specifications to target embedded code executing on sequential
or multi-core architectures. We are driven by the ideal of a mathematical and executable language used
both to program and simulate a wide variety of systems, including real-time embedded controllers in
interaction with a physical environment (e.g., fly-by-wire, engine control), computationally intensive
applications (e.g., video), and compilers that produce provably correct and efficient code.
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The team bases its research on the foundational work of Gilles Kahn on the semantics of determ-
inistic parallelism, the theory and practice of synchronous languages and typed functional languages,
synchronous circuits, and formal models to prove the correctness of low-level code.

To realize our research program, we develop languages (LUCID SYNCHRONE, REACTIVEML, LUCY-N,
ZELUS), compilers, contributions to open-source projects (Sundials/ML), and formalizations in Interact-
ive Theorem Provers of language semantics and compilers (Vélus). These software projects constitute
essential “laboratories”: they ground our scientific contributions, guide and validate our research through
experimentation, and are an important vehicle for long-standing collaborations with industry.

3 Research program

Embedded control software is at the heart of many critical applications (medical devices, cars, planes,
satellites, trains, energy factories). This complex software interacts in real time with a partially known
physical environment and it must ensure statically strong safety constraints (e.g., determinacy, deadlock
freedom, execution in bounded time and memory). Model-based design, in its most formal interpretation,
is a way to increase confidence that the system and its software behave as expected. It is based on dedic-
ated languages to write executable mathematical specifications (from control theory, physics) which are
simulated, tested, formally verified and compiled to executable code. This approach is recognized today
by certification authorities and supported by industrial tools and languages like SCADE and SIMULINK.

The compiler plays a central role in these languages: it performs static verification checks on models,
source-to-source transformations, optimizations; it generates intermediate representations for formal
verification, automatic testing; and finally, executable code for fast simulation and the implementation
on an embedded target. Moreover, for hybrid systems modeling languages (e.g., Simulink, Modelica),
the compiler does complex static analyses and transformations (e.g., index reduction, differentiation,
computation of the Jacobian) in order to produce simulation code. The run-time system — the so-
called “simulation engine” — which involves numeric solvers for differential equations and zero-crossing
detection is itself a complex software whose correctness is critical to get confidence in simulation results.
How to guarantee that all these compilation steps and the run-time system are correct? That what is
simulated, tested and verified corresponds to what is written in the source program and remains true
of the generated code? In other words, that we have a high fidelity chain going from a mathematically
precise specification to its faithful reproduction on a target architecture or, to paraphrase Gérard Berry,
that “what you simulate/prove on the model is what you execute” [19].

The scientific objective of PARKAS is to tackle this fundamental question, making concrete proposals
in the form of language and compiler prototypes, to improve the best industrial practices for certified
applications where SCADE is the state-of-the-art. We aim at extending the theory and practice on the
design, semantics and implementation of domain-specific languages for reactive systems, allowing to go
from a precise specification down to trustable code, with a precise and traceable compilation chain that
gives strong and explainable evidence of correctness.

Our research draws its inspiration and focus from the simplicity and complementarity of the data-flow
and deterministic model of parallelism introduced by Kahn and Mac Queen [28, 29], the theory and
practice of synchronous programming,[25, 18, 23] typed functional programming [33] and the fruitful
relationships between the two.[34, 35, 22, 31, 17] To reach our goal, we leverage a large body of formal
principles: language and compiler design, semantics, dedicated type systems, proof engineering for
compilers, synchronous circuits, and compilation algorithms.

Our research program has recently been organized along two axes.

1. The definition of languages for cyber-physical system allowing to write hybrid (discrete/continuous)
models (e.g., the interaction between software and a physical environment). We have investigated
how to express and exploit relaxed model of synchrony such as “communication by sampling”
through bounded buffers; models that mix reactive control and array-based computer intensive
applications; probabilistic programming constructs to model uncertainty; and random testing
techniques for finding bugs.

2. An important and closely interconnected challenge is the ability to preserve the trustworthiness of
a compiler chain, giving the greatest confidence in its correctness, from the model to the code. We
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develop precise specifications (on paper) for all the language extensions we propose. When the
solution is mature enough, we develop computer-aided and machine-checked formal semantics
and compilation techniques. We have treated important language extensions (e.g., the mix of data-
flow and hierarchical automata). We have also explored two executable denotational semantics.
One is stream-based (or “Kahnian”); the other is state-based and lead to an effective interpreter.

In our research, we adopt and follow a language-centric approach, focusing our efforts on the develop-
ment of concrete languages proposals, dedicated type systems, compile-time static analyses, compilation
algorithms, etc. These softwares constitute essential “laboratories”: they ground our scientific contri-
butions, guide and validate our research through experimentation, and they are an important vehicle
for teaching and long-standing collaborations with industry. ZELUS, VÉLUS, ZRUN, PRESSEAIL are visible
results of our approach.

4 Application domains

4.1 Embedded Control Software

Embedded control software defines the interactions of specialized hardware with the physical world. It
normally ticks away unnoticed inside systems like medical devices, trains, aircraft, satellites, and factories.
This software is complex and great effort is required to avoid potentially serious errors, especially over
many years of maintenance and reuse.

Engineers have long designed such systems using block diagrams and state machines to represent the
underlying mathematical models. One of the key insights behind synchronous programming languages
is that these models can be executable and serve as the base for simulation, validation, and automatic
code generation. This approach is sometimes termed Model-Based Development (MBD). The SCADE
language and associated code generator allow the application of MBD in safety-critical applications. They
incorporate ideas from LUSTRE, LUCID SYNCHRONE, and other programming languages.

4.2 Hybrid Systems Design and Simulation

Modern embedded systems are increasingly conceived as rich amalgams of software, hardware, net-
working, and physical processes. The terms Cyberphysical System (CPS) or Internet-of-Things (IoT) are
sometimes used as labels for this point of view.

In terms of modeling languages, the main challenges are to specify both discrete and continuous
processes in a single hybrid language, give meaning to their compositions, simulate their interactions,
analyze the behavior of the overall system, and extract code either for target control software or more
efficient, possibly online, simulation. Languages like Simulink and Modelica are already used in the
design and analysis of embedded systems; it is more important than ever to understand their underlying
principles and to propose new constructs and analyses.

5 Highlights of the year

5.1 Awards

• Timothy Bourke received an Outstanding Reviewer Award at the 20th ACM/IEEE Embedded Systems
Week in Raleigh, NC, USA.

6 New software, platforms, open data

6.1 New software

6.1.1 Zelus

Keywords: Numerical simulations, Compilers, Embedded systems, Hybrid systems
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Scientific Description: The Zélus implementation has two main parts: a compiler that transforms Zélus
programs into OCaml programs and a runtime library that orchestrates compiled programs and
numeric solvers. The runtime can use the Sundials numeric solver, or custom implementations of
well-known algorithms for numerically approximating continuous dynamics.

Functional Description: Zélus is a new programming language for hybrid system modeling. It is based
on a synchronous language but extends it with Ordinary Differential Equations (ODEs) to model
continuous-time behaviors. It allows for combining arbitrarily data-flow equations, hierarchical
automata and ODEs. The language keeps all the fundamental features of synchronous languages:
the compiler statically ensure the absence of deadlocks and critical races, it is able to generate
statically scheduled code running in bounded time and space and a type-system is used to distin-
guish discrete and logical-time signals from continuous-time ones. The ability to combines those
features with ODEs made the language usable both for programming discrete controllers and their
physical environment.

URL: https://zelus.di.ens.fr

Publications: hal-03051954v1, hal-02333603v1, hal-02426533v1, inria-00554271v1, hal-01242732v1, hal-
00654113v1, hal-00909029v1, hal-01575621v4, hal-01575631v1, hal-00766726v1, hal-00938891v1,
hal-00654112v1, hal-01879026v1, hal-01549183v2, hal-00938866v1

Contact: Marc Pouzet

Participants: Marc Pouzet, Timothy Bourke

Partner: ENS Paris

6.1.2 Vélus

Name: Verified Lustre Compiler

Keywords: Synchronous Language, Compilation, Software Verification, Coq, Ocaml

Functional Description: Vélus is a prototype compiler from a subset of Lustre to assembly code. It
is written in a mix of Coq and OCaml and incorporates the CompCert verified C compiler. The
compiler includes formal specifications of the semantics and type systems of Lustre, as well as the
semantics of intermediate languages, and a proof of correctness that relates the high-level dataflow
model to the values produced by iterating the generated assembly code.

Release Contributions: Vélus 3.0 introduces syntax and semantics for Lustre (previous versions only
treated the normalized form of Lustre). It includes a verified normalization pass that transforms
Lustre programs into NLustre programs.

URL: https://velus.inria.fr

Publications: hal-01817949, hal-03287572, hal-01512286, hal-01403830, tel-03068862, hal-02005639,
hal-02426573, hal-03370264

Contact: Timothy Bourke

Participants: Timothy Bourke, Basile Pesin, Paul Jeanmaire, Marc Pouzet

6.1.3 presseail

Name: All-in-Lustre Compiler

Keywords: Embedded systems, Compilers, Synchronous Language, Real-time application

https://zelus.di.ens.fr
https://hal.inria.fr/hal-03051954v1
https://hal.inria.fr/hal-02333603v1
https://hal.inria.fr/hal-02426533v1
https://hal.inria.fr/inria-00554271v1
https://hal.inria.fr/hal-01242732v1
https://hal.inria.fr/hal-00654113v1
https://hal.inria.fr/hal-00654113v1
https://hal.inria.fr/hal-00909029v1
https://hal.inria.fr/hal-01575621v4
https://hal.inria.fr/hal-01575631v1
https://hal.inria.fr/hal-00766726v1
https://hal.inria.fr/hal-00938891v1
https://hal.inria.fr/hal-00654112v1
https://hal.inria.fr/hal-01879026v1
https://hal.inria.fr/hal-01549183v2
https://hal.inria.fr/hal-00938866v1
https://velus.inria.fr
https://hal.inria.fr/hal-01817949
https://hal.inria.fr/hal-03287572
https://hal.inria.fr/hal-01512286
https://hal.inria.fr/hal-01403830
https://hal.inria.fr/tel-03068862
https://hal.inria.fr/hal-02005639
https://hal.inria.fr/hal-02426573
https://hal.inria.fr/hal-03370264
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Functional Description: The input to the compiler is the rate-synchronous language described in our
ECRTS 2023 article. The compiler generates and Integer Linear Programming (ILP) problem that
includes data dependency and resource constraints. The problem is solved using an external
solver and the resulting schedule is used by the compiler to generate sequential code using a
generalization of the modular clock-driven compilation scheme used in modern Lustre/Scade
compilers. The compiler implements special features for analyzing and eliminating cyclic data
dependencies.

Release Contributions: First version described in the ECRTS 2023 publication.

Contact: Timothy Bourke

6.1.4 SundialsML

Name: Sundials/ML

Keywords: Simulation, Mathematics, Numerical simulations

Scientific Description: Sundials/ML is a comprehensive OCaml interface to the Sundials suite of numer-
ical solvers (CVODE, CVODES, IDA, IDAS, KINSOL). Its structure mostly follows that of the Sundials
library, both for ease of reading the existing documentation and for adapting existing source code,
but several changes have been made for programming convenience and to increase safety, namely:

solver sessions are mostly configured via algebraic data types rather than multiple function calls,

errors are signalled by exceptions not return codes (also from user-supplied callback routines),

user data is shared between callback routines via closures (partial applications of functions),

vectors are checked for compatibility (using a combination of static and dynamic checks), and

explicit free commands are not necessary since OCaml is a garbage-collected language.

Functional Description: Sundials/ML is an OCaml interface to the Sundials suite of numerical solvers
(CVODE, CVODES, IDA, IDAS, KINSOL, ARKODE).

Release Contributions: Sundials/ML v6.0.0p0 adds support for v5.x and v6.x of the Sundials Suite of
numerical solvers. This includes the latest Arkode features, many vectors, and nonlinear solvers.

URL: http://inria-parkas.github.io/sundialsml/

Publications: hal-01408230v1, hal-01967659v1

Contact: Timothy Bourke

Participants: Jun Inoue, Marc Pouzet, Timothy Bourke

6.1.5 Heptagon

Keywords: Compilers, Synchronous Language, Controller synthesis

Functional Description: Heptagon is an experimental language for the implementation of embedded
real-time reactive systems. It is developed inside the Synchronics large-scale initiative, in col-
laboration with Inria Rhones-Alpes. It is essentially a subset of Lucid Synchrone, without type
inference, type polymorphism and higher-order. It is thus a Lustre-like language extended with
hierchical automata in a form very close to SCADE 6. The intention for making this new language
and compiler is to develop new aggressive optimization techniques for sequential C code and
compilation methods for generating parallel code for different platforms. This explains much of
the simplifications we have made in order to ease the development of compilation techniques.

The current version of the compiler includes the following features: - Inclusion of discrete controller
synthesis within the compilation: the language is equipped with a behavioral contract mechanisms,
where assumptions can be described, as well as an "enforce" property part. The semantics of this

http://inria-parkas.github.io/sundialsml/
https://hal.inria.fr/hal-01408230v1
https://hal.inria.fr/hal-01967659v1
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latter is that the property should be enforced by controlling the behaviour of the node equipped
with the contract. This property will be enforced by an automatically built controller, which will act
on free controllable variables given by the programmer. This extension has been named BZR in
previous works. - Expression and compilation of array values with modular memory optimization.
The language allows the expression and operations on arrays (access, modification, iterators). With
the use of location annotations, the programmer can avoid unnecessary array copies.

URL: https://gitlab.inria.fr/synchrone/heptagon

Contact: Gwenaël Delaval

Participants: Adrien Guatto, Brice Gelineau, Cédric Pasteur, Eric Rutten, Gwenaël Delaval, Léonard
Gerard, Marc Pouzet

Partners: UGA, ENS Paris, Inria, LIG

6.1.6 ZRun

Name: The ZRun Synchronous Language Interpreter

Functional Description: ZRun is an executable semantics of a synchronous data-flow language. It takes
the form of a purely functional interpreter and is implemented in OCaml. The input of Zrun is
a large subset of the language Zélus, but only its discrete-time (synchronous) subset. The basic
primitives are those of Lustre: a unit non-initialized delay (pre), the initialization operator (->),
the initialized delay (fby), and streams can be defined by mutually recursive definitions. It also
provides richer programming constructs that were introduced in Lucid Synchrone and Scade 6, but
are not in Lustre: the by-case definition of streams, the last computed value of a signal, hierarchical
automata with parameters, stream functions with static parameters that are either know at compile
time or at instanciation time, and two forms of iteratiors on arrays: the "forward" to perform an
iteration in time, the "foreach" to perform an iteration on space.

The objective of this prototype is to give a reference executable semantics that is independent of a
compiler. It can be used, e.g., as an oracle for compiler testing, to execute unfinished programs or
programs that are semantically correct but are statically rejected by the compiler.

Release Contributions: Branch Master (2000) - v1.x. - first-order language, streams, hierarchical auto-
mata, by-case definition of streams, operator last.

Branch Works (2023): - v2.x - static higher-order, hierarchical automata with parameters, valued
signals. - arrays, - "forward" and "foreach" iterations.

URL: https://github.com/marcpouzet/zrun

Contact: Marc Pouzet

7 New results

7.1 Verified compilation of Lustre

Participants: Timothy Bourke, Paul Jeanmaire, Marc Pouzet.

Vélus is a compiler for a subset of LUSTRE and SCADE that is specified in the Coq [24] Interactive
Theorem Prover (ITP). It integrates the CompCert C compiler [30, 20] to define the semantics of machine
operations (integer addition, floating-point multiplication, etcetera) and to generate assembly code for
different architectures. The research challenges are to

• to mechanize, i.e., put into Coq, the semantics of the programming constructs used in modern
languages for Model-Based Development;

https://gitlab.inria.fr/synchrone/heptagon
https://github.com/marcpouzet/zrun
https://velus.inria.fr
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• to implement compilation passes and prove them correct;

• to interactively verify source programs and guarantee that the obtained invariants also hold of the
generated code.

Work continued this year on this long-running project by developing constructive denotational
models to facilitate interactive verification.

Denotational semantics for program verification: To date we have focused on proving the correct-
ness of compilation passes. This involves specifying semantic models to define the input/output relation
associated with a program, implementing compilation functions to transform the syntax of a program,
and proving that the relation is unchanged by the functions. In addition to specifying compiler correct-
ness, semantic models can also serve as a base for verifying individual programs. The challenge is to
present and manipulate such detailed specifications in interactive proofs. The potential advantage is
to be able to reason on abstract models and to obtain, via the compiler correctness theorem, proofs
that apply to generated code. Making this idea work requires solving several scientific and technical
challenges. It is the subject of Paul Jeanmaire’s thesis.

This year we completed the first phase of work to develop a Kahn-style semantics in Coq using
C. Paulin-Mohring’s library [32]. The model treats the dataflow core of Lustre with resettable node
instances as presented in our EMSOFT 2021 article [21] with the generalization to enumerated types. We
show that, under specific conditions, the denotational model satisfies the relational predicates used in
the compiler correctness proof. This allows us to strengthen the overall compiler correctness theorem.
Rather than state “If a semantics exists for a program, then it is preserved by the generated code”, we
show that “Under specific conditions, a semantics exists and it is preserved by the generated code”. The
“specific conditions” are, as usual, that the source program satisfies typing and clock typing rules, but also,
that it is not subject to run-time errors. Run-time errors cannot be ignored in our context of end-to-end
proof. The CompCert definitions for several arithmetic and logical operators are partial, for example,
integer division by zero is not defined. Such partiality simply propogates to the the Vélus relational model,
but the denotational model is a total function and operator failures must thus be modeled explicitly. We
expressed the absence of run-time errors as a predicate over the dynamic behavior of a program. We
implemented a simple static analysis, that nevertheless suffices for many practical programs, and showed
that it is a sufficient condition for the absence of run-time errors. The next version of the Vélus compiler
will now print warning messages if the source program uses features not treated in the denotational
model or if the simple static analysis cannot guarantee the absence of errors. In this case, it becomes the
user’s responsability to show that run-time errors cannot occur. We proved that the relational definition
of resettable node instances, used in the compiler correctness proof, corresponds with two previously
proposed functional definitions [27, 26]. Clock typing constraints are necessary on a source program to
maintain the possibility of a Kahn-style semantics. However, they can be relaxed within the compiler
as successive passes rewrite the program into a normalized form, since the intermediate programs are
assigned a synchronous semantics that defines the behaviour cycle-by-cycle. An article on these results
has been submitted. Paul Jeanmaire defended his thesis on this topic in December 2024 [15].

The PhD work of Paul Jeanmaire specifies when the semantic predicates of Vélus admit at least
one solution. By building on a determinancy theorem within CompCert, we strengthened the Vélus
correctness theorem to show that the generated code only has one behavior — the one that corresponds
to the dataflow source semantics.

Glossary

Interactive Theorem Prover (ITP, also known as a proof assistant): Software for formal specification
and proof, with features for generating and checking proofs, and extracting programs for later
compilation

Model-Based Development (MBD): The specification of control software using block-diagrams,
state machines, and other high-level constructions allowing programmers to focus on de-
scribing desired behaviour and to rely on automatic code generation to produce low-level
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executables.

7.2 Latency-based scheduling of synchronous programs

Participants: Timothy Bourke, Marc Pouzet.

External collaborators: Dumitru Potop Butucaru (Inria) and; Matthieu Boitrel, Marc Brundler, Mat-
thieu David, Victor Jegu, Sylvain Sauvant, and Jean Souyris (Airbus).

It is sometimes desirable to compile a single synchronous language program into multiple tasks for
execution by a real-time operating system. We have been investigating this question from three different
perspectives.

Scheduling and code generation for periodic streams: In this approach, the top-level node of a Lustre
program is distinguished from inner nodes. It may contain special annotations to specify the triggering
and other details of node instances from which separate “tasks” are to be generated. Special operators
are introduced to describe the buffering between top-level instances. Notably, different forms of the
when and current operators are provided. Some of the operators are under-specified and a constraint
solver is used to determine their exact meaning, that is, whether the signal is delayed by zero, one, or
more cycles of the receiving clock, which depends on the scheduling of the source and destination nodes.
Scheduling is formalized as a constraint solving problem based on latency constraints between some
pairs of input/outputs that are specified by the designer.

This year we continued working on the possibility of eliminating inter-period instantaneous cycles by
adding constraints to the ILP scheduling problem. This problem is related to the detection of feedback
arc sets for which there are two well-known encodings. Unfortunately, they can both induce a very large
number of additional variables and constraints in the ILP encoding. This is not surprising since the base
problem is NP-hard. We thus worked on mitigating heuristics. On the positive side, it turns out that
our existing data-dependency and end-to-end latency constraints are readily generalized to allow for
“variable concomitance” which may sometimes be useful for breaking instantanous cycles. In particular,
we can require that the end-to-end latency along a cycle of data dependencies be strictly greater than zero.
The ILP solver is then free to break dependencies by either scheduling the components in different phases
or choosing concomitance values to prevent cycles during microscheduling. We presented these results
at the workshop on Time-Centric Reactive Software as part of ESWEEK 2024 in Raleigh, NC, USA [13].

We also continued working on integration with the LoPHt compiler developed by Dumitru Potop
Butucaru. In this approach, our compiler assigns tasks to phases and LoPHt parallelizes the tasks within
a phase by allocating them to cores and adding additional synchronization instructions. We tested the
combined toolchain on case studies provided by Airbus.

In parallel, we started experimenting with an alternative approach where the ILP constraints also
encode the allocation of tasks to cores. In our approach, inter-core communications within a single cycle
are forbidden, and additional synchronization instructions are thus not needed. Results to date have
been mixed. For small examples where no equations execute at the base rate, the approach works well.
For large examples, the solution process still takes an unreasonable amount of time. We tried reducing the
problem size using graph partitioning techniques, but the size reduction is limited and feasible solutions
are often eliminated unless many partitions are used, somewhat defeating the purpose of this approach.
We are currently working on alternative encodings that we hope will reduce the solution time. New ideas
are still required to handle applications containing equations that execute at the base rate.

Together with our collaborators at Airbus and support from the transfer (Estelle Gaspard), legal
(Manon Coger), and financial (Odette Dabire) services of Inria Paris, we contributed to a project proposal
on mixing control algorithms and matrix manipulations within a dataflow synchronous language.

This work is funded by direct industrial contracts with Airbus.
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Glossary

Integer Linear Programming (ILP): A problem is encoded as a list of linear constraints on real and
integer variables, together with a linear goal expression. Solver software attempts to find
values for the variables such that the constraints are satisfied while minimizing or maximizing
the value of the goal expression.

7.3 The Zelus Language

Participants: Timothy Bourke, Marc Pouzet, Gregoire Bussone.

Zelus is our laboratory to experiment our research on programming languages for hybrid systems. It
is devoted to the design and implementation of systems that may mix discrete-time/continuous-time
signals and systems between those signals. It is first a synchronous language reminiscent of Lustre and
Lucid Synchrone with the ability to define functions that manipulate continuous-time signals defined
by Ordinary Differential Equations (ODEs) and zero-crossing events. The language is functional in the
sense that a system is a function from signals to signals (not a relation). It provides some features from
ML languages like higher-order and parametric polymorphism as well as dedicated static analyses.

Distribution of the language The language, its compiler and examples (release 2.1) are on GitHub. It is
also available as an OPAM package. All the installation machinery has been greatly simplified.

The implementation of Zelus is now relatively mature. The language has been used in a collection
of advances projects; the most important of the recent years being the design and implementation of
ProbZelus on top of Zelus. This experiment called for several internal deep changes in the Zelus language.

One of the biggest troubles we faced when implementing Zélus was the lack of a tool to automatically
test the compiler and to prototype language extensions before finding how to incorporate in the language
and how to compile them. This is what motivated first our work on an executable semantics. The tool Zrun
works well now. It is detailled in the Section below. Based on it, we have started a new implementation of
Zélus with the objective that every pass of the compiler can be tested, using Zrun as an oracle.

In 2024, we have started a new implementation of Zélus and its compiler (see the current development
at the Zélus repository. The main new features are the following:

• The input langage now include new programming constructs: functions parameterized by (integer)
sizes that are ultimately known at compile-time. Size expressions can appear in the type of arrays
(e.g., iterators) and to define recursive functions on sizes (e.g., FFT, recursive search by dichotomy).
Two important new constructs have been added : the forward loop construct which iterate a
stream function on an array (cf. PhD of Baptiste Pauget) and the foreach loop constructs which
corresponds to running several stream functions in parallel (e.g., also called "multi-instanciation).

• The type system and compilation has been extended to deal with those new constructs. Through
the techniques are classical and well understood (essentially, a simple variant of HM(X)), it have
demanded quite an important work.

• The compiler is now paired with ZRun which is used as an oracle for (black-box, random) testing of
the compiler.

We simplified and reorganised several parts of the compiler; e.g., a new implementation of the typing
phrase, a new way of implementing the sequence of source-to-source transformations for generating
sequential code; new static analyses; and the pairing with ZRun for testing the compiler. We also wanted
that the compiler organisation to be easier for other to use it for their research and experiment with new
ideas.

One promising extension is driven by Prof. Jean-Baptiste Jeannin (Univ. Michigan, Ann Arbor), who is
spending a sabbatical year at Parkas (June 2024-June 2025). With his students, he develops MarVeLus, an

https://github.com/INRIA/zelus
https://github.com/INRIA/zelus/tree/2024
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extension of Zélus with refinement types. We collaborate on the extension of Zélus to integrate a new
typing pass for formally verifying safety properties as types and expressed by synchronous observers.

7.4 A Constructive Synchronous Semantics

Participants: Baptiste Pauget, Marc Pouzet.

External collaborators: Jean-Louis Colaco (ANSYS, Toulouse, France); Michael Mendler (Univ. of
Bamberg, Germany).

In 2024, we have continued the development of ZRun. We develop it in parallel with Zélus such that
every new programming construct (and more generally, any language features) is implemented in both
the compiler and the interpreter.

The semantics is implemented as an interpreter in a purely functional style, in OCaml. The source
code of this development is available at the Zrun repository.

7.5 Translation Validation Techniques for a Synchronous Language Compilers

Participants: Timoty Bourke, Grégoire Bussone, Marc Pouzet.

Grégoire Bussone stated his PhD. in April 2023. He studies the use of translation validation techniques
applied to a realistic synchronous language compiler. The objective is to deal with the compilation
of array operations and, more generally, memory location. Arrays are not supported in Vélus for the
moment. The problem is difficult and occurs in two situations: avoid copies for functional iterators
(e.g., map, fold, transpose, concat, reverse); optimize the representation of the state in the final target
code (e.g., C) and avoid useless copies for states whose lifetime never intersect (a classical situation
that comes for a Scade-like hierarchical automaton where all states are entered by reset). For this work,
we follow a translation validation approach, relying on an untrusted compiler and an independent but
trustable validation step. We also target a richer and type-safe language back-end (here Rust) instead
of C to transmit some of the invariants from the source. In the longer term, the purpose is to be able to
implement and to machine-check the correctness of compilation techniques for a synchronous language
with arrays and their efficient compilation.

During year 2023, several compilation steps that are implemented in the Zélus compiler have been
implemented as translation validation functions proved correct in Coq, notably the inlining, renaming,
scheduling, normalization. Internally, the technique employs the "locally nameless representation"
introduced by Chargueraud. The input language is, for the moment, a simple subset of Zélus. The
treatment of MADL is under way.

7.6 Verification by Abstract Interpretation of Synchronous Programs

Participants: Marc Pouzet, Charles De Haro, Xavier Rival.

In Sept. 2024, Charles de Haro have started his PhD. thesis (Dir. Xavier Rival, INRIA project team
Antique; Marc Pouzet, INRIA project team Parkas) on the formal verification of synchronous programs.
The objective is to verify safety properties for programs that mix data-flow equations, hierarchical
automata and arrays. Those constructs are present in the industrial language Scade and the languages
and compilers developed at Parkas, namely Zélus and the Vélus compiler.

While previous works (in particular, Bertrand Jeannet PhD. thesis, in 2000) have considered a subset
of the language Lustre (a purely data-flow subset, without clocks), the objective here is to deal with the
mix with control structures, like the by-case definition of streams and hierarchical automata, exploiting

https://github.com/marcpouzet/zrun/tree/work
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structural informations that is present in the source. During first year, Charles have defined a new abstract
semantics, reminiscent of the concrete, state-based semantics presented at Emsoft’23 and implemented
in the ZRun interpreter.

8 Bilateral contracts and grants with industry

8.1 Bilateral contracts with industry

Collaboration with Airbus

Participants: Timothy Bourke, Marc Pouzet.

Our work on multi-clock Lustre programs is funded by contracts with Airbus.

9 Partnerships and cooperations

9.1 International research visitors

9.1.1 Visits of international scientists

• Jean-Baptiste Jeannin, Assistant Professor, University of Michigan — Ann Arbor, is on sabbatical in
the team from 9/2024 until 8/2025.

Other international visits to the team

• Mary Sheeran, Professor, Chalmers University of Technology, visited the team in December 2024
with support from the Swedish Institute.

10 Dissemination

10.1 Promoting scientific activities

10.1.1 Scientific events: organisation

Member of the organizing committees

• Timothy Bourke was Web Chair for the 20th ACM/IEEE Embedded Systems Week in Raleigh, NC,
USA.

10.1.2 Scientific events: selection

Chair of conference program committees

• Timothy Bourke co-chaired the PC of SETTA 2024, the Symposium on Dependable Software Engin-
eering: Theories, Tools and Applications, held in Hong Kong, China.

Member of the conference program committees

• Timothy Bourke served on the PC of ECRTS 2024, the 36th Euromicro Conference on Real-Time
Systems.

• Timothy Bourke served on the PC of EMSOFT 2024, the 24th International Conference on Embed-
ded Software.

• Timothy Bourke served on the PC of DATE 2025 (track E1: Embedded software architecture, com-
pilers and tool chains), Design, Automation and Test in Europe Conference.

https://public.websites.umich.edu/~jeannin/
https://www.cse.chalmers.se/~ms/
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• Timothy Bourke served on the PC of RTSOPS Workshop 2024, the 12th International Real-Time
Scheduling Open Problems Seminar.

Reviewer

• Timothy Bourke reviewed articles for ESOP 2024, the 33rd European Symposium on Programming.

10.1.3 Journal

Reviewer - reviewing activities

• Timothy Bourke reviewed articles for Science of Computer Programming.

10.1.4 Invited talks

• Timothy Bourke gave a keynote talk at FDL 2024, Forum on Specification and Design Languages.

10.1.5 Research administration

• Timothy Bourke reviewed project proposals for the ANR.

10.2 Teaching - Supervision - Juries

10.2.1 Teaching

• Marc Pouzet is Director of Studies for the CS department, at ENS.

• Licence : Timothy Bourke: “Operating Systems” (L3), Lectures and TDs, ENS, France.

• Master : Marc Pouzet & Timothy Bourke, with presentations by Jean-Baptiste Jeannin, “Models and
Languages for Programming Reactive Systems” (M1), Lectures and TDs, ENS, France.

• Master: Marc Pouzet & Timothy Bourke: “Synchronous Systems” (M2), Lectures and TDs, MPRI,
France

• Master: Marc Pouzet: “Synchronous Reactive Languages” (M2), Lectures, Master CPS (Cyber-
physical Systems, led by Sergio Mover (École Polytechnique).

• Master: Marc Pouzet "The Elements of Computing Systems". Cycle pluridisciplinaire d’études
supérieures (CPES), L2.

• Master: Timothy Bourke: “A Programmer’s introduction to Computer Architectures and Operating
Systems" (M1), École Polytechnique, France

• Master: Timothy Bourke presented two lectures and TPs on Synchronous Languages in Carlos
Agon’s course on concurrent models at Sorbonne Université.

• Bachelor: Timothy Bourke: “A Programmer’s introduction to Computer Architectures and Operating
Systems" (L2), École Polytechnique, France

• Summer School: Timothy Bourke presented a course at the École Jeunes Chercheuses et Jeunes
Chercheurs en Programmation, l’école du GDR GPL.

10.2.2 Supervision

• Marc Pouzet and Timothy Bourke supervised the PhD thesis of Gregoire Bussone.

• Timothy Bourke and Marc Pouzet supervised the PhD thesis of Paul Jeanmaire.

• Timothy Bourke supervised the L3 internship of Tita Philine Rosemeyer.

• Timothy Bourke and Marc Pouzet supervised the masters internship of Hector Denis-Blanchardon.

• Timothy Bourke and Marc Pouzet supervised the internship project of Remy Citerin.
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10.2.3 Juries

• Timothy Bourke was an examiner for the “viva” of George Kaye at the University of Birmingham.

10.3 Popularization

10.3.1 Others science outreach relevant activities

• Timothy Bourke gave “Chiche” presentations at Livry Gargan, Rocquencourt, and Saint-Denis.
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