

RESEARCH CENTER **Paris - Rocquencourt**

FIELD

Activity Report 2013

Section Scientific Foundations

Edition: 2014-03-19

1. ABSTRACTION Project-Team
2. ALPAGE Project-Team
3. ALPINES Team
4. ANGE Team
5. AOSTE Project-Team
6. ARAMIS Team
7. ARLES Project-Team
8. AXIS Project-Team
9. BANG Project-Team
10. CAD Team
11. CASCADE Project-Team
12. CLASSIC Project-Team
13. CLIME Project-Team
14. CONTRAINTES Project-Team
15. CRYPT Team
16. DEDUCTEAM Exploratory Action
17. DYOGENE Project-Team
18. FORMES Team
19. GALLIUM Project-Team
20. GAMMA3 Project-Team (section vide)
21. GANG Project-Team
22. HIPERCOM2 Team
23. IMARA Project-Team
24. MATHRISK Project-Team
25. MICMAC Project-Team
26. MOKAPLAN Exploratory Action
27. MUTANT Project-Team
28. PARKAS Project-Team
29. PI.R2 Project-Team
30. POLSYS Project-Team
31. POMDAPI Project-Team (section vide)
32. PROSECCO Project-Team
33. RAP Project-Team
34. REGAL Project-Team
35. REO Project-Team
36. SECRET Project-Team
37. SIERRA Project-Team
38. SISYPHE Project-Team
39. SMIS Project-Team
40. WILLOW Project-Team

ABSTRACTION Project-Team

3. Research Program

3.1. Abstract Interpretation Theory

The abstract interpretation theory [41], [31], [42], is the main scientific foundation of the work of the ABSTRACTION project-team. Its main current application is on the safety and security of complex hardware and software computer systems either sequential [41], [33], or parallel [35] with shared memory [32], [34], [44] or synchronous message [43] communication.

Abstract interpretation is a theory of sound approximation of mathematical structures, in particular those involved in the behavior of computer systems. It allows the systematic derivation of sound methods and algorithms for approximating undecidable or highly complex problems in various areas of computer science (semantics, verification and proof, model-checking, static analysis, program transformation and optimization, typing, software steganography, etc...) and system biology (pathways analysis).

3.2. Formal Verification by Abstract Interpretation

The *formal verification* of a program (and more generally a computer system) consists in proving that its *semantics* (describing "what the program executions actually do") satisfies its *specification* (describing "what the program executions are supposed to do").

Abstract interpretation formalizes the idea that this formal proof can be done at some level of abstraction where irrelevant details about the semantics and the specification are ignored. This amounts to proving that an *abstract semantics* satisfies an *abstract specification*. An example of abstract semantics is Hoare logic while examples of abstract specifications are invariance, partial, or total correctness. These examples abstract away from concrete properties such as execution times.

Abstractions should preferably be *sound* (no conclusion derived from the abstract semantics is wrong with respect to the program concrete semantics and specification). Otherwise stated, a proof that the abstract semantics satisfies the abstract specification should imply that the concrete semantics also satisfies the concrete specification. Hoare logic is a sound verification method, debugging is not (since some executions are left out), bounded model checking is not either (since parts of some executions are left out). Unsound abstractions lead to *false negatives* (the program may be claimed to be correct/non erroneous with respect to the specification whereas it is in fact incorrect). Abstract interpretation can be used to design sound semantics and formal verification methods (thus eliminating all false negatives).

Abstractions should also preferably be *complete* (no aspect of the semantics relevant to the specification is left out). So if the concrete semantics satisfies the concrete specification this should be provable in the abstract. However program proofs (for non-trivial program properties such as safety, liveness, or security) are undecidable. Nevertheless, we can design tools that address undecidable problems by allowing the tool not to terminate, to be driven by human intervention, to be unsound (e.g. debugging tools omit possible executions), or to be incomplete (e.g. static analysis tools may produce false alarms). Incomplete abstractions lead to *false positives* or *false alarms* (the specification is claimed to be potentially violated by some program executions while it is not). Semantics and formal verification methods designed by abstract interpretation may be complete (e.g. [38], [39], [47]) or incomplete (e.g. [2]).

Sound, automatic, terminating and precise tools are difficult to design. Complete automatic tools to solve nontrivial verification problems cannot exist, by undecidability. However static analysis tools producing very few or no false alarms have been designed and used in industrial contexts for specific families of properties and programs [45]. In all cases, abstract interpretation provides a systematic construction method based on the effective approximation of the concrete semantics, which can be (partly) automated and/or formally verified. Abstract interpretation aims at:

- providing a basic coherent and conceptual theory for understanding in a unified framework the multiplicity of ideas, concepts, reasonings, methods, and tools on formal program analysis and verification [41], [42];
- guiding the correct formal design of *abstract semantics* [39], [47] and automatic tools for *program analysis* (computing an abstract semantics) and *program verification* (proving that an abstract semantics satisfies an abstract specification) [36].

Abstract interpretation theory studies semantics (formal models of computer systems), abstractions, their soundness, and completeness.

In practice, abstract interpretation is used to design analysis, compilation, optimization, and verification tools which must automatically and statically determine properties about the runtime behavior of programs. For example the ASTRÉE static analyzer (Section 5.2), which was developed by the team over the last decade, aims at proving the absence of runtime errors in programs written in the C programming language. It was originally used in the aerospace industry to verify very large, synchronous, time-triggered, real-time, safety-critical, embedded software and its scope of application was later broadly widened. ASTRÉE is now industrialized by AbsInt Angewandte Informatik GmbH and is commercially available.

3.3. Advanced Introductions to Abstract Interpretation

A short, informal, and intuitive introduction to the theory of abstract interpretation can be found in [36], see also "AbstractInterpretationinaNutshell" ¹ on the web. A more comprehensive introduction is available online ². The paper entitled "Basicconceptsofabstractinterpretation" [37] and an elementary "courseonabstract interpretation" ³ can also be found on the web.

www.di.ens.fr/~cousot/AI/IntroAbsInt.html

² www.di.ens.fr/~cousot/AI/ ³ wwb.mit.edu/afa/athena.mit.e

web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

ALPAGE Project-Team

3. Research Program

3.1. From programming languages to linguistic grammars

Participants: Éric Villemonte de La Clergerie, Benoît Sagot, Pierre Boullier, Djamé Seddah.

Historically, several members of Alpage were originally specialists in the domain of modeling and parsing for programming languages, and have been working for more than 15 years on the generalization and extension of the techniques involved to the domain of natural language. The shift from programming language grammars to NLP grammars seriously increases complexity and requires ways to handle the ambiguities inherent in every human language. It is well known that these ambiguities are the sources of many badly handled combinatorial explosions.

Furthermore, while most programming languages are expressed by (subclasses) of well-understood contextfree grammars (CFGs), no consensual grammatical formalism has yet been accepted by the whole linguistic community for the description of human languages. On the contrary, new formalisms (or variants of older ones) appear constantly. Many of them may be classified into the three following large families:

- Mildly Context-Sensitive (MCS) formalisms They manipulate possibly complex elementary structures with enough restrictions to ensure the possibility of parsing with polynomial time complexities. They include, for instance, Tree Adjoining Grammars (TAGs) and Multi-component TAGs with trees as elementary structures, Linear Indexed Grammars (LIGs). Although they are strictly more powerful than MCS formalisms, Range Concatenation Grammars (RCGs, introduced and used by Alpage members, such as Pierre Boullier and Benoît Sagot [49], [79], [86]) are also parsable in polynomial time.
- Unification-based formalisms They combine a context-free backbone with logic arguments as decoration on non-terminals. Most famous representatives are Definite Clause Grammars (DCGs) where PROLOG powerful unification is used to compute and propagate these logic arguments. More recent formalisms, like Lexical Functional Grammars (LFGs) and Head-Driven Phrasal Structure Grammars (HPSGs) rely on more expressive Typed Feature Structures (TFS) or constraints.
- Unification-based formalisms with an MCS backbone The two above-mentioned characteristics may be combined, for instance by adding logic arguments or constraints to non-terminals in TAGs.

An efficient way to develop large-coverage hand-crafted symbolic grammars is to use adequate tools and adequate levels of representation, and in particular Meta-Grammars, one of Alpage's areas of expertise [102], [99]. Meta-Grammars allows the linguist to focus on a modular description of the linguistic aspects of a grammar, rather than focusing on the specific aspects of a given grammatical formalism. Translation from MGs to grammatical formalisms such as TAG or LFG may be automatically handled. Graphical environments can be used to design MGs and their modularity provides a promising way for sharing the description of common linguistic phenomena across human languages.

3.2. Statistical Parsing

Participants: Djamé Seddah, Marie-Hélène Candito, Benoît Crabbé, Éric Villemonte de La Clergerie, Benoît Sagot, Corentin Ribeyre, Enrique Henestroza Anguiano, Pierre Boullier, Maximin Coavoux.

Contrary to symbolic approaches to parsing, in statistical parsing, the grammar is extracted from a corpus of syntactic trees : a treebank. The main advantage of the statistical approach is to encode within the same framework the parsing and disambiguating tasks. The extracted grammar rules are associated with probabilities that allow to score and rank the output parse trees of an input sentence. This obvious advantage of probabilistic context-free grammars has long been counterbalanced by two main shortcomings that resulted in poor performance for plain PCFG parsers: (i) the generalization encoded in non terminal symbols that stand for syntagmatic phrases is too coarse (so probabilistic independence between rules is too strong an assertion) and (ii) lexical items are underused. In the last decade though, effective solutions to these shortcomings have been proposed. Symbol annotation, either manual [68] or automatic [74], [75] captures inter-dependence between CFG rules. Lexical information is integrated in frameworks such as head-driven models that allow lexical heads to percolate up the syntagmatic tree [58], or probabilistic models derived from lexicalized Tree Adjoining grammars, such as Stochastic Tree Insertion Grammars [56].

In the same period, totally different parsing architectures have been proposed, to obtain dependency-based syntactic representations. The properties of dependency structures, in which each word is related to exactly one other word, make it possible to define dependency parsing as a sequence of simple actions (such as read buffer and store word on top of a stack, attach read word as dependent of stack top word, attach read word as governor of stack top word ...) [108], [73]. Classifiers can be trained to choose the best action to perform given a partial parsing configuration. In another approach, dependency parsing is cast into the problem of finding the maximum spanning tree within the graph of all possible word-to-word dependencies, and online classification is used to weight the edges [70]. These two kinds of statistical dependency parsing allow to benefit from discriminative learning, and its ability to easily integrate various kinds of features, which is typically needed in a complex task such as parsing.

Statistical parsing is now effective, both for syntagmatic representations and dependency-based syntactic representations. Alpage has obtained state-of-the-art parsing results for French, by adapting various parser learners for French, and works on the current challenges in statistical parsing, namely (1) robustness and portability across domains and (2) the ability to incorporate exogenous data to improve parsing attachment decisions. Alpage is the first French team to have turned the French TreeBank into a resource usable for training statistical parsers, to distribute a dependency version of this treebank, and to make freely available various state-of-the art statistical POS-taggers and parsers for French. We review below the approaches that Alpage has tested and adapted, and the techniques that we plan to investigate to answer these challenges.

In order to investigate statistical parsers for French, we have first worked how to use the French Treebank [46], [45] and derive the best input for syntagmatic statistical parsing [60]. Benchmarking several PCFG-based learning frameworks [11] has led to state-of-the-art results for French, the best performance being obtained with the split-merge Berkeley parser (PCFG with latent annotations) [75].

In parallel to the work on dependency based representation, presented in the next paragraph, we also conducted a preliminary set of experiments on richer parsing models based on Stochastic Tree Insertion Grammars as used in [56] and which, besides their inferior performance compared to PCFG-LA based parser, raise promising results with respect to dependencies that can be extracted from derivation trees. One variation we explored, that uses a specific TIG grammar instance, a *vertical* grammar called *spinal* grammars, exhibits interesting properties wrt the grammar size typically extracted from treebanks (a few hundred unlexicalized trees, compared to 14 000 CFG rules). These models are currently being investigated in our team [97]. Pursuing our work on PCFG-LA based parsing, we investigated the automatic conversion of the treebank into dependency syntax representations [53], that are easier to use for various NLP applications such as question-answering or information extraction, and that are a better ground for further semantic analysis. This conversion can be applied on the treebank, before training a dependency-based parser, or on PCFG-LA parsed trees. This gives the possibility to evaluate and compare on the same gold data, both syntagmatic- and dependency-based statistical parsing. This also paved the way for studies on the influence of various types of lexical information.

3.3. Dynamic wide coverage lexical resources

Participants: Benoît Sagot, Laurence Danlos, Rosa Stern, Valérie Hanoka, Éric Villemonte de La Clergerie.

Grammatical formalisms and associated parsing generators are useful only when used together with linguistic resources (lexicons, grammars) so as to build operational parsers, especially when considering modern lexically oriented grammatical formalisms. Hence, linguistic resources are the topic of the following section.

However, wide coverage linguistic resources are scarce and expensive, because they are difficult to build, especially when hand-crafted. This observation motivates us to investigate methods, along to manual development techniques, to automatically or semi-automatically acquire, supplement and correct linguistic resources.

Linguistic expertise remains a very important asset to benefit efficiently from such techniques, including those described below. Moreover, linguistically oriented environments with adequate collaborative interfaces are needed to facilitate the edition, comparison, validation and maintenance of large scale linguistic resources. Just to give some idea of the complexity, a syntactic lexicon, as described below, should provide rich information for several tens of thousands of lemma and several hundreds of thousands of forms.

Successful experiments have been conduced by Alpage members with different languages for the automatic acquisition of morphological knowledge from raw corpora [85]. At the syntactic level, work has been achieved on automatic acquisition of atomic syntactic information and automatic detection of errors in the lexicon [109],[10]. At the semantic level, automatic wordnet development tools have been described [77], [103], [65], [64]. All such techniques need of course to be followed by manual validation, so as to ensure high-quality results.

For French, these techniques, and others, have lead some Alpage members to develop one of the main syntactic resources for French, the Lefff [81],[8], developed within the Alexina framework, as well as a wordnet for French, the WOLF [7], the first freely available resource of the kind.

In the last few years, Alpage members have shown how to benefit from other more linguistically-oriented resources, such as the Lexique-Grammaire and DICOVALENCE, in order to improve the coverage and quality of the Lefff and the WOLF. This work is a good example of how Inria and Paris 7 members of Alpage fruitful collaborate: this collaboration between NLP computer scientists and NLP linguists have resulted in significant advances which would have not been possible otherwise.

Moreover, an increasing effort has been made towards multilingual aspects. In particular, Alexina lexicons developed in 2010 or before exist for Slovak [85], Polish [87], English, Spanish [72], [71] and Persian [91], not including freely-available lexicons adapted to the Alexina framework.

3.4. Shallow processing

Participants: Éric Villemonte de La Clergerie, Benoît Sagot, Rosa Stern.

The constitution of resources such as lexica or grammars raises the issues of the evaluation of these resources to assess their quality and coverage. For this reason, Alpage was the leader of the PASSAGE ANR project (ended in June 2010), which is the follow-up of the EASy parsing evaluation campaign held in 2004 and conducted by team LIR at LIMSI.

However, although developing parsing techniques, grammars (symbolic or probabilistic), and lexica constitute the key efforts towards deep large-scale linguistic processing, these components need to be included inside a full and robust processing chain, able to handle any text from any source. The development of such linguistic chains, such as SxPipe, is not a trivial task [6]. Moreover, when used as a preliminary step before parsers, the quality of parsers' results strongly depends on the quality of such chains. In that regard, less-standard pre-processings such as word clustering have led to promising results [93].

In fact, such processing chains are mostly used as such, and not only as pre-processing tools before parsing. They aim at performing the basic tasks that produce immediately usable results for many applications, such as tokenization, sentence segmentation, spelling correction, and, most importantly, named entity detection, disambiguation and resolution.

3.5. Discourse structures

Participants: Laurence Danlos, Charlotte Roze.

Until now, the linguistic modeling and automatic processing of sentences has been the main focus of the community. However, many applications would benefit from more large-scale approaches which go beyond the level of sentences. This is not only the case for automatic translation: information extraction/retrieval, summarizing, and other applications do need to resolve anaphora, which in turn can benefit from the availability of hierarchical discourse structures induced by discourse relations (in particular through the notion of right frontier of discourse structures). Moreover, discourse structures are required to extract sequential (chronological, logical,...) or hierarchical representations of events. It is also useful for topic extraction, which in turns can help syntactic and semantic disambiguation.

Although supra-sentential problematics received increasing attention in the last years, there is no satisfying solution to these problems. Among them, anaphora resolution and discourse structures have a far-reaching impact and are domains of expertise of Alpage members. But their formal modeling has now reached a maturity which allows to integrate them, in a near future, inside future Alpage tools, including parsing systems inherited from Atoll.

It is well known that a text is not a random sequence of sentences: sentences are linked the ones to the others by "discourse relations", which give to the text a hierarchical structure. Traditionally, it is considered that discourse relations are lexicalized by connectors (adverbial connectors like *ensuite*, conjunctions like *parce que*), or are not lexicalized. This vision is however too simple:

- first, some connectors (in particular conjunctions of subordination) introduce pure modifiers and must not be considered as bearing discourse relations,
- second, other elements than connectors can lexicalize discourse relations, in particular verbs like précéder / to precede or causer / to cause, which have facts or fact eventualities as arguments [61].

There are three main frameworks used to model discourse structures: RST, SDRT , and, more recently, the TAG-based formalism D-LTAG. Inside Alpage, Laurence Danlos has introduced D-STAG (Discourse Synchronous TAGs, [62],[5]), which subsumes in an elegant way both SDRT and RST, to the extent that SDRT and RST structures can be obtained by two different partial projections of D-STAG structures. As done in D-LTAG, D-STAG extends a lexicalized TAG analysis so as to deal with the level of discourse. D-STAG has been fully formalized, and is hence possible to implement (thanks to Synchronous TAG, or even TAG parsers), provided one develops linguistic descriptions in this formalism.

ALPINES Team

3. Research Program

3.1. Overview

The research described here is directly relevant to several steps of the numerical simulation chain. Given a numerical simulation that was expressed as a set of differential equations, our research focuses on mesh generation methods for parallel computation, novel numerical algorithms for linear algebra, as well as algorithms and tools for their efficient and scalable implementation on high performance computers. The validation and the exploitation of the results will be performed with collaborators from applications and it will be based on the usage of existing tools. In summary, the topics studied in our group are the following:

- Numerical methods and algorithms
 - Mesh generation for parallel computation
 - Solvers for numerical linear algebra
 - Computational kernels for numerical linear algebra
- Validation on numerical simulations

3.2. Domain specific language - parallel FreeFem++

In the engineering, researchers, and teachers communities, there is a strong demand for simulation frameworks that are simple to install and use, efficient, sustainable, and that solve efficiently and accurately complex problems for which there are no dedicated tools or codes available. In our group we develop FreeFem++ (see http://www.freefem.org/ff++), a user dedicated language for solving PDEs. The goal of FreeFem++ is not to be a substitute for complex numerical codes, but rather to provide an efficient and relatively generic tool for:

- getting a quick answer to a specific problem,
- prototype the resolution of a new complex problem.

The current users of FreeFem++ are mathematicians, engineers, university professors, and students. In general for these users the installation of public libraries as MPI, MUMPS, Ipopt, Blas, Iapack, OpenGL, fftw, scotch, is a very difficult problem. For this reason, the authors of FreeFem++ have created a user friendly language, and over years have enriched its capabilities and provided tools for compiling FreeFem++ such that the users do not need to have special knowledge of computer science. This leads to an important work on porting the software on different emerging architectures.

Today, the main components of parallel FreeFem++ are:

- 1. definition of a coarse grid,
- 2. splitting of the coarse grid,
- 3. mesh generation of all subdomains of the coarse grid, and construction of parallel datat structures for vectors and sparse matrices from the mesh of the subdomain,
- 4. call to a linear solver,
- 5. analysis of the result.

All these components are parallel, except for point (5) which is not in the focus of our research. However for the moment, the parallel mesh generation algorithm is very simple and not sufficient, for example it addresses only polygonal geometries. Having a better parallel mesh generation algorithm is one of the goals of our project. In addition, in the current version of FreeFem++, the parallelism is not hidden from the user, it is done through direct calls to MPI. Our goal is also to hide all the MPI calls in the specific language part of FreeFem++.

3.3. Solvers for numerical linear algebra

Iterative methods are widely used in industrial applications, and preconditioning is the most important research subject here. Our research considers domain decomposition methods and iterative methods and its goal is to develop solvers that are suitable for parallelism and that exploit the fact that the matrices are arising from the discretization of a system of PDEs on unstructured grids.

One of the main challenges that we address is the lack of robustness and scalability of existing methods as incomplete LU factorizations or Schwarz-based approaches, for which the number of iterations increases significantly with the problem size or with the number of processors. This is often due to the presence of several low frequency modes that hinder the convergence of the iterative method. To address this problem, we study direction preserving solvers in the context of multilevel domain decomposition methods with adaptive coarse spaces and multilevel incomplete decompositions. A judicious choice for the directions to be preserved through filtering or low rank approximations allows us to alleviate the effect of low frequency modes on the convergence.

We also focus on developing boundary integral equation methods that would be adapted to the simulation of wave propagation in complex physical situations, and that would lend themselves to the use of parallel architectures, which includes devising adapted domain decomposition approaches. The final objective is to bring the state of the art on boundary integral equations closer to contemporary industrial needs.

3.4. Computational kernels for numerical linear algebra

The design of new numerical methods that are robust and that have well proven convergence properties is one of the challenges addressed in Alpines. Another important challenge is the design of parallel algorithms for the novel numerical methods and the underlying building blocks from numerical linear algebra. The goal is to enable their efficient execution on a diverse set of node architectures and their scaling to emerging high-performance clusters with an increasing number of nodes.

Increased communication cost is one of the main challenges in high performance computing that we address in our research by investigating algorithms that minimize communication, as communication avoiding algorithms. We propose to integrate the minimization of communication into the algorithmic design of numerical linear algebra problems. This is different from previous approaches where the communication problem was addressed as a scheduling or as a tuning problem. The communication avoiding algorithmic design is an aproach originally developed in our group since 2007 (initially in collaboration with researchers from UC Berkeley and CU Denver). While at mid term we focus on reducing communication in numerical linear algebra, at long term we aim at considering the communication problem one level higher, during the parallel mesh generation tool described earlier.

ANGE Team

3. Research Program

3.1. Introduction

The research activities carried out within the ANGE team strongly couple the development of methodological tools with applications to real–life problems and the transfer of numerical codes. Even if the present program is more problem–driven by challenging applications than methodology–driven, it is fundamental to justify mathematically results at each step.

The difficulties arising in gravity driven flow studies are threefold.

- Models and equations encountered in fluid mechanics (typically the free surface Navier-Stokes equations) are complex to analyze and solve.
- The underlying phenomena often take place over large domains with very heterogeneous length scales (size of the domain, mean depth, wave length,...) and distinct time scales, *e.g.* coastal erosion, propagation of a tsunami,...
- Last but not least, these problems are multi-physics with strong couplings and nonlinearities.

3.2. Geophysical flows – modelling and analysis

Hazardous flows are complex physical phenomena that can hardly be represented by shallow water type systems of partial differential equations (PDEs). In this domain, the research program is devoted to the derivation and analysis of reduced complexity models – compared to the Navier-Stokes equations – but relaxing the shallow water assumptions. The main purpose is then to obtain models adapted to the physical phenomena at stake and eventually to simulate them by means of robust and efficient numerical techniques.

Even if the resulting models do not strictly belong to the family of hyperbolic systems, they exhibit hyperbolic features: the analysis and discretization techniques we intend to develop have connections with those used for hyperbolic conservation laws. It is worth noticing that the need for robust and efficient numerical procedures is reinforced by the smallness of dissipative effects in geophysical models which therefore generate singular solutions and instabilities.

More precisely, the derivation of the Saint-Venant system from the Navier-Stokes equations is based on two main approximations – valid because of the shallow water assumption – namely

- the horizontal fluid velocity is well approximated by its mean along the vertical direction,
- the pressure is hydrostatic or equivalently the vertical acceleration of the fluid can be neglected compared to the gravitational effects.

As a consequence the objective is to get rid of these two assumptions, one after the other, in order to obtain models accurately approximating the incompressible Euler or Navier-Stokes equations.

3.2.1. Multilayer approach

As for the first assumption, *multi-layer* systems were proposed describing the flow as a superposition of Saint-Venant type systems [21], [25], [26]. Even if this approach has provided interesting results, it implies to consider each layer as isolated from its neighbours and this is a strong limitation. That is why we proposed a slightly different approach [22], [23] based on Galerkin type decomposition along the vertical axis of all variables and leading, both for the model and its discretization, to more accurate results.

A kinetic representation of our multilayer model allows to derive robust numerical schemes endowed with properties such as: consistency, conservativity, positivity, preservation of equilibria,...It is one of the major achievements of the team but it needs to be analyzed and extended in several directions namely:

- The convergence of the multilayer system towards the hydrostatic Euler system as the number of layers goes to infinity is a critical point. It is not fully satisfactory to have only formal estimates of the convergence and sharp estimates would enable to guess the optimal number of layers.
- The introduction of several source terms due for instance to Coriolis forces or extra terms from changes of coordinates seems necessary. Their inclusion should lead to substantial modifications of the numerical scheme.
- Its hyperbolicity has not yet been proved and conversely the possible loss of hyperbolicity cannot be characterized. Similarly, the hyperbolic feature is essential in the propagation and generation of waves.

3.2.2. Non-hydrostatic models

The hydrostatic assumption (*ii*) consists in neglecting the vertical acceleration of the fluid. It is considered valid for a large class of geophysical flows but is restrictive in various situations where the dispersive effects (like wave propagation) cannot be neglected. For instance, when a wave reaches the coast, bathymetry variations give a vertical acceleration to the fluid that strongly modifies the wave characteristics and especially its height.

When processing an asymptotic expansion (w.r.t. the aspect ratio for shallow water flows) into the Navier-Stokes equations, we obtain at the leading order the Saint-Venant system. Going one step further leads to a vertically averaged version of the Euler/Navier-Stokes equations integrating the non-hydrostatic terms. This model has several advantages:

- it admits an energy balance law (that is not the case for most of the models available in the literature),
- it reduces to the Saint-Venant system when the non-hydrostatic pressure term vanishes,
- it consists in a set of conservation laws with source terms,
- it does not contain high order derivatives.

The main challenge in the study of this model is the derivation of a robust and efficient numerical scheme endowed with properties such as: positivity, wet/dry interfaces treatment, consistency.

It has to be noticed that even if the non-hydrostatic model looks like an extension of the Saint-Venant system, most of the known techniques used in the hydrostatic case are not efficient as we recover strong difficulties encountered in incompressible fluid mechanics due to the extra pressure term. These difficulties are reinforced by the absence of viscous/dissipative terms.

It is important to point out that the modelling and efficient simulations of non-hydrostatic models allow to answer important and various questions such as:

- accurate description of propagation waves (tsunamis, rogue waves),
- accurate representation of the dispersive effects when a wave reaches the coast,
- wave reflection and roughness in harbors, design of seashores.

3.3. Coupling

3.3.1. Analysis and numerical treatment

The coupling of models and numerical codes is an acute problem encountered in practice by many engineers. E. Godlewski and N. Seguin have recently proposed neat techniques for the coupling of hyperbolic systems and numerical codes.

For hyperbolic systems, finite volume methods are often used with explicit time discretization. When the source terms, typically viscosity and friction, have small influence compared to the hyperbolic part, fractional time steps are suitable. This no longer holds when non trivial equilibria between advection and dissipative terms occur and the concept of Asymptotic-Preserving (AP) methods has been proposed to study these difficulties. AP methods make a breakthrough in the numerical resolution of asymptotic perturbations of partial-differential equations.

Another strategy in the quest for a better balance between accuracy and efficiency is the adaptation of models. Indeed, the systems of partial differential equations we consider result from a hierarchy of simplifying assumptions. However, some of these hypotheses may turn out to be unrelevant locally. The adaptation of models thus consists in determining areas where a simplified model (*e.g.* shallow water type) is valid and where it is not. In the latter case, we may go back to the "parent" model (*e.g.* Euler) in the corresponding area. This implies to know how to handle the coupling between the aforementioned models from both theoretical and numerical points of view. In particular, the numerical treatment of transmission conditions is a key point.

Coupling problems also arise within the fluid when it contains pollutants, density variations or biological species. In such situations, reaction terms interact with advection effects and need sophisticated treatment for a more complete description.

3.3.2. Data assimilation

Data assimilation consists in a coupling between a model and observation measurements. Developing robust data assimilation methods for hyperbolic-type conservation laws is a challenging subject. Those PDEs indeed show no dissipation effects and the input of additional information in the model equations may introduce errors that propagate and create shocks. We have recently proposed a new approach based on the kinetic description of the conservation law. Hence, data assimilation is carried out at the kinetic level, using a Luenberger observer. Assimilation then resumes to the handling of a BGK type equation. The advantage of this framework is that we deal with a single "linear" equation instead of a nonlinear system and it is easy to recover the macroscopic variables. We are able to prove the convergence of the model towards the data in case of complete observations in space and time.

This work is done in collaboration with the M3DISIM Inria project-team. M. Doumic and B. Perthame (BANG) also participate.

AOSTE Project-Team

3. Research Program

3.1. Models of Computation and Communication (MoCCs)

Participants: Charles André, Robert de Simone, Jean-Vivien Millo, Dumitru Potop Butucaru.

Esterel, SyncCharts, synchronous formalisms, Process Networks, Marked Graphs, Kahn networks, compilation, synthesis, formal verification, optimization, allocation, refinement, scheduling

Formal Models of Computation form the basis of our approach to Embedded System Design. Because of the growing importance of communication handling, it is now associated with the name, MoCC in short. The appeal of MoCCs comes from the fact that they combine features of mathematical models (formal analysis, transformation, and verification) with these of executable specifications (close to code level, simulation, and implementation). Examples of MoCCs in our case are mainly synchronous reactive formalisms and dataflow process networks. Various extensions or specific restrictions enforce respectively greater expressivity or more focused decidable analysis results.

DataFlow Process Networks and Synchronous Reactive Languages such as ESTEREL/SYNCCHARTS and SIGNAL/POLYCHRONY [64], [65], [59], [15], [4], [13] share one main characteristics: they are specified in a self-timed or loosely timed fashion, in the asynchronous data-flow style. But formal criteria in their semantics ensure that, under good correctness conditions, a sound synchronous interpretation can be provided, in which all treatments (computations, signaling communications) are precisely temporally mapped. This is referred to as clock calculus in synchronous reactive systems, and leads to a large body of theoretical studies and deep results in the case of DataFlow Process Networks [60], [58] (consider SDF balance equations for instance [67]).

As a result, explicit schedules become an important ingredient of design, which ultimately can be considered and handled by the designer him/herself. In practice such schedules are sought to optimize other parts of the design, mainly buffering queues: production and consumption of data can be regulated in their relative speeds. This was specially taken into account in the recent theories of Latency-Insensitive Design [61], or N-synchronous processes [62], with some of our contributions [6].

Explicit schedule patterns should be pictured in the framework of low-power distributed mapping of embedded applications onto manycore architectures, where they could play an important role as theoretical formal models on which to compute and optimize allocations and performances. We describe below two lines of research in this direction. Striking in these techniques is the fact that they include time and timing as integral parts of early functional design. But this original time is logical, multiform, and only partially ordering the various functional computations and communications. This approach was radically generalized in our team to a methodology for logical time based design, described next (see 3.2).

3.1.1. K-periodic static scheduling and routing in Process Networks

In the recent years we focused on the algorithm treatments of ultimately k-periodic schedule regimes, which are the class of schedules obtained by many of the theories described above. An important breakthrough occurred when realizing that the type of ultimatelly periodic binary words that were used for reporting *static scheduling* results could also be employed to record a completely distinct notion of ultimately k-periodic route switching patterns, and furthermore that commonalities of representation could ease combine them together. A new model, by the name of K-periodical Routed marked Graphs (KRG) was introduced, and extensively studied for algebraic and algorithmic properties [5].

The computations of optimized static schedules and other optimal buffering configurations in the context of latency-insensitive design led to the K-Passa software tool development 5.2.

3.1.2. Endochrony and GALS implementation of conflict-free polychronous programs

The possibility of exploring various schedulings for a given application comes from the fact that some behaviors are truly concurrent, and mutually *conflict-free* (so they can be executed independently, with any choice of ordering). Discovering potential asynchronous inside synchronous reactive specifications then becomes something highly desirable. It can benefit to potential distributed implementation, where signal communications are restricted to a minimum, as they usually incur loss in performance and higher power consumption. This general line of research has come to be known as Endochrony, with some of our contributions [11].

3.2. Logical Time in Model-Driven Embedded System Design

Participants: Charles André, Julien Deantoni, Frédéric Mallet, Marie-Agnès Peraldi Frati, Robert de Simone.

Starting from specific needs and opportunities for formal design of embedded systems as learned from our work on MoCCs (see 3.1), we developed a Logical Time Model as part of the official OMG UML profile MARTE for Modeling and Analysis of Real-Time Embedded systems. With this model is associated a Clock Constraint Specification Language (CCSL), which allows to provide loose or strict logical time constraints between design ingredients, be them computations, communications, or any kind of events whose repetitions can be conceived as generating a logical conceptual clock (or activation condition). The definition of CCSL is provided in [1].

Our vision is that many (if not all) of the timing constraints generally expressed as physical prescriptions in real-time embedded design (such as periodicity, sporadicity) could be expressed in a logical setting, while actually many physical timing values are still unknown or unspecified at this stage. On the other hand, our logical view may express much more, such as loosely stated timing relations based on partial orderings or partial constraints.

So far we have used CCSL to express important phenonema as present in several formalisms: AADL (used in avionics domain), EAST-ADL2 (proposed for the AutoSar automotive electronic design approach), IP-Xact (for System-on-Chip (*SoC*) design). The difference here comes from the fact that these formalisms were formerly describing such issues in informal terms, while CCSL provides a dedicated formal mathematical notation. Close connections with synchronous and polychronous languages, especially Signal, were also established; so was the ability of CCSL to model dataflow process network static scheduling.

In principle the MARTE profile and its Logical Time Model can be used with any UML editor supporting profiles. In practice we focused on the PAPYRUS open-source editor, mainly from CEA LIST. We developed under Eclipse the TIMESQUARE solver and emulator for CCSL constraints (see 5.1), with its own graphical interface, as a stand-alone software module, while strongly coupled with MARTE and Papyrus.

While CCSL constraints may be introduced as part of the intended functionality, some may also be extracted from requirements imposed either from real-time user demands, or from the resource limitations and features from the intended execution platform. Sophisticated detailed descriptions of platform architectures are allowed using MARTE, as well as formal allocations of application operations (computations and communications) onto platform resources (processors and interconnects). This is of course of great value at a time where embedded architectures are becoming more and more heterogeneous and parallel or distributed, so that application mapping in terms of spatial allocation and temporal scheduling becomes harder and harder. This approach is extensively supported by the MARTE profile and its various models. As such it originates from the Application-Architecture-Adequation (AAA) methodology, first proposed by Yves Sorel, member of Aoste. AAA aims at specific distributed real-time algorithmic methods, described next in 3.3.

Of course, while logical time in design is promoted here, and our works show how many current notions used in real-time and embedded systems synthesis can naturally be phrased in this model, there will be in the end a phase of validation of the logical time assumptions (as is the case in synchronous circuits and SoC design with timing closure issues). This validation is usually conducted from Worst-Case Execution Time (WCET) analysis on individual components, which are then used in further analysis techniques to establish the validity of logical time assumptions (as partial constraints) asserted during the design.

3.3. The AAA (Algorithm-Architecture Adequation) methodology and Real-Time Scheduling

Participants: Laurent George, Dumitru Potop Butucaru, Yves Sorel.

Note: The AAA methodology and the SynDEx environment are fully described at http://www.syndex.org/, together with relevant publications.

3.3.1. Algorithm-Architecture Adequation

The AAA methodology relies on distributed real-time scheduling and relevant optimization to connect an Algorithm/Application model to an Architectural one. We now describe its premises and benefits.

The Algorithm model is an extension of the well known data-flow model from Dennis [63]. It is a directed acyclic hyper-graph (DAG) that we call "conditioned factorized data dependence graph", whose vertices are "operations" and hyper-edges are directed "data or control dependences" between operations. The data dependences define a partial order on the operations execution. The basic data-flow model was extended in three directions: first infinite (resp. finite) repetition of a sub-graph pattern in order to specify the reactive aspect of real-time systems (resp. in order to specify the finite repetition of a sub-graph consuming different data similar to a loop in imperative languages), second "state" when data dependences are necessary between different infinite repetitions of the sub-graph pattern introducing cycles which must be avoided by introducing specific vertices called "delays" (similar to z^{-n} in automatic control), third "conditioning" of an operation by a control dependence similar to conditional control structure in imperative languages, allowing the execution of alternative subgraphs. Delays combined with conditioning allow the programmer to specify automata necessary for describing "mode changes".

The Architecture model is a directed graph, whose vertices are of two types: "processor" (one sequencer of operations and possibly several sequencers of communications) and "medium" (support of communications), and whose edges are directed connections.

The resulting implementation model [9] is obtained by an external compositional law, for which the architecture graph operates on the algorithm graph. Thus, the result of such compositional law is an algorithm graph, "architecture-aware", corresponding to refinements of the initial algorithm graph, by computing spatial (distribution) and timing (scheduling) allocations of the operations onto the architecture graph resources. In that context "Adequation" refers to some search amongst the solution space of resulting algorithm graphs, labelled by timing characteristics, for one algorithm graph which verifies timing constraints and optimizes some criteria, usually the total execution time and the number of computing resources (but other criteria may exist). The next section describes distributed real-time schedulability analysis and optimization techniques for that purpose.

3.3.2. Distributed Real-Time Scheduling and Optimization

We address two main issues: uniprocessor and multiprocessor real-time scheduling where constraints must mandatorily be met, otherwise dramatic consequences may occur (hard real-time) and where resources must be minimized because of embedded features.

In the case of uniprocessor real-time scheduling, besides the classical deadline constraint, often equal to a period, we take into consideration dependences beetween tasks and several, latencies. The latter are complex related "end-to-end" constraints. Dealing with multiple real-time constraints raises the complexity of the scheduling problems. Moreover, because the preemption leads, at least, to a waste of resources due to its approximation in the WCET (Worst Execution Time) of every task, as proposed by Liu and Leyland [68], we first studied non-preemtive real-time scheduling with dependences, periodicities, and latencies constraints. Although a bad approximation of the preemption cost, may have dramatic consequences on real-time scheduling since few years, and we focus on the exact cost of the preemption. We have integrated this cost in the schedulability conditions that we propose, and in the corresponding scheduling algorithms. More generally, we are interested in integrating in the schedulability analyses the cost of the RTOS (Real-Time Operating

System), for which the cost of preemption is the most difficult part because it varies according to the instance (job) of each task.

In the case of multiprocessor real-time scheduling, we chose at the beginning the partitioned approach, rather than the global approach, since the latter allows task migrations whose cost is prohibitive for current commercial processors. The partitioned approach enables us to reuse the results obtained in the uniprocessor case in order to derive solutions for the multiprocessor case. We consider also the semi-partitioned approach which allows only some migrations in order to minimize the overhead they involve. In addition to satisfy the multiple real-time constraints mentioned in the uniprocessor case, we have to minimize the total execution time (makespan) since we deal with automatic control applications involving feedback loops. Furthermore, the domain of embedded systems leads to solving minimization resources problems. Since these optimization problems are NP-hard we develop exact algorithms (B & B, B & C) which are optimal for simple problems, and heuristics which are sub-optimal for realistic problems corresponding to industrial needs. Long time ago we proposed a very fast "greedy" heuristics [8] whose results were regularly improved, and extended with local neighborhood heuristics, or used as initial solutions for metaheuristics.

In addition to the spatial dimension (distributed) of the real-time scheduling problem, other important dimensions are the type of communication mechanisms (shared memory vs. message passing), or the source of control and synchronization (event-driven vs. time-triggered). We explore real-time scheduling on architectures corresponding to all combinations of the above dimensions. This is of particular impact in application domains such as automotive and avionics (see 4.2).

The arrival of complex hardware responding to the increasing demand for computing power in next generation systems exacerbates the limitations of the current worst-case real-time reasoning. Our solution to overcome these limitations is based on the fact that worst-case situations may have a extremely low probability of appearance within one hour of functioning $(10^{-45} [17])$, compared to the certification requirements for instance (10^{-9}) for the highest level of certification in avionics). Thus we model and analyze the real-time systems using probabilistic models and we propose results that are fundamental for the probabilistic worst-case reasoning over a given time window.

ARAMIS Team

3. Research Program

3.1. General aim

The overall aim of our project is to design new computational and mathematical approaches for studying brain structure (based on anatomical and diffusion MRI) and functional connectivity (based on EEG, MEG and intracerebral recordings). The goal is to transform raw unstructured images and signals into formalized, operational models such as geometric models of brain structures, statistical population models, and graph-theoretic models of brain connectivity. This general endeavor is addressed within the three following main objectives.

3.2. Modeling brain structure: from imaging to geometric models

Structural MRI (anatomical or diffusion-weighted) allows studying in vivo the anatomical architecture of the brain. Thanks to the constant advance of these imaging techniques, it is now possible to visualize various anatomical structures and lesions with a high spatial resolution. Computational neuroanatomy aims at building models of the structure of the human brain, based on MRI data. This general endeavor requires addressing the following methodological issues: i) the extraction of geometrical objects (anatomical structures, lesions, white matter tracks...) from anatomical and diffusion-weighted MRI; ii) the design of a coherent mathematical framework to model anatomical shapes and compare them across individuals. Within this context, we pursue the following objectives.

First, we aim to develop new methods to segment anatomical structures and lesions. We are most specifically interested in the hippocampus, a structure playing a crucial role in Alzheimer's disease, and in lesions of vascular origin (such as white matter hyperintensities and microbleeds). We pay particular attention to the robustness of the approaches with respect to normal and pathological anatomical variability and with respect to differences in acquisition protocols, for application to multicenter studies. We dedicate specific efforts to the validation on large populations of patients acquired in multiple centers.

Then, we develop approaches to estimate templates from populations and compare anatomical shapes, based on a diffeomorphic deformation framework and matching of distributions. These methods allow the estimation of a prototype configuration (called template) that is representative of a collection of anatomical data. The matching of this template to each observation gives a characterization of the anatomical variability within the population, which is used to define statistics. In particular, we aim to design approaches that can integrate multiple objects and modalities, across different spatial scales.

3.3. Modeling dynamical brain networks

Functional imaging techniques (EEG, MEG and fMRI) allow characterizing the statistical interactions between the activities of different brain areas, i.e. functional connectivity. Functional integration of spatially distributed brain regions is a well-known mechanism underlying various cognitive and perceptual tasks. Indeed, mounting evidence suggests that impairment of such mechanisms might be the first step of a chain of events triggering several neurological disorders, such as the abnormal synchronization of epileptic activities. Naturally, neuroimaging studies investigating functional connectivity in the brain have become increasingly prevalent. Our team develops a framework for the characterization of brain connectivity patterns, based on connectivity descriptors from the theory of complex networks. The description of the connectivity structure of neural networks is able to characterize for instance, the configuration of links associated with rapid/abnormal synchronization and information transfer, wiring costs, resilience to certain types of damage, as well as the balance between local processing and global integration. Furthermore, we propose to extend this framework to study the reconfiguration of networks over time. Indeed, neurophysiological data are often gathered from longitudinal recording sessions of the same subject to study the adaptive reconfiguration of brain connectivity. Finally, connectivity networks are usually extracted from different brain imaging modalities (MEG, EEG, fMRI or DTI) separately. Methods for combining the information carried by these different networks are still missing. We thus propose to combine connectivity patterns extracted from each modality for a more comprehensive characterization of networks.

3.4. Methodologies for large-scale datasets

Until recently, neuroimaging studies were often restricted to series of about 20-30 patients. As a result, such studies had a limited statistical power and could not adequately model the variability of populations. Thanks to wider accessibility of neuroimaging devices and important public and private funding, large-scale studies including several hundreds of patients have emerged in the past years. In the field of Alzheimer's disease (AD) for instance, one can cite the Alzheimer's Disease Neuroimaging Initiative (ADNI) including about 800 subjects (patients with AD or mild cognitive impairment (MCI) and healthy controls) or the French cohort MEMENTO including about 2000 subjects with memory complaint. These are most often multicenter studies in which patients are recruited over different centers and images acquired on different scanners. Moreover, cohort studies include a longitudinal component: for each subject, multiple images are acquired at different time points. Finally, such datasets often include multimodal data: neuroimaging, clinical data, cognitive tests and genomics data. These datasets are complex, high-dimensional and often heterogeneous, and thus require the development of new methodologies to be fully exploited.

In this context, our objectives are:

- to develop methodologies to acquire and standardize multicenter neuroimaging data;
- to develop imaging biomarkers based on machine learning and longitudinal models;
- to design multimodal analysis approaches for bridging anatomical models and genomics.

The first two aspects focus on neuroimaging and will be tightly linked with the CATI project. The last one builds on our previous expertise in morphometry and machine learning, but aims at opening new research avenues combining imaging and "omics" data. This is will be developed in strong collaboration with the new biostatistics/bioinformatics platform of the IHU-A-ICM.

ARLES Project-Team

3. Research Program

3.1. Introduction

Research undertaken within the ARLES project-team aims to offer comprehensive solutions to support the development of pervasive computing systems that are dynamically composed according to networked resources in the environment. This leads the team to investigate methods and tools supporting the engineering of pervasive software systems, with a special emphasis on associated middleware solutions.

3.2. Engineering Pervasive Software Systems

Since its emergence, middleware has proved successful in assisting distributed software development, making development faster and easier, and significantly promoting software reuse while overcoming the heterogeneity of the distributed infrastructure. As a result, middleware-based software engineering is central to the principled development of pervasive computing systems. In this section, we (i) discuss challenges that middleware brings to software engineering, and (ii) outline a revolutionary approach to middleware-based software engineering aiming at the dynamic runtime synthesis of connectors, a.k.a *emergent middleware*.

3.2.1. Middleware-based Software Engineering

Middleware establishes a new software layer that homogenizes the infrastructure's diversities by means of a well-defined and structured distributed programming model, relieving software developers from low-level implementation details, by: (i) at least abstracting transport layer network programming via high-level network abstractions matching the application computational model, and (ii) possibly managing networked resources to offer quality of service guarantees and/or domain specific functionalities, through reusable middleware-level services. More specifically, middleware defines:

- A resource definition language that is used for specifying data types and interfaces of networked software resources;
- A high-level addressing scheme based on the underlying network addressing scheme for locating resources;
- Interaction paradigms and semantics for achieving coordination;
- A transport/session protocol for achieving communication; and
- A naming/discovery protocol with related registry structure and matching relation for publishing and discovering the resources available in the given network.

Attractive features of middleware have made it a powerful tool in the software system development practice. Hence, middleware is a key factor that has been and needs to be further taken into account in the Software Engineering (SE) discipline ⁵. The advent of middleware standards have further contributed to the systematic adoption of this paradigm for distributed software development.

⁵W. Emmerich. Software Engineering and Middleware: a roadmap. In Proceedings of the Conference on the Future of Software Engineering, Limerick, Ireland, Jun. 2000.

In spite of the above, mature engineering methodologies to comprehensively assist the development of middleware-based software systems, from requirements analysis to deployment and maintenance, are lagging behind. Indeed, systematic software development accounting for middleware support is rather the exception than the norm, and methods and related tools are dearly required for middleware-based software engineering. This need becomes even more demanding if we consider the diversity and scale of today's networking environments and application domains, which makes middleware and its association with applications highly complex [5], raising new, challenging requirements for middleware. Among those, access to computational resources should be open across network boundaries and dynamic due to the potential mobility of host- and user-nodes. This urges middleware to support methods and mechanisms for description, dynamic discovery and association, late binding, and loose coordination of resources. In such variable and unpredictable environments, operating not only according to explicit system inputs but also according to the context of system operation becomes of major importance, which should be enabled by the middleware. Additionally, the networking infrastructure is continuing to evolve at a fast pace, and suggesting new development paradigms for distributed systems, calling for next-generation middleware platforms and novel software engineering processes integrating middleware features in all phases of the software development.

3.2.2. Beyond Middleware-based Architectures for Interoperability

As discussed above, middleware stands as the conceptual paradigm to effectively network together heterogeneous systems, specifically providing upper layer interoperability. That said, middleware is yet another technological block, which creates islands of networked systems.

Interoperable middleware has been introduced to overcome middleware heterogeneity. However, solutions remain rather static, requiring either use of a proprietary interface or a priori implementation of protocol translators. In general, interoperability solutions solve protocol mismatch among middleware at syntactic level, which is too restrictive. This is even truer when one considers the many dimensions of heterogeneity, including software, hardware and networks, which are currently present in ubiquitous networking environments, and that require fine tuning of the middleware according to the specific capacities embedded within the interacting parties. Thus, interoperable middleware can at best solve protocol mismatches arising among middleware aimed at a specific domain. Indeed, it is not possible to a priori design a universal middleware solution that will enable effective networking of digital systems, while spanning the many dimensions of heterogeneity currently present in networked environments and further expected to increase dramatically in the future.

A revolutionary approach to the seamless networking of digital systems is to synthesize connectors on the fly, via which networked systems communicate. The resulting emergent connectors then compose and further adapt the interaction protocols run by the connected systems, from the application layer down to the middleware layer. Hence, thanks to results in this new area, networked digital systems will survive the obsolescence of interaction protocols and further emergence of new ones.

We have specifically undertaken cooperative research on the dynamic synthesis of emergent connectors which shall rely on a formal foundation for connectors that allows learning, reasoning about, and adapting the interaction behavior of networked systems ⁶. Further, compared to the state of the art foundations for connectors, it should operate a drastic shift by learning, reasoning about, and synthesizing connector behavior at run-time. Indeed, the use of connector specifications pioneered by the software architecture research field has mainly been considered as a design-time concern, for which automated reasoning is now getting practical even if limitations remain. On the other hand, recent effort in the semantic Web domain brings ontology-based semantic knowledge and reasoning at run-time; however, networked systems, with few attempts to capture their interaction behavior as well as non-functional properties. In this new approach, the interaction protocols (both application- and middleware-layer) behavior will be learnt by observing the interactions of the networked systems, where ontology-based specification and other semantic knowledge will be exploited for generating

⁶Valérie Issarny, Bernhard Steffen, Bengt Jonsson, Gordon S. Blair, Paul Grace, Marta Z. Kwiatkowska, Radu Calinescu, Paola Inverardi, Massimo Tivoli, Antonia Bertolino, Antonino Sabetta: CONNECT Challenges: Towards Emergent Connectors for Eternal Networked Systems. In Proceedings of ICECCS 2009.

connectors on the fly. The approach specifically introduces the *emergent middleware* paradigm, from formal foundations to enabling software tools [2].

3.3. Middleware Architectures for Pervasive Computing

Today's wireless networks enable dynamically setting up temporary networks among mobile nodes for the realization of some distributed function. However, this requires adequate development support and, in particular, supporting middleware platforms for alleviating the complexity associated with the management of dynamic networks composed of highly heterogeneous nodes. In this section, we present an overview of the middleware paradigms that we leverage in our work: (i) service oriented middleware, a prominent paradigm in large distributed systems today, and (ii) middleware for wireless sensor networks, which have recently emerged as a promising platform.

3.3.1. Service Oriented Middleware

The *Service Oriented Computing*(SOC) paradigm advocates that networked resources should be abstracted as services, thus allowing their open and dynamic discovery, access and composition, and hence reuse. Due to this flexibility, SOC has proven to be a key enabler for pervasive computing ⁷. Moreover, SOC enables integrating pervasive environments into broader service oriented settings: the current and especially the *Future Internet* is the ultimate case of such integration. We, more particularly, envision the Future Internet as a ubiquitous setting where services representing resources, people and things can be freely and dynamically composed in a decentralized fashion, which is designated by the notion of service choreography in the SOC. In the following, we discuss the role that *service oriented middleware* is aimed to have within our above sketched vision of the Future Internet idiom [6], of which pervasive computing forms an integral part.

From service oriented computing to service oriented middleware: In the last few years, there is a growing interest in choreography as a key concept in forming complex service-oriented systems. Choreography is put forward as a generic abstraction of any possible collaboration among multiple services, and integrates previously established views on service composition, among which service orchestration. Several different approaches to choreography modeling can be found in the literature: *Interaction-oriented* models describe choreography as a set of interactions between participants; while *process-oriented* models describe choreography as a parallel composition of the participants' business processes. *Activity-based* models focus on the interactions between the parties and their ordering, whereas the state of the interaction is not explicitly modeled or only partly modeled using variables; while *state-based* models model the states of the choreography as first-class entities, and the interactions as transitions between states.

The above modeling categorizations are applied in the ways in which: service choreographies are specified (e.g., by employing languages such as BPMN, WS-CDL, BPEL); services are discovered, selected and composed into choreographies (e.g., based on their features concerning interfaces, behavior, and non-functional properties such as QoS and context); heterogeneity between choreographed services is resolved via adaptation (e.g., in terms of service features and also underlying communication protocols); choreographies are deployed and enacted (e.g., in terms of deployment styles and execution engines); and choreographies are maintained/adapted given the independent evolution of choreographed services (e.g., in terms of availability and QoS). These are demanding functionalities that service oriented middleware should provide for supporting service choreographies. In providing these functionalities in the context of the Future Internet, service oriented middleware is further challenged by two key Future Internet properties: its *ultra large scale* as in number of users and services, and the *high degree of heterogeneity* of services, whose hosting platforms may range from that of resource-rich, fixed hosts to wireless, resource-constrained devices. These two properties call for considerable advances to the state of the art of the SOC paradigm.

⁷Valérie Issarny, Daniele Sacchetti, Ferda Tartanoglu, Françoise Sailhan, Rafik Chibout, Nicole Lévy, Angel Talamona: Developing Ambient Intelligence Systems: A Solution based on Web Services. Autom. Softw. Eng. 12(1): 101-137 (2005)

Our work in the last years has focused on providing solutions to the above identified challenges, more particularly in the domain of pervasive computing. Given the prevalence of mobile networking environments and powerful hand-held consumer devices, we consider resource constrained devices (and things, although we focus on smart, i.e., computation-enabled, things) as first-class entities of the Future Internet. Concerning middleware that enables networking mobile and/or resource constrained devices in pervasive computing environments, several promising solutions have been proposed, such as mobile Gaia, TOTA, AlfredO, or work at UCL, Carnegie Mellon University, and the University of Texas at Arlington. They address issues such as resource discovery, resource access, adaptation, context awareness as in location sensitivity, and pro-activeness in a seamless manner. Other solutions specialize in sensor networks; we, more specifically, discuss middleware for wireless sensor networks in the next section. In this very active domain of service-oriented middleware for pervasive computing environments, we have extensive expertise that ranges from lower-level cross-layer networking to higher-level semantics of services, as well as transversal concerns such as context and privacy. We have in particular worked on aspects including semantic discovery and composition of services based on their functional properties [1], heterogeneity of service discovery protocols, and heterogeneity of network interfaces [3]. Based on our accumulated experience, we are currently focusing on some of the still unsolved challenges identified above.

QoS-aware service composition: With regard to service composition in pervasive environments, taking into account QoS besides functional properties ensures a satisfactory experience to the end user. We focus here on the orchestration-driven case, where service composition is performed to fulfill a task requested by the user along with certain QoS constraints. Assuming the availability of multiple resources in service environments, a large number of services can be found for realizing every sub-task part of a complex task. A specific issue emerges in this regard, which is about selecting the best set of services (i.e., in terms of QoS) to participate in the composition, meeting user's global QoS requirements. QoS-aware composition becomes even more challenging when it is considered in the context of dynamic service environments characterized by changing conditions. As dynamic environments call for fulfilling user requests on the fly (i.e., at run-time) and as services' availability cannot be known a priori, service selection and composition must be performed at runtime. Hence, the execution time of service selection algorithms is heavily constrained, whereas the computational complexity of this problem is NP-hard.

Coordination of heterogeneous distributed systems: Another aspect that we consider important in service composition is enabling integration of services that employ different interaction paradigms. Diversity and ultra large scale of the Future Internet have a direct impact on coordination among interacting entities. Our choice of choreography as global coordination style among services should further be underpinned by support for and interoperability between heterogeneous interaction paradigms, such as message-driven, event-driven and data-driven ones. Different interaction paradigms apply to different needs: for instance, asynchronous, event-based publish/subscribe is more appropriate for highly dynamic environments with frequent disconnections of involved entities. Enabling interoperability between such paradigms is imperative in the extremely heterogeneous Future Internet integrating services, people and things. Interoperability efforts are traditionally based on, e.g., bridging communication protocols, where the dominant position is held by ESBs, wrapping systems behind standard technology interfaces, and/or providing common API abstractions. However, such efforts mostly concern a single interaction paradigm and thus do not or only poorly address cross-paradigm interoperability. Efforts combining diverse interaction paradigms include: implementing the LIME tuple space middleware on top of a publish/subscribe substrate; enabling Web services/SOAP-based interactions over a tuple space binding; and providing ESB implementations based on the tuple space paradigm.

Evolution of service oriented applications: A third issue we are interested in concerns the maintenance of service-oriented applications despite the evolution of employed services. Services are autonomous systems that have been developed independently from each other. Moreover, dynamics of pervasive environments and the Future Internet result in services evolving independently; a service may be deployed, or un-deployed at anytime; its implementation, along with its interface may change without prior notification. In addition, there are many evolving services that offer the same functionality via different interfaces and with varying quality characteristics (e.g., performance, availability, reliability). The overall maintenance process amounts

to replacing a service that no longer satisfies the requirements of the employing application with a substitute service that offers the same or a similar functionality. The goal of seamless service substitution is to relate the substitute service with the original service via concrete mappings between their operations, their inputs and outputs. Based on such mappings, it is possible to develop/generate an adapter that allows the employing application to access the substitute service without any modification in its implementation. The service substitution should be dynamic and efficient, supported by a high level of automation. The state of the art in service substitution comprises various approaches. There exist efforts, which assume that the mappings between the original and the substitute service are given, specified by the application or the service environments. On the other hand, there exist automated solutions, proposing mechanisms for the derivation of mappings. The complexity of these approaches scales up with the cardinality of available services and therefore efficiency is compromised. Again, this is an important disadvantage, especially considering the case of pervasive environments.

3.3.2. Middleware for Wireless Sensor Networks

Wireless sensor networks (WSNs) enable low cost, dense monitoring of the physical environment through collaborative computation and communication in a network of autonomous sensor nodes, and are an area of active research. Owing to the work done on system-level functionalities such as energy-efficient medium access and data-propagation techniques, sensor networks are being deployed in the real world, with an accompanied increase in network sizes, amount of data handled, and the variety of applications. The early networked sensor systems were programmed by the scientists who designed their hardware, much like the early computers. However, the intended developer of sensor network applications is not the computer scientist, but the designer of the system *using* the sensor networks, which might be deployed in a building or a highway. We use the term *domain expert* to mean the class of individuals most likely to use WSNs – people who may have basic programming skills but lack the training required to program distributed systems. Examples of domain experts include architects, civil and environmental engineers, traffic system engineers, medical system designers etc. We believe that the wide acceptance of networked sensing is dependent on the ease-of-use experienced by the domain expert in developing applications on such systems.

The obvious solution to enable this ease-of-use in application development is sensor network middleware, along with related programming abstractions ⁸. Recent efforts in standardizing network-layer protocols for embedded devices provide a sound foundation for research and development of middleware that assist the sensor network developers in various aspects that are of interest to us, including the following.

Data-oriented operations: A large number of WSN applications are concerned with sampling and collection of data, and this has led to a large body of work to provide middleware support to the programmer of WSNs for easy access to the data generated and needed by the constituent nodes. Initial work included Hood, and TeenyLIME, which allowed data-sharing over a limited spatial range. Further work proposed the use of the DART runtime environment, which exposes the sensor network as a distributed data-store, addressable by using logical addresses such as "all nodes with temperature sensors in Room 503", or "all fire sprinklers in the fifth and sixth floors", which are more intuitive than, say, IP addresses. Taking a different approach toward handling the data in the sensor network, some middleware solutions propose to manipulate them using semantic techniques, such as in the Triple Space Computing approach, which models the data shared by the nodes in the system as RDF triples (subject-predicate-object groups), a standard method for semantic data representation. They propose to make these triples available to the participating nodes using a tuple space, thus giving it the "triple space" moniker. S-APL or Semantic-Agent Programming Language uses semantic technologies to integrate the semantic descriptions of the domain resources with the semantic prescription of agent behavior.

⁸L. Mottola and G. P. Picco. Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art. In ACM Computing Surveys. Volume 43, Issue 3. April 2011.

Integration with non-WSN nodes: Most of the work above focuses on designing applications that exhibit only intra-network interactions, where the interaction with the outside world is only in the form of sensing it, or controlling it by actuation. The act of connecting this data to other systems outside the sensor network is mostly done using an external gateway. This is then supported by middlewares that expose the sensor network as a database (e.g., TinyDB and Cougar), allowing the operator to access the data using a SQLlike syntax, augmented with keywords that can be used to specify the rate of sampling, for example. Another direction of integrating WSNs in general with larger systems such as Web servers has been toward using REST (REpresentational State Transfer) technologies, which are already used for accessing services on the Web as a lightweight alternative to SOAP. There has also been work proposing a system that will enable heterogeneous sensors and actuators to expose their sensing and actuation capabilities in a plug and play fashion. It proposes a middleware that defines a set of constraints, support services and interaction patterns that follow the REST architectural style principles, using the ATOM Web publishing protocol for service description, and a two-step discovery process. Additionally, there has been work in implementation of a REST-oriented middleware that runs on embedded devices such as Sun SPOT nodes, and the Plogg wireless energy monitors. This involves a two-fold approach — embedding tiny Web servers in devices that can host them, and employing a proxy server in situations where that is not the case. However, it has been noticed that the abstractions provided by REST might be too simplistic to compose complex applications over the services provided by WSN nodes. Some of the most recent work in this area also proposes to convert existing (network-layer) gateways into smart gateways, by running application code on them.

In addition to supporting the above interactions, sensor network middleware has also been proposed to address the challenges arising from the fact that a particular sensor or actuator may not be always available. This leads to the need for transparent reconfiguration, where the application developer should not have to care about reliability issues. The PIRATES event-based middleware for resource-rich nodes (hosting sensors/actuators, or just processing data) includes a third-party-remapping facility that can be used to remap a component's endpoints without affecting the business logic. In that sense, it is similar to the RUNES middleware targeted at embedded systems.

Finally, we also note the recent initial WSN middleware research focused on the new nascent classes of systems. Most recently, the field of *participatory sensing*⁹ has emerged, where the role of sensing is increasingly being performed by the mobile phones carried by the users of the system, providing data captured using the sound, GPS, accelerometer and other sensors attached to them. This has led to the emergence of middleware such as JigSaw. The core additional challenges in this domain come from the inherent mobility of the nodes, as well as their extremely large scale [4].

⁹Lane, N.D.; Miluzzo, E.; Hong Lu; Peebles, D.; Choudhury, T.; Campbell, A.T.; , "A survey of mobile phone sensing," Communications Magazine, IEEE , vol.48, no.9, pp.140-150, Sept. 2010

AXIS Project-Team

3. Research Program

3.1. Research Program

In the context described in Section 2.2, our team focused its effort on the technical and methodological environment needed to extract meaning from the huge amount of data issued from large and distributed information systems. Our ultimate goal is fed by research contributions from the three sub-objectives below:

• Sub-objective 1 - Mining for Knowledge Discovery in Information Systems :

Concerning Data Mining the specificity of our research is in two areas: methods and data. In traditional applications, a data mining process assumes that data to be mined is stored in a database with seldom (non frequent) updates. The extraction might take days, weeks, or even months, but due to the static nature of data, knowledge extraction can easily be deployed. When dealing with data streams, one only gets one look at data, which it changes over time. Due to the growing number of such emerging applications, the advanced analysis and mining of data streams is becoming more and more important, and it receives a great deal of attention. Mining data streams. Since data streams are continuous, high speed and unbounded, it is impossible to use traditional algorithms that require multiple scans.

In traditional Data Mining applications the representation of the data is a vector of Rp where p is the number of descriptors. In Web Mining the navigation must be represented by a ordered list of Rp vectors and it is not easy to reduce this representation by one vector. At the start of AxIS the main challenge was to study different representations of the objects with the objective that the complex representation is closed to the initial representation. We proposed different non vectorial representations, called complex data. The main subject matters in sub-objective 1 are data stream mining, complex data clustering, semantic data mining.

• Sub-objective 2 - Information and Social Networks Mining for supporting Information Retrieval :

Related to information retrieval, we managed three main problems in the past: case-based recommender systems for supporting information search, expert finding whose goal is to identify persons with relevant experience from a given domain and entity extraction. Concerning social networks mining, our main subject matters are clustering methods for identifying communities inside social networks, expert finding and entity retrieval in Wikipedia. At the end of the nineties and in the early new millennium, many clustering methods have been adapted to the context of relational data sets (k-means approach and SOM by Hathaway, Davenport and Bezdek (1982, 2005), a divisive clustering by Girvan and Newman (2002), EM and Bayesian approaches by Handcock, M.S., Raftery, A.E. and Tantrum, J. (2007). The units are connected by a link structure representing specific relationships or statistical dependencies, the clustering task becomes a means for identifying communities within networks. Graphs are intuitive representations of networks.

• Sub-objective 3 - Interdisciplinary Research For supporting user oriented innovation :

With the last Web 2.0 technology developments of cloud computing, the improvement of web usability and web interactivity through rich interface, Ajax, RSS and semantic web, the concept of CAI ² 2.0 is currently a major topic. In addition, HCI design and evaluation focus is no longer placed on usability but on the whole user experience. Experimentations take place out of labs with large number of heterogeneous people instead of carefully controlled panels of users. These deep changes require to adapt existing methodologies and to design new ones. So, to address these new requirements, we identified the following research :

²CAI: Computer Based Innovation

- Conceptual studies: state-of-the-art investigations covering the Living Lab landscape [9], the future internet domain landscape, the future user-open innovation for Smart Cities, user experience. These studies provide insight on methodological aspects for needs analyses, data gathering, evaluation, design, innovation methods.
- Improvement of existing methods or elaboration of new methods and tools for usage analysis of CAI 2.0 tools. Let us cite the following methods ad tools:
 a) Methods ad tools for idea generation processes; b) Usability methods and tools: coupling usability design methods with data mining techniques, evaluation methods; c) User Experience design and evaluation methods and tools:
- FocusLab Experimental Platform (CPER Telius) (cf. section for the software part) is our delivery mechanism providing access to AxIS methodology and software for the scientific community.

All our research work (data and methods) is mainly applied in the context of Living Labs. For more scientific foundations on topics of sub-objectives 1 and 2, see our 2007 AxIS activity report.

BANG Project-Team

3. Research Program

3.1. Introduction

The dynamics of complex physical or biophysical phenomena involving many particles, including biological cells - which can be seen as active particles -, can be represented efficiently either by explicitly considering the behaviour of each particle individually or by Partial Differential Equations which, under certain hypotheses, represent local averages over a sufficiently large number of particles.

Since the XIXth century this formalism has shown its efficiency and ability to explain both qualitative and quantitative behaviours. The knowledge that has been gathered on such physical models, on algorithms for solving them on computers, on industrial implementation, opens the hope for success when dealing with life sciences also. This is one of the main goals of BANG. At small spatial scales, or at spatial scales of individual matter components where heterogeneities in the medium occur, agent-based models are developed. They complement the partial differential equation models considered on scales at which averages over the individual components behave sufficiently smoothly.

3.2. Mathematical modelling

What are the relevant physical or biological variables, what are the possible dominant effects ruling their dynamics, how to analyse the information coming out from a mathematical model and interpret them in the real situations under consideration? These are the questions leading to select a mathematical model, generally also to couple several of them in order to render all physical or biomedical features which are selected by specialist partners (engineers, physicists, physicians). These are usually based on the Navier-Stokes system for fluids (as in free surface fluid flows), on parabolic-hyperbolic equations (Saint-Venant system for shallow water, formerly studied flows of electrons/holes in semiconductors, Keller-Segel model of chemotaxis).

3.3. Multiscale analysis

The complete physical or biomedical description is usually complex and requires very small scales. Efficiency of computer resolution leads to simplifications using averages of quantities from one level to the upper next. Methods allowing to achieve that goal are numerous and mathematically deep. Some examples studied in BANG are

- Coupled multiscale modelling (description of tumours and tissues from the sub-cellular level to the organ scale).
- Description of cell motion from the individual to the collective scales.

3.4. Numerical Algorithms

Various numerical methods are used in BANG. They are based on finite elements (FreeFEM++), on finite volume methods, or on stochastic methods for individual agents. Algorithmic improvements are needed in order to take into account the specificity of each model, of their couplings, or their 3D features. These involve in particular deterministic models for the representation of intracellular signalling pathways, and also deterministic and stochastic agent-based models for the simulation of multi-cellular systems.

CAD Team

3. Research Program

3.1. Geometry

3.1.1. Geometry Continuity and epsilon-geometry continuity

In differential geometry, Riemann (1826 1866), continuities play a very important kernel role. G-Continuity could be defined as the smoothness properties of a curve or a surface that are more than its order of differentiability. To day, scientists try to find a kind of continuities, which are the intuitive intrinsic properties of curves and surfaces, and the orders of the continuities are independent of the parameterization. In order to make through the bottleneck, we have developed the theories of epsilon-geometry continuities to accommodate the representation and the rounding errors of float-point arithmetic, and designed new geometric modelling operators under the constraints of epsilon-geometry continuities. Since representation and rounding errors of real numbers by floating-point numbers are ubiquitous, we have developed the floating-point arithmetic and the requirements of the engineering design. Thus, we proposed the theories and algorithms for the $\epsilon - G^2$ B-spline surfaces interpolating the specified four groups of boundary derivative curves in the B-spline form. We bound all kinds of the discontinuities by the invariant tolerances, and classify the compatibility problems. Then, we proposed the algorithms for continuity problems, and achieve the $\epsilon - G^2$ continuities by the compatibility problems, and achieve the $\epsilon - G^2$ continuities.

3.1.2. Geometry beautification

Although geometric uncertainties are often related to robustness and tolerance, there are a number of extra issues well worth deeper investigations. Geometric arrangements are full of special cases. The most notable ones are: cases of touch, overlapping, containment, etc.; cases of parallelism, perpendicularity, coincidence, etc.; axes of symmetrical data, data clustering, dense or sparse data, etc.; cases of degeneracy, discontinuity, inconsistencies, etc.; problems with cracks, excess material, lack of detail, etc. In just about any code that deals with geometry, the number of special cases is significantly larger than the general ones. Data explosion is the result of careless selection of the methods, e.g. parameter space-based sampling, and improper implementation, e.g. recursive algorithms. Some of the relevant issues are: sampling: over sampling, sampling in incorrect places, etc., procedural definitions, e.g. lofting a large set of curves or merging surfaces may result in an explosion of control points. Our contributions in the last years proposed elegant solutions to deal with these problems.

3.1.3. Shape generation

As an alternative solution to NURBS, we proposed a canonical form of the curved-knot B-spline surface called the regular curved-knot B-spline. The curved knot vector of one parametric coordinate is defined by a group of blending functions that depend on the other coordinate. So the knot vectors of two opposite boundaries can be different. That property makes it possible to represent a smooth transition between two B-spline boundaries with different knots and continuities, since knots determine the continuity. The regular form guarantees the simplicity in storage, evaluation and construction algorithms. It therefore provides the curved-knot B-spline with practicability in geometric modeling systems. The applications of surface bridging and transition illustrate its suitability for blending sharp and rounded features. Compared with B-splines and T-splines, it not only increases the surface quality, but also reduces the complexity of the surface construction.

We mention here papers published in the best international reviews in CAD i.e. *Computer-Aided Design* (*Elsevier*) and *Computer Aided Geometry Design* (*Elsevier*) in the last four years.

[1] Kan-Le Shi, Jun-Hai Yong, Jia-Guang Sun, Jean-Claude Paul. Epsilon-G2 B-spline surface interpolation. Computer Aided Geometric Design 2011. 28(6): 368-381. (2010 SCI IF: 0.859; SCI (IDS): 822SS; EI Compendex: 20113514270430)

[2] Kan-Le Shi, Sen Zhang, Hui Zhang, Jun-Hai Yong, Jia-Guang Sun, Jean-Claude Paul. G2 B-spline interpolation to a closed mesh. Computer-Aided Design 2011. 43(2): 145-160. (2010 SCI IF: 1.542; SCI: 718GT; EI Compendex: 20110213580729)

[3] Kan-Le Shi, Jun-Hai Yong, Jia-Guang Sun, Jean-Claude Paul. Gn blending multiple surfaces in polar coordinates. Computer-Aided Design 2010. 42(6): 479-494. (2010 SCI IF: 1.542; SCI: 602YI; EI Compendex: 20101712878906; Inspec: 11282424)

[4] Hai-Chuan Song, Jun-Hai Yong, Yi-Jun Yang, Xiao-Ming Liu. Algorithm for orthogonal projection of parametric curves onto B-spline surfaces. Computer-Aided Design 2011. 43(4): 381-393. (2010 SCI IF: 1.542; SCI (IDS): 743KT; EI Compendex: 20111013734335)

[5] Bernard Anselmetti, Robin Chavanne, Jian-Xin Yang, and Nabil Anwer, Quick GPS: A new CAT system for single-part tolerancing, Computer Aided design, Vol. 42, Issue 9, sept. 2010, pages 768-780.

[6] Yan-Bing Bai, Jun-Hai Yong, Chang-Yuan Liu, Xiao-Ming Liu, Yu Meng. Polyline approach for approximating Hausdorff distance between planar free-form curves. Computer-Aided Design 2011. 43(6): 687-698. (2010 SCI IF: 1.542; SCI: 773US; EI Compendex: 20111913976224)

[7] Xiao-Diao Chen, Weiyin Ma, Gang Xu, Jean-Claude Paul. Computing the Hausdorff distance between two B-spline curves. Computer-Aided Design 2010. 42(12): 1197-1206. (2010 SCI IF: 1.542; SCI IDS: 677BA; Inspec: 11589392; EI Compendex: 20104213304195)

[8] Chao Wang, Yu Shen Liu, Min Liu, Jun-Hai Yong, Jean-Claude Paul. Robust Shape Normalization of 3D articulated volumetric models. Computer-Aided Design 2012. 44: 1253-1258.

[9] Wen-Ke Wang, Hui Zhang, Xiao-Ming Liu, Jean-Claude Paul. Conditions for coincidence of two cubic Bézier curves. Journal of Computational and Applied Mathematics 2011. 235(17): 5198–5202. (2010 SCI IF: 1.030; SCI: 801IR; EI Compendex: 20112814135958; Inspec: 12599381)

[10] WuJun Che, XiaoPeng Zhang, Yi-Kuan Zhang, Jean-Claud Paul, Ridge extraction of a smooth 2-manifold surface based on vector field, Computer Aided Geometric Design, Vol. 28, Issue 4, May 2011.

[11] Yamei Wen, Hui Zhang, Jiaguang Sun, Jean-Claude Paul, A new method for identifying and validating features from 2D sectional views, Computer-Aided Design 43 (2011) 677–686.

[12] Xiao-Diao Chen, Weiyin Ma, Jean-Claude Paul. Cubic B-spline curve approximation by curve unclamping. Computer-Aided Design 2010. 42(6): 523-534. (2010 SCI IF: 1.542; SCI IDS: 602YI; Inspec: 11282428; EI Compendex: 20101712878910)

[13] Dong-Ming Yan, Wenping Wang, Bruno Lévy, Yang Liu. Efficient computation of clipped Voronoi diagram for mesh generation. Computer-Aided Design. (2010 SCI IF: 1.542; EI Compendex: IP51671352)

[14] Xiao-Diao Chen, Weiyin Ma: Geometric point interpolation method in R3 space with tangent directional constraint. Computer-Aided Design 44 (2012) 1217–1228

[15] Dong-Ming Yan, Wenping Wang, Yang Liu, Zhouwang Yang. Variational mesh segmentation via quadric surface fitting. Computer-Aided Design 2012. 44(11): 1072-1082. (2010 SCI IF: 1.542)

[16] Kai-Mo Hu, Bin Wang, Jun-Hai Yong, Jean-Claude Paul. Relaxed lightweight assembly retrieval using vector space model. Computer-Aided Design 2013. 45(3): 739-750.

[17] Yong Liu, Hai-Chuan Song, Jun-Hai Yong. Calculating Jacobian coefficients of primitive constraints with respect to Euler parameters. International Journal of Advanced Manufacturing Technology. Accepted.

[18] Yong Liu, Hai-Chuan Song, Jun-Hai Yong. Solving under-constrained assembly problems incrementally using a kinematic method. Computer-Aided Design 2013 to appear.

3.2. Computer Graphics

3.2.1. Real-time ink simulation

We have presented effective methods to simulate the ink diffusion process in real time that yields realistic visual effects. Our algorithm updates the dynamic ink volume using a hybrid grid-particle method: the fluid velocity field is calculated with a low-resolution grid structure, whereas the highly detailed ink effects are controlled and visualized with the particles. To facilitate user interaction and extend this method, we proposed a particle-guided method that allows artists to design the overall states using the coarse-resolution particles and to preview the motion quickly. To treat coupling with solids and other fluids, we update the grid-particle representation with no-penetration boundary conditions and implicit interaction conditions. To treat moving "ink-emitting" objects, we introduce an extra drag-force model to enhance the particle motion effects. Our work is attractive for animation production and art design and is popular in China.

3.2.2. Content-Based Color Transfer

We have presented a novel content-based method for transferring the color patterns between images. Unlike previous methods that rely on image color statistics, our method puts an emphasis on high-level scene content analysis. We first automatically extract the foreground subject areas and background scene layout from the scene. The semantic correspondences of the regions between source and target images are established. In the second step, the source image is re-colored in a novel optimization framework, which incorporates the extracted content information and the spatial distributions of the target color styles. A new progressive transfer scheme is proposed to integrate the advantages of both global and local transfer algorithms, as well as avoid the over-segmentation artifact in the result. Experiments showed that with a better understanding of the scene contents, our method well preserves the spatial layout, the color distribution and the visual coherence in the transfer process. This work is useful for Computational photography and film industry.

We mention here papers published from the last four years in the best international reviews in Computer Graphics i.e. ACM Transactions on Graphics, ACM Siggraph / Siggraph Asia, IEEE Transactions on Visualization and Computer Graphic, Computer Graphics Forum and The Visual Computer (Springer Verlag).

[19] Shi Kan Le, Yong Jun-Hai, Jean-Claude Paul, Sun Jia-Guang. Continuity Transition with a Single Regular Curved-Knot B-Spline Surface. ACM Transaction on Graphics 2012.

[20] Weiming Dong, Ning Zhou, Tong-Yee Lee, Fuzhang Wu, Yan Kong, Xiaopeng Zhang: Summarization-Based Image Resizing by Intelligent Object Carving. IEEE Transactions on Visualization and Computer Graphics, 20(1): 111-124 (2014).

[21] Fuzhang Wu, Weiming Dong, Yan Kong, Xing Mei, Jean-Claude Paul, Xiaopeng Zhang: Content-Based Colour Transfer. Comput. Graph. Forum 32(1): 190-203 (2013)

[22] Yan Kong, Weiming Dong, Xing Mei, Xiaopeng Zhang, Jean-Claude Paul: SimLocator: robust locator of similar objects in images. The Visual Computer 29(9): 861-870 (2013)

[23] Weiming Dong, Ning Zhou, Jean-Claude Paul, Xiaopeng Zhang: Optimized image resizing using seam carving and scaling. ACM Transactions on Graphics 28(5) (2009)

[24] Jiating Chen, Xiaoyin Ge, Li-Yi Wei, Bin Wang, Yusu Wang, Huamin Wang, Yun Fei, Kang-Lai Qian, Jun-Hai Yong, Wenping Wang. Bilateral Blue Noise Sampling. ACM Transactions on Graphics 2013 (SIGGRAPH Asia 2013, Hong Kong), 2013, 32(6): 216:1-216:11.

[25] Wenshan Fan, Bin Wang, Jean-Claude Paul and Jiaguang Sun. A Hierarchical Grid Based Framework for Fast Collision Detection. Computer Graphics Forum (Proceedings of SGP 2011), 2011, 30(5): 1451-1459.

[26] Jiating Chen, Bin Wang and Junhai Yong. Improved Stochastic Progressive Photon Mapping with Metropolis Sampling. Computer Graphics Forum (Proceedings of EGSR 2011), 2011, 30(4): 1205-1214.

[27] Jiating Chen, Bin Wang, Yuxiang Wang, Ryan S. Overbeck, Junhai Yong and Wenping Wang. Efficient Depth-of-Field Rendering with Adaptive Sampling and Multiscale Reconstruction. Computer Graphics Forum, 2011, 30(6): 1667-1680.

[28] Chunhui Yao, Bin Wang, Bin Chan, Junhai Yong and Jean-Claude Paul. Multi-Image Based Photon Tracing for Interactive Global Illumination of Dynamic Scenes. Computer Graphics Forum (Proceedings of EGSR 2010), 2010, 29(4): 1315-1324.

[29] Jiating Chen, Bin Wang. High Quality Solid Texture Synthesis using Position and Index Histogram Matching. The Visual Computer, 2010, 26(4): 253-262

CASCADE Project-Team

3. Research Program

3.1. Randomness in Cryptography

Randomness is a key ingredient for cryptography. Random bits are necessary not only for generating cryptographic keys, but are also often an part of steps of cryptographic algorithms. In some cases, probabilistic protocols make it possible to perform tasks that are impossible deterministically. In other cases, probabilistic algorithms are faster, more space efficient or simpler than known deterministic algorithms. Cryptographers usually assumes that parties have access to perfect randomness but in practice this assumption is often violated and a large body of research is concerned with obtaining such a sequence of random or pseudorandom bits.

One of the project-team research goals is to get a better understanding of the interplay between randomness and cryptography and to study the security of various cryptographic protocols at different levels (informationtheoretic and computational security, number-theoretic assumptions, design and provable security of new and existing constructions).

Cryptographic literature usually pays no attention to the fact that in practice randomness is quite difficult to generate and that it should be considered as a resource like space and time. Moreover since the perfect randomness abstraction is not physically realizable, it is interesting to determine whether imperfect randomness is "good enough" for certain cryptographic algorithms and to design algorithms that are robust with respect to deviations of the random sources from true randomness.

The power of randomness in computation is a central problem in complexity theory and in cryptography. Cryptographers should definitely take these considerations into account when proposing new cryptographic schemes: there exist computational tasks that we only know how to perform efficiently using randomness but conversely it is sometimes possible to remove randomness from probabilistic algorithms to obtain efficient deterministic counterparts. Since these constructions may hinder the security of cryptographic schemes, it is of high interest to study the efficiency/security tradeoff provided by randomness in cryptography.

Quite often in practice, the random bits in cryptographic protocols are generated by a pseudorandom number generation process. When this is done, the security of the scheme of course depends in a crucial way on the quality of the random bits produced by the generator. Despite the importance, many protocols used in practice often leave unspecified what pseudorandom number generation to use. It is well-known that pseudorandom generators exist if and only if one-way functions exist and there exist efficient constructions based on various number-theoretic assumptions. Unfortunately, these constructions are too inefficient and many protocols used in practice rely on "ad-hoc" constructions. It is therefore interesting to propose more efficient constructions, to analyze the security of existing ones and of specific cryptographic constructions that use weak pseudorandom number generators.

The project-team undertakes research in these three aspects. The approach adopted is both theoretical and practical, since we provide security results in a mathematical frameworks (information theoretic or computational) with the aim to design protocols among the most efficient known.

3.2. Lattice Cryptography

The security of almost all public-key cryptographic protocols in use today relies on the presumed hardness of problems from number theory such as factoring and discrete log. This is somewhat problematic because these problems have very similar underlying structure, and its unforeseen exploit can render all currently used public key cryptography insecure. This structure was in fact exploited by Shor to construct efficient quantum algorithms that break all hardness assumptions from number theory that are currently in use. And so naturally, an important area of research is to build provably-secure protocols based on mathematical problems that are unrelated to factoring and discrete log. One of the most promising directions in this line of research is using lattice problems as a source of computational hardness —in particular since they also offer features that other alternative public-key cryptosystems (such as MQ-based, code-based or hash-based schemes) cannot provide.

34

At its very core, secure communication rests on two foundations: authenticity and secrecy. Authenticity assures the communicating parties that they are indeed communicating with each other and not with some potentially malicious outside party. Secrecy is necessary so that no one except the intended recipient of a message is able to deduce anything about its contents.

Lattice cryptography might find applications towards constructing practical schemes for resolving essential cryptographic problems —in particular, guaranteeing authenticity. On this front, our team is actively involved in pursuing the following two objectives:

- 1. Construct, implement, and standardize a practical public key digital signature scheme that is secure against quantum adversaries.
- 2. Construct, implement, and standardize a symmetric key authentication scheme that is secure against side channel attacks and is more efficient than the basic scheme using AES with masking.

Despite the great progress in constructing fairly practical lattice-based encryption and signature schemes, efficiency still remains a very large obstacle for advanced lattice primitives. While constructions of identity-based encryption schemes, group signature schemes, functional encryption schemes, and even fully-homomorphic encryption schemes are known, the implementations of these schemes are extremely inefficient.

Fully Homomorphic Encryption (FHE) is a very active research area. Let us just give one example illustrating the usefulness of computing on encrypted data: Consider an on-line patent database on which firms perform complex novelty queries before filing patents. With current technologies, the database owner might analyze the queries, infer the invention and apply for a patent before the genuine inventor. While such frauds were not reported so far, similar incidents happen during domain name registration. Several websites propose "registration services" preceded by "availability searches". These queries trigger the automated registration of the searched domain names which are then proposed for sale. Algorithms allowing arbitrary computations without disclosing their inputs (and/or their results) are hence of immediate usefulness.

In 2009, IBM announced the discovery of a FHE scheme by Craig Gentry. The security of this algorithm relies on worst-case problems over ideal lattices and on the hardness of the sparse subset sum problem. Gentry's construction is an ingenious combination of two ideas: a somewhat homomorphic scheme (capable of supporting many "logical or" operations but very few "ands") and a procedure that refreshes the homomorphically processed ciphertexts. Gentry's main conceptual achievement is a "bootstrapping" process in which the somewhat homomorphic scheme evaluates its own decryption circuit (self-reference) to refresh (recrypt) ciphertexts.

Unfortunately, it is safe to surmise that if the state of affairs remains as it is in the present, then despite all the theoretical efforts that went into their constructions, these schemes will never be used in practical applications.

Our team is looking at the foundations of these primitives with the hope of achieving a breakthrough that will allow them to be practical in the near future.

3.3. Security amidst Concurrency on the Internet

Cryptographic protocols that are secure when executed in isolation, can be completely insecure when multiple such instances are executed concurrently (as is unavoidable on the Internet) or when used as a part of a larger protocol. For instance, a man-in-the-middle attacker participating in two simultaneous executions of a cryptographic protocol might use messages from one of the executions in order to compromise the security of the second – Lowe's attack on the Needham-Schroeder authentication protocol and Bleichenbacher's attack on SSL work this way. Our research addresses security amidst concurrent executions in secure computation and key exchange protocols.

Secure computation allows several mutually distrustful parties to collaboratively compute a public function of their inputs, while providing the same security guarantees as if a trusted party had performed the computation. Potential applications for secure computation include anonymous voting as well as privacy-preserving auctions and data-mining. Our recent contributions on this topic include

1. new protocols for secure computation in a model where each party interacts only once, with a single centralized server; this model captures communication patterns that arise in many practical settings, such as that of Internet users on a website,

2. and efficient constructions of universally composable commitments and oblivious transfer protocols, which are the main building blocks for general secure computation.

In key exchange protocols, we are actively involved in designing new password-authenticated key exchange protocols, as well as the analysis of the widely-used SSL/TLS protocols.

CLASSIC Project-Team

3. Research Program

3.1. Regression models of supervised learning

The most obvious contribution of statistics to machine learning is to consider the supervised learning scenario as a special case of regression estimation: given n independent pairs of observations (X_i, Y_i) , $i = 1, \dots, n$, the aim is to "learn" the dependence of Y_i on X_i . Thus, classical results about statistical regression estimation apply, with the caveat that the hypotheses we can reasonably assume about the distribution of the pairs (X_i, Y_i) are much weaker than what is usually considered in statistical studies. The aim here is to assume very little, maybe only independence of the observed sequence of input-output pairs, and to validate model and variable selection schemes. These schemes should produce the best possible approximation of the joint distribution of (X_i, Y_i) within some restricted family of models. Their performance is evaluated according to some measure of discrepancy between distributions, a standard choice being to use the Kullback-Leibler divergence.

3.1.1. PAC-Bayes inequalities

One of the specialties of the team in this direction is to use PAC-Bayes inequalities to combine thresholded exponential moment inequalities. The name of this theory comes from its founder, David McAllester, and may be misleading. Indeed, its cornerstone is rather made of non-asymptotic entropy inequalities, and a perturbative approach to parameter estimation. The team has made major contributions to the theory, first focussed on classification [6], then on regression [1] and on principal component analysis of a random sample of points in high dimension. It has introduced the idea of combining the PAC-Bayesian approach with the use of thresholded exponential moments [7], in order to derive bounds under very weak assumptions on the noise.

3.1.2. Sparsity and ℓ_1 -regularization

Another line of research in regression estimation is the use of sparse models, and its link with ℓ_1 -regularization. Regularization is the joint minimization of some empirical criterion and some penalty function; it should lead to a model that not only fits well the data but is also as simple as possible.

For instance, the Lasso uses a ℓ^1 -regularization instead of a ℓ^0 -one; it is popular mostly because it leads to *sparse* solutions (the estimate has only a few nonzero coordinates), which usually have a clear interpretation in many settings (e.g., the influence or lack of influence of some variables). In addition, unlike ℓ^0 -penalization, the Lasso is *computationally feasible* for high-dimensional data.

3.1.3. Pushing it to the extreme: no assumption on the data

The next brick of our scientific foundations explains why and how, in certains cases, we may formulate absolutely no assumption on the data (x_i, y_i) , $i = 1, \dots, n$, which is then considered a deterministic set of input-output pairs.

3.2. On-line aggregation of predictors for the prediction of time series, with or without stationarity assumptions

We are concerned here with *sequential prediction* of outcomes, given some base predictions formed by *experts*. We distinguish two settings, depending on how the sequence of outcomes is generated: it is either

- the realization of some stationary process,
- or is not modeled at all as the realization of any underlying stochastic process (these sequences are called *individual sequences*).

The aim is to predict almost as well as the best expert. Typical good forecasters maintain one weight per expert, update these weights depending on the past performances, and output at each step the corresponding weighted linear combination of experts' advices.

The difference between the cumulative prediction error of the forecaster and the one of the best expert is called the regret. The goal here is to upper bound the regret by a quantity as small as possible.

3.3. Multi-armed bandit problems, prediction with limited feedback

We are interested in settings in which the feedback obtained on the predictions is limited, in the sense that it does not fully reveal what actually happened.

3.3.1. Bandit problems

This is also a sequential problem in which some regret is to be minimized.

However, this problem is a stochastic problem: a large number of arms, possibly indexed by a continuous set like [0, 1], is available. Each arm is associated with a fixed but unknown distribution. At each round, the player chooses an arm, a payoff is drawn at random according to the distribution that is associated with it, and the only feedback that the player gets is the value of this payoff. The key quantity to study this problem is the mean-payoff function f, that indicates for each arm x the expected payoff f(x) of the distribution that is associated with it. The target is to minimize the regret, i.e., ensure that the difference between the cumulative payoff obtained by the player and the one of the best arm is small.

3.3.2. A generalization of the regret: the approachability of sets

Approachability is the ability to control random walks. At each round, a vector payoff is obtained by the first player, depending on his action and on the action of the opponent player. The aim is to ensure that the average of the vector payoffs converges to some convex set. Necessary and sufficient conditions were obtained by Blackwell and others to ensure that such strategies exist, both in the full information and in the bandit cases.

Some of these results can be extended to the case of games with signals (games with partial monitoring), where at each round the only feedback obtained by the first player is a random signal drawn according to a distribution that depends on the action profile taken by the two players, while the opponent player still has a full monitoring.

CLIME Project-Team

3. Research Program

3.1. Data assimilation and inverse modeling

This activity is one major concern of environmental sciences. It matches up the setting and the use of data assimilation methods, for instance variational methods (such as the 4D-Var method). An emerging issue lies in the propagation of uncertainties by models, notably through ensemble forecasting methods.

Although modeling is not part of the scientific objectives of Clime, the project-team has complete access to models developed by CEREA: the models from Polyphemus (pollution forecasting from local to regional scales) and Code_Saturne (urban scale). In regard to other modeling domains, such as meteorology and oceanography, Clime accesses models through co-operation initiatives.

The research activities of Clime tackle scientific issues such as:

- Within a family of models (differing by their physical formulations and numerical approximations), which is the optimal model for a given set of observations?
- How to reduce dimensionality of problems by Galerkin projection of equations on subspaces? How to define these subspaces in order to keep the main properties of systems?
- How to assess the quality of a forecast and its uncertainty? How do data quality, missing data, data obtained from sub-optimal locations, affect the forecast? How to better include information on uncertainties (of data, of models) within the data assimilation system?
- How to make a forecast (and a better forecast!) by using several models corresponding to different physical formulations? It also raises the question: how should data be assimilated in this context?
- Which observational network should be set up to perform a better forecast, while taking into account additional criteria such as observation cost? What are the optimal location, type and mode of deployment of sensors? How should trajectories of mobile sensors be operated, while the studied phenomenon is evolving in time? This issue is usually referred as "network design".

3.2. Satellite acquisitions and image assimilation

In geosciences, the issue of coupling data, in particular satellite acquisitions, and models is extensively studied for meteorology, oceanography, chemistry-transport and land surface models. However, satellite images are mostly assimilated on a point-wise basis. Three major approaches arise if taking into account the spatial structures, whose displacement is visualized on image sequences:

- Image approach. Image assimilation allows the extraction of features from image sequences, for instance motion field or structures' trajectory. A model of the dynamics is considered (obtained by simplification of a geophysical model such as Navier-Stokes equations). An observation operator is defined to express the links between the model state and the pixels values. In the simplest case, the pixel value corresponds to one coordinate of the model state and the observation operator is reduced to a projection. However, in most cases, this operator is highly complex, implicit and non-linear. Data assimilation techniques are developed to control the initial state or the whole assimilation window. Image assimilation is also applied to learn reduced models from image data and estimate a reliable and small-size reconstruction of the dynamics, which is observed on the sequence.
- Model approach. Image assimilation is used to control an environmental model and obtain improved forecasts. In order to take into account the spatial and temporal coherency of structures, specific image characteristics are considered and dedicated norms and observation error covariances are defined.

• Correcting a model. Another topic, mainly described for meteorology in the literature, concerns the location of structures. How to force the existence and to correct the location of structures in the model state using image information? Most of the operational meteorological forecasting institutes, such as MétéoFrance, UK-met, KNMI (in Netherlands), ZAMG (in Austria) and Met-No (in Norway), study this issue because operational forecasters often modify their forecasts based on visual comparisons between the model outputs and the structures displayed on satellite images.

3.3. Software chains for environmental applications

An objective of Clime is to participate in the design and creation of software chains for impact assessment and environmental crisis management. Such software chains bring together static or dynamic databases, data assimilation systems, forecast models, processing methods for environmental data and images, complex visualization tools, scientific workflows, ...

Clime is currently building, in partnership with École des Ponts ParisTech and EDF R&D, such a system for air pollution modeling: Polyphemus (see the web site http://cerea.enpc.fr/polyphemus/), whose architecture is specified to satisfy data requirements (e.g., various raw data natures and sources, data preprocessing) and to support different uses of an air quality model (e.g., forecasting, data assimilation, ensemble runs).

CONTRAINTES Project-Team

3. Research Program

3.1. Rule-based Modeling Languages

Logic programming in a broad sense is a declarative programming paradigm based on mathematical logic with the following identifications:

program = logical formula,

execution = *proof search*,

In Constraint Satisfaction Problems (CSP), the logical formulae are conjunctions of constraints (i.e. relations on variables expressing partial information) and the satisfiability proofs are computed by constraint solving procedures.

In Constraint Logic Programming (CLP), the logical formulae are Horn clauses with constraints (i.e. one headed rules for the inductive definitions of relations on variables) and the satisfiability proofs combine constraint solving and clause resolution. Gnu-Prolog and its modular extension EMoP that we develop, belong to this family of languages. We use them for solving combinatorial problems and for implementing Biocham.

In Concurrent Constraint Programming (CCP), CLP resolution is extended with a synchronization mechanism based on constraint entailment. The variables play the role of transmissible dynamically created communication channels. An agent may add constraints to the store or read the store to decide whether a constraint guard is entailed by the current store. Sicstus-Prolog and SWI-Prolog belong the this family of languages. We use them for solving combinatorial optimization problems and defining new global constraints.

Linear Logic Concurrent Constraint Programming (LLCC) is a generalization of CCP based on Jean-Yves Girard's Linear Logic ¹, which allows for a non-monotonic evolution of the store of constraints and multi-headed rules like the Constraint Handling Rules (CHR) language of T. Frühwirth.

All these rule-based languages, of increasing expressivity, involve some form of *multiset rewriting*. We develop the following modeling languages:

- Rules2CP, a rule-based modeling language for solving constraint optimization problems, developed for non-programmers,
- SiLCC, our experimental implementation of LLCC,
- the Biochemical Abstract Machine BIOCHAM, a rule-based modeling language dedicated to Systems Biology, in which biochemical reactions between multisets of reactants and products are expressed with multi-headed rules (somewhat similar to CHR rules) and augmented with *kinetic expressions* from which one can derive quantitative interpretations by Ordinary Differential Equations (ODE), Continuous-Time Markov Chains (CTMC) or Hybrid Automata.

3.2. Constraint Solving Techniques

Constraint propagation algorithms use constraints actively during search for filtering the domains of variables and reducing the search space. These domain reductions are the only way constraints communicate between each other. Our research involves different constraint domains, namely:

- booleans: binary decision diagrams and SAT solvers;
- finite domains (bounded natural numbers): membership, arithmetic, reified, higher order and global constraints;

¹F. Fages, P. Ruet, S. Soliman. *Linear concurrent constraint programming: operational and phase semantics*, in "Information and Computation", 2001, vol. 165(1), pp.14-41.

- reals: polyhedral libraries for linear constraints and interval methods;
- terms: subtyping constraints;
- graphs: subgraph epimorphism (SEPI) and isomorphism constraints; acyclicity constraint;
- Petri nets: P/T-invariants, siphons and traps;
- Kripke structures: temporal logic constraints (first-order Computation Tree Logic constraints over the reals).

We develop new constraints and domain filtering algorithms by using already existing constraint solving algorithms and implementations. For instance, we use the Parma Polyhedra Library PPL with its interface with Prolog for solving temporal logic constraints over the reals. Similarly, we use standard finite domain constraints for developing solvers for the new SEPI graph constraint.

3.3. Formal Methods for Systems Biology

At the end of the 90s, research in Bioinformatics evolved, passing from the analysis of the genomic sequence to the analysis of post-genomic interaction networks (expression of RNA and proteins, protein-protein interactions, transport, etc.). Systems biology is the name given to a pluridisciplinary research field involving biology, computer science, mathematics, physics, to illustrate this change of focus towards system-level understanding of high-level functions of living organisms from their biochemical bases at the molecular level.

Our group was among the first ones in 2002 to apply formal methods from computer science to systems biology in order to reason on large molecular interaction networks and get over complexity walls. The *logical paradigm for systems biology* that we develop can be summarized by the following identifications :

biological model = rule-based transition system, biological property = temporal logic formula, model validation = model-checking, model inference = constraint solving.

Rule-based dynamical models of biochemical reaction networks are composed of a reaction graph (bipartite graph with vertices for species and reactions) where the reaction vertices are given with kinetic expressions (mass action law, Michaelis-Menten, Hill, etc.). Most of our work consists in analysing the *interplay between the structure* (reaction graphs) *and the dynamics* (ODE, CTMC or hybrid interpretations derived from the kinetic expressions).

Besides this logical paradigm, we use the theory of abstract interpretation to relate the different interpretations of rule-based models and organize them in a hierarchy of semantics from the most concrete (CTMC stochastic semantics) to the most abstract (asynchronous Boolean transition system). This allows us to prove for instance that if a behavior is not possible in the Boolean semantics of the rules then it is not possible in the stochastic semantics for any kinetic expressions and parameter values. We also use the framework of abstract interpretation to formally relate rule-based reaction models to other knowledge representation formalisms such as, for instance, ontologies of protein functions, or influence graphs between molecular species. These formal methods are used to build models of biological processes, fit models to experimental data, make predictions, and design new biological experiments.

3.4. Tight Integration of In Silico and In Vivo Approaches

Bridging the gap between the complexity of biological systems and our capacity to model and predict systems behaviors is a central challenge in quantitative systems biology. We investigate using wet and dry experiments a few challenging biological questions that necessitate a tight integration between *in vivo* and *in silico* work. Key to the success of this line of research fundamentally guided by specific biological questions is the deployment of innovative modelling and analysis methods for the *in silico* studies.

Synthetic biology, or bioengineering, aims at designing and constructing *in vivo* biological systems that performs novel, useful tasks. This is achieved by reingeneering existing natural biological systems. While the construction of simple intracellular circuits has shown the feasibility of the approach, the design of larger, multicellular systems is a major open issue. In engineered tissues for example, the behavior results from the subtle interplay between intracellular processes (signal transduction, gene expression) and intercellular processes (contact inhibition, gradient of diffusible molecule). How should cells be genetically modified such that the desired behavior robustly emerges from cell interactions? In collaboration with Dirk Drasdo (EPI BANG), we develop *abstraction methods for multiscale systems* to make the design and optimization of such systems computationally tractable and investigate the mammalian tissue homeostasis problem from a bioengineering point of view. Then, in collaboration with the Weiss lab (MIT), we construct and test *in vitro* the proposed designs in actively-growing mammalian cells.

The rational design of synthetic systems relies however on a good quantitative understanding of the functioning of the various processes involved. To acquire that knowledge, one observes the cell reaction to a range of external perturbations. However, current experimental techniques do not allow precise perturbations of cellular processes over a long time period. To make progress on this problem, we develop an experimental platform for the *closed-loop control* of intracellular processes. In collaboration with the MSC lab (CNRS/Paris Diderot U), we develop models of the controlled cellular system, generate quantitative data for parameter identification, and develop real-time control approaches. The integration of all these elements results in an original platform combining hardware (microfluidic device and microscope) and software (cell tracking and model predictive control algorithms). More specifically, by setting up an external, *in silico* feedback loop, we investigate the strengths and time scales of natural feedback loops, responsible for cell adaptation to environmental fluctuations.

CRYPT Team

3. Research Program

3.1. Public-Key Cryptanalysis

This project is interested in any public-key cryptanalysis, in the broad sense.

3.1.1. Mathematical Foundations

Historically, one useful side-effect of public-key cryptanalysis has been the introduction of advanced mathematical objects in cryptology, which were later used for cryptographic design. The most famous examples are elliptic curves (first introduced in cryptology to factor integer numbers), lattices (first introduced in cryptology to attack knapsack cryptosystems) and pairings over elliptic curves (first introduced in cryptology to attack the discrete logarithm problem over special elliptic curves). It is therefore interesting to develop the mathematics of public-key cryptanalysis. In particular, we would like to deepen our understanding of lattices by studying well-known mathematical aspects such as packing problems, transference theorems or random lattices.

3.1.2. Lattice Algorithms

Due to the strong interest surrounding lattice-based cryptography at the moment, our main focus is to attack lattice-based cryptosystems, particularly the most efficient ones (such as NTRU), and the ones providing new functionalities such as fully-homomorphic encryption or noisy multi-linear maps: recent cryptanalysis examples include [3], [4] for the latter, and [6] for the former. We want to assess the concrete security level of lattice-based cryptosystems, as has been done for cryptosystems based on integer factoring or discrete logarithms: this has been explored in [29], but needs to be developed. This requires to analyze and design the best algorithms for solving lattice problems, either exactly or approximately. In this area, much progress has been obtained the past few years (such as [30]), but we believe there is still more to come. We are working on new lattice computational records.

We are also interested in lattice-based cryptanalysis of non-lattice cryptosystems, by designing new attacks or improving old attacks. A well-known example is RSA for which the best attacks in certain settings are based on lattice techniques, following a seminal work by Coppersmith in 1996: recently [2], we improved the efficiency of some of these attacks on RSA, and we would like to extend this kind of results.

3.1.3. New Assumptions

In the past few years, new cryptographic functionalities (such as fully-homomorphic encryption, noisy multinear maps, indistinguishability obfuscation, etc.) have appeared, many of which being based on lattices. They usually introduce new algorithmic problems whose hardness is not well-understood. It is extremely important to study the hardness of these new assumptions, in order to evaluate the feasability of these new functionalities. Sometimes, the problem itself is not new, but the (aggressive) choices of parameters are: for instance, several implementations of fully-homorphic encryption used well-known lattice problems like LWE or BDD but with very large parameters which have not been studied much.

Currently, there are very few articles studying the concrete hardness of these new assumptions, especially compared to the articles using these new assumptions.

3.2. Secret-Key Cryptanalysis

Though secret-key cryptanalysis is the oldest form of cryptanalysis, there is regular progress in this area.

3.2.1. Hash Functions

In the past few years, the most important event has been the SHA-3 competition for a new hash function standard. This competition ended in 2012, with Keccak selected as the winner. We intend to study Keccak, together with the four other SHA-3 finalists (such as in [12]). New cryptanalytical techniques designed to attack SHA-3 candidates are likely to be useful to attack other schemes. For instance, this was the case for the so-called rebound attack.

However, it is also interesting not to forget widespread hash functions: while it is now extremely easy to generate new MD5 collisions, a collision for SHA-1 has yet to be found, despite the existence of theoretical collision attacks faster than birthday attacks. Besides, there are still very few results on the SHA-2 standards family.

We may also be interested in related topics such as message authentication codes, especially those based on hash functions, which we explored in the past.

3.2.2. Symmetric Ciphers

Symmetric ciphers are widely deployed because of their high performances: a typical case is disk encryption and wireless communications.

We intend to study widespread block ciphers, such as the AES (now implemented in Intel processors) and Kasumi (used in UMTS) standards, as illustrated in recent publications [7], [9], [10] of the team. Surprisingly, new attacks [28], [27] on the AES have appeared in the past few years, such as related-key attacks and single-key attacks. It is very important to find out if these attacks can be improved, even if they are very far from being practical. An interesting trend in block cipher cryptanalysis is to adapt recent attacks on hash functions: this is the reciprocal of the phenomenon of ten years ago, when Wang's MD5 collision attack was based on differential cryptanalysis.

Similarly to block ciphers, we intend to study widespread stream ciphers, such as RC4. The case of RC4 is particularly interesting due to the extreme simplicity of this cipher, and its deployment in numerous applications such as wireless Internet protocols. In the past few years, new attacks on RC4 based on various biases (such as [34]) have appeared, and several attacks on RC4 are used in WEP-attack tools.

DEDUCTEAM Exploratory Action

3. Research Program

3.1. From proof-checking to Interoperability

A new turn with Deduction modulo was taken when the idea of reasoning modulo an arbitrary equivalence relation was applied to typed λ -calculi with dependent types, that permits to express proofs as algorithms, using the Brouwer-Heyting-Kolmogorov interpretation and the Curry-de Bruijn-Howard correspondence [46]. It was shown in 2007, that extending the simplest λ -calculus with dependent types, the $\lambda\Pi$ -calculus, with an equivalence relation, led to a calculus we called the $\lambda\Pi$ -calculus modulo, that permitted to simulate many other λ -calculi, such as the Calculus of Constructions, designed to express proofs in specific theories.

This led to the development of a general proof-checker based on the $\lambda\Pi$ -calculus modulo [3], that could be used to verify proofs coming from different proof systems, such as Coq [43], HOL [50], etc. To emphasize this versatility of our proof-system, we called it Dedukti — "to deduce" in Esperanto. This system is currently developed together with companion systems, Coqine, Holide, Focalide, and Zenonide, that permits to translate proofs from Coq, HOL, Focalize, and Zenon, to Dedukti. Other tools, such as Zenon Modulo, directly output proofs that can be checked by Dedukti.

Dedukti proofs can also be exported to other systems, in particular to the MMT format [53].

A thesis, which is at the root of our research effort, and which was already formulated by the team of the Logical Framework [49] is that proof-checkers should be theory independent. This is for instance expressed in the title of our invited talk at Icalp 2012: A theory independent Curry-De Bruijn-Howard correspondence.

Using a single prover to check proofs coming from different provers naturally led to investigate how these proofs could interact one with another. This issue is of prime importance because developments in proof systems are getting bigger and, unlike other communities in computer science, the proof-checking community has given little effort in the direction of standardization and interoperability. On a longer term we believe that, for each proof, we should be able to identify the systems in which it can be expressed.

3.2. Automated theorem proving

Deduction modulo has originally been proposed to solve a problem in automated theorem proving and some of the early work in this area focused on the design of an automated theorem proving method called *Resolution modulo*, but this method was so complex that it was never implemented. This method was simplified in 2010 [6] and it could then be implemented. This implementation that builds on the iProver effort [52] is called iProver modulo.

iProver modulo gave surprisingly good results [4], so that we use it now to search for proofs in many areas: in the theory of classes—also known as *B* set theory—, on finite structures, etc. Similar ideas have also been implemented for the tableau method with in particular several extensions of the *Zenon* automated theorem prover. More precisely, two extensions have been realized: the first one is called *Super Zenon* [5] and is an extension to superdeduction (which is a variant of Deduction modulo), and the second one is called *Zenon Modulo* [22], [23] and is an extension to Deduction modulo. Both extensions have been extensively tested over first order problems (of the TPTP library), and also provide good results in terms of number of proved problems. In particular, these tools provide good performances in set theory, so that *Super Zenon* has been successfully applied to verify *B* proof rules of *Atelier B* (work in collaboration with *Siemens*). Similarly, we plan to apply *Zenon Modulo* in the framework of the *BWare* project to verify *B* proof obligations coming from the modeling of industrial applications.

More generally, we believe that proof-checking and automated theorem proving have a lot to learn from each other, because a proof is both a static linguistic object justifying the truth of a proposition and a dynamic process of proving this proposition.

3.3. Models of computation

The idea of Deduction modulo is that computation plays a major role in the foundations of mathematics. This led us to investigate the role played by computation in other sciences, in particular in physics. Some of this work can be seen as a continuation of Gandy's [48] on the fact that the physical Church-Turing thesis is a consequence of three principles of physics, two well-known: the homogeneity of space and time, and the existence of a bound on the velocity of information, and one more speculative: the existence of a bound on the density of information.

This led us to develop physically oriented models of computations.

DYOGENE Project-Team

3. Research Program

3.1. Network calculus

Network calculus [64] is a theory for obtaining deterministic upper bounds in networks that has been developed by R. Cruz [53], [54]. From the modelling point of view, it is an algebra for computing and propagating constraints given in terms of envelopes. A flow is represented by its cumulative function R(t) (that is, the amount of data sent by the flow up to time t). A constraint on a flow is expressed by an arrival curve $\alpha(t)$ that gives an upper bound for the amount of data that can be sent during any interval of length t. Flows cross service elements that offer guarantees on the service. A constraint on a service is a service curve $\beta(t)$ that is used to compute the amount of data that can be served during an interval of length t. It is also possible to define in the same way minimal arrival curves and maximum service curves. Then such constraints envelop the processes and the services. Network calculus enables the following operations:

- computing the exact output cumulative function or at least bounding functions;
- computing output constraints for a flow (like an output arrival curve);
- computing the remaining service curve (that is, the service that of not used by the flows crossing a server);
- composing several servers in tandem;

• giving upper bounds on the worst-case delay and backlog (bounds are tight for a single server or a single flow).

The operations used for this are an adaptation of filtering theory to $(\min, +)$: $(\min, +)$ convolution and deconvolution, sub-additive closure.

We investigate the complexity of computing exact worst-case performance bounds in network calculus and to develop algorithms that present a good trade off between algorithmic efficiency and accuracy of the bounds.

3.2. Perfect Simulation

Simulation approaches can be used to efficiently estimate the stationary behavior of Markov chains by providing independent samples distributed according to their stationary distribution, even when it is impossible to compute this distribution numerically.

The classical Markov Chain Monte Carlo simulation techniques suffer from two main problems:

• The convergence to the stationary distribution can be very slow, and it is in general difficult to estimate;

• Even if one has an effective convergence criterion, the sample obtained after any finite number of iterations is biased.

To overcome these issues, Propp and Wilson [66] have introduced a perfect sampling algorithm (PSA) that has later been extended and applied in various contexts, including statistical physics [58], stochastic geometry [62], theoretical computer science [51], and communications networks [49], [57] (see also the annotated bibliography by Wilson [71]).

Perfect sampling uses coupling arguments to give an unbiased sample from the stationary distribution of an ergodic Markov chain on a finite state space \mathcal{X} . Assume the chain is given by an update function Φ and an i.i.d. sequence of innovations $(U_n)_{n\in\mathbb{Z}}$, so that

$$X_{n+1} = \Phi(X_n, U_{n+1}).$$
(1)

The algorithm is based on a backward coupling scheme: it computes the trajectories from all $x \in \mathcal{X}$ at some time in the past t = -T until time t = 0, using the same innovations. If the final state is the same for all trajectories (i.e. $|\{\Phi(x, U_{-T+1}, ..., U_0) : x \in \mathcal{X}\}| = 1$, where $\Phi(x, U_{-T+1}, ..., U_0) := \Phi(\Phi(x, U_{-T+1}), U_{-T+2}, ..., U_0)$ is defined by induction on T), then we say that the chain has globally coupled and the final state has the stationary distribution of the Markov chain. Otherwise, the simulations are started further in the past.

Any ergodic Markov chain on a finite state space has a representation of type (1) that couples in finite time with probability 1, so Propp and Wilson's PSA gives a "perfect" algorithm in the sense that it provides a *unbiased* sample in *finite time*. Furthermore, the stopping criterion is given by the coupling from the past scheme, and knowing the explicit bounds on the coupling time is not needed for the validity of the algorithm.

However, from the computational side, PSA is efficient only under some monotonicity assumptions that allow reducing the number of trajectories considered in the coupling from the past procedure only to extremal initial conditions. Our goal is to propose new algorithms solving this issue by exploiting semantic and geometric properties of the event space and the state space.

3.3. Stochastic Geometry

Stochastic geometry [69] is a rich branch of applied probability which allows one to quantify random phenomena on the plane or in higher dimension. It is intrinsically related to the theory of point processes. Initially its development was stimulated by applications to biology, astronomy and material sciences. Nowadays it is also widely used in image analysis. It provides a way of estimating and computing "spatial averages". A typical example, with obvious communication implications, is the so called Boolean model, which is defined as the union of discs with random radii (communication ranges) centered at the points of a Poisson point process (user locations) of the Euclidean plane (e.g., a city). A first typical question is that of the prediction of the fraction of the plane which is covered by this union (statistics of coverage). A second one is whether this union has an infinite component or not (connectivity). Further classical models include shot noise processes and random tessellations. Our research consists of analyzing these models with the aim of better understanding wireless communication networks in order to predict and control various network performance metrics. The models require using techniques from stochastic geometry and related fields including point processes, spatial statistics, geometric probability, percolation theory.

3.4. Information Theory

Classical models of stochastic geometry (SG) are not sufficient for analyzing wireless networks as they ignore the specific nature of radio channels.

Consider a wireless communication network made of a collection of nodes which in turn can be transmitters or receivers. At a given time, some subset of this collection of nodes simultaneously transmit, each toward its own receiver. Each transmitter–receiver pair in this snapshot requires its own wireless link. For each such wireless link, the power of the signal received from the link transmitter is jammed by the powers of the signals received from the simplest model where the power radiated from a point decays in some isotropic way with Euclidean distance, the geometry of the location of nodes plays a key role within this setting since it determines the signal to interference and noise ratio (SINR) at the receiver of each such link and hence the possibility of establishing simultaneously this collection of links at a given bit rate, as shown by information theory (IT). In this definition, the interference seen by some receiver is the sum of the powers of the signals received from all transmitters excepting its own. The SINR field, which is of an essentially geometric nature, hence determines the connectivity and the capacity of the network in a broad sense. The essential point here is that the characteristics and even the feasibilities of the radio links that are simultaneously active are strongly interdependent and determined by the geometry. Our work is centered on the development of an IT-aware stochastic geometry addressing this interdependence.

3.5. The cavity method for network algorithms

The cavity method combined with geometric networks concepts has recently led to spectacular progresses in digital communications through error-correcting codes. More than fifty years after Shannon's theorems, some coding schemes like turbo codes and low-density parity-check codes (LDPC) now approach the limits predicted by information theory. One of the main ingredients of these schemes is message-passing decoding strategies originally conceived by Gallager, which can be seen as direct applications of the cavity method on a random bipartite graph (with two types of nodes representing information symbols and parity check symbols, see [67]).

Modern coding theory is only one example of application of the cavity method. The concepts and techniques developed for its understanding have applications in theoretical computer science and a rich class of *complex systems*, in the field of networking, economics and social sciences. The cavity method can be used both for the analysis of randomized algorithms and for the study of random ensembles of computational problems representative real-world situations. In order to analyze the performance of algorithms, one generally defines a family of instances and endows it with a probability measure, in the same way as one defines a family of samples in the case of spin glasses or LDPC codes. The discovery that the hardest-to-solve instances, with all existing algorithms, lie close to a *phase transition* boundary has spurred a lot of interest. Theoretical physicists suggest that the reason is a structural one, namely a change in the geometry of the set of solutions related to the *replica symmetry breaking* in the cavity method. Phase transitions, which lie at the core of statistical physics, also play a key role in computer science [68], signal processing [56] and social sciences [61]. Their analysis is a major challenge, that may have a strong impact on the design of related algorithms.

We develop mathematical tools in the theory of discrete probabilities and theoretical computer science in order to contribute to a rigorous formalization of the cavity method, with applications to network algorithms, statistical inference, and at the interface between computer science and economics (EconCS).

3.6. Statistical learning

Sparse graph structures are useful in a number of information processing tasks where the computational problem can be described as follows: infer the values of a large collection of random variables, given a set of constraints or observations, that induce relations among them. Similar design ideas have been proposed in sensing and signal processing and have applications in coding [52], network measurements, group testing or multi-user detection. While the computational problem is generally hard, sparse graphical structures lead to low-complexity algorithms that are very effective in practice. We develop tools in order to contribute to a precise analysis of these algorithms and of their gap to optimal inference which remains a largely open problem.

A second line of activities concerns the design of protocols and algorithms enabling a transmitter to learn its environment (the statistical properties of the channel quality to the corresponding receiver, as well as their interfering neighbouring transmitters) so as to optimise their transmission strategies and to fairly and efficiently share radio resources. This second objective calls for the development and use of machine learning techniques (e.g. bandit optimisation).

FORMES Team

3. Research Program

3.1. Formal Proofs

Coq [52] is one of the most popular proof assistant, in the academia and in the industry. Based on the Calculus of Inductive Constructions, Coq has three kinds of basic entities: objects are used for computations (data, programs, proofs are objects); types express properties of objects; kinds categorize types by their logical structure. Coq's type checker can decide whether a given object satisfies a given type, and if a given type has a logical structure expressed by a given kind. Because it is possible to (uniformly) define inductive types such as lists, dependent types such as lists-of-length-n, parametric types such as lists-of-something, inductive properties such as (even n) for some natural number n, etc, writing small specifications in Coq is an easy task. Writing proofs is a harder (non automatable) task that must be done by the user with the help of tactics. Automating proofs when possible is a necessary step for dissemination of these techniques, as is scaling up. These are the problems we are interested in.

Modeling in Coq is not always as easy as argued. In Coq, a powerful, very useful mechanism identifies expressions up to computation. For example, identifying two lists of identical content but respective lengths m + n and n + m is no problem if m and n are given integers, but does not work if m and n are unknowns, since n + m = m + n is a valid theorem of arithmetic which cannot be proved by mere computation. It follows that the statement reverse(l::l') = reverse(l') :: reverse(l) is not typable, :: standing for appending two lists. This problem that seemingly innocent statements cannot be written in Coq because they do not type-check has been considered a major open problem for years. Blanqui, Jouannaud and Strub have recently introduced a new paradigm named *Coq modulo Theories*, in which computations do not operate only on closed terms (as are 1+2 and 2+1) but on open expressions of a decidable theory (as is n+m=m+n in Presburger arithmetic). This work started with the PhD thesis of Pierre-Yves Strub¹ [51]. It addresses three problems at once: decidable goals become solved automatically by a program taken from the shelves; writing specifications and proofs becomes easier and closer to the mathematical practice; assuming that calls to a decision procedure return a proof certificate in case of success, the correctness of a Coq proof now results from type checking the proof as well as the various certificates generated along the proof. Trusting Coq becomes incremental, resulting from trusting each certificate checker when added in turn to Coq's kernel. The development of this new paradigm is our first research challenge here.

Scaling up is yet another challenge. Modeling a large, complex software is a hard task which has been addressed within the Coq community in two different ways. By developing a module system for Coq in the OCaml style, which makes it possible to modularize proof developments and hence to develop modular libraries. By developing a methodology for modeling real programs and proving their properties with Coq. This methodology allows to translate a JavaCard (tool Krakatoa) or C (tool FRAMA-C) program into an MLlike program. The correctness of this first step is ensured by proving in Coq verification conditions generated along the translation. The correctness of the ML-like program annotated by the user is then done by Coq via another tool called Why. This methodology and the associated tools are developed by the Inria project PROVAL in association with CEA. Part of our second challenge is to reuse these tools to prove properties at the source code level of programs used in an embedded application. As part of this effort, we are interested in the development of termination tools and automatic provers, in particular an SMT prover which is indeed complementary of our first challenge. The second part of the challenge is to ensure that these properties are still satisfied by the machine code executed on the embedded CPU. Here, we are going to rely on a different technology, certified compilers, and reuse the certified compilers from CLight (a well-chosen subset of C) to ARM or PowerPC developed in the COMPCERT Inria project. We will be left with the development of certified compilers from source languages which are frequently used for developing embedded applications

¹The thesis was supported by the "Fondation EADS".

into CLight. These languages are either variants of C, or languages for the description of automata with timers in the case of Programmable Logic Controllers.

Our last challenge is to rely on certified tools only. In particular, we decided to certify in Coq all extensions of Coq developed in the project: the core logic of CoqMT (a Calculus of Inductive Constructions incorporating Presburger arithmetic) has been certified with Coq. Of course, Coq itself cannot be reduced to CIC anymore, which makes the certification of the *real logic* of CoqMT a major challenge. The most critical parts of the simulator will also be certified. As for compilers, there are two ways to certify tools: either, the code is proved correct, or it outputs a certificate that can be checked. The second approach demands less man-power, and has the other advantage to be compatible with the use of tools taken from the shelves, provided these tools are open-source since they must be equipped with a mechanism for generating certificates. This is the approach we will favor for the theories to be used in CoqMT, as well as for the SMT prover to be developed. For the simulator **SimSoC** itself, we shall probably combine both approaches.

3.2. Rewriting

Rewriting is at the heart of proof systems, since mathematical proofs are made of reasonning steps, expressed by the typing rules of a given proof system, and computational steps, expressed by its rewrite rules. The certification of a proof system involves, in particular, proving three main properties of its rewrite rules: subject reduction (rewriting should preserve types), confluence (computations should be deterministic), and termination (computations must always terminate). The fact that falsity is not provable in a given proof system follows from the previous properties. These meta-theoretical proofs are indeed very complex, depending on both the typing rules and the rewrite rules, and require expertise in both rewriting and type theory. To maintain this combined expertise in FORMES, we carry out theoretical activities in these areas, even if they may sometimes appear remotely connected to the mainstream of our work on the verification of embedded systems.

Indeed, our goal is not only to maintain our expertise, but also to develop certification tools aiming at automating these meta-theoretical proofs. Such tools participate to the so-called POPLmark challenge. Building such tools requires new results allowing to check subject-reduction, confluence and termination of higher-order calculi that are found in proof systems like the Calculus of Inductive Constructions on which Coq is based. Since subject-reduction is usually easy to check and consistency follows from the others, we are mostly interested in confluence and termination here.

Termination is an undecidable property of rewriting, even in its first-order incarnation. There are many (interactive) methods for proving termination of first-order rewrite rules, but a single method for proving termination of higher-order calculi equipped with polymorphic types, the so-called *reducibility candidates* method. Unfortunately, this method is extremely complex. The challenge here is to provide with an easy-to-use method which uses the reducibility candidates for its justification. Our approach is to define an order on terms which allows to reduce the termination property of computations to a comparison between the lefthand and righthand sides of the rewrite rules present in the proof system. Such an order must of course be well-founded, which should be proved thanks to the reducibility candidates method which becomes therefore hidden to the user who needs to carry out the comparisons only.

Our second challende is confluence. There are two approaches here, depending whether confluence can be proved after termination, or must be proved before in case confluence must be used in the termination proof (as is often the case with systems equipped with dependent types). In the first case, we basically know how to proceed, this is described next in the new results section. However, our results do not cover the whole spectrum of typing disciplines as of today. The second case is much more difficult. We have made some progress here too for the simple case of first-order rewriting, thanks to the recent notion of *decreasing diagrams* due to van Oostrom [55]. Decreasing diagrams can be interpreted as a way to carry out confluence proofs in the non-terminating case in a way which mimics how they are carried out in the terminating case. As a consequence, there should not be any difference anymore in the future in the way confluence proofs are carried out. This unified framework has been carried out so far for *abstract rewriting*, that is for binary relations on an abstract

set. Our challenge is to extend this unified framework to concrete rewriting, that is rewriting on terms *generated* by rewrite rules. We are still far from this objective, which is a hard, but exciting, research challenge.

3.3. Verification

Model checking is an automatic formal verification technique [30]. In order to apply the technique, users have to formally specify desired properties on an abstract model of the system under verification. Model checkers will check whether the abstract model satisfies the given properties. If model checkers are able to prove or disprove the properties on the abstract model, they report the result and terminate. In practice, however, abstract models can be extremely complicated, model checkers may not conclude with reasonable computational resources.

Compositional reasoning is a way to ameliorate the complexity in abstract models [54]. Compositional reasoning tries to prove global properties on abstract models by establishing local properties on their components. If local properties on components are easier to verify, compositional reasoning can improve the capacity of model checking by local reasoning. Experiences however suggest that local reasoning may not suffice to establish global properties. It is rare that a global property can be established without considering their interactions. In assume-guarantee reasoning, model checkers try to verify local properties under a contextual assumption of each component. If contextual assumptions faithfully capture interactions among components, model checkers can conclude the verification of global properties.

Finding contextual assumptions however is difficult and may require clairvoyance. Interestingly, a fully automated technique for computing contextual assumptions was proposed in [33]. The automated technique formalizes the contextual assumption generation problem as a learning problem. If properties and abstract models are formalized as finite automata, then a contextual assumption is nothing but an unknown finite automaton that characterizes the environment. Applying a learning algorithm for finite automata, the automated technique will generate contextual assumptions for assume-guarantee reasoning. Experimental results show that the automated technique can outperform a monolithic and explicit verification algorithm.

The success of the learning-based assume-guarantee reasoning is however not satisfactory. Most verification tools are using implicit algorithms. In fact, implicit representations such as Binary Decision Diagrams can improve the capacity of model checking algorithms in order of magnitude. Early learning-based techniques, on the other hand, are based on the L^* learning algorithm using explicit representations. If a contextual assumption requires hundreds of states, the learning algorithm will take too much time to infer an assumption. Subsequently, early learning-based techniques cannot compete with monolithic implicit verification [32].

We have proposed assume-guarantee reasoning with implicit learning [29]. Our idea is to adopt an implicit representation used in the learning-based framework. Instead of enumerating states of contextual assumptions explicitly, our new technique computes transition relations as an implicit representation of contextual assumptions. Using a learning algorithm for Boolean functions, the new technique can easily compute contextual assumptions with thousands of states. Our preliminary experimental results show that the implicit learning technique can outperform interpolation-based monolithic implicit model checking in several parametrized test cases such as synchronous bus arbiters and the MSI cache coherence protocol.

Learning Boolean functions can also be applied to loop invariant inference [40], [41]. Suppose that a programmer annotates a loop with pre- and post-conditions. We would like to compute a loop invariant to verify that the annotated loop conforms to its specification. Finding loop invariants manually is very tedious. One makes a first guess and then iteratively refines the guess by examining the loop body. This process is in fact very similar to learning an unknown formula. Applying predicate abstraction and decision procedures, a learning algorithm for Boolean functions can infer loop invariants generated by a given set of atomic predicates. Preliminary experimental results show that the learning-based technique is effective for annotated loops extracted from source codes of Linux and SPEC2000 benchmarks.

Although implicit learning techniques have been developed for assume-guarantee reasoning and loop invariant inference successfully, challenges still remain. Currently, the learning algorithm is able to infer Boolean functions over tens of Boolean variables. Contextual assumptions over tens of Boolean variables are not

enough. Ideally, one would like to have contextual assumptions over hundreds (even thousands) of Boolean variables. On the other hand, it is known that learning arbitrary Boolean functions is infeasible. The scalability of implicit learning techniques cannot be improved satisfactorily by tuning the learning algorithm alone. Combining implicit learning with abstraction will be essential to improve its scalability.

Our second challenge is to extend learning-based techniques to other computation models. In addition to finite automata, probabilistic automata and timed automata are also widely used to specify abstract models. Their verification problems are much more difficult than those for finite automata. Compositional reasoning thus can improve the capacity of model checkers more significantly. The L^* algorithm has been applied in assume-guarantee reasoning for probabilistic automata [35]. The new technique is unfortunately incomplete. Developing a complete learning-based assume-guarantee reasoning technique for probabilistic automata and timed automata will be very useful to their verification.

Through predicate abstraction, learning Boolean functions can be very useful in program analysis. We have successfully applied algorithmic learning to infer both quantified and quantifier-free loop invariants for annotated loops. Applying algorithmic learning to static analysis or program testing will be our last challenge. In the context of program analysis, scalability of the learning algorithm is less of an issue. Formulas over tens of atomic predicates usually suffice to characterize relation among program variables. On the other hand, learning algorithms require oracles to answer queries or generate samples. Designing such oracles necessarily requires information extracted from program texts. How to extract information will be essential to applying algorithmic learning in static analysis or program testing.

3.4. Decision Procedures

Decision procedures are of utmost importance for us, since they are at the heart of theorem proving and verification. Research in decision procedures started several decades ago, and are now commonly used both in the academia and industry. A decision procedure [42] is an algorithm which returns a correct yes/no answer to a given input decision problem. Many real-world problems can be reduced to the decision problems, making this technique very practical. For example, Intel and AMD are developing solvers for their circuit verification tools, while Microsoft is developing decision procedures for their code analysis tools.

Mathematical logic is the appropriate tool to formulate a decision problem. Most decision problems are formulated as a decidable fragment of a first-order logic interpreted in some specific domain. One such easy and popular fragment is propositional (or Boolean) logic, to which corresponding decision procedure is called SAT. Representing real problems in SAT often results in awkward encodings that destroy the logical structure of the original problem.

A very popular, effective recent trend is Satisfiability Modulo Theories (SMT) [53], a general technique to solve decision problems formulated as propositional formulas operating on atoms in a given background theory, for example linear real arithmetic. Existing approaches for solving SMT problems can be classified into two categories: *lazy* method [49], and *eager* method [50]. The eager method encodes an SMT problem into an equi-satisfiable SAT problem, while the lazy method employs different theory solvers for each theory and coordinates them appropriately. The eager method does allow the user to express her problem in a natural way, but does not exploit its logical structure to speed up the computation. The lazy approach is more appealing, and has prompted much interest in algorithms for the various background theories important in practice.

Our SMT solver aCiNO is based on the lazy approach. So far, it provides with two (popular) theories only: linear real arithmetic (LRA) and uninterpreted functions (UF). For efficiency consideration, the solver is implemented in an incremental way. It also invokes an online SAT solver, which is now a modified DPLL procedure, so that recovery from conflicts is possible. Our challenge here is twofold: first, to add other theories of interest for the project, we are currently working on fragments of the theory of arrays [44], [26]. The theory of arrays is important because of its use for expressing loop invariants in programs with arrays, but its full first-order theory is undecidable. We are also interested in the theory of bit vectors, very much used for hardware verification.

Theory solvers implement state-of-the-art algorithms, but their sophistication makes their correct implementation a delicate task. Moreover, SMT solvers themselves employ a quite complex machinery, making them error prone as well ². We therefore strongly believe that decision procedures, and SMT provers, should come along with a formal assessment of their correctness. As usual, there are two ways: ensure the correctness of an arbitrary output by proving the code, or deliver for each input a certificate ensuring the correctness of the corresponding output when the checker says so. Developing concise certificates together with efficient certificate checkers for the various decision procedures of interest and their combination with SMT is yet another challenge which is at the heart of the project FORMES.

3.5. Simulation

The development of complex embedded systems platforms requires putting together many hardware components, processor cores, application specific co-processors, bus architectures, peripherals, etc. The hardware platform of a project is seldom entirely new. In fact, in most cases, 80 percent of the hardware components are re-used from previous projects or simply are COTS (Commercial Off-The-Shelf) components. There is no need to simulate in great detail these already proven components, whereas there is a need to run fast simulation of the software using these components.

These requirements call for an integrated, modular simulation environment where already proven components can be simulated quickly, (possibly including real hardware in the loop), new components under design can be tested more thoroughly, and the software can be tested on the complete platform with reasonable speed.

Modularity and fast prototyping also have become important aspects of simulation frameworks, for investigating alternative designs with easier re-use and integration of third party components.

The project aims at developing such a rapid prototyping, modular simulation platform, combining new hardware components modeling, verification techniques, fast software simulation for proven components, capable of running the real embedded software application without any change.

To fully simulate a complete hardware platform, one must simulate the processors, the co-processors, together with the peripherals such as network controllers, graphics controllers, USB controllers, etc. A commonly used solution is the combination of some ISS (Instruction Set Simulator) connected to a Hardware Description Language (HDL) simulator which can be implemented by software or by using a FPGA [43] simulator. These solutions tend to present slow iteration design cycles and implementing the FPGA means the hardware has already been designed at low level, which comes normally late in the project and become very costly when using large FPGA platforms. Others have implemented a co-simulation environment, using two separate technologies, typically one using a HDL and another one using an ISS [36], [38], [48]. Some communication and synchronization must be designed and maintained between the two using some interprocess communication (IPC), which slows down the process.

The idea we pursue is to combine hardware modeling and fast simulation into a fully integrated, software based (not using FPGA) simulation environment, which uses a single simulation loop thanks to Transaction Level Modeling (TLM) [28], [19] combined with a new ISS technology designed specifically to fit within the TLM environment.

The most challenging way to enhance simulation speed is to simulate the processors. Processor simulation is achieved with Instruction Set Simulation (ISS). There are several alternatives to achieve such simulation. In *interpretive simulation*, each instruction of the target program is fetched from memory, decoded, and executed. This method is flexible and easy to implement, but the simulation speed is slow as it wastes a lot of time in decoding. Interpretive simulation is used in Simplescalar [27]. Another technique to implement a fast ISS is *dynamic translation* [31], [47], [34] which has been favored by many implementors [45], [34], [46], [47] in the past decade.

 $^{^{2}}$ It took almost 20 years to have a correct implementation of a correct version of Shostak's algorithm for combining decision procedures, which can be seen as an ancestor of SMT.

With dynamic translation, the binary target instructions are fetched from memory at run-time, like in interpretive simulation. They are decoded on the first execution and the simulator translates these instructions into another representation which is stored into a cache. On further execution of the same instructions, the translated cached version is used. Dynamic translation introduces a translation time phase as part of the overall simulation time. But as the resulting cached code is re-used, the translation time is amortized over time. If the code is modified during run-time, the simulator must invalidate the cached representation. Dynamic translation provides much faster simulation while keeping the advantage of interpretive simulation as it supports the simulation of programs that have either dynamic loading or self-modifying code.

There are many ways of translating binary code into cached data, which each come at a price, with different trade-offs between the translation time and the obtained speed up on cache execution. Also, simulation speed-ups usually don't come for free: most of time there is a trade-off between accuracy and speed.

There are two well known variants of the dynamic translation technology: the target code is translated either directly into machine code for the simulation host, or into an intermediate representation, independent from the host machine, that makes it possible to execute the code with faster speed. Both have pros and cons.

Processor simulation is also achieved in Virtual Machines such as QEMU [23] and GXEMUL [37] that emulate to a large extent the behavior of a particular hardware platform. The technique used in QEMU is a form of dynamic translation. The target code is translated directly into machine code using some pre-determined code patterns that have been pre-compiled with the C compiler. Both QEMU and GXEMUL include many device models of open-source C code, but this code is hard to reuse. The functions that emulate device accesses do not have the same profile. The scheduling process of the parallel hardware entities is not specified well enough to guarantee the compatibility between several emulators or re-usability of third-party models using the standards from the electronics industry (e.g. IEEE 1666).

A challenge in the development of high performance simulators is to maintain simultaneously fast speed and simulation accuracy. In the FORMES project, we expect to develop a dynamic translation technology satisfying the following additional objectives:

- provide different levels of translation with different degrees of accuracy so that users can choose between accurate and slow (for debugging) or less accurate but fast simulation.
- to take advantage of multi-processor simulation hosts to parallelize the simulation;
- to define intermediate representations of programs that optimize the simulation speed and possibly provide a more convenient format for studying properties of the simulated programs.

Another objective of the FORMES simulation is to extract information from the simulated applications to prove properties. Running a simulation is exercising a test case. In most cases, if a test is failing, a bug has been found. One can use model checking tools to generate tests that can be run on the simulator to check whether the test fails or not on the real application. It is also a goal of FORMES simulation activity to use such formal methods tools to detect bugs, either by generating tests, or by using formal methods tools to analyze the results of simulation sessions.

3.6. Trustworthy Software

Since the early days of software development, computer scientists have been interested in designing methods for improving software quality. Formal methods based on model checking, correctness proofs, common criteria certification, all address this issue in their own way. None of these methods, however, considers the trustworthiness of a given software system as a system-level property, requiring to grasp a given software within its environment of execution.

The major challenge we want to address here is to provide a framework in which to formalize the notion of trustworthiness, to evaluate the trustworthiness of a given software, and if necessary improve it.

To make trustworthiness a fruitful concept, our vision is to formalize it via a hierarchy of observability and controllability degrees: the more the software is observable and controllable, the more its behaviors can be trusted by users. On the other hand, users from different application domains have different expectations from the software they use. For example, aerospace embedded software should be safety-critical while e-commerce software should be insensitive to attacks. As a result, trustworthiness should be domain-specific.

A main challenge is the evaluation of trustworthiness. We believe that users should be responsible for describing the level of trustworthiness they need, in the form of formal requirements that the software should satisfy. A major issue is to come up with some predefined levels of trustworthiness for the major applicative areas. Another is to use stepwise refinement techniques to achieve the appropriate level of trustworthiness. These levels would then drive the design and implementation of a software system: the objective would be to design a model with enough details (observability) to make it possible to check all requirements of that level.

The other challenge is the effective integration of results obtained from different verification methods. There are many verification techniques, like simulation, testing, model checking and theorem proving. These methods may operate on different models of the software to be then executed, while trustworthiness should measure our trust in the real software running in its real execution environment. There are also monitoring and analysis techniques to capture the characteristics of actual executions of the system. Integrating all the analysis in order to decide the trustworthiness level of a software is quite a hard task.

GALLIUM Project-Team

3. Research Program

3.1. Programming languages: design, formalization, implementation

Like all languages, programming languages are the media by which thoughts (software designs) are communicated (development), acted upon (program execution), and reasoned upon (validation). The choice of adequate programming languages has a tremendous impact on software quality. By "adequate", we mean in particular the following four aspects of programming languages:

- **Safety.** The programming language must not expose error-prone low-level operations (explicit memory deallocation, unchecked array accesses, etc) to the programmers. Further, it should provide constructs for describing data structures, inserting assertions, and expressing invariants within programs. The consistency of these declarations and assertions should be verified through compile-time verification (e.g. static type checking) and run-time checks.
- **Expressiveness.** A programming language should manipulate as directly as possible the concepts and entities of the application domain. In particular, complex, manual encodings of domain notions into programmatic notations should be avoided as much as possible. A typical example of a language feature that increases expressiveness is pattern matching for examination of structured data (as in symbolic programming) and of semi-structured data (as in XML processing). Carried to the extreme, the search for expressiveness leads to domain-specific languages, customized for a specific application area.
- Modularity and compositionality. The complexity of large software systems makes it impossible to design and develop them as one, monolithic program. Software decomposition (into semiindependent components) and software composition (of existing or independently-developed components) are therefore crucial. Again, this modular approach can be applied to any programming language, given sufficient fortitude by the programmers, but is much facilitated by adequate linguistic support. In particular, reflecting notions of modularity and software components in the programming language enables compile-time checking of correctness conditions such as type correctness at component boundaries.
- Formal semantics. A programming language should fully and formally specify the behaviours of programs using mathematical semantics, as opposed to informal, natural-language specifications. Such a formal semantics is required in order to apply formal methods (program proof, model checking) to programs.

Our research work in language design and implementation centers around the statically-typed functional programming paradigm, which scores high on safety, expressiveness and formal semantics, complemented with full imperative features and objects for additional expressiveness, and modules and classes for compositionality. The OCaml language and system embodies many of our earlier results in this area [27]. Through collaborations, we also gained experience with several domain-specific languages based on a functional core, including distributed programming (JoCaml), XML processing (XDuce, CDuce), reactive functional programming, and hardware modeling.

3.2. Type systems

Type systems [47] are a very effective way to improve programming language reliability. By grouping the data manipulated by the program into classes called types, and ensuring that operations are never applied to types over which they are not defined (e.g. accessing an integer as if it were an array, or calling a string as if it were a function), a tremendous number of programming errors can be detected and avoided, ranging from the trivial (misspelled identifier) to the fairly subtle (violation of data structure invariants). These restrictions are also very effective at thwarting basic attacks on security vulnerabilities such as buffer overflows.

The enforcement of such typing restrictions is called type checking, and can be performed either dynamically (through run-time type tests) or statically (at compile-time, through static program analysis). We favor static type checking, as it catches bugs earlier and even in rarely-executed parts of the program, but note that not all type constraints can be checked statically if static type checking is to remain decidable (i.e. not degenerate into full program proof). Therefore, all typed languages combine static and dynamic type-checking in various proportions.

Static type checking amounts to an automatic proof of partial correctness of the programs that pass the compiler. The two key words here are *partial*, since only type safety guarantees are established, not full correctness; and *automatic*, since the proof is performed entirely by machine, without manual assistance from the programmer (beyond a few, easy type declarations in the source). Static type checking can therefore be viewed as the poor man's formal methods: the guarantees it gives are much weaker than full formal verification, but it is much more acceptable to the general population of programmers.

3.2.1. Type systems and language design.

Unlike most other uses of static program analysis, static type-checking rejects programs that it cannot analyze safe. Consequently, the type system is an integral part of the language design, as it determines which programs are acceptable and which are not. Modern typed languages go one step further: most of the language design is determined by the *type structure* (type algebra and typing rules) of the language and intended application area. This is apparent, for instance, in the XDuce and CDuce domain-specific languages for XML transformations [41], [35], whose design is driven by the idea of regular expression types that enforce DTDs at compile-time. For this reason, research on type systems – their design, their proof of semantic correctness (type safety), the development and proof of associated type checking and inference algorithms – plays a large and central role in the field of programming language research, as evidenced by the huge number of type systems papers in conferences such as Principles of Programming Languages.

3.2.2. Polymorphism in type systems.

There exists a fundamental tension in the field of type systems that drives much of the research in this area. On the one hand, the desire to catch as many programming errors as possible leads to type systems that reject more programs, by enforcing fine distinctions between related data structures (say, sorted arrays and general arrays). The downside is that code reuse becomes harder: conceptually identical operations must be implemented several times (say, copying a general array and a sorted array). On the other hand, the desire to support code reuse and to increase expressiveness leads to type systems that accept more programs, by assigning a common type to broadly similar objects (for instance, the Object type of all class instances in Java). The downside is a loss of precision in static typing, requiring more dynamic type checks (downcasts in Java) and catching fewer bugs at compile-time.

Polymorphic type systems offer a way out of this dilemma by combining precise, descriptive types (to catch more errors statically) with the ability to abstract over their differences in pieces of reusable, generic code that is concerned only with their commonalities. The paradigmatic example is parametric polymorphism, which is at the heart of all typed functional programming languages. Many forms of polymorphic typing have been studied since then. Taking examples from our group, the work of Rémy, Vouillon and Garrigue on row polymorphism [51], integrated in OCaml, extended the benefits of this approach (reusable code with no loss of typing precision) to object-oriented programming, extensible records and extensible variants. Another example is the work by Pottier on subtype polymorphism, using a constraint-based formulation of the type system [48].

3.2.3. Type inference.

Another crucial issue in type systems research is the issue of type inference: how many type annotations must be provided by the programmer, and how many can be inferred (reconstructed) automatically by the typechecker? Too many annotations make the language more verbose and bother the programmer with unnecessary details. Too few annotations make type checking undecidable, possibly requiring heuristics, which is unsatisfactory. OCaml requires explicit type information at data type declarations and at component interfaces, but infers all other types.

In order to be predictable, a type inference algorithm must be complete. That is, it must not find *one*, but *all* ways of filling in the missing type annotations to form an explicitly typed program. This task is made easier when all possible solutions to a type inference problem are *instances* of a single, *principal* solution.

Maybe surprisingly, the strong requirements – such as the existence of principal types – that are imposed on type systems by the desire to perform type inference sometimes lead to better designs. An illustration of this is row variables. The development of row variables was prompted by type inference for operations on records. Indeed, previous approaches were based on subtyping and did not easily support type inference. Row variables have proved simpler than structural subtyping and more adequate for typechecking record update, record extension, and objects.

Type inference encourages abstraction and code reuse. A programmer's understanding of his own program is often initially limited to a particular context, where types are more specific than strictly required. Type inference can reveal the additional generality, which allows making the code more abstract and thus more reuseable.

3.3. Compilation

Compilation is the automatic translation of high-level programming languages, understandable by humans, to lower-level languages, often executable directly by hardware. It is an essential step in the efficient execution, and therefore in the adoption, of high-level languages. Compilation is at the interface between programming languages and computer architecture, and because of this position has had considerable influence on the designs of both. Compilers have also attracted considerable research interest as the oldest instance of symbolic processing on computers.

Compilation has been the topic of much research work in the last 40 years, focusing mostly on highperformance execution ("optimization") of low-level languages such as Fortran and C. Two major results came out of these efforts: one is a superb body of performance optimization algorithms, techniques and methodologies; the other is the whole field of static program analysis, which now serves not only to increase performance but also to increase reliability, through automatic detection of bugs and establishment of safety properties. The work on compilation carried out in the Gallium group focuses on a less investigated topic: compiler certification.

3.3.1. Formal verification of compiler correctness.

While the algorithmic aspects of compilation (termination and complexity) have been well studied, its semantic correctness – the fact that the compiler preserves the meaning of programs – is generally taken for granted. In other terms, the correctness of compilers is generally established only through testing. This is adequate for compiling low-assurance software, themselves validated only by testing: what is tested is the executable code produced by the compiler, therefore compiler bugs are detected along with application bugs. This is not adequate for high-assurance, critical software which must be validated using formal methods: what is formally verified is the source code of the application; bugs in the compiler used to turn the source into the final executable can invalidate the guarantees so painfully obtained by formal verification of the source.

To establish strong guarantees that the compiler can be trusted not to change the behavior of the program, it is necessary to apply formal methods to the compiler itself. Several approaches in this direction have been investigated, including translation validation, proof-carrying code, and type-preserving compilation. The approach that we currently investigate, called *compiler verification*, applies program proof techniques to the compiler itself, seen as a program in particular, and use a theorem prover (the Coq system) to prove that the generated code is observationally equivalent to the source code. Besides its potential impact on the critical software industry, this line of work is also scientifically fertile: it improves our semantic understanding of compiler intermediate languages, static analyses and code transformations.

3.4. Interface with formal methods

Formal methods refer collectively to the mathematical specification of software or hardware systems and to the verification of these systems against these specifications using computer assistance: model checkers, theorem provers, program analyzers, etc. Despite their costs, formal methods are gaining acceptance in the critical software industry, as they are the only way to reach the required levels of software assurance.

In contrast with several other Inria projects, our research objectives are not fully centered around formal methods. However, our research intersects formal methods in the following two areas, mostly related to program proofs using proof assistants and theorem provers.

3.4.1. Software-proof codesign

The current industrial practice is to write programs first, then formally verify them later, often at huge costs. In contrast, we advocate a codesign approach where the program and its proof of correctness are developed in interaction, and are interested in developing ways and means to facilitate this approach. One possibility that we currently investigate is to extend functional programming languages such as Caml with the ability to state logical invariants over data structures and pre- and post-conditions over functions, and interface with automatic or interactive provers to verify that these specifications are satisfied. Another approach that we practice is to start with a proof assistant such as Coq and improve its capabilities for programming directly within Coq.

3.4.2. Mechanized specifications and proofs for programming languages components

We emphasize mathematical specifications and proofs of correctness for key language components such as semantics, type systems, type inference algorithms, compilers and static analyzers. These components are getting so large that machine assistance becomes necessary to conduct these mathematical investigations. We have already mentioned using proof assistants to verify compiler correctness. We are also interested in using them to specify and reason about semantics and type systems. These efforts are part of a more general research topic that is gaining importance: the formal verification of the tools that participate in the construction and certification of high-assurance software.

GAMMA3 Project-Team (section vide)

GANG Project-Team

3. Research Program

3.1. Research Program

Taking into account the scientific achievements of the last years, and the short presentation section above, GANG is currently focusing on the following objectives:

- Graphs algorithms
- Distributed Computing
- P2P-like Algorithms for Future Networks

3.1.1. Graph algorithms

3.1.1.1. Graph Decompositions

We study new decompositions schemes such as 2-join, skew partitions and others partition problems. These graph decompositions appeared in the structural graph theory and are the basis of some well-known theorems such as the Perfect Graph Theorem. For these decompositions there is a lack of efficient algorithms. We aim at designing algorithms working in O(nm) since we think that this could be a lower bound for these decompositions.

3.1.1.2. Graph Search

We more deeply study multi-sweep graph searches. In this domain a graph search only yields a total ordering of the vertices which can be used by the subsequent graph searches. This technique can be used on huge graphs and do not need extra memory. We already have obtained preliminary results in this direction and many well-known graph algorithms can be put in this framework. The idea behind this approach is that each sweep discovers some structure of the graph. At the end of the process either we have found the underlying structure (for example an interval representation for an interval graph) or an approximation of it (for example in hard discrete optimization problems). Application to exact computations of centers in huge graphs, to underlied combinatorial optimization problems, but also to networks arising in Biology.

3.1.2. Distributed computing

The distributed community can be viewed as the union of two sub-communities. This is true even in our team. Even though they are not completely disjoint, they are disjoint enough not to leverage each other's results. At a high level, one is mostly interested in timing issues (clock drifts, link delays, crashes, etc.) while the other one is mostly interested in spatial issues (network structure, memory requirements, etc.). Indeed, one sub-community is mostly focusing on the combined impact of asynchronism and faults on distributed computation, while the other addresses the impact of network structural properties on distributed computation. Both communities address various forms of computational complexities, through the analysis of different concepts. This includes, e.g., failure detectors and wait-free hierarchy for the former community, and compact labeling schemes and computing with advice for the latter community. We have the ambitious project to achieve the reconciliation between the two communities by focusing on the same class of problems, the yes/noproblems, and establishing the scientific foundations for building up a consistent theory of computability and complexity for distributed computing. The main question addressed is therefore: is the absence of globally coherent computational complexity theories covering more than fragments of distributed computing, inherent to the field? One issue is obviously the types of problems located at the core of distributed computing. Tasks like consensus, leader election, and broadcasting are of very different nature. They are not yes-no problems, neither are they minimization problems. Coloring and Minimal Spanning Tree are optimization problems but we are often more interested in constructing an optimal solution than in verifying the correctness of a given solution. Still, it makes full sense to analyze the yes-no problems corresponding to checking the validity of the output of tasks. Another issue is the power of individual computation. The FLP impossibility result as well as Linial's lower bound hold independently from the individual computational power of the involved computing entities. For instance, the individual power of solving NP-hard problems in constant time would not help overcoming these limits which are inherent to the fact that computation is distributed. A third issue is the abundance of models for distributed computing frameworks, from shared memory to message passing, spanning all kinds of specific network structures (complete graphs, unit-disk graphs, etc.) and or timing constraints (from complete synchronism to full asynchronism). There are however models, typically the waitfree model and the LOCAL model, which, though they do not claim to reflect accurately real distributed computing systems, enable focusing on some core issues. Our research program is ongoing to carry many important notions of Distributed Computing into a *standard* computational complexity.

3.1.3. A Peer-to-Peer approach to future content Distribution

Unexpectedly, the field of P2P applications is still growing and challenging issues remain worth studying.

3.1.3.1. New network models

The new models that have been proposed to take into account the evolution of network architecture and usage indicate new opportunities for P2P, like the possibility to have superscalable systems whose performance increases with the popularity. This surprising property, if it can be enforced, will give P2P an additional asset compared to the current situation. However, this results are still at an early stage, and it is planned to continue the study from a theoretical point of view, but also with experimentations with emulation and/or simulation of future networks on large grids.

3.1.3.2. P2P storage

The challenges of a persistent and robust distributed storage with respect to failures are nowadays relatively well understood. However, the results about instant availability are still not completely understood: how to give guarantees, in a P2P system where peers are not online 100% of the time, that a content will be available when its owner asks for it? Can we propose some allocation policy that ensures maximal availability with only a partial knowledge of online patterns? We believe that these issues, halfway between failure tolerance and opportunistic networks, are still promising.

3.1.3.3. Caching allocation

Today, most of content distribution is ensured by so-called Content Distribution Networks (CDNs). It is expected that caching techniques will remain a hot topic in the years to come, for instance through the studies related to Content Centric Networking, which is inspired by P2P content distribution paradigms, like using so-called chunks as the basic data exchange unit. Many challenges in this field are related to dimensioning and caching strategies. In GANG, we aim at conducting a study centered on the trade-offs between storage and bandwidth usage. Note that many studies have been/are realized on this topic, mostly rely on operational research methodology and offer solutions that can sometimes be difficult to use in practice. GANG uses a different approach, based on alternate modeling assumptions inherited from our previous achievments on bandwidth dimensioning. The goal of this complementary approach is to provide simple dimensioning guidelines while giving approximated, yet meaningful, performance evaluation.

3.1.3.4. Long term perspective on P2P content distribution

The success of YouTube-like delivery platforms (YouTube, DailyMotion...) does not come only from their technical performances, but from the ergonomy: these platforms allow to launch a video directly from one's browser, without the usual burden that comes with traditional P2P applications (install a specific client, open incoming ports, find .torrent files . . .). It is therefore important to keep working on basic P2P research, especially as many challenges are still open (see above), and new opportunities are likely to rise. First, advances in other fields may make P2P more interesting than other solutions –again. For instance, CCN protocols are designed to facilitate data dissemination. One could hope they open the way to CCN-assisted P2P protocols, where both the issues of ergonomy and network burden would be taken care of by design. Unpredictable events, such as emerging/closing centralized filesharing services, can also change the power balance very fast with effects that are still hard to determine. For all these reasons, GANG aims at improving its expertise in the field of decentralized content distribution, even if it is quite difficult at the fast evolving

current time to tell if that expertise should apply on traditional P2P, CCN, Cloud... architectures, or on any hybridation of these.

HIPERCOM2 Team

3. Research Program

3.1. Methodology of telecommunication algorithm evaluation

We develop our performance evaluation tools towards deterministic performance and probabilistic performance. Our tools range from mathematical analysis to simulation and real life experiment of telecommunication algorithms.

One cannot design good algorithms without good evaluation models. Hipercom project team has an historically strong experience in performance evaluation of telecommunication systems, notably when they have multiple access media. We consider two main methodologies:

- Deterministic performance analysis,
- Probabilistic performance analysis

In the deterministic analysis, the evaluation consists in identifying and quantifying the worst case scenario for an algorithm in a given context. For example to evaluate an end-to-end delay. Mathematically it consists into handling a (max,+) algebra. Since such algebra is not commutative, the complexity of the evaluation of an end-to-end delay frequently grows exponentially with the number of constraints. Therefore the main issue in the deterministic evaluation of performance is to find bounds easier to compute in order to have practical results in realistic situations.

In the probabilistic analysis of performance, one evaluate the behavior of an algorithm under a set of parameters that follows a stochastic model. For example traffic may be randomly generated, nodes may move randomly on a map. The pionneer works in this area come from Knuth (1973) who has systematized this branch. In the domain of telecommunication, the domain has started a significant rise with the appearance of the problematic of collision resolution in a multiple access medium. With the rise of wireless communication, new interesting problems have been investigated.

The analysis of algorithm can rely on analytical methodology which provides the better insight but is practical in very simplistic models. Simulation tools can be used to refine results in more complicated models. At the end of the line, we proceed with real life experiments. To simplify, experiments check the algorithms with 10 nodes in maximum, simulations with 100 nodes maximum, analytical tools with more 1,000 nodes, so that the full range of applicability of the algorithms is investigated.

3.2. Traffic and network architecture modeling

One needs good and realistic models of communication scenarios in order to provide pertinent performance evaluation of protocols. The models must assess the following key points:

- The architecture and topology: the way the nodes are structured within the network
- The mobility: the way the nodes move
- The dynamics: the way the nodes change status
- The traffic: the way the nodes communicate

For the architecture there are several scales. At the internet scale it is important to identify the patterns which dictate the node arrangement. For example the internet topology involves many power law distribution in node degree, link capacities, round trip delays. These parameters have a strong impact in the performance of the global network. At a smaller scale there is also the question how the nodes are connected in a wireless network. There is a significant difference between indoor and outdoor networks. The two kinds of networks differ on wave propagation. In indoor networks, the obstacles such as walls, furniture, etc, are the main source of signal attenuations. In outdoor networks the main source of signal attenuation is the distance to the emitter. This lead to very different models which vary between the random graph model for indoor networks to the unit graph model for outdoor networks.

The mobility model is very important for wireless network. The way nodes move may impact the performance of the network. For example it determines when the network splits in distinct connected components or when these components merge. With random graph models, the mobility model can be limited to the definition of a link status holding time. With unit disk model the mobility model will be defined according to random speed and direction during random times or random distances. There are some minor complications on the border of the map.

The node dynamic addresses the elements that change inside the node. For example its autonomy, its bandwidth requirement, the status of server, client, etc. Pair to pair networks involve a large class of users who frequently change status. In a mobile ad hoc network, nodes may change status just by entering or leaving the coverage area.

The traffic model is very most important. There are plenty of literature about trafic models which arose when Poisson models was shown not to be accurate for real traffics, on web or on local area networks. Natural traffic shows long range dependencies that do not exist in Poisson traffic. There are still strong issues about the origin of this long range dependencies which are debated, however they have a great impact on network performance since congestions are more frequent. The origin are either from the distribution of file sizes exchanged over the net, or from the protocols used to exchange them. One way to model the various size is to consider on/off sources. Every time a node is on it transfers a file of various size. The TCP protocol has also an impact since it keeps a memory on the network traffic. One way to describe it is to use an on/off model (a source sending packets in transmission windows) and to look at the superposition of these on/off sources.

3.3. Algorithm design, evaluation and implementation

The conception of algorithms is an important focus of the team. We specify algorithms in the perspective of achieving the best performance for communication. We also strive to embed those algorithms in protocols that involve the most legacy from existing technologies (Operating systems, internet, Wifi). Our aim with this respect is to allow code implementations for real life experiment or embedded simulation with existing network simulators. The algorithm specified by the project ranges from multiple access schemes, wireless ad hoc routing, to deployment of wireless sensor nodes as well as joint time slot and channel assignment in wireless networks. In any of these cases the design emphasize the notions of performance, robustness and flexibility. For example, a flooding technique in mobile ad hoc network should save bandwidth but should not stick too much close to optimal in order to be more reactive to frequent topology changes. Some telecommunication problems have NP hard optimal solution, and an implementable algorithm should be portable on very low power processing unit (e.g. sensors). Compromise have to be found and quantified with respect to nearly optimal solution.

3.4. Simulation of network algorithms and protcols

the perforamnce of algorithms and procols designed by the team have to be evaluated in various conditions: various configurations and various scenarii. The team uses different simulation tools. Historically, the first one was NS2 and some deployment algorithms are developed with NS2, taking advantage of its library and our previous works. We are now contributing to the development of NS3, enriching it with new modules (e.g. wireless medium access). For rapid simulation results and to validate design choices, we resort to Java home-made simulation tools (e.g. joint time slot and channel allocation).

IMARA Project-Team

3. Research Program

3.1. Vehicle guidance and autonomous navigation

Participants: Zayed Alsayed, Benjamin Lefaudeux, Hao Li, Paulo Lopes Resende, Mohamed Marouf, Pierre Merdrignac, Philippe Morignot, Fawzi Nashashibi, Joshué Pérez Rastelli, Plamen Petrov, Evangeline Pollard, Oyunchimeg Shagdar, Guillaume Tréhard.

There are three basic ways to improve the safety of road vehicles and these ways are all of interest to the project-team. The first way is to assist the driver by giving him better information and warning. The second way is to take over the control of the vehicle in case of mistakes such as inattention or wrong command. The third way is to completely remove the driver from the control loop.

All three approaches rely on information processing. Only the last two involve the control of the vehicle with actions on the actuators, which are the engine power, the brakes and the steering. The research proposed by the project-team is focused on the following elements:

- perception of the environment,
- planning of the actions,
- real-time control.

3.1.1. Perception of the road environment

Participants: Zayed Alsayed, Benjamin Lefaudeux, Hao Li, Paulo Lopes Resende, Pierre Merdrignac, Fawzi Nashashibi, Joshué Pérez Rastelli, Evangeline Pollard, Guillaume Tréhard.

Either for driver assistance or for fully automated guided vehicles purposes, the first step of any robotic system is to perceive the environment in order to assess the situation around itself. Proprioceptive sensors (accelerometer, gyrometer,...) provide information about the vehicle by itself such as its velocity or lateral acceleration. On the other hand, exteroceptive sensors, such as video camera, laser or GPS devices, provide information about the vehicle or its localization. Obviously, fusion of data with various other sensors is also a focus of the research.

The following topics are already validated or under development in our team:

- relative ego-localization with respect to the infrastructure, i.e. lateral positioning on the road can be obtained by mean of vision (lane markings) and the fusion with other devices (e.g. GPS);
- global ego-localization by considering GPS measurement and proprioceptive information, even in case of GPS outage;
- road detection by using lane marking detection and navigable free space;
- detection and localization of the surrounding obstacles (vehicles, pedestrians, animals, objects on roads, etc.) and determination of their behavior can be obtained by the fusion of vision, laser or radar based data processing;
- simultaneous localization and mapping as well as mobile object tracking using laser-based and stereovision-based (SLAMMOT) algorithms.

This year was the opportunity to focus on two particular topics: SLAMMOT-based techniques and cooperative perception.

3.1.2. 3D environment representation

Participants: Benjamin Lefaudeux, Hao Li, Fawzi Nashashibi, Paulo Lopes Resende.

In the past few years, we have been focusing on the Disparity map estimation as a mean to obtain dense 3D mapping of the environment. Moreover, many autonomous vehicle navigation systems have adopted stereo vision techniques to construct disparity maps as a basic obstacle detection and avoidance mechanism. Two different approaches where investigated: the Fly algorithm, and the stereo vision for 3D representation.

In the first approach, the Fly algorithm is an evolutionary optimization applied to stereovision and mobile robotics. Its advantage relies on its precision and its acceptable costs (computation time and resources). In the second approach, originality relies on computing the disparity field by directly formulating the problem as a constrained optimization problem in which a convex objective function is minimized under convex constraints. These constraints arise from prior knowledge and the observed data. The minimization process is carried out over the feasibility set and with a suitable regularization constraint: the Total Variation information, which avoids oscillations while preserving field discontinuities around object edges. Although successfully applied to real-time pedestrian detection using a vehicle mounted stereohead (see LOVe project), this technique could not be used for other robotics applications such as scene modeling, visual SLAM, etc. The need is for a dense 3D representation of the environment obtained with an appropriate precision and acceptable costs (computation time and resources).

Stereo vision is a reliable technique for obtaining a 3D scene representation through a pair of left and right images and it is effective for various tasks in road environments. The most important problem in stereo image processing is to find corresponding pixels from both images, leading to the so-called disparity estimation. Many autonomous vehicle navigation systems have adopted stereo vision techniques to construct disparity maps as a basic obstacle detection and avoidance mechanism. We also worked in the past on an original approach for computing the disparity field by directly formulating the problem as a constrained optimization problem in which a convex objective function is minimized under convex constraints. These constraints arise from prior knowledge and the observed data. The minimization process is carried out over the feasibility set, which corresponds to the intersection of the constraint sets. The construction of convex property sets is based on the various properties of the field to be estimated. In most stereo vision applications, the disparity map should be smooth in homogeneous areas while keeping sharp edges. This can be achieved with the help of a suitable regularization constraint. We propose to use the Total Variation information as a regularization constraint, which avoids oscillations while preserving field discontinuities around object edges.

The algorithm we developed to solve the estimation disparity problem has a block-iterative structure. This allows a wide range of constraints to be easily incorporated, possibly taking advantage of parallel computing architectures. This efficient algorithm allowed us to combine the Total Variation constraint with additional convex constraints so as to smooth homogeneous regions while preserving discontinuities.

We are presently working on an original stereo-vision based SLAM technique, aimed at reconstructing current surroundings through on-the-fly real-time localization of tens of thousands of interest points. This development should also allow detection and tracking of moving objects ³, and is built on linear algebra (through Inria's Eigen library), RANSAC and multi-target tracking techniques, to quote a few.

This technique complements another laser based SLAMMOT technique developed since few years and extensively validated in large scale demonstrations for indoor and outdoor robotics applications. This technique has proved its efficiency in terms of cost, accuracy and reliability.

3.1.3. Cooperative Multi-sensor data fusion

Participants: Benjamin Lefaudeux, Pierre Merdrignac, Fawzi Nashashibi, Hao Li, Evangeline Pollard, Oyunchimeg Shagdar.

Since data are noisy, inaccurate and can also be unreliable or unsynchronized, the use of data fusion techniques is required in order to provide the most accurate situation assessment as possible to perform the perception task. IMARA team worked a lot on this problem in the past, but is now focusing on collaborative perception approach. Indeed, the use of vehicle-to-vehicle or vehicle-to-infrastructure communications allows an improved on-board reasoning since the decision is made based on an extended perception.

³http://www.youtube.com/watch?v=obH9Z2uOMBI

As a direct consequence of the electronics broadly used for vehicular applications, communication technologies are now being adopted as well. In order to limit injuries and to share safety information, research in driving assistance system is now orientating toward the cooperative domain. Advanced Driver Assistance System (ADAS) and Cybercars applications are moving towards vehicle-infrastructure cooperation. In such scenario, information from vehicle based sensors, roadside based sensors and a priori knowledge is generally combined thanks to wireless communications to build a probabilistic spatio-temporal model of the environment. Depending on the accuracy of such model, very useful applications from driver warning to fully autonomous driving can be performed.

The Collaborative Perception Framework (CPF) is a combined hardware/software approach that permits to see remote information as its own information. Using this approach, a communicant entity can see another remote entity software objects as if it was local, and a sensor object, can see sensor data of others entities as its own sensor data. Last year's developments permitted the development of the basic hardware pieces that ensures the well functioning of the embedded architecture including perception sensors, communication devices and processing tools. The final architecture was relying on the *SensorHub* presented in year 2010 report and demonstrated several times in year 2011 (ITS World Congress, workshop "The automation for urban transport" in La Rochelle...)

Finally, since vehicle localization (ground vehicles) is an important task for intelligent vehicle systems, vehicle cooperation may bring benefits for this task. A new cooperative multi-vehicle localization method using split covariance intersection filter was developed during the year 2012, as well as a cooperative GPS data sharing method.

In the first method, each vehicle estimates its own position using a SLAM approach. In parallel, it estimates a decomposed group state, which is shared with neighboring vehicles; the estimate of the decomposed group state is updated with both the sensor data of the ego-vehicle and the estimates sent from other vehicles; the covariance intersection filter which yields consistent estimates even facing unknown degree of inter-estimate correlation has been used for data fusion.

In the second GPS data sharing method, a new collaborative localization method is proposed. On the assumption that the distance between two communicative vehicles can be calculated with a good precision, cooperative vehicle are considered as additional satellites into the user position calculation by using iterative methods. In order to limit divergence, some filtering process is proposed: Interacting Multiple Model (IMM) is used to guarantee a greater robustness in the user position estimation.

Accidents between vehicles and pedestrians (including cyclists) often result in fatality and serious injury for pedestrians, showing the need of technology to protect vulnerable road users. Vehicles are now equipped with many sensors in order to model their environment, to localize themselves, detect and classify obstacles, etc. They are also equipped with communication devices in order to share the information with other road users and the environment. The goal of this work is to develop a cooperative perception and communication system, which merges information coming from the communications device and obstacle detection module to improve the pedestrian detection, tracking, and hazard alarming.

Pedestrian detection is performed by using a perception architecture made of two sensors: a laser scanner and a CCD camera. The laser scanner provides a first hypothesis on the presence of a pedestrian-like obstacle while the camera performs the real classification of the obstacle in order to identify the pedestrian(s). This is a learning-based technique exploiting adaptive boosting (AdaBoost). Several classifiers were tested and learned in order to determine the best compromise between the nature and the number of classifiers and the accuracy of the classification.

3.1.4. Planning and executing vehicle actions

Participants: Plamen Petrov, Joshué Pérez Rastelli, Fawzi Nashashibi, Philippe Morignot, Paulo Lopes Resende, Mohamed Marouf.

From the understanding of the environment, thanks to augmented perception, we have either to warn the driver to help him in the control of his vehicle, or to take control in case of a driverless vehicle. In simple situations, the planning might also be quite simple, but in the most complex situations we want to explore, the planning must involve complex algorithms dealing with the trajectories of the vehicle and its surroundings (which might involve other vehicles and/or fixed or moving obstacles). In the case of fully automated vehicles, the perception will involve some map building of the environment and obstacles, and the planning will involve partial planning with periodical recomputation to reach the long term goal. In this case, with vehicle to vehicle communications, what we want to explore is the possibility to establish a negotiation protocol in order to coordinate nearby vehicles (what humans usually do by using driving rules, common sense and/or non verbal communication). Until now, we have been focusing on the generation of geometric trajectories as a result of a manoeuvre selection process using grid-based rating technique or fuzzy technique. For high speed vehicles, Partial Motion Planning techniques we tested, revealed their limitation because of the computational cost. The use of quintic polynomials we designed, allowed us to elaborate trajectories with different dynamics adapted to the driver profile. These trajectories have been implemented and validated in DLR's JointSystem demonstrator used in the European project HAVEit, as well as in IMARA's electrical vehicle prototype used in the French project ABV. HAVEit was also the opportunity for IMARA to take in charge the implementation of the Co-Pilot system which processes perception data in order to elaborate the high level command for the actuators. These trajectories were also validated on IMARA's cybercars. However, for the low speed cybercars that have pre-defined itineraries and basic manoeuvres, it was necessary to develop a more adapted planning and control system. Therefore, we have developed a nonlinear adaptive control for automated overtaking maneuver using quadratic polynomials and Lyapunov function candidate and taking into account the vehicles kinematics. For the global mobility systems we are developing, the control of the vehicles includes also advanced platooning, automated parking, automated docking, etc. For each functionality a dedicated control algorithm was designed (see publication of previous years). Today, IMARA is also investigating the opportunity of fuzzy-based control for specific manoeuvres. First results have been recently obtained for reference trajectory following in roundabouts and normal straight roads.

3.2. V2V and V2I Communications for ITS

Participants: Thierry Ernst, Oyunchimeg Shagdar, Gérard Le Lann, Manabu Tsukada, Younes Bouchaala, Pierre Merdrignac, Satoru Noguchi, Ines Ben Jemaa, Mohammad Abualhoul, Fawzi Nashashibi, Arnaud de La Fortelle.

Wireless communications are expected to play an important role for road safety, road efficiency, and comfort of road users. Road safety applications often require highly responsive and reliable information exchange between neighboring vehicles in any road density condition. Because the performance of the existing radio communications technology largely degrades with the increase of the node density, the challenge of designing wireless communications for safety applications is enabling reliable communications in highly dense scenarios. Targeting this issue, IMARA has been working on medium access control design and visible light communications, especially for highly dense scenarios. The works have been carried out considering the vehicle behavior such as vehicle merging and vehicle platooning.

Unlike many of the road safety applications, the applications regarding road efficiency and comfort of road users, on the other hand, often require connectivity to the Internet. Based on our expertise in both Internetbased communications in the mobility context and in ITS, we are now investigating the use of IPv6 (Internet Protocol version 6 which is going to replace the current version, IPv4, in a few years from now) for vehicular communications, in a combined architecture allowing both V2V and V2I. In the context of IPv6, we have been tackling research issues of combinations of MANET and NEMO and Multihoming in Nested Mobile Networks with Route Optimization.

The wireless channel and topology dynamics are the characteristics that require great research challenge in understanding the dynamics and designing efficient communications mechanisms. Targeting this issue we have been working on channel modeling for both radio and visible light communications, and design of communications mechanisms especially for security, service discovery, multicast and geocast message delivery, and access point selection. Below follows a more detailed description of the related research issues.

3.2.1. Multihoming in nested mobile networks with route optimization

Participants: Manabu Tsukada, Thierry Ernst.

Network mobility has the particularity of allowing recursive mobility, i.e. where a mobile node is attached to another mobile node (e.g. a PDA is attached to the in-vehicle IP network). This is referred to as nested mobility and brings a number of research issues in terms of routing efficiency. Another issue under such mobility configurations is the availability of multiple paths to the Internet (still in the same example, the PDA has a 3G interface and the in-vehicle network has some dedicated access to the Internet) and its appropriate selection.

3.2.2. Service discovery

Participants: Satoru Noguchi, Thierry Ernst.

Vehicles in a close vicinity need to discover what information can be made available to other vehicles (e.g. road traffic conditions, safety notification for collision avoidance). We are investigating both push and pull approaches and the ability of these mechanisms to scale to a large number of vehicles and services on offer.

3.2.3. Geographic multicast addressing and routing

Participants: Ines Ben Jemaa, Oyunchimeg Shagdar, Thierry Ernst, Arnaud de La Fortelle, Fawzi Nashashibi.

Many ITS applications such as fleet management require multicast data delivery. Existing works on this subject tackle mainly the problems of IP multicasting inside the Internet or geocasting in the VANETs. To enable Internet-based multicast services for VANETs, we introduced a framework that: i) to ensure vehicular multicast group reachability through the infrastructure network, defines a distributed and efficient geographic multicast auto-addressing mechanism, and ii) to allow simple and efficient data delivery, introduces a simplified approach that locally manages the group membership and distributes the packets among them.

3.2.4. Platooning control using visible light communications

Participants: Mohammad Abualhoul, Mohamed Marouf, Oyunchimeg Shagdar, Fawzi Nashashibi.

The main purpose of our research is to propose and test new successful supportive communication technology, which can provide stable and reliable communication between vehicles, especially for the platooning scenario. Although that VLC technology has a short history in comparing with other communication technologies, the infrastructure availability and the presence of the congestion in wireless communication channels are proposing VLC technology as reliable and supportive technology which can takeoff some loads of the wireless radio communication. First objective of this work is to develop an analytical model of VLC to understand its characteristics and limitation. The second objective is to design vehicle platooning control using VLC. In platooning control, a cooperation between control and communication is strongly required in order guarantee the platoon's stability (e.g. string stability problem). For this purpose we work on VLC model platooning scenario, to permit for each vehicle the trajectory tracking of the vehicle ahead, altogether with a prescribed inter-vehicle distance and considering all the VLC channel model limitations. The integrated channel model to the main Simulink platooning model will be responsible for deciding the availability of the Line-of-Sight for different trajectory's curvatures, which mean the capability of using light communication between each couple of vehicles in the platooning queue, at the same time the model will compute all the required parameters acquired from each vehicle controller.

3.2.5. V2X radio communications for road safety applications

Participants: Mohammad Abualhoul, Younes Bouchaala, Pierre Merdrignac, Oyunchimeg Shagdar.

While 5.9 GHz radio frequency band is dedicated to ITS applications, the channel and network behaviors in mobile scenarios are not very well known. In this work we theoretically and experimentally study the radio channel characteristics in vehicular networks, especially the radio quality and bandwidth availability. Based on our study, we develop mechanisms for efficient and reliable V2X communications, channel allocation, congestion control, and access point selection, which are especially dedicated to road safety and autonomous driving applications.

72

3.3. Automated driving, intelligent vehicular networks, and safety

Participant: Gérard Le Lann.

Intelligent vehicular networks (IVNs) are one constituent of ITS. IVNs encompass "clusters", platoons and vehicular ad-hoc networks comprising automated and cooperative vehicles. A basic principle that underlies our work is minimal reliance on road-side infrastructures for solving those open problems arising with IVNs. For example, V2V communications only are considered. Trivially, if one can solve a problem P considering V2V communications only, then P is solved with the help of V2I communications, whereas the converse is not true. Moreover, safety in the course of risk-prone maneuvers is our central concern. Since safety-critical scenarios may develop anytime anywhere, it is impossible to assume that there is always a road-side unit in the vicinity of those vehicles involved in a hazardous situation.

3.3.1. Cohorts and groups – Novel constructs for safe IVNs

The automated driving function rests on two radically different sets of solutions, one set encompassing signal processing and robotics (SPR), the other one encompassing vehicular communications and networking (VCN). In addition to being used for backing a failing SPR solution, VCN solutions have been originally proposed for "augmenting" the capabilities offered by SPR solutions, which are line-of-sight technologies, i.e. limited by obstacles. Since V2V omni-directional radio communications that are being standardized (IEEE 802.11p / WAVE) have ranges in the order of 250 m, it is interesting to prefix risk-prone maneuvers with the exchange of SC-messages. Roles being assigned prior to initiating physical maneuvers, the SPR solutions are invoked under favorable conditions, safer than when vehicles have not agreed on "what to do" ahead of time.

VCN solutions shall belong to two categories: V2V omni-directional (360°) communications and unidirectional communications, implemented out of very-short range antennas of very small beam-width. This has led to the concept of neighbor-to-neighbor (N2N) communications, whereby vehicles following each other on a given lane can exchange periodic beacons and event-driven messages.

Vehicle motions on roads and highways obey two different regimes. First, stationary regimes, where intervehicular spacing, acceleration and deceleration rates (among other parameters), match specified bounds. This, combined with N2N communications, has led to the concept of cohorts, where safety is not at stake provided that no violation of bounds occurs. Second, transitory regimes, where some of these bounds are violated (e.g., sudden braking – the "brick wall" paradigm), or where vehicles undertake risk-prone maneuvers such as lane changes, resulting into SC scenarios. Reasoning about SC scenarios has led to the concept of groups. Cohorts and groups have been introduced in [7].

3.3.2. Cohorts, N2N communications, and safety in the presence of telemetry failures

In [7] we show how periodic N2N beaconing serves to withstand failures of directional telemetry devices. Worst-case bounds on safe inter-vehicular spacing are established analytically (simulations cannot be used for establishing worst-case bounds). A result of practical interest is the ability to answer the following question: "vehicles move at high speed in a cohort formation; if in a platoon formation, spacing would be in the order of 3 m; what is the additional safe spacing in a cohort?" With a N2N beaconing period in the range of 100-200 ms, the additional spacing is much less than 1 m. Failure of a N2N communication link translates into a cohort split, one of the vehicles impaired becoming the tail of a cohort, and its (impaired) follower becoming the head of a newly formed cohort. The number of vehicles in a cohort has an upper bound, and the inter-cohort spacing has a lower bound.

3.3.3. Groups, cohorts, and fast reliable V2V Xcasting in the presence of message losses

Demonstrating safety involves establishing strict timeliness ("real time") properties under worst-case conditions (traffic density, failure rates, radio interference ranges). As regards V2V message passing, this requirement translates into two major problems:

- TBD: time-bounded delivery of V2V messages exchanged among vehicles that undertake SC maneuvers, despite high message loss ratios.
- TBA: time-bounded access to a radio channel in open ad hoc, highly mobile, networks of vehicles, some vehicles undertaking SC maneuvers, despite high contention.

Groups and cohorts have proved to be essential constructs for devising a solution for problem TBD. Vehicles involved in a SC scenario form a group where a 3-way handshake is unfolded so as to reach an agreement regarding roles and adjusted motions. A 3-way handshake consists in 3 rounds of V2V Xcasting of SC messages, round 1 being a Geocast, round 2 being a Convergecast, and round 3 being a Multicast. Worstcase time bound for completing a 3-way handshake successfully is in the order of 200 ms, under worst-case conditions. It is well known that message losses are the dominant cause of failures in mobile wireless networks, which raises the following problem with the Xcasting of SC messages. If acknowledgments are not used, it is impossible to predict probabilities for successful deliveries, which is antagonistic with demonstrating safety. Asking for acknowledgments is a non solution. Firstly, by definition, vehicles that are to be reached by a Geocast are unknown to a sender. How can a sender know which acknowledgments to wait for? Secondly, repeating a SC message that has been lost on a radio channel does not necessarily increase chances of successful delivery. Indeed, radio interferences (causing the first transmission loss) may well last longer than 200 ms (or seconds). To be realistic, one is led to consider a novel and extremely powerful (adversary) failure model (denoted Ω), namely the restricted unbounded omission model, whereby messages meant to circulate on f out of n radio links are "erased" by the adversary (the same f links), ad infinitum. Moreover, we have assumed message loss ratios f/n as high as 2/3. This is the setting we have considered in [56], where we present a solution for the fast (less than 200 ms) reliable (in the presence of Ω) multipoint communications problem TBD. The solution consists in a suite of Xcast protocols (the Zebra suite) and proxy sets built out of cohorts. Analytical expressions are given for the worst-case time bounds for each of the Zebra protocols.

Surprisingly, while not being originally devised to that end, it turns out that cohorts and groups are essential cornerstones for solving open problem TBA.

3.4. Managing the system (via probabilistic modeling)

Participants: Guy Fayolle, Cyril Furtlehner, Arnaud de La Fortelle, Jean-Marc Lasgouttes, Victorin Martin.

The research on the management of the transportation system is a natural continuation of the research of the Preval team, which joined IMARA in 2007. For many years, the members of this team (and of its ancestor Meval) have been working on understanding random systems of various origins, mainly through the definition and solution of mathematical models. The traffic modeling field is very fertile in difficult problems, and it has been part of the activities of the members of Preval since the times of the Praxitèle project.

Following this tradition, the roadmap of the group is to pursue basic research on probabilistic modeling with a clear slant on applications related to LaRA activities. A particular effort is made to publicize our results among the traffic analysis community, and to implement our algorithms whenever it makes sense to use them in traffic management. Of course, as aforementioned, these activities in no way preclude the continuation of the methodological work achieved in the group for many years in various fields: random walks in Z_{+}^{n} ([1], [2], [5]), large deviations, birth and death processes on trees, particle systems.

In practice, the group explores the links between large random systems and statistical physics, since this approach proves very powerful, both for macroscopic (fleet management [4]) and microscopic (car-level description of traffic, formation of jams) analysis. The general setting is mathematical modeling of large systems (mostly stochastic), without any a priori restriction: networks [3], random graphs or even objects coming from biology. When the size or the volume of those structures grows (this corresponds to the so-called thermodynamical limit), one aims at establishing a classification based on criteria of a twofold nature: quantitative (performance, throughput, etc) and qualitative (stability, asymptotic behavior, phase transition, complexity).

3.4.1. Exclusion processes

One of the simplest basic (but non trivial) probabilistic models for road traffic is the exclusion process. It lends itself to a number of extensions allowing to tackle some particular features of traffic flows: variable speed of particles, synchronized move of consecutive particles (platooning), use of geometries more complex than plain 1D (cross roads or even fully connected networks), formation and stability of vehicle clusters (vehicles that are close enough to establish an ad-hoc communication system), two-lane roads with overtaking.

Most of these generalizations lead to models that are obviously difficult to solve and require upstream theoretical studies. Some of these models have already been investigated by members of the group, and they are part of wide ongoing researches.

3.4.2. Message passing algorithms

Large random systems are a natural part of macroscopic studies of traffic, where several models from statistical physics can be fruitfully employed. One example is fleet management, where one main issue is to find optimal ways of reallocating unused vehicles: it has been shown that Coulombian potentials might be an efficient tool to drive the flow of vehicles. Another case deals with the prediction of traffic conditions, when the data comes from probe vehicles instead of static sensors. Using the Ising model, together with the Belief Propagation (BP) algorithm very popular in the computer science community, we have been able to show how real-time data can be used for traffic prediction and reconstruction (in the space-time domain).

This new use of BP algorithm raises some theoretical questions about the properties of the Bethe approximation of Ising models:

- find the best way to inject real-valued data in an Ising model with binary variables;
- build macroscopic variables that measure the overall state of the underlying graph, in order to improve the local propagation of information;
- make the underlying model as sparse as possible, in order to improve BP convergence and quality.

3.4.3. Statistical physics and hydrodynamic limits

These last years, having in mind a global project concerning the analysis of complex systems, we did focus on the interplay between discrete and continuous description: in some cases, this recurrent question can be addressed quite rigorously via probabilistic methods (see e.g. [52]).

To describe the systems of interest, which are in touch with many application domains, we started from *paradigmatic* elements, namely discrete curves subject to stochastic deformations. Up to some convenient mappings, it appears that most models can be set in terms of interacting exclusion processes, the ultimate goal being to derive *hydrodynamic limits* after proper scalings.

The key ideas can be found in [53], where the basic ASEP system on the torus is the toy model. In this case, the usual sequence of empirical measures, converges in probability to a deterministic measure, which is the unique weak solution of a Cauchy problem.

The Gordian knot is indeed the analysis of a family of specific partial differential operators in infinite dimension. Indeed, the values of functions at given points play here the role of usual variables, their number becoming infinite. The method presents some new theoretical features, involving path integrals, promeasures (as introduced by Bourbaki), variational calculus, and the construction of *generalized measures*. In [53], we present a detailed analysis of the ASEP system on the torus $\mathbb{Z}/N\mathbb{Z}$. Then, we claim that most of the arguments a priori for multi-type exclusion processes, and should lead to systems of coupled partial differential equations of Burgers' type. At the moment, this claim is being proved for the famous ABC model, reformulated in terms of the dynamics of a random walk on the triangular lattice.

MATHRISK Project-Team

3. Research Program

3.1. Dependence modeling

Participants: Aurélien Alfonsi, Damien Lamberton, Bernard Lapeyre.

The volatility is a key concept in modern mathematical finance, and an indicator of the market stability. Risk management and associated instruments depend strongly on the volatility, and volatility modeling has thus become a crucial issue in the finance industry. Of particular importance is the assets *dependence* modeling. The calibration of models for a single asset can now be well managed by banks but modeling of dependence is the bottleneck to efficiently aggregate such models. A typical issue is how to go from the individual evolution of each stock belonging to an index to the joint modeling of these stocks. In this perspective, we want to model stochastic volatility in a *multidimensional* framework. To handle these questions mathematically, we have to deal with stochastic differential equations that are defined on matrices in order to model either the instantaneous covariance or the instantaneous correlation between the assets. From a numerical point of view, such models are very demanding since the main indexes include generally more than thirty assets. It is therefore necessary to develop efficient numerical methods for pricing options and calibrating such models to market data. As a first application, modeling the dependence between assets allows us to better handle derivatives products on a basket. It would give also a way to price and hedge consistenly single-asset and basket products. Besides, it can be a way to capture how the market estimates the dependence between assets.

3.2. Liquidity risk

Participants: Aurélien Alfonsi, Anton Kolotaev, Marie-Claire Quenez, Agnès Sulem, Antonino Zanette.

The financial crisis has caused an increased interest in mathematical finance studies which take into account the market incompleteness issue and the liquidity risk. Loosely speaking, liquidity risk is the risk that comes from the difficulty of selling (or buying) an asset. At the extreme, this may be the impossibility to sell an asset, which occured for "junk assets" during the subprime crisis. Hopefully, it is in general possible to sell assets, but this may have some cost. Let us be more precise. Usually, assets are quoted on a market with a Limit Order Book (LOB) that registers all the waiting limit buy and sell orders for this asset. The bid (resp. ask) price is the most expensive (resp. cheapest) waiting buy or sell order. If a trader wants to sell a single asset, he will sell it at the bid price. Instead, if he wants to sell a large quantity of assets, he will have to sell them at a lower price in order to match further waiting buy orders. This creates an extra cost, and raises important issues. From a short-term perspective (from few minutes to some days), this may be interesting to split the selling order and to focus on finding optimal selling strategies. This requires to model the market microstructure, i.e. how the market reacts in a short time-scale to execution orders. From a long-term perspective (typically, one month or more), one has to understand how this cost modifies portfolio managing strategies (especially deltahedging or optimal investment strategies). At this time-scale, there is no need to model precisely the market microstructure, but one has to specify how the liquidity costs aggregate.

3.2.1. Long term liquidity risk.

On a long-term perspective, illiquidity can be approached via various ways: transactions costs [56], [57], [65], [71], [74], [89], [85], delay in the execution of the trading orders [90], [88], [67], trading constraints or restriction on the observation times (see e.g. [73] and references herein). As far as derivative products are concerned, one has to understand how delta-hedging strategies have to be modified. This has been considered for example by Cetin, Jarrow and Protter [87]. We plan to contribute on these various aspects of liquidity risk modeling and associated stochastic optimization problems. Let us mention here that the price impact generated by the trades of the investor is often neglected with a long-term perspective. This seems acceptable

since the investor has time enough to trade slowly in order to eliminate its market impact. Instead, when the investor wants to make significant trades on a very short time horizon, it is crucial to take into account and to model how prices are modified by these trades. This question is addressed in the next paragraph on market microstructure.

3.2.2. Market microstructure.

The European directive MIFID has increased the competition between markets (NYSE-Euronext, Nasdaq, LSE and new competitors). As a consequence, the cost of posting buy or sell orders on markets has decreased, which has stimulated the growth of market makers. Market makers are posting simultaneously bid and ask orders on a same stock, and their profit comes from the bid-ask spread. Basically, their strategy is a "round-trip" (i.e. their position is unchanged between the beginning and the end of the day) that has generated a positive cash flow.

These new rules have also greatly stimulated research on market microstructure modeling. From a practitioner point of view, the main issue is to solve the so-called "optimal execution problem": given a deadline T, what is the optimal strategy to buy (or sell) a given amount of shares that achieves the minimal expected cost? For large amounts, it may be optimal to split the order into smaller ones. This is of course a crucial issue for brokers, but also market makers that are looking for the optimal round-trip.

Solving the optimal execution problem is not only an interesting mathematical challenge. It is also a mean to better understand market viability, high frequency arbitrage strategies and consequences of the competition between markets. For example when modeling the market microstructure, one would like to find conditions that allow or exclude round trips. Beyond this, even if round trips are excluded, it can happen that an optimal selling strategy is made with large intermediate buy trades, which is unlikely and may lead to market instability.

We are interested in finding synthetic market models in which we can describe and solve the optimal execution problem. A. Alfonsi and A. Schied (Mannheim University) [58] have already proposed a simple Limit Order Book model (LOB) in which an explicit solution can be found for the optimal execution problem. We are now interested in considering more sophisticated models that take into account realistic features of the market such as short memory or stochastic LOB. This is mid term objective. At a long term perspective one would like to bridge these models to the different agent behaviors, in order to understand the effect of the different quotation mechanisms (transaction costs for limit orders, tick size, etc.) on the market stability.

3.3. Contagion modeling and systemic risk

Participants: Benjamin Jourdain, Agnès Sulem.

After the recent financial crisis, systemic risk has emerged as one of the major research topics in mathematical finance. The scope is to understand and model how the bankruptcy of a bank (or a large company) may or not induce other bankruptcies. By contrast with the traditional approach in risk management, the focus is no longer on modeling the risks faced by a single financial institution, but on modeling the complex interrelations between financial institutions and the mechanisms of distress propagation among these. Ideally, one would like to be able to find capital requirements (such as the one proposed by the Basel committee) that ensure that the probability of multiple defaults is below some level.

The mathematical modeling of default contagion, by which an economic shock causing initial losses and default of a few institutions is amplified due to complex linkages, leading to large scale defaults, can be addressed by various techniques, such as network approaches (see in particular R. Cont et al. [59] and A. Minca [79]) or mean field interaction models (Garnier-Papanicolaou-Yang [72]). The recent approach in [59] seems very promising. It describes the financial network approach as a weighted directed graph, in which nodes represent financial institutions and edges the exposures between them. Distress propagation in a financial system may be modeled as an epidemics on this graph. In the case of incomplete information on the structure of the interbank network, cascade dynamics may be reduced to the evolution of a multi-dimensional Markov chain that corresponds to a sequential discovery of exposures and determines at any time the size of contagion. Little has been done so far on the *control* of such systems in order to reduce the systemic risk and we aim to contribute to this domain.

3.4. Stochastic analysis and numerical probability

3.4.1. Stochastic control

Participants: Vlad Bally, Jean-Philippe Chancelier, Marie-Claire Quenez, Agnès Sulem.

The financial crisis has caused an increased interest in mathematical finance studies which take into account the market incompleteness issue and the default risk modeling, the interplay between information and performance, the model uncertainty and the associated robustness questions. We address these questions by further developing the theory of stochastic control in a broad sense, including stochastic optimization, nonlinear expectations, Malliavin calculus, stochastic differential games and various aspects of optimal stopping.

3.4.2. Simulation of stochastic differential equations

Participants: Benjamin Jourdain, Aurélien Alfonsi, Vlad Bally, Damien Lamberton, Bernard Lapeyre, Jérôme Lelong, Céline Labart.

Effective numerical methods are crucial in the pricing and hedging of derivative securities. The need for more complex models leads to stochastic differential equations which cannot be solved explicitly, and the development of discretization techniques is essential in the treatment of these models. The project MathRisk addresses fundamental mathematical questions as well as numerical issues in the following (non exhaustive) list of topics: Multidimensional stochastic differential equations, High order discretization schemes, Singular stochastic differential equations.

3.4.3. Monte-Carlo simulations

Participants: Benjamin Jourdain, Aurélien Alfonsi, Damien Lamberton, Mohamed Sbai, Vlad Bally, Bernard Lapeyre, Ahmed Kebaier, Céline Labart, Jérôme Lelong, Sidi-Mohamed Ould-Aly, Abdelmounaim Abbas-Turki, Abdelkoddousse Ahida, Antonino Zanette, El Hadj Aly Dia.

Monte-Carlo methods is a very useful tool to evaluate prices especially for complex models or options. We carry on research on *adaptive variance reduction methods* and to use *Monte-Carlo methods for calibration* of advanced models.

This activity in the MathRisk team is strongly related to the development of the Premia software.

3.4.4. Optimal stopping

Participants: Aurélien Alfonsi, Benjamin Jourdain, Damien Lamberton, Maxence Jeunesse, Ayech Bouselmi, Agnès Sulem, Marie-Claire Quenez.

The theory of American option pricing has been an incite for a number of research articles about optimal stopping. Our recent contributions in this field concern optimal stopping in models with jumps irregular obstacles, free boundary analysis, reflected BSDEs.

3.4.5. Malliavin calculus and applications in finance

Participants: Vlad Bally, Arturo Kohatsu-Higa, Agnès Sulem, Antonino Zanette.

The original Stochastic Calculus of Variations, now called the Malliavin calculus, was developed by Paul Malliavin in 1976 [77]. It was originally designed to study the smoothness of the densities of solutions of stochastic differential equations. One of its striking features is that it provides a probabilistic proof of the celebrated Hörmander theorem, which gives a condition for a partial differential operator to be hypoelliptic. This illustrates the power of this calculus. In the following years a lot of probabilists worked on this topic and the theory was developed further either as analysis on the Wiener space or in a white noise setting. Many applications in the field of stochastic calculus followed. Several monographs and lecture notes (for example D. Nualart [80], D. Bell [64] D. Ocone [82], B. Øksendal [91]) give expositions of the subject. See also V. Bally [61] for an introduction to Malliavin calculus.

From the beginning of the nineties, applications of the Malliavin calculus in finance have appeared : In 1991 Karatzas and Ocone showed how the Malliavin calculus, as further developed by Ocone and others, could be used in the computation of hedging portfolios in complete markets [81].

Since then, the Malliavin calculus has raised increasing interest and subsequently many other applications to finance have been found [78], such as minimal variance hedging and Monte Carlo methods for option pricing. More recently, the Malliavin calculus has also become a useful tool for studying insider trading models and some extended market models driven by Lévy processes or fractional Brownian motion.

Let us try to give an idea why Malliavin calculus may be a useful instrument for probabilistic numerical methods.

We recall that the theory is based on an integration by parts formula of the form E(f'(X)) = E(f(X)Q). Here X is a random variable which is supposed to be "smooth" in a certain sense and non-degenerated. A basic example is to take $X = \sigma \Delta$ where Δ is a standard normally distributed random variable and σ is a strictly positive number. Note that an integration by parts formula may be obtained just by using the usual integration by parts in the presence of the Gaussian density. But we may go further and take X to be an aggregate of Gaussian random variables (think for example of the Euler scheme for a diffusion process) or the limit of such simple functionals.

An important feature is that one has a relatively explicit expression for the weight Q which appears in the integration by parts formula, and this expression is given in terms of some Malliavin-derivative operators.

Let us now look at one of the main consequences of the integration by parts formula. If one considers the *Dirac* function $\delta_x(y)$, then $\delta_x(y) = H'(y-x)$ where H is the *Heaviside* function and the above integration by parts formula reads $E(\delta_x(X)) = E(H(X-x)Q)$, where $E(\delta_x(X))$ can be interpreted as the density of the random variable X. We thus obtain an integral representation of the density of the law of X. This is the starting point of the approach to the density of the law of a diffusion process: the above integral representation allows us to prove that under appropriate hypothesis the density of X is smooth and also to derive upper and lower bounds for it. Concerning simulation by Monte Carlo methods, suppose that you want to compute $E(\delta_x(y)) \sim \frac{1}{M} \sum_{i=1}^M \delta_x(X^i)$ where $X^1, ..., X^M$ is a sample of X. As X has a law which is absolutely continuous with respect to the Lebesgue measure, this will fail because no X^i hits exactly x. But if you are able to simulate the weight Q as well (and this is the case in many applications because of the explicit form mentioned above) then you may try to compute $E(\delta_x(X)) = E(H(X-x)Q) \sim \frac{1}{M} \sum_{i=1}^M E(H(X^i - x)Q^i)$. This basic remark formula leads to efficient methods to compute by a Monte Carlo method some irregular quantities as derivatives of option prices with respect to some parameters (the *Greeks*) or conditional expectations, which appear in the pricing of American options by the dynamic programming). See the papers by Fournié et al [70] and [69] and the papers by Bally et al., Benhamou, Bermin et al., Bernis et al., Cvitanic et al., Talay and Zheng and Temam in [76].

L. Caramellino, A. Zanette and V. Bally have been concerned with the computation of conditional expectations using Integration by Parts formulas and applications to the numerical computation of the price and the Greeks (sensitivities) of American or Bermudean options. The aim of this research was to extend a paper of Reigner and Lions who treated the problem in dimension one to higher dimension - which represent the real challenge in this field. Significant results have been obtained up to dimension 5 [63] and the corresponding algorithms have been implemented in the Premia software.

Moreover, there is an increasing interest in considering jump components in the financial models, especially motivated by calibration reasons. Algorithms based on the integration by parts formulas have been developed in order to compute Greeks for options with discontinuous payoff (e.g. digital options). Several papers and two theses (M. Messaoud and M. Bavouzet defended in 2006) have been published on this topic and the corresponding algorithms have been implemented in Premia. Malliavin Calculus for jump type diffusions - and more general for random variables with localy smooth law - represents a large field of research, also for applications to credit risk problems.

The Malliavin calculus is also used in models of insider trading. The "enlargement of filtration" technique plays an important role in the modeling of such problems and the Malliavin calculus can be used to obtain general results about when and how such filtration enlargement is possible. See the paper by P. Imkeller in [76]). Moreover, in the case when the additional information of the insider is generated by adding the information about the value of one extra random variable, the Malliavin calculus can be used to find explicitly the optimal portfolio of an insider for a utility optimization problem with logarithmic utility. See the paper by J.A. León, R. Navarro and D. Nualart in [76]).

A. Kohatsu Higa and A. Sulem have studied a controlled stochastic system whose state is described by a stochastic differential equation with anticipating coefficients. These SDEs can be interpreted in the sense of *forward integrals*, which are the natural generalization of the semimartingale integrals, as introduced by Russo and Valois [84]. This methodology has been applied for utility maximization with insiders.

MICMAC Project-Team

3. Research Program

3.1. Research Program

Quantum Chemistry aims at understanding the properties of matter through the modeling of its behavior at a subatomic scale, where matter is described as an assembly of nuclei and electrons. At this scale, the equation that rules the interactions between these constitutive elements is the Schrödinger equation. It can be considered (except in few special cases notably those involving relativistic phenomena or nuclear reactions) as a universal model for at least three reasons. First it contains all the physical information of the system under consideration so that any of the properties of this system can in theory be deduced from the Schrödinger equation associated to it. Second, the Schrödinger equation does not involve any empirical parameters, except some fundamental constants of Physics (the Planck constant, the mass and charge of the electron, ...); it can thus be written for any kind of molecular system provided its chemical composition, in terms of natures of nuclei and number of electrons, is known. Third, this model enjoys remarkable predictive capabilities, as confirmed by comparisons with a large amount of experimental data of various types. On the other hand, using this high quality model requires working with space and time scales which are both very tiny: the typical size of the electronic cloud of an isolated atom is the Angström $(10^{-10} \text{ meters})$, and the size of the nucleus embedded in it is 10^{-15} meters ; the typical vibration period of a molecular bond is the femtosecond $(10^{-15} \text{ seconds})$, and the characteristic relaxation time for an electron is 10^{-18} seconds. Consequently, Quantum Chemistry calculations concern very short time (say 10^{-12} seconds) behaviors of very small size (say 10^{-27} m³) systems. The underlying question is therefore whether information on phenomena at these scales is useful in understanding or, better, predicting macroscopic properties of matter. It is certainly not true that all macroscopic properties can be simply upscaled from the consideration of the short time behavior of a tiny sample of matter. Many of them derive from ensemble or bulk effects, that are far from being easy to understand and to model. Striking examples are found in solid state materials or biological systems. Cleavage, the ability minerals have to naturally split along crystal surfaces (e.g. mica yields to thin flakes) is an ensemble effect. Protein folding is also an ensemble effect that originates from the presence of the surrounding medium; it is responsible for peculiar properties (e.g. unexpected acidity of some reactive site enhanced by special interactions) upon which vital processes are based. However, it is undoubtedly true that many macroscopic phenomena originate from elementary processes which take place at the atomic scale. Let us mention for instance the fact that the elastic constants of a perfect crystal or the color of a chemical compound (which is related to the wavelengths absorbed or emitted during optic transitions between electronic levels) can be evaluated by atomic scale calculations. In the same fashion, the lubricative properties of graphite are essentially due to a phenomenon which can be entirely modeled at the atomic scale. It is therefore reasonable to simulate the behavior of matter at the atomic scale in order to understand what is going on at the macroscopic one. The journey is however a long one. Starting from the basic principles of Quantum Mechanics to model the matter at the subatomic scale, one finally uses statistical mechanics to reach the macroscopic scale. It is often necessary to rely on intermediate steps to deal with phenomena which take place on various *mesoscales*. It may then be possible to couple one description of the system with some others within the so-called *multiscale* models. The sequel indicates how this journey can be completed focusing on the first smallest scales (the subatomic one), rather than on the larger ones. It has already been mentioned that at the subatomic scale, the behavior of nuclei and electrons is governed by the Schrödinger equation, either in its time dependent form or in its time independent form. Let us only mention at this point that

- both equations involve the quantum Hamiltonian of the molecular system under consideration; from a mathematical viewpoint, it is a self-adjoint operator on some Hilbert space; *both* the Hilbert space and the Hamiltonian operator depend on the nature of the system;
- also present into these equations is the wavefunction of the system; it completely describes its state; its L^2 norm is set to one.

The time dependent equation is a first order linear evolution equation, whereas the time-independent equation is a linear eigenvalue equation. For the reader more familiar with numerical analysis than with quantum mechanics, the linear nature of the problems stated above may look auspicious. What makes the numerical simulation of these equations extremely difficult is essentially the huge size of the Hilbert space: indeed, this space is roughly some symmetry-constrained subspace of $L^2(\mathbb{R}^d)$, with d = 3(M+N), M and N respectively denoting the number of nuclei and the number of electrons the system is made of. The parameter d is already 39 for a single water molecule and rapidly reaches 10^6 for polymers or biological molecules. In addition, a consequence of the universality of the model is that one has to deal at the same time with several energy scales. In molecular systems, the basic elementary interaction between nuclei and electrons (the two-body Coulomb interaction) appears in various complex physical and chemical phenomena whose characteristic energies cover several orders of magnitude: the binding energy of core electrons in heavy atoms is 10^4 times as large as a typical covalent bond energy, which is itself around 20 times as large as the energy of a hydrogen bond. High precision or at least controlled error cancellations are thus required to reach chemical accuracy when starting from the Schrödinger equation. Clever approximations of the Schrödinger problems are therefore needed. The main two approximation strategies, namely the Born-Oppenheimer-Hartree-Fock and the Born-Oppenheimer-Kohn-Sham strategies, end up with large systems of coupled nonlinear partial differential equations, each of these equations being posed on $L^2(\mathbb{R}^3)$. The size of the underlying functional space is thus reduced at the cost of a dramatic increase of the mathematical complexity of the problem: nonlinearity. The mathematical and numerical analysis of the resulting models has been the major concern of the project-team for a long time. In the recent years, while part of the activity still follows this path, the focus has progressively shifted to problems at other scales. Such problems are described in the following sections.

MOKAPLAN Exploratory Action

3. Research Program

3.1. Context

Optimal Mass Transportation is a mathematical research topic which started two centuries ago with Monge's work on "des remblais et déblais". This engineering problem consists in minimizing the transport cost between two given mass densities. In the 40's, Kantorovitch [54] solved the dual problem and interpreted it as an economic equilibrium. The *Monge-Kantorovitch* problem became a specialized research topic in optimization and Kantorovitch obtained the 1975 Nobel prize in economics for his contributions to resource allocations problems. Following the seminal discoveries of Brenier in the 90's [23], Optimal Transportation has received renewed attention from mathematical analysts and the Fields Medal awarded in 2010 to C. Villani, who gave important contributions to Optimal Transportation and wrote the modern reference monograph [75], arrived at a culminating moment for this theory. Optimal Mass Transportation is today a mature area of mathematical analysis with a constantly growing range of applications (see below).

In the modern Optimal Mass Transportation problem, two probability measures or "mass" densities : $d\rho_i(x_i)(=\rho_i(x_i) dx_i), i = 0, 1$ such that $\rho_i \ge 0, \int_{X_0} \rho_0(x_0) dx_0 = \int_{X_1} \rho_1(x_1) dx_1 = 1, X_i \subset \mathbb{R}^n$. They are often referred to, respectively, source and target densities, support or spaces. The problem is the minimization of a *transportation cost*, $\Im(M) = \int_{X_0} c(x, M(x)) \rho_0(x) dx$ where c is a displacement ground cost, over all volume preserving maps $M \in \mathcal{MM} = \{M : X_0 \to X_1, M_{\#} d\rho_0 = d\rho_1\}$. Assuming that M is a diffeomorphism, this is equivalent to the Jacobian equationdet $(DM(x))\rho_1(M(x)) = \rho_0(x)$. Most of the modern Optimal Mass Transportation theory has been developed for the Euclidean distance squared cost $c(x, y) = ||x - y||^2$ while the historic monge cost was the simple distance c(x, y) = ||x - y||.

In the Euclidean distance squared ground cost, the problem is well posed and in the seminal work of Brenier [24], the optimal map is characterized as the gradient of a convex potential ϕ^* : $\mathcal{I}(\nabla\phi^*(x)) = \min_{M \in \mathcal{M}} \mathcal{I}(M)$. A formal substitution in the Jacobian equation gives the Monge-Ampère equation $det(D^2\phi^*)\rho_1(\nabla\phi^*(x)) = \rho_0(x)$ complemented by the *second boundary value* condition $\nabla\phi^*(X_0) \subset X_1$. Caffarelli [29] used this result to extend the regularity theory for the Monge-Ampère equation. He noticed in particular that Optimal Mass Transportation solutions, now called *Brenier solutions*, may have discontinuous gradients when the target density support X_1 is non convex and are therefore weaker that than the Monge-Ampère potentials associated to Alexandrov measures (see [50] for a review of the different notions of Monge-Ampère solutions). The value function $\sqrt{\mathcal{I}(\nabla\phi^*)}$ is also known to be the *Wasserstein distance* $W_2(\rho_0, \rho_1)$ on the space of probability densities, see [75]. The *Computational Fluid Dynamic* formulation proposed by Brenier and Benamou in [2] introduces a time extension of the domain and leads to a

convex but non smooth optimization problem : $\Im(\nabla \phi^*) = \min_{(\rho,V) \in \mathcal{C}} \int_0^1 \int_X \frac{1}{2} \rho(t,x) \|V(t,x)\|^2 dx dt$. with constraints : $\mathcal{C} = \{(\rho, V), \text{ s.t } \partial_t \rho + div(\rho V) = 0, \rho(\{0, 1\}, .) = \rho_{\{0,1\}}(.)\}$. The time curves $t \to \rho(t, .)$ are geodesics between ρ_0 and ρ_1 for the Wassertein distance. This formulation is a limit case of *Mean Fields games* [55], a large class of economic models introduced by Lasry and Lions. The Wasserstein distance and its connection to Optimal Mass Transportation also appears in the construction of semi-discrete Gradient Flows. This notion known as *JKO gradient flows* after its authors in [52] is a popular tool to study non-linear diffusion equations : the implicit Euler scheme $\rho_{k+1}^{dt} = \arg min_{\rho(.)} F(\rho(.)) + \frac{1}{2dt} W_2(\rho(.), \rho_k^{dt})^2$ can be shown to converge $\rho_k^{dt}(.) \to \rho^*(t, .)$ as $dt \to 0$ to the solution of the non linear continuity equation $\partial_t \rho^* + div(\rho^* \nabla(-\frac{\partial F}{\partial \rho}(\rho^*))) = 0, \ \rho^*(0, .) = \rho_0^{dt}(.)$. The prototypical example is given by $F(\rho) = \int_X \rho(x) \log(\rho(x)) + \rho(x) V(x) dx$ which corresponds to the classical Fokker-Planck equation. Extensions of the ground cost c have been actively studied recently, some are mentioned in the application section. Technical results culminating with the *Ma-Trudinger-Wang* condition [58] which gives necessary condition on c for the regularity of the solution of the Optimal Mass Transportation problem. More recently

attention has risen on multi marginal Optimal Mass Transportation [49] and has been systematically studied in [67] [70] [68] [69]. The data consists in an arbitrary (and even infinite) number N of densities (the marginals) and the ground cost is defined on a product space $c(x_0, x_1, ..., x_{n-1})$ of the same dimension. Several interesting applications belong to this class of models (see below).

Our focus is on numerical method in Optimal Mass Transportation and applications. The simplest way to build a numerical method is to consider sum of dirac masses $\rho_0 = \sum_{i=1}^N \delta_{A_i}$ $\rho_1 = \sum_{j=1}^N \delta_{B_j}$. In that case the Optimal Mass Transportation problem reduces to combinatorial optimisation assignment problem between the points $\{A_i\}$ s and $\{B_i\}$ s : $\min_{\sigma \in Permut(1,N)} \frac{1}{N} \sum_{i=1}^N C_{i,\sigma(i)} C_{i,j} = ||A_i - B_j||^2$. The complexity of the best (Hungarian or Auction) algorithm, see [21] for example, is $O(N^{\frac{5}{2}})$. An interesting variant is obtained when only the target measure is discrete. For instance $X_0 = \{||x|| < 1\}$, $\rho_0 = \frac{1}{|X_0|} \rho_1 = \frac{1}{N} \sum_{j=1}^N \delta_{y_j}$. It corresponds to the notion of Pogorelov solutions of the Monge-Ampère equation [71] and is also linked to Minkowski problem [18]. The optimal map is piecewise constant and the slopes are known. More precisely there exists N polygonal cells C_j such that $X_0 = \bigcup_j C_j$, $|C_j| = \frac{1}{N}$ and $\nabla \phi^*|_{C_j} = y_j$. Pogorelov proposed a constructive algorithm to build these solutions which has been refined and extended in particular in [39] [66] [63] [62]. The complexity is still not linear : $O(N^2 \log N)$.

For general densities data, the original optimization problem is not tractable because of the volume preserving constraint on the map. Kantorovitch dual formulation is a linear program but with a large number of constraints set over the product of the source and target space $X_0 \times X_1$. The CFD formulation [2]. preserves the convexity of the objective function and transforms the volume preserving constraint into a linear continuity equation (using a change of variable). We obtained a convex but non smooth optimization problem solved using an Augmented Lagrangian method [43], as originally proposed in [2]. It has been reinterpreted recently in the framework of proximal algorithm [64]. This approach is robust and versatile and has been reimplemented many times. It remains a first order optimization method and converges slowly. The cost is also increased by the additional artificial time dimension. An empirical complexity is $O(N^3LogN)$ where N is the space discretization of the density. Several variants and extension of these methods have been implemented, in particular in [27] [17]. It is the only provably convergent method to compute Brenier (non C^1) solutions.

When interested in slightly more regular solutions which correspond to the assumption that the target support is convex, the recent *wide stencil* monotone finite difference scheme for the Monge-Ampère equation [45] can be adapted to the Optimal Mass Transportation problem. This is the topic of [6]. This approach is extremely fast as a Newton algorithm can be used to solve the discrete system. Numerical studies confirm this with a linear empirical complexity.

For other costs, JKO schemes, multi marginal extensions, partial transport ... efficient numerical methods are to be invented.

MUTANT Project-Team

3. Research Program

3.1. Real-time Machine Listening

When human listeners are confronted with musical sounds, they rapidly and automatically find their way in the music. Even musically untrained listeners have an exceptional ability to make rapid judgments about music from short examples, such as determining music style, performer, beating, and specific events such as instruments or pitches. Making computer systems capable of similar capabilities requires advances in both music cognition, and analysis and retrieval systems employing signal processing and machine learning.

In a panel session at the 13th National Conference on Artificial Intelligence in 1996, Rodney Brooks (noted figure in robotics) remarked that while automatic speech recognition was a highly researched domain, there had been few works trying to build machines able to understand "non-speech sound". He went further to name this as one of the biggest challenges faced by Artificial Intelligence [50]. More than 15 years have passed. Systems now exist that are able to analyze the contents of music and audio signals and communities such as International Symposium on Music Information Retrieval (MIR) and Sound and Music Computing (SMC) have formed. But we still lack reliable Real-Time machine listening systems.

The first thorough study of machine listening appeared in Eric Scheirer's PhD thesis at MIT Media Lab in 2001 [49] with a focus on low-level listening such as pitch and musical tempo, paving the way for a decade of research. Since the work of Scheirer, the literature has focused on task-dependent methods for machine listening such as pitch estimation, beat detection, structure discovery and more. Unfortunately, the majority of existing approaches are designed for information retrieval on large databases or off-line methods. Whereas the very act of listening is real-time, very little literature exists for supporting real-time machine listening. This argument becomes more clear while looking at the yearly Music Information Retrieval Evaluation eXchange (MIREX), with different retrieval tasks and submitted systems from international institutions, where almost no emphasis exists on real-time machine listening. Most MIR contributions focus on off-line approaches to information retrieval (where the system has access to future data) with less focus on on-line and realtime approaches to information decoding.

On another front, most MIR algorithms suffer from modeling of temporal structures and temporal dynamics specific to music (where most algorithms have roots in speech or biological sequence without correct adoption to temporal streams such as music). Despite tremendous progress using modern signal processing and statistical learning, there is much to be done to achieve the same level of abstract understanding for example in text and image analysis on music data. On another hand, it is important to notice that even untrained listeners are easily able to capture many aspects of formal and symbolic structures from an audio stream in realtime. Realtime machine listening is thus still a major challenge for artificial sciences that should be addressed both on application and theoretical fronts.

In the MuTant project, we focus on realtime and online methods of music information retrieval out of audio signals. One of the primary goals of such systems is to fill in the gap between *signal representation* and *symbolic information* (such as pitch, tempo, expressivity, etc.) contained in music signals. MuTant's current activities focus on two main applications: *score following* or realtime audio-to-score alignment [2], and realtime transcription of music signals [26] with impacts both on signal processing using machine learning techniques and their application in real-world scenarios.

The team-project focuses on two aspects of realtime machine listening:

1. **Application-Driven Approach:** First, to enhance and foster existing application-driven approaches within the team such as realtime alignment algorithms and polyphonic pitch transcription. Our contributions on this line correspond to extensions of existing algorithmic approaches to realtime audio alignment and transcription to create new interactive application paradigms with new algorithmic approaches.

2. **Music Information Geometry:** In parallel to concrete applications, we hope to theoretically contribute to the problem of signal representations of audio streams for effortless retrieval of high-level information structures. We have shown in [4] that the gap between the symbolic/semantic and signal aspects of music information mostly lies on constructing a well-behaved representational space before any algorithmic considerations, by employing the emerging methods of *information geometry*.

3.2. Synchronous and realtime programming for computer music

The second aspect of an interactive music system is to *react* to extracted high-level and low-level music information based on pre-defined actions. The simplest scenario is *automatic accompaniment*, delegating the interpretation of one or several musical voices to a computer, in interaction with a live solo (or ensemble) musician(s). The most popular form of such systems is the automatic accompaniment of an orchestral recording with that of a soloist in the classical music repertoire (concertos for example). In the larger context of interactive music systems, the "notes" or musical elements in the accompaniment are replaced by "programs" that are written during the phase of composition and are evaluated in realtime in reaction and relative to musicians' performance. The programs in question here can range from sound playback, to realtime sound synthesis by simulating physical models, and realtime transformation of musician's audio and gesture.

Such musical practice is commonly referred to as the *realtime school* in computer music, developed naturally with the invention of the first score following systems, and led to the invention of the first prototype of realtime digital signal processors [38] and subsequents [42], and the realtime graphical programming environment *Max* for their control [46] at Ircam. With the advent and availability of DSPs in personal computers, integrated realtime event and signal processing graphical language *MaxMSP* was developed [47] at Ircam, which today is the worldwide standard platform for realtime interactive arts programming. This approach to music making was first formalized by composers such as Philippe Manoury and Pierre Boulez, in collaboration with researchers at Ircam, and soon became a standard in musical composition with computers.

Besides realtime performance and implementation issues, little work has underlined the formal aspects of such practices in realtime music programming, in accordance to the long and quite rich tradition of musical notations. Recent progress has convinced both the researcher and artistic bodies that this programming paradigm is close to *synchronous reactive programming languages*, with concrete analogies between both: parallel synchrony and concurrency is equivalent to musical polyphony, periodic sampling to rhythmic patterns, hierarchical structures to micro-polyphonies, and demands for novel hybrid models of time among others. *Antescofo* is therefore an early response to such demands that needs further explorations and studies.

Within the MuTant project, we propose to tackle this aspect of the research within two consecutive lines:

- Development of a Timed and Synchronous DSL for Real Time Musician-Computer Interaction: Ongoing and continuous extensions of the *Antescofo* language following user requests and by inscribing them within a coherent framework for the handling of temporal musical relationships. José Echeveste's ongoing PhD thesis focuses on the research and development of these aspects.
- Formal Methods: Failure during an artistic performance should be avoided. This naturally leads to the use of formal methods, like static analysis, verification or test generation, to ensure formally that *Antescofo* programs will behave as expected on stage. The checked properties may also provide some assistance to the composer especially in the context of "non deterministic score" in an interactive framework. The recently started PhD of Clément Poncelet is devoted to these problems.

3.3. Off-the-shelf Operating Systems for Real-time Audio

While operating systems shield the computer hardware from all other software, it provides a comfortable environment for program execution and evades offensive use of hardware by providing various services related to essential tasks. However, integrating discrete and continuous multimedia data demands additional services, especially for real-time processing of continuous-media such as audio and video. To this end interactive systems are sometimes referred to as off-the-shelf operating systems for real-time audio. The difficulty in providing correct real-time services has much to do with human perception. Correctness for real-time audio is more stringent than video because human ear is more sensitive to audio gaps and glitches than human eye is to video jitter [52]. Here we expose the foundations of existing sound and music operating systems and focus on their major drawbacks with regards to today practices.

An important aspect of any real-time operating system is fault-tolerance with regards to short-time failure of continuous-media computation, delivery delay or missing deadlines. Existing multimedia operating systems are soft real-time where missing a deadline does not necessarily lead to system failure and have their roots in pioneering work in [51]. Soft real-time is acceptable in simple applications such as video-on-demand delivery, where initial delay in delivery will not directly lead to critical consequences and can be compensated (general scheme used for audio-video synchronization), but with considerable consequences for Interactive Systems: Timing failure in interactive systems will heavily affect inter-operability of models of computation, where incorrect ordering can lead to unpredictable and unreliable results. Moreover, interaction between computing and listening machines (both dynamic with respect of internal computation and physical environment) requires tighter and explicit temporal semantics since interaction between physical environment and the system can be continuous and not demand-driven.

Fulfilling timing requirements of continuous media demands explicit use of scheduling techniques. As shown earlier, existing Interactive Music Systems rely on combined event/signal processing. In real-time, scheduling techniques aim at gluing the two engines together with the aim of timely delivery of computations between agents and components, from the physical environment, as well as to hardware components. The first remark in studying existing system is that they all employ static scheduling, whereas interactive computing demands more and more time-aware and context-aware dynamic methods. The scheduling mechanisms are neither aware of time, nor the nature and semantics of computations at stake. Computational elements are considered in a functional manner and reaction and execution requirements are simply ignored. For example, *Max* scheduling mechanisms can delay message delivery when many time-critical tasks are requested within one cycle [47]. *SuperCollider* uses Earliest-Deadline-First (EDF) algorithms and cycles can be simply missed [45]. This situation leads to non-deterministic behavior with deterministic components and poses great difficulties for preservation of underlying techniques, art pieces, and algorithms. The situation has become worse with the demand for nomad physical computing where individual programs and modules are available but no action coordination or orchestration is proposed to design integrated systems. System designers are penalized for expressivity, predictability and reliability of their design despite potentially reliable components.

Existing systems have been successful in programing and executing small system comprised of few programs. However, severe problems arise when scaling from program to system-level for moderate or complex programs leading to unpredictable behavior. Computational elements are considered as functions and reaction and execution requirements are simply ignored. System designers have uniformly chosen to hide timing properties from higher abstractions, and despite its utmost importance in multimedia computing, timing becomes an accident of implementation. This confusing situation for both artists and system designers, is quite similar to the one described in Edward Lee's seminal paper "Computing needs time" stating: "general-purpose computers are increasingly asked to interact with physical processes through integrated media such as audio. [...] and they don't always do it well. The technological basis that engineers have chosen for general-purpose computing [...] does not support these applications well. Changes that ensure this support could improve them and enable many others" [41].

Despite all shortcomings, one of the main advantages of environments such as *Max* and *PureData* to other available systems, and probably the key to their success, is their ability to handle both synchronous processes (such as audio or video delivery and processing) within an asynchronous environment (user and environmental interactions). Besides this fact, multimedia service scheduling at large has a tendency to go more and more towards computing besides mere on-time delivery. This brings in the important question of hybrid scheduling of heterogeneous time and computing models in such environments, a subject that has had very few studies in multimedia processing but studied in areas such simulation applications. We hope to address this issue scientifically by first an explicit study of current challenges in the domain, and second by proposing appropriate

methods for such systems. This research is inscribed in the three year ANR project INEDIT coordinated by the team leader (started in September 2012).

PARKAS Project-Team

3. Research Program

3.1. Presentation and originality of the PARKAS team

Our project is founded on our expertise in three complementary domains: (1) synchronous functional programming and its extensions to deal with features such as communication with bounded buffers and dynamic process creation; (2) mathematical models for synchronous circuits; (3) compilation techniques for synchronous languages and optimizing/parallelizing compilers.

A strong point of the team is its experience and investment in the development of languages and compilers. Members of the team also have direct collaborations for several years with major industrial companies in the field and several of our results are integrated in successful products. Our main results are briefly summarized below.

3.1.1. Synchronous functional programming

In [35], Paul Caspi and Marc Pouzet introduced *synchronous Kahn networks* as those Kahn networks that can be statically scheduled and executed with bounded buffers. This was the origin of the language LUCID SYNCHRONE, ¹² an ML extension of the synchronous language LUSTRE with higher-order features, dedicated type systems (clock calculus as a type system [35], [45], initialization analysis [46] and causality analysis [47]). The language integrates original features that are not found in other synchronous languages: such as combinations of data flow, control flow, hierarchical automata and signals [44], [43], and modular code generation [36], [33].

In 2000, Marc Pouzet started to collaborate with the SCADE team of Esterel-Technologies on the design of a new version of SCADE. ³ Several features of LUCID SYNCHRONE are now integrated into SCADE 6, which has been distributed since 2008, including the programming constructs merge, reset, the clock calculus and the type system. Several results have been developed jointly with Jean-Louis Colaço and Bruno Pagano from Esterel-Technologies, such as ways of combining data-flow and hierarchical automata, and techniques for their compilation, initialization analysis, etc.

Dassault-Systèmes (Grenoble R&D center, part of Delmia-automation) developed the language LCM, a variant of LUCID SYNCHRONE that is used for the simulation of factories. LCM follows closely the principles and programming constructs of LUCID SYNCHRONE (higher-order, type inference, mix of data-flow and hierarchical automata). The team in Grenoble is integrating this development into a new compiler for the language Modelica.⁴

In parallel, the goal of REACTIVEML⁵ was to integrate a synchronous concurrency model into an existing ML language, with no restrictions on expressiveness, so as to program a large class of reactive systems, including efficient simulations of millions of communicating processes (e.g., sensor networks), video games with many interactions, physical simulations, etc. For such applications, the synchronous model simplifies system design and implementation, but the expressiveness of the algorithmic part of the language is just as essential, as is the ability to create or stop a process dynamically.

The development of REACTIVEML was started by Louis Mandel during his PhD thesis [57], [55] and is ongoing. The language extends OCAML⁶ with Esterel-like synchronous primitives — synchronous composition, broadcast communication, pre-emption/suspension — applying the solution of Boussinot [34] to solve causality issues.

¹http://www.di.ens.fr/~pouzet/lucid-synchrone

²The name is a reference to Lustre which stands for "Lucid Synchrone et Temps réel".

³http://www.esterel-technologies.com/products/scade-suite/

⁴http://www.3ds.com/products/catia/portfolio/dymola/overview/

⁵http://rml.lri.fr/

⁶More precisely a subset of OCAML without objects or functors.

Several open problems have been solved by Louis Mandel: the interaction between ML features (higherorder) and reactive constructs with a proper type system; efficient simulation that avoids busy waiting. The latter problem is particularly difficult in synchronous languages because of possible reactions to the absence of a signal. In the REACTIVEML implementation, there is no busy waiting: inactive processes have no impact on the overall performance. It turns out that this enables REACTIVEML to simulate millions of (logical) parallel processes and to compete with the best event-driven simulators [58].

REACTIVEML has been used for simulating routing protocols in ad-hoc networks [54] and large scale sensor networks [68]. The designer benefits from a real programming language that gives precise control of the level of simulation (e.g., each network layer up to the MAC layer) and programs can be connected to models of the physical environment programmed with LUTIN [67]. REACTIVEML is used since 2006 by the synchronous team at VERIMAG, Grenoble (in collaboration with France-Telecom) for the development of low-consumption routing protocols in sensor networks.

3.1.2. Relaxing synchrony with buffer communication

In the data-flow synchronous model, the clock calculus is a static analysis that ensures execution in bounded memory. It checks that the values produced by a node are instantaneously consumed by connected nodes (synchronous constraint). To program Kahn process networks with bounded buffers (as in video applications), it is thus necessary to explicitly place nodes that implement buffers. The buffers sizes and the clocks at which data must be read or written have to be computed manually. In practice, it is done with simulation or successive tries and errors. This task is difficult and error prone. The aim of the *n*-synchronous model is to automatically compute at compile time these values while insuring the absence of deadlock.

Technically, it allows processes to be composed whenever they can be synchronized through a bounded buffer [37], [38]. The new flexibility is obtained by relaxing the clock calculus by replacing the equality of clocks by a sub-typing rule. The result is a more expressive language which still offers the same guarantees as the original. The first version of the model was based on clocks represented as ultimately periodic binary words [72]. It was algorithmically expensive and limited to periodic systems. In [41], an abstraction mechanism is proposed which permits direct reasoning on sets of clocks that are defined as a rational slope and two shifts. An implementation of the *n*-synchronous model, named LUCY-N, was developed in 2009 [56], as was a formalization of the theory in COQ [42]. We also worked on low-level compiler and runtime support to parallelize the execution of relaxed synchronous systems, proposing a portable intermediate language and runtime library called ERBIUM [59].

This work started as a collaboration between Marc Pouzet (LIP6, Paris, then LRI and Inria Proval, Orsay), Marc Duranton (Philips Research then NXP, Eindhoven), Albert Cohen (Inria Alchemy, Orsay) and Christine Eisenbeis (Inria Alchemy, Orsay) on the real-time programming of video stream applications in set-top boxes. It was significantly extended by Louis Mandel and Florence Plateau during her PhD thesis [62] (supervised by Marc Pouzet and Louis Mandel). Low-level support has been investigated with Cupertino Miranda, Philippe Dumont (Inria Alchemy, Orsay) and Antoniu Pop (Mines ParisTech). Further directions of research and experimentation have been and are being followed through the theses of Léonard Gérard, Adrien Guatto and Nhat Minh Lê.

3.1.3. Polyhedral compilation and optimizing compilers

Despite decades of progress, the best parallelizing and optimizing compilers still fail to extract parallelism and to perform the necessary optimizations to harness multi-core processors and their complex memory hierarchies. *Polyhedral compilation* aims at facilitating the construction of more effective optimization and parallelization algorithms. It captures the flow of data between individual instances of statements in a loop nest, allowing to accurately model the behavior of the program and represent complex parallelizing and optimizing transformations. Affine multidimensional scheduling is one of the main tools in polyhedral compilation [48]. Albert Cohen, in collaboration with Cédric Bastoul, Sylvain Girbal, Nicolas Vasilache, Louis-Noël Pouchet and Konrad Trifunovic (LRI and Inria Alchemy, Orsay) has contributed to a large number of research, development and transfer activities in this area. The relation between polyhedral compilation and data-flow synchrony has been identified through data-flow array languages [53], [52], [69], [49] and the study of the scheduling and mapping algorithms for these languages. We would like to deepen the exploration of this link, embedding polyhedral techniques into the compilation flow of data-flow, relaxed synchronous languages.

Our previous work led to the design of a theoretical and algorithmic framework rooted in the polyhedral model of compilation, and to the implementation of a set of tools based on production compilers (Open64, GCC) and source-to-source prototypes (PoCC, http://pocc.sourceforge.net). We have shown that not only does this framework simplify the problem of building complex loop nest optimizations, but also that it scales to real-world benchmarks [39], [50], [65], [64]. The polyhedral model has finally evolved into a mature, production-ready approach to solve the challenges of maximizing the scalability and efficiency of loop-based computations on a variety of high performance and embedded targets.

After an initial experiment with Open64 [40], [39], we ported these techniques to GCC [63], [71], [70] and LLVM [51], applying them to multi-level parallelization and optimization problems, including vectorization and exploitation of thread-level parallelism. Independently, we made significant progress in the design of effective optimization heuristics, working on the interactions between the semantics of the compiler's intermediate representation and the structure of the optimization space [65], [64], [66] [2], [5]. These results open opportunities for complex optimizations that target larger problems, such as the scheduling and placement of process networks, or the offloading of computational kernels to hardware accelerators (such as GPUs). A new framework has been designed, centered on the Integer Set Library (isl, http://freecode.com/projects/isl) and implemented through multiple compiler interfaces (Graphite in GCC, Polly in LLVM) and a source-to-source research compiler (PPCG) [8], [13], [16], [25], [28]. This new framework underlies our collaborative research activities in the CARP and COPCAMS European projects, as well as emerging transfer projects through the TETRACOM European coordination action and bilateral industry contracts in preparation.

3.1.4. Automatic compilation of high performance circuits

For both cost and performance reasons, computing systems tightly couple parts realized in hardware with parts realized in software. The boundary between hardware and software keeps moving with the underlying technology and the external economic pressure. Moreover, thanks to FPGA technology, hardware itself has become programmable. There is now a pressing need from industry for hardware/software co-design, and for tools which automatically turn software code into hardware circuits, or more usually, into hybrid code that simultaneously targets GPUs, multiple cores, encryption ASICs, and other specialized chips.

Departing from customary C-to-VHDL compilation, we trust that sharper results can be achieved from source programs that specify bit-wise time/space behavior in a rigorous synchronous language, rather than just the I/O behavior in some (ill-specified) subset of C. This specification allows the designer to also program the (asynchronous) environment in which to operate the entire system, and to profile/measure/control each variable of the design.

At any time, the designer can edit a single specification of the system, from which both the software and the hardware are automatically compiled, and guaranteed to be compatible. Once correct (functionally and with respect to the behavioral specification), the application can be automatically deployed (and tested) on a hard/soft hybrid co-design support.

Key aspects of the advocated methodology were validated by Jean Vuillemin in the design of a PAL2HDTV video sampler [60], [61]. The circuit was automatically compiled from a synchronous source specification, decorated and guided by a few key hints to the hardware back-end, that targetted an FPGA running at real-time video specifications: a tightly-packed highly-efficient design at 240MHz, generated 100% automatically from the application specification source code, and including all run-time/debug/test/validate ancillary software. It was subsequently commercialized on FPGA by LetItWave, and then on ASIC by Zoran. This successful experience underlines our research perspectives on parallel synchronous programming.

PI.R2 Project-Team

3. Research Program

3.1. Proof theory and the Curry-Howard correspondence

3.1.1. Proofs as programs

Proof theory is the branch of logic devoted to the study of the structure of proofs. An essential contributor to this field is Gentzen [40] who developed in 1935 two logical formalisms that are now central to the study of proofs. These are the so-called "natural deduction", a syntax that is particularly well-suited to simulate the intuitive notion of reasoning, and the so-called "sequent calculus", a syntax with deep geometric properties that is particularly well-suited for proof automation.

Proof theory gained a remarkable importance in computer science when it became clear, after genuine observations first by Curry in 1958 [34], then by Howard and de Bruijn at the end of the 60's [45], [61], that proofs had the very same structure as programs: for instance, natural deduction proofs can be identified as typed programs of the ideal programming language known as λ -calculus.

This proofs-as-programs correspondence has been the starting point to a large spectrum of researches and results contributing to deeply connect logic and computer science. In particular, it is from this line of work that Coquand's Calculus of Constructions [30] stemmed out – a formalism that is both a logic and a programming language and that is at the source of the Coq system [58].

3.1.2. Towards the calculus of constructions

The λ -calculus, defined by Church [29], is a remarkably succinct model of computation that is defined via only three constructions (abstraction of a program with respect to one of its parameters, reference to such a parameter, application of a program to an argument) and one reduction rule (substitution of the formal parameter of a program by its effective argument). The λ -calculus, which is Turing-complete, i.e. which has the same expressiveness as a Turing machine (there is for instance an encoding of numbers as functions in λ -calculus), comes with two possible semantics referred to as call-by-name and call-by-value evaluations. Of these two semantics, the first one, which is the simplest to characterise, has been deeply studied in the last decades [26].

For explaining the Curry-Howard correspondence, it is important to distinguish between intuitionistic and classical logic: following Brouwer at the beginning of the 20th century, classical logic is a logic that accepts the use of reasoning by contradiction while intuitionistic logic proscribes it. Then, Howard's observation is that the proofs of the intuitionistic natural deduction formalism exactly coincide with programs in the (simply typed) λ -calculus.

A major achievement has been accomplished by Martin-Löf who designed in 1971 a formalism, referred to as modern type theory, that was both a logical system and a (typed) programming language [51].

In 1985, Coquand and Huet [30], [31] in the Formel team of Inria-Rocquencourt explored an alternative approach based on Girard-Reynolds' system F [41], [56]. This formalism, called the Calculus of Constructions, served as logical foundation of the first implementation of Coq in 1984. Coq was called CoC at this time.

3.1.3. The Calculus of Inductive Constructions

The first public release of CoC dates back to 1989. The same project-team developed the programming language Caml (nowadays coordinated by the Gallium team) that provided the expressive and powerful concept of algebraic data types (a paragon of it being the type of list). In CoC, it was possible to simulate algebraic data types, but only through a not-so-natural not-so-convenient encoding.

In 1989, Coquand and Paulin [32] designed an extension of the Calculus of Constructions with a generalisation of algebraic types called inductive types, leading to the Calculus of Inductive Constructions (CIC) that started to serve as a new foundation for the Coq system. This new system, which got its current definitive name Coq, was released in 1991.

In practice, the Calculus of Inductive Constructions derives its strength from being both a logic powerful enough to formalise all common mathematics (as set theory is) and an expressive richly-typed functional programming language (like ML but with a richer type system, no effects and no non-terminating functions).

3.2. The development of Coq

Since 1984, about 40 persons have contributed to the development of Coq, out of which 7 persons have contributed to bring the system to the place it is now. First Thierry Coquand through his foundational theoretical ideas, then Gérard Huet who developed the first prototypes with Thierry Coquand and who headed the Coq group until 1998, then Christine Paulin who was the main actor of the system based on the CIC and who headed the development group from 1998 to 2006. On the programming side, important steps were made by Chet Murthy who raised Coq from the prototypical state to a reasonably scalable system, Jean-Christophe Filliâtre who turned to concrete the concept of a small trustful certification kernel on which an arbitrary large system can be set up, Bruno Barras and Hugo Herbelin who, among other extensions, reorganised Coq on a new smoother and more uniform basis able to support a new round of extensions for the next decade.

The development started from the Formel team at Rocquencourt but, after Christine Paulin got a position in Lyon, it spread to École Normale Supérieure de Lyon. Then, the task force there globally moved to the University of Orsay when Christine Paulin got a new position there. On the Rocquencourt side, the part of Formel involved in ML moved to the Cristal team (now Gallium) and Formel got renamed into Coq. Gérard Huet left the team and Christine Paulin started to head a Coq team bilocalised at Rocquencourt and Orsay. Gilles Dowek became the head of the team which was renamed into LogiCal. Following Gilles Dowek who got a position at École Polytechnique, LogiCal moved to the new Inria Saclay research center. It then split again, giving birth to ProVal. At the same time, the Marelle team (formerly Lemme, formerly Croap) which has been a long partner of the Formel team, invested more and more energy in both the formalisation of mathematics in Coq and in user interfaces for Coq.

After various other spreadings resulting from where the wind pushed former PhD students, the development of Coq got multi-site with the development now realised by employees of Inria, the CNAM and Paris 7.

We next briefly describe the main components of Coq.

3.2.1. The underlying logic and the verification kernel

The architecture adopts the so-called de Bruijn principle: the well-delimited *kernel* of Coq ensures the correctness of the proofs validated by the system. The kernel is rather stable with modifications tied to the evolution of the underlying Calculus of Inductive Constructions formalism. The kernel includes an interpreter of the programs expressible in the CIC and this interpreter exists in two flavours: a customisable lazy evaluation machine written in OCaml and a call-by-value bytecode interpreter written in C dedicated to efficient computations. The kernel also provides a module system.

3.2.2. Programming and specification languages

The concrete user language of Coq, called *Gallina*, is a high-level language built on top of the CIC. It includes a type inference algorithm, definitions by complex pattern-matching, implicit arguments, mathematical notations and various other high-level language features. This high-level language serves both for the development of programs and for the formalisation of mathematical theories. Coq also provides a large set of commands. Gallina and the commands together forms the *Vernacular* language of Coq.

3.2.3. Libraries

Libraries are written in the vernacular language of Coq. There are libraries for various arithmetical structures and various implementations of numbers (Peano numbers, implementation of \mathbb{N} , \mathbb{Z} , \mathbb{Q} with binary digits, implementation of \mathbb{N} , \mathbb{Z} , \mathbb{Q} using machine words, axiomatisation of \mathbb{R}). There are libraries for lists, list of a specified length, sorts, and for various implementations of finite maps and finite sets. There are libraries on relations, sets, orders.

3.2.4. Tactics

The tactics are the methods available to conduct proofs. This includes the basic inference rules of the CIC, various advanced higher level inference rules and all the automation tactics. Regarding automation, there are tactics for solving systems of equations, for simplifying ring or field expressions, for arbitrary proof search, for semi-decidability of first-order logic and so on. There is also a powerful and popular untyped scripting language for combining tactics into more complex tactics.

Note that all tactics of Coq produce proof certificates that are checked by the kernel of Coq. As a consequence, possible bugs in proof methods do not hinder the confidence in the correctness of the Coq checker. Note also that the CIC being a programming language, tactics can be written (and certified) in the own language of Coq if needed.

3.2.5. Extraction

Extraction is a component of Coq that maps programs (or even computational proofs) of the CIC to functional programs (in OCaml, Scheme or Haskell). Especially, a program certified by Coq can further be extracted to a program of a full-fledged programming language then benefiting of the efficient compilation, linking tools, profiling tools, ... of the target software.

3.3. Dependently typed programming languages

Dependently typed programming (shortly DTP) is an emerging concept referring to the diffuse and broadening tendency to develop programming languages with type systems able to express program properties finer than the usual information of simply belonging to specific data-types. The type systems of dependently-typed programming languages allow to express properties *dependent* of the input and the output of the program (for instance that a sorting program returns a list of same size as its argument). Typical examples of such languages were the Cayenne language, developed in the late 90's at Chalmers University in Sweden and the DML language developed at Boston. Since then, various new tools have been proposed, either as typed programming languages whose types embed equalities (Ω mega at Portland, ATS at Boston, ...) or as hybrid logic/programming frameworks (Agda at Chalmers University, Twelf at Carnegie, Delphin at Yale, OpTT at U. Iowa, Epigram at Nottingham, ...).

DTP contributes to a general movement leading to the fusion between logic and programming. Coq, whose language is both a logic and a programming language which moreover can be extracted to pure ML code plays a role in this movement and some frameworks for DTP have been proposed on top of Coq (Concoqtion at Rice and Colorado, Ynot at Harvard, Why in the ProVal team at Inria). It also connects to Hoare logic, providing frameworks where pre- and post-conditions of programs are tied with the programs.

DTP approached from the programming language side generally benefits of a full-fledged language (e.g. supporting effects) with efficient compilation. DTP approached from the logic side generally benefits of an expressive specification logic and of proof methods so as to certify the specifications. The weakness of the approach from logic however is generally the weak support for effects or partial functions.

3.3.1. Type-checking and proof automation

In between the decidable type systems of conventional data-types based programming languages and the full expressiveness of logically undecidable formulae an active field of research explores a spectrum of decidable or semi-decidable type systems for possible use in dependently programming languages. At the beginning of the spectrum, this includes for instance the system F's extension ML_F of the ML type system or the generalisation

of abstract data types with type constraints (G.A.D.T.) such as found in the Haskell programming language. At the other side of the spectrum, one finds arbitrary complex type specification languages (e.g. that a sorting function returns a list of type "sorted list") for which more or less powerful proof automation tools (generally first-order ones) exist.

3.3.2. Libraries

Developing libraries for programming languages takes time and generally benefits of a critical mass effect. An advantage is given to languages that start from well-established existing frameworks for which a large panel of libraries exist. Coq is such a framework.

3.4. Around and beyond the Curry-Howard correspondence

For two decades, the Curry-Howard correspondence was limited to the intuitionistic case but in 1990, an important stimulus spurred on the community following the discovery by Griffin that the correspondence was extensible to classical logic. The community then started to investigate unexplored potential fields of connection between computer science and logic. One of these fields was the computational understanding of Gentzen's sequent calculus while another one was the computational content of the axiom of choice.

3.4.1. Control operators and classical logic

Indeed, a significant extension of the Curry-Howard correspondence has been obtained at the beginning of the 90's thanks to the seminal observation by Griffin [42] that some operators known as control operators were typable by the principle of double negation elimination $(\neg \neg A \Rightarrow A)$, a principle which provides classical logic.

Control operators are operators used to jump from one place of a program to another place. They were first considered in the 60's by Landin [50] and Reynolds [55] and started to be studied in an abstract way in the 80's by Felleisen *et al* [36], culminating in Parigot's $\lambda\mu$ -calculus [54], a reference calculus that is in fine Curry-Howard correspondence with classical natural deduction. In this respect, control operators are fundamental pieces of the full connection between proofs and programs.

3.4.2. Sequent calculus

The Curry-Howard interpretation of sequent calculus started to be investigated at the beginning of the 90's. The main technicality of sequent calculus is the presence of *left introduction* inference rules, for which two kinds of interpretations of these rules are applicable. The first approach interprets left introduction rules as construction rules for a language of patterns but it does not really address the problem of the interpretation of the implication connective. The second approach, started in 1994, interprets left introduction rules as evaluation context formation rule. This line of work culminated in 2000 with the design by Hugo Herbelin and Pierre-Louis Curien of a symmetric calculus exhibiting deep dualities between the notion of programs and evaluation contexts and between the standard notions of call-by-name and call-by-value evaluation semantics.

3.4.3. Abstract machines

Abstract machines came as an intermediate evaluation device, between high-level programming languages and the computer microprocessor. The typical reference for call-by-value evaluation of λ -calculus is Landin's SECD machine [49] and Krivine's abstract machine for call-by-name evaluation [47], [46]. A typical abstract machine manipulates a state that consists of a program in some environment of bindings and some evaluation context traditionally encoded into a "stack".

3.4.4. Delimited control

Delimited control extends the expressiveness of control operators with effects: the fundamental result here is a completeness result by Filinski [37]: any side-effect expressible in monadic style (and this covers references, exceptions, states, dynamic bindings, ...) can be simulated in λ -calculus equipped with delimited control.

POLSYS Project-Team

3. Research Program

3.1. Introduction

Polynomial system solving is a fundamental problem in Computer Algebra with many applications in cryptography, robotics, biology, error correcting codes, signal theory, Among all available methods for solving polynomial systems, computation of Gröbner bases remains one of the most powerful and versatile method since it can be applied in the continuous case (rational coefficients) as well as in the discrete case (finite fields). Gröbner bases is also a building blocks for higher level algorithms who compute real sample points in the solution set of polynomial systems, decide connectivity queries and quantifier elimination over the reals. The major challenge facing the designer or the user of such algorithms is the intrinsic exponential behaviour of the complexity for computing Gröbner bases. The current proposal is an attempt to tackle these issues in a number of different ways: improve the efficiency of the fundamental algorithms (even when the complexity is exponential), develop high performance implementation exploiting parallel computers, and investigate new classes of structured algebraic problems where the complexity drops to polynomial time.

3.2. Fundamental Algorithms and Structured Systems

Participants: Jean-Charles Faugère, Mohab Safey El Din, Elias Tsigaridas, Guénaël Renault, Dongming Wang, Jérémy Berthomieu, Pierre-Jean Spaenlehauer, Chenqi Mou, Jules Svartz, Louise Huot, Thibault Verron.

Efficient algorithms F_4/F_5^{-1} for computing the Gröbner basis of a polynomial system rely heavily on a connection with linear algebra. Indeed, these algorithms reduce the Gröbner basis computation to a sequence of Gaussian eliminations on several submatrices of the so-called Macaulay matrix in some degree. Thus, we expect to improve the existing algorithms by

(*i*) developing dedicated linear algebra routines performing the Gaussian elimination steps: this is precisely the objective 2 described below;

(ii) generating smaller or simpler matrices to which we will apply Gaussian elimination.

We describe here our goals for the latter problem. First, we focus on algorithms for computing a Gröbner basis of *general polynomial systems*. Next, we present our goals on the development of dedicated algorithms for computing Gröbner bases of *structured polynomial systems* which arise in various applications.

Algorithms for general systems. Several degrees of freedom are available to the designer of a Gröbner basis algorithm to generate the matrices occurring during the computation. For instance, it would be desirable to obtain matrices which would be almost triangular or very sparse. Such a goal can be achieved by considering various interpretations of the F_5 algorithm with respect to different monomial orderings. To address this problem, the tight complexity results obtained for F_5 will be used to help in the design of such a general algorithm. To illustrate this point, consider the important problem of solving boolean polynomial systems; it might be interesting to preserve the sparsity of the original equations and, at the same time, using the fact that overdetermined systems are much easier to solve.

Algorithms dedicated to *structured* polynomial systems. A complementary approach is to exploit the structure of the input polynomials to design specific algorithms. Very often, problems coming from applications are not random but are highly structured. The specific nature of these systems may vary a lot: some polynomial systems can be sparse (when the number of terms in each equation is low), overdetermined (the number of the equations is larger than the number of variables), invariants by the action of some finite groups, multi-linear (each equation is linear w.r.t. to one block of variables) or more generally multihomogeneous. In each case, the ultimate goal is to identify large classes of problems whose theoretical/practical complexity drops and to propose in each case dedicated algorithms.

¹J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In Proceedings of ISSAC '02, pages 75-83, New York, NY, USA, 2002. ACM.

3.3. Solving Systems over the Reals and Applications.

Participants: Mohab Safey El Din, Daniel Lazard, Elias Tsigaridas, Pierre-Jean Spaenlehauer, Aurélien Greuet, Simone Naldi.

We will develop algorithms for solving polynomial systems over complex/real numbers. Again, the goal is to extend significantly the range of reachable applications using algebraic techniques based on Gröbner bases and dedicated linear algebra routines. Targeted application domains are global optimization problems, stability of dynamical systems (e.g. arising in biology or in control theory) and theorem proving in computational geometry.

The following functionalities shall be requested by the end-users:

- (i) deciding the emptiness of the real solution set of systems of polynomial equations and inequalities,
- (ii) quantifier elimination over the reals or complex numbers,
- (*iii*) answering connectivity queries for such real solution sets.
- We will focus on these functionalities.

We will develop algorithms based on the so-called critical point method to tackle systems of equations and inequalities (problem (i)). These techniques are based on solving 0-dimensional polynomial systems encoding "critical points" which are defined by the vanishing of minors of jacobian matrices (with polynomial entries). Since these systems are highly structured, the expected results of Objective 1 and 2 may allow us to obtain dramatic improvements in the computation of Gröbner bases of such polynomial systems. This will be the foundation of practically fast implementations (based on singly exponential algorithms) outperforming the current ones based on the historical Cylindrical Algebraic Decomposition (CAD) algorithm (whose complexity is doubly exponential in the number of variables). We will also develop algorithms and implementations that allow us to analyze, at least locally, the topology of solution sets in some specific situations. A long-term goal is obviously to obtain an analysis of the global topology.

3.4. Low level implementation and Dedicated Algebraic Computation and Linear Algebra.

Participants: Jean-Charles Faugère, Christian Eder, Elias Tsigaridas, F. Martani.

Here, the primary objective is to focus on *dedicated* algorithms and software for the linear algebra steps in Gröbner bases computations and for problems arising in Number Theory. As explained above, linear algebra is a key step in the process of computing efficiently Gröbner bases. It is then natural to develop specific linear algebra algorithms and implementations to further strengthen the existing software. Conversely, Gröbner bases computation is often a key ingredient in higher level algorithms from Algebraic Number Theory. In theses cases, the algebraic problems are very particular and specific. Hence dedicated Gröbner bases algorithms and implementations would provide a better efficiency.

Dedicated linear algebra tools.FGB is an efficient library for Gröbner bases computations which can be used, for instance, via MAPLE. However, the library is sequential. A goal of the project is to extend its efficiency to new trend parallel architectures such as clusters of multi-processor systems in order to tackle a broader class of problems for several applications. Consequently, our first aim is to provide a durable, long term software solution, which will be the successor of the existing FGB library. To achieve this goal, we will first develop a high performance linear algebra package (under the LGPL license). This could be organized in the form of a collaborative project between the members of the team. The objective is not to develop a general library similar to the LINBOX project but to propose a dedicated linear algebra package taking into account the specific properties of the matrices generated by the Gröbner bases algorithms. Indeed these matrices are sparse (the actual sparsity depends strongly on the application), almost block triangular and not necessarily of full rank. Moreover, most of the pivots are known at the beginning of the computation. In practice, such matrices are huge (more than 10^6 columns) but taking into account their shape may allow us to speed up the computations by one or several orders of magnitude. A variant of a Gaussian elimination algorithm together with a corresponding C implementation has been presented. The main peculiarity is the order in which the operations are performed. This will be the kernel of the new linear library that will be developed.

Fast linear algebra packages would also benefit to the transformation of a Gröbner basis of a zero-dimensional ideal with respect to a given monomial ordering into a Gröbner basis with respect to another ordering. In the generic case at least, the change of ordering is equivalent to the computation of the minimal polynomial of a so-called multiplication matrix. By taking into account the sparsity of this matrix, the computation of the Gröbner basis can be done more efficiently using variant of the Wiedemann algorithm. Hence, our goal is also to obtain a dedicated high performance library for transforming (i.e. change ordering) Gröbner bases.

Dedicated algebraic tools for Algebraic Number Theory. Recent results in Algebraic Number Theory tend to show that the computation of Gröbner bases is a key step toward the resolution of difficult problems in this domain ². Using existing resolution methods is simply not enough to solve relevant problems. The main algorithmic lock to overcome is to adapt the Gröbner basis computation step to the specific problems. Typically, problems coming from Algebraic Number Theory usually have a lot of symmetries or the input systems are very structured. This is the case in particular for problems coming from the algorithmic theory of Abelian varieties over finite fields ³ where the objects are represented by polynomial system and are endowed with intrinsic group actions. The main goal here is to provide dedicated algebraic resolution algorithms and implementations for solving such problems. We do not restrict our focus on problems in positive characteristic. For instance, tower of algebraic fields can be viewed as triangular sets; more generally, related problems (e.g. effective Galois theory) which can be represented by polynomial systems will receive our attention. This is motivated by the fact that, for example, computing small integer solutions of Diophantine polynomial systems in connection with Coppersmith's method would also gain in efficiency by using a dedicated Gröbner bases computations step.

3.5. Solving Systems in Finite Fields, Applications in Cryptology and Algebraic Number Theory.

Participants: Jean-Charles Faugère, Ludovic Perret, Guénaël Renault, Louise Huot, Frédéric de Portzamparc, Rina Zeitoun.

Here, we focus on solving polynomial systems over finite fields (i.e. the discrete case) and the corresponding applications (Cryptology, Error Correcting Codes, ...). Obviously this objective can be seen as an application of the results of the two previous objectives. However, we would like to emphasize that it is also the source of new theoretical problems and practical challenges. We propose to develop a systematic use of *structured systems* in *algebraic cryptanalysis*.

(*i*) So far, breaking a cryptosystem using algebraic techniques could be summarized as modeling the problem by algebraic equations and then computing a, usually, time consuming Gröbner basis. A new trend in this field is to require a theoretical complexity analysis. This is needed to explain the behavior of the attack but also to help the designers of new cryptosystems to propose actual secure parameters.

(*ii*) To assess the security of several cryptosystems in symmetric cryptography (block ciphers, hash functions, ...), a major difficulty is the size of the systems involved for this type of attack. More specifically, the bottleneck is the size of the linear algebra problems generated during a Gröbner basis computation.

We propose to develop a systematic use of structured systems in algebraic cryptanalysis.

² P. Gaudry, *Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem*, Journal of Symbolic Computation 44,12 (2009) pp. 1690-1702

³ e.g. point counting, discrete logarithm, isogeny.

The first objective is to build on the recent breakthrough in attacking McEliece's cryptosystem: it is the first structural weakness observed on one of the oldest public key cryptosystem. We plan to develop a well founded framework for assessing the security of public key cryptosystems based on coding theory from the algebraic cryptanalysis point of view. The answer to this issue is strongly related to the complexity of solving bihomogeneous systems (of bidegree (1, d)). We also plan to use the recently gained understanding on the complexity of structured systems in other areas of cryptography. For instance, the MinRank problem – which can be modeled as an overdetermined system of bilinear equations – is at the heart of the structural attack proposed by Kipnis and Shamir against HFE (one of the most well known multivariate public cryptosystem). The same family of structured systems arises in the algebraic cryptanalysis of the Discrete Logarithmic Problem (DLP) over curves (defined over some finite fields). More precisely, some bilinear systems appear in the polynomial modeling the points decomposition problem. Moreover, in this context, a natural group action can also be used during the resolution of the considered polynomial system.

Dedicated tools for linear algebra problems generated during the Gröbner basis computation will be used in algebraic cryptanalysis. The promise of considerable algebraic computing power beyond the capability of any standard computer algebra system will enable us to attack various cryptosystems or at least to propose accurate secure parameters for several important cryptosystems. Dedicated linear tools are thus needed to tackle these problems. From a theoretical perspective, we plan to further improve the theoretical complexity of the hybrid method and to investigate the problem of solving polynomial systems with noise, i.e. some equations of the system are incorrect. The hybrid method is a specific method for solving polynomial systems over finite fields. The idea is to mix exhaustive search and Gröbner basis computation to take advantage of the over-determinacy of the resulting systems.

Polynomial system with noise is currently emerging as a problem of major interest in cryptography. This problem is a key to further develop new applications of algebraic techniques; typically in side-channel and statistical attacks. We also emphasize that recently a connection has been established between several classical lattice problems (such as the Shortest Vector Problem), polynomial system solving and polynomial systems with noise. The main issue is that there is no sound algorithmic and theoretical framework for solving polynomial systems with noise. The development of such framework is a long-term objective.

POMDAPI Project-Team (section vide)

PROSECCO Project-Team

3. Research Program

3.1. Symbolic verification of cryptographic applications

Despite decades of experience, designing and implementing cryptographic applications remains dangerously error-prone, even for experts. This is partly because cryptographic security is an inherently hard problem, and partly because automated verification tools require carefully-crafted inputs and are not widely applicable. To take just the example of TLS, a widely-deployed and well-studied cryptographic protocol designed, implemented, and verified by security experts, the lack of a formal proof about all its details has regularly led to the discovery of major attacks (in 2003, 2008, 2009, and 2011) on both the protocol and its implementations, after many years of unsuspecting use.

As a result, the automated verification for cryptographic applications is an active area of research, with a wide variety of tools being employed for verifying different kinds of applications.

In previous work, the we have developed the following three approaches:

- ProVerif: a symbolic prover for cryptographic protocol models
- Tookan: an attack-finder for PKCS#11 hardware security devices
- F7: a security typechecker for cryptographic applications written in F#

3.1.1. Verifying cryptographic protocols with ProVerif

Given a model of a cryptographic protocol, the problem is to verify that an active attacker, possibly with access to some cryptographic keys but unable to guess other secrets, cannot thwart security goals such as authentication and secrecy [49]; it has motivated a serious research effort on the formal analysis of cryptographic protocols, starting with [47] and eventually leading to effective verification tools, such as our tool ProVerif.

To use ProVerif, one encodes a protocol model in a formal language, called the applied pi-calculus, and ProVerif abstracts it to a set of generalized Horn clauses. This abstraction is a small approximation: it just ignores the number of repetitions of each action, so ProVerif is still very precise, more precise than, say, tree automata-based techniques. The price to pay for this precision is that ProVerif does not always terminate; however, it terminates in most cases in practice, and it always terminates on the interesting class of *tagged protocols* [43]. ProVerif also distinguishes itself from other tools by the variety of cryptographic primitives it can handle, defined by rewrite rules or by some equations, and the variety of security properties it can prove: secrecy [41], [34], correspondences (including authentication) [42], and observational equivalences [40]. Observational equivalence means that an adversary cannot distinguish two processes (protocols); equivalences can be used to formalize a wide range of properties, but they are particularly difficult to prove. Even if the class of equivalences that ProVerif can prove is limited to equivalences between processes that differ only by the terms they contain, these equivalences are useful in practice and ProVerif is the only tool that proves equivalences for an unbounded number of sessions.

Using ProVerif, it is now possible to verify large parts of industrial-strength protocols such as TLS [37], JFK [35], and Web Services Security [39]. against powerful adversaries that can run an unlimited number of protocol sessions, for strong security properties expressed as correspondence queries or equivalence assertions. ProVerif is used by many teams at the international level, and has been used in more 30 research papers (references available at http://proverif.inria.fr/proverif-users.html).

3.1.2. Verifying security APIs using Tookan

Security application programming interfaces (APIs) are interfaces that provide access to functionality while also enforcing a security policy, so that even if a malicious program makes calls to the interface, certain security properties will continue to hold. They are used, for example, by cryptographic devices such as smartcards and Hardware Security Modules (HSMs) to manage keys and provide access to cryptographic functions whilst keeping the keys secure. Like security protocols, their design is security critical and very difficult to get right. Hence formal techniques have been adapted from security protocols to security APIs.

The most widely used standard for cryptographic APIs is RSA PKCS#11, ubiquitous in devices from smartcards to HSMs. A 2003 paper highlighted possible flaws in PKCS#11 [45], results which were extended by formal analysis work using a Dolev-Yao style model of the standard [46]. However at this point it was not clear to what extent these flaws affected real commercial devices, since the standard is underspecified and can be implemented in many different ways. The Tookan tool, developed by Steel in collaboration with Bortolozzo, Centenaro and Focardi, was designed to address this problem. Tookan can reverse engineer the particular configuration of PKCS#11 used by a device under test by sending a carefully designed series of PKCS#11 commands and observing the return codes. These codes are used to instantiate a Dolev-Yao model of the device's API. This model can then be searched using a security protocol model checking tool to find attacks. If an attack is found, Tookan converts the trace from the model checker into the sequence of PKCS#11 queries needed to make the attack and executes the commands directly on the device. Results obtained by Tookan are remarkable: of 18 commercially available PKCS#11 devices tested, 10 were found to be susceptible to at least one attack.

3.1.3. Verifying cryptographic applications using F7

Verifying the implementation of a protocol has traditionally been considered much harder than verifying its model. This is mainly because implementations have to consider real-world details of the protocol, such as message formats, that models typically ignore. This leads to a situation that a protocol may have been proved secure in theory, but its implementation may be buggy and insecure. However, with recent advances in both program verification and symbolic protocol verification tools, it has become possible to verify fully functional protocol implementations in the symbolic model.

One approach is to extract a symbolic protocol model from an implementation and then verify the model, say, using ProVerif. This approach has been quite successful, yielding a verified implementation of TLS in F# [37]. However, the generated models are typically quite large and whole-program symbolic verification does not scale very well.

An alternate approach is to develop a verification method directly for implementation code, using well-known program verification techniques such as typechecking. F7 [36] is a refinement typechecker for F#, developed jointly at Microsoft Research Cambridge and Inria. It implements a dependent type-system that allows us to specify security assumptions and goals as first-order logic annotations directly inside the program. It has been used for the modular verification of large web services security protocol implementations [38]. F* [51] is an extension of F7 with higher-order kinds and a certifying typechecker. Both F7 and F* have a growing user community. The cryptographic protocol implementations verified using F7 and F* already represent the largest verified cryptographic applications to our knowledge.

3.2. Computational verification of cryptographic applications

Proofs done by cryptographers in the computational model are mostly manual. Our goal is to provide computer support to build or verify these proofs. In order to reach this goal, we have already designed the automatic tool CryptoVerif, which generates proofs by sequences of games. Much work is still needed in order to develop this approach, so that it is applicable to more protocols. We also plan to design and implement techniques for proving implementations of protocols secure in the computational model, by generating them from CryptoVerif specifications that have been proved secure, or by automatically extracting CryptoVerif models from implementations.

An alternative approach is to directly verify cryptographic applications in the computational model by typing. A recent work [48] shows how to use refinement typechecking in F7 to prove computational security for protocol implementations. In this method, henceforth referred to as computational F7, typechecking is used as the main step to justify a classic game-hopping proof of computational security. The correctness of this method is based on a probabilistic semantics of F# programs and crucially relies on uses of type abstraction and parametricity to establish strong security properties, such as indistinguishability.

In principle, the two approaches, typechecking and game-based proofs, are complementary. Understanding how to combine these approaches remains an open and active topic of research.

3.3. Provably secure web applications

Web applications are fast becoming the dominant programming platform for new software, probably because they offer a quick and easy way for developers to deploy and sell their *apps* to a large number of customers. Third-party web-based apps for Facebook, Apple, and Google, already number in the hundreds of thousands and are likely to grow in number. Many of these applications store and manage private user data, such as health information, credit card data, and GPS locations. To protect this data, applications tend to use an ad hoc combination of cryptographic primitives and protocols. Since designing cryptographic applications is easy to get wrong even for experts, we believe this is an opportune moment to develop security libraries and verification techniques to help web application programmers.

As a typical example, consider commercial password managers, such as LastPass, RoboForm, and 1Password. They are implemented as browser-based web applications that, for a monthly fee, offer to store a user's passwords securely on the web and synchronize them across all of the user's computers and smartphones. The passwords are encrypted using a master password (known only to the user) and stored in the cloud. Hence, no-one except the user should ever be able to read her passwords. When the user visits a web page that has a login form, the password manager asks the user to decrypt her password for this website and automatically fills in the login form. Hence, the user no longer has to remember passwords (except her master password) and all her passwords are available on every computer she uses.

Password managers are available as browser extensions for mainstream browsers such as Firefox, Chrome, and Internet Explorer, and as downloadable apps for Android and Apple phones. So, seen as a distributed application, each password manager application consists of a web service (written in PHP or Java), some number of browser extensions (written in JavaScript), and some smartphone apps (written in Java or Objective C). Each of these components uses a different cryptographic library to encrypt and decrypt password data. How do we verify the correctness of all these components?

We propose three approaches. For client-side web applications and browser extensions written in JavaScript, we propose to build a static and dynamic program analysis framework to verify security invariants. For Android smartphone apps and web services written in Java, we propose to develop annotated JML cryptography libraries that can be used with static analysis tools like ESC/Java to verify the security of application code. For clients and web services written in F# for the .NET platform, we propose to use F7 to verify their correctness.

RAP Project-Team

3. Research Program

3.1. Design and Analysis of Algorithms

Data Structures, Stochastic Algorithms

The general goal of the research in this domain is of designing algorithms to analyze and control the traffic of communication networks. The team is currently involved in the design of algorithms to allocate bandwidth in optical networks and also to allocate resources in content-centric networks. See the corresponding sections below.

The team also pursues analysis of algorithms and data structures in the spirit of the former Algorithms team. The team is especially interested in the ubiquitous divide-and-conquer paradigm and its applications to the design of search trees, and stable collision resolution protocols.

3.2. Scaling of Markov Processes

The growing complexity of communication networks makes it more difficult to apply classical mathematical methods. For a one/two-dimensional Markov process describing the evolution of some network, it is sometimes possible to write down the equilibrium equations and to solve them. The key idea to overcome these difficulties is to consider the system in limit regimes. This list of possible renormalization procedures is, of course, not exhaustive. The advantages of these methods lie in their flexibility to various situations and to the interesting theoretical problems they raised.

A fluid limit scaling is a particularly important means to scale a Markov process. It is related to the first order behavior of the process and, roughly speaking, amounts to a functional law of large numbers for the system considered.

A fluid limit keeps the main characteristics of the initial stochastic process while some second order stochastic fluctuations disappear. In "good" cases, a fluid limit is a deterministic function, obtained as the solution of some ordinary differential equation. As can be expected, the general situation is somewhat more complicated. These ideas of rescaling stochastic processes have emerged recently in the analysis of stochastic networks, to study their ergodicity properties in particular.

3.3. Structure of random networks

This line of research aims at understanding the global structure of stochastic networks (connectivity, magnitude of distances, etc) via models of random graphs. It consists of two complementary foundational and applied aspects of connectivity.

RANDOM GRAPHS, STATISTICAL PHYSICS AND COMBINATORIAL OPTIMIZATION. The connectivity of usual models for networks based on random graphs models (Erdős–Rényi and random geometric graphs) may be tuned by adjusting the average degree. There is a *phase transition* as the average degree approaches one, a *giant* connected component containing a positive proportion of the nodes suddenly appears. The phase of practical interest is the *supercritical* one, when there is at least a giant component, while the theoretical interest lies at the *critical phase*, the break-point just before it appears.

At the critical point there is not yet a macroscopic component and the network consists of a large number of connected component at the mesoscopic scale. From a theoretical point of view, this phase is most interesting since the structure of the clusters there is expected (heuristically) to be *universal*. Understanding this phase and its universality is a great challenge that would impact the knowledge of phase transitions in all high-dimensional models of *statistical physics* and *combinatorial optimization*.

RANDOM GEOMETRIC GRAPHS AND WIRELESS NETWORKS. The level of connection of the network is of course crucial, but the *scalability* imposes that the underlying graph also be *sparse*: trade offs must be made, which required a fine evaluation of the costs/benefits. Various direct and indirect measures of connectivity are crucial to these choices: What is the size of the overwhelming connected component? When does complete connectivity occur? What is the order of magnitude of distances? Are paths to a target easy to find using only local information? Are there simple broadcasting algorithms? Can one put an end to viral infections? How much time for a random crawler to see most of the network?

NAVIGATION AND POINT LOCATION IN RANDOM MESHES. Other applications which are less directly related to networks include the design of improved navigation or point location algorithms in geometric meshes such as the Delaunay triangulation build from random point sets. There the graph model is essentially fixed, but the constraints it imposes raise a number of challenging problems. The aim is to prove performance guarantees for these algorithms which are used in most manipulations of the meshes.

REGAL Project-Team

3. Research Program

3.1. Research rationale

As society relies more and more on computers, responsiveness, correctness and security are increasingly critical. At the same time, systems are growing larger, more parallel, and more unpredictable. Our research agenda is to design Computer Systems that remain correct and efficient despite this increased complexity and in spite of conflicting requirements. The term "*Computer Systems*" is interpreted broadly and includes systems architectures, operating systems, distributed systems, and computer networks.¹ The Regal group covers the whole spectrum, with a "bimodal" focus on distributed systems and infrastructure software. This holistic approach allows us to address related problems at different levels. It also permits us to efficiently share knowledge and expertise, and is a source of originality.

Computer Systems is a rapidly evolving domain, with strong interactions with industry. Two main evolutions in the Computer Systems area have strongly influenced our research activities:

3.1.1. Modern computer systems are increasingly parallel and distributed.

Ensuring the persistence, availability and consistency of data in a distributed setting is a major requirement: the system must remain correct despite slow networks, disconnection, crashes, failures, churn, and attacks. Ease of use, performance and efficiency are equally important for systems to be accepted. These requirements are somewhat conflicting, and there are many algorithmic and engineering trade-offs, which often depend on specific workloads or usage scenarios.

Years of research in distributed systems are now coming to fruition, and are being used by millions of users of web systems, peer-to-peer systems, gaming and social applications, or cloud computing. These new usages bring new challenges of extreme scalability and adaptation to dynamically-changing conditions, where knowledge of system state can only be partial and incomplete. The challenges of distributed computing listed above are subject to new trade-offs.

Innovative environments that motivate our research include cloud computing, geo-replication, edge clouds, peer-to-peer (P2P) systems, dynamic networks, and manycore machines. The scientific challenges are scalability, fault tolerance, security, dynamicity and the virtualization of the physical infrastructure. Algorithms designed for classical distributed systems, such as resource allocation, data storage and placement, and concurrent access to shared data, need to be revisited to work properly under the constraints of these new environments.

Regal focuses in particular on two key challenges in these areas: the adaptation of algorithms to the new dynamics of distributed systems and data management on large configurations.

3.1.2. Multicore architectures are everywhere.

The fine-grained parallelism offered by multicore architectures has the potential to open highly parallel computing to new application areas. To make this a reality, however, many issues, including issues that have previously arisen in distributed systems, need to be addressed. Challenges include obtaining a consistent view of shared resources, such as memory, and optimally distributing computations among heterogeneous architectures, such as CPUs, GPUs, and other specialized processors. As compared to distributed systems, in the case of multicore architectures, these issues arise at a more fine-grained level, leading to the need for different solutions and different cost-benefit trade-offs.

¹As defined by the journal ACM Transactions on Computer Systems; see http://tocs.acm.org/.

Recent multicore architectures are highly diverse. Compiling and optimizing programs for such architectures can only be done for a given target. In this setting, managed runtime environments (MREs) are an elegant approach since they permit distributing a unique binary representation of an application, to which architecture-specific optimizations can be applied late on the execution machine. Finally, the concurrency provided by multicore architectures also induces new challenges for software robustness. We consider this problem in the context of systems software, using static analysis of the source code and the technology developed in the Coccinelle tool.

REO Project-Team

3. Research Program

3.1. Multiphysics modeling

In large vessels and in large bronchi, blood and air flows are generally supposed to be governed by the incompressible Navier-Stokes equations. Indeed in large arteries, blood can be supposed to be Newtonian, and at rest air can be modeled as an incompressible fluid. The cornerstone of the simulations is therefore a Navier-Stokes solver. But other physical features have also to be taken into account in simulations of biological flows, in particular fluid-structure interaction in large vessels and transport of sprays, particles or chemical species.

3.1.1. Fluid-structure interaction

Fluid-structure coupling occurs both in the respiratory and in the circulatory systems. We focus mainly on blood flows since our work is more advanced in this field. But the methods developed for blood flows could be also applied to the respiratory system.

Here "fluid-structure interaction" means a coupling between the 3D Navier-Stokes equations and a 3D (possibly thin) structure in large displacements.

The numerical simulations of the interaction between the artery wall and the blood flows raise many issues: (1) the displacement of the wall cannot be supposed to be infinitesimal, geometrical nonlinearities are therefore present in the structure and the fluid problem have to be solved on a moving domain (2) the densities of the artery walls and the blood being close, the coupling is strong and has to be tackled very carefully to avoid numerical instabilities, (3) "naive" boundary conditions on the artificial boundaries induce spurious reflection phenomena.

Simulation of valves, either at the outflow of the cardiac chambers or in veins, is another example of difficult fluid-structure problems arising in blood flows. In addition, very large displacements and changes of topology (contact problems) have to be handled in those cases.

Because of the above mentioned difficulties, the interaction between the blood flow and the artery wall has often been neglected in most of the classical studies. The numerical properties of the fluid-structure coupling in blood flows are rather different from other classical fluid-structure problems. In particular, due to stability reasons it seems impossible to successfully apply the explicit coupling schemes used in aeroelasticity.

As a result, fluid-structure interaction in biological flows raise new challenging issues in scientific computing and numerical analysis : new schemes have to be developed and analyzed.

We have proposed over the last few years several efficient fluid-structure interaction algorithms. We are now using these algorithms to address inverse problems in blood flows (for example, estimation of artery wall stiffness from medical imaging).

3.1.2. Aerosol

Complex two-phase fluids can be modeled in many different ways. Eulerian models describe both phases by physical quantities such as the density, velocity or energy of each phase. In the mixed fluid-kinetic models, the biphasic fluid has one dispersed phase, which is constituted by a spray of droplets, with a possibly variable size, and a continuous classical fluid.

This type of model was first introduced by Williams [84] in the frame of combustion. It was later used to develop the Kiva code [71] at the Los Alamos National Laboratory, or the Hesione code [78], for example. It has a wide range of applications, besides the nuclear setting: diesel engines, rocket engines [74], therapeutic sprays, *etc.* One of the interests of such a model is that various phenomena on the droplets can be taken into account with an accurate precision: collision, breakups, coagulation, vaporization, chemical reactions, *etc.*, at the level of the droplets.

The model usually consists in coupling a kinetic equation, that describes the spray through a probability density function, and classical fluid equations (typically Navier-Stokes). The numerical solution of this system relies on the coupling of a method for the fluid equations (for instance, a finite volume method) with a method fitted to the spray (particle method, Monte Carlo).

We are mainly interested in modeling therapeutic sprays either for local or general treatments. The study of the underlying kinetic equations should lead us to a global model of the ambient fluid and the droplets, with some mathematical significance. Well-chosen numerical methods can give some tracks on the solutions behavior and help to fit the physical parameters which appear in the models.

3.2. Multiscale modeling

Multiscale modeling is a necessary step for blood and respiratory flows. In this section, we focus on blood flows. Nevertheless, similar investigations are currently carried out on respiratory flows.

3.2.1. Arterial tree modeling

Problems arising in the numerical modeling of the human cardiovascular system often require an accurate description of the flow in a specific sensible subregion (carotid bifurcation, stented artery, *etc.*). The description of such local phenomena is better addressed by means of three-dimensional (3D) simulations, based on the numerical approximation of the incompressible Navier-Stokes equations, possibly accounting for compliant (moving) boundaries. These simulations require the specification of boundary data on artificial boundaries that have to be introduced to delimit the vascular district under study. The definition of such boundary conditions is critical and, in fact, influenced by the global systemic dynamics. Whenever the boundary data is not available from accurate measurements, a proper boundary condition requires a mathematical description of the action of the reminder of the circulatory system on the local district. From the computational point of view, it is not affordable to describe the whole circulatory system keeping the same level of detail. Therefore, this mathematical description relies on simpler models, leading to the concept of *geometrical multiscale* modeling of the circulation [80]. The underlying idea consists in coupling different models (3D, 1D or 0D) with a decreasing level of accuracy, which is compensated by their decreasing level of computational complexity.

The research on this topic aims at providing a correct methodology and a mathematical and numerical framework for the simulation of blood flow in the whole cardiovascular system by means of a geometric multiscale approach. In particular, one of the main issues will be the definition of stable coupling strategies between 3D and reduced order models.

To model the arterial tree, a standard way consists of imposing a pressure or a flow rate at the inlet of the aorta, *i.e.* at the network entry. This strategy does not allow to describe important features as the overload in the heart caused by backward traveling waves. Indeed imposing a boundary condition at the beginning of the aorta artificially disturbs physiological pressure waves going from the arterial tree to the heart. The only way to catch this physiological behavior is to couple the arteries with a model of heart, or at least a model of left ventricle.

A constitutive law for the myocardium, controlled by an electrical command, has been developed in the CardioSense3D project ¹. One of our objectives is to couple artery models with this heart model.

A long term goal is to achieve 3D simulations of a system including heart and arteries. One of the difficulties of this very challenging task is to model the cardiac valves. To this purpose, we plan to mix arbitrary Lagrangian Eulerian and fictitious domain approaches, or simplified valve models based on an immersed surface strategy.

¹http://www-sop.inria.fr/CardioSense3D/

3.2.2. Heart perfusion modeling

The heart is the organ that regulates, through its periodical contraction, the distribution of oxygenated blood in human vessels in order to nourish the different parts of the body. The heart needs its own supply of blood to work. The coronary arteries are the vessels that accomplish this task. The phenomenon by which blood reaches myocardial heart tissue starting from the blood vessels is called in medicine perfusion. The analysis of heart perfusion is an interesting and challenging problem. Our aim is to perform a three-dimensional dynamical numerical simulation of perfusion in the beating heart, in order to better understand the phenomena linked to perfusion. In particular the role of the ventricle contraction on the perfusion of the heart is investigated as well as the influence of blood on the solid mechanics of the ventricle. Heart perfusion in fact implies the interaction between heart muscle and blood vessels, in a sponge-like material that contracts at every heartbeat via the myocardium fibers.

Despite recent advances on the anatomical description and measurements of the coronary tree and on the corresponding physiological, physical and numerical modeling aspects, the complete modeling and simulation of blood flows inside the large and the many small vessels feeding the heart is still out of reach. Therefore, in order to model blood perfusion in the cardiac tissue, we must limit the description of the detailed flows at a given space scale, and simplify the modeling of the smaller scale flows by aggregating these phenomena into macroscopic quantities, by some kind of "homogenization" procedure. To that purpose, the modeling of the fluid-solid coupling within the framework of porous media appears appropriate.

Poromechanics is a simplified mixture theory where a complex fluid-structure interaction problem is replaced by a superposition of both components, each of them representing a fraction of the complete material at every point. It originally emerged in soils mechanics with the work of Terzaghi [83], and Biot [72] later gave a description of the mechanical behavior of a porous medium using an elastic formulation for the solid matrix, and Darcy's law for the fluid flow through the matrix. Finite strain poroelastic models have been proposed (see references in [73]), albeit with *ad hoc* formulations for which compatibility with thermodynamics laws and incompressibility conditions is not established.

3.2.3. Tumor and vascularization

The same way the myocardium needs to be perfused for the heart to beat, when it has reached a certain size, tumor tissue needs to be perfused by enough blood to grow. It thus triggers the creation of new blood vessels (angiogenesis) to continue to grow. The interaction of tumor and its micro-environment is an active field of research. One of the challenges is that phenomena (tumor cell proliferation and death, blood vessel adaptation, nutrient transport and diffusion, etc) occur at different scales. A multi-scale approach is thus being developed to tackle this issue. The long term objective is to predict the efficiency of drugs and optimize therapy of cancer.

3.2.4. Respiratory tract modeling

We aim to develop a multiscale modeling of the respiratory tract. Intraprenchymal airways distal from generation 7 of the tracheabronchial tree (TBT), which cannot be visualized by common medical imaging techniques, are modeled either by a single simple model or by a model set according to their order in TBT. The single model is based on straight pipe fully developed flow (Poiseuille flow in steady regimes) with given alveolar pressure at the end of each compartment. It will provide boundary conditions at the bronchial ends of 3D TBT reconstructed from imaging data. The model set includes three serial models. The generation down to the pulmonary lobule will be modeled by reduced basis elements. The lobular airways will be represented by a fractal homogenization approach. The alveoli, which are the gas exchange loci between blood and inhaled air, inflating during inspiration and deflating during expiration, will be described by multiphysics homogenization.

SECRET Project-Team

3. Research Program

3.1. Scientific foundations

Our research work is mainly devoted to the design and analysis of cryptographic algorithms, either in the classical or in the quantum setting. Our approach on the previous problems relies on a competence whose impact is much wider than cryptology. Our tools come from information theory, discrete mathematics, probabilities, algorithmics, quantum physics... Most of our work mixes fundamental aspects (study of mathematical objects) and practical aspects (cryptanalysis, design of algorithms, implementations). Our research is mainly driven by the belief that discrete mathematics and algorithmics of finite structures form the scientific core of (algorithmic) data protection.

SIERRA Project-Team

3. Research Program

3.1. Supervised Learning

This part of our research focuses on methods where, given a set of examples of input/output pairs, the goal is to predict the output for a new input, with research on kernel methods, calibration methods, and multi-task learning.

3.2. Unsupervised Learning

We focus here on methods where no output is given and the goal is to find structure of certain known types (e.g., discrete or low-dimensional) in the data, with a focus on matrix factorization, statistical tests, dimension reduction, and semi-supervised learning.

3.3. Parsimony

The concept of parsimony is central to many areas of science. In the context of statistical machine learning, this takes the form of variable or feature selection. The team focuses primarily on structured sparsity, with theoretical and algorithmic contributions (this is the main topic of the ERC starting investigator grant awarded to F. Bach).

3.4. Optimization

Optimization in all its forms is central to machine learning, as many of its theoretical frameworks are based at least in part on empirical risk minimization. The team focuses primarily on convex and bandit optimization, with a particular focus on large-scale optimization.

SISYPHE Project-Team

3. Research Program

3.1. Towards two new project-teams MYCENAE and QUANTIC

Based on promising results obtained in *Cell Biology and Neurosciences* and *Quantum physics*, the research program anticipates the evolution of Sisyphe into two project-teams in *Applied Mathematics*:

- MYCENAE (Multiscale dYnamiCs in neuroENdocrine AxEs), a project-team led by Frédérique Clément, created in Jan. 2014.

- QUANTIC (QUANTum Information Circuits), led by Mazyar Mirrahimi (the team has been created in Sept 2013; the project proposal is still under review).

3.2. Neuroscience & Neuroendocrinology: Regulation of the Gonadotrope axis

Participants: Benjamin Aymard, Frédérique Clément, Mathieu Desroches, Soledad Fernández García, Albert Granados Corsellas, Elif Köksal, Maciej Krupa, Lucile Megret, Sixtine Passot, Marie Postel, Jonathan Touboul, Alexandre Vidal.

This work was mostly undertaken in the framework of the **REGATE** (REgulation of the GonAdoTropE axis) Inria Large Scale Initiative Action, that focuses on mathematical neuroendocrinology issues applied to the hypothalamo-pituitary-gonadal (HPG) axis.

3.2.1. Controlled conservation laws for structured cell populations

We have studied the theoretical and numerical questions raised by our multiscale model of follicle selection. This is needed to fully exploit the model potential in terms of biological interpretation and to enable us to forecast the ovulation rate according to the different physiological and endocrine scenarios that we have elaborated [40]. To describe the terminal stages of follicular development on a cell kinetics basis and account for the selection process operated amongst follicles, we have previously developed a multiscale model describing the cell density in each follicle, that can be roughly considered as a ($N \times 2D$) system of weakly coupled transport equations with controlled velocities and source term [10], [11]. Even if, in some sense, this model belongs to the class of renewal equations for structured populations, it owns a number of specificities that render its theoretical and numerical analysis particularly challenging: weak nonlinearity due to the moment-based formulation of velocities and source term, discontinuities in the (cell-phase dependent) velocities and densities (due to the mitosis event), 2D effects (e.g. shear or waterproof interface). On the theoretical ground, we have obtained rigorous results on the existence and uniqueness of weak solutions with bounded initial data [56], so that the well-posedness of the model in its most generic formulation is now well established. In the framework of hybrid optimal control, we have proved that there exists an optimal bangbang control with only one switching time for the optimal ovulatory trajectory, in the case when the density is approximated by Dirac masses [38], which in some sense generalizes former results obtained in a lowdimensional ODE case [89]. We can also conjecture that every optimal control is a bang-bang control with only one switching time for our PDE case, but the formal proof of it remains to be stated. From the rigorous reduction (exponential convergence in one of the structuring variable) and averaging of the renewal (mitosis) term, we have obtained a simpler system of coupled nonlinear ODEs (corresponding to the zero and first-order moments of the initial PDEs), from which the dynamics of one given follicle can be studied with respect to the pressure exerted collectively by all other growing follicles, in a dynamical game-like framework. On the numerical ground, we have conceived a new method to deal with the discontinuous coefficients [35] and designed a finite-volume scheme implemented on a parallel architecture [84] to overcome some computational difficulties and perform intensive simulation campaigns.

We have also investigated the physiological balance (as well as pathological or genetically-encoded unbalance) between the oocyte growth and proliferation of follicular cells in the earliest stages of follicular morphodynamics, when the very low number of follicular cells excludes the use of a deterministic formalism. To remain in a dynamical framework consistent (in the limit) with PDE renewal equations, we have adapted a stochastic and discrete formalism initially developed in the framework of ecological modeling (e.g. [88]) to design a stochastic model of early follicular development with its own specificities [39]: 2D population structuring according both to a space variable (distance from the surface of the oocyte) and an age variable (progression along the division cycle), non-zero sized individuals with possible local overcrowding, multiscale formulation (with three interacting scales intricately merged on the dynamical ground).

3.2.2. Dynamical systems and neuroendocrinology

We have previously proposed in [5], and further analyzed in [4], a mathematical model accounting for the alternating pulse and surge pattern of GnRH secretion. The model is based on the coupling between two dynamical systems running on different time scales. The faster system corresponds to the average activity of GnRH secreting neurons, which is forced by the slower system that corresponds to the average activity of regulatory neurons. The analysis of the slow-fast dynamics exhibited within and between both systems allows one to explain the different patterns (slow oscillations, fast oscillations and periodic surge) of GnRH secretion both qualitatively.

In an endocrinology-oriented study, we have explained how the dynamics-based constraints imposed on the model parameters amount to embedding time- and dose-dependent steroid control within the model [23]. We then investigated the plasticity of the model and performed *in silico* experiments inspired from available experimental protocols: luteal deficiency affecting the surge amplitude, surge blockade induced by administration of luteal levels of progesterone during the follicular phase, short-term effects of either progesterone or estradiol bolus administration on the pulse properties.

On the dynamical ground, further exploration of the model has revealed other possible secretion regimes. In particular, during the transition from a surge back to the subsequent pulsatile phase, a *pause* consisting of small oscillations superimposed on a long-duration pulse may occur. A detailed examination of the *pause* has revealed that it is shaped by mixed-mode oscillations (MMO); the small oscillations are related to the passage of the slow nullcline of the secreting system through a fold point of its fast nullcline. We have computed families of orbit segment undergoing very brutal transitions upon parameter variation in the vicinity of the fold, by applying pseudo-arclength continuation algorithms (as implemented in AUTO) to one-parameter families of well-posed two-point boundary value problems. We have derived a variety of reductions that allowed us to obtain results both on the local dynamics near the fold (rigorous characterization of small canards and sectors of rotation) and the global dynamics (existence of an attracting unique limit cycle, which is underlain by a return map) [16].

We have also started to investigate the question of GnRH neuron synchronization on a mesoscopic scale. We have studied how synchronized events in calcium dynamics can arise from the average electric activity of individual neurons, from seminal experiments of calcium imaging performed on embryonic GnRH neurons [116]. Our model reproduces the occurrence of synchronized calcium peaks, superimposed on asynchronous, yet oscillatory individual background dynamics, as well as additional experimental observations (partial recruitment, doublets of synchronization) [50]. Using phase-plane analysis, we have constrained the model behavior so that it meets not only qualitative but also quantitative specifications derived from the experiments, including the precise control of the frequency of the synchronization episodes.

On a data-oriented ground, we have designed an algorithm (DynPeak) for the monitoring of LH (luteinizing hormone) pulse frequency (that mirrors GnRH pulse frequency in many -but not all- cases), basing ourselves both on the available endocrinological knowledge (pulse shape and duration with respect to the frequency regime) and synthetic LH data generated by a simple model [25] (Joint work with Claire Médigue (hormonal data analysis) and Serge Steer (software development)). We have performed the algorithm on different sets of both synthetic and experimental LH time series. We have further diagnosed possible sources of outliers in the series of IPIs which is the main output of the algorithm.

3.2.3. Innovative computational and theoretical tools for slow-fast dynamics

We have extended the study of the recently discovered *torus canard* phenomenon [98], that underlies the transition between the spiking and bursting regimes in neuronal models, and can be roughly considered as the combination of a canard phenomenon with a fast rotating dynamics. We have generalized the previous results to a larger class of bursters (such as the classical Hindmarsh-Rose and Wilson-Cowan models), whose bursting regime ends by a slow passage through a fold bifurcation of limit cycles and we have analyzed the underlying bifurcation structure by means of continuation tools [87], [92].

We have developed new approaches to compute one-parameter families of *isolas*, which are isolated bifurcation branches encountered in multiple timescale dynamics, especially in a neuroscience context (e.g. isolas of spiking, bursting or MMO solutions). The main difficultly consists in computing at once an entire isola and continuing it as a single object in the parameter space, despite its inherent instability. We have proposed a new strategy, implemented as a series of Matlab routines [83], that enables one to perform multiple parallel continuation runs, subject to specific constraints between the different solution branches. Starting from a known (typically stable) solution obtained by direct simulation, our continuation approach combines the discretization of isolas into (possibly numerous) nodes with the use of periodic boundary conditions and a "phase-like" condition generalizing that implemented for the continuation of limit cycles. In addition, the stability of nodes is checked and possible bifurcations undergone by the nodes or isolas are detected in the course of the continuation.

We have investigated the slow-fast behavior of families of limit cycles in *piecewise-linear systems* approximations of multiple timescale systems, which are known to reproduce the rich dynamical repertoire of smooth systems while being amenable to more direct analysis. We have revisited previous work from the 1990s in order to complete the definition of a "canard cycle" in this context. We have shown that, even in the partial extension (where the fast nullcline is formed by 3 pieces instead of 4 for the entire extension), key features of canard cycles, such as the explosive behavior in parameter space and the shape with respect to the fast nullcline, are preserved [43].

We have extended our previous work [93] on *epsilon-free methods*, whose main advantage lies in not assuming the presence of a small parameter. In the case of planar slow-fast systems, the main idea is to associate strong changes of curvature with loci of inflection points of the flow in the phase plane projection, in order to detect transitions from fast to slow epochs and vice-versa and to estimate the timescale ratio when it is hidden. We have shown that inflection lines, that can be easily computed, provide a good approximation to the excitability threshold [7]. We have also studied the possible topological configurations of inflection lines, both in the singular limit and away from it, both in the "canard regime" (where the canard point corresponds to a tangency between two connected components of the inflection set) and in the "relaxation regime".

3.3. Quantum engineering: controlled quantum systems

Participants: Joachim Cohen, Loïc Herviou, Mazyar Mirrahimi, Pierre Rouchon, Pierre Six.

These research activities are done in collaboration with the permanent researchers of the future QUANTIC project-team, members of Laboratoire Pierre Aigrain, Benjamin Huard (CNRS), François Mallet (UPMC). They have benefited from important scientific exchanges and collaborations with the teams of Serge Haroche, Jean-Michel Raimond and Michel Brune at Laboratoire Kastler Brossel (LKB) and Collège de France and those of Michel Devoret and Robert Schoelkopf at the Department of Applied Physics of Yale University.

The collaborations with the team of LKB have led to the first experimental realization of a real-time quantum feedback protocol allowing us to stabilize a highly non-classical state of quantum field trapped inside a microwave cavity [21]. This major breakthrough has been particularly highlighted in the 2012 physics Nobel prize attributed to Serge Haroche.

By focusing on two different but similar types of experimental setups, consisting of cavity quantum electrodynamical systems and quantum Josephson circuits, we aim to prepare highly non-classical states of a microwave field and protect these states against decoherence. Two different approaches are considered: 1- real-time measurement, quantum filtering and feedback; 2- dissipation engineering also called reservoir engineering. Through the first methodology, we try to propose new experimental feedback protocols based on a fast realtime processing of measurement signal, followed by a state estimation applying the filtered signal and finally designing simple feedback laws based on the estimated state. The second methodology consists in designing new quantum circuit schemes that allow to orient the system's coupling to its environment in such a way that evacuates the undesired entropy induced by un-controlled noise sources.

3.3.1. Measurement based feedback

In the framework of the PhD thesis of Hadis Amini [81], we have developed the mathematical methods [1], [82], [34] underlying a recent quantum feedback experiment stabilizing photon-number states [21]. We consider a controlled system whose quantum state, a finite dimensional density operator, is governed by a discrete-time nonlinear Markov process. In open-loop, the measurements are assumed to be quantum nondemolition (QND) measurements. This Markov process admits a set of stationary pure states associated to an orthonormal basis. These stationary states provide martingales crucial to prove the open-loop stability: under simple assumptions, almost all trajectories converge to one of these stationary states; the probability to converge to a stationary state is given by its overlap with the initial quantum state. From these openloop martingales, we construct a supermartingale whose parameters are given by inverting a Metzler matrix characterizing the impact of the control input on the Kraus operators defining the Markov process. This supermartingale measures the "distance" between the current quantum state and the goal state chosen from one of the open-loop stationary pure states. At each step, the control input minimizes the conditional expectation of this distance. It is proven that the resulting feedback scheme stabilizes almost surely towards the goal state whatever the initial quantum state. This state feedback takes into account a known constant delay of arbitrary length in the control loop. This control strategy is proved to remain also convergent when the state is replaced by its estimate based on a quantum filter. It relies on measurements that can be corrupted by random errors with conditional probabilities described by a known left stochastic matrix. Closed-loop simulations corroborated by experimental data illustrate the interest of such nonlinear feedback scheme for the photon box.

In the framework of the postdoctoral stay of Ram Abhinav Somaraju within our group, we generalized these methods to infinite dimensional quantum stochastic systems [59]. Through this work, we studied the approximate state feedback stabilization of an infinite dimensional quantum stochastic system towards a target state. We can choose an (unbounded) strict Lyapunov function that is minimized at each time-step in order to prove (weak-*) convergence of probability measures to a final state that is concentrated on the target state with (a pre-specified) probability that may be made arbitrarily close to 1. The feedback parameters and the Lyapunov function are chosen so that the stochastic flow that describes the Markov process may be shown to be tight (concentrated on a compact set with probability arbitrarily close to 1). We then use Prohorov's theorem and properties of the Lyapunov function to prove the desired convergence result.

We have also investigated the stabilization of the dynamical state of a superconducting qubit [47], [37], [107]. In a series of papers, A. Korotkov and his co-workers suggested that continuous weak measurement of the state of a qubit and applying an appropriate feedback on the amplitude of a Rabi drive, should maintain the coherence of the Rabi oscillations for arbitrary time. Here, in the aim of addressing a metrological application of these persistent Rabi oscillations, we explore a new variant of such strategies. This variant is based on performing strong measurements in a discrete manner and using the measurement record to correct the phase of the Rabi oscillations. Noting that such persistent Rabi oscillations can be viewed as an amplitude- to-frequency convertor (converting the amplitude of the Rabi microwave drive to a precise frequency), we propose another feedback layer consisting of a simple analog phase locked loop to compensate the low frequency deviations in the amplitude of the Rabi drive.

3.3.2. Dissipation engineering

In the framework of the PhD thesis of Zaki Leghtas [104], we have introduced a new quantum gate that transfers an arbitrary state of a qubit into a superposition of two quasi-orthogonal coherent states of a cavity mode, with opposite phases [111]. This qcMAP gate is based on conditional qubit and cavity operations exploiting the energy level dispersive shifts, in the regime where they are much stronger than the cavity and qubit linewidths. The generation of multi-component superpositions of quasi-orthogonal coherent states [49], non-local entangled states of two resonators and multi-qubit GHZ states can be efficiently achieved by this gate. We also propose a new method, based on the application of this gate, to autonomously correct for errors of a logical qubit induced by energy relaxation. This scheme encodes the logical qubit as a multi-component superposition of coherent states in a harmonic oscillator. The error correction is performed by transferring the entropy to an ancila qubit and reseting the qubit. We layout in detail how to implement these operations in a practical system. We directly addresses the task of building a hardware-efficient and technically realizable quantum memory.

We have also studied the application of dissipation engineering techniques to perform a high-performance and fast qubit reset [46]. Qubit rest is crucial at the start of and during quantum information algorithms. Our protocol, nicknamed DDROP (Double Drive Reset of Population) is experimentally tested on a superconducting transmon qubit and achieves a ground state preparation of at least 99.5% in times less than 3μ s; faster and higher fidelity are predicted upon parameter optimization.

3.4. Classical engineering: Monitoring and control of complex systems

We consider questions of modeling, identification, signal analysis and control with medical or general engineering applications in the continuation of some of the themes presented Section 4.3.

- *Glycemic control in ICUs.* Besides the medical questions, the applied mathematics approach is used for contributing to the development of reliable medical devices in cooperation with industry.

- *Reduced order cardiac modeling and applications.* We consider modeling questions related to Heart Failure with preserved Ejection Fraction (HFpEF): origin of this diastolic dysfunction and compensatory mechanisms. This is relying on previous results on excitation-contraction modeling on the cell scale.

- *Identification of transmission line characteristics*. We consider inverse scattering techniques and adapted solutions for the weak-loss estimation problem.

SMIS Project-Team

3. Research Program

3.1. Embedded Data Management

The challenge tackled is this research action is twofold: (1) to design embedded database techniques matching the hardware constraints of (current and future) smart objects and (2) to set up co-design rules helping hardware manufacturers to calibrate their future platforms to match the requirements of data driven applications. While a large body of work has been conducted on data management techniques for high-end servers (storage, indexation and query optimization models minimizing the I/O bottleneck, parallel DBMS, main memory DBMS, etc.), less research efforts have been placed on embedded database techniques. Light versions of popular DBMS have been designed for powerful handheld devices; yet DBMS vendors have never addressed the complex problem of embedding database components into chips. Proposals dedicated to databases embedded on chip usually consider small databases, stored in the non-volatile memory of the microcontroller –hundreds of kilobytes– and rely on NOR Flash or EEPROM technologies. Conversely, SMIS is pioneering the combination of microcontrollers and NAND Flash constraints to manage Gigabyte(s) size embedded databases. We present below the positioning of SMIS with respect to international teams conducting research on topics which may be connected to the addressed problem, namely work on electronic stable storage, RAM consumption and specific hardware platforms.

Major database teams are investigating data management issues related to hardware advances (EPFL: A. Ailamaki, CWI: M. Kersten, U. Of Wisconsin: J. M. Patel, Columbia: K. Ross, UCSB: A. El Abbadi, IBM Almaden: C. Mohan, etc.). While there are obvious links with our research on embedded databases, these teams target high-end computers and do not consider highly constrained architectures with non traditional hardware resources balance. At the other extreme, sensors (ultra-light computing devices) are considered by several research teams (e.g., UC Berkeley: D. Culler, ITU: P. Bonnet, Johns Hopkins University: A. Terzis, MIT: S. Madden, etc.). The focus is on the processing of continuous streams of collected data. Although the devices we consider share some hardware constraints with sensors, the objectives of both environments strongly diverge in terms of data cardinality and complexity, query complexity and data confidentiality requirements. Several teams are looking at efficient indexes on flash (HP LABS: G. Graefe, U. Minnesota: B. Debnath, U. Massachusetts: Y. Diao, Microsoft: S. Nath, etc.). Some studies try to minimize the RAM consumption, but the considered RAM/stable storage ratio is quite large compared to the constraints of the embedded context. Finally, a large number of teams have focused on the impact of flash memory on database system design (we presented an exhaustive state of the art in a VLDB tutorial [7]). The work conducted in the SMIS team on bi-modal flash devices takes the opposite direction, proposing to influence the design of flash devices by the expression of database requirements instead of running after the constantly evolving flash device technology.

3.2. Access and Usage Control Models

Access control management has been deeply studied for decades. Different models have been proposed to declare and administer access control policies, like DAC, MAC, RBAC, TMAC, and OrBAC. While access control management is well established, new models are being defined to cope with privacy requirements. Privacy management distinguishes itself from traditional access control is the sense that the data to be protected is personal. Hence, the user's consent must be reflected in the access control policies, as well as the usage of the data, its collection rules and its retention period, which are principles safeguarded by law and must be controlled carefully.

The research community working on privacy models is broad, and involves many teams worldwide including in France ENST-B, LIRIS, Inria LICIT, and LRI, and at the international level IBM Almaden, Purdue Univ., Politecnico di Milano and Univ. of Milano, George Mason Univ., Univ. of Massachusetts, Univ. of Texas and Colorado State Univ. to cite a few. Pioneer attempts towards privacy wary systems include the P3P Platform for Privacy Preservation [36] and Hippocratic databases [25]. In the last years, many other policy languages have been proposed for different application scenarios, including EPAL [41], XACML [38] and WSPL [31]. Hippocratic databases are inspired by the axiom that databases should be responsible for the privacy preservation of the data they manage. The architecture of a Hippocratic database is based on ten guiding principles derived from privacy laws.

The trend worldwide has been to propose enhanced access control policies to capture finer behaviour and bridge the gap with privacy policies. To cite a few, Ardagna *et al.* (Univ. Milano) enables actions to be performed after data collection (like notification or removal), purpose binding features have been studied by Lefevre *et al.* (IBM Almaden), and Ni *et al.* (Purdue Univ.) have proposed obligations and have extended the widely used RBAC model to support privacy policies.

The positioning of the SMIS team within this broad area is rather (1) to focus on intuitive or automatic tools helping the individual to control some facets of her privacy (e.g., data retention, minimal collection) instead of increasing the expressiveness but also the complexity of privacy models and (2) to push concrete models enriched by real-case (e.g., medical) scenarios and by a joint work with researchers in Law.

3.3. Tamper-resistant Data Management

Tamper-resistance refers to the capacity of a system to defeat confidentiality and integrity attacks. This problem is complementary to access control management while being (mostly) orthogonal to the way access control policies are defined. Security surveys regularly point out the vulnerability of database servers against external (i.e., by intruders) and internal (i.e., by employees) attacks. Several attempts have been made in commercial DBMSs to strengthen server-based security, e.g., by separating the duty between DBA and DSA (Data Security Administrator), by encrypting the database footprint and by securing the cryptographic material using Hardware Security Modules (HSM) [33]. To face internal attacks, client-based security approaches have been investigated where the data is stored encrypted on the server and is decrypted only on the client side. Several contributions have been made in this direction, notably by U. of California Irvine (S. Mehrotra, Database Service Provider model), IBM Almaden (R. Agrawal, computation on encrypted data), U. of Milano (E. Damiani, encryption schemes), Purdue U. (E. Bertino, XML secure publication), U. of Washington (D. Suciu, provisional access) to cite a few seminal works. An alternative, recently promoted by Stony Brook Univ. (R. Sion), is to augment the security of the server by associating it with a tamper-resistant hardware module in charge of the security aspects. Contrary to traditional HSM, this module takes part in the query computation and performs all data decryption operations. SMIS investigates another direction based on the use of a tamper-resistant hardware module on the client side. Most of our contributions in this area are based on exploiting the tamper-resistance of secure tokens to build new data protection schemes.

While our work on Privacy-Preserving data Publishing (PPDP) is still related to tamper-resistance, a complementary positioning is required for this specific topic. The primary goal of PPDP is to anonymize/sanitize microdata sets before publishing them to serve statistical analysis purposes. PPDP (and privacy in databases in general) is a hot topic since 2000, when it was introduced by IBM Research (IBM Almaden: R. Agrawal, IBM Watson: C.C. Aggarwal), and many teams, mostly north American universities or research centres, study this topic (e.g., PORTIA DB-Privacy project regrouping universities such as Stanford with H. Garcia-Molina). Much effort has been devoted by the scientific community to the definition of privacy models exhibiting better privacy guarantees or better utility or a balance of both (such as differential privacy studied by C. Dwork: Microsoft Research or D. Kifer: Penn-State Univ and J. Gehrke: Cornell Univ) and thorough surveys exist that provide a large overview of existing PPDP models and mechanisms [37]. These works are however orthogonal to our approach in that they make the hypothesis of a trustworthy central server that can execute the anonymization process. In our work, this is not the case. We consider an architecture composed of a large population of tamper-resistant devices weakly connected to an untrusted infrastructure and study how to compute PPDP problems in this context. Hence, our work has some connections with the works done on Privacy Preserving Data Collection (Stevens Institute of Tech. / Rutgers Univ,NJ: R.N.Wright, Univ Austin Texas: V. Shmatikov), on Secure Multi-party Computing for Privacy Preserving Data Mining (Rutgers Univ: J. Vaidya, Purdue Univ: C. Clifton) and on distributed PPDP algorithms (Univ Wisconsin: D. DeWitt, Univ Michigan: K. Lefevre, Rutgers Univ: J. Vaidya, Purdue Univ: C. Clifton) while none of them share the same architectural hypothesis as us.

WILLOW Project-Team

3. Research Program

3.1. 3D object and scene modeling, analysis, and retrieval

This part of our research focuses on geometric models of specific 3D objects at the local (differential) and global levels, physical and statistical models of materials and illumination patterns, and modeling and retrieval of objects and scenes in large image collections. Our past work in these areas includes research aimed at recognizing rigid 3D objects in cluttered photographs taken from arbitrary viewpoints (Rothganger *et al.*, 2006), segmenting video sequences into parts corresponding to rigid scene components before recognizing these in new video clips (Rothganger *et al.*, 2007), retrieval of particular objects and buildings from images and videos (Sivic and Zisserman, 2003) and (Philbin *et al.*, 2007), and a theoretical study of a general formalism for modeling central and non-central cameras using the formalism and terminology of classical projective geometry (Ponce, 2009 and Batog *et al.*, 2010).

We have also developed multi-view stereopsis algorithms that have proven remarkably effective at recovering intricate details and thin features of compact objects and capturing the overall structure of large-scale, cluttered scenes. We have obtained a US patent 8,331,615⁻¹ for the corresponding software (PMVS, http://grail.cs. washington.edu/software/pmvs/) which is available under a GPL license and used for film production by ILM and Weta as well as by Google in Google Maps. It is also the basic technology used by Iconem, a start-up founded by Y. Ubelmann, a Willow collaborator. We have also applied our multi-view-stereo approach to model archaeological sites together with developing representations and efficient retrieval techniques to enable matching historical paintings to 3D models of archaeological sites (Russel *et al.*, 2011). Our current efforts in this area, outlined in detail in Section 6.1, are focused on: (i) developing new representations of 3D architectural sites for matching and retrieval, (ii) large-scale visual place recognition in structured image collections of urban environments, and (iii) continuing our theoretical study of multi-view camera geometry.

3.2. Category-level object and scene recognition

The objective in this core part of our research is to learn and recognize quickly and accurately thousands of visual categories, including materials, objects, scenes, and broad classes of temporal events, such as patterns of human activities in picnics, conversations, etc. The current paradigm in the vision community is to model/learn one object category (read 2D aspect) at a time. If we are to achieve our goal, we have to break away from this paradigm, and develop models that account for the tremendous variability in object and scene appearance due to texture, material, viewpoint, and illumination changes within each object category, as well as the complex and evolving relationships between scene elements during the course of normal human activities.

Our current work, outlined in detail in Section 6.2), has focused on: (i) learning the appearance of objects and their parts in a weakly supervised manner, (ii) capturing the spatial layout of objects using the formalism of graph matching, (iii) developing models explicitly capturing the 3D structure of objects, and (iv) transferring mid-level image representations using convolutional neural networks.

3.3. Image restoration, manipulation and enhancement

The goal of this part of our research is to develop models, and methods for image/video restoration, manipulation and enhancement. The ability to "intelligently" manipulate the content of images and video is just as essential as high-level content interpretation in many applications: This ranges from restoring old films or removing unwanted wires and rigs from new ones in post production, to cleaning up a shot of your daughter at her birthday party, which is lovely but noisy and blurry because the lights were out when she blew

¹The patent: "Match, Expand, and Filter Technique for Multi-View Stereopsis" was issued December 11, 2012 and assigned patent number 8,331,615.

the candles, or editing out a tourist from your Roman holiday video. Going beyond the modest abilities of current "digital zoom" (bicubic interpolation in general) so you can close in on that birthday cake, "deblock" a football game on TV, or turn your favorite DVD into a blue-ray, is just as important.

In this context, we believe there is a new convergence between computer vision, machine learning, and signal processing. For example: The idea of exploiting self-similarities in image analysis, originally introduced in computer vision for texture synthesis applications (Efros and Leung, 1999), is the basis for non-local means (Buades *et al.*, 2005), one of today's most successful approaches to image restoration. In turn, by combining a powerful sparse coding approach to non-local means (Dabov *et al.*, 2007) with modern machine learning techniques for dictionary learning (Mairal *et al.*, 2010), we have obtained denoising and demosaicking results that are the state of the art on standard benchmarks (Mairal *et al.*, 2009).

Our current work, outlined in detail in Section 6.3, has focused on (i) investigating new geometrical models for removing image blur due to camera shake and (iii) developing new formulation for image deblurring cast as a multi-label energy minimization problem.

3.4. Human activity capture and classification

From a scientific point of view, visual action understanding is a computer vision problem that until recently has received little attention outside of extremely specific contexts such as surveillance or sports. Many of the current approaches to the visual interpretation of human activities are designed for a limited range of operating conditions, such as static cameras, fixed scenes, or restricted actions. The objective of this part of our project is to attack the much more challenging problem of understanding actions and interactions in unconstrained video depicting everyday human activities such as in sitcoms, feature films, or news segments. The recent emergence of automated annotation tools for this type of video data (Everingham, Sivic, Zisserman, 2006; Laptev, Marszałek, Schmid, Rozenfeld, 2008; Duchenne, Laptev, Sivic, Bach, Ponce, 2009) means that massive amounts of labelled data for training and recognizing action models will at long last be available. Our research agenda in this scientific domain is described below and our recent results are outlined in detail in Section 6.4.

3.4.1. Weakly-supervised learning and annotation of human actions in video

We aim to leverage the huge amount of video data using readily-available annotations in the form of video scripts. Scripts, however, often provide only imprecise and incomplete information about the video. We address this problem with weakly-supervised learning techniques both at the text and image levels. To this end we recently explored automatic mining of scene and action categories. Within the PhD of Piotr Bojanowski we are currently extending this work towards exploiting richer textual descriptions of human actions and using them for learning more powerful contextual models of human actions in video.

3.4.2. Descriptors for video representation

Video representation has a crucial role for recognizing human actions and other components of a visual scene. Our work in this domain aims to develop generic methods for representing video data based on realistic assumptions. We explore the ways of enriching standard bag-of-feature representations with the higher-level information on objects, scenes and primitive human actions pre-learned on related tasks. We also investigate highly-efficient methods for computing video features motivated by the need of processing very large and increasing amounts of video.

3.4.3. Crowd characterization in video

Human crowds are characterized by distinct visual appearance and require appropriate tools for their analysis. In our work we develop generic methods for crowd analysis in video aiming to address multiple tasks such as (i) crowd density estimation and localization, (ii) characterization and recognition of crowd behaviours (e.g a person running against the crowd flow) as well as (iii) detection and tracking of individual people in the crowd. We address the challenge of analyzing crowds under the large variation in crowd density, video resolution and scene structure.

3.4.4. Modeling and recognizing person-object and person-scene interactions.

123

Actions of people are tightly coupled with their environments and surrounding objects. Moreover, object function can be learned and recognized from observations of person-object interactions in video and still images. Designing and learning models for person-object interactions, however, is a challenging task due to both (i) the huge variability in visual appearance and (ii) the lack of corresponding annotations. We address this problem by developing weakly-supervised techniques enabling learning interaction models from long-term observations of people in natural indoor video scenes such as obtained from time-lapse videos on YouTube. We also explore stereoscopic information in 3D movies to learn better models for people in video including person detection, segmentation, pose estimation, tracking and action recognition.