

RESEARCH CENTER

FIELD Perception, Cognition and Interaction

Activity Report 2014

Section Scientific Foundations

Edition: 2015-03-24

DATA AND KNOWLEDGE REPRESENTATION AND PROCESSING
1. DAHU Project-Team 5
2. DREAM Project-Team
3. EXMO Project-Team
4. GRAPHIK Project-Team
5. LINKS Team (section vide) 13
6. MAGNET Team
7. MAIA Project-Team
8. OAK Project-Team
9. ORPAILLEUR Project-Team
10. SMIS Project-Team
11. WIMMICS Project-Team
12. ZENITH Project-Team
INTERACTION AND VISUALIZATION
13. ALICE Project-Team
14. AVIZ Project-Team
15. HYBRID Project-Team
16. IMAGINE Project-Team 51
17. IN-SITU Project-Team
18. MANAO Project-Team
19. MAVERICK Project-Team61
20. MIMETIC Project-Team
21. MINT Project-Team
22. POTIOC Project-Team
23. REVES Project-Team
24. TITANE Project-Team
LANGUAGE, SPEECH AND AUDIO
25. ALPAGE Project-Team
26. MULTISPEECH Team
27. PANAMA Project-Team
28. SEMAGRAMME Project-Team
ROBOTICS AND SMART ENVIRONMENTS
29. E-MOTION Project-Team (section vide)
30. FLOWERS Project-Team
31. HEPHAISTOS Team
32. LAGADIC Project-Team
33. RITS Team
VISION, PERCEPTION AND MULTIMEDIA INTERPRETATION
34. AYIN Team
35. LEAR Project-Team
36. LINKMEDIA Project-Team

37. MAGRIT Project-Team	. 121
38. MORPHEO Project-Team	. 124
39. PERCEPTION Project-Team	. 126
40. PRIMA Project-Team	. 129
41. SIROCCO Project-Team	. 136
42. STARS Project-Team	. 139
43. WILLOW Project-Team	. 145

DAHU Project-Team

3. Research Program

3.1. Research Program

Dahu aims at developing mechanisms for high-level specifications of systems built around DBMS, that are easy to understand while also facilitating verification of critical properties. This requires developing tools that are suitable for reasoning about systems that manipulate data. Some tools for specifying and reasoning about data have already been studied independently by the database community and by the verification community, with various motivations. However, this work is still in its infancy and needs to be further developed and unified.

Most current proposals for reasoning about DBMS over XML documents are based on tree automata, taking advantage of the tree structure of XML documents. For this reason, the Dahu team is studying a variety of tree automata. This ranges from restrictions of "classical" tree automata in order to understand their expressive power, to extensions of tree automata in order to understand how to incorporate the manipulation of data.

Moreover, Dahu is also interested in logical frameworks that explicitly refer to data. Such logical frameworks can be used as high level declarative languages for specifying integrity constraints, format change during data exchange, web service functionalities and so on. Moreover, the same logical frameworks can be used to express the critical properties we wish to verify.

In order to achieve its goals, Dahu brings together world-class expertise in both databases and verification.

DREAM Project-Team

3. Research Program

3.1. Introduction

The research agenda of the Dream project-team revolves around the following 4 main topics:

- Simulator-based decision support systems
- Incremental learning
- Mining complex patterns
- Answer Set Programming

3.2. Simulator-based decision support systems

A common way to investigate and understand complex phenomena, such as such as those related to ecosystems, consists in designing a computational model and implementing a simulator to test the system behavior under various parameters. These simulators enable a fine grained understanding of the system studied, however they produce huge quantities of data. To be able to exploit these simulators in decision support scenarios, it is thus critical to provide methods to simplify the interactions with the simulator and handle the large quantity of data produced.

- One approach is to store all the simulation data in a datawarehouse and provide scientists and experts with tools to analyze efficiently the simulation data. Providing users with means to dig through large amount of multidimensional data, from more or less abstract viewpoints, and express preferences on the returned results is an important research topic in databases and data mining. To this end, *Skyline queries* constitute a relevant approach as they retrieve the most interesting objects with respect to multi-dimensional criteria with the possibility of making compromises on conflicting dimensions. The challenge is to define and implement skyline queries in a datawarehouse context. In this field, we are investigating efficient interactive tools for answering dynamic [36] and hierarchical [10] skyline queries.
- Another approach is to simplify the simulation model. For some applications, the system is too complex for a traditional numerical simulation to give relevant results in a short amount of time. It is especially the case when data and knowledge are not available to supply numerical models. Qualitative models offers a good alternative to model complex systems in such context. This abstracted representation offers an efficient computation on model exploration and gives relevant results when querying the system behavior. In the Dream project-team we focused on qualitative models of dynamical systems described as Discrete Event Systems (DES). Recent studies have emphasized the great interest of coupling model-checking techniques with qualitative models. We propose to use the timed automata formalism that allow the explicit representation of time [29]. In this context, the research issues we investigate are the following.
 - The size of a global model constructed from an abstracted description of the system and domain knowledge is potentially huge. A challenging problem is to reduce the size of this model using artificial intelligence tools [37].
 - It is necessary to propose a high-level language to explore and predict future changes of the system. Using this language, a stakeholder should express easily any requirements he wants to ask on the system behavior. We investigate the formalization of query patterns relying on recent temporal logics that can be exploited using model-checking techniques [52].

- Another challenge is the computation of the optimal strategy for a reachability problem ("what is the best sequence of actions to reach a specific state at a specific time ?"). In this case we propose to use extended timed automata, such as timed game automata or priced time automata, with controller synthesis methods [30].
- When modelling becomes increasingly complex because of ever-increasing numbers of combined processes, making model-based decision aids are essential. Our approach uses symbolic learning techniques on simulated data to synthetise complex processes and help in decision making. Thus rule induction has attracted a great deal of attention in Machine Learning and Data Mining. However generating rules is not an end in itself because their applicability is not straightforward, especially when their number is high.

Our goal is to lighten the burden of analyzing a large set of classification rules when the user is confronted to an "unsatisfactory situation" and needs help to decide about the appropriate action to remedy to this situation. The method consists in comparing the situation to a set of classification rules. For this purpose, we have proposed a framework for learning action recommendations dealing with complex notions of feasibility and quality of actions [63].

3.3. Incremental learning

The first learning algorithms were batch learning. They examine all examples and produce a concept description, that is generally not further modified. This is not adapted to dynamic settings where data are delivered continuously. For such settings, incremental algorithms have been proposed. These algorithms examine the training example one at a time (or set by set), maintaining a "best-so-far" description which may be modified each time a new example (or set of examples) arrives. In order to strengthen the learning process, some specific old examples are often kept: this is called partial memory systems. A more specific classification of incremental learning can be found in [58].

Current issues in incremental learning are

- for partial instance memory: how to select examples, [56]
- the problem of hidden context: the target concept may depend of unknown variables, which are not given as explicit attributes [66]
- the problem of concept drift: the target changes with time [65], [39]
- the problem of masked example: the data distribution may change and some examples may not be anymore visible.

As a human expert has to give his opinion on the learned description model, we focus our research on incremental learning of rules ([39]).

3.4. Mining complex patterns

Pattern mining, a subdomain of data mining, is an unsupervised learning method which aims at discovering interesting knowledge from data. Association rule extraction is one of the most popular approach and has received a lot of interest in the last 20 years. For instance, many enhancements have been proposed to the well-known Apriori algorithm [27]. It is based on a level-wise generation of candidate patterns and on efficient candidate pruning having a sufficient relevance, usually related to the frequency of the candidate pattern in the data-set (i.e., the support): the most frequent patterns should be the most interesting. Later, Agrawal and Srikant proposed a framework for "mining sequential patterns" [28], which extends Apriori by coping with the order of elements in patterns. Such approach initiated research on *temporal pattern mining*, which is of particular interest for the DREAM team. The simplest temporal patterns are sequential patterns that constraints the order of the events in one of its occurrence. More advanced approaches also exploit quantitative information in order to provide significant patterns about both ordering and duration of events as well as interevent delay. A challenge is that the classical anti-monotony property, used to prune the search space, is difficult to define in this case.

Many work in pattern mining have attempted to improve the runtime efficiency of algorithms, on the one hand, by proposing more efficient representation and execution schemes such as pattern-growth methods [48], or, on the other hand, by focusing on condensed representations such as closed patterns [60], [64]. Other research directions have been investigated to enhance the syntax of patterns e.g. temporal and periodic patterns, mutidimensional and hierarchical patterns, constrained patterns, contextual patterns, etc. Despite these improvements, the size of the results may still be too high. Thus, post-mining or visualization methods have been introduced to let the user focus on results that correspond to his own preferences.

Another challenge of pattern mining is that for each pattern mining task (such as mining itemsets, sequences or graphs) there are many specialized algorithms, each exploiting some ad-hoc optimizations. It is very hard for a practitioner to find an algorithm suited for his problem, and such an algorithm may not exist. There is a need to propose novel *generic* pattern mining algorithms, that exploit the main algorithmic advances proposed in the last 20 years, and that only require a description of their pattern mining problem from practioners. Recently, we have proposed ParaMiner [59], a generic pattern mining algorithm using state of the art optimizations and exploiting the parallelism of multicore processors. The practitioner only has to enter a pattern interest criteria and check that it verifies a *strong accessibility* property coming from set theory. As of now, ParaMiner is the fastest generic pattern mining algorithm, being competitive with specialized algorithm on several pattern mining tasks.

Other approaches propose a completely declarative way to specify the pattern mining problem. In this case, the most used framework is Constraint Programming [44]. We are investigating another approach based on *Answer Set Programming*.

3.5. Answer Set Programing (ASP)

The DREAM team is investigating declarative approaches to solve complex problems such as causal reasoning, landscape simultation and pattern mining. One such approach is ASP.

ASP (Answer set programming) [43], [31] is an approach to declarative problem solving, combining a rich yet simple modelling language with high-performance solving capacities, tailored to Knowledge Representation and Reasoning. "Declarative problem solving" means that the program is close to the way a problem is enunciated, and not to the way the problem is solved. This facilitates writing and revising programs. ASP is an outgrowth of research on the use of non monotonic reasoning in knowledge representation. ASP programs[23] consist in rules that look like Prolog rules, but the computational mechanism is different [54].

ASP allows to solve search problems in NP (and theoretically in NP^{NP}) in a uniform way (being more compact than boolean approaches like SAT solvers). ASP is good when dealing with knowledge representation, particularly when logical rules or graphs are involved. The versatility of ASP is reflected by the ASP solver clasp, winning first places at ASP, SAT and other competitions.

ASP solvers deal with propositional rules, however in practice predicates are allowed. A *grounder* replaces each free variable of the program provided by users with any eligible constant symbol. The output of the grounder is thus a propositional program, which is piped into a *solver* which then computes *answer sets*. These answer sets are the models for the ASP theory, and they constitute the result of an ASP program. The user may ask for all the models, or only one, or any number n of models. The most powerful version (clingo, which combines the grounder gringo and the solver clasp) is from Torsten Schaub's team (see http://potassco.sourceforge.net for the last version of clingo, including a *guide*). These versions can be easily interfaced with python programs, which extends further the practical applicability of ASP [42].

The main interests of using ASP are: 1) the ease to write and to update programs, and 2) the efficiency of the ASP solvers (improved in the recent versions).

Our main challenge is to propose ASP modeling that scales up to solving real problems. We are especially working on the modeling of sequential pattern mining with ASP in order to mine real datasets in a flexible and efficient way.

Our second challenge is to model a wide range of expert knowledge to include reasoning into the solving processes, in order to output more meaningful results.

EXMO Project-Team

3. Research Program

3.1. Knowledge representation semantics

We usually work with semantically defined knowledge representation languages (like description logics, conceptual graphs and object-based languages) [16]. Their semantics is usually defined within model theory initially developed for logics. The languages dedicated to the semantic web (RDF and OWL) follow that approach. RDF is a knowledge representation language dedicated to the description of resources; OWL is designed for expressing ontologies: it describes concepts and relations that can be used within RDF.

We consider a language L as a set of syntactically defined expressions (often inductively defined by applying constructors over other expressions). A representation ($o \subseteq L$) is a set of such expressions. It is also called an ontology. An interpretation function (I) is inductively defined over the structure of the language to a structure called interpretation domain (D). This expresses the construction of the "meaning" of an expression in function of its components. A formula is satisfied by an interpretation if it fulfills a condition (in general being interpreted over a particular subset of the domain). A model of a set of expressions is an interpretation satisfying all these expressions. An expression (δ) is then a consequence of a set of expressions (o) if it is satisfied by all of their models (noted $o \models \delta$).

A computer must determine if a particular expression (taken as a query, for instance) is the consequence of a set of axioms (a knowledge base). For that purpose, it uses programs, called provers, that can be based on the processing of a set of inference rules, on the construction of models or on procedural programming. These programs are able to deduce theorems (noted $o \vdash \delta$). They are said to be sound if they only find theorems which are indeed consequences and to be complete if they find all the consequences as theorems. However, depending on the language and its semantics, the decidability, i.e., the ability to create sound and complete provers, is not warranted. Even for decidable languages, the algorithmic complexity of provers may prohibit their exploitation.

To solve this problem a trade-off between the expressivity of the language and the complexity of its provers has to be found. These considerations have led to the definition of languages with limited complexity – like conceptual graphs and object-based representations – or of modular families of languages with associated modular prover algorithms – like description logics.

EXMO mainly considers languages with well-defined semantics (such as RDF and OWL that we contributed to define), and defines the semantics of some languages such as the SPARQL query language and alignment languages, in order to establish the properties of computer manipulations of the representations.

3.2. Ontology matching and alignments

When different representations are used, it is necessary to identify their correspondences. This task is called ontology matching and its result is an alignment [3]. It can be described as follows: given two ontologies, each describing a set of discrete entities (which can be classes, properties, rules, predicates, etc.), find the relationships, e.g., equivalence or subsumption, if any, holding between these entities.

An alignment between two ontologies o and o' is a set of correspondences $\langle e, e', r \rangle$ such that:

- *e* and *e'* are the entities between which a relation is asserted by the correspondence, e.g., formulas, terms, classes, individuals;
- r is the relation asserted to hold between e and e'. This relation can be any relation applying to these entities, e.g., equivalence, subsumption.

In addition, a correspondence may support various types of metadata, in particular measures of the confidence in a correspondence.

Given the semantics of the two ontologies provided by their consequence relation, we define an interpretation of two aligned ontologies as a pair of interpretations $\langle m, m' \rangle$, one for each ontology. Such a pair of interpretations is a model of the aligned ontologies *o* and *o'* if and only if each respective interpretation is a model of the ontology and they satisfy all correspondences of the alignment.

This definition is extended to networks of ontologies: a collection of ontologies and associated alignments. A model of such an ontology network is a tuple of local models such that each alignment is valid for the models involved in the tuple. In such a system, alignments play the role of model filters which select the local models that are compatible with all alignments. So, given an ontology network, it is possible to interpret it.

However, given a set of ontologies, it is necessary to find the alignments between them and the semantics does not tell which ones they are. Ontology matching aims at finding these alignments. A variety of methods is used for this task. They perform pairwise comparisons of entities from each of the ontologies and select the most similar pairs. Most matching algorithms provide correspondences between named entities, more rarely between compound terms. The relationships are generally equivalence between these entities. Some systems are able to provide subsumption relations as well as other relations in the support language (like incompatibility or instantiation). Confidence measures are usually given a value between 0 and 1 and are used for expressing preferences between two correspondences.

3.3. Data interlinking

Links are important for the publication of RDF data on the web. We call data interlinking the process of generating links identifying same resource described in two data sets. Data interlinking parallels ontology matching: from two datasets (d and d') it generates a set of links (also called a linkset, L).

We have extended the notion of database keys in a way which is more adapted to the context of description logics and the openness of the semantic web [11]⁰. Like alignments, link keys [3] are assertions across ontologies and are not part of a single ontology. We have introduced the notion of a link key which is a combination of such keys with alignments. More precisely, a link key is an expression $\langle K^{eq}, K^{in}, C \rangle$ such that:

- K^{eq} is a set of pairs of property expressions;
- K^{in} is a set of pairs of property expressions;
- *C* is a correspondence between classes.

Such a link key holds if and only if for any pair of resources belonging to the classes in correspondence such that the values of their property in K^{eq} are pairwise equal and the values of those in K^{in} pairwise intersect, the resources are the same.

As can be seen, link key validity is only relying on pairs of objects in two different data sets. We further qualify link keys as weak, plain and strong depending on them satisfying further constraints: a weak link key is only valid on pairs of individuals of different data sets, a plain link key has to apply in addition to pairs of individuals of the same data set as soon as one of them is identified with another individual of the other data set, a strong link key is a link key which is also a key for each data set, it can be though of as a link key which is made of two keys.

Link keys can then be used for finding equal individuals across the two data sets and generating the corresponding owl:sameAs links.

⁰Time did not permit to input properly all publications in HAL v3. We understand well that these are thus not Inria publications. However, we put them as footnotes in case they may interest the reader. They are all directly available from our team web site.

GRAPHIK Project-Team

3. Research Program

3.1. Logic-based Knowledge Representation and Reasoning

We follow the mainstream *logic-based* approach to the KRR domain. First-order logic (FOL) is the reference logic in KRR and most formalisms in this area can be translated into fragments (i.e., particular subsets) of FOL. A large part of research in this domain can be seen as studying the *trade-off* between the expressivity of languages and the complexity of (sound and complete) reasoning in these languages. The fundamental problem in KRR languages is entailment checking: is a given piece of knowledge entailed by other pieces of knowledge, for instance from a knowledge base (KB)? Another important problem is *consistency* checking: is a set of knowledge pieces (for instance the knowledge base itself) consistent, i.e., is it sure that nothing absurd can be entailed from it? The *ontological query answering* problem is a topical problem (see Section 3.3). It asks for the set of answers to a query in the KB. In the case of Boolean queries (i.e., queries with a yes/no answer), it can be recast as entailment checking.

3.2. Graph-based Knowledge Representation and Reasoning

Besides logical foundations, we are interested in KRR formalisms that comply, or aim at complying with the following requirements: to have good *computational* properties and to allow users of knowledge-based systems to have a maximal *understanding and control* over each step of the knowledge base building process and use.

These two requirements are the core motivations for our specific approach to KRR, which is based on labelled *graphs*. Indeed, we view labelled graphs as an *abstract representation* of knowledge that can be expressed in many KRR languages (different kinds of conceptual graphs —historically our main focus—, the Semantic Web language RDF (Resource Description Framework), its extension RDFS (RDF Schema), expressive rules equivalent to the so-called tuple-generating-dependencies in databases, some description logics dedicated to query answering, etc.). For these languages, reasoning can be based on the structure of objects, thus based on graph-theoretic notions, while staying logically founded.

More precisely, our basic objects are labelled graphs (or hypergraphs) representing entities and relationships between these entities. These graphs have a natural translation in first-order logic. Our basic reasoning tool is graph homomorphism. The fundamental property is that graph homomorphism is sound and complete with respect to logical entailment *i.e.*, given two (labelled) graphs G and H, there is a homomorphism from Gto *Hif and only if* the formula assigned to G is entailed by the formula assigned to H. In other words, logical reasoning on these graphs can be performed by graph mechanisms. These knowledge constructs and the associated reasoning mechanisms can be extended (to represent rules for instance) while keeping this fundamental correspondence between graphs and logics.

3.3. Ontological Query Answering

Querying knowledge bases has become a central problem in knowledge representation and in databases. A knowledge base (KB) is classically composed of a terminological part (metadata, ontology) and an assertional part (facts, data). Queries are supposed to be at least as expressive as the basic queries in databases, i.e., conjunctive queries, which can be seen as existentially closed conjunctions of atoms or as labelled graphs. The challenge is to define good trade-offs between the expressivity of the ontological language and the complexity of querying data in presence of ontological knowledge. Classical ontogical languages, typically description logics, were not designed for efficient querying. On the other hand, database languages are able to process complex queries on huge databases, but without taking the ontology into account. There is thus a need for new languages and mechanisms, able to cope with the ever growing size of knowledge bases in the Semantic Web or in scientific domains.

This problem is related to two other problems identified as fundamental in KRR:

- *Query-answering with incomplete information.* Incomplete information means that it might be unknown whether a given assertion is true or false. Databases classically make the so-called closed-world assumption: every fact that cannot be retrieved or inferred from the base is assumed to be false. Knowledge bases classically make the open-world assumption: if something cannot be inferred from the base, and neither can its negation, then its truth status is unknown. The need of coping with incomplete information is a distinctive feature of querying knowledge bases with respect to querying classical databases (however, as explained above, this distinction tends to disappear). The presence of incomplete information makes the query answering task much more difficult.
- *Reasoning with rules.* Researching types of rules and adequate manners to process them is a mainstream topic in the Semantic Web, and, more generally a crucial issue for knowledge-based systems. For several years, we have been studying some rules, both in their logical and their graph form, which are syntactically very simple but also very expressive. These rules, known as existential rules or Datalog⁺, can be seen as an abstraction of ontological knowledge expressed in the main languages used in the context of KB querying. See Section 6.2 for details on the results obtained.

A problem generalizing the above described problems, and particularly relevant in the context of multiple data/metadata sources, is *querying hybrid knowledge bases*. In a hybrid knowledge base, each component may have its own formalism and its own reasoning mechanisms. There may be a common ontology shared by all components, or each component may have its own ontology, with mappings being defined among the ontologies. The question is what kind of interactions between these components and/or what limitations on the languages preserve the decidability of basic problems and if so, a "reasonable" complexity. Note that there are strong connections with the issue of data integration in databases.

3.4. Imperfect Information and Priorities

While classical FOL is the kernel of many KRR languages, to solve real-world problems we often need to consider features that cannot be expressed purely (or not naturally) in classical logic. The logic- and graph-based formalisms used for previous points have thus to be extended with such features. The following requirements have been identified from scenarios in decision making in the agronomy domain (see Section 4.2):

- 1. to cope with vague and uncertain information and preferences in queries;
- 2. to cope with multi-granularity knowledge;
- 3. to take into account different and potentially conflicting viewpoints ;
- 4. to integrate decision notions (priorities, gravity, risk, benefit);
- 5. to integrate argumentation-based reasoning.

Although the solutions we develop need to be validated on the applications that motivated them, we also want them to be sufficiently generic to be applied in other contexts. One angle of attack (but not the only possible one) consists in increasing the expressivity of our core languages, while trying to preserve their essential combinatorial properties, so that algorithmic optimizations can be transferred to these extensions. To achieve that goal, our main research directions are: non-monotonic reasoning (see ANR project ASPIQ in Section 8.1), as well as argumentation and preferences (see Section 6.3).

LINKS Team (section vide)

MAGNET Team

3. Research Program

3.1. Introduction

The main objective of MAGNET is to develop original machine learning methods for networked data. We consider information networks in which the data are vectorial data and texts. We model such information networks as (multiple) (hyper)graphs wherein nodes correspond to entities (documents, spans of text, users, ...) and edges correspond to relations between entities (similarity, answer, co-authoring, friendship, ...). Our main research goal is to propose new learning algorithms to build applications like browsing, monitoring and recommender systems, and more broadly information extraction in information networks. Hence, we will investigate new learning algorithms for node clustering and node classification, link classification and link prediction. Also, we will search for the best hidden graph structure to be generated for solving a given learning task. We will base our research on generative models for graphs, on machine learning for graphs and on machine learning for texts. The challenges are the dimensionality of the input space, possibly the dimensionality of the output space, the high level of dependencies between the data, the inherent ambiguity of textual data and the limited amount of human labeling. An additional challenge will be to design scalable methods for large information networks. Hence, we will explore how sampling and randomization can be used in new machine learning algorithms. Also, active machine learning algorithms for graphs will be investigated.

On the first hand we want to design machine learning algorithms on graphs to solve problems in networks of texts and documents in natural language. The main originality of this research is to consider and take advantage of the setting of networked data exploiting the relationships between different data entities and, overall, the graph topology. On the second hand, in a concomitant way, we want to develop prediction models for graph-like data. This includes prediction, ranking and classification of links and nodes in an on-line or batch setting. The two objectives are intertwined, enrich each other and raise important scientific questions we want to focus on. Our research proposal is organized according to the following questions:

- 1. How to go beyond vectorial classification models in natural language oriented tasks?
- 2. How to adaptively build graphs with respect to the given tasks? How to create network from observations of information diffusion processes?
- 3. How to design methods able to achieve very good predictive accuracy without giving up on scalability?
- 4. How to go beyond strict node homophilic/similarity assumptions in graph-based learning methods?

3.2. Beyond vectorial models for NLP

One of our overall research objectives is to derive graph-based machine learning algorithms for natural language and text information extraction tasks. This section discusses the motivations behind the use of graphbased ML approaches for these tasks, the main challenges associated with it, as well as some concrete projects. Some of the challenges go beyond NLP problems and will be further developed in the next sections. An interesting aspect of the project is that we anticipate some important cross-fertilizations between NLP and ML graph-based techniques, with NLP not only benefiting from but also pushing ML graph-based approaches into new directions. Motivations for resorting to graph-based algorithms for texts are at least threefold. First, online texts are organized in networks. With the advent of the web, and the development of forums, blogs, and microblogging, and other forms of social media, text productions have become strongly connected. Thus, documents on the web are linked through hyperlinks, forum posts and emails are organized in threads, tweets can be retweeted, etc. Additional connections can be made through users connections (co-authorship, friendship, follower, etc.). Interestingly, NLP research has been rather slow in coming to terms with this situation, and most work still focus on document-based or sentence-based predictions (wherein inter-document or intersentence structure is not exploited). Furthermore, several multi-document tasks exist in NLP (such as multidocument summarization and cross-document coreference resolution), but most existing work typically ignore document boundaries and simply apply a document-based approach, therefore failing to take advantage of the multi-document dimension [26], [28].

A second motivation comes from the fact that most (if not all) NLP problems can be naturally conceived as graph problems. Thus, NL tasks often involve discovering a relational structure over a set of text spans (words, phrases, clauses, sentences, etc.). Furthermore, the *input* of numerous NLP tasks is also a graph; indeed, most end-to-end NLP systems are conceived as pipelines wherein the output of one processor is in the input of the next. For instance, several tasks take POS tagged sequences or dependency trees as input. But this structured input is often converted to a vectorial form, which inevitably involves a loss of information.

Finally, graph-based representations and learning methods in principle appear to address some core problems faced by NLP, such as the fact that textual data are typically not independent and identically distributed, they often live on a manifold, they involve very high dimensionality, and their annotations is costly and scarce. As such, graph-based methods represent an interesting alternative, or at least complement, to structured prediction methods (such as CRFs or structured SVMs) commonly used within NLP. While structured output approaches are able to model local dependencies (e.g., between neighboring words or sentences), they cannot efficiently capture long distance dependencies, like forcing a particular *n*-gram to receive the same labeling in different sentences or documents for instance. On the other hand, graph-based models provide a natural way to capture global properties of the data through the exploitation of walks and neighborhood in graphs. Graph-based methods, like label propagation, have also been shown to be very effective in semi-supervised settings, and have already given some positive results on a few NLP tasks [9], [30].

Given the above motivations, our first line of research will be to investigate how one can leverage an underlying network structure (e.g., hyperlinks, user links) between documents, or text spans in general, to enhance prediction performances for several NL tasks. We think that a "network effect", similar to the one that took place in Information Retrieval (with the Page Rank algorithm), could also positively impact NLP research. A few recent papers have already opened the way, for instance in attempting to exploit Twitter follower graph to improve sentiment classification [29].

Part of the challenge in this work will be to investigate how adequately and efficiently one can model these problems as instances of more general graph-based problems, such as node clustering/classification or link prediction discussed in the next sections. In a few cases, like text classification or sentiment analysis, graph modeling appears to be straightforward: nodes correspond to texts (and potentially users), and edges are given by relationships like hyperlinks, co-authorship, frienship, or thread membership. Unfortunately, modeling NL problems as networks is not always that obvious. From the one hand, the right level of representation will probably vary depending on the task at hand: the nodes will be sentences, phrases, words, etc. From the other hand, the underlying graph will typically not be given a priori, which in turn raises the question of how we construct it. Of course, there are various well-known ways to obtain similarity measures between text contents (and its associated vectorial data), and graphs can be easily constructed from those combined with some sparsification method. But we would like our similarity to be tailored to the task objective. An additional problem with many NLP problems is that features typically live in different types of spaces (e.g., binary, discrete, continuous). A preliminary discussion of the issue of optimal graph construction for semi-supervised learning in NLP is given in [9], [33]. We identify the issue of adaptative graph construction as an important scientific challenge for machine learning on graphs in general, and we will discuss it further in Section 3.3.

As noted above, many NLP tasks have been recast as structure prediction problems, allowing to capture (some of the) output dependencies. Structure prediction can be viewed as (set of) link prediction with global loss or dependencies, which means that graph-based learning methods can handle (at least, approximately) output prediction dependencies, and they can in principle capture additional more global dependencies given the right graph structure. How to best combine structured output and graph-based ML approaches is another challenge that we intend to address. We will initially investigate this question within a semi-supervised context, concentrating on graph based regularization and graph propagation methods. Within such approaches, labels are typically binary or they correspond to small finite set. Our objective is to explore how one propagates an exponential number of *structured labels* (like a sequence of tags or a dependency tree) through graphs. Recent attempts at blending structured output models with graph-based models are investigated in [30], [17]. Another related question that we will address in this context is how does one learn with *partial labels* (like partially specificied tag sequence or tree) and use the graph structure to complete the output structure. This last question is very relevant to NL problems where human annotations are costly; being able to learn from partial annotations could therefore allow for more targeted annotations and in turn reduced costs [18].

The NL tasks we will mostly focus on are coreference resolution and entity linking, temporal structure prediction, and discourse parsing. These tasks will be envisonned in both document and cross-document settings, although we expect to exploit inter-document links either way. Choices for these particular tasks is guided by the fact that are still open problems for the NLP community, they potentially have a high impact for industrial applications (like information retrieval, question answering, etc.), and we already have some expertise on these tasks in the team. As a midterm goal, we also plan to work on tasks more directly relating to micro-blogging, such sentiment analysis and the automatic thread structuring of technical forums; the latter task is in fact an instance of rhetorical structure prediction [32].

We have already initiated some work on the coreference resolution problem in the context of ML graph-based approaches. We cast this problem as a spectral clustering problem. Given than features can be numerical or nominal, the definition of a good similarity measure between entities is not straightforward. As a first solution, we consider only numerical attributes to build a *k*-nn graph of mentions so that graph clustering methods can be applied. Nominal attributes and relations are introduced by means of soft constraints on this clustering. Constraints can have various forms and have the ability of going beyond homophily assumptions, taking into account for instance dissimilarity relationships. From this setting we derive new graph-based learning methods. We propose to study the modification of graph clustering and spectral embeddings to satisfy certain constraints induced by several types of supervision: (i) nodes belong to the same group or to different groups, and (ii) some groups are fully known while others have to be discovered. This semi-supervised graph clustering problem is studied in a batch and transductive setting. But interesting extensions can be investigated in an online and active setting.

3.3. Adaptive Graph Construction

In most applications, edge weights are computed through a complex data-modeling process and convey crucially important information for classifying nodes, which makes it possible to infer information related to each data sample even exploiting the graph topology solely. In fact, a widespread approach to the solution of several classification problems is representing the data through an undirected weighted graph in which edge weights quantify the similarity between data points. This technique for coding input data has been applied to several domains, including classification of genomic data ([27]), face recognition ([16]), and text categorization ([21]).

In some cases, the full adjacency matrix is generated by employing suitable similarity functions chosen through a deep understanding of the problem structure. For example TF-IDF representation of documents, the affinity between pairs of samples is often estimated through the cosine measure or the χ^2 distance. After the generation of the full adjacency matrix, the second phase for obtaining the final graph consists in an edge sparsification/reweighting operation. Some of the edges of the clique obtained in the first step are pruned and the remaining ones can be reweighted to meet the specific requirements of the given classification problem. Constructing a graph with these methods obviously entails various kinds of loss of information. However, in

problems like node classification, the use of graphs generated from several datasets can lead to an improvement in accuracy performance ([34], [10], [11]). Hence, the transformation of a dataset into a graph may, at least in some cases, partially remove various kinds of irregularities present in the original datasets, while keeping some of the most useful information for classifying the data samples. Moreover, it is often possible to accomplish classification tasks on the obtained graph using a running time remarkably lower than is needed by algorithms exploiting the initial datasets, and a suitable sparse graph representation can be seen as a compressed version of the original data. This holds even when input data are provided in a online/stream fashion, so that the resulting graph evolves over time.

In this project we will address the problem of adaptive graph construction towards several directions. One is the question of choosing the best similarity measure given the objective learning task. This question is related to the question of similarity learning ([12]) which has not been considered in the context of graph based learning. In the context of structured prediction, we will develop approaches where output structures are organized in graphs whose similarity is given by top-k outcomes of greedy algorithms.

A different way we envision adaptative graph construction is in the context of semi-supervised learning. Partial supervision can take various forms and an interesting and original setting is governed by two currently studied applications: detection of brain anomaly from connectome data and polls recommendation in marketing. Indeed, for these two applications, a partial knowledge of the information diffusion process can be observed while the network is unknown or only partially known. An objective is to construct (or complete) the network structure from some local diffusion information. The problem can be formalized as a graph construction problem from partially observed diffusion processes. It has been studied very recently in [23]. In our case, the originality comes either from the existence of different sources of observations or from the large impact of node contents in the network.

We will study how to combine graphs defined by networked data and graphs built from flat data to solve a given task. This is of major importance for information networks because, as said above, we will have to deal with multiple relations between entities (texts, spans of texts, ...) and also use textual data and vectorial data. We have started to work on combining graphs in a semi supervised setting for node classification problems along the PhD thesis of T. Ricatte. Future work include combination geared by semi-supervision on link prediction tasks. This can be studied in an active learning setting. But one important issue is to design scalable approaches, thus to exploit locality given by the network. Doing this we address another objective to build non uniformly parameterized combinations.

3.4. Prediction on Graphs and Scalability

As stated in the previous sections, graphs as complex objects provides a rich representation of data. Often enough the data is only partially available and the graph representation is very helpful in predicting the unobserved elements. We are interested in problems where the complete structure of the graph needs to be recover and only a fraction of the links is observed. The link prediction problem falls into this category. We are also interested in the recommendation and link classification problems which can be seen as graphs where the structure is complete but some labels on the links (weights or signs) are missing. Finally we are also interested in labelling the nodes of the graph, with class or cluster memberships or with a real value, provided that we have (some information about) the labels for some of the nodes.

The semi-supervised framework will be also considered. A midterm research plan is to study how graph-based regularization models help for structured prediction problems. This question will be studied in the context of NLP tasks, as noted in Section 3.2, but we also plan to develop original machine learning algorithms that have a more general applicability. Inputs are networks whose nodes (texts) have to be labeled by structures. We assume that structures lie in some manifold and we want to study how labels can propagate in the network. One approach is to find smooth labeling function corresponding to an harmonic function on both manifolds in input and output. We also plan to extend our results on spectral clustering with must-link and cannot-link constraints in two directions. We have proposed a batch method with an optimization problem based on an adaptive spectral embedding with respects to constraints. We want to extend this approach to an on-line and

active setting where a flow of graphs (each one is a document) is given as input. In the case of large graphs, we also consider the case where partial supervision consists in the knowledge of few clusters.

Scalability is one of the main issue in the design of new prediction algorithms working on networked data. It has gained more and more importance in recent years, because of the growing size of the most popular networked data that are now used by millions of people. In such contexts, learning algorithms whose computation time scales quadratically, or slower, in the number of considered data objects (usually nodes or vertices, depending on the given task) should be considered impractical.

These observations lead to the idea of using graph sparsification techniques in order to work on a part of the original network for getting results that can be easily extended and used for the whole original input. A sparsified version of the original graph can often be seen as a subset of the initial input, i.e. a suitably selected input subgraph which forms the training set (or, more in general, it is included in the training set). This holds even for the active setting.

A simple example could be to find a spanning tree of the input graph, possibly using randomization techniques, with properties such that we are allowed to obtain interesting results for the initial graph dataset. We have started to explore this research direction for instance in [31]. This approach leaves us with the problem of choosing a good spanning tree, taking into account that the setting could be adversarial (e.g, in the online case the presentation and the assignment of the labels are both arbitrary). A suitable use of the randomization power becomes therefore remarkably significant. Moreover, it is interesting to observe that running a prediction algorithm on a sparsified version of the input dataset allows the parallelization of prediction tasks. In fact, given a prediction task for a networked dataset, in a preliminary phase one could run a randomized graph sparsification method in parallel on different machines. For example, in the case of the spanning tree use, one could then draw several spanning trees at the same time, each on a different computer. This way it is possible to simultaneously run different prediction experiments on the same task and aggregating the obtained results at the end, with several methods (e.g. simply by majority vote) in order to increase the robustness and accuracy predictions.

At the level of the mathematical foundations, the key issue to be addressed in the study of (large-scale) random networks also concerns the segmentation of network data into sets of independent and identically distributed observations. If we identify the data sample with the whole network, as it has been done in previous approaches [22], we typically end up with a set of observations (such as nodes or edges) which are highly interdependent and hence overly violate the classic i.i.d. assumption. In this case, the data scale can be so large and the range of correlations can be so wide, that the cost of taking into account the whole data and their dependencies is typically prohibitive. On the contrary, if we focus instead on a set of subgraphs independently drawn from a (virtually infinite) target network, we come up with a set of independent and identically distributed observations—namely the subgraphs themselves, where subgraph sampling is the underlying ergodic process [13]. Such an approach is one principled direction for giving novel statistical foundations to random network modeling. At the same time, because one shifts the focus from the whole network to a set of subgraphs, complexity issues can be restricted to the number of subgraphs and their size. The latter quantities can be controlled much more easily than the overall network size and dependence relationships, thus allowing to tackle scalability challenges through a radically redesigned approach.

We intend to develop new learning models for link prediction problems. We have already proposed a conditional model in [20] with statistics based on Fiedler values computed on small subgraphs. We will investigate the use of such a conditional model for link prediction. We will also extend the conditional probabilistic models to the case of graphs with textual and vectorial data by defining joint conditional models. Indeed, an important challenge for information networks is to introduce node contents in link ranking and link prediction methods that usually rely solely on the graph structure. A first step in this direction was already proposed in [19] where we learn a mapping of node content to a new representation constrained by the existing link structure and applied it for link recommendation. This approach opens a different view on recommendation by means of link ranking problems for which we think that non parametric approaches should be fruitful.

Regarding link classification problems, we plan to devise a whole family of active learning strategies, which could be based on spanning trees or sparse input subgraphs, that exploit randomization and the structure of the graph in order to offset the adversarial label assignment. We expect these active strategies to exhibit good accuracies with a remarkably small number of queried edges, where passive learning methods typically break down. The theoretical findings can be supported by experiments run on both synthetic and real-world (Slashdot, Epinions, Wikipedia, and others) datasets.

We are interested in studying generative models for graph labeling, exploiting the results obtained in pstochastic model for link classification (investigated in [15]) and statistical model for node label assignment which can be related to tree-structured Markov random fields [24].

In developing our algorithms, we focus on providing theoretical guarantees on prediction accuracy and, at the same time, on computational efficiency. The development of methods that simultaneously guarantee optimal accuracy and computational efficiency is a very challenging goal. In fact, the accuracy of most methods in the literature is not rigorously analyzed from a theoretical point of view. Likewise, tight time and space complexity bounds are not generally provided. This contrasts with the need to manage extremely large relational datasets like, e.g., snapshots of the World Wide Web.

3.5. Beyond Homophilic Relationships

In many cases, the algorithms devised for solving node classification problems are driven by the following assumption: linked entities tend to be assigned to the same class. This assumption, in the context of social networks, is known as homophily ([14], [25]) and involves ties of every type, including friendship, work, marriage, age, gender, and so on. In social networks, homophily naturally implies that a set of individuals can be parted into subpopulations that are more cohesive. In fact, the presence of homogeneous groups sharing interests is one of the most significant reasons for affinity among interconnected individuals, which suggests that, in spite of its simplicity, this principle turns out to be very powerful for node classification problems in general networks.

Recently, however, researchers have started to consider networked data where connections may also carry a negative meaning. For instance, disapproval or distrust in social networks, negative endorsements on the Web. Concrete examples are provided by certain types of online social networks. Users of Slashdot can tag other users as friends or foes. Similarly, users of Epinions can give positive or negative ratings not only to products but also to other users. Even in the social network of Wikipedia administrators, votes cast by an admin in favor or against the promotion of another admin can be viewed as positive or negative links. More examples of signed links are found in other domains, such as the excitatory or inhibitory interactions between genes or gene products in biological networks.

Although the introduction of signs on graph edges appears like a small change from standard weighted graphs, the resulting mathematical object, called signed graph, has an unexpectedly rich additional complexity. For example, the spectral properties of signed graphs, which essentially all sophisticated node classification algorithms rely on, are different and less known than those of their unsigned counterparts. Signed graphs naturally lead to a specific inference problem that we have discussed in previous sections: link classification. This is the problem of predicting the sign of links in a given graph. In online social networks, this may be viewed as a form of sentiment analysis, since we would like to semantically categorize the relationship between individuals.

Another way to go beyond homophily between entities will be studied using our recent model of hypergraphs with bipartite hyperedges [4]. A bipartite hyperedge connects two ends which are disjoint subsets of nodes. Bipartite hyperedges is a way to relate two collections of (possibly heterogeneous) entities represented by nodes. In the NLP setting, while hyperedges can be used to model bags of words, bipartite hyperedges are associated with relationships between bags of words. But each end of bipartite hyperedges is also a way to represent complex entities, gathering several attribute values (nodes) into hyperedges viewed as records. Our hypergraph notion naturally extends directed and undirected weighted graph. We have defined a spectral theory for this new class of hypergraphs and opened a way to smooth labeling on sets of nodes. The weighting

scheme permits to weight the participation of each node to the relationship modeled by bipartite hyperedges accordingly to an equilibrium condition. This is exactly that equilibrium condition that provides a competition between nodes in hyperedges and allows interesting modeling properties that go beyond homophily and similarity over nodes. (Theoretical analysis of our hypergraphs exhibits tight relationships with signed graphs). Following this competition idea, bipartite hyperedges are like matches between two teams and examples of applications are team creation. The basic tasks in which we are interested in are hyperedge classification, hyperedge prediction, node weight prediction. Finally, hypergraphs also represent a way to summarize or compress large graphs in which there exists highly connected couples of (large) subsets of nodes.

To conclude, we plan to go beyond the homophilic bias from the algorithmic as well as from the modeling point of view. We will consider new kind of modeling and learning biases provided by graphs with negative weights (signed graphs) and hypergraphs. We will study their spectral properties, smoothness measures of (node or edge) labeling. Sampling and walking also need to be reconsidered. From the machine learning perspective, we will study edge and node labeling in batch and online settings. In connection with our main targeted applications, we will mainly consider unsupervised and semi-supervised situations. We think that allowing negative weights and advanced relationships on nodes will also lead to space efficient representations of graphs.

MAIA Project-Team

3. Research Program

3.1. Sequential Decision Making

3.1.1. Synopsis and Research Activities

Sequential decision making consists, in a nutshell, in controlling the actions of an agent facing a problem whose solution requires not one but a whole sequence of decisions. This kind of problem occurs in a multitude of forms. For example, important applications addressed in our work include: Robotics, where the agent is a physical entity moving in the real world; Medicine, where the agent can be an analytic device recommending tests and/or treatments; Computer Security, where the agent can be a virtual attacker trying to identify security holes in a given network; and Business Process Management, where the agent can provide an auto-completion facility helping to decide which steps to include into a new or revised process. Our work on such problems is characterized by three main lines of research:

- (A) Understanding how, and to what extent, to best model the problems.
- (B) Developing algorithms solving the problems and understanding their behavior.
- (C) Applying our results to complex applications.

Before we describe some details of our work, it is instructive to understand the basic forms of problems we are addressing. We characterize problems along the following main dimensions:

- (1) Extent of the model: full vs. partial vs. none. This dimension concerns how complete we require the model of the problem if any to be. If the model is incomplete, then learning techniques are needed along with the decision making process.
- (2) Form of the model: factored vs. enumerative. Enumerative models explicitly list all possible world states and the associated actions etc. Factored models can be exponentially more compact, describing states and actions in terms of their behavior with respect to a set of higher-level variables.
- (3) World dynamics: deterministic vs. stochastic. This concerns our initial knowledge of the world the agent is acting in, as well as the dynamics of actions: is the outcome known a priori or are several outcomes possible?
- (4) Observability: full vs. partial. This concerns our ability to observe what our actions actually do to the world, i.e., to observe properties of the new world state. Obviously, this is an issue only if the world dynamics are stochastic.

These dimensions are wide-spread in the AI literature and are not exhaustive, in particular the MAIA team is also interested by discrete/continuous or centralized/decentralized problems. The complexity of solving a problem – both in theory and in practice – depends heavily on where it resides in this categorization. A common practice is to address simplified problems, leading to perhaps *sub-optimal* solutions while trying to characterize how far from the *optimal* solution we stand.

In what follows, we outline the main formal frameworks on which our work is based; while doing so, we highlight in a little more detail our core research questions. We then give a brief summary of how our work fits into the global research context.

21

3.1.2. Formal Frameworks

3.1.2.1. Deterministic Sequential Decision Making

Sequential decision making with deterministic world dynamics is most commonly known as *planning*, or *classical planning* [49]. Obviously, in such a setting every world state needs to be considered at most once, and thus enumerative models do not make sense (the problem description would have the same size as the space of possibilities to be explored). Planning approaches support factored description languages in which complex problems can be modeled in a compact way. Approaches to automatically learn such factored models do exist, however most works – and also most of our works on this form of sequential decision making – assume that the model is provided by the user of the planning technology. Formally, a problem instance, commonly referred to as a *planning task*, is a four-tuple $\langle V, A, I, G \rangle$. Here, V is a set of variables; a value assignment to the variables is a world state. A is a set of actions described in terms of two formulas over V: their preconditions and effects. I is the initial state, and G is a goal condition (again a formula over V). A solution, commonly referred to as a *plann*, is a schedule of actions that is applicable to I and achieves G.

Planning is *PSPACE-complete* even under strong restrictions on the formulas allowed in the planning task description. Research thus revolves around the development and understanding of search methods, which explore, in a variety of different ways, the space of possible action schedules. A particularly successful approach is *heuristic search*, where search is guided by information obtained in an automatically designed *relaxation* (simplified version) of the task. We investigate the design of relaxations, the connections between such design and the search space topology, and the construction of effective *planning systems* that exhibit good practical performance across a wide range of different inputs. Other important research lines concern the application of ideas successful in planning to stochastic sequential decision making (see next), and the development of technology supporting the user in model design.

3.1.2.2. Stochastic Sequential Decision Making

Markov Decision Processes (*MDP*) [51] are a natural framework for stochastic sequential decision making. An MDP is a four-tuple $\langle S, A, T, r \rangle$, where S is a set of states, A is a set of actions, T(s, a, s') = P(s'|s, a) is the probability of transitioning to s' given that action a was chosen in state s, and r(s, a, s') is the (possibly stochastic) reward obtained from taking action a in state s, and transitioning to state s'. In this framework, one looks for a *strategy*: a precise way for specifying the sequence of actions that induces, on average, an optimal sum of discounted rewards $E[\sum_{t=0}^{\infty} \gamma^t r_t]$. Here, $(r_0, r_1, ...)$ is the infinitely-long (random) sequence of rewards induced by the strategy, and $\gamma \in (0, 1)$ is a discount factor putting more weight on rewards obtained earlier. Central to the MDP framework is the Bellman equation, which characterizes the *optimal value functionV**:

$$\forall s \in S, V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') [r(s, a, s') + \gamma V^*(s')].$$

Once the optimal value function is computed, it is straightforward to derive an optimal strategy, which is deterministic and memoryless, i.e., a simple mapping from states to actions. Such a strategy is usually called a *policy*. An *optimal policy* is any policy π^* that is *greedy* with respect to V^* , i.e., which satisfies:

$$\forall s \in S, \ \pi(s) \in \arg\max_{a \in A} \sum_{s' \in S} T(s, a, s') [r(s, a, s') + \gamma V^*(s')].$$

An important extension of MDPs, known as Partially Observable MDPs (*POMDPs*) allows to account for the fact that the state may not be fully available to the decision maker. While the goal is the same as in an MDP (optimizing the expected sum of discounted rewards), the solution is more intricate. Any POMDP can be seen to be equivalent to an MDP defined on the space of probability distributions on states, called *belief states*. The Bellman-machinery then applies to the belief states. The specific structure of the resulting MDP makes it possible to iteratively approximate the optimal value function – which is convex in the *belief space* – by piecewise linear functions, and to deduce an optimal policy that maps belief states to actions. A further

extension, known as a DEC-POMDP, considers $n \ge 2$ agents that need to control the state dynamics in a decentralized way without direct communication.

The MDP model described above is enumerative, and the complexity of computing the optimal value function is *polynomial* in the size of that input. However, in examples of practical size, that complexity is still too high so naïve approaches do not scale. We consider the following situations: (i) when the state space is large, we study approximation techniques from both a theoretical and practical point of view; (ii) when the model is unknown, we study how to learn an optimal policy from samples (this problem is also known as Reinforcement Learning [55]); (iii) in factored models, where MDP models are a strict generalization of classical planning – and are thus at least *PSPACE*-hard to solve – we consider using search heuristics adapted from such (classical) planning.

Solving a POMDP is *PSPACE*-hard even given an enumerative model. In this framework, we are mainly looking for assumptions that could be exploited to reduce the complexity of the problem at hand, for instance when some actions have no effect on the state dynamics (*active sensing*). The decentralized version, DEC-POMDP, induces a significant increase in complexity (*NEXP*-complete). We tackle the challenging – even for (very) small state spaces – exact computation of finite-horizon optimal solutions through alternative reformulations of the problem. We also aim at proposing advanced heuristics to efficiently address problems with more agents and a longer time horizon.

3.2. Understanding and mastering complex systems

3.2.1. General context

There exist numerous examples of natural and artificial systems where self-organization and emergence occur. Such systems are composed of a set of simple entities interacting in a shared environment and exhibit complex collective behaviors resulting from the interactions of the local (or individual) behaviors of these entities. The properties that they exhibit, for instance robustness, explain why their study has been growing, both in the academic and the industrial field. They are found in a wide panel of fields such as sociology (opinion dynamics in social networks), ecology (population dynamics), economy (financial markets, consumer behaviors), ethology (swarm intelligence, collective motion), cellular biology (cells/organ), computer networks (ad-hoc or P2P networks), etc.

More precisely, the systems we are interested in are characterized by:

- *locality*: Elementary components have only a partial perception of the system's state, similarly, a component can only modify its surrounding environment.
- *individual simplicity*: components have a simple behavior, in most cases it can be modeled by stimulus/response laws or by look-up tables. One way to estimate this simplicity is to count the number of stimulus/response rules for instance.
- *emergence*: It is generally difficult to predict the global behavior of the system from the local individual behaviors. This difficulty of prediction is often observed empirically and in some cases (e.g., cellular automata) one can show that the prediction of the global properties of a system is an undecidable problem. However, observations coming from simulations of the system may help us to find the regularities that occur in the system's behavior (even in a probabilistic meaning). Our interest is to work on problems where a full mathematical analysis seems out of reach and where it is useful to observe the system with large simulations. In return, it is frequent that the properties observed empirically are then studied on an analytical basis. This approach should allow us to understand where lies the frontier between simulation and analysis.
- *levels of description and observation*: Describing a complex system involves at least two levels: the micro level that regards how a component behaves, and the macro level associated with the collective behavior. Usually, understanding a complex system requires to link the description of a component behavior with the observation of a collective phenomenon: establishing this link may require various levels, which can be obtained only with a careful analysis of the system.

We now describe the type of models that are studied in our group.

3.2.2. Multi-agent models

We represent these complex systems with reactive multi-agent systems (RMAS). Multi-agent systems are defined by a set of reactive agents, an environment, a set of interactions between agents and a resulting organization. They are characterized by a decentralized control shared among agents: each agent has an internal state, has access to local observations and influences the system through stimulus response rules. Thus, the collective behavior results from individual simplicity and successive actions and interactions of agents through the environment.

Reactive multi-agent systems present several advantages for modeling complex systems

- agents are explicitly represented in the system and have the properties of local action, interaction and observation;
- each agent can be described regardless of the description of the other agents, multi-agent systems allow explicit heterogeneity among agents which is often at the root of collective emergent phenomena;
- multi-agent systems can be executed through simulation and provide good models to investigate the complex link between global and local phenomena for which analytic studies are hard to perform.

By proposing two different levels of description, the local level of the agents and the global level of the phenomenon, and several execution models, multi-agent systems constitute an interesting tool to study the link between local and global properties.

Despite a widespread use of multi-agent systems, their framework still needs many improvements to be fully accessible to computer scientists from various backgrounds. For instance, there is no generic model to mathematically define a reactive multi-agent system and to describe its interactions. This situation is in contrast with the field of cellular automata, for instance, and underlines that a unification of multi-agent systems under a general framework is a question that still remains to be tackled. We now list the different challenges that, in part, contribute to such an objective.

3.2.3. Current challenges

Our work is structured around the following challenges that combine both theoretical and experimental approaches.

3.2.3.1. Providing formal frameworks

A widespread and consensual formal definition of a multi-agent system is lacking. Our research aims at translating the concepts from the field of complex systems into the multi-agent systems framework.

One objective of this research is to remove the potential ambiguities that can appear if one describes a system without explicitly formulating each aspect of the simulation framework. As a benefit, the reproduction of experiments is facilitated. Moreover, this approach is intended to gain a better insight of the self-organization properties of the systems.

Another important question consists in monitoring the evolution of complex systems. Our objective is to provide some quantitative characteristics of the system such as local or global stability, robustness, complexity, etc. Describing our models as dynamical systems leads us to use specific tools of this mathematical theory as well as statistical tools.

3.2.3.2. Controlling complex dynamical system

Since there is no central control of our systems, one question of interest is to know under which conditions it is possible to guarantee a given property when the system is subject to perturbations. We tackle this issue by designing exogenous control architectures where control actions are envisaged as perturbations in the system. As a consequence, we seek to develop control mechanisms that can change the global behavior of a system without modifying the agent behavior (and not violating the autonomy property).

3.2.3.3. Designing systems

25

The aim is to design individual behaviors and interactions in order to produce a desired collective output. This output can be a collective pattern to reproduce in case of simulation of natural systems. In that case, from individual behaviors and interactions we study if (and how) the collective pattern is produced. We also tackle "inverse problems" (decentralized gathering problem, density classification problem, etc.) which consist in finding individual behaviors in order to solve a given problem.

OAK Project-Team

3. Research Program

3.1. Scalable and Expressive Techniques for the Semantic Web

The Semantic Web vision of a world-wide interconnected database of *facts*, describing *resources* by means of *semantics*, is coming within reach as the W3C's RDF (Resource Description Format) data model is gaining traction. The W3C Linking Open Data initiative has boosted the publication and interlinkage of a large number of datasets on the semantic web resulting to the Linked Open Data Cloud. These datasets of billions of RDF triples have been created and published online. Moreover, numerous datasets and vocabularies from different application domains are published nowadays as RDF graphs in order to facilitate community annotation and interlinkage of both scientific and scholarly data of interest. RDF storage, querying, and reasoning is now supported by a host of tools whose scalability and expressive power vary widely. Unsurprisingly, some of the most scalable tools draw upon the existing models and architecture for managing structured data. However, such tools often ignore the semantic aspects that make RDF interesting. For what concerns the semantics, a delicate balance must be found between expressive power and the efficiency of the resulting data management algorithms.

- The team works on identifying tractable dialects of RDF, amenable to highly efficient query answering algorithms, taking into account both data and semantics.
- Another line of research investigates the usage of RDF data and semantics to help structure, organize, and enrich structured documents from social media. Based on such a rich model, we devised novel query answering algorithms which attempt to explore efficiently the rich social dataset in order to return the most pertinent answers to the users, from a social, structured and semantic perspective. This research is related to the DIGICOSME LabEx grant "Structured, Social and Semantic Search".
- Last but not least, we investigate novel models and algorithms for efficient Semantic Web data management, going beyond the existing standard languages. We have finalized our proposal of an all-RDF data analytics framework, combining the rich structure and semantics of RDF with the power of analysis tools previously developed for relational data, such as analytical schemas and queries. Recent and ongoing work focuses on the automated selection of RDF analytical schemas as well as on efficient view-based analytical query answering strategies. The research is related to the "Investissement d'Avenir" project DATALYSE.

3.2. Massively Distributed Data Management Systems

Large and increasing data volumes have raised the need for distributed storage architectures. Among such architectures, computing in the cloud is an emerging paradigm massively adopted in many applications for the scalability, fault-tolerance and elasticity features it offers, which also allows for effortless deployment of distributed and parallel architectures. At the same time, interest in massively parallel processing has been renewed by the MapReduce model and many follow-up works, which aim at simplifying the deployment of massively parallel data management tasks in a cloud environment. For these reasons, cloud-based stores are an interesting avenue to explore for handling very large volumes of RDF data.

Our research aims at taking advantage of such widely available, large-scale distributed architectures to build scalable platforms for massively distributed management of complex data. We consider many different wide-scale distributed back-ends in this context, ranging from those provided by commercial cloud platforms to simple MapReduce and to more complex extensions thereof. In particular, we have considered the Stratosphere platform developed at TU Berlin, currently distributed by Apache under the name Flink.

This research is part of our participation to the Datalyse project previously mentioned, as well as the KIC EIT ICT Labs Europa activity, part of the "Computing in the Cloud" action line. We have completed our objectives within Europa, and our participation ended in 2014.

A recent development in this area is the start of our collaboration with social scientists from UNIV. PARIS-SUD, working on the management of innovation; we have started a collaborative research projects (ANR "Cloud-Based Organizational Design") where we perform an interdisciplinary analysis (both from a computing and from a business management perspective) on the adoption of cloud technologies within an enterprise.

3.3. Advanced Algorithms for Data Querying and Transformation

The *efficient* evaluation of queries over large databases remains a challenging task, to which certain optimization approaches based on static analysis of queries, data properties (such as integrity constraints), and indexing capabilities (such as materialized views) can still provide practically-relevant solutions. In this area, mainly for relational stores, we focus on query reformulation under constraints and views, as a uniform solution to problems such as view-based rewriting under constraints, semantic query optimization, and physical access path selection in query optimization.

With the increasing amount of available data, as well as the increasing complexity of data processing and transformations queries, for instance in applications such as relational data analysis or integration of Web data (e.g., XML or RDF), comes the need to better manage complex data transformations. In particular, it has become essential to analyze and debug data transformations. In this context, Oak has focused on verifying the semantic correctness of a declarative program that specifies a data transformation query, e.g., an SQL. In particular, we study one important sub-problem of data transformation analysis, namely the one of Why-Not questions. Such questions can explain to developers of complex data transformations or manipulations why their data transformation did not produce some specific results, although they expected them to do so.

3.4. Social Data Management and Crowdsourcing

The social Web blurs today the distinction between search, recommendation, and advertising (three paradigms for information access that have been so far considered mostly in separation). Our research in this area strives to find better adapted and scalable ways to answer information needs in the social Web, often by techniques at the intersection of databases, information retrieval, and data mining.

In particular, we study models and algorithms for personalized, or social-aware search in social applications. While progress has been made in this area, more remains to be done in order to address users' needs in practice, especially towards richer data models, and improving applicability and result relevance. For instance, when searching for tweets, their geographical location and recency may be as important for relevance as the textual and social aspects.

Furthermore, regarding quality of answers in response to searches, for various reasons (e.g., sparsity or tagging quality), meaningful results may often not be available. One response to this observation could be to turn to the crowd, the very users/publishers of the social media platform, and to turn this crowd into on-demand and query-driven sources of data. We study principled approaches for crowd selection (expert sourcing) and task assignment (data sourcing), in order to better answer ongoing social queries.

Beyond social links that represent just ties, a promising direction we also focus on in user-centric applications is to uncover implicit, potentially richer relationships from user interactions and to exploit them to improve core functionality such as search.

Moreover, we plan to investigate how crowdsourcing can be exploited to extract informations on user preferences, using techniques about noisy data management and provenance analysis.

ORPAILLEUR Project-Team

3. Research Program

3.1. From KDD to KDDK

Keywords: knowledge discovery in databases, knowledge discovery in databases guided by domain knowledge, data mining

Knowledge discovery in databases is a process for extracting from large databases knowledge units that can be interpreted and reused. From an operational point of view, a KDD system includes databases, data mining modules, and interfaces for interactions, e.g. editing and visualization. The KDD process is based on three main operations: selection and preparation of the data, data mining, and finally interpretation of the extracted units.

The process of "knowledge discovery in databases guided by domain knowledge" extends the KDD cycle with a fourth step, where extracted units are represented within a knowledge base to be reused. The KDDK process –as implemented in the research work of the Orpailleur team– is based on *data mining methods* that are either symbolic or numerical:

- Symbolic methods are based on frequent itemsets search, association rule extraction, Formal Concept Analysis and extensions [113].
- Numerical methods are based on higher order stochastic models, namely second-order Hidden Markov Models (HMM2) and Hidden Markov fields (HMRF), which are especially designed for an efficient modeling of space and time [12].

The principle summarizing KDDK can be understood as a process going from complex data to knowledge units being guided by domain knowledge. Two original aspects can be underlined: (i) the knowledge discovery process is guided by domain knowledge at each step of the process, and (ii) the extracted units are embedded within knowledge-based systems for problem solving purposes.

One main operation in the research work of Orpailleur on KDDK is *classification*, which is a polymorphic process involved in modeling, mining, representing, and reasoning tasks. Moreover, the KDDK process is intended to feed knowledge-based systems working in application domains, e.g. agronomy, biology, chemistry, cooking and medicine, and also in the context of semantic web, text mining, information retrieval, and ontology engineering.

3.2. Knowledge Discovery guided by Domain Knowledge

Keywords: knowledge discovery, data mining, formal concept analysis, classification, frequent itemset search, association rule extraction, second-order Hidden Markov Models

Classification problems can be formalized by means of a class of objects (or individuals), a class of attributes (or properties), and a binary correspondence between the two classes, indicating for each individual-property pair whether the property applies to the individual or not. The properties may be features that are present or absent, or the values of a property that have been transformed into binary variables. Formal Concept Analysis (FCA) relies on the analysis of such binary tables and may be considered as a symbolic data mining technique to be used for extracting a set of formal concepts then organized within a concept lattice [113] (concept lattices are also known as "Galois lattices" [103]).

In parallel, the search for frequent itemsets and the extraction of association rules are well-known symbolic data mining methods, related to FCA (actually searching for frequent itemsets can be understood as traversing a concept lattice). Both processes usually produce a large number of items and rules, leading to the associated problems of "mining the sets of extracted items and rules". Some subsets of itemsets, e.g. frequent closed itemsets (FCIs), allow to find interesting subsets of association rules, e.g. informative association rules. This is why several algorithms are needed for mining data depending on specific applications [45].

Among useful patterns extracted from a database, frequent itemsets are usually thought to unfold "regularities" in the data, i.e. they are the witnesses of recurrent phenomena and they are consistent with the expectations of the domain experts. In some situations however, it may be interesting to search for "rare" itemsets, i.e. itemsets that do not occur frequently in the data (contrasting frequent itemsets). These correspond to unexpected phenomena, possibly contradicting beliefs in the domain. In this way, rare itemsets are related to "exceptions" and thus may convey information of high interest for experts in domains such as biology or medicine.

From the numerical point of view, a Hidden Markov Model (HMM2) is a stochastic process aimed at extracting and modeling a sequence of stationary distributions of events. Such models can be used for data mining purposes, especially for spatial and temporal data as they show good capabilities to locate patterns both in time and space domains.

Moreover, stochastic models have been designed to mine temporal sequences having a spatial dimension, for example the succession of land uses in a territory. One main Markovian assumption states that the temporal event succession in a given place depends only on the temporal event successions in neighboring points. By means of stochastic models such as hierarchical hidden Markov models and Markov random fields, it is possible to perform an unsupervised clustering of a spatial territory for discovering "patches" characterized by time and space regularities in their temporal successions.

3.3. Text Mining

Keywords: knowledge discovery form large collection of texts, text mining, information extraction, document annotation, ontologies

The objective of a text mining process is to extract useful knowledge units from large collections of texts [110]. The text mining process shows specific characteristics due to the fact that texts are complex objects written in natural language. The information in a text is expressed in an informal way, following linguistic rules, making text mining a particular task. To avoid information dispersion, a text mining process has to take into account –as much as possible– paraphrases, ambiguities, specialized vocabulary and terminology. This is why the preparation of texts for text mining is usually dependent on linguistic resources and methods.

From a KDDK perspective, text mining is aimed at extracting "interesting units" (nouns and relations) from texts with the help of domain knowledge encoded within an ontology (also useful for text annotation). Text mining is especially useful in the context of semantic web for ontology engineering [105]. In the Orpailleur team, the focus is put on the mining of real-world texts in application domains such as biology and medicine, using mainly symbolic data mining methods, and especially Formal Concept Analysis. Accordingly, the text mining process may be involved in a loop used to enrich and to extend linguistic resources. In turn, linguistic and ontological resources can be exploited to guide a "knowledge-based text mining process".

3.4. Knowledge Systems and Semantic Web

Keywords: knowledge representation, ontology, description logics, classification-based reasoning, case-based reasoning, semantic web, information retrieval

Usually, people try to take advantage of the web by searching for information (navigation, exploration), and by querying documents using search engines (information retrieval). Then people try to analyze the obtained results, a task that may be difficult and tedious. Semantic web is an attempt for guiding search for information with the help of software agents, that are in charge of asking questions, searching for answers, classifying and interpreting the answers. However, a software agent may be able to read, understand, and manipulate information on the web, if and only if the knowledge necessary for achieving those tasks is available, and this is why ontologies are of main importance. Thus, there is a need for knowledge representation languages for annotating documents, describing the content of documents and giving a semantics to this content.

In particular, the knowledge representation language used for designing ontologies is the OWL language, which is based on description logics (DLs [100]). In OWL, knowledge units are represented within concepts (or classes), with attributes (properties of concepts, or relations, or roles), and individuals. The hierarchical organization of concepts (and relations) relies on a subsumption relation (i.e. a partial ordering).

The inference services are based on subsumption, concept and individual classification, two tasks related to "classification-based reasoning". Furthermore, classification-based reasoning can be extended into case-based reasoning (CBR), which relies on three main operations: retrieval, adaptation, and memorization. Given a target problem, retrieval consists in searching for a source (memorized) problem similar to the target problem. Then, the solution of the source problem is adapted to fulfill the constraints attached to the target problem, and possibly memorized for further reuse.

SMIS Project-Team

3. Research Program

3.1. Embedded Data Management

The challenge tackled is this research action is twofold: (1) to design embedded database techniques matching the hardware constraints of (current and future) smart objects and (2) to set up co-design rules helping hardware manufacturers to calibrate their future platforms to match the requirements of data driven applications. While a large body of work has been conducted on data management techniques for high-end servers (storage, indexation and query optimization models minimizing the I/O bottleneck, parallel DBMS, main memory DBMS, etc.), less research efforts have been placed on embedded database techniques. Light versions of popular DBMS have been designed for powerful handheld devices; yet DBMS vendors have never addressed the complex problem of embedding database components into chips. Proposals dedicated to databases embedded on chip usually consider small databases, stored in the non-volatile memory of the microcontroller –hundreds of kilobytes– and rely on NOR Flash or EEPROM technologies. Conversely, SMIS is pioneering the combination of microcontrollers and NAND Flash constraints to manage Gigabyte(s) size embedded databases. We present below the positioning of SMIS with respect to international teams conducting research on topics which may be connected to the addressed problem, namely work on electronic stable storage, RAM consumption and specific hardware platforms.

Major database teams are investigating data management issues related to hardware advances (EPFL: A. Ailamaki, CWI: M. Kersten, U. Of Wisconsin: J. M. Patel, Columbia: K. Ross, UCSB: A. El Abbadi, IBM Almaden: C. Mohan, etc.). While there are obvious links with our research on embedded databases, these teams target high-end computers and do not consider highly constrained architectures with non traditional hardware resources balance. At the other extreme, sensors (ultra-light computing devices) are considered by several research teams (e.g., UC Berkeley: D. Culler, ITU: P. Bonnet, Johns Hopkins University: A. Terzis, MIT: S. Madden, etc.). The focus is on the processing of continuous streams of collected data. Although the devices we consider share some hardware constraints with sensors, the objectives of both environments strongly diverge in terms of data cardinality and complexity, query complexity and data confidentiality requirements. Several teams are looking at efficient indexes on flash (HP LABS: G. Graefe, U. Minnesota: B. Debnath, U. Massachusetts: Y. Diao, Microsoft: S. Nath, etc.). Some studies try to minimize the RAM consumption, but the considered RAM/stable storage ratio is quite large compared to the constraints of the embedded context. Finally, a large number of teams have focused on the impact of flash memory on database system design (we presented an exhaustive state of the art in a VLDB tutorial [7]). The work conducted in the SMIS team on bi-modal flash devices takes the opposite direction, proposing to influence the design of flash devices by the expression of database requirements instead of running after the constantly evolving flash device technology.

3.2. Access and Usage Control Models

Access control management has been deeply studied for decades. Different models have been proposed to declare and administer access control policies, like DAC, MAC, RBAC, TMAC, and OrBAC. While access control management is well established, new models are being defined to cope with privacy requirements. Privacy management distinguishes itself from traditional access control is the sense that the data to be protected is personal. Hence, the user's consent must be reflected in the access control policies, as well as the usage of the data, its collection rules and its retention period, which are principles safeguarded by law and must be controlled carefully.

The research community working on privacy models is broad, and involves many teams worldwide including in France ENST-B, LIRIS, Inria LICIT, and LRI, and at the international level IBM Almaden, Purdue Univ., Politecnico di Milano and Univ. of Milano, George Mason Univ., Univ. of Massachusetts, Univ. of Texas and Colorado State Univ. to cite a few. Pioneer attempts towards privacy wary systems include the P3P Platform for Privacy Preservation [34] and Hippocratic databases [24]. In the last years, many other policy languages have been proposed for different application scenarios, including EPAL [38], XACML [36] and WSPL [29]. Hippocratic databases are inspired by the axiom that databases should be responsible for the privacy preservation of the data they manage. The architecture of a Hippocratic database is based on ten guiding principles derived from privacy laws.

The trend worldwide has been to propose enhanced access control policies to capture finer behavior and bridge the gap with privacy policies. To cite a few, Ardagna *et al.* (Univ. Milano) enables actions to be performed after data collection (like notification or removal), purpose binding features have been studied by Lefevre *et al.* (IBM Almaden), and Ni *et al.* (Purdue Univ.) have proposed obligations and have extended the widely used RBAC model to support privacy policies.

The positioning of the SMIS team within this broad area is rather (1) to focus on intuitive or automatic tools helping the individual to control some facets of her privacy (e.g., data retention, minimal collection) instead of increasing the expressiveness but also the complexity of privacy models and (2) to push concrete models enriched by real-case (e.g., medical) scenarios and by a joint work with researchers in Law.

3.3. Tamper-resistant Data Management

Tamper-resistance refers to the capacity of a system to defeat confidentiality and integrity attacks. This problem is complementary to access control management while being (mostly) orthogonal to the way access control policies are defined. Security surveys regularly point out the vulnerability of database servers against external (i.e., by intruders) and internal (i.e., by employees) attacks. Several attempts have been made in commercial DBMSs to strengthen server-based security, e.g., by separating the duty between DBA and DSA (Data Security Administrator), by encrypting the database footprint and by securing the cryptographic material using Hardware Security Modules (HSM) [31]. To face internal attacks, client-based security approaches have been investigated where the data is stored encrypted on the server and is decrypted only on the client side. Several contributions have been made in this direction, notably by U. of California Irvine (S. Mehrotra, Database Service Provider model), IBM Almaden (R. Agrawal, computation on encrypted data), U. of Milano (E. Damiani, encryption schemes), Purdue U. (E. Bertino, XML secure publication), U. of Washington (D. Suciu, provisional access) to cite a few seminal works. An alternative, recently promoted by Stony Brook Univ. (R. Sion), is to augment the security of the server by associating it with a tamper-resistant hardware module in charge of the security aspects. Contrary to traditional HSM, this module takes part in the query computation and performs all data decryption operations. SMIS investigates another direction based on the use of a tamper-resistant hardware module on the client side. Most of our contributions in this area are based on exploiting the tamper-resistance of secure tokens to build new data protection schemes.

While our work on Privacy-Preserving data Publishing (PPDP) is still related to tamper-resistance, a complementary positioning is required for this specific topic. The primary goal of PPDP is to anonymize/sanitize microdata sets before publishing them to serve statistical analysis purposes. PPDP (and privacy in databases in general) is a hot topic since 2000, when it was introduced by IBM Research (IBM Almaden: R. Agrawal, IBM Watson: C.C. Aggarwal), and many teams, mostly north American universities or research centres, study this topic (e.g., PORTIA DB-Privacy project regrouping universities such as Stanford with H. Garcia-Molina). Much effort has been devoted by the scientific community to the definition of privacy models exhibiting better privacy guarantees or better utility or a balance of both (such as differential privacy studied by C. Dwork: Microsoft Research or D. Kifer: Penn-State Univ and J. Gehrke: Cornell Univ) and thorough surveys exist that provide a large overview of existing PPDP models and mechanisms [35]. These works are however orthogonal to our approach in that they make the hypothesis of a trustworthy central server that can execute the anonymization process. In our work, this is not the case. We consider an architecture composed of a large population of tamper-resistant devices weakly connected to an untrusted infrastructure and study how to compute PPDP problems in this context. Hence, our work has some connections with the works done on Privacy Preserving Data Collection (Stevens Institute of Tech. / Rutgers Univ,NJ: R.N.Wright, Univ Austin Texas: V. Shmatikov), on Secure Multi-party Computing for Privacy Preserving Data Mining (Rutgers Univ: J. Vaidya, Purdue Univ: C. Clifton) and on distributed PPDP algorithms (Univ Wisconsin: D. DeWitt, Univ Michigan: K. Lefevre, Rutgers Univ: J. Vaidya, Purdue Univ: C. Clifton) while none of them share the same architectural hypothesis as us.

WIMMICS Project-Team

3. Research Program

3.1. Analyzing and Modeling Users, Communities and their Interactions in a Social Semantic Web Context

We rely on cognitive studies to build models of the system, the user and the interactions between users through the system, in order to support and improve these interactions.

In the short term, following the user modeling technique known as *Personas*, we are interested in these user models that are represented as specific, individual humans. *Personas* are derived from significant behavior patterns (i.e., sets of behavioral variables) elicited from interviews with and observations of users (and sometimes customers) of the future product. Our user models will specialize *Personas* approaches to include aspects appropriate to Web applications. The formalization of these models will rely on ontology-based modeling of users and communities starting with generalist schemas (e.g. FOAF: *Friend of a Friend*). In a longer term we will consider additional extensions of these schemas to capture additional aspects (e.g. emotional states). We will extend current descriptions of relational and emotional aspects in existing variants of the *Personas* technique.

Beyond the individual user models, we propose to rely on social studies to build models of the communities, their vocabularies, activities and protocols in order to identify where and when formal semantics is useful. In the short term we will further develop our method for elaborating collective personas and compare it to the related *collaboration personas* method and to the group modeling methods which are extensions to groups of the classical user modeling techniques dedicated to individuals. We also propose to rely on and adapt participatory sketching and prototyping to support the design of interfaces for visualizing and manipulating representations of collectives. In a longer term we want to focus on studying and modeling mixed representations containing social semantic representations (e.g. folksonomies) and formal semantic representations (e.g. ontologies) and propose operations that allow us to couple them and exchange knowledge between them.

Since we have a background in requirement models, we want to consider in the short term their formalization too in order to support mutual understanding and interoperability between requirements expressed with these heterogeneous models. In a longer term, we believe that argumentation theory can be combined to requirement engineering to improve participant awareness and support decision-making. On the methodological side, we propose to adapt to the design of such systems the incremental formalization approach originally introduced in the context of CSCW (Computer Supported Cooperative Work) and HCI (Human Computer Interaction) communities.

Finally, in the short term, for all the models we identified here we will rely on and evaluate knowledge representation methodologies and theories, in particular ontology-based modeling. In a longer term, additional models of the contexts, devices, processes and mediums will also be formalized and used to support adaptation, proof and explanation and foster acceptation and trust from the users. We specifically target a unified formalization of these contextual aspects to be able to integrate them at any stage of the processing.

3.2. Formalizing and Reasoning on Heterogeneous Semantic Graphs

Our second line of work is to formalize as typed graphs the models identified in the previous section in order to exploit them, e.g. in software. The challenge then is two-sided:

• To propose models and formalisms to capture and merge representations of both kinds of semantics (e.g. formal ontologies and social folksonomies). The important point is to allow us to capture those structures precisely and flexibly and yet create as many links as possible between these different objects.

• To propose algorithms (in particular graph-based reasoning) and approaches (e.g. human-computing methods) to process these mixed representations. In particular we are interested in allowing cross-enrichment between them and in exploiting the life cycle and specificities of each one to foster the life-cycles of the others.

While some of these problems are known, for instance in the field of knowledge representation and acquisition (e.g. disambiguation, fuzzy representations, argumentation theory), the Web reopens them with exacerbated difficulties of scale, speed, heterogeneity, and an open-world assumption.

Many approaches emphasize the logical aspect of the problem especially because logics are close to computer languages. We defend that the graph nature of Linked Data on the Web and the large variety of types of links that compose them call for typed graphs models. We believe the relational dimension is of paramount importance in these representations and we propose to consider all these representations as fragments of a typed graph formalism directly built above the Semantic Web formalisms. Our choice of a graph based programming approach for the semantic and social Web and of a focus on one graph based formalism is also an efficient way to support interoperability, genericity, uniformity and reuse.

ZENITH Project-Team

3. Research Program

3.1. Data Management

Data management is concerned with the storage, organization, retrieval and manipulation of data of all kinds, from small and simple to very large and complex. It has become a major domain of computer science, with a large international research community and a strong industry. Continuous technology transfer from research to industry has led to the development of powerful DBMSs, now at the heart of any information system, and of advanced data management capabilities in many kinds of software products (application servers, document systems, search engines, directories, etc.).

The fundamental principle behind data management is *data independence*, which enables applications and users to deal with the data at a high conceptual level while ignoring implementation details. The relational model, by resting on a strong theory (set theory and first-order logic) to provide data independence, has revolutionized data management. The major innovation of relational DBMS has been to allow data manipulation through queries expressed in a high-level (declarative) language such as SQL. Queries can then be automatically translated into optimized query plans that take advantage of underlying access methods and indices. Many other advanced capabilities have been made possible by data independence : data and metadata modeling, schema management, consistency through integrity rules and triggers, transaction support, etc.

This data independence principle has also enabled DBMS to continuously integrate new advanced capabilities such as object and XML support and to adapt to all kinds of hardware/software platforms from very small smart devices (smart phone, PDA, smart card, etc.) to very large computers (multiprocessor, cluster, etc.) in distributed environments.

Following the invention of the relational model, research in data management has continued with the elaboration of strong database theory (query languages, schema normalization, complexity of data management algorithms, transaction theory, etc.) and the design and implementation of DBMS. For a long time, the focus was on providing advanced database capabilities with good performance, for both transaction processing and decision support applications. And the main objective was to support all these capabilities within a single DBMS.

The problems of scientific data management (massive scale, complexity and heterogeneity) go well beyond the traditional context of DBMS. To address them, we capitalize on scientific foundations in closely related domains: distributed data management, cloud data management, big data, uncertain data management, metadata integration, data mining and content-based information retrieval.

3.2. Distributed Data Management

To deal with the massive scale of scientific data, we exploit large-scale distributed systems, with the objective of making distribution transparent to the users and applications. Thus, we capitalize on the principles of large-scale distributed systems such as clusters, peer-to-peer (P2P) and cloud, to address issues in data integration, scientific workflows, recommendation, query processing and data analysis.

Data management in distributed systems has been traditionally achieved by distributed database systems which enable users to transparently access and update several databases in a network using a high-level query language (e.g. SQL) [15]. Transparency is achieved through a global schema which hides the local databases' heterogeneity. In its simplest form, a distributed database system is a centralized server that supports a global schema and implements distributed database techniques (query processing, transaction management, consistency management, etc.). This approach has proved effective for applications that can benefit from centralized control and full-fledge database capabilities, e.g. information systems. However, it cannot scale up to more than tens of databases. Data integration systems, e.g. price comparators such as KelKoo, extend the distributed database approach to access data sources on the Internet with a simpler query language in read-only mode.

Parallel database systems extend the distributed database approach to improve performance (transaction throughput or query response time) by exploiting database partitioning using a multiprocessor or cluster system. Although data integration systems and parallel database systems can scale up to hundreds of data sources or database partitions, they still rely on a centralized global schema and strong assumptions about the network.

Scientific workflow management systems (SWfMS) such as Kepler (http://kepler-project.org) and Taverna (http://www.taverna.org.uk) allow scientists to describe and execute complex scientific procedures and activities, by automating data derivation processes, and supporting various functions such as provenance management, queries, reuse, etc. Some workflow activities may access or produce huge amounts of distributed data and demand high performance computing (HPC) environments with highly distributed data sources and computing resources. However, combining SWfMS with HPC to improve throughput and performance remains a difficult challenge. In particular, existing workflow development and computing environments have limited support for data parallelism patterns. Such limitation makes complex the automation and ability to perform efficient parallel execution on large sets of data, which may significantly slow down the execution of a workflow.

In contrast, peer-to-peer (P2P) systems [11] adopt a completely decentralized approach to data sharing. By distributing data storage and processing across autonomous peers in the network, they can scale without the need for powerful servers. Popular examples of P2P systems such as Gnutella and BitTorrent have millions of users sharing petabytes of data over the Internet. Although very useful, these systems are quite simple (e.g. file sharing), support limited functions (e.g. keyword search) and use simple techniques (e.g. resource location by flooding) which have performance problems. To deal with the dynamic behavior of peers that can join and leave the system at any time, they rely on the fact that popular data get massively duplicated.

Initial research on P2P systems has focused on improving the performance of query routing in the unstructured systems which rely on flooding, whereby peers forward messages to their neighbors. This work led to structured solutions based on Distributed Hash Tables (DHT), e.g. CHORD and Pastry, or hybrid solutions with super-peers that index subsets of peers. Another approach is to exploit gossiping protocols, also known as epidemic protocols. Gossiping has been initially proposed to maintain the mutual consistency of replicated data by spreading replica updates to all nodes over the network. It has since been successfully used in P2P networks for data dissemination. Basic gossiping is simple. Each peer has a complete view of the network (i.e., a list of all peers' addresses) and chooses a node at random to spread the request. The main advantage of gossiping is robustness over node failures since, with very high probability, the request is eventually propagated to all nodes in the network. In large P2P networks, however, the basic gossiping model does not scale as maintaining the complete view of the network at each node would generate very heavy communication traffic. A solution to scalable gossiping is by having each peer with only a partial view of the network, e.g. a list of tens of neighbor peers. To gossip a request, a peer chooses at random a peer in its partial view to send it the request. In addition, the peers involved in a gossip exchange their partial views to reflect network changes in their own views. Thus, by continuously refreshing their partial views, nodes can self-organize into randomized overlays which scale up very well.

We claim that a P2P solution is the right solution to support the collaborative nature of scientific applications as it provides scalability, dynamicity, autonomy and decentralized control. Peers can be the participants or organizations involved in collaboration and may share data and applications while keeping full control over their (local) data sources.

But for very-large scale scientific data analysis or to execute very large data-intensive workflow activities (activities that manipulate huge amounts of data), we believe cloud computing (see next section), is the right approach as it can provide virtually infinite computing, storage and networking resources. However, current cloud architectures are proprietary, ad-hoc, and may deprive users of the control of their own data. Thus, we postulate that a hybrid P2P/cloud architecture is more appropriate for scientific data management, by combining the bests of both approaches. In particular, it will enable the clean integration of the users' own computational resources with different clouds.

3.3. Cloud Data Management

Cloud computing encompasses on demand, reliable services provided over the Internet (typically represented as a cloud) with easy access to virtually infinite computing, storage and networking resources. Through very simple Web interfaces and at small incremental cost, users can outsource complex tasks, such as data storage, system administration, or application deployment, to very large data centers operated by cloud providers. Thus, the complexity of managing the software/hardware infrastructure gets shifted from the users' organization to the cloud provider. From a technical point of view, the grand challenge is to support in a cost-effective way the very large scale of the infrastructure which has to manage lots of users and resources with high quality of service.

Cloud customers could move all or part of their information technology (IT) services to the cloud, with the following main benefits:

- **Cost.** The cost for the customer can be greatly reduced since the IT infrastructure does not need to be owned and managed; billing is only based only on resource consumption. For the cloud provider, using a consolidated infrastructure and sharing costs for multiple customers reduces the cost of ownership and operation.
- Ease of access and use. The cloud hides the complexity of the IT infrastructure and makes location and distribution transparent. Thus, customers can have access to IT services anytime, and from anywhere with an Internet connection.
- Quality of Service (QoS). The operation of the IT infrastructure by a specialized provider that has extensive experience in running very large infrastructures (including its own infrastructure) increases QoS.
- **Elasticity.** The ability to scale resources out, up and down dynamically to accommodate changing conditions is a major advantage. In particular, it makes it easy for customers to deal with sudden increases in loads by simply creating more virtual machines.

However, cloud computing has some drawbacks and not all applications are good candidates for being "cloudified". The major concern is w.r.t. data security and privacy, and trust in the provider (which may use no so trustful providers to operate). One earlier criticism of cloud computing was that customers get locked in proprietary clouds. It is true that most clouds are proprietary and there are no standards for cloud interoperability. But this is changing with open source cloud software such as Hadoop, an Apache project implementing Google's major cloud services such as Google File System and MapReduce, and Eucalyptus, an open source cloud software infrastructure, which are attracting much interest from research and industry.

There is much more variety in cloud data than in scientific data since there are many different kinds of customers (individuals, SME, large corporations, etc.). However, we can identify common features. Cloud data can be very large, unstructured (e.g. text-based) or semi-structured, and typically append-only (with rare updates). And cloud users and application developers may be in high numbers, but not DBMS experts.

3.4. Big Data

Big data has become a buzz word, with different meanings depending on your perspective, e.g. 100 terabytes is big for a transaction processing system, but small for a web search engine. It is also a moving target, as shown by two landmarks in DBMS products: the Teradata database machine in the 1980's and the Oracle Exadata database machine in 2010.

Although big data has been around for a long time, it is now more important than ever. We can see overwhelming amounts of data generated by all kinds of devices, networks and programs, e.g. sensors, mobile devices, internet, social networks, computer simulations, satellites, radiotelescopes, etc. Storage capacity has doubled every 3 years since 1980 with prices steadily going down (e.g. 1 Gigabyte for: 1M\$ in 1982, 1K\$ in 1995, 0.12\$ in 2011), making it affordable to keep more data. And massive data can produce high-value information and knowledge, which is critical for data analysis, decision support, forecasting, business intelligence, research, (data-intensive) science, etc.

The problem of big data has three main dimensions, quoted as the three big V's:

- Volume: refers to massive amounts of data, making it hard to store, manage, and analyze (big analytics);
- Velocity: refers to continuous data streams being produced, making it hard to perform online processing and analysis;
- Variety: refers to different data formats, different semantics, uncertain data, multiscale data, etc., making it hard to integrate and analyze.

There are also other V's like: validity (is the data correct and accurate?); veracity (are the results meaningful?); volatility (how long do you need to store this data?).

Current big data management (NoSQL) solutions have been designed for the cloud, as cloud and big data are synergistic. They typically trade consistency for scalability, simplicity and flexibility. They use a radically different architecture than RDBMS, by exploiting (rather than embedding) a distributed file system such as Google File System (GFS) or Hadoop Distributed File System (HDFS), to store and manage data in a highly fault-tolerant manner. They tend to rely on a more specific data model, e.g. key-value store such as Google Bigtable, Hadoop Hbase or Apache CouchDB) with a simple set of operators easy to use from a programming language. For instance, to address the requirements of social network applications, new solutions rely on a graph data model and graph-based operators. User-defined functions also allow for more specific data processing. MapReduce is a good example of generic parallel data processing framework, on top of a distributed file system (GFS or HDFS). It supports a simple data model (sets of (key, value) pairs), which allows user-defined functions (map and reduce). Although quite successful among developers, it is relatively low-level and rigid, leading to custom user code that is hard to maintain and reuse. In Zenith, we exploit or extend MapReduce and NoSQL technologies to fit our needs for scientific workflow management and scalable data analysis.

3.5. Uncertain Data Management

Data uncertainty is present in many scientific applications. For instance, in the monitoring of plant contamination by INRA teams, sensors generate periodically data which may be uncertain. Instead of ignoring (or correcting) uncertainty, which may generate major errors, we need to manage it rigorously and provide support for querying.

To deal with uncertainty, there are several approaches, e.g. probabilistic, possibilistic, fuzzy logic, etc. The *probabilistic approach* is often used by scientists to model the behavior of their underlying environments. However, in many scientific applications, data management and uncertain query processing are not integrated, i.e., the queries are usually answered using ad-hoc methods after doing manual or semi-automatic statistical treatment on the data which are retrieved from a database. In Zenith, we aim at integrating scientific data management and query processing within one system. This should allow scientists to issue their queries in a query language without thinking about the probabilistic treatment which should be done in background in order to answer the queries. There are two important issues which any PDBMS should address: 1) how to represent a probabilistic database, i.e., data model; 2) how to answer queries using the chosen representation, i.e., query evaluation.

One of the problems on which we focus is *scalable query processing* over uncertain data. A naive solution for evaluating probabilistic queries is to enumerate all possible worlds, i.e., all possible instances of the database, execute the query in each world, and return the possible answers together with their cumulative probabilities. However, this solution can not scale up due to the exponential number of possible worlds which a probabilistic database may have. Thus, the problem is quite challenging, particularly due to the exponential number of possibilities that should be considered for evaluating queries. In addition, most of our underlying scientific applications are not centralized; the scientists share part of their data in a *P2P* manner. This distribution of data makes very complicated the processing of probabilistic queries. To develop efficient query processing techniques for distributed scientific applications, we can take advantage of two main distributed technologies: *P2P* and *Cloud*. Our research experience in P2P systems has proved us that we can propose scalable solutions

for many data management problems. In addition, we can use the cloud parallel solutions, e.g. MapReduce, to parallelize the task of query processing, when possible, and answer queries of scientists in reasonable execution times. Another challenge for supporting scientific applications is uncertain data integration. In addition to managing the uncertain data for each user, we need to integrate uncertain data from different sources. This requires revisiting traditional data integration in major ways and dealing with the problems of uncertain mediated schema generation and uncertain schema mapping.

3.6. Big data Integration

Nowadays, scientists can rely on web 2.0 tools to quickly share their data and/or knowledge (e.g. ontologies of the domain knowledge). Therefore, when performing a given study, a scientist would typically need to access and integrate data from many data sources (including public databases). To make high numbers of scientific data sources easily accessible to community members, it is necessary to identify semantic correspondences between metadata structures or models of the related data sources. The main underlying task is called matching, which is the process of discovering semantic correspondences between metadata structures such as database schema and ontologies. Ontology is a formal and explicit description of a shared conceptualization in terms of concepts (i.e., classes, properties and relations). For example, the matching may be used to align gene ontologies or anatomical metadata structures.

To understand a data source content, metadata (data that describe the data) is crucial. Metadata can be initially provided by the data publisher to describe the data structure (e.g. schema), data semantics based on ontologies (that provide a formal representation of the domain knowledge) and other useful information about data provenance (publisher, tools, methods, etc.). Scientific metadata is very heterogeneous, in particular because of the great autonomy of the underlying data sources, which leads to a large variety of models and formats. The high heterogeneity makes the matching problem very challenging. Furthermore, the number of ontologies and their size grow fastly, and so does their diversity and heterogeneity. As a result, schema/ontology matching has become a prominent and challenging topic.

3.7. Data Mining

Data mining provides methods to discover new and useful patterns from very large sets of data. These patterns may take different forms, depending on the end-user's request, such as:

- Frequent itemsets and association rules [1]. In this case, the data is usually a table with a high number of rows and the algorithm extracts correlations between column values. This problem was first motivated by commercial and marketing purposes (*e.g.* discovering frequent correlations between items bought in a shop, which could help selling more). A typical example of frequent itemset from a sensor network in a smart building would say that "in 20% rooms, the door is closed, the room is empty, and lights are on."
- Frequent sequential pattern extraction. This problem is very similar to frequent itemset mining, but in this case, the order between events has to be considered. Let us consider the smart-building example again. A frequent sequence, in this case, could say that "in 40% rooms, lights are on at time i, the room is empty at time i+j and the door is closed at time i+j+k". Discovering frequent sequences has become a crucial need in marketing, but also in security (detecting network intrusions for instance) in usage analysis (web usage is one of the main applications) and any domain where data arrive in a specific order (usually given by timestamps).
- **Clustering** [14]. The goal of clustering algorithms is to group together data that have similar characteristics, while ensuring that dissimilar data will not be in the same cluster. In our example of smart buildings, we would find clusters of rooms, where offices will be in one category and copy machine rooms in another one because of their characteristics (hours of people presence, number of times lights are turned on and off, etc.).

One of the main problems for data mining methods has been to deal with data streams. Actually, data mining methods have first been designed for very large data sets where complex algorithms of artificial intelligence were not able to complete within reasonable time responses because of data size. The problem was thus to find a good trade-off between response time and results relevance. The patterns described above well match this trade-off since they both provide interesting knowledge for data analysts and allow algorithm having good time complexity on the number of records. Itemset mining algorithms, for instance, depend more on the number of columns (for a sensor it would be the number of possible items such as temperature, presence, status of lights, etc.) than the number of lines (number of sensors in the network). However, with the ever growing size of data and their production rate, a new kind of data source has recently emerged as data streams. A data stream is a sequence of events arriving at high rate. By "high rate", we usually admit that traditional data mining methods reach their limits and cannot complete in real-time, given the data size. In order to extract knowledge from such streams, a new trade-off had to be found and the data mining community has investigated approximation methods that could allow to maintain a good quality of results for the above patterns extraction.

For scientific data, data mining now has to deal with new and challenging characteristics. First, scientific data is often associated to a level of uncertainty (typically, sensed values have to be associated to the probability that this value is correct or not). Second, scientific data might be extremely large and need cloud computing solutions for their storage and analysis. Eventually, we will have to deal with high dimension and heterogeneous data.

3.8. Content-based Information Retrieval

Today's technologies for searching information in scientific data mainly rely on relational DBMS or text-based indexing methods. However, content-based information retrieval has progressed much in the last decade and is now considered as one of the most promising for future search engines. Rather than restricting search to the use of metadata, content-based methods attempt to index, search and browse digital objects by means of signatures describing their actual content. Such methods have been intensively studied in the multimedia community to allow searching the massive amount or raw multimedia documents created every day (e.g. 99% of web data are audio-visual content with very sparse metadata). Successful and scalable content-based methods have been proposed for searching objects in large image collections or detecting copies in huge video archives. Besides multimedia contents, content-based information retrieval methods recently started to be studied on more diverse data such as medical images, 3D models or even molecular data. Potential applications in scientific data management are numerous. First of all, to allow searching the huge collections of scientific images (earth observation, medical images, botanical images, biology images, etc.) but also to browse large datasets of experimental data (e.g. multisensor data, molecular data or instrumental data). Despite recent progress, scalability remains a major issue, involving complex algorithms (such as similarity search, clustering or supervised retrieval), in high dimensional spaces (up to millions of dimensions) with complex metrics (Lp, Kernels, sets intersections, edit distances, etc.). Most of these algorithms have linear, quadratic or even cubic complexities so that their use at large scale is not affordable without consistent breakthrough. In Zenith, we plan to investigate the following challenges:

- High-dimensional similarity search. Whereas many indexing methods were designed in the last 20 years to efficiently retrieve multidimensional data with relatively small dimensions, high-dimensional data have been more challenging due to the well-known dimensionality curse. Only recently have some methods appeared that allow approximate Nearest Neighbors queries in sub-linear time. In particular, Locality Sensitive Hashing methods which offer new theoretical insights in high-dimensional Euclidean spaces and proved the interest of random projections. But there are still some challenging issues that need to be solved including efficient similarity search in any kernel or metric spaces, efficient construction of knn-graphs or relational similarity queries.
- Large-scale supervised retrieval. Supervised retrieval aims at retrieving relevant objects in a dataset by providing some positive and/or negative training samples. To solve such a task, there has been a focused interest on using Support Vector Machines (SVM) that offer the possibility to construct generalized, non-linear predictors in high-dimensional spaces using small training

sets. The prediction time complexity of these methods is usually linear in dataset size. Allowing hyperplane similarity queries in sub-linear time is for example a challenging research issue. A symmetric problem in supervised retrieval consists in retrieving the most relevant object categories that might contain a given query object, providing huge labeled datasets (up to millions of classes and billions of objects) and very few objects per category (from 1 to 100 objects). SVM methods that are formulated as quadratic programming with cubic training time complexity and quadratic space complexity are clearly not usable. Promising solutions to such problems include hybrid supervised unsupervised methods and supervised hashing methods.

• **Distributed content-based retrieval**. Distributed content-based retrieval methods appeared recently as a promising solution to manage masses of data distributed over large networks, particularly when the data cannot be centralized for privacy or cost reasons (which is often the case in scientific social networks, e.g. botanist social networks). However, current methods are limited to very simple similarity search paradigms. In Zenith, we will consider more advanced distributed content-based retrieval and mining methods such as k-nn graphs construction, large-scale supervised retrieval or multi-source clustering.

ALICE Project-Team

3. Research Program

3.1. Introduction

Computer Graphics is a quickly evolving domain of research. These last few years, both acquisition techniques (e.g., range laser scanners) and computer graphics hardware (the so-called GPU's, for Graphics Processing Units) have made considerable advances. However, despite these advances, fundamental problems still remain open. For instance, a scanned mesh composed of hundred million triangles cannot be used directly in real-time visualization or complex numerical simulation. To design efficient solutions for these difficult problems, ALICE studies two fundamental issues in Computer Graphics:

- the representation of the objects, i.e., their geometry and physical properties;
- the interaction between these objects and light.

Historically, these two issues have been studied by independent research communities. However, we think that they share a common theoretical basis. For instance, multi-resolution and wavelets were mathematical tools used by both communities [28]. We develop a new approach, which consists in studying the geometry and lighting from the *numerical analysis* point of view. In our approach, geometry processing and light simulation are systematically restated as a (possibly non-linear and/or constrained) functional optimization problem. This type of formulation leads to algorithms that are more efficient. Our long-term research goal is to find a formulation that permits a unified treatment of geometry and illumination over this geometry.

3.2. Geometry Processing for Engineering

Keywords: Mesh processing, parameterization, splines

Geometry processing recently emerged (in the middle of the 90's) as a promising strategy to solve the geometric modeling problems encountered when manipulating meshes composed of hundred millions of elements. Since a mesh may be considered to be a *sampling* of a surface - in other words a *signal* - the *digital signal processing* formalism was a natural theoretic background for this subdomain (see e.g., [29]). Researchers of this domain then studied different aspects of this formalism applied to geometric modeling.

Although many advances have been made in the geometry processing area, important problems still remain open. Even if shape acquisition and filtering is much easier than 30 years ago, a scanned mesh composed of hundred million triangles cannot be used directly in real-time visualization or complex numerical simulation. For this reason, automatic methods to convert those large meshes into higher level representations are necessary. However, these automatic methods do not exist yet. For instance, the pioneer Henri Gouraud often mentions in his talks that the *data acquisition* problem is still open. Malcolm Sabin, another pioneer of the "Computer Aided Geometric Design" and "Subdivision" approaches, mentioned during several conferences of the domain that constructing the optimum control-mesh of a subdivision surface so as to approximate a given surface is still an open problem. More generally, converting a mesh model into a higher level representation, consisting of a set of equations, is a difficult problem for which no satisfying solutions have been proposed. This is one of the long-term goals of international initiatives, such as the AIMShape European network of excellence.

Motivated by gridding application for finite elements modeling for oil and gas exploration, in the frame of the Gocad project, we started studying geometry processing in the late 90's and contributed to this area at the early stages of its development. We developed the LSCM method (Least Squares Conformal Maps) in cooperation with Alias Wavefront [24]. This method has become the de-facto standard in automatic unwrapping, and was adopted by several 3D modeling packages (including Maya and Blender). We experimented various applications of the method, including normal mapping, mesh completion and light simulation [2].

However, classical mesh parameterization requires to partition the considered object into a set of topological disks. For this reason, we designed a new method (Periodic Global Parameterization) that generates a continuous set of coordinates over the object [5]. We also showed the applicability of this method, by proposing the first algorithm that converts a scanned mesh into a Spline surface automatically [4].

We are still not fully satisfied with these results, since the method remains quite complicated. We think that a deeper understanding of the underlying theory is likely to lead to both efficient and simple methods. For this reason, in 2012 we studied several ways of discretizing partial differential equations on meshes, including Finite Element Modeling and Discrete Exterior Calculus. In 2013, we also explored Spectral Geometry Processing and Sampling Theory (more on this below).

3.3. Computer Graphics

Keywords: texture synthesis, shape synthesis, texture mapping, visibility

Content creation is one of the major challenges in Computer Graphics. Modeling shapes and surface appearances which are visually appealing and at the same time enforce precise design constraints is a task only accessible to highly skilled and trained designers.

In this context the team focuses on methods for by-example content creation. Given an input example and a set of constraints, we design algorithms that can automatically generate a new shape (geometry+texture). We formulate the problem of content synthesis as the joint optimization of several objectives: Preserving the local appearance of the example, enforcing global objectives (size, symmetries, mechanical properties), reaching user defined constraints (locally specified geometry, contacts). This results in a wide range of optimization problems, from statistical approaches (Markov Random fields), to combinatorial and linear optimization techniques.

As as complement to the design of techniques for automatic content creation, we also work on the representation of the content, so as to allow for its efficient manipulation. In this context we develop data-structures and algorithms targeted at massively parallel architectures, such as GPUs. These are critical to reach the interactive rates expected from a content creation technique. We also propose novel ways to store and access content stored along surfaces [6] or in volumes [1] [23].

The team also continues research in core topics of computer graphics at the heart of realistic rendering and realistic light simulation techniques; for example, mapping textures on surfaces, or devising visibility relationships between 3D objects populating space.

AVIZ Project-Team

3. Research Program

3.1. Scientific Foundations

The scientific foundations of Visual Analytics lie primarily in the domains of Information Visualization and Data Mining. Indirectly, it inherits from other established domains such as graphic design, Exploratory Data Analysis (EDA), statistics, Artificial Intelligence (AI), Human-Computer Interaction (HCI), and Psychology.

The use of graphic representation to understand abstract data is a goal Visual Analytics shares with Tukey's Exploratory Data Analysis (EDA) [60], graphic designers such as Bertin [45] and Tufte [59], and HCI researchers in the field of Information Visualization [44].

EDA is complementary to classical statistical analysis. Classical statistics starts from a *problem*, gathers *data*, designs a *model* and performs an *analysis* to reach a *conclusion* about whether the data follows the model. While EDA also starts with a problem and data, it is most useful *before* we have a model; rather, we perform visual analysis to discover what kind of model might apply to it. However, statistical validation is not always required with EDA; since often the results of visual analysis are sufficiently clear-cut that statistics are unnecessary.

Visual Analytics relies on a process similar to EDA, but expands its scope to include more sophisticated graphics and areas where considerable automated analysis is required before the visual analysis takes place. This richer data analysis has its roots in the domain of Data Mining, while the advanced graphics and interactive exploration techniques come from the scientific fields of Data Visualization and HCI, as well as the expertise of professions such as cartography and graphic designers who have long worked to create effective methods for graphically conveying information.

The books of the cartographer Bertin and the graphic designer Tufte are full of rules drawn from their experience about how the meaning of data can be best conveyed visually. Their purpose is to find effective visual representation that describe a data set but also (mainly for Bertin) to discover structure in the data by using the right mappings from abstract dimensions in the data to visual ones.

For the last 25 years, the field of Human-Computer Interaction (HCI) has also shown that interacting with visual representations of data in a tight perception-action loop improves the time and level of understanding of data sets. Information Visualization is the branch of HCI that has studied visual representations suitable to understanding and interaction methods suitable to navigating and drilling down on data. The scientific foundations of Information Visualization come from theories about perception, action and interaction.

Several theories of perception are related to information visualization such as the "Gestalt" principles, Gibson's theory of visual perception [51] and Triesman's "preattentive processing" theory [58]. We use them extensively but they only have a limited accuracy for predicting the effectiveness of novel visual representations in interactive settings.

Information Visualization emerged from HCI when researchers realized that interaction greatly enhanced the perception of visual representations.

To be effective, interaction should take place in an interactive loop faster than 100ms. For small data sets, it is not difficult to guarantee that analysis, visualization and interaction steps occur in this time, permitting smooth data analysis and navigation. For larger data sets, more computation should be performed to reduce the data size to a size that may be visualized effectively.

In 2002, we showed that the practical limit of InfoVis was on the order of 1 million items displayed on a screen [48]. Although screen technologies have improved rapidly since then, eventually we will be limited by the physiology of our vision system: about 20 millions receptor cells (rods and cones) on the retina. Another problem will be the limits of human visual attention, as suggested by our 2006 study on change blindness in large and multiple displays [46]. Therefore, visualization alone cannot let us understand very large data sets. Other techniques such as aggregation or sampling must be used to reduce the visual complexity of the data to the scale of human perception.

Abstracting data to reduce its size to what humans can understand is the goal of Data Mining research. It uses data analysis and machine learning techniques. The scientific foundations of these techniques revolve around the idea of finding a good model for the data. Unfortunately, the more sophisticated techniques for finding models are complex, and the algorithms can take a long time to run, making them unsuitable for an interactive environment. Furthermore, some models are too complex for humans to understand; so the results of data mining can be difficult or impossible to understand directly.

Unlike pure Data Mining systems, a Visual Analytics system provides analysis algorithms and processes compatible with human perception and understandable to human cognition. The analysis should provide understandable results quickly, even if they are not ideal. Instead of running to a predefined threshold, algorithms and programs should be designed to allow trading speed for quality and show the tradeoffs interactively. This is not a temporary requirement: it will be with us even when computers are much faster, because good quality algorithms are at least quadratic in time (e.g. hierarchical clustering methods). Visual Analytics systems need different algorithms for different phases of the work that can trade speed for quality in an understandable way.

Designing novel interaction and visualization techniques to explore huge data sets is an important goal and requires solving hard problems, but how can we assess whether or not our techniques and systems provide real improvements? Without this answer, we cannot know if we are heading in the right direction. This is why we have been actively involved in the design of evaluation methods for information visualization [57], [56], [52], [53], [49]. For more complex systems, other methods are required. For these we want to focus on longitudinal evaluation methods while still trying to improve controlled experiments.

3.2. Innovation

We design novel visualization and interaction techniques. Many of these techniques are also evaluated throughout the course of their respective research projects. We cover application domains such as sports analysis, digital humanities, fluid simulations, and biology. A focus of Aviz' work is the improvement of graph visualization and interaction with graphs. We further develop individual techniques for the design of tabular visualizations and different types of data charts. Another focus is the use of animation as a transition aid between different views of the data. We are also interested in applying techniques from illustrative visualization to visual representations and applications in information visualization as well as scientific visualization.

3.3. Evaluation Methods

Evaluation methods are required to assess the effectiveness and usability of visualization and analysis methods. Aviz typically uses traditional HCI evaluation methods, either quantitative (measuring speed and errors) or qualitative (understanding users tasks and activities). Moreover, Aviz is also contributing to the improvement of evaluation methods by reporting on the best practices in the field, by co-organizing workshops (BELIV 2010, 2012, 2014) to exchange on novel evaluation methods, by improving our ways of reporting, interpreting and communicating statistical results, and by applying novel methodologies, for example to assess visualization literacy.

3.4. Software Infrastructures

We want to understand the requirements that software and hardware architectures should provide to support exploratory analysis of large amounts of data. So far, "big data" has been focusing on issues related to storage management and predictive analysis: applying a well-known set of operations on large amounts of data. Visual Analytics is about exploration of data, with sometimes little knowledge of its structure or properties. Therefore, interactive exploration and analysis is needed to build knowledge and apply appropriate analyses; this knowledge and appropriateness is supported by visualizations. However, applying analytical operations on large amounts of results, impossible to visualize directly without aggregation or sampling. Visual Analytics has started to tackle these problems for specific applications but not in a general manner, leading to fragmentation of results and difficulties to reuse techniques from one application to the other. We are interested in abstracting-out the issues and finding general architectural models, patterns, and frameworks to address the Visual Analytics challenge in more generic ways.

3.5. Emerging Technologies

We want to empower humans to make use of data using different types of display media and to enhance how they can understand and visually and interactively explore information. This includes novel display equipment and accompanying input techniques. The Aviz team specifically focuses on the exploration of the use of large displays in visualization contexts as well as emerging physical and tangible visualizations. In terms of interaction modalities our work focuses on using touch and tangible interaction. Aviz participates to the Digiscope project that funds 11 wall-size displays at multiple places in the Paris area (see http://www. digiscope.fr), connected by telepresence equipment and a Fablab for creating devices. Aviz is in charge of creating and managing the Fablab, uses it to create physical visualizations, and is also using the local wall-size display (called WILD) to explore visualization on large screens. The team also investigates the perceptual, motor and cognitive implications of using such technologies for visualization.

3.6. Psychology

More cross-fertilization is needed between psychology and information visualization. The only key difference lies in their ultimate objective: understanding the human mind vs. helping to develop better tools. We focus on understanding and using findings from psychology to inform new tools for information visualization. In many cases, our work also extends previous work in psychology. Our approach to the psychology of information visualization is largely holistic and helps bridge gaps between perception, action and cognition in the context of information visualization. Our focus includes the perception of charts in general, perception in large display environments, collaboration, perception of animations, how action can support perception and cognition, and judgment under uncertainty.

HYBRID Project-Team

3. Research Program

3.1. Research Program

The scientific objective of Hybrid team is to improve 3D interaction of one or multiple users with virtual environments, by making full use of physical engagement of the body, and by incorporating the mental states by means of brain-computer interfaces. We intend to improve each component of this framework individually, but we also want to improve the subsequent combinations of these components.

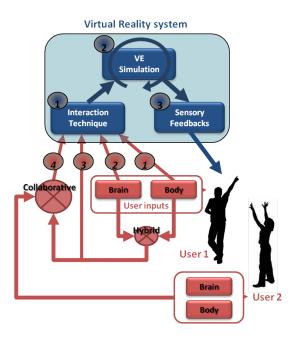


Figure 1. 3D hybrid interaction loop between one or multiple users and a virtual reality system. Top (in blue) three steps of 3D interaction with a virtual environment: (1) interaction technique, (2) simulation of the virtual environment, (3) sensory feedbacks. Bottom (in red) different cases of interaction: (1) body-based, (2) mind-based, (3) hybrid, and (4) collaborative 3D interaction.

The "hybrid" 3D interaction loop between one or multiple users and a virtual environment is depicted on Figure 1. Different kinds of 3D interaction situations are distinguished (red arrows, bottom): 1) body-based interaction, 2) mind-based interaction, 3) hybrid and/or 4) collaborative interaction (with at least two users). In each case, three scientific challenges arise which correspond to the three successive steps of the 3D interaction loop (blue squares, top): 1) the 3D interaction technique, 2) the modeling and simulation of the 3D scenario, and 3) the design of appropriate sensory feedback.

The 3D interaction loop involves various possible inputs from the user(s) and different kinds of output (or sensory feedback) from the simulated environment. Each user can involve his/her body and mind by means of corporal and/or brain-computer interfaces. A hybrid 3D interaction technique (1) mixes mental and motor inputs and translates them into a command for the virtual environment. The real-time simulation (2) of the

virtual environment is taking into account these commands to change and update the state of the virtual world and virtual objects. The state changes are sent back to the user and perceived by means of different sensory feedbacks (e.g., visual, haptic and/or auditory) (3). The sensory feedbacks are closing the 3D interaction loop. Other users can also interact with the virtual environment using the same procedure, and can eventually "collaborate" by means of "collaborative interactive techniques" (4).

This description is stressing three major challenges which correspond to three mandatory steps when designing 3D interaction with virtual environments:

- **3D** interaction techniques: This first step consists in translating the actions or intentions of the user (inputs) into an explicit command for the virtual environment. In virtual reality, the classical tasks that require such kinds of user command were early categorized in four [49]: navigating the virtual world, selecting a virtual object, manipulating it, or controlling the application (entering text, activating options, etc). The addition of a third dimension, the use of stereoscopic rendering and the use of advanced VR interfaces make however inappropriate many techniques that proved efficient in 2D, and make it necessary to design specific interaction techniques and adapted tools. This challenge is here renewed by the various kinds of 3D interaction which are targeted. In our case, we consider various cases, with motor and/or cerebral inputs, and potentially multiple users.
- Modeling and simulation of complex 3D scenarios: This second step corresponds to the update of the state of the virtual environment, in real-time, in response to all the potential commands or actions sent by the user. The complexity of the data and phenomena involved in 3D scenarios is constantly increasing. It corresponds for instance to the multiple states of the entities present in the simulation (rigid, articulated, deformable, fluids, which can constitute both the user's virtual body and the different manipulated objects), and the multiple physical phenomena implied by natural human interactions (squeezing, breaking, melting, etc). The challenge consists here in modeling and simulating these complex 3D scenarios and meeting, at the same time, two strong constraints of virtual reality systems: performance (real-time and interactivity) and genericity (e.g., multi-resolution, multi-modal, multi-platform, etc).
- Immersive sensory feedbacks: This third step corresponds to the display of the multiple sensory feedbacks (output) coming from the various VR interfaces. These feedbacks enable the user to perceive the changes occurring in the virtual environment. They are closing the 3D interaction loop, making the user immersed, and potentially generating a subsequent feeling of presence. Among the various VR interfaces which have been developed so far we can stress two kinds of sensory feedback: visual feedback (3D stereoscopic images using projection-based systems such as CAVE systems or Head Mounted Displays); and haptic feedback (related to the sense of touch and to tactile or force-feedback devices). The Hybrid team has a strong expertize in haptic feedback, and in the design of haptic and "pseudo-haptic" rendering [50]. Note that a major trend in the community, which is strongly supported by the Hybrid team, relates to a "perception-based" approach, which aims at designing sensory feedbacks which are well in line with human perceptual capacities.

These three scientific challenges are addressed differently according to the context and the user inputs involved. We propose to consider three different contexts, which correspond to the three different research axes of the Hybrid research team, namely : 1) body-based interaction (motor input only), 2) mind-based interaction (cerebral input only), and then 3) hybrid and collaborative interaction (i.e., the mixing of body and brain inputs from one or multiple users).

3.2. Research Axes

The scientific activity of Hybrid team follows three main axes of research:

• **Body-based interaction in virtual reality.** Our first research axis concerns the design of immersive and effective "body-based" 3D interactions, i.e., relying on a physical engagement of the user's body. This trend is probably the most popular one in VR research at the moment. Most VR setups make use of tracking systems which measure specific positions or actions of the user in order to interact with a virtual environment. However, in recent years, novel options have emerged for measuring

"full-body" movements or other, even less conventional, inputs (e.g. body equilibrium). In this first research axis we are thus concerned by the emergence of new kinds of "body-based interaction" with virtual environments. This implies the design of novel 3D user interfaces and novel 3D interactive techniques, novel simulation models and techniques, and novel sensory feedbacks for body-based interactive phenomena, and the design of corresponding haptic and pseudo-haptic feedback.

- Mind-based interaction in virtual reality. Our second research axis concerns the design of immersive and effective "mind-based" 3D interactions in Virtual Reality. Mind-based interaction with virtual environments is making use of Brain-Computer Interface technology. This technology corresponds to the direct use of brain signals to send "mental commands" to an automated system such as a robot, a prosthesis, or a virtual environment. BCI is a rapidly growing area of research and several impressive prototypes are already available. However, the emergence of such a novel user input is also calling for novel and dedicated 3D user interfaces. This implies to study the extension of the mental vocabulary available for 3D interaction with VE, then the design of specific 3D interaction techniques "driven by the mind" and, last, the design of immersive sensory feedbacks that could help improving the learning of brain control in VR.
- **Hybrid and collaborative 3D interaction.** Our third research axis intends to study the combination of motor and mental inputs in VR, for one or multiple users. This concerns the design of mixed systems, with potentially collaborative scenarios involving multiple users, and thus, multiple bodies and multiple brains sharing the same VE. This research axis therefore involves two interdependent topics: 1) collaborative virtual environments, and 2) hybrid interaction. It should end up with collaborative virtual environments with multiple users, and shared systems with body and mind inputs.

IMAGINE Project-Team

3. Research Program

3.1. Methodology

As already stressed, thinking of future digital modeling technologies as an Expressive Virtual Pen enabling to seamlessly design, refine and convey animated 3D content, leads to revisit models for shapes, motions and stories from a user-centered perspective. More specifically, inspiring from the user-centered interfaces developed in the Human Computer Interaction domain, we introduced the new concept of user-centered graphical models. Ideally, such models should be designed to behave, under any user action, the way a human user would have predicted. In our case, user's actions may include creation gestures such as sketching to draft a shape or direct a motion, deformation gestures such as stretching a shape in space or a motion in time, or copy-paste gestures to transfer some of the features from existing models to other ones. User-centered graphical models need to incorporate knowledge in order to seamlessly generate the appropriate content from such actions. We are using the following methodology to advance towards these goals:

- Develop high-level models for shapes, motion and stories that embed the necessary knowledge to respond as expected to user actions. These models should provide the appropriate handles for conveying the user's intent while embedding procedural methods that seamlessly take care of the appropriate details and constraints.
- Combine these models with expressive design and control tools such as gesture-based control through sketching, sculpting, or acting, towards interactive environments where users can create a new virtual scene, play with it, edit or refine it, and semi-automatically convey it through a video.

3.2. Validation

Validation is a major challenge when developing digital creation tools: there is no ideal result to compare with, in contrast with more standard problems such as reconstructing existing shapes or motions. Therefore, we had to think ahead about our validation strategy: new models for geometry or animation can be validated, as usually done in Computer Graphics, by showing that they solve a problem never tackled before or that they provide a more general or more efficient solution than previous methods. The interaction methods we are developing for content creation and editing rely as much as possible on existing interaction design principles already validated withing the HCI community. We also occasionally develop new interaction tools, most often in collaboration with this community, and validate them through user studies. Lastly, we work with expert users from various application domains through our collaborations with professional artists, scientists from other domains, and industrial partners: these expert users validate the use of our new tools compared to their usual pipeline.

IN-SITU Project-Team

3. Research Program

3.1. Multi-disciplinary Research

InSitu uses a multi-disciplinary research approach, including computer scientists, psychologists and designers. Working together requires an understanding of each other's methods. Much of computer science relies on formal theory, which, like mathematics, is evaluated with respect to its internal consistency. The social sciences are based more on descriptive theory, attempting to explain observed behaviour, without necessarily being able to predict it. The natural sciences seek predictive theory, using quantitative laws and models to not only explain, but also to anticipate and control naturally occurring phenomena. Finally, design is based on a corpus of accumulated knowledge, which is captured in design practice rather than scientific facts but is nevertheless very effective.

Combining these approaches is a major challenge. We are exploring an integrative approach that we call *generative theory*, which builds upon existing knowledge in order to create new categories of artefacts and explore their characteristics Our goal is to produce prototypes, research methods and software tools that facilitate the design, development and evaluation of interactive systems [34].

MANAO Project-Team

3. Research Program

3.1. Related Scientific Domains

Figure 3. Related scientific domains of the MANAO project.

The *MANAO* project aims to study, acquire, model, and render the interactions between the three components that are light, shape, and matter from the viewpoint of an observer. As detailed more lengthily in the next section, such a work will be done using the following approach: first, we will tend to consider that these three components do not have strict frontiers when considering their impacts on the final observers; then, we will not only work in **computer graphics**, but also at the intersections of computer graphics and **optics**, exploring the mutual benefits that the two domains may provide. It is thus intrinsically a **transdisciplinary** project (as illustrated in Figure 3) and we expect results in both domains.

Thus, the proposed team-project aims at establishing a close collaboration between computer graphics (e.g., 3D modeling, geometry processing, shading techniques, vector graphics, and GPU programming) and optics (e.g., design of optical instruments, and theories of light propagation). The following examples illustrate the strengths of such a partnership. First, in addition to simpler radiative transfer equations [50] commonly used in computer graphics, research in the later will be based on state-of-the-art understanding of light propagation and scattering in real environments. Furthermore, research will rely on appropriate instrumentation expertise for the measurement [62], [63] and display [61] of the different phenomena. Reciprocally, optics researches may benefit from the expertise of computer graphics scientists on efficient processing to investigate interactive simulation, visualization, and design. Furthermore, new systems may be developed by unifying optical and digital processing capabilities. Currently, the scientific background of most of the team members is related to computer graphics and computer vision. A large part of their work have been focused on simulating and analyzing optical phenomena as well as in acquiring and visualizing them. Combined with the close collaboration with the optics laboratory (LP2N) and with the students issued from the "Institut d'Optique", this background ensures that we can expect the following results from the project: the construction of a common vocabulary for tightening the collaboration between the two scientific domains and creating new research topics. By creating this context, we expect to attract (and even train) more trans-disciplinary researchers.

At the boundaries of the *MANAO* project lie issues in **human and machine vision**. We have to deal with the former whenever a human observer is taken into account. On one side, computational models of human vision are likely to guide the design of our algorithms. On the other side, the study of interactions between light, shape, and matter may shed some light on the understanding of visual perception. The same kind of connections are expected with machine vision. On the one hand, traditional computational methods for acquisition (such as photogrammetry) are going to be part of our toolbox. On the other hand, new display technologies (such as augmented reality) are likely to benefit from our integrated approach and systems. In the *MANAO* project we are mostly users of results from human vision. When required, some experimentation

might be done in collaboration with experts from this domain, like with the European PRISM project (cf. Section TODO). For machine vision, provided the tight collaboration between optical and digital systems, research will be carried out inside the *MANAO* project.

Analysis and modeling rely on **tools from applied mathematics** such as differential and projective geometry, multi-scale models, frequency analysis [52] or differential analysis [86], linear and non-linear approximation techniques, stochastic and deterministic integrations, and linear algebra. We not only rely on classical tools, but also investigate and adapt recent techniques (e.g., improvements in approximation techniques), focusing on their ability to run on modern hardware: the development of our own tools (such as Eigen, see Section 4.1.2) is essential to control their performances and their abilities to be integrated into real-time solutions or into new instruments.

3.2. Research axes

The *MANAO* project is organized around four research axes that cover the large range of expertise of its members and associated members. We briefly introduce these four axes in this section. More details and their inter-influences that are illustrated in the Figure 2 will be given in the following sections.

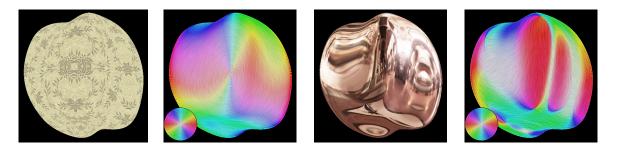
Axis 1 is the theoretical foundation of the project. Its main goal is to increase the understanding of light, shape, and matter interactions by combining expertise from different domains: optics and human/machine vision for the analysis and computer graphics for the simulation aspect. The goal of our analyses is to identify the different layers/phenomena that compose the observed signal. In a second step, the development of physical simulations and numerical models of these identified phenomena is a way to validate the pertinence of the proposed decompositions.

In Axis 2, the final observers are mainly physical captors. Our goal is thus the development of new acquisition and display technologies that combine optical and digital processes in order to reach fast transfers between real and digital worlds, in order to increase the convergence of these two worlds.

Axes 3 and 4 focus on two aspects of computer graphics: rendering, visualization and illustration in Axis 3, and editing and modeling (content creation) in Axis 4. In these two axes, the final observers are mainly human users, either generic users or expert ones (e.g., archaeologist [91], computer graphics artists).

3.3. Axis 1: Analysis and Simulation

Challenge: Definition and understanding of phenomena resulting from interactions between light, shape, and matter as seen from an observer point of view.


Results: Theoretical tools and numerical models for analyzing and simulating the observed optical phenomena.

To reach the goals of the *MANAO* project, we need to **increase our understanding** of how light, shape, and matter act together in synergy and how the resulting signal is finally observed. For this purpose, we need to identify the different phenomena that may be captured by the targeted observers. This is the main objective of this research axis, and it is achieved by using three approaches: the simulation of interactions between light, shape, and matter, their analysis and the development of new numerical models. This resulting improved knowledge is a foundation for the researches done in the three other axes, and the simulation tools together with the numerical models serve the development of the joint optical/digital systems in Axis 2 and their validation.

One of the main and earliest goals in computer graphics is to faithfully reproduce the real world, focusing mainly on light transport. Compared to researchers in physics, researchers in computer graphics rely on a subset of physical laws (mostly radiative transfer and geometric optics), and their main concern is to efficiently use the limited available computational resources while developing as fast as possible algorithms. For this purpose, a large set of tools has been introduced to take a **maximum benefit of hardware** specificities. These tools are often dedicated to specific phenomena (e.g., direct or indirect lighting, color bleeding, shadows, caustics). An efficiency-driven approach needs such a classification of light paths [58] in order to develop tailored strategies [104]. For instance, starting from simple direct lighting, more complex phenomena have

been progressively introduced: first diffuse indirect illumination [56], [95], then more generic inter-reflections [65], [50] and volumetric scattering [92], [47]. Thanks to this search for efficiency and this classification, researchers in computer graphics have developed a now recognized expertise in fast-simulation of light propagation. Based on finite elements (radiosity techniques) or on unbiased Monte Carlo integration schemes (ray-tracing, particle-tracing, ...), the resulting algorithms and their combination are now sufficiently accurate to be used-back in physical simulations. The *MANAO* project will continue the search for efficient and accurate simulation techniques, but extending it from computer graphics to optics. Thanks to the close collaboration with scientific researchers from optics, new phenomena beyond radiative transfer and geometric optics will be explored.

Search for algorithmic efficiency and accuracy has to be done in parallel with numerical models. The goal of visual fidelity (generalized to accuracy from an observer point of view in the project) combined with the goal of efficiency leads to the development of alternative representations. For instance, common classical finiteelement techniques compute only basis coefficients for each discretization element: the required discretization density would be too large and to computationally expensive to obtain detailed spatial variations and thus visual fidelity. Examples includes texture for decorrelating surface details from surface geometry and highorder wavelets for a multi-scale representation of lighting [46]. The numerical complexity explodes when considering directional properties of light transport such as radiance intensity (Watt per square meter and per steradian - $W.m^{-2}.sr^{-1}$), reducing the possibility to simulate or accurately represent some optical phenomena. For instance, Haar wavelets have been extended to the spherical domain [94] but are difficult to extend to non-piecewise-constant data [97]. More recently, researches prefer the use of Spherical Radial Basis Functions [100] or Spherical Harmonics [85]. For more complex data, such as reflective properties (e.g., BRDF [79], [66] - 4D), ray-space (e.g., Light-Field [76] - 4D), spatially varying reflective properties (6D - [89]), new models, and representations are still investigated such as rational functions [82] or dedicated models [33] and parameterizations [93], [98]. For each (newly) defined phenomena, we thus explore the space of possible numerical representations to determine the most suited one for a given application, like we have done for BRDF [82].

Texuring

1st order gradient field

Environment reflection

2st order gradient field

Figure 4. First-oder analysis [105] have shown that shading variations are caused by depth variations (first-order gradient field) and by normal variations (second-order fields). These fields are visualized using hue and saturation to indicate direction and magnitude of the flow respectively.

Before being able to simulate or to represent the different **observed phenomena**, we need to define and describe them. To understand the difference between an observed phenomenon and the classical light, shape, and matter decomposition, we can take the example of a highlight. Its observed shape (by a human user or a sensor) is the resulting process of the interaction of these three components, and can be simulated this way. However, this does not provide any intuitive understanding of their relative influence on the final shape: an artist will directly describe the resulting shape, and not each of the three properties. We thus want to decompose the observed signal into models for each scale that can be easily understandable, representable,

and manipulable. For this purpose, we will rely on the **analysis** of the resulting interaction of light, shape, and matter as observed by a human or a physical sensor. We first consider this analysis from an **optical point of view**, trying to identify the different phenomena and their scale according to their mathematical properties (e.g., differential [86] and frequency analysis [52]). Such an approach has leaded us to exhibit the influence of surfaces flows (depth and normal gradients) into lighting pattern deformation (see Figure 4). For a **human observer**, this correspond to one recent trend in computer graphics that takes into account the human visual systems [53] both to evaluate the results and to guide the simulations.

3.4. Axis 2: From Acquisition to Display

Challenge: Convergence of optical and digital systems to blend real and virtual worlds.

Results: Instruments to acquire real world, to display virtual world, and to make both of them interact.

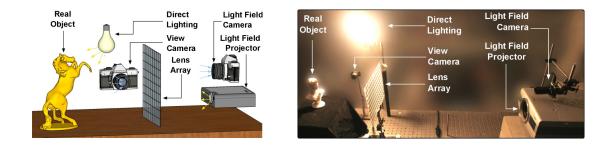
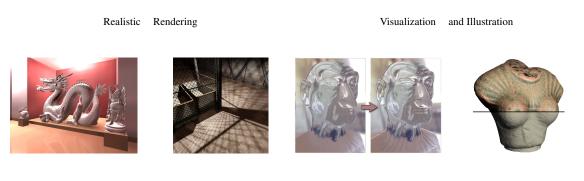


Figure 5. Light-Field transfer: global illumination between real and synthetic objects [45]

For this axis, we investigate *unified acquisition and display systems*, that is systems which combine optical instruments with digital processing. From digital to real, we investigate new display approaches [76], [61]. We consider projecting systems and surfaces [42], for personal use, virtual reality and augmented reality [36]. From the real world to the digital world, we favor direct measurements of parameters for models and representations, using (new) optical systems unless digitization is required [55], [54]. These resulting systems have to acquire the different phenomena described in Axis 1 and to display them, in an efficient manner [59], [34], [60], [63]. By efficient, we mean that we want to shorten the path between the real world and the virtual world by increasing the data bandwidth between the real (analog) and the virtual (digital) worlds, and by reducing the latency for real-time interactions (we have to prevent unnecessary conversions, and to reduce processing time). To reach this goal, the systems have to be designed as a whole, not by a simple concatenation of optical systems and digital processes, nor by considering each component independently [64].

To increase data bandwidth, one solution is to **parallelize more and more the physical systems**. One possible solution is to multiply the number of simultaneous acquisitions (e.g., simultaneous images from multiple viewpoints [63], [84]). Similarly, increasing the number of viewpoints is a way toward the creation of full 3D displays [76]. However, full acquisition or display of 3D real environments theoretically requires a continuous field of viewpoints, leading to huge data size. Despite the current belief that the increase of computational power will fill the missing gap, when it comes to visual or physical realism, if you double the processing power, people may want four times more accuracy, thus increasing data size as well. Furthermore, this leads to solutions that are not energy efficient and thus cannot be embedded into mobile devices. To reach the best performances, a trade-off has to be found between the amount of data required to represent accurately the reality and the amount of required processing. This trade-off may be achieved using **compressive sensing**. Compressive sensing is a new trend issued from the applied mathematics community that provides tools to accurately reconstruct a signal from a small set of measurements assuming that it is sparse in a transform domain (e.g., [83], [108]).


We prefer to achieve this goal by avoiding as much as possible the classical approach where acquisition is followed by a fitting step: this requires in general a large amount of measurements and the fitting itself may consume consequently too much memory and preprocessing time. By **preventing unnecessary conversion** through fitting techniques, such an approach increase the speed and reduce the data transfer for acquisition but also for display. One of the best recent examples is the work of Cossairt et al. [45]. The whole system is designed around a unique representation of the energy-field issued from (or leaving) a 3D object, either virtual or real: the Light-Field. A Light-Field encodes the light emitted in any direction from any position on an object. It is acquired thanks to a lens-array that leads to the capture of, and projection from, multiple simultaneous viewpoints. A unique representation is used for all the steps of this system. Lens-arrays, parallax barriers, and coded-aperture [71] are one of the key technologies to develop such acquisition (e.g., Light-Field camera ⁰ [64] and acquisition of light-sources [55]), projection systems (e.g., auto-stereoscopic displays). Such an approach is versatile and may be applied to improve classical optical instruments [69]. More generally, by designing unified optical and digital systems [80], it is possible to leverage the requirement of processing power, the memory footprint, and the cost of optical instruments.

Those are only some examples of what we investigate. We also consider the following approaches to develop new unified systems. First, similar to (and based on) the analysis goal of Axis 1, we have to take into account as much as possible the characteristics of the measurement setup. For instance, when fitting cannot be avoided, integrating them may improve both the processing efficiency and accuracy [82]. Second, we have to integrate signals from multiple sensors (such as GPS, accelerometer, ...) to prevent some computation (e.g., [72]). Finally, the experience of the group in surface modeling help the design of optical surfaces [67] for light sources or head-mounted displays.

3.5. Axis 3: Rendering, Visualization and Illustration

Challenge: How to offer the most legible signal to the final observer in real-time?

Results: High-level shading primitives, expressive rendering techniques for object depiction, real-time realistic rendering algorithms


```
(a) Global illumination [81]
```

(b) Shadows [35]

(c) Shape enhancement [10]

(d) Shape depiction [32]

Figure 6. In the MANAO project, we are investigating rendering techniques from realistic solutions (e.g., inter-reflections (a) and shadows (b)) to more expressive ones (shape enhancement (c) with realistic style and shape depiction (d) with stylized style) for visualization.

The main goal of this axis is to offer to the final observer, in this case mostly a human user, the most legible signal in real-time. Thanks to the analysis and to the decomposition in different phenomena resulting from interactions between light, shape, and matter (Axis 1), and their perception, we can use them to convey essential information in the most pertinent way. Here, the word *pertinent* can take various forms depending on the application.

⁰Lytro, http://www.lytro.com/

In the context of scientific illustration and visualization, we are primarily interested in tools to convey shape or material characteristics of objects in animated 3D scenes. Expressive rendering techniques (see Figure 6 c,d) provide means for users to depict such features with their own style. To introduce our approach, we detail it from a shape-depiction point of view, domain where we have acquired a recognized expertise. Prior work in this area mostly focused on stylization primitives to achieve line-based rendering [106], [68] or stylized shading [40],[10] with various levels of abstraction. A clear representation of important 3D object features remains a major challenge for better shape depiction, stylization and abstraction purposes. Most existing representations provide only local properties (e.g., curvature), and thus lack characterization of broader shape features. To overcome this limitation, we are developing higher level descriptions of shape [31] with increased robustness to sparsity, noise, and outliers. This is achieved in close collaboration with Axis 1 by the use of higher-order local fitting methods, multi-scale analysis, and global regularization techniques. In order not to neglect the observer and the material characteristics of the objects, we couple this approach with an analysis of the appearance model. To our knowledge, this is an approach which has not been considered yet. This research direction is at the heart of the MANAO project, and has a strong connection with the analysis we plan to conduct in Axis 1. Material characteristics are always considered at the light ray level, but an understanding of higher-level primitives (like the shape of highlights and their motion) would help us to produce more legible renderings and permit novel stylizations; for instance, there is no method that is today able to create stylized renderings that follow the motion of highlights or shadows. We also believe such tools also play a fundamental role for geometry processing purposes (such as shape matching, reassembly, simplification), as well as for editing purposes as discussed in Axis 4.

In the context of **real-time photo-realistic rendering** ((see Figure 6 a,b), the challenge is to compute the most plausible images with minimal effort. During the last decade, a lot of work has been devoted to design approximate but real-time rendering algorithms of complex lighting phenomena such as soft-shadows [107], motion blur [52], depth of field [96], reflexions, refractions, and inter-reflexions. For most of these effects it becomes harder to discover fundamentally new and faster methods. On the other hand, we believe that significant speedup can still be achieved through more clever use of **massively parallel architectures** of the current and upcoming hardware, and/or through more clever tuning of the current algorithms. In particular, regarding the second aspect, we remark that most of the proposed algorithms depend on several parameters which can be used to **trade the speed over the quality**. Significant speed-up could thus be achieved by identifying effects that would be masked or facilitated and thus devote appropriate computational resources to the rendering [70], [51]. Indeed, the algorithm parameters controlling the quality vs speed are numerous without a direct mapping between their values and their effect. Moreover, their ideal values vary over space and time, and to be effective such an auto-tuning mechanism has to be extremely fast such that its cost is largely compensated by its gain. We believe that our various work on the analysis of the appearance such as in Axis 1 could be beneficial for such purpose too.

Realistic and real-time rendering is closely related to Axis 2: real-time rendering is a requirement to close the loop between real world and digital world. We have to thus develop algorithms and rendering primitives that allow the integration of the acquired data into real-time techniques. We have also to take care of that these real-time techniques have to work with new display systems. For instance, stereo, and more generally multi-view displays are based on the multiplication of simultaneous images. Brute force solutions consist in independent rendering pipeline for each viewpoint. A more energy-efficient solution would take advantages of the computation parts that may be factorized. Another example is the rendering techniques based on image processing, such as our work on augmented reality [44]. Independent image processing for each viewpoint may disturb the feeling of depth by introducing inconsistent information in each images. Finally, more dedicated displays [61] would require new rendering pipelines.

3.6. Axis 4: Editing and Modeling

Challenge: Editing and modeling appearance using drawing- or sculpting-like tools through high level representations.

Results: High-level primitives and hybrid representations for appearance and shape.

During the last decade, the domain of computer graphics has exhibited tremendous improvements in image quality, both for 2D applications and 3D engines. This is mainly due to the availability of an ever increasing amount of shape details, and sophisticated appearance effects including complex lighting environments. Unfortunately, with such a growth in visual richness, even so-called *vectorial* representations (e.g., subdivision surfaces, Bézier curves, gradient meshes, etc.) become very dense and unmanageable for the end user who has to deal with a huge mass of control points, color labels, and other parameters. This is becoming a major challenge, with a necessity for novel representations. This Axis is thus complementary of Axis 3: the focus is the development of primitives that are easy to use for modeling and editing.

More specifically, we plan to investigate vectorial representations that would be amenable to the production of rich shapes with a minimal set of primitives and/or parameters. To this end we plan to build upon our insights on dynamic local reconstruction techniques and implicit surfaces [3] [39]. When working in 3D, an interesting approach to produce detailed shapes is by means of procedural geometry generation. For instance, many natural phenomena like waves or clouds may be modeled using a combination of procedural functions. Turning such functions into triangle meshes (main rendering primitives of GPUs) is a tedious process that appears not to be necessary with an adapted vectorial shape representation where one could directly turn procedural functions into implicit geometric primitives. Since we want to prevent unnecessary conversions in the whole pipeline (here, between modeling and rendering steps), we will also consider hybrid representations mixing meshes and implicit representations. Such research has thus to be conducted while considering the associated editing tools as well as performance issues. It is indeed important to keep real-time performance (cf. Axis 2) throughout the interaction loop, from user inputs to display, via editing and rendering operations. Finally, it would be interesting to add semantic information into 2D or 3D geometric representations. Semantic geometry appears to be particularly useful for many applications such as the design of more efficient manipulation and animation tools, for automatic simplification and abstraction, or even for automatic indexing and searching. This constitutes a complementary but longer term research direction.

In the MANAO project, we want to investigate representations beyond the classical light, shape, and matter decomposition. We thus want to directly control the appearance of objects both in 2D and 3D applications (e.g., [102]): this is a core topic of computer graphics. When working with 2D vector graphics, digital artists must carefully set up color gradients and textures: examples range from the creation of 2D logos to the photo-realistic imitation of object materials. Classic vector primitives quickly become impractical for creating illusions of complex materials and illuminations, and as a result an increasing amount of time and skill is required. This is only for still images. For animations, vector graphics are only used to create legible appearances composed of simple lines and color gradients. There is thus a need for more complex primitives that are able to accommodate complex reflection or texture patterns, while keeping the ease of use of vector graphics. For instance, instead of drawing color gradients directly, it is more advantageous to draw flow lines that represent local surface concavities and convexities. Going through such an intermediate structure then allows to deform simple material gradients and textures in a coherent way (see Figure 7), and animate them all at once. The manipulation of 3D object materials also raises important issues. Most existing material models are tailored to faithfully reproduce physical behaviors, not to be *easily controllable* by artists. Therefore artists learn to tweak model parameters to satisfy the needs of a particular shading appearance, which can quickly become cumbersome as the complexity of a 3D scene increases. We believe that an alternative approach is required, whereby material appearance of an object in a typical lighting environment is directly input (e.g., painted or drawn), and adapted to match a plausible material behavior. This way, artists will be able to create their own appearance (e.g., by using our shading primitives [102]), and replicate it to novel illumination environments and 3D models. For this purpose, we will rely on the decompositions and tools issued from Axis 1.

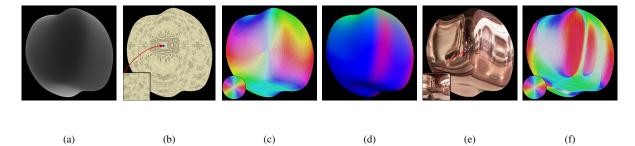


Figure 7. Based on our analysis [105] (Axis 1), we have designed a system that mimics texture (left) and shading (right) effects using image processing alone. It takes depth (a) and normal (d) images as input, and uses them to deform images (b-e) in ways that closely approximate surface flows (c-f). It provides a convincing, yet artistically controllable illusion of 3D shape conveyed through texture or shading cues.

MAVERICK Project-Team

3. Research Program

3.1. Introduction

The Maverick project-team aims at producing representations and algorithms for efficient, high-quality computer generation of pictures and animations through the study of four **research problems**:

- *Computer Visualization* where we take as input a large localized dataset and represent it in a way that will let an observer understand its key properties. Visualization can be used for data analysis, for the results of a simulation, for medical imaging data...
- *Expressive Rendering*, where we create an artistic representation of a virtual world. Expressive rendering corresponds to the generation of drawings or paintings of a virtual scene, but also to some areas of computational photography, where the picture is simplified in specific areas to focus the attention.
- *Illumination Simulation*, where we model the interaction of light with the objects in the scene, resulting in a photorealistic picture of the scene. Research include improving the quality and photorealism of pictures, including more complex effects such as depth-of-field or motion-blur. We are also working on accelerating the computations, both for real-time photorealistic rendering and offline, high-quality rendering.
- *Complex Scenes*, where we generate, manage, animate and render highly complex scenes, such as natural scenes with forests, rivers and oceans, but also large datasets for visualization. We are especially interested in interactive visualization of complex scenes, with all the associated challenges in terms of processing and memory bandwidth.

The fundamental research interest of Maverick is first, *understanding* what makes a picture useful, powerful and interesting for the user, and second *designing* algorithms to create and improve these pictures.

3.2. Research approaches

We will address these research problems through three interconnected research approaches:

3.2.1. Picture Impact

Our first research axis deals with the *impact* pictures have on the viewer, and how we can improve this impact. Our research here will target:

- *evaluating user response:* we need to evaluate how the viewers respond to the pictures and animations generated by our algorithms, through user studies, either asking the viewer about what he perceives in a picture or measuring how his body reacts (eye tracking, position tracking).
- *removing artefacts and discontinuities:* temporal and spatial discontinuities perturb viewer attention, distracting the viewer from the main message. These discontinuities occur during the picture creation process; finding and removing them is a difficult process.

3.2.2. Data Representation

The data we receive as input for picture generation is often unsuitable for interactive high-quality rendering: too many details, no spatial organisation... Similarly the pictures we produce or get as input for other algorithms can contain superfluous details.

One of our goals is to develop new data representations, adapted to our requirements for rendering. This includes fast access to the relevant information, but also access to the specific hierarchical level of information needed: we want to organize the data in hierarchical levels, pre-filter it so that sampling at a given level also gives information about the underlying levels. Our research for this axis include filtering, data abstraction, simplification and stylization.

The input data can be of any kind: geometric data, such as the model of an object, scientific data before visualization, pictures and photographs. It can be time-dependent or not; time-dependent data bring an additional level of challenge on the algorithm for fast updates.

3.2.3. Prediction and simulation

Our algorithms for generating pictures require computations: sampling, integration, simulation... These computations can be optimized if we already know the characteristics of the final picture. Our recent research has shown that it is possible to predict the local characteristics of a picture by studying the phenomena involved: the local complexity, the spatial variations, their direction...

Our goal is to develop new techniques for predicting the properties of a picture, and to adapt our imagegeneration algorithms to these properties, for example by sampling less in areas of low variation.

Our research problems and approaches are all cross-connected. Research on the *impact* of pictures is of interest in three different research problems: *Computer Visualization, Expressive rendering* and *Illumination Simulation*. Similarly, our research on *Illumination simulation* will use all three research approaches: impact, representations and prediction.

3.3. Cross-cutting research issues

Beyond the connections between our problems and research approaches, we are interested in several issues, which are present throughout all our research:

- sampling is an ubiquitous process occurring in all our application domains, whether photorealistic rendering (*e.g.* photon mapping), expressive rendering (*e.g.* brush strokes), texturing, fluid simulation (Lagrangian methods), etc. When sampling and reconstructing a signal for picture generation, we have to ensure both coherence and homogeneity. By *coherence*, we mean not introducing spatial or temporal discontinuities in the reconstructed signal. By *homogeneity*, we mean that samples should be placed regularly in space and time. For a time-dependent signal, these requirements are conflicting with each other, opening new areas of research.
- filtering is another ubiquitous process, occuring in all our application domains, whether in realistic rendering (*e.g.* for integrating height fields, normals, material properties), expressive rendering (*e.g.* for simplifying strokes), textures (through non-linearity and discontinuities). It is especially relevant when we are replacing a signal or data with a lower resolution (for hierarchical representation); this involves filtering the data with a reconstruction kernel, representing the transition between levels.
- performance and scalability are also a common requirement for all our applications. We want our algorithms to be usable, which implies that they can be used on large and complex scenes, placing a great importance on scalability. For some applications, we target interactive and real-time applications, with an update frequency between 10 Hz and 120 Hz.
- coherence and continuity in space and time is also a common requirement of realistic as well as expressive models which must be ensured despite contradictory requirements. We want to avoid flickering and aliasing.
- animation: our input data is likely to be time-varying (*e.g.* animated geometry, physical simulation, timedependent dataset). A common requirement for all our algorithms and data representation is that they must be compatible with animated data (fast updates for data structures, low latency algorithms...).

3.4. Methodology

Our research is guided by several methodological principles:

Experimentation: to find solutions and phenomenological models, we use experimentation, performing statistical measurements of how a system behaves. We then extract a model from the experimental data.

- Validation: for each algorithm we develop, we look for experimental validation: measuring the behavior of the algorithm, how it scales, how it improves over the state-of-the-art... We also compare our algorithms to the exact solution. Validation is harder for some of our research domains, but it remains a key principle for us.
- Reducing the complexity of the problem: the equations describing certain behaviors in image synthesis can have a large degree of complexity, precluding computations, especially in real time. This is true for physical simulation of fluids, tree growth, illumination simulation... We are looking for *emerging phenomena* and *phenomenological models* to describe them (see framed box "Emerging phenomena"). Using these, we simplify the theoretical models in a controlled way, to improve user interaction and accelerate the computations.
- Transfering ideas from other domains: Computer Graphics is, by nature, at the interface of many research domains: physics for the behavior of light, applied mathematics for numerical simulation, biology, algorithmics... We import tools from all these domains, and keep looking for new tools and ideas.
- Develop new fondamental tools: In situations where specific tools are required for a problem, we will proceed from a theoretical framework to develop them. These tools may in return have applications in other domains, and we are ready to disseminate them.
- Collaborate with industrial partners: we have a long experiment of collaboration with industrial partners. These collaborations bring us new problems to solve, with short-term or medium-term transfert opportunities. When we cooperate with these partners, we have to find *what they need*, which can be very different from *what they want*, their expressed need.

MIMETIC Project-Team

3. Research Program

3.1. Biomechanics and Motion Control

Human motion control is a very complex phenomenon that involves several layered systems, as shown in Figure 3. Each layer of this controller is responsible for dealing with perceptual stimuli in order to decide the actions that should be applied to the human body and his environment. Due to the intrinsic complexity of the information (internal representation of the body and mental state, external representation of the environment) used to perform this task, it is almost impossible to model all the possible states of the system. Even for simple problems, there generally exist infinity of solutions. For example, from the biomechanical point of view, there are much more actuators (i.e. muscles) than degrees of freedom leading to infinity of muscle activation patterns for a unique joint rotation. From the reactive point of view there exist infinity of paths to avoid a given obstacle in navigation tasks. At each layer, the key problem is to understand how people select one solution among these infinite state spaces. Several scientific domains have addressed this problem with specific points of view, such as physiology, biomechanics, neurosciences and psychology.

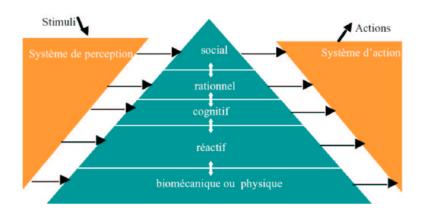


Figure 3. Layers of the motion control natural system in humans.

In biomechanics and physiology, researchers have proposed hypotheses based on accurate joint modeling (to identify the real anatomical rotational axes), energy minimization, force and torques minimization, comfort maximization (i.e. avoiding joint limits), and physiological limitations in muscle force production. All these constraints have been used in optimal controllers to simulate natural motions. The main problem is thus to define how these constraints are composed altogether such as searching the weights used to linearly combine these criteria in order to generate a natural motion. Musculoskeletal models are stereotyped examples for which there exist infinity of muscle activation patterns, especially when dealing with antagonist muscles. An unresolved problem is to define how using the above criteria to retrieve the actual activation patterns while optimization approaches still lead to unrealistic ones. It is still an open problem that will require multidisciplinary skills including computer simulation, constraint solving, biomechanics, optimal control, physiology and neurosciences.

In neuroscience, researchers have proposed other theories, such as coordination patterns between joints driven by simplifications of the variables used to control the motion. The key idea is to assume that instead of controlling all the degrees of freedom, people control higher level variables which correspond to combination of joint angles. In walking, data reduction techniques such as Principal Component Analysis have shown that lower-limb joint angles are generally projected on a unique plan whose angle in the state space is associated with energy expenditure. Although there exist knowledge on specific motion, such as locomotion or grasping, this type of approach is still difficult to generalize. The key problem is that many variables are coupled and it is very difficult to objectivly study the behavior of a unique variable in various motor tasks. Computer simulation is a promising method to evaluate such type of assumptions as it enables to accurately control all the variables and to check if it leads to natural movements.

Neurosciences also address the problem of coupling perception and action by providing control laws based on visual cues (or any other senses), such as determining how the optical flow is used to control direction in navigation tasks, while dealing with collision avoidance or interception. Coupling of the control variables is enhanced in this case as the state of the body is enriched by the big amount of external information that the subject can use. Virtual environments inhabited with autonomous characters whose behavior is driven by motion control assumptions is a promising approach to solve this problem. For example, an interesting problem in this field is navigation in an environment inhabited with other people. Typically, avoiding static obstacles together with other people displacing into the environment is a combinatory problem that strongly relies on the coupling between perception and action.

One of the main objectives of MimeTIC is to enhanche knowledge on human motion control by developing innovative experiments based on computer simulation and immersive environments. To this end, designing experimental protocols is a key point and some of the researchers in MimeTIC have developed this skill in biomechanics and perception-action coupling. Associating these researchers to experts in virtual human simulation, computational geometry and constraints solving enable us to contribute to enhance fundamental knowleged in human motion control.

3.2. Experiments in Virtual Reality

Understanding interaction between humans is very challenging because it addresses many complex phenomena including perception, decision-making, cognition and social behaviors. Moreover, all these phenomena are difficult to isolate in real situations, it is thus very complex to understand the influence of each of them on the interaction. It is then necessary to find an alternative solution that can standardize the experiments and that allows the modification of only one parameter at a time. Video was first used since the displayed experiment is perfectly repeatible and cut-offs (stop the video at a specific time before its end) allow having temporal information. Nevertheless, the absence of adapted viewpoint and stereoscopic vision does not provide depth information that are very meaningful. Moreover, during video recording session, the real human is acting in front of a camera and not an opponent. The interaction is then not a real interaction between humans.

Virtual Reality (VR) systems allow full standardization of the experimental situations and the complete control of the virtual environment. It is then possible to modify only one parameter at a time and observe its influence on the perception of the immersed subject. VR can then be used to understand what information are picked up to make a decision. Moreover, cut-offs can also be used to obtain temporal information about when these information are picked up. When the subject can moreover react as in real situation, his movement (captured in real time) provides information about his reactions to the modified parameter. Not only is the perception studied, but the complete perception-action loop. Perception and action are indeed coupled and influence each other as suggested by Gibson in 1979.

Finally, VR allows the validation of the virtual human models. Some models are indeed based on the interaction between the virtual character and the other humans, such as a walking model. In that case, there are two ways to validate it. First, they can be compared to real data (e.g. real trajectories of pedestrians). But such data are not always available and are difficult to get. The alternative solution is then to use VR. The validation of the realism of the model is then done by immersing a real subject in a virtual environment in which a virtual

character is controlled by the model. Its evaluation is then deduced from how the immersed subject reacts when interacting with the model and how realistic he feels the virtual character is.

3.3. Computational Geometry

Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. It aims at studying algorithms for combinatorial, topological and metric problems concerning sets of points in Euclidian spaces. Combinatorial computational geometry focuses on three main problem classes: static problems, geometric query problems and dynamic problems.

In static problems, some input is given and the corresponding output needs to be constructed or found. Such problems include linear programming, Delaunay triangulations, and Euclidian shortest paths for instance. In geometric query problems, commonly known as geometric search problems, the input consists of two parts: the search space part and the query part, which varies over the problem instances. The search space typically needs to be preprocessed, in a way that multiple queries can be answered efficiently. Some typical problems are range searching, point location in a portioned space, nearest neighbor queries for instance. In dynamic problems, the goal is to find an efficient algorithm for finding a solution repeatedly after each incremental modification of the input data (addition, deletion or motion of input geometric elements). Algorithms for problems of this type typically involve dynamic data structures. Both of previous problem types can be converted into a dynamic problem, for instance, maintaining a Delaunay triangulation between moving points.

The Mimetic team works on problems such as crowd simulation, spatial analysis, path and motion planning in static and dynamic environments, camera planning with visibility constraints for instance. The core of those problems, by nature, relies on problems and techniques belonging to computational geometry. Proposed models pay attention to algorithms complexity to be compatible with performance constraints imposed by interactive applications.

MINT Project-Team

3. Research Program

3.1. Human-Computer Interaction

The scientific approach that we follow considers user interfaces as means, not an end: our focus is not on interfaces, but on interaction considered as a phenomenon between a person and a computing system [46]. We *observe* this phenomenon in order to understand it, i.e. *describe* it and possibly *explain* it, and we look for ways to significantly *improve* it. HCI borrows its methods from various disciplines, including Computer Science, Psychology, Ethnography and Design. Participatory design methods can help determine users' problems and needs and generate new ideas, for example [52]. Rapid and iterative prototyping techniques allow to decide between alternative solutions [47]. Controlled studies based on experimental or quasi-experimental designs can then be used to evaluate the chosen solutions [54]. One of the main difficulties of HCI research is the doubly changing nature of the studied phenomenon: people can both adapt to the system and at the same time adapt it for their own specific purposes [51]. As these purposes are usually difficult to anticipate, we regularly *create* new versions of the systems we develop to take into account new theoretical and empirical knowledge. We also seek to *integrate* this knowledge in theoretical frameworks and software tools to disseminate it.

3.2. Numerical and algorithmic real-time gesture analysis

Whatever is the interface, user provides some curves, defined over time, to the application. The curves constitute a gesture (positionnal information, yet may also include pressure). Depending on the hardware input, such a gesture may be either continuous (e.g. data-glove), or not (e.g. multi-touch screens). User gesture can be multi-variate (several fingers captured at the same time, combined into a single gesture, possibly involving two hands, maybe more in the context of co-located collaboration), that we would like, at higher-level, to be structured in time from simple elements in order to create specific command combinations. One of the scientific foundations of the research project is an algorithmic and numerical study of gesture, which we classify into three points:

- *clustering*, that takes into account intrinsic structure of gesture (multi-finger/multi-hand/multi-user aspects), as a lower-level treatment for further use of gesture by application;
- recognition, that identifies some semantic from gesture, that can be further used for application control (as command input). We consider in this topic multi-finger gestures, two-handed gestures, gesture for collaboration, on which very few has been done so far to our knowledge. On the contrary, in the case of single gesture case (i.e. one single point moving over time in a continuous manner), numerous studies have been proposed in the current literature, and interestingly, are of interest in several communities: HMM [55], Dynamic Time Warping [57] are well-known methods for computer-vision community, and hand-writing recognition. In the computer graphics community, statistical classification using geometric descriptors has previously been used [53]; in the Human-Computer interaction community, some simple (and easy to implement) methods have been proposed, that provide a very good compromise between technical complexity and practical efficiency [56].
- *mapping to application*, that studies how to link gesture inputs to application. This ranges from transfer function that is classically involved in pointing tasks [48], to the question to know how to link gesture analysis and recognition to the algorithmic of application content, with specific reference examples.

We ground our activity on the topic of numerical algorithm, expertise that has been previously achieved by team members in the physical simulation community (within which we think that aspects such as elastic deformation energies evaluation, simulation of rigid bodies composed of unstructured particles, constraint-based animation... will bring up interesting and novel insights within HCI community).

3.3. Design and control of haptic devices

Our scientific approach in the design and control of haptic devices is focused on the interaction forces between the user and the device. We search of controlling them, as precisely as possible. This leads to different designs compared to other systems which control the deformation instead. The research is carried out in three steps:

- *identification:* we measure the forces which occur during the exploration of a real object, for example a surface for tactile purposes. We then analyze the record to deduce the key components *on user's point of view* of the interaction forces.
- *design:* we propose new designs of haptic devices, based on our knowledge of the key components of the interaction forces. For example, coupling tactile and kinesthetic feedback is a promising design to achieve a good simulation of actual surfaces. Our goal is to find designs which leads to compact systems, and which can stand close to a computer in a desktop environment.
- *control:* we have to supply the device with the good electrical conditions to accurately output the good forces.

POTIOC Project-Team

3. Research Program

3.1. Introduction

The project of team potioc is oriented along three axes:

- Understanding humans interacting with the digital world
- Creating interactive systems
- Exploring new applications and usages

These axes are depicted in Figure 2.

Figure 2. The three axes of the potioc team objectives.

Objective 1 is centered on the human sensori-motor and cognitive abilities, as well as user strategies and preferences, for completing interaction tasks. Our contributions for this objective are a better understanding of humans interacting with interactive systems. The impact of this objective is mainly at a fundamental level. In objective 2, our goal is to create interactive systems. This may include hardware parts where new input and output modalities are explored. This also includes software parts, that are strongly linked to the underlying

hardware components. Our contribution in objective 2 is to develop (hardware/software) interaction techniques allowing humans to perform interaction tasks.

Finally, in objective 3, we consider interaction at a higher level, taking into account factors that are linked to specifc application domains and usages. Our contribution in this area is the exploration and the emergence of new applications and usages that take benefit from the developments of the project. With this objective, we target mainly a societal impact.

Of course, strong links exist between the three objectives of the project. For example, the results obtained in objective 1 guide the development of objective 2. Inversely, new systems developed in objective 2 may feed research questions of objective 1. There exists similar links with objective 3.

3.2. Objective 1: Understanding humans interacting with the digital world

Our first objective is centered on the human side. Our finality is not to enhance the general knowledge about the human being as a research team in psychology would do. Instead, we focus on human skills and behaviors during interaction processes. To this end, we conduct experiments that allow us to better understand what the users like, where and why they have difficulties. Thanks to these investigations, we are able to design interaction techniques and systems (described in Objective 2) that are well suited to the targeted users. We believe that this fundamental piece of work is the first step that is required for the design of usable popular interactions. We are particularly interested in 3D interaction tasks for which we design dedicated experiments. We also propose a new approach based on physiological and brain (ElectroEncephaloGraphy - EEG) signals for the evaluation of these interactions.

3.2.1. Interacting with 3D

In the scope of the national project InSTInCT (ANR), we have studied how users tend to interact with a touchscreen for interacting with 3D content. Indeed, whereas such kind of interaction has been extensively studied for 2D contexts, it has been little explored in 3D. However, we believe that it is fundamental to understand users' strategies and preferences well in order to promote 3D interaction on touch screens. We conducted a set of experiments to investigate such kind of interaction. We proposed guidelines to help designers in the creation of more user friendly tools. Such kind of study led to the design of tBox. We also conducted experiments to better understand how users manage to control finger pressure, and how they tend to use this input modality. In another work, we have studied the impact of directness when manipulating 3D content on multitouch screens. This allowed us to gain knowledge about users performance in touch-based interaction.

3.2.2. Evaluating 3DUIs with physiological signals

We recently started to explore a new approach to HCI evaluations: using various physiological signals, and notably EEG signals, as a new complementary tool to assess objectively and more precisely the ergonomic quality of a given 3DUI. In particular we aim at using physiological signals to identify where and when the pros and cons of this interface are, based on the user's mental state during interaction. For instance, estimating the user's mental workload during interaction can give insights about where and when the interface is cognitively difficult to use. Such tools could prove very promising to improve evaluations by complementing existing tools (e.g., questionnaires or interviews) that can suffer from reporting bias, can disturb the user, or only provide an a-posteriori global (but undetailled) evaluation of the interaction. So far, we studied the different kinds of mental states that can be estimated from EEG signals and that are valuable for HCI and user evaluations. We also obtained promising first results suggesting that the level of comfort during stereoscopic visualization could be estimated from EEG signals, hence opening the way to faster, more objective and more individualized stereoscopic display design and calibration. Still with the objective of estimating various users' mental states to refine system evaluations and users' understanding, we explored mental stress (a.k.a., mental workload) and social stress (pressure due to a social evaluation) estimation from brain and physiological signals. To this end, we first had to design a protocol to induce mental stress and social stress, which we did successfully. Then, we were able to calibrate stress recognition from EEG and physiological signals as well as to assess the accuracy of the stress estimators. Then, we managed to robustly estimate mental stress levels from EEG and physiological signals (EEG being the most robust modality), even accross different contexts, here accross different levels of social stress. This is an interesting step towards robust estimation of mental stress in realistic conditions. Finally, we also studied and reviewed emotion recognition from EEG signals, which, again, is another interesting mental state to consider during an HCI evaluation.

3.2.3. Interacting with Brain-Computer Interfaces

Finally, we also studied how humans interact with a specific HCI: Brain-Computer Interfaces (BCI). Indeed, although EEG-based BCIs are very promising for numerous applications, e.g., rehabilitation or gaming, they mostly remain prototypes not used outside laboratories, due to their low reliability. Poor BCI performances are partly due to imperfect EEG signal processing algorithms but also to the user, who may not be able to

produce reliable EEG patterns. Indeed, BCI use is a skill, requiring the user to be properly trained to achieve BCI control. If he/she cannot perform the desired mental commands, no signal processing algorithm could identify them. Therefore, rather than improving EEG signal processing alone (which is what most current BCI research is about), we proposed to also guide users to learn BCI control mastery. We actually studied some theoretical models and guidelines from psychology and cognitive sciences about human learning, which revealed the many theoretical limitations of current standard BCI training approaches. We also conducted some actual experiments to further illustrate some limitations of current BCI training protocols and try to understand and analyse them. Finally, we explored new feedback types and new EEG visualization techniques in order to help users to learn BCI control skills more efficiently. These new feedback and visualizations notably aim at providing BCI users with more information about their EEG patterns using, in order to identify more easily relevant BCI control strategies, as well as motivating and engaging them in the learning task. This was achieved using augmented reality displays of the activity on the whole cortex - using an approach entitled the "Mind-Mirror", or by using multiplayer video game-based BCI training. Overall, this line of research seem largely unexplored but promising, and we are currently investing increasingly more research efforts into it.

3.3. Objective 2: Creating interactive systems

Our objective here is to create interactive systems and design interaction techniques dedicated to the completion of interaction tasks. We divide our work into three main categories:

- Interaction techniques based on existing Input/Output (IO) devices.
- New IO and related techniques.
- BCI and physiological computing.

3.3.1. Interaction techniques based on existing Input/Output (IO) devices

When using desktop IO (i.e., based on mouse/keyboards/monitors), a big challenge is to design interaction techniques that allow users to complete 3D interaction tasks. Indeed, the desktop IO space that is mainly dedicated to the completion of 2D interaction task is not well suited to 3D content and, consequently, 3D user interfaces need to be designed with a great care. We have proposed a state of the art that describes the major approaches and techniques in this area. In the past few years, we have been particularly interested in the problem of interaction when the 3D content is displayed on a touchscreen. Indeed, standard (2D) HCI has evolved from mouse to touch input, and numerous research projects have been conducted. At the opposite, in 3D, very little work has been proposed. We have contributed to move desktop 3D UIs from the mouse to the touch paradigm; what we used to do with mice in front of a screen does not work well on touch devices anymore. To face this problem, we have focused on touch-based 3D UIs. The first work brought tBox , a new 3D transformation widget designed for manipulating 3D objects on touch screens. In a second work, we have explored several strategies for navigating in 3D digital cities from touch inputs in collaboration with our industrial partners Vectuel and Mappy/PagesJaunes.

3.3.2. New IO and related techniques

In Potioc, we are interested in exploring new IO modalities that may make interaction easier, more engaging and motivating. In the past few years, we have designed new interactive systems that exploit unconventional IO modalities. Stereoscopic visualization has a great potential for the understanding of 3D content. On the other hand, interaction with such stereoscopic environments is generally diffcult. To face this problem, we have conceived Toucheo, a new system that exploits stereoscopic visualization and touch input. We have also contributed to the design of a system that exploits 3D spatial and touch input in a stereoscopic 3D environment. In the scope of immersive VR, we have also proposed some extensions of the current IO space. In particular, we presented a new input device that has been specifically designed to play music in an immersive VR environment. It mixes graphical and percussion based interaction. Another example is the SIMCA project where we have build a gateway simulator composed of numerous screens, video projectors and tracking systems. Tangible interaction has also been a subject of interest for us. Indeed, we believe that manipulating directly physical objects for interacting with the digital world has a great potential, in particular when the general public is targeted. In this direction, we have notably proposed PapARt, a system that mixes physical drawing and augmented reality. With this system, the computer disappears, and the user interacts with the digital content as he or she would do with physical content. Another example is Rouages where musicians play with physical midi instruments that are augmented with virtual information to provide rich experiences to the audience. Our more recent contribution is Teegi, a new system based on a unique combination of spatial augmented reality, tangible interaction and real-time neurotechnologies. With Teegi, a user can visualize and analyze his or her own brain activity in real-time, on a tangible character that can be easily manipulated, and with which it is possible to interact.

3.3.3. BCI and physiological computing

As part of our research on the design of interactive systems based on physiological signals, and in particular brain signals (for BCI design) we conducted a number of research projects on EEG signal processing and classification. Indeed, in order to design practical BCI that can be used outside the lab, there is a need for robust EEG signal processing algorithm with the long-term objective to correctly recognise the users' mental commands (and thus EEG patterns) anytime and anywhere. To do so, we first explored and designed new features to represent EEG signals. We notably explored multifractal cumulants and predictive complexity features, waveform length features with an optimal spatial filter that we designed, as well as phase-locking value features (i.e., functional connectivities between brain areas), also with an optimal spatial filter we designed. All such features proved useful to classify EEG signals, and, more importantly, increased BCI classification performances (by 2 to 4% on average) when combined with the gold standard features, namely, band power features. To make BCI more robust to noise and non-stationarities, we proposed to integrate a-priori knowledge into machine learning algorithms. Such knowledge represents any information we have about what should be a good filter or classifier for instance. We successfully demonstrated this approach to learn robust and stable spatial filters. Finally, we worked on reducing the long and tedious BCI calibration times, by making the design of a BCI possible from very few training EEG signals. To do so, we proposed to generate artificial EEG signals from the few EEG trials initially available, in order to augment the training set size in a relevant way. This enabled us to calibrate BCI systems with 2 to 3 times less data than standard designs, while maintaining similar classification performances, hence effectively reducing the calibration time by 2 or 3.

3.4. Objective 3: Exploring new applications and usages

Objective 3 is centered on the applications and usages. Beyond the human sensori-motor and cognitive skills (Objective 1), and the hardware and software components (Objective 2), Objectives 3 takes into account broader criteria for the emergence of new usages and applications in various areas, and in particular in the scope of learning, popularization of science, art and entertainment. Our goal here is not to develop full-packaged end-user applications. Instead, our contribution is to stimulate the evolution of current applications with new engaging interactive systems.

3.4.1. Popularization of science

In the scope of popularization of science, we have built a strong partnership with Cap Sciences, which is a center dedicated to the popularization of science in Bordeaux that is visited by thousands of visitors every month. This was initiated with the ANR national project InSTInCT, whose goal was to study the benefits of 3D touch-based interaction in public exhibitions. This project has led to the creation of a Living Lab where several systems developed by Potioc are tested by the visitors. This provides us with interesting feedback that goes beyond the feedback we can obtain in our controlled lab-experiments. In the scope of archeology, we also contributed to a new system dedicated to public exhibitions, and we collected the current work around the world in this area in a dedicated special issue of a journal. We also contributed to an experiment at "Palais de la découverte" in Paris, where hundreds of visitors have experimented with PapARt (Figure 3).

Figure 3. PapARt used as a mediation tool at "Palais de la découverte"

3.4.2. Education

In the scope of education, we are currently collaborating with Stphanie Fleck from Université de Lorraine for exploring new interactive systems that enhance learning processes. Furthermore, we have launched a project with colleagues in the scope of teaching optical phenomena in optics. Our project HOBIT aims at developing an Hybrid Optical Bench for Innovative Teaching.

3.4.3. Art

In the scope of Art, we are convinced that the work that is conducted in Potioc may benefit to creation from the artist point of view, and it may open new interactive experiences from the audience point of view. We have conducted work with colleagues who are specialists in digital music, and with musicians. This led to several scientific publications and live artistic performances. We have also worked with an architect in order to explore neurodesign, i.e., the use of neural signals for design, here for the design of artistic shapes. Furthermore, we continued exploring the artistic domain in the scope of interactive juggling.

3.4.4. Entertainment

In the scope of entertainement, we notably explored BCI-based gaming and non-medical applications of BCI. In particular, we studied and analyzed how BCI could be used as a control channel for virtual reality and gaming applications, as well as the pros and cons of BCI-based gaming. We also proposed and studied a multiplayer BCI-based game. Our work so far suggests that BCI-based gaming and virtual reality applications are feasible and promising, but that many research challenges are still to be overcome for widespread use. In another example in the field of entertainment we studied several input modalities for playing a game in mobile AR.

REVES Project-Team

3. Research Program

3.1. Plausible Rendering

We consider plausible rendering to be a first promising research direction, both for images and for sound. Recent developments, such as point rendering, image-based modeling and rendering, and work on the simulation of aging indicate high potential for the development of techniques which render *plausible* rather than extremely accurate images. In particular, such approaches can result in more efficient renderings of very complex scenes (such as outdoors environments). This is true both for visual (image) and sound rendering. In the case of images, such techniques are naturally related to image- or point-based methods. It is important to note that these models are becoming more and more important in the context of network or heterogeneous rendering, where the traditional polygon-based approach is rapidly reaching its limits. Another research direction of interest is realistic rendering using simulation methods, both for images and sound. In some cases, research in these domains has reached a certain level of maturity, for example in the case of lighting and global illumination. For some of these domains, we investigate the possibility of technology transfer with appropriate partners. Nonetheless, certain aspects of these research domains, such as visibility or high-quality sound still have numerous and interesting remaining research challenges.

3.1.1. Alternative representations for complex geometry

The key elements required to obtain visually rich simulations, are sufficient geometric detail, textures and lighting effects. A variety of algorithms exist to achieve these goals, for example displacement mapping, that is the displacement of a surface by a function or a series of functions, which are often generated stochastically. With such methods, it is possible to generate convincing representations of terrains or mountains, or of nonsmooth objects such as rocks. Traditional approaches used to represent such objects require a very large number of polygons, resulting in slow rendering rates. Much more efficient rendering can be achieved by using point or image based rendering, where the number of elements used for display is view- or image resolution-dependent, resulting in a significant decrease in geometric complexity. Such approaches have very high potential. For example, if all object can be rendered by points, it could be possible to achieve much higher quality local illumination or shading, using more sophisticated and expensive algorithms, since geometric complexity will be reduced. Such novel techniques could lead to a complete replacement of polygon-based rendering for complex scenes. A number of significant technical challenges remain to achieve such a goal, including sampling techniques which adapt well to shading and shadowing algorithms, the development of algorithms and data structures which are both fast and compact, and which can allow interactive or real-time rendering. The type of rendering platforms used, varying from the high-performance graphics workstation all the way to the PDA or mobile phone, is an additional consideration in the development of these structures and algorithms. Such approaches are clearly a suitable choice for network rendering, for games or the modelling of certain natural object or phenomena (such as vegetation, e.g. Figure 1, or clouds). Other representations merit further research, such as image or video based rendering algorithms, or structures/algorithms such as the "render cache" [31], which we have developed in the past, or even volumetric methods. We will take into account considerations related to heterogeneous rendering platforms, network rendering, and the appropriate choices depending on bandwith or application. Point- or image-based representations can also lead to novel solutions for capturing and representing real objects. By combining real images, sampling techniques and borrowing techniques from other domains (e.g., computer vision, volumetric imaging, tomography etc.) we hope to develop representations of complex natural objects which will allow rapid rendering. Such approaches are closely related to texture synthesis and image-based modeling. We believe that such methods will not replace 3D (laser or range-finger) scans, but could be complementary, and represent a simpler and lower cost alternative for certain applications (architecture, archeology etc.). We are also investigating methods for adding "natural appearance" to synthetic objects. Such approaches include *weathering* or *aging* techniques, based on physical simulations [21], but also simpler methods such as accessibility maps [28]. The approaches we intend to investigate will attempt to both combine and simplify existing techniques, or develop novel approaches founded on generative models based on observation of the real world.

3.1.2. Plausible audio rendering

Similar to image rendering, plausible approaches can be designed for audio rendering. For instance, the complexity of rendering high order reflections of sound waves makes current geometrical approaches inappropriate. However, such high order reflections drive our auditory perception of "reverberation" in a virtual environment and are thus a key aspect of a plausible audio rendering approach. In complex environments, such as cities, with a high geometrical complexity, hundreds or thousands of pedestrians and vehicles, the acoustic field is extremely rich. Here again, current geometrical approaches cannot be used due to the overwhelming number of sound sources to process. We study approaches for statistical modeling of sound scenes to efficiently deal with such complex environments. We also study perceptual approaches to audio rendering which can result in high efficiency rendering algorithms while preserving visual-auditory consistency if required.

Figure 1. Plausible rendering of an outdoors scene containing points, lines and polygons [20], representing a scene with trees, grass and flowers. We can achieve 7-8 frames per second compared to tens of seconds per image using standard polygonal rendering.

3.2. High Quality Rendering Using Simulation

3.2.1. Non-diffuse lighting

A large body of global illumination research has concentrated on finite element methods for the simulation of the diffuse component and stochastic methods for the non-diffuse component. Mesh-based finite element approaches have a number of limitations, in terms of finding appropriate meshing strategies and form-factor calculations. Error analysis methodologies for finite element and stochastic methods have been very different in the past, and a unified approach would clearly be interesting. Efficient rendering, which is a major advantage of finite element approaches, remains an overall goal for all general global illumination research. For certain cases, stochastic methods can be efficient for all types of light transfers, in particular if we require a view-dependent solution. We are also interested both in *pure* stochastic methods, which do not use finite element techniques. Interesting future directions include filtering for improvement of final image quality as well as beam tracing type approaches [29] which have been recently developed for sound research.

3.2.2. Visibility and Shadows

Visibility calculations are central to all global illumination simulations, as well as for all rendering algorithms of images and sound. We have investigated various global visibility structures, and developed robust solutions for scenes typically used in computer graphics. Such analytical data structures [25], [24], [23] typically have robustness or memory consumption problems which make them difficult to apply to scenes of realistic size. Our solutions to date are based on general and flexible formalisms which describe all visibility event in terms of generators (vertices and edges); this approach has been published in the past [22]. Lazy evaluation, as well as hierarchical solutions, are clearly interesting avenues of research, although are probably quite application dependent.

3.2.3. Radiosity

For purely diffuse scenes, the radiosity algorithm remains one of the most well-adapted solutions. This area has reached a certain level of maturity, and many of the remaining problems are more technology-transfer oriented We are interested in interactive or real-time renderings of global illumination simulations for very complex scenes, the "cleanup" of input data, the use of application-dependent semantic information and mixed representations and their management. Hierarchical radiosity can also be applied to sound, and the ideas used in clustering methods for lighting can be applied to sound.

3.2.4. High-quality audio rendering

Our research on high quality audio rendering is focused on developing efficient algorithms for simulations of geometrical acoustics. It is necessary to develop techniques that can deal with complex scenes, introducing efficient algorithms and data structures (for instance, beam-trees [26] [29]), especially to model early reflections or diffractions from the objects in the environment. Validation of the algorithms is also a key aspect that is necessary in order to determine important acoustical phenomena, mandatory in order to obtain a high-quality result. Recent work by Nicolas Tsingos at Bell Labs [27] has shown that geometrical approaches can lead to high quality modeling of sound reflection and diffraction in a virtual environment (Figure 2). We will pursue this research further, for instance by dealing with more complex geometry (e.g., concert hall, entire building floors).

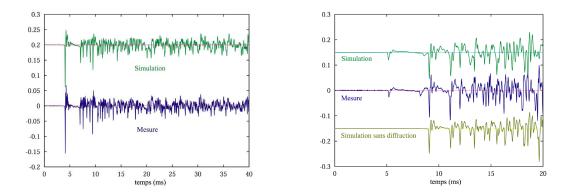


Figure 2. A comparison between a measurement (left) of the sound pressure in a given location of the "Bell Labs Box", a simple test environment built at Bell Laboratories, and a high-quality simulation based on a beam-tracing engine (right). Simulations include effects of reflections off the walls and diffraction off a panel introduced in the room.

Finally, several signal processing issues remain in order to properly and efficiently restitute a 3D soundfield to the ears of the listener over a variety of systems (headphones, speakers). We would like to develop an open

and general-purpose API for audio rendering applications. We already completed a preliminary version of a software library: AURELI [30].

TITANE Project-Team

3. Research Program

3.1. Context

Geometric modeling and processing revolve around three main end goals: a computerized shape representation that can be visualized (creating a realistic or artistic depiction), simulated (anticipating the real) or realized (manufacturing a conceptual or engineering design). Aside from the mere editing of geometry, central research themes in geometric modeling involve conversions between physical (real), discrete (digital), and mathematical (abstract) representations. Going from physical to digital is referred to as shape acquisition and reconstruction; going from mathematical to discrete is referred to as shape approximation and mesh generation; going from discrete to physical is referred to as shape rationalization.

Geometric modeling has become an indispensable component for computational and reverse engineering. Simulations are now routinely performed on complex shapes issued not only from computer-aided design but also from an increasing amount of available measurements. The scale of acquired data is quickly growing: we no longer deal exclusively with individual shapes, but with entire *scenes*, possibly at the scale of entire cities, with many objects defined as structured shapes. We are witnessing a rapid evolution of the acquisition paradigms with an increasing variety of sensors and the development of community data, as well as disseminated data.

In recent years, the evolution of acquisition technologies and methods has translated in an increasing overlap of algorithms and data in the computer vision, image processing, and computer graphics communities. Beyond the rapid increase of resolution through technological advances of sensors and methods for mosaicing images, the line between laser scan data and photos is getting thinner. Combining, e.g., laser scanners with panoramic cameras leads to massive 3D point sets with color attributes. In addition, it is now possible to generate dense point sets not just from laser scanners but also from photogrammetry techniques when using a well-designed acquisition protocol. Depth cameras are getting increasingly common, and beyond retrieving depth information we can enrich the main acquisition systems with additional hardware to measure geometric information about the sensor and improve data registration: e.g., accelerometers or GPS for geographic location, and compasses or gyrometers for orientation. Finally, complex scenes can be observed at different scales ranging from satellite to pedestrian through aerial levels.

These evolutions allow practitioners to measure urban scenes at resolutions that were until now possible only at the scale of individual shapes. The related scientific challenge is however more than just dealing with massive data sets coming from increase of resolution, as complex scenes are composed of multiple objects with structural relationships. The latter relate i) to the way the individual shapes are grouped to form objects, object classes or hierarchies, ii) to geometry when dealing with similarity, regularity, parallelism or symmetry, and iii) to domain-specific semantic considerations. Beyond reconstruction and approximation, consolidation and synthesis of complex scenes require rich structural relationships.

The problems arising from these evolutions suggest that the strengths of geometry and images may be combined in the form of new methodological solutions such as photo-consistent reconstruction. In addition, the process of measuring the geometry of sensors (through gyrometers and accelerometers) often requires both geometry process and image analysis for improved accuracy and robustness. Modeling urban scenes from measurements illustrates this growing synergy, and it has become a central concern for a variety of applications ranging from urban planning to simulation through rendering and special effects.

3.2. Analysis

Complex scenes are usually composed of a large number of objects which may significantly differ in terms of complexity, diversity, and density. These objects must be identified and their structural relationships must be recovered in order to model the scenes with improved robustness, low complexity, variable levels of details and ultimately, semantization (automated process of increasing degree of semantic content).

Object classification is an ill-posed task in which the objects composing a scene are detected and recognized with respect to predefined classes, the objective going beyond scene segmentation. The high variability in each class may explain the success of the stochastic approach which is able to model widely variable classes. As it requires a priori knowledge this process is often domain-specific such as for urban scenes where we wish to distinguish between instances as ground, vegetation and buildings. Additional challenges arise when each class must be refined, such as roof super-structures for urban reconstruction.

Structure extraction consists in recovering structural relationships between objects or parts of object. The structure may be related to adjacencies between objects, hierarchical decomposition, singularities or canonical geometric relationships. It is crucial for effective geometric modeling through levels of details or hierarchical multiresolution modeling. Ideally we wish to learn the structural rules that govern the physical scene manufacturing. Understanding the main canonical geometric relationships between object parts involves detecting regular structures and equivalences under certain transformations such as parallelism, orthogonality and symmetry. Identifying structural and geometric repetitions or symmetries is relevant for dealing with missing data during data consolidation.

Data consolidation is a problem of growing interest for practitioners, with the increase of heterogeneous and defect-laden data. To be exploitable, such defect-laden data must be consolidated by improving the data sampling quality and by reinforcing the geometrical and structural relations sub-tending the observed scenes. Enforcing canonical geometric relationships such as local coplanarity or orthogonality is relevant for registration of heterogeneous or redundant data, as well as for improving the robustness of the reconstruction process.

3.3. Approximation

Our objective is to explore the approximation of complex shapes and scenes with surface and volume meshes, as well as on surface and domain tiling. A general way to state the shape approximation problem is to say that we search for the shape discretization (possibly with several levels of detail) that realizes the best complexity / distortion trade-off. Such problem statement requires defining a discretization model, an error metric to measure distortion as well as a way to measure complexity. The latter is most commonly expressed in number of polygon primitives, but other measures closer to information theory lead to measurements such as number of bits or minimum description length.

For surface meshes we intend to conceive methods which provide control and guarantees both over the global approximation error and over the validity of the embedding. In addition, we seek for resilience to heterogeneous data, and robustness to noise and outliers. This would allow repairing and simplifying triangle soups with cracks, self-intersections and gaps. Another exploratory objective is to deal generically with different error metrics such as the symmetric Hausdorff distance, or a Sobolev norm which mixes errors in geometry and normals.

For surface and domain tiling the term meshing is substituted for tiling to stress the fact that tiles may be not just simple elements, but can model complex smooth shapes such as bilinear quadrangles. Quadrangle surface tiling is central for the so-called *resurfacing* problem in reverse engineering: the goal is to tile an input raw surface geometry such that the union of the tiles approximates the input well and such that each tile matches certain properties related to its shape or its size. In addition, we may require parameterization domains with a simple structure. Our goal is to devise surface tiling algorithms that are both reliable and resilient to defect-laden inputs, effective from the shape approximation point of view, and with flexible control upon the structure of the tiling.

3.4. Reconstruction

Assuming a geometric dataset made out of points or slices, the process of shape reconstruction amounts to recovering a surface or a solid that matches these samples. This problem is inherently ill-posed as infinitelymany shapes may fit the data. One must thus regularize the problem and add priors such as simplicity or smoothness of the inferred shape. The concept of geometric simplicity has led to a number of interpolating techniques commonly based upon the Delaunay triangulation. The concept of smoothness has led to a number of approximating techniques that commonly compute an implicit function such that one of its isosurfaces approximates the inferred surface. Reconstruction algorithms can also use an explicit set of prior shapes for inference by assuming that the observed data can be described by these predefined prior shapes. One key lesson learned in the shape problem is that there is probably not a single solution which can solve all cases, each of them coming with its own distinctive features. In addition, some data sets such as point sets acquired on urban scenes are very domainspecific and require a dedicated line of research.

In recent years the *smooth, closed case* (i.e., shapes without sharp features nor boundaries) has received considerable attention. However, the state-of-the-art methods have several shortcomings: in addition to being in general not robust to outliers and not sufficiently robust to noise, they often require additional attributes as input, such as lines of sight or oriented normals. We wish to devise shape reconstruction methods which are both geometrically and topologically accurate without requiring additional attributes, while exhibiting resilience to defect-laden inputs. Resilience formally translates into stability with respect to noise and outliers. Correctness of the reconstruction translates into convergence in geometry and (stable parts of) topology of the reconstruction with respect to the inferred shape known through measurements.

Moving from the smooth, closed case to the *piecewise smooth case* (possibly with boundaries) is considerably harder as the ill-posedness of the problem applies to each sub-feature of the inferred shape. Further, very few approaches tackle the combined issue of robustness (to sampling defects, noise and outliers) and feature reconstruction.

ALPAGE Project-Team

3. Research Program

3.1. From programming languages to linguistic grammars

Participants: Éric Villemonte de La Clergerie, Benoît Sagot, Pierre Boullier, Djamé Seddah, Corentin Ribeyre.

Historically, several members of Alpage were originally specialists in the domain of modeling and parsing for programming languages, and have been working for more than 15 years on the generalization and extension of the techniques involved to the domain of natural language. The shift from programming language grammars to NLP grammars seriously increases complexity (e.g., grammar size ⁰) and requires ways to handle the ambiguities inherent in every human language. It is well known that these ambiguities are the sources of many badly handled combinatorial explosions.

Furthermore, while most programming languages are expressed by (subclasses) of well-understood contextfree grammars (CFGs), no consensual grammatical formalism has yet been accepted by the whole linguistic community for the description of human languages. On the contrary, new formalisms (or variants of older ones) appear constantly. Many of them may be classified into the three following large families:

- Mildly Context-Sensitive (MCS) formalisms They manipulate possibly complex elementary structures with enough restrictions to ensure the possibility of parsing with polynomial time complexities. They include, for instance, Tree Adjoining Grammars (TAGs) and Multi-component TAGs with trees as elementary structures, Linear Indexed Grammars (LIGs). Although they are strictly more powerful than MCS formalisms, Range Concatenation Grammars (RCGs, introduced and used by Alpage members, such as Pierre Boullier and Benoît Sagot [59], [108], [116]) are also parsable in polynomial time.
- Unification-based formalisms They combine a context-free backbone with logic arguments as decoration on non-terminals. Most famous representatives are Definite Clause Grammars (DCGs) where PROLOG powerful unification is used to compute and propagate these logic arguments. More recent formalisms, like Lexical Functional Grammars (LFGs) and Head-Driven Phrasal Structure Grammars (HPSGs) rely on more expressive Typed Feature Structures (TFS) or constraints.
- Unification-based formalisms with an MCS backbone The two above-mentioned characteristics may be combined, for instance by adding logic arguments or constraints to non-terminals in TAGs.

An efficient way to develop large-coverage hand-crafted symbolic grammars is to use adequate tools and adequate levels of representation, and in particular Meta-Grammars, one of Alpage's areas of expertise, especially with the FRMG grammar and parser for French based on the DyALog logic programming environment [136], [130]. Meta-Grammars (MGs) allows the linguist to focus on a modular description of the linguistic aspects of a grammar, rather than focusing on the specific aspects of a given grammatical formalism. Translation from MGs to grammatical formalisms such as TAG or LFG may be automatically handled. Graphical environments can be used to design MGs and their modularity provides a promising way for sharing the description of common linguistic phenomena across human languages.

3.2. Statistical Parsing

Participants: Djamé Seddah, Marie-Hélène Candito, Benoit Crabbé, Éric Villemonte de La Clergerie, Benoît Sagot, Corentin Ribeyre, Pierre Boullier, Maximin Coavoux.

⁰boullier:2010:inria-00516341:1

Contrary to symbolic approaches to parsing, in statistical parsing, the grammar is extracted from a corpus of syntactic trees : a treebank. The main advantage of the statistical approach is to encode within the same framework the parsing and disambiguating tasks. The extracted grammar rules are associated with probabilities that allow to score and rank the output parse trees of an input sentence. This obvious advantage of probabilistic context-free grammars has long been counterbalanced by two main shortcomings that resulted in poor performance for plain PCFG parsers: (i) the generalization encoded in non terminal symbols that stand for syntagmatic phrases is too coarse (so probabilistic independence between rules is too strong an assertion) and (ii) lexical items are underused. In the last decade though, effective solutions to these shortcomings have been proposed. Symbol annotation, either manual [87] or automatic [100], [101] captures inter-dependence between CFG rules. Lexical information is integrated in frameworks such as head-driven models that allow lexical heads to percolate up the syntagmatic tree [73], or probabilistic models derived from lexicalized Tree Adjoining grammars, such as Stochastic Tree Insertion Grammars [71].

In the same period, totally different parsing architectures have been proposed, to obtain dependency-based syntactic representations. The properties of dependency structures, in which each word is related to exactly one other word, make it possible to define dependency parsing as a sequence of simple actions (such as read buffer and store word on top of a stack, attach read word as dependent of stack top word, attach read word as governor of stack top word ...) [140], [98]. Classifiers can be trained to choose the best action to perform given a partial parsing configuration. In another approach, dependency parsing is cast into the problem of finding the maximum spanning tree within the graph of all possible word-to-word dependencies, and online classification is used to weight the edges [92]. These two kinds of statistical dependency parsing allow to benefit from discriminative learning, and its ability to easily integrate various kinds of features, which is typically needed in a complex task such as parsing.

Statistical parsing is now effective, both for syntagmatic representations and dependency-based syntactic representations. Alpage has obtained state-of-the-art parsing results for French, by adapting various parser learners for French, and works on the current challenges in statistical parsing, namely (1) robustness and portability across domains and (2) the ability to incorporate exogenous data to improve parsing attachment decisions. Alpage is the first French team to have turned the French TreeBank into a resource usable for training statistical parsers, to distribute a dependency version of this treebank, and to make freely available various state-of-the art statistical POS-taggers and parsers for French. We review below the approaches that Alpage has tested and adapted, and the techniques that we plan to investigate to answer these challenges.

In order to investigate statistical parsers for French, we have first worked how to use the French Treebank [55], [54] and derive the best input for syntagmatic statistical parsing [75]. Benchmarking several PCFG-based learning frameworks [122] has led to state-of-the-art results for French, the best performance being obtained with the split-merge Berkeley parser (PCFG with latent annotations) [101].

In parallel to the work on dependency based representation, presented in the next paragraph, we also conducted a preliminary set of experiments on richer parsing models based on Stochastic Tree Insertion Grammars as used in [71] and which, besides their inferior performance compared to PCFG-LA based parser, raise promising results with respect to dependencies that can be extracted from derivation trees. One variation we explored, that uses a specific TIG grammar instance, a *vertical* grammar called *spinal* grammars, exhibits interesting properties wrt the grammar size typically extracted from treebanks (a few hundred unlexicalized trees, compared to 14 000 CFG rules). These models are currently being investigated in our team [126].

Pursuing our work on PCFG-LA based parsing, we investigated the automatic conversion of the treebank into dependency syntax representations [67], that are easier to use for various NLP applications such as questionanswering or information extraction, and that are a better ground for further semantic analysis. This conversion can be applied on the treebank, before training a dependency-based parser, or on PCFG-LA parsed trees. This gives the possibility to evaluate and compare on the same gold data, both syntagmatic- and dependency-based statistical parsing. This also paved the way for studies on the influence of various types of lexical information.

3.3. Robust linguistic processing

Participants: Djamé Seddah, Benoît Sagot, Éric Villemonte de La Clergerie, Marie-Hélène Candito, Kata Gábor, Pierre Magistry, Marion Baranes.

The constitution of resources such as lexica or grammars raises the issues of the evaluation of these resources to assess their quality and coverage. For this reason, Alpage was the leader of the PASSAGE ANR project (ended in June 2010), which is the follow-up of the EASy parsing evaluation campaign held in 2004 and conducted by team LIR at LIMSI.

However, although developing parsing techniques, grammars (symbolic or probabilistic), and lexica constitute the key efforts towards deep large-scale linguistic processing, these components need to be included inside a full and robust processing chain, able to handle any text from any source, especially out-of-domain text genres. Such texts that exhibit properties (e.g., lexical and syntactic properties) that are different or differently distributed than what is found on standard data (e.g., training corpora for statistical parsers). The development of shallow processing chains, such as SXPipe (see 5.5), is not a trivial task [110]. Obviously, they are often used as such, and not only as pre-processing tools before parsing, since they perform the basic tasks that produce immediately usable results for many applications, such as tokenization, sentence segmentation, spelling correction (e.g., for improving the output of OCR systems), named entity detection, disambiguation and resolution, as well as morphosyntactic tagging.

Still, when used as a preliminary step before parsers, the quality of parsers' results strongly depends on the quality of such chains. This is especially the case, beyond the standard out-of-domain corpora mentioned above, for user-generated content. Indeed, until very recently out-of-domain text genres that have been prioritized have not been Web 2.0 sources, but rather biomedical texts, child language and general fiction (Brown corpus). Adaptation to user-generated content is a particularly difficult instance of the domain adaptation problem since Web 2.0 is not really a domain: it consists of utterances that are often ungrammatical. It even shares some similarities with spoken language [129]. The poor overall quality of texts found on such media lead to weak parsing and even POS-tagging results. This is because user-generated content exhibits both the same issues as other out-of-domain data, but also tremendous issues related to tokenization, typographic and spelling issues that go far beyond what statistical tools can learn from standard corpora. Even lexical specificities are often more challenging than on edited out-of-domain text, as neologisms built using productive morphological derivation, for example, are less frequent, contrarily to slang, abbreviations or technical jargon that are harder to analyse and interpret automatically.

In order to fully prepare a shift toward more robustness, we developed a first version of a richly annotated corpus of user-generated French text, the French Social Media Bank [7], which includes not only POS, constituency and functional information, but also a layer of "normalized" text. This corpus is fully available and constitutes the first data set on Facebook data to date and the first instance of user generated content for a morphologically-rich language. Thanks to the support of the Labex EFL through, we are currently the finalizing the second release of this data set, extending toward a full treebank of over 4,000 sentences (see section 6.9).

Besides delivering a new data set, our main purpose here is to be able to compare two different approaches to user-generated content processing: either training statistical models on the original annotated text, and use them on raw new text; or developing normalization tools that help improving the consistency of the annotations, train statistical models on the normalized annotated text, and use them on normalized texts (before un-normalizing them).

However, this raises issues concerning the normalization step. A good sandbox for working on this challenging task is that of POS-tagging. For this purpose, we did leverage Alpage's work on MElt, a state-of-the art POS tagging system [80] (see 5.5). A first round of experiments on English have already led to promising results during the shared task on parsing user-generated content organized by Google in May 2012 [102], as Alpage was ranked second and third [125]. For achieving this result, we brought together a preliminary implementation of a normalization wrapper around the MElt POS tagger followed by a state-of-the art statistical parser improved by several domain adaptation techniques we originally developed for parsing edited out-of-domain texts. Those techniques are based on the unsupervized learning of word clusters *a la* Brown and benefit

from morphological treatments (such as lemmatization or desinflection) [123]. More recent developments are sketched in section 4.2

One of our objectives is to generalize the use of the normalization wrapper approach to both POS tagging and parsing, for English and French, in order to improve the quality of the output parses. However, this raises several challenges: non-standard contractions and compounds lead to unexpected syntactic structures. A first round of experiments on the French Social Media Bank showed that parsing performance on such data are much lower than expected. This is why, we are actively working to improve on the baselines we established on that matter.

3.4. Dynamic wide coverage lexical resources

Participants: Benoît Sagot, Laurence Danlos, Éric Villemonte de La Clergerie, Marie-Hélène Candito, Lucie Barque, Valérie Hanoka, Marianne Djemaa, Quentin Pradet.

Grammatical formalisms and associated parsing generators are useful only when used together with linguistic resources (lexicons, grammars) so as to build operational parsers, especially when considering modern lexically oriented grammatical formalisms. Hence, linguistic resources are the topic of the following section.

However, wide coverage linguistic resources are scarce and expensive, because they are difficult to build, especially when hand-crafted. This observation motivates us to investigate methods, along to manual development techniques, to automatically or semi-automatically acquire, supplement and correct linguistic resources.

Linguistic expertise remains a very important asset to benefit efficiently from such techniques, including those described below. Moreover, linguistically oriented environments with adequate collaborative interfaces are needed to facilitate the edition, comparison, validation and maintenance of large scale linguistic resources. Just to give some idea of the complexity, a syntactic lexicon, as described below, should provide rich information for several tens of thousands of lemma and several hundreds of thousands of forms.

Successful experiments have been conduced by Alpage members with different languages for the automatic acquisition of morphological knowledge from raw corpora [115]. At the syntactic level, work has been achieved on automatic acquisition of atomic syntactic information and automatic detection of errors in the lexicon [142],[6]. At the semantic level, automatic wordnet development tools have been described [104], [137], [84], [81]. All such techniques need of course to be followed by manual validation, so as to ensure high-quality results.

For French, these techniques, and others, have lead some Alpage members to develop one of the main syntactic resources for French, the Lefff [111], [117], developed within the Alexina framework. At the semantic level, Alpage members have developed or are developing various syntactico-semantic or semantic resources, including:

- a wordnet for French, the WOLF [112], the first freely available resource of the kind (see 5.7);
- a French FrameNet lexicon (together with an annotated corpus) within the ASFALDA ANR project (see sections 8.1.2.1 and 6.10);
- and a French VerbNet, Verb \ni net (see 6.12).

In the last few years, Alpage members have shown how to benefit from other more linguistically-oriented resources, such as the Lexique-Grammaire and DICOVALENCE, in order to improve the coverage and quality of the Lefff, the WOLF, the French FrameNet lexicon and the French VerbNet. This work is a good example of how Inria and Paris 7 members of Alpage fruitful collaborate: this collaboration between NLP computer scientists and NLP linguists have resulted in significant advances which would have not been possible otherwise.

Moreover, an increasing effort has been made towards multilingual aspects. In particular, Alexina lexicons developed in 2014 or before exist for German [38], Slovak, Polish, English, Spanish, Persian, Latin (verbs only), Kurmanji Kurdish, Maltese (verbs only, restricted to the so-called first *binyan*) and Khaling, not including freely-available lexicons adapted to the Alexina framework.

3.5. Discourse structures

Participants: Laurence Danlos, James Pustejovsky, Jacques Steinlin, Chloé Braud, Julie Hunter, Raphaël Salmon.

Until now, the linguistic modeling and automatic processing of sentences has been the main focus of the community. However, many applications would benefit from more large-scale approaches which go beyond the level of sentences. This is not only the case for automatic translation: information extraction/retrieval, summarizing, and other applications do need to resolve anaphora, which in turn can benefit from the availability of hierarchical discourse structures induced by discourse relations (in particular through the notion of right frontier of discourse structures). Moreover, discourse structures are required to extract sequential (chronological, logical,...) or hierarchical representations of events. It is also useful for topic extraction, which in turns can help syntactic and semantic disambiguation.

Although supra-sentential problematics received increasing attention in the last years, there is no satisfying solution to these problems. Among them, anaphora resolution and discourse structures have a far-reaching impact and are domains of expertise of Alpage members. But their formal modeling has now reached a maturity which allows to integrate them, in a near future, inside future Alpage tools, including parsing systems inherited from Atoll.

It is well known that a text is not a random sequence of sentences: sentences are linked the ones to the others by "discourse relations", which give to the text a hierarchical structure. Traditionally, it is considered that discourse relations are lexicalized by connectors (adverbial connectors like *ensuite*, conjunctions like *parce que*), or are not lexicalized. This vision is however too simple:

- first, some connectors (in particular conjunctions of subordination) introduce pure modifiers and must not be considered as bearing discourse relations,
- second, other elements than connectors can lexicalize discourse relations, in particular verbs like précéder / to precede or causer / to cause, which have facts or fact eventualities as arguments [77].

There are three main frameworks used to model discourse structures: RST, SDRT, and, more recently, the TAGbased formalism D-LTAG. Inside Alpage, Laurence Danlos has introduced D-STAG (Discourse Synchronous TAGs, [78],[4]), which subsumes in an elegant way both SDRT and RST, to the extent that SDRT and RST structures can be obtained by two different partial projections of D-STAG structures. As done in D-LTAG, D-STAG extends a lexicalized TAG analysis so as to deal with the level of discourse. D-STAG has been fully formalized, and is hence possible to implement (thanks to Synchronous TAG, or even TAG parsers), provided one develops linguistic descriptions in this formalism.

MULTISPEECH Team

3. Research Program

3.1. Introduction

As mentioned previously, MULTISPEECH is structured along three research directions that are associated to the three challenges previously described: explicit modeling of speech, statistical modeling of speech, and uncertainty in speech processing.

3.2. Explicit modeling of speech production and perception

Speech signals are the consequence of the deformation of the vocal tract under the effect of the movements of the jaw, lips, tongue, soft palate and larynx to modulate the excitation signal produced by the vocal cords or air turbulence. These deformations are visible on the face (lips, cheeks, jaw) through the coordination of different orofacial muscles and skin deformation induced by the latter. These deformations may also express different emotions. We should note that human speech expresses more than just phonetic content, to be able to communicate effectively. In this project, we address the different aspects related to speech production from the modeling of the vocal tract up to the production of audiovisual speech. On the one hand, we study the relationship from acoustic speech signal to vocal tract, in the context of acoustic-to-articulatory inversion, and from vocal tract to acoustic speech, in the context of articulatory synthesis. On the other hand, we work on expressive audiovisual speech synthesis, where both expressive acoustic speech and visual signals are generated from text. Phonetic contrasts used by the phonological system of any language result from constraints imposed by the nature of the human speech production apparatus. For a given language these contrasts are organized so as to guarantee that human listeners can identify sounds robustly. From the point of view of perception, these contrasts enable efficient processes of categorization in the peripheral and central human auditory system. The study of the categorization of sounds and prosody thus provides a complementary view on speech signals by focusing on the discrimination of sounds by humans, particularly in the context of language learning.

3.2.1. Articulatory modeling

Modeling speech production is a major issue in speech sciences. Acoustic simulation makes the link between articulatory and acoustic domains. Unfortunately this link cannot be fully exploited because there is almost always an acoustic mismatch between natural and synthetic speech generated with an articulatory model approximating the vocal tract. However, the respective effects of the geometric approximation, of the fact of neglecting some cavities in the simulation, of the imprecision of some physical constants and of the dimensionality of the acoustic mismatch by designing more precise articulatory models, developing new methods to acquire tridimensional MRI data of the entire vocal tract together with denoised speech signals, and evaluating several approaches of acoustic simulation. This will enable the acoustic mismatch to be better controlled and the determination of the potential precision of inversion to be evaluated in particular.

Up to now, acoustic-to-articulatory inversion has been addressed as an instantaneous problem, articulatory gestures being recovered by concatenating local solutions via the determination of trajectories minimizing some articulatory cost. The second objective is thus to investigate how more elaborated strategies (a syllabus of primitive gestures, articulatory targets...) can be incorporated in the acoustic-to-articulatory inversion algorithms to take into account dynamic aspects.

This area of research relies on the equipment available in the laboratory to acquire articulatory data: articulograph Carstens AG501, head-neck antenna to acquire MRI of the vocal tract at Nancy Hospital, and multimodal acquisition system. Very few sites in France benefit from such a combination of acquisition devices.

3.2.2. Expressive acoustic-visual synthesis

Speech is considered as a bimodal communication means; the first modality is audio, provided by acoustic speech signals and the second one is visual, provided by the face of the speaker. Our research impacts both audiovisual and acoustic-only synthesis fields.

In our approach, the Acoustic-Visual Text-To-Speech synthesis (AV-TTS) is performed simultaneously with respect to its acoustic and visible components, by considering a bimodal signal comprising both acoustic and visual channels. A first AV-TTS system was developed resulting in a talking head; the system relied on 3D-visual data (3D markers on the face, data acquired by MAGRIT team) and on an extension of our non-uniform acoustic-unit concatenation text-to-speech synthesis system (SoJA). An important goal is to provide an audiovisual synthesis that is intelligible, both acoustically and visually. Thus, we continue working on adding visible components of the head through a tongue model where the tongue deformations come from EMA data analysis; and a lip-model to tackle the main recurrent problem of the lack of some lip markers in the 3D data. We will also improve the TTS engine to increase the accuracy of the unit selection simultaneously into the acoustic and visual domains (learning weights, feature selection...).

Another challenging research goal is to add expressivity in the AV-TTS. The expressivity comes through the acoustic signal (prosody aspects) and also through head and eyebrow movements. One objective is to add a prosodic component in the TTS engine in order to take into account some given prosodic entities such as emphasis, in order to highlight some important key words. Expressivity could be introduced before the unit selection step but also by developing algorithms intended to modify the parameters of prosody (in the acoustic domain, and in the visual domain as well). One intended approach will be to explore an expressivity measure at sound, syllable and/or sentence levels that describes the degree of perception or realization of an expression/emotion (audio and 3D domain). Such measures will be used as criteria in the selection process of the synthesis system. To tackle this issue we will also investigate Hidden Markov Model (HMM) based synthesis. The flexibility of the HMM-based approach enables the adjustment of the modeling parameters according to the available data and an easy adaption of the system to various conditions. This point will rely upon our experience in HMM modeling.

To acquire the facial data, we consider using marker-less motion capture system using a kinect-like system with a face tracking software. The software presents a user-friendly interface to track and visualize the motion in real time. Audio is also acquired synchronously with facial data. The advantage of this new system is to acquire rapidly the movements of the face with an acceptable quality. This system is used as an alternative relatively low-cost system to the VICON system.

3.2.3. Categorization of sounds and prosody for native and non-native speech

Discriminating speech sounds and prosodic patterns is the keystone of language learning whether in the mother tongue or in a second language. This issue is associated with the emergence of phonetic categories, i.e., classes of sounds which are related to phonemes, and prosodic patterns. The study of categorization is concerned not only with acoustic modeling but also with speech perception and phonology. Foreign language learning raises the issue of categorizing phonemes of the second language given the phonetic categories of the mother tongue. Thus, studies on the emergence of new categories, whether in the mother tongue (for people with language deficiencies) or in a second language, must rely upon studies on native and non-native acoustic realizations of speech sounds and prosody (i.e., at the segmental level and at the supra-segmental level). Moreover, as categorization is a perceptual process, studies on the emergence of categories must also rely on perceptual experiments.

Studies on native sounds have been an important research area of the team for years, leading to the notion of "selective" acoustic cues and the development of acoustic detectors. This know-how will be exploited in the study of non-native sounds. Concerning prosody, studies are focused on native and non-native realizations of modalities (e.g., question, affirmation, command ...), as well as non-native realizations of lexical accents and focus (emphasis). Results aim at providing automatic feedbacks to language learners with respect to acquisition of prosody as well as acquisition of a correct pronunciation of the sounds of the foreign language. Concerning the mother tongue we are interested in the monitoring of the process of sound categorization in the

long term (mainly at primary school) and its relation with the learning of reading and writing skills, especially for children with language deficiencies.

3.3. Statistical modeling of speech

Whereas the first research direction deals with the physical aspects of speech and its explicit modeling, this second research direction is concerned by investigating complex statistical models for speech data. Acoustic models are used to represent the pronunciation of the sounds or other acoustic events such as noises. Whether they are used for source separation, for speech recognition, for speech transcription, or for speech synthesis, the achieved performance strongly depends on the accuracy of these models, which is a critical aspect that is studied in the project. At the linguistic level, MULTISPEECH investigates models for handling the context (beyond the few preceding words currently handled by the n-gram models) and evolutive lexicons necessary when dealing with diachronic audio documents in order to overcome the limited size of the current static lexicons used, especially with respect to proper names. Statistical approaches are also useful for generating speech signals. Along this direction, MULTISPEECH mainly considers voice transformation techniques, with their application to pathological voices, and statistical speech synthesis applied to expressive multimodal speech synthesis.

3.3.1. Acoustic modeling

Acoustic modeling is a key issue for automatic speech recognition. Despite progress made for many years, acoustic modeling is still far from perfect, and current speech recognition applications rely on strong constraints (limited vocabulary, speaker adaptation, restricted syntax...) to achieve acceptable performance. As the acoustic models represent the acoustic realization of the sounds, they have to account for many variability sources, such as speaker characteristics, microphones, noises, etc. Extension of the HMM formalism based on the Dynamic Bayesian Networks (DBN) formalism are investigated further for handling such variability sources; as well as other approaches to dynamically constrain the search space according to known or estimated characteristics of the utterance being processed. Deep Neural Networks (DNN) based approaches will also be investigated as means of making speech recognition systems more accurate and robust. Speaker dependent modeling and speaker adaptation will also be investigated in relation with HMM-based speech synthesis and statistical voice conversion.

State-of-the-art speech recognition systems are still very sensitive to the quality of speech signals they have to deal with; their performance degrades rapidly when they deal with noisy signals. Accurate signal enhancement techniques are therefore essential to increase the robustness of both automatic speech recognition and speech-text alignment systems to noise and non-speech events. In MULTISPEECH, focus is set on Bayesian source separation techniques using multiple microphones and/or models of non-speech events. Some of the challenges include building a non-parametric model of the sources in the time-frequency-channel domain, linking the parameters of this model to the cepstral representation used in speech processing, modeling the temporal structure of environmental noise, and exploiting large audio data sets to automatically discover new models. Beyond the definition of such complex models, the difficulty is to design scalable estimation algorithms robust to overfitting, that will be integrated in the FASST [6] framework that was recently developed.

3.3.2. Linguistic modeling

MULTISPEECH investigates lexical and language models in speech recognition with a focus on improving the processing of proper names and the processing of spontaneous speech. Collaborations are ongoing with the SMarT team on linguistic modeling aspects.

Proper names are relevant keys in information indexing, but are a real problem in transcribing many diachronic spoken documents (such as radio or TV shows) which refer to data, especially proper names, that evolve over the time. This leads to the challenge of dynamically adjusting lexicons and language models through the use of the context of the documents or of some relevant external information possibly collected over the web. Random Indexing (RI) and Latent Dirichlet Allocation (LDA) are two possible approaches to be used for this purpose. Also, to overcome the limitations of current n-gram based language models, we investigate language

models defined on a continuous space in order to achieve a better generalization on unseen data, and to model long-term dependencies. This is achieved through neural network based approaches. We also want to introduce into these new models additional relevant information such as linguistic features, semantic relation, topic or user-dependent information.

Spontaneous speech utterances are often ill-formed and frequently contain disfluencies (hesitations, repetitions...) that degrade speech recognition performance. This is partly due to the fact that disfluencies are not properly represented in linguistic models estimated from clean text data (coming from newspapers for example); hence a particular effort will be set for improving the modeling of these events.

Attention will also be set on pronunciation lexicons in particular with respect to non-native speech and foreign names. Non-native pronunciation variants have to take into account frequent miss-pronunciations due to differences between mother tongue and target language phoneme inventories. Proper name pronunciation variants are a similar problem where difficulties are mainly observed for names of foreign origin that can be pronounced either in a French way or kept close to foreign origin native pronunciation. Automatic grapheme-to-phoneme state-of-the-art approaches, based for example on Joint Multigram Models (JMM) or Conditional Random Fields (CRF) will be further investigated and combined.

3.3.3. Speech generation by statistical methods

Voice conversion consists in building a function that transforms a given voice into another one. MULTI-SPEECH applies voice conversion techniques to enhance pathological voices that result from vocal folds problems, especially esophageal voice or pathological whispered voice. Voice conversion techniques are also of interest for text-to-speech synthesis systems as they aim at making possible the generation of new voice corpora (other kind of voice, or same voice with different kind of emotion).

In addition to the statistical aspects of the voice conversion approaches, signal processing is critical for good quality speech output. Information on the fundamental frequency is chaotic in the case of esophageal speech or non-existent in the case of the whispered voice. So after applying voice conversion techniques for enhancing pathological voices, the excitation spectrum must be predicted or corrected. That is the challenge that is addressed in the project. Also, in the context of acoustic feedback in foreign language learning, voice modification approaches (either statistical or not) will be investigated to modify the learner's (or teacher's) voice in order to emphasize the difference between the learner's acoustic realization and the expected realization.

Over the last few years statistical speech synthesis has emerged as an alternative to corpus-based speech synthesis. Speaker-dependent HMM modeling constitute the basis of such an approach. The announced advantages of the statistical speech synthesis are the possibility to deal with small amounts of speech resources and the flexibility for adapting models (for new emotions or new speaker), however, the quality is not as good as that of the concatenation-based speech synthesis. The reasons are twofold: first, parameters (F0, spectrum, duration...) are modeled independently and the models, even when taking into account dynamics, do not manage to generate parameters with a good precision. Second, the HMM generates sequences of feature vectors from which the actual speech signals are reconstructed, and this impacts on its quality. MULTISPEECH will focus on an hybrid approach, combining corpus-based synthesis, for its high-quality speech signal output, and HMM-based speech synthesis for its flexibility to drive selection, and the main challenge will be on its application to producing expressive audio-visual speech. One secondary objective will be to unify the HMM-based and the concatenation-based approaches.

3.4. Uncertainty estimation and exploitation in speech processing

After the explicit modeling presented and the statistical modeling that were previously described, we focus here on the uncertainty associated to some processing steps. Uncertainty stems from the high variability of speech signals and from imperfect models. For example, enhanced speech signals resulting from source separation are not exactly the clean original speech signals. Words or phonemes resulting from automatic speech recognition contain errors, and the phone boundaries resulting from automatic speech-text alignment are not always correct, especially in acoustically degraded conditions. Hence it is important to know the reliability of the results and/or to estimate the uncertainty on the results.

3.4.1. Uncertainty and acoustic modeling

Because small distortions in the separated source signals can translate into large distortions in the cepstral features used for speech recognition, this limits the recognition performance on noisy data. One way to address this issue is to estimate the uncertainty on the separated sources in the form of their posterior distribution and to propagate this distribution, instead of a point estimate, through the subsequent feature extraction and speech decoding stages. Although major improvements have been demonstrated in proof-of-concept experiments using knowledge of the true uncertainty, accurate uncertainty estimation and propagation remains an open issue.

MULTISPEECH seeks to provide more accurate estimates of the posterior distribution of the separated source signals accounting for, e.g., posterior correlations over time and frequency which have not been considered so far. The framework of variational Bayesian (VB) inference appears to be a promising direction. Mappings learned on training data and fusion of multiple uncertainty estimators are also explored. The estimated uncertainties is then exploited for acoustic modeling in speech recognition and, in the future, also for speech-text alignment. This approach may later be extended to the estimation of the resulting uncertainty on the acoustic model parameters and the acoustic scores themselves.

3.4.2. Uncertainty and phonetic segmentation

The accuracy of the phonetic segmentation is important in several cases, as for example for the computation of prosodic features, for avoiding incorrect feedback to the learner in computer assisted foreign language learning, or for the post-synchronization of speech with face/lip images. Currently the phonetic boundaries obtained are quite correct on good quality speech, but the precision degrades significantly on noisy and non-native speech. Phonetic segmentation aspects will be investigated, both in speech recognition (i.e., spoken text unknown) and in forced alignment (i.e., when the spoken text is known). The first case (speech recognition) is connected with the computation of prosodic features for structuring speech recognition output, whereas the second case (forced alignment) is important in the context of non-native speech segmentation for automatic feedbacks in language learning.

In the same way that combining several speech recognition outputs leads to improved speech recognition performance, MULTISPEECH will investigate the combination of several speech-text alignments as a way of improving the quality of speech-text alignment and of determining which phonetic boundaries are reliable and which ones are not, and also for estimating the uncertainty on the boundaries. Knowing the reliability and/or the uncertainty on the boundaries will also be useful when segmenting speech corpora; this will help deciding which parts of the corpora need to be manually checked and corrected without an exhaustive checking of the whole corpus.

3.4.3. Uncertainty and prosody

Prosody information is also investigated as a means for structuring speech data (determining sentence boundaries, punctuation...) possibly in addition with syntactic dependencies (in collaboration with the SYNALP team). Structuring automatic transcription output is important for further exploitation of the transcription results such as easier reading after the addition of punctuation, or exploitation of full sentences in automatic translation. Prosody information is also necessary for determining the modality of the utterance (question or not), as well as determining accented words.

Prosody information comes from the fundamental frequency, the duration of the sounds and their energy. Any error in estimating these parameters may lead to a wrong decision. MULTISPEECH will investigate estimating the uncertainty on the duration of the phones (see uncertainty on phonetic boundaries above) and on the fundamental frequency, as well as how this uncertainty shall be propagated in the detection of prosodic phenomena such as accented words or utterance modality, or in the determination of the structure of the utterance. In a first approach, uncertainty estimation will rely on the comparison, and possibly the combination, of several estimators (several segmentation processes, several pitch algorithms).

PANAMA Project-Team

3. Research Program

3.1. Axis 1: sparse models and representations

3.1.1. Efficient sparse models and dictionary design for large-scale data

Sparse models are at the core of many research domains where the large amount and high-dimensionality of digital data requires concise data descriptions for efficient information processing. Recent breakthroughs have demonstrated the ability of these models to provide concise descriptions of complex data collections, together with algorithms of provable performance and bounded complexity.

A crucial prerequisite for the success of today's methods is the knowledge of a "dictionary" characterizing how to concisely describe the data of interest. Choosing a dictionary is currently something of an "art", relying on expert knowledge and heuristics.

Pre-chosen dictionaries such as wavelets, curvelets or Gabor dictionaries, are based upon stylized signal models and benefit from fast transform algorithms, but they fail to fully describe the content of natural signals and their variability. They do not address the huge diversity underlying modern data much beyond time series and images: data defined on graphs (social networks, internet routing, brain connectivity), vector valued data (diffusion tensor imaging of the brain), multichannel or multi-stream data (audiovisual streams, surveillance networks, multimodal biomedical monitoring).

The alternative to a pre-chosen dictionary is a trained dictionary learned from signal instances. While such representations exhibit good performance on small-scale problems, they are currently limited to low dimensional signal processing due to the necessary training data, memory requirements and computational complexity. Whether designed or learned from a training corpus, dictionary-based sparse models and the associated methodology fail to scale up to the volume and resolution of modern digital data, for they intrinsically involve difficult linear inverse problems. To overcome this bottleneck, a new generation of efficient sparse models is needed, beyond dictionaries, which will encompass the ability to provide sparse and structured data representations as well as computational efficiency. For example, while dictionaries describe low-dimensional signal models in terms of their "synthesis" using few elementary building blocks called atoms, in "analysis" alternatives the low-dimensional structure of the signal is rather "carved out" by a set of equations satisfied by the signal. Linear as well as nonlinear models can be envisioned.

3.1.2. Compressive Learning

A flagship emerging application of sparsity is the paradigm of compressive sensing, which exploits sparse models at the analog and digital levels for the acquisition, compression and transmission of data using limited resources (fewer/less expensive sensors, limited energy consumption and transmission bandwidth, etc.). Besides sparsity, a key pillar of compressive sensing is the use of random low-dimensional projections. Through compressive sensing, random projections have shown their potential to allow drastic dimension reduction with controlled information loss, provided that the projected signal vector admits a sparse representation in some transformed domain. A related scientific domain, where sparsity has been recognized as a key enabling factor, is Machine Learning, where the overall goal is to design statistically founded principles and efficient algorithms in order to infer general properties of large data collections through the observation of a limited number of representative examples. Marrying sparsity and random low-dimensional projections with machine learning shall allow the development of techniques able to efficiently capture and process the information content of large data collections. The expected outcome is a dramatic increase of the impact of sparse models in machine learning, as well as an integrated framework from the signal level (signals and their acquisition) to the semantic level (information and its manipulation), and applications to data sizes and volumes of collections that cannot be handled by current technologies.

3.2. Axis 2: robust acoustic scene analysis

3.2.1. Compressive acquisition and processing of acoustic scenes

Acoustic imaging and scene analysis involve acquiring the information content from acoustic fields with a limited number of acoustic sensors. A full 3D+t field at CD quality and Nyquist spatial sampling represents roughly 10^6 microphones/ m^3 . Dealing with such high-dimensional data requires to drastically reduce the data flow by positioning appropriate sensors, and selecting from all spatial locations the few spots where acoustic sources are active. The main goal is to develop a theoretical and practical understanding of the conditions under which compressive acoustic sensing is both feasible and robust to inaccurate modeling, noisy measures, and partially failing or uncalibrated sensing devices, in various acoustic sensing scenarii. This requires the development of adequate algorithmic tools, numerical simulations, and experimental data in simple settings where hardware prototypes can be implemented.

3.2.2. Robust audio source separation

Audio signal separation consists in extracting the individual sound of different instruments or speakers that were mixed on a recording. It is now successfully addressed in the academic setting of linear instantaneous mixtures. Yet, real-life recordings, generally associated to reverberant environments, remain an unsolved difficult challenge, especially with many sources and few audio channels. Much of the difficulty comes from the combination of (i) complex source characteristics, (ii) sophisticated underlying mixing model and (iii) adverse recording environments. Moreover, as opposed to the "academic" blind source separation task, most applicative contexts and new interaction paradigms offer a variety of situations in which prior knowledge and adequate interfaces enable the design and the use of informed and/or manually assisted source separation methods.

The former METISS team has developed a generic and flexible probabilistic audio source separation framework that has the ability to combine various acoustic models such as spatial and spectral source models. A first objective is to instantiate and validate specific instances of this framework targeted to real-world industrial applications, such as 5.1 movie re-mastering, interactive music soloist control and outdoor speech enhancement. Extensions of the framework are needed to achieve real-time online processing, and advanced constraints or probabilistic priors for the sources at hand will be designed, while paying attention to computational scalability issues.

In parallel to these efforts, expected progress in sparse modeling for inverse problems shall bring new approaches to source separation and modeling, as well as to source localization, which is often an important first step in a source separation workflow. In particular, a research avenue consists in investigating physically motivated, lower-level source models, notably through sparse analysis of sound waves. This should be complementary with the modeling of non-point sources and sensors, and a widening of the notion of "source localization" to the case of extended sources (i.e., considering problems such as the identification of the directivity of the source as well as its spatial position), with a focus on boundary conditions identification. A general perspective is to investigate the relations between the physical structure of the source and the particular structures that can be discovered or enforced in the representations and models used for characterization, localization and separation.

3.3. Axis 3: large-scale audio content processing and self-organization

3.3.1. Motif discovery in audio data

Facing the ever-growing quantity of multimedia content, the topic of motif discovery and mining has become an emerging trend in multimedia data processing with the ultimate goal of developing weakly supervised paradigms for content-based analysis and indexing. In this context, speech, audio and music content, offers a particularly relevant information stream from which meaningful information can be extracted to create some form of "audio icons" (key-sounds, jingles, recurrent locutions, musical choruses, etc ...) without resorting to comprehensive inventories of expected patterns. This challenge raises several fundamental questions that will be among our core preoccupations over the next few years. The first question is the deployment of motif discovery on a large scale, a task that requires extending audio motif discovery approaches to incorporate efficient time series pattern matching methods (fingerprinting, similarity search indexing algorithms, stochastic modeling, etc.). The second question is that of the use and interpretation of the motifs discovered. Linking motif discovery and symbolic learning techniques, exploiting motif discovery in machine learning are key research directions to enable the interpretation of recurring motifs.

On the application side, several use cases can be envisioned which will benefit from motif discovery deployed on a large scale. For example, in spoken content, word-like repeating fragments can be used for several spoken document-processing tasks such as language-independent topic segmentation or summarization. Recurring motifs can also be used for audio summarization of audio content. More fundamentally, motif discovery paves the way for a shift from supervised learning approaches for content description to unsupervised paradigms where concepts emerge from the data.

3.3.2. Structure modeling and inference in audio and musical contents

Structuring information is a key step for the efficient description and learning of all types of contents, and in particular audio and musical contents. Indeed, structure modeling and inference can be understood as the task of detecting dependencies (and thus establishing relationships) between different fragments, parts or sections of information content.

A stake of structure modeling is to enable more robust descriptions of the properties of the content and better model generalization abilities that can be inferred from a particular content, for instance via cache models, trigger models or more general graphical models designed to render the information gained from structural inference. Moreover, the structure itself can become a robust descriptor of the content, which is likely to be more resistant than surface information to a number of operations such as transmission, transduction, copyright infringement or illegal use.

In this context, information theory concepts will be investigated to provide criteria and paradigms for detecting and modeling structural properties of audio contents, covering potentially a wide range of application domains in speech content mining, music modeling or audio scene monitoring.

SEMAGRAMME Project-Team

3. Research Program

3.1. Foundations

The Sémagramme project relies on deep mathematical foundations. We intend to develop models based on well-established mathematics. We seek two main advantages from this approach. On the one hand, by relying on mature theories, we have at our disposal sets of mathematical tools that we can use to study our models. On the other hand, developing various models on a common mathematical background will make them easier to integrate, and will ease the search for unifying principles.

The main mathematical domains on which we rely are formal language theory, symbolic logic, and type theory.

3.1.1. Formal language theory

Formal language theory studies the purely syntactic and combinatorial aspects of languages, seen as sets of strings (or possibly trees or graphs). Formal language theory has been especially fruitful for the development of parsing algorithms for context-free languages. We use it, in a similar way, to develop parsing algorithms for formalisms that go beyond context-freeness. Language theory also appears to be very useful in formally studying the expressive power and the complexity of the models we develop.

3.1.2. Symbolic logic

Symbolic logic (and, more particularly, proof-theory) is concerned with the study of the expressive and deductive power of formal systems. In a rule-based approach to computational linguistics, the use of symbolic logic is ubiquitous. As we previously said, at the level of syntax, several kinds of grammars (generative, categorial...) may be seen as basic deductive systems. At the level of semantics, the meaning of an utterance is capture by computing (intermediate) semantic representations that are expressed as logical forms. Finally, using symbolic logics allows one to formalize notions of inference and entailment that are needed at the level of pragmatics.

3.1.3. Type theory and typed λ -calculus

Among the various possible logics that may be used, Church's simply typed λ -calculus and simple theory of types (a.k.a. higher-order logic) play a central part. On the one hand, Montague semantics is based on the simply typed λ -calculus, and so is our syntax-semantics interface model. On the other hand, as shown by Gallin, [56] the target logic used by Montague for expressing meanings (i.e., his intensional logic) is essentially a variant of higher-order logic featuring three atomic types (the third atomic type standing for the set of possible worlds).

E-MOTION Project-Team (section vide)

FLOWERS Project-Team

3. Research Program

3.1. Research Program

Research in artificial intelligence, machine learning and pattern recognition has produced a tremendous amount of results and concepts in the last decades. A blooming number of learning paradigms - supervised, unsupervised, reinforcement, active, associative, symbolic, connectionist, situated, hybrid, distributed learning... - nourished the elaboration of highly sophisticated algorithms for tasks such as visual object recognition, speech recognition, robot walking, grasping or navigation, the prediction of stock prices, the evaluation of risk for insurances, adaptive data routing on the internet, etc... Yet, we are still very far from being able to build machines capable of adapting to the physical and social environment with the flexibility, robustness, and versatility of a one-year-old human child.

Indeed, one striking characteristic of human children is the nearly open-ended diversity of the skills they learn. They not only can improve existing skills, but also continuously learn new ones. If evolution certainly provided them with specific pre-wiring for certain activities such as feeding or visual object tracking, evidence shows that there are also numerous skills that they learn smoothly but could not be "anticipated" by biological evolution, for example learning to drive a tricycle, using an electronic piano toy or using a video game joystick. On the contrary, existing learning machines, and robots in particular, are typically only able to learn a single pre-specified task or a single kind of skill. Once this task is learnt, for example walking with two legs, learning is over. If one wants the robot to learn a second task, for example grasping objects in its visual field, then an engineer needs to re-program manually its learning structures: traditional approaches to task-specific machine/robot learning typically include engineer choices of the relevant sensorimotor channels, specific design of the reward function, choices about when learning begins and ends, and what learning algorithms and associated parameters shall be optimized.

As can be seen, this requires a lot of important choices from the engineer, and one could hardly use the term "autonomous" learning. On the contrary, human children do not learn following anything looking like that process, at least during their very first years. Babies develop and explore the world by themselves, focusing their interest on various activities driven both by internal motives and social guidance from adults who only have a folk understanding of their brains. Adults provide learning opportunities and scaffolding, but eventually young babies always decide for themselves what activity to practice or not. Specific tasks are rarely imposed to them. Yet, they steadily discover and learn how to use their body as well as its relationships with the physical and social environment. Also, the spectrum of skills that they learn continuously expands in an organized manner: they undergo a developmental trajectory in which simple skills are learnt first, and skills of progressively increasing complexity are subsequently learnt.

A link can be made to educational systems where research in several domains have tried to study how to provide a good learning experience to learners. This includes the experiences that allow better learning, and in which sequence they must be experienced. This problem is complementary to that of the learner that tries to learn efficiently, and the teacher here has to use as efficiently the limited time and motivational resources of the learner. Several results from psychology [76] and neuroscience [10] have argued that the human brain feels intrinsic pleasure in practicing activities of optimal difficulty or challenge. A teacher must exploit such activities to create positive psychological states of flow [82].

A grand challenge is thus to be able to build robotic machines that possess this capability to discover, adapt and develop continuously new know-how and new knowledge in unknown and changing environments, like human children. In 1950, Turing wrote that the child's brain would show us the way to intelligence: "Instead of trying to produce a program to simulate the adult mind, why not rather try to produce one which simulates the child's" [116]. Maybe, in opposition to work in the field of Artificial Intelligence who has focused on mechanisms trying to match the capabilities of "intelligent" human adults such as chess playing or natural language dialogue [89], it is time to take the advice of Turing seriously. This is what a new field, called developmental (or epigenetic) robotics, is trying to achieve [96] [118]. The approach of developmental robotics consists in importing and implementing concepts and mechanisms from developmental psychology [101], cognitive linguistics [81], and developmental cognitive neuroscience [93] where there has been a considerable amount of research and theories to understand and explain how children learn and develop. A number of general principles are underlying this research agenda: embodiment [78] [107], grounding [87], situatedness [72], self-organization [114] [108], enaction [117], and incremental learning [79].

Among the many issues and challenges of developmental robotics, two of them are of paramount importance: exploration mechanisms and mechanisms for abstracting and making sense of initially unknown sensorimotor channels. Indeed, the typical space of sensorimotor skills that can be encountered and learnt by a developmental robot, as those encountered by human infants, is immensely vast and inhomogeneous. With a sufficiently rich environment and multimodal set of sensors and effectors, the space of possible sensorimotor activities is simply too large to be explored exhaustively in any robot's life time: it is impossible to learn all possible skills and represent all conceivable sensory percepts. Moreover, some skills are very basic to learn, some other very complicated, and many of them require the mastery of others in order to be learnt. For example, learning to manipulate a piano toy requires first to know how to move one's hand to reach the piano and how to touch specific parts of the toy with the fingers. And knowing how to move the hand might require to know how to track it visually.

Exploring such a space of skills randomly is bound to fail or result at best on very inefficient learning [15]. Thus, exploration needs to be organized and guided. The approach of epigenetic robotics is to take inspiration from the mechanisms that allow human infants to be progressively guided, i.e. to develop. There are two broad classes of guiding mechanisms which control exploration:

- 1. **internal guiding mechanisms,** and in particular intrinsic motivation, responsible of spontaneous exploration and curiosity in humans, which is one of the central mechanisms investigated in FLOWERS, and technically amounts to achieve online active self-regulation of the growth of complexity in learning situations;
- 2. **social learning and guidance,** a learning mechanisms that exploits the knowledge of other agents in the environment and/or that is guided by those same agents. These mechanisms exist in many different forms like emotional reinforcement, stimulus enhancement, social motivation, guidance, feedback or imitation, some of which being also investigated in FLOWERS;

3.1.1. Internal guiding mechanisms

In infant development, one observes a progressive increase of the complexity of activities with an associated progressive increase of capabilities [101], children do not learn everything at one time: for example, they first learn to roll over, then to crawl and sit, and only when these skills are operational, they begin to learn how to stand. The perceptual system also gradually develops, increasing children perceptual capabilities other time while they engage in activities like throwing or manipulating objects. This make it possible to learn to identify objects in more and more complex situations and to learn more and more of their physical characteristics.

Development is therefore progressive and incremental, and this might be a crucial feature explaining the efficiency with which children explore and learn so fast. Taking inspiration from these observations, some roboticists and researchers in machine learning have argued that learning a given task could be made much easier for a robot if it followed a developmental sequence and "started simple" [74] [85]. However, in these experiments, the developmental sequence was crafted by hand: roboticists manually build simpler versions of a complex task and put the robot successively in versions of the task of increasing complexity. And when they wanted the robot to learn a new task, they had to design a novel reward function.

Thus, there is a need for mechanisms that allow the autonomous control and generation of the developmental trajectory. Psychologists have proposed that intrinsic motivations play a crucial role. Intrinsic motivations are mechanisms that push humans to explore activities or situations that have intermediate/optimal levels of novelty, cognitive dissonance, or challenge [76] [82] [84]. The role and structure of intrinsic motivation in humans have been made more precise thanks to recent discoveries in neuroscience showing the implication

of dopaminergic circuits and in exploration behaviors and curiosity [83] [90] [113]. Based on this, a number of researchers have began in the past few years to build computational implementation of intrinsic motivation [15] [105] [111] [75] [91] [99] [112]. While initial models were developed for simple simulated worlds, a current challenge is to manage to build intrinsic motivation systems that can efficiently drive exploratory behaviour in high-dimensional unprepared real world robotic sensorimotor spaces [105][15] [106] [110]. Specific and complex problems are posed by real sensorimotor spaces, in particular due to the fact that they are both high-dimensional as well as (usually) deeply inhomogeneous. As an example for the latter issue, some regions of real sensorimotor spaces are often unlearnable due to inherent stochasticity or difficulty, in which case heuristics based on the incentive to explore zones of maximal unpredictability or uncertainty, which are often used in the field of active learning [80] [88] typically lead to catastrophic results. The issue of high dimensionality does not only concern motor spaces, but also sensory spaces, leading to the problem of correctly identifying, among typically thousands of quantities, those latent variables that have links to behavioral choices. In FLOWERS, we aim at developing intrinsically motivated exploration mechanisms that scale in those spaces, by studying suitable abstraction processes in conjunction with exploration strategies.

3.1.2. Socially Guided and Interactive Learning

Social guidance is as important as intrinsic motivation in the cognitive development of human babies [101]. There is a vast literature on learning by demonstration in robots where the actions of humans in the environment are recognized and transferred to robots [73]. Most such approaches are completely passive: the human executes actions and the robot learns from the acquired data. Recently, the notion of interactive learning has been introduced in [115], [77], motivated by the various mechanisms that allow humans to socially guide a robot [109]. In an interactive context the steps of self-exploration and social guidances are not separated and a robot learns by self exploration and by receiving extra feedback from the social context [115], [94] [100].

Social guidance is also particularly important for learning to segment and categorize the perceptual space. Indeed, parents interact a lot with infants, for example teaching them to recognize and name objects or characteristics of these objects. Their role is particularly important in directing the infant attention towards objects of interest that will make it possible to simplify at first the perceptual space by pointing out a segment of the environment that can be isolated, named and acted upon. These interactions will then be complemented by the children own experiments on the objects chosen according to intrinsic motivation in order to improve the knowledge of the object, its physical properties and the actions that could be performed with it.

In FLOWERS, we are aiming at including intrinsic motivation system in the self-exploration part thus combining efficient self-learning with social guidance [103], [104]. We also work on developing perceptual capabilities by gradually segmenting the perceptual space and identifying objects and their characteristics through interaction with the user [97] and robots experiments [92]. Another challenge is to allow for more flexible interaction protocols with the user in terms of what type of feedback is provided and how it is provided [95].

Exploration mechanisms are combined with research in the following directions:

3.1.3. Cumulative learning, reinforcement learning and optimization of autonomous skill learning

FLOWERS develops machine learning algorithms that can allow embodied machines to acquire cumulatively sensorimotor skills. In particular, we develop optimization and reinforcement learning systems which allow robots to discover and learn dictionaries of motor primitives, and then combine them to form higher-level sensorimotor skills.

3.1.4. Autonomous perceptual and representation learning

In order to harness the complexity of perceptual and motor spaces, as well as to pave the way to higher-level cognitive skills, developmental learning requires abstraction mechanisms that can infer structural information out of sets of sensorimotor channels whose semantics is unknown, discovering for example the topology of the body or the sensorimotor contingencies (proprioceptive, visual and acoustic). This process is meant to

be open- ended, progressing in continuous operation from initially simple representations towards abstract concepts and categories similar to those used by humans. Our work focuses on the study of various techniques for:

- autonomous multimodal dimensionality reduction and concept discovery;
- incremental discovery and learning of objects using vision and active exploration, as well as of auditory speech invariants;
- learning of dictionaries of motion primitives with combinatorial structures, in combination with linguistic description;
- active learning of visual descriptors useful for action (e.g. grasping);

3.1.5. Embodiment and maturational constraints

FLOWERS studies how adequate morphologies and materials (i.e. morphological computation), associated to relevant dynamical motor primitives, can importantly simplify the acquisition of apparently very complex skills such as full-body dynamic walking in biped. FLOWERS also studies maturational constraints, which are mechanisms that allow for the progressive and controlled release of new degrees of freedoms in the sensorimotor space of robots.

3.1.6. Discovering and abstracting the structure of sets of uninterpreted sensors and motors

FLOWERS studies mechanisms that allow a robot to infer structural information out of sets of sensorimotor channels whose semantics is unknown, for example the topology of the body and the sensorimotor contingencies (propriocetive, visual and acoustic). This process is meant to be open-ended, progressing in continuous operation from initially simple representations to abstract concepts and categories similar to those used by humans.

HEPHAISTOS Team

3. Research Program

3.1. Interval analysis

We are interested in real-valued system solving $(f(X) = 0, f(X) \le 0)$, in optimization problems, and in the proof of the existence of properties (for example, it exists X such that f(X) = 0 or it exist two values X_1, X_2 such that $f(X_1) > 0$ and $f(X_2) < 0$). There are few restrictions on the function f as we are able to manage explicit functions using classical mathematical operators (e.g. $\sin (x + y) + \log(\cos (e^x) + y^2)$) as well as implicit functions (e.g. determining if there are parameter values of a parametrized matrix such that the determinant of the matrix is negative, without calculating the analytical form of the determinant).

Solutions are searched within a finite domain (called a *box*) which may be either continuous or mixed (i.e. for which some variables must belong to a continuous range while other variables may only have values within a discrete set). An important point is that we aim at finding all the solutions within the domain whenever the computer arithmetic will allow it: in other words we are looking for *certified* solutions. For example, for 0-dimensional system solving, we will provide a box that contains one, and only one, solution together with a numerical approximation of this solution. This solution may further be refined at will using multi-precision.

The core of our methods is the use of *interval analysis* that allows one to manipulate mathematical expressions whose unknowns have interval values. A basic component of interval analysis is the *interval evaluation* of an expression. Given an analytical expression F in the unknowns $\{x_1, x_2, ..., x_n\}$ and ranges $\{X_1, X_2, ..., X_n\}$ for these unknowns we are able to compute a range [A, B], called the interval evaluation, such that

$$\forall \{x_1, x_2, ..., x_n\} \in \{X_1, X_2, ..., X_n\}, A \le F(x_1, x_2, ..., x_n) \le B$$
(1)

In other words the interval evaluation provides a lower bound of the minimum of F and an upper bound of its maximum over the box.

For example if $F = x \sin(x + x^2)$ and $x \in [0.5, 1.6]$, then F([0.5, 1.6]) = [-1.362037441, 1.6], meaning that for any x in [0.5, 0.6] we guarantee that $-1.362037441 \le f(x) \le 1.6$.

The interval evaluation of an expression has interesting properties:

- it can be implemented in such a way that the results are guaranteed with respect to round-off errors i.e. property 1 is still valid in spite of numerical errors induced by the use of floating point numbers
- if A > 0 or B < 0, then no values of the unknowns in their respective ranges can cancel F
- if A > 0 (B < 0), then F is positive (negative) for any value of the unknowns in their respective ranges

A major drawback of the interval evaluation is that A(B) may be overestimated i.e. values of $x_1, x_2, ..., x_n$ such that $F(x_1, x_2, ..., x_n) = A(B)$ may not exist. This overestimation occurs because in our calculation each occurrence of a variable is considered as an independent variable. Hence if a variable has multiple occurrences, then an overestimation may occur. Such phenomena can be observed in the previous example where B = 1.6while the real maximum of F is approximately 0.9144. The value of B is obtained because we are using in our calculation the formula $F = xsin(y + z^2)$ with y, z having the same interval value than x.

Fortunately there are methods that allow one to reduce the overestimation and the overestimation amount decreases with the width of the ranges. The latter remark leads to the use of a branch-and-bound strategy in which for a given box a variable range will be bisected, thereby creating two new boxes that are stored in a list and processed later on. The algorithm is complete if all boxes in the list have been processed, or if during the process a box generates an answer to the problem at hand (e.g. if we want to prove that F(X) < 0, then the algorithm stops as soon as $F(\mathcal{B}) \ge 0$ for a certain box \mathcal{B}).

A generic interval analysis algorithm involves the following steps on the current box [1], [8], [5]:

- 1. *exclusion operators*: these operators determine that there is no solution to the problem within a given box. An important issue here is the extensive and smart use of the monotonicity of the functions
- 2. *filters*: these operators may reduce the size of the box i.e. decrease the width of the allowed ranges for the variables
- 3. *existence operators*: they allow one to determine the existence of a unique solution within a given box and are usually associated with a numerical scheme that allows for the computation of this solution in a safe way
- 4. *bisection*: choose one of the variable and bisect its range for creating two new boxes
- 5. storage: store the new boxes in the list

The scope of the HEPHAISTOS project is to address all these steps in order to find the most efficient procedures. Our efforts focus on mathematical developments (adapting classical theorems to interval analysis, proving interval analysis theorems), the use of symbolic computation and formal proofs (a symbolic pre-processing allows one to automatically adapt the solver to the structure of the problem), software implementation and experimental tests (for validation purposes).

3.2. Robotics

HEPHAISTOS, as a follow-up of COPRIN, has a long-standing tradition of robotics studies, especially for closed-loop robots [4], especially cable-driven parallel robots. We address theoretical issues with the purpose of obtaining analytical and theoretical solutions, but in many cases only numerical solutions can be obtained due to the complexity of the problem. This approach has motivated the use of interval analysis for two reasons:

- 1. the versatility of interval analysis allows us to address issues (e.g. singularity analysis) that cannot be tackled by any other method due to the size of the problem
- 2. uncertainties (which are inherent to a robotic device) have to be taken into account so that the *real* robot is guaranteed to have the same properties as the *theoretical* one, even in the worst case. This is a crucial issue for many applications in robotics (e.g. medical or assistance robot)

Our field of study in robotics focuses on *kinematic* issues such as workspace and singularity analysis, positioning accuracy, trajectory planning, reliability, calibration, modularity management and, prominently, *appropriate design*, i.e. determining the dimensioning of a robot mechanical architecture that guarantees that the real robot satisfies a given set of requirements. The methods that we develop can be used for other robotic problems, see for example the management of uncertainties in aircraft design [6].

Our theoretical work must be validated through experiments that are essential for the sake of credibility. A contrario, experiments will feed theoretical work. Hence HEPHAISTOS works with partners on the development of real robots but also develops its own prototypes. In the last years we have developed a large number of prototypes and we have extended our development to devices that are not strictly robots but are part of an overall environment for assistance. We benefit here from the development of new miniature, low energy computers with an interface for analog and logical sensors such as the Arduino or the Phidgets.

LAGADIC Project-Team

3. Research Program

3.1. Visual servoing

Basically, visual servoing techniques consist in using the data provided by one or several cameras in order to control the motions of a dynamic system [1]. Such systems are usually robot arms, or mobile robots, but can also be virtual robots, or even a virtual camera. A large variety of positioning tasks, or mobile target tracking, can be implemented by controlling from one to all the degrees of freedom of the system. Whatever the sensor configuration, which can vary from one on-board camera on the robot end-effector to several free-standing cameras, a set of visual features has to be selected at best from the image measurements available, allowing to control the desired degrees of freedom. A control law has also to be designed so that these visual features s(t) reach a desired value s^* , defining a correct realization of the task. A desired planned trajectory $s^*(t)$ can also be tracked. The control principle is thus to regulate to zero the error vector $s(t) - s^*(t)$. With a vision sensor providing 2D measurements, potential visual features are numerous, since 2D data (coordinates of feature points in the image, moments, ...) as well as 3D data provided by a localization algorithm exploiting the extracted 2D features can be considered. It is also possible to combine 2D and 3D visual features to take the advantages of each approach while avoiding their respective drawbacks.

More precisely, a set s of k visual features can be taken into account in a visual servoing scheme if it can be written:

$$\mathbf{s} = \mathbf{s}(\mathbf{x}(\mathbf{p}(t)), \mathbf{a}) \tag{2}$$

where $\mathbf{p}(t)$ describes the pose at the instant t between the camera frame and the target frame, x the image measurements, and a a set of parameters encoding a potential additional knowledge, if available (such as for instance a coarse approximation of the camera calibration parameters, or the 3D model of the target in some cases).

The time variation of s can be linked to the relative instantaneous velocity \mathbf{v} between the camera and the scene:

$$\dot{\mathbf{s}} = \frac{\partial \mathbf{s}}{\partial \mathbf{p}} \, \dot{\mathbf{p}} = \mathbf{L}_{\mathbf{s}} \, \mathbf{v} \tag{3}$$

where L_s is the interaction matrix related to s. This interaction matrix plays an essential role. Indeed, if we consider for instance an eye-in-hand system and the camera velocity as input of the robot controller, we obtain when the control law is designed to try to obtain an exponential decoupled decrease of the error:

$$\mathbf{v}_{c} = -\lambda \widehat{\mathbf{L}_{\mathbf{s}}}^{+} (\mathbf{s} - \mathbf{s}^{*}) - \widehat{\mathbf{L}_{\mathbf{s}}}^{+} \frac{\partial \widehat{\mathbf{s}}}{\partial t}$$

$$\tag{4}$$

where λ is a proportional gain that has to be tuned to minimize the time-to-convergence, $\widehat{\mathbf{L}_s}^+$ is the pseudoinverse of a model or an approximation of the interaction matrix, and $\frac{\partial \mathbf{s}}{\partial t}$ an estimation of the features velocity due to a possible own object motion. From the selected visual features and the corresponding interaction matrix, the behavior of the system will have particular properties as for stability, robustness with respect to noise or to calibration errors, robot 3D trajectory, etc. Usually, the interaction matrix is composed of highly non linear terms and does not present any decoupling properties. This is generally the case when s is directly chosen as x. In some cases, it may lead to inadequate robot trajectories or even motions impossible to realize, local minimum, tasks singularities, etc. It is thus extremely important to design adequate visual features for each robot task or application, the ideal case (very difficult to obtain) being when the corresponding interaction matrix is constant, leading to a simple linear control system. To conclude in few words, visual servoing is basically a non linear control problem. Our Holy Grail quest is to transform it into a linear control problem.

Furthermore, embedding visual servoing in the task function approach allows solving efficiently the redundancy problems that appear when the visual task does not constrain all the degrees of freedom of the system. It is then possible to realize simultaneously the visual task and secondary tasks such as visual inspection, or joint limits or singularities avoidance. This formalism can also be used for tasks sequencing purposes in order to deal with high level complex applications.

3.2. Visual tracking

Elaboration of object tracking algorithms in image sequences is an important issue for researches and applications related to visual servoing and more generally for robot vision. A robust extraction and real time spatio-temporal tracking process of visual cues is indeed one of the keys to success of a visual servoing task. If fiducial markers may still be useful to validate theoretical aspects in modeling and control, natural scenes with non cooperative objects and subject to various illumination conditions have to be considered for addressing large scale realistic applications.

Most of the available tracking methods can be divided into two main classes: feature-based and modelbased. The former approach focuses on tracking 2D features such as geometrical primitives (points, segments, circles,...), object contours, regions of interest...The latter explicitly uses a model of the tracked objects. This can be either a 3D model or a 2D template of the object. This second class of methods usually provides a more robust solution. Indeed, the main advantage of the model-based methods is that the knowledge about the scene allows improving tracking robustness and performance, by being able to predict hidden movements of the object, detect partial occlusions and acts to reduce the effects of outliers. The challenge is to build algorithms that are fast and robust enough to meet our applications requirements. Therefore, even if we still consider 2D features tracking in some cases, our researches mainly focus on real-time 3D model-based tracking, since these approaches are very accurate, robust, and well adapted to any class of visual servoing schemes. Furthermore, they also meet the requirements of other classes of application, such as augmented reality.

3.3. Slam

Most of the applications involving mobile robotic systems (ground vehicles, aerial robots, automated submarines,...) require a reliable localization of the robot in its environment. A challenging problem is when neither the robot localization nor the map is known. Localization and mapping must then be considered concurrently. This problem is known as Simultaneous Localization And Mapping (Slam). In this case, the robot moves from an unknown location in an unknown environment and proceeds to incrementally build up a navigation map of the environment, while simultaneously using this map to update its estimated position.

Nevertheless, solving the Slam problem is not sufficient for guaranteeing an autonomous and safe navigation. The choice of the representation of the map is, of course, essential. The representation has to support the different levels of the navigation process: motion planning, motion execution and collision avoidance and, at the global level, the definition of an optimal strategy of displacement. The original formulation of the Slam problem is purely metric (since it basically consists in estimating the Cartesian situations of the robot and a set of landmarks), and it does not involve complex representations of the environment. However, it is now well recognized that several complementary representations are needed to perform exploration, navigation, mapping, and control tasks successfully. We propose to use composite models of the environment that

mix topological, metric, and grid-based representations. Each type of representation is well adapted to a particular aspect of autonomous navigation: the metric model allows one to locate the robot precisely and plan Cartesian paths, the topological model captures the accessibility of different sites in the environment and allows a coarse localization, and finally the grid representation is useful to characterize the free space and design potential functions used for reactive obstacle avoidance. However, ensuring the consistency of these various representations during the robot exploration, and merging observations acquired from different viewpoints by several cooperative robots, are difficult problems. This is particularly true when different sensing modalities are involved. New studies to derive efficient algorithms for manipulating the hybrid representations (merging, updating, filtering...) while preserving their consistency are needed.

RITS Team

3. Research Program

3.1. Vehicle guidance and autonomous navigation

Participants: Zayed Alsayed, Guillaume Bresson, David Gonzalez Bautista, Wei-Lin Ku, Mohamed Marouf, Pierre Merdrignac, Vicente Milanes Montero, Fawzi Nashashibi, Joshué Pérez Rastelli, Plamen Petrov, Evangeline Pollard, Oyunchimeg Shagdar, Guillaume Trehard, Anne Verroust-Blondet.

There are three basic ways to improve the safety of road vehicles and these ways are all of interest to the project-team. The first way is to assist the driver by giving him better information and warning. The second way is to take over the control of the vehicle in case of mistakes such as inattention or wrong command. The third way is to completely remove the driver from the control loop.

All three approaches rely on information processing. Only the last two involve the control of the vehicle with actions on the actuators, which are the engine power, the brakes and the steering. The research proposed by the project-team is focused on the following elements:

- perception of the environment,
- planning of the actions,
- real-time control.

3.1.1. Perception of the road environment

Participants: Zayed Alsayed, Guillaume Bresson, Wei-Lin Ku, Pierre Merdrignac, Fawzi Nashashibi, Joshué Pérez Rastelli, Evangeline Pollard, Guillaume Trehard, Anne Verroust-Blondet.

Either for driver assistance or for fully automated guided vehicle purposes, the first step of any robotic system is to perceive the environment in order to assess the situation around itself. Proprioceptive sensors (accelerometer, gyrometer,...) provide information about the vehicle by itself such as its velocity or lateral acceleration. On the other hand, exteroceptive sensors, such as video camera, laser or GPS devices, provide information about the vehicle or its localization. Obviously, fusion of data with various other sensors is also a focus of the research.

The following topics are already validated or under development in our team:

- relative ego-localization with respect to the infrastructure, i.e. lateral positioning on the road can be obtained by mean of vision (lane markings) and the fusion with other devices (e.g. GPS);
- global ego-localization by considering GPS measurement and proprioceptive information, even in case of GPS outage;
- road detection by using lane marking detection and navigable free space;
- detection and localization of the surrounding obstacles (vehicles, pedestrians, animals, objects on roads, etc.) and determination of their behavior can be obtained by the fusion of vision, laser or radar based data processing;
- simultaneous localization and mapping as well as mobile object tracking using laser-based and stereovision-based (SLAMMOT) algorithms.

This year was the opportunity to focus on two particular topics: SLAMMOT-based techniques for grid-based environment modeling using laser sensors, and belief-based SLAM techniques for vehicle navigation.

3.1.2. 3D environment representation

Participants: Zayed Alsayed, Guillaume Bresson, Fawzi Nashashibi.

In the past few years, we have been focusing on the Disparity map estimation as a mean to obtain dense 3D mapping of the environment. Moreover, many autonomous vehicle navigation systems have adopted stereo vision techniques to construct disparity maps as a basic obstacle detection and avoidance mechanism. Two different approaches where investigated: the Fly algorithm, and the stereo vision for 3D representation.

In the first approach, the Fly algorithm is an evolutionary optimization applied to stereovision and mobile robotics. Its advantage relies on its precision and its acceptable costs (computation time and resources). In the second approach, originality relies on computing the disparity field by directly formulating the problem as a constrained optimization problem in which a convex objective function is minimized under convex constraints. These constraints arise from prior knowledge and the observed data. The minimization process is carried out over the feasibility set and with a suitable regularization constraint: the Total Variation information, which avoids oscillations while preserving field discontinuities around object edges. Although successfully applied to real-time pedestrian detection using a vehicle mounted stereohead (see LOVe project), this technique could not be used for other robotics applications such as scene modeling, visual SLAM, etc. The need is for a dense 3D representation of the environment obtained with an appropriate precision and acceptable costs (computation time and resources).

Stereo vision is a reliable technique for obtaining a 3D scene representation through a pair of left and right images and it is effective for various tasks in road environments. The most important problem in stereo image processing is to find corresponding pixels from both images, leading to the so-called disparity estimation. Many autonomous vehicle navigation systems have adopted stereo vision techniques to construct disparity maps as a basic obstacle detection and avoidance mechanism. We are presently working on an original stereovision based SLAM technique, which aimed at reconstructing current surroundings through on-the-fly real-time localization of tens of thousands of interest points. This development should also allow detection and tracking of moving objects⁰, and is built on linear algebra (through Inria's Eigen library), using the RANSAC algorithm and multi-target tracking techniques, to quote a few.

This technique complements another laser based SLAMMOT technique developed since few years and extensively validated in large scale demonstrations for indoor and outdoor robotics applications. This technique has proved its efficiency in terms of cost, accuracy and reliability.

3.1.3. Cooperative Multi-sensor data fusion

Participants: Pierre Merdrignac, Fawzi Nashashibi, Evangeline Pollard, Oyunchimeg Shagdar.

Since data are noisy, inaccurate and can also be unreliable or unsynchronized, the use of data fusion techniques is required in order to provide the most accurate situation assessment as possible to perform the perception task. RITS team worked a lot on this problem in the past, but is now focusing on collaborative perception approach. Indeed, the use of vehicle-to-vehicle or vehicle-to-infrastructure communications allows an improved on-board reasoning since the decision is made based on an extended perception.

As a direct consequence of the electronics broadly used for vehicular applications, communication technologies are now being adopted as well. In order to limit injuries and to share safety information, research in driving assistance system is now orientating toward the cooperative domain. Advanced Driver Assistance System (ADAS) and Cybercars applications are moving towards vehicle-infrastructure cooperation. In such scenario, information from vehicle based sensors, roadside based sensors and a priori knowledge is generally combined thanks to wireless communications to build a probabilistic spatio-temporal model of the environment. Depending on the accuracy of such model, very useful applications from driver warning to fully autonomous driving can be performed.

The Collaborative Perception Framework (CPF) is a combined hardware/software approach that permits to see remote information as its own information. Using this approach, a communicant entity can see another remote entity software objects as if it was local, and a sensor object, can see sensor data of others entities as its own sensor data. Last year we developed the basic hardware modules that ensure the well functioning of the embedded architecture including perception sensors, communication devices and processing tools.

⁰http://www.youtube.com/watch?v=obH9Z2uOMBI

Finally, since vehicle localization (ground vehicles) is an important task for intelligent vehicle systems, vehicle cooperation may bring benefits for this task. A new cooperative multi-vehicle localization method using split covariance intersection filter was developed during the year 2012, as well as a cooperative GPS data sharing method.

In the first method, each vehicle estimates its own position using a SLAM approach. In parallel, it estimates a decomposed group state, which is shared with neighboring vehicles; the estimate of the decomposed group state is updated with both the sensor data of the ego-vehicle and the estimates sent from other vehicles; the covariance intersection filter which yields consistent estimates even facing unknown degree of inter-estimate correlation has been used for data fusion.

In the second GPS data sharing method, a new collaborative localization method is proposed. On the assumption that the distance between two communicative vehicles can be calculated with a good precision, cooperative vehicle are considered as additional satellites into the user position calculation by using iterative methods. In order to limit divergence, some filtering process is proposed: Interacting Multiple Model (IMM) is used to guarantee a greater robustness in the user position estimation.

Accidents between vehicles and pedestrians (including cyclists) often result in fatality or at least serious injury for pedestrians, showing the need of technology to protect vulnerable road users. Vehicles are now equipped with many sensors in order to model their environment, to localize themselves, detect and classify obstacles, etc. They are also equipped with communication devices in order to share the information with other road users and the environment. The goal of this work is to develop a cooperative perception and communication system, which merges information coming from the communications device and obstacle detection module to improve the pedestrian detection, tracking, and hazard alarming.

Pedestrian detection is performed by using a perception architecture made of two sensors: a laser scanner and a CCD camera. The laser scanner provides a first hypothesis on the presence of a pedestrian-like obstacle while the camera performs the real classification of the obstacle in order to identify the pedestrian(s). This is a learning-based technique exploiting adaptive boosting (AdaBoost). Several classifiers were tested and learned in order to determine the best compromise between the nature and the number of classifiers and the accuracy of the classification.

3.1.4. Planning and executing vehicle actions

Participants: David Gonzalez Bautista, Mohamed Marouf, Vicente Milanes Montero, Fawzi Nashashibi, Joshué Pérez Rastelli, Plamen Petrov.

From the understanding of the environment, thanks to augmented perception, we have either to warn the driver to help him in the control of his vehicle, or to take control in case of a driverless vehicle. In simple situations, the planning might also be quite simple, but in the most complex situations we want to explore, the planning must involve complex algorithms dealing with the trajectories of the vehicle and its surroundings (which might involve other vehicles and/or fixed or moving obstacles). In the case of fully automated vehicles, the perception will involve some map building of the environment and obstacles, and the planning will involve partial planning with periodical recomputation to reach the long term goal. In this case, with vehicle to vehicle communications, what we want to explore is the possibility to establish a negotiation protocol in order to coordinate nearby vehicles (what humans usually do by using driving rules, common sense and/or non verbal communication). Until now, we have been focusing on the generation of geometric trajectories as a result of a maneuver selection process using grid-based rating technique or fuzzy technique. For high speed vehicles, Partial Motion Planning techniques we tested, revealed their limitations because of the computational cost. The use of quintic polynomials we designed, allowed us to elaborate trajectories with different dynamics adapted to the driver profile. These trajectories have been implemented and validated in the JointSystem demonstrator of the German Aerospace Center (DLR) used in the European project HAVEit, as well as in RITS's electrical vehicle prototype used in the French project ABV. HAVEit was also the opportunity for RITS to take in charge the implementation of the Co-Pilot system which processes perception data in order to elaborate the high level command for the actuators. These trajectories were also validated on RITS's cybercars. However, for the low speed cybercars that have pre-defined itineraries and basic maneuvers, it was necessary

to develop a more adapted planning and control system. Therefore, we have developed a nonlinear adaptive control for automated overtaking maneuver using quadratic polynomials and Lyapunov function candidate and taking into account the vehicles kinematics. For the global mobility systems we are developing, the control of the vehicles includes also advanced platooning, automated parking, automated docking, etc. For each functionality a dedicated control algorithm was designed (see publication of previous years). Today, RITS is also investigating the opportunity of fuzzy-based control for specific maneuvers. First results have been recently obtained for reference trajectories following in roundabouts and normal straight roads.

3.2. V2V and V2I Communications for ITS

Participants: Thierry Ernst, Oyunchimeg Shagdar, Gérard Le Lann, Younes Bouchaala, Pierre Merdrignac, Ines Ben Jemaa, Mohammad Abu Alhoul, Fawzi Nashashibi, Arnaud de La Fortelle.

Wireless communications are expected to play an important role for road safety, road efficiency, and comfort of road users. Road safety applications often require highly responsive and reliable information exchange between neighboring vehicles in any road density condition. Because the performance of the existing radio communications technology largely degrades with the increase of the node density, the challenge of designing wireless communications for safety applications is enabling reliable communications in highly dense scenarios. Targeting this issue, RITS has been working on medium access control design and visible light communications, especially for highly dense scenarios. The works have been carried out considering the vehicle behavior such as vehicle merging and vehicle platooning.

Unlike many of the road safety applications, the applications regarding road efficiency and comfort of road users, on the other hand, often require connectivity to the Internet. Based on our expertise in both Internetbased communications in the mobility context and in ITS, we are now investigating the use of IPv6 (Internet Protocol version 6 which is going to replace the current version, IPv4, in a few years from now) for vehicular communications, in a combined architecture allowing both V2V and V2I.

The wireless channel and the topology dynamics need to be studied when understanding the dynamics and designing efficient communications mechanisms. Targeting this issue, we have been working on channel modeling for both radio and visible light communications, and design of communications mechanisms especially for security, service discovery, multicast and geocast message delivery, and access point selection.

Below follows a more detailed description of the related research issues.

3.2.1. Geographic multicast addressing and routing

Participants: Ines Ben Jemaa, Oyunchimeg Shagdar, Thierry Ernst, Arnaud de La Fortelle.

Many ITS applications such as fleet management require multicast data delivery. Existing work on this subject tackles mainly the problems of IP multicasting inside the Internet or geocasting in the VANETs. To enable Internet-based multicast services for VANETs, we introduced a framework that:

i) defines a distributed and efficient geographic multicast auto-addressing mechanism to ensure vehicular multicast group reachability through the infrastructure network,

ii) introduces a simplified approach that locally manages the group membership and distributes the packets among themto allow simple and efficient data delivery.

3.2.2. Platooning control using visible light communications

Participants: Mohammad Abu Alhoul, Mohamed Marouf, Oyunchimeg Shagdar, Fawzi Nashashibi.

The main purpose of our research is to propose and test new successful supportive communication technology, which can provide stable and reliable communication between vehicles, especially for the platooning scenario. Although VLC technology has a short history in comparison with other communication technologies, the infrastructure availability and the presence of the congestion in wireless communication channels lead to propose VLC technology as a reliable and supportive technology which can takeoff some loads of the wireless radio communication. The first objective of this work is to develop an analytical model of VLC to understand its characteristics and limitations. The second objective is to design vehicle platooning control using VLC. In platooning control, a cooperation between control and communication is strongly required in order to guarantee the platoon's stability (e.g. string stability problem). For this purpose we work on VLC model platooning scenario, to permit for each vehicle the trajectory tracking of the vehicle ahead, altogether with a prescribed inter-vehicle distance and considering all the VLC channel model limitations. The integrated channel model of the main Simulink platooning model will be responsible for deciding the availability of the Line-of-Sight for different trajectory's curvatures, which means the capability of using light communication between each couple of vehicles in the platooning queue. At the same time the model will compute all the required parameters acquired from each vehicle controller.

3.2.3. V2X radio communications for road safety applications

Participants: Mohammad Abu Alhoul, Pierre Merdrignac, Oyunchimeg Shagdar, Fawzi Nashashibi.

While 5.9 GHz radio frequency band is dedicated to ITS applications, the channel and network behaviors in mobile scenarios are not very well known. In this work we theoretically and experimentally study the radio channel characteristics in vehicular networks, especially the radio quality and bandwidth availability. Based on our study, we develop mechanisms for efficient and reliable V2X communications, channel allocation, congestion control, and access point selection, which are especially dedicated to road safety and autonomous driving applications.

3.3. Automated driving, intelligent vehicular networks, and safety

Participant: Gérard Le Lann.

Intelligent vehicular networks (IVNs) are one constituent of ITS. IVNs encompass "clusters", platoons and vehicular ad-hoc networks comprising automated and cooperative vehicles. A basic principle that underlies our work is minimal reliance on road-side infrastructures for solving those open problems arising with IVNs. For example, V2V communications only are considered. Trivially, if one can solve a problem P considering V2V communications only, then P is solved with the help of V2I communications, whereas the converse is not true. Moreover, safety in the course of risk-prone maneuvers is our central concern. Since safety-critical (SC) scenarios may develop anytime anywhere, it is impossible to assume that there is always a road-side unit in the vicinity of those vehicles involved in a hazardous situation.

3.3.1. Cohorts and groups – Novel constructs for safe IVNs

The automated driving function rests on two radically different sets of solutions, one set encompassing signal processing and robotics (SPR), the other one encompassing vehicular communications and networking (VCN). In addition to being used for backing a failing SPR solution, VCN solutions have been originally proposed for "augmenting" the capabilities offered by SPR solutions, which are line-of-sight technologies, i.e. limited by obstacles. Since V2V omni-directional radio communications that are being standardized (IEEE 802.11p / WAVE) have ranges in the order of 250 m, it is interesting to prefix risk-prone maneuvers with the exchange of SC-messages. Roles being assigned prior to initiating physical maneuvers, the SPR solutions are invoked under favorable conditions, safer than when vehicles have not agreed on "what to do" ahead of time.

VCN solutions shall belong to two categories: V2V omni-directional (360°) communications and unidirectional communications, implemented out of very-short range antennas of very small beam-width. This has led to the concept of neighbor-to-neighbor (N2N) communications, whereby vehicles following each other on a given lane can exchange periodic beacons and event-driven messages. Vehicle motions on roads and highways obey two different regimes. First, stationary regimes, where intervehicular spacing, acceleration and deceleration rates (among other parameters), match specified bounds. This, combined with N2N communications, has led to the concept of cohorts, where safety is not at stake provided that no violation of bounds occurs. Second, transitory regimes, where some of these bounds are violated (e.g., sudden braking – the "brick wall" paradigm), or where vehicles undertake risk-prone maneuvers such as lane changes, resulting into SC scenarios. Reasoning about SC scenarios has led to the concept of groups. Cohorts and groups have been introduced in [6].

3.3.2. Cohorts, N2N communications, and safety in the presence of telemetry failures

In [6] we show how periodic N2N beaconing serves to withstand failures of directional telemetry devices. Worst-case bounds on safe inter-vehicular spacing are established analytically (simulations cannot be used for establishing worst-case bounds). A result of practical interest is the ability to answer the following question: "vehicles move at high speed in a cohort formation; if in a platoon formation, spacing would be in the order of 3 m; what is the additional safe spacing in a cohort?" With a N2N beaconing period in the range of 100-200 ms, the additional spacing is much less than 1 m. Failure of a N2N communication link translates into a cohort split, one of the vehicles impaired becoming the tail of a cohort, and its (impaired) follower becoming the head of a newly formed cohort. The number of vehicles in a cohort has an upper bound, and the inter-cohort spacing has a lower bound.

3.3.3. Groups, cohorts, and fast reliable V2V Xcasting in the presence of message losses

Demonstrating safety involves establishing strict timeliness ("real-time") properties under worst-case conditions (traffic density, failure rates, radio interference ranges). As regards V2V message passing, this requirement translates into two major problems:

- TBD: time-bounded delivery of V2V messages exchanged among vehicles that undertake SC maneuvers, despite high message loss ratios.
- TBA: time-bounded access to a radio channel in open ad hoc, highly mobile, networks of vehicles, some vehicles undertaking SC maneuvers, despite high contention.

Groups and cohorts have proved to be essential constructs for devising a solution for problem TBD. Vehicles involved in a SC scenario form a group where a 3-way handshake is unfolded so as to reach an agreement regarding roles and adjusted motions. A 3-way handshake consists in 3 rounds of V2V Xcasting of SC messages, round 1 being a Geocast, round 2 being a Convergecast, and round 3 being a Multicast. Worstcase time bound for completing a 3-way handshake successfully is in the order of 200 ms, under worst-case conditions. It is well known that message losses are the dominant cause of failures in mobile wireless networks, which raises the following problem with the Xcasting of SC messages. If acknowledgments are not used, it is impossible to predict probabilities for successful deliveries, which is antagonistic with demonstrating safety. Asking for acknowledgments is a non solution. Firstly, by definition, vehicles that are to be reached by a Geocast are unknown to a sender. How can a sender know which acknowledgments to wait for? Secondly, repeating a SC message that has been lost on a radio channel does not necessarily increases chances of successful delivery. Indeed, radio interferences (causing the first transmission loss) may well last longer than 200 ms (or seconds). To be realistic, one is led to consider a novel and extremely powerful (adversary) failure model (denoted Ω), namely the restricted unbounded omission model, whereby messages meant to circulate on f out of n radio links are "erased" by the adversary (the same f links), ad infinitum. Moreover, we have assumed message loss ratios f/n as high as 2/3. This is the setting we have considered in [59], where we present a solution for the fast (less than 200 ms) reliable (in the presence of Ω) multipoint communications problem TBD. The solution consists in a suite of Xcast protocols (the Zebra suite) and proxy sets built out of cohorts. Analytical expressions are given for the worst-case time bounds for each of the Zebra protocols.

Surprisingly, while not being originally devised to that end, it turns out that cohorts and groups are essential cornerstones for solving open problem TBA.

3.4. Probabilistic modeling for large transportation systems

Participants: Guy Fayolle, Cyril Furtlehner, Arnaud de La Fortelle, Jean-Marc Lasgouttes.

This activity concerns the modeling of random systems related to ITS, through the identification and development of solutions based on probabilistic methods and more specifically through the exploration of links between large random systems and statistical physics. Traffic modeling is a very fertile area of application for this approach, both for macroscopic (fleet management [4], traffic prediction) and for microscopic (movement of each vehicle, formation of traffic jams) analysis. When the size or volume of structures grows (leading to the so-called "thermodynamic limit"), we study the quantitative and qualitative (performance, speed, stability, phase transitions, complexity, etc.) features of the system.

In the recent years, several directions have been explored.

3.4.1. Traffic reconstruction

Large random systems are a natural part of macroscopic studies of traffic, where several models from statistical physics can be fruitfully employed. One example is fleet management, where one main issue is to find optimal ways of reallocating unused vehicles: it has been shown that Coulombian potentials might be an efficient tool to drive the flow of vehicles. Another case deals with the prediction of traffic conditions, when the data comes from probe vehicles instead of static sensors.

While the widely-used macroscopic traffic flow models are well adapted to highway traffic, where the distance between junction is long (see for example the work done by the NeCS team in Grenoble), our focus is on a more urban situation, where the graphs are much denser. The approach we are advocating here is model-less, and based on statistical inference rather than fundamental diagrams of road segments. Using the Ising model or even a Gaussian Random Markov Field, together with the very popular Belief Propagation (BP) algorithm, we have been able to show how real-time data can be used for traffic prediction and reconstruction (in the space-time domain).

This new use of BP algorithm raises some theoretical questions about the ways the make the belief propagation algorithm more efficient:

- find the best way to inject real-valued data in an Ising model with binary variables [60];
- build macroscopic variables that measure the overall state of the underlying graph, in order to improve the local propagation of information [58];
- make the underlying model as sparse as possible, in order to improve BP convergence and quality [40].

3.4.2. Exclusion processes for road traffic modeling

The focus here is on road traffic modeled as a granular flow, in order to analyze the features that can be explained by its random nature. This approach is complementary to macroscopic models of traffic flow (as done for example in the Opale team at Inria), which rely mainly on ODEs and PDEs to describe the traffic as a fluid.

One particular feature of road traffic that is of interest to us is the spontaneous formation of traffic jams. It is known that systems as simple as the Nagel-Schreckenberg model are able to describe traffic jams as an emergent phenomenon due to interaction between vehicles. However, even this simple model cannot be explicitly analyzed and therefore one has to resort to simulation.

One of the simplest solvable (but non trivial) probabilistic models for road traffic is the exclusion process. It lends itself to a number of extensions allowing to tackle some particular features of traffic flows: variable speed of particles, synchronized move of consecutive particles (platooning), use of geometries more complex than plain 1D (cross roads or even fully connected networks), formation and stability of vehicle clusters (vehicles that are close enough to establish an ad-hoc communication system), two-lane roads with overtaking.

The aspect that we have particularly studied is the possibility to let the speed of vehicle evolve with time. To this end, we consider models equivalent to a series of queues where the pair (service rate, number of customers) forms a random walk in the quarter plane \mathbb{Z}^2_+ .

Having in mind a global project concerning the analysis of complex systems, we also focus on the interplay between discrete and continuous description: in some cases, this recurrent question can be addressed quite rigorously via probabilistic methods.

We have considered in [57] some classes of models dealing with the dynamics of discrete curves subjected to stochastic deformations. It turns out that the problems of interest can be set in terms of interacting exclusion processes, the ultimate goal being to derive hydrodynamic limits after proper scaling. A seemingly new method is proposed, which relies on the analysis of specific partial differential operators, involving variational calculus and functional integration. Starting from a detailed analysis of the Asymmetric Simple Exclusion Process (ASEP) system on the torus $\mathbb{Z}/n\mathbb{Z}$, the arguments a priori work in higher dimensions (ABC, multi-type exclusion processes, etc), leading to systems of coupled partial differential equations of Burgers' type.

3.4.3. Random walks in the quarter plane \mathbb{Z}^2_+

This field remains one of the important "violon d'Ingres" in our research activities in stochastic processes, both from theoretical and applied points of view. In particular, it is a building block for models of many communication and transportation systems.

One essential question concerns the computation of stationary measures (when they exist). As for the answer, it has been given by original methods formerly developed in the team (see books and related bibliography). For instance, in the case of small steps (jumps of size one in the interior of \mathbb{Z}^2_+), the invariant measure $\{\pi_{i,j}, i, j \ge 0\}$ does satisfy the fundamental functional equation (see [3]):

$$Q(x,y)\pi(x,y) = q(x,y)\pi(x) + \widetilde{q}(x,y)\widetilde{\pi}(y) + \pi_0(x,y).$$
(5)

where the unknown generating functions $\pi(x, y), \pi(x), \tilde{\pi}(y), \pi_0(x, y)$ are sought to be analytic in the region $\{(x, y) \in \mathbb{C}^2 : |x| < 1, |y| < 1\}$, and continuous on their respective boundaries.

The given function $Q(x, y) = \sum_{i,j} p_{i,j} x^i y^j - 1$, where the sum runs over the possible jumps of the walk inside \mathbb{Z}^2_+ , is often referred to as the *kernel*. Then it has been shown that equation (1) can be solved by reduction to a boundary-value problem of Riemann-Hilbert type. This method has been the source of numerous and fruitful developments. Some recent and ongoing works have been dealing with the following matters.

- Group of the random walk. In several studies, it has been noticed that the so-called group of the walk governs the behavior of a number of quantities, in particular through its order, which is always even. In the case of small jumps, the algebraic curve R defined by $\{Q(x, y) = 0\}$ is either of genus 0 (the sphere) or 1 (the torus). In [Fayolle-2011a], when the drift of the random walk is equal to 0 (and then so is the genus), an effective criterion gives the order of the group. More generally, it is also proved that whenever the genus is 0, this order is infinite, except precisely for the zero drift case, where finiteness is quite possible. When the genus is 1, the situation is more difficult. Recently [55], a criterion has been found in terms of a determinant of order 3 or 4, depending on the arity of the group.
- *Nature of the counting generating functions*. Enumeration of planar lattice walks is a classical topic in combinatorics. For a given set of allowed jumps (or steps), it is a matter of counting the number of paths starting from some point and ending at some arbitrary point in a given time, and possibly restricted to some regions of the plane. A first basic and natural question arises: how many such paths exist? A second question concerns the nature of the associated counting generating functions (CGF): are they rational, algebraic, holonomic (or D-finite, i.e. solution of a linear differential equation with polynomial coefficients)?

Let f(i, j, k) denote the number of paths in \mathbb{Z}^2_+ starting from (0, 0) and ending at (i, j) at time k. Then the corresponding CGF

$$F(x,y,z) = \sum_{i,j,k\geq 0} f(i,j,k) x^i y^j z^k$$
(6)

satisfies the functional equation

$$K(x,y)F(x,y,z) = c(x)F(x,0,z) + \tilde{c}(y)F(0,y,z) + c_0(x,y),$$
(7)

where z is considered as a time-parameter. Clearly, equations (2) and (1) are of the same nature, and answers to the above questions have been given in [Fayolle-2010].

• Some exact asymptotics in the counting of walks in \mathbb{Z}^2_+ . A new and uniform approach has been proposed about the following problem: What is the asymptotic behavior, as their length goes to infinity, of the number of walks ending at some given point or domain (for instance one axis)? The method in [Fayolle-2012] works for both finite or infinite groups, and for walks not necessarily restricted to excursions.

3.4.4. Discrete-event simulation for urban mobility

We have developed two simulation tools to study and evaluate the performance of different transportation modes covering an entire urban area.

- one for collective taxis, a public transportation system with a service quality provided will be comparable with that of conventional taxis (system operating with or without reservations, door-to-door services, well adapted itineraries following the current demand, controlling detours and waits, etc.), and with fares set at rates affordable by almost everyone, simply by utilizing previously wasted vehicle capacity;
- the second for a system of self-service cars that can reconfigure themselves into shuttles, therefore creating a multimodal public transportation system; this second simulator is intended to become a generic tool for multimodal transportation.

These two programs use a technique allowing to run simulations in batch mode and analyze the dynamics of the system afterwards.

AYIN Team

3. Research Program

3.1. Geometric and shape modeling

One of the grand challenges of computer vision and image processing is the expression and use of prior geometric information via the construction of appropriate models. For very high resolution imagery, this problem becomes critically important, as the increasing resolution of the data results in the appearance of a great deal of complex geometric structure hitherto invisible. Ayin studies various approaches to the construction of models of geometry and shape.

3.1.1. Stochastic geometry

One of the most promising approaches to the inclusion of this type of information is stochastic geometry, which is an important research direction in the Ayin team. Instead of defining probabilities for different types of image, probabilities are defined for configurations of an indeterminate number of interacting, parameterized objects located in the image. Such probability distributions are called 'marked point processes'. New models are being developed both for remote sensing applications, and for skin care problems, such as wrinkle and acne detection.

3.1.2. Contours, phase fields, and MRFs with long-range interactions

An alternative approach to shape modeling starts with generic 'regions' in the image, and adds constraints in order to model specific shapes and objects. Ayin investigates contour, phase field, and binary field representations of regions, incorporating shape information via highly-structured long-range interactions that constrain the set of high-probability regions to those with specific geometric properties. This class of models can represent infinite-dimensional families of shapes and families with unbounded topology, as well as families consisting of an arbitrary number of object instances, at no extra computational cost. Key sub-problems include the development of models of more complex shapes and shape configurations; the development of models in more than two spatial dimensions; and understanding the equivalences between models in different representations and approaches.

3.1.3. Shapes in time

Ayin is concerned with spectral and spatio-temporal structures. To deal with the latter, the above scene modeling approaches are extended into the time dimension, either by modeling time dependence directly, or, in the field-based approaches, by modeling spacetime structures, or, in the stochastic geometry approach, by including the time t in the mark. An example is a spatio-temporal graph-cut-based method that introduces directed infinite links connecting pixels in successive image frames in order to impose constraints on shape change.

3.2. Image modeling

The key issue that arises in modeling the high-resolution image data generated in Ayin's applications, is how to include large-scale spatial, temporal, and spectral dependencies. Ayin investigates approaches to the construction of image models including such dependencies. A central question in the use of such models is how to deal with the large data volumes arising both from the large size of the images involved, and the existence of large image collections. Fortunately, high dimensionality typically implies data redundancy, and so Ayin investigates methods for reducing the dimensionality of the data and describing the spatial, temporal, and spectral dependencies in ways that allow efficient data processing.

3.2.1. Markov random fields with long-range and higher-order interactions

One way to achieve large-scale dependencies is via explicit long-range interactions. MRFs with long-range interactions are also used in Ayin to model geometric spatial and temporal structure, and the techniques and algorithms developed there will also be applied to image modeling. In modeling image structures, however, other important properties, such as control of the relative phase of Fourier components, and spontaneous symmetry breaking, may also be required. These properties can only be achieved by higher-order interactions. These require specific techniques and algorithms, which are developed in parallel with the models.

3.2.2. Hierarchical models

Another way to achieve long-range dependencies is via shorter range interactions in a hierarchical structure. Ayin works on the development of models defined as a set of hierarchical image partitions represented by a binary forest structure. Key sub-problems include the development of multi-feature models of image regions as an ensemble of spectral, texture, geometrical, and classification features, where we search to optimize the ratio between discrimination capacity of the feature space and dimensionality of this space; and the development of similarity criteria between image regions, which would compute distances between regions in the designed feature space and would be data-driven and scale-independent. One way to proceed in the latter case consists in developing a composite kernel method, which would seek to project multi-feature data into a new space, where regions from different thematic categories become linearly or almost linearly separable. This involves developing kernel functions as a combination of basis kernels, and estimating kernel-based support vector machine parameters.

3.3. Algorithms

Computational techniques are necessary in order to extract the information of interest from the models. In addition, most models contain 'nuisance parameters', including the structure of the models themselves, that must be dealt with in some way. Ayin is interested in adapting and developing methods for solving these problems in cases where existing methods are inadequate.

3.3.1. Nuisance parameters and parameter estimation

In order to render the models operational, it is crucial to find some way to deal with nuisance parameters. In a Bayesian framework, the parameters must be integrated out. Unfortunately, this is usually very difficult. Fortunately, Laplace's method often provides a good approximation, in many cases being equivalent to classical maximum likelihood parameter estimation. Even these problems are not easy to solve, however, when dealing with complex, structured models. This is particularly true when it is necessary to estimate simultaneously both the information of interest and the parameters. Ayin is developing a number of different methods for dealing with nuisance parameters, corresponding to the diversity of modeling approaches.

3.3.2. Information extraction

Extracting the information of interest from any model involves making estimates based on various criteria, for example MAP, MPM, or MMSE. Computing these estimates often requires the solution of hard optimization problems. The complexity of many of the models to be developed within Ayin means that off-the-shelf algorithms and current techniques are often not capable of solving these problems. Ayin develops a diversity of algorithmic approaches adapted to the particular models developed.

LEAR Project-Team

3. Research Program

3.1. Image features and descriptors and robust correspondence

Reliable image features are a crucial component of any visual recognition system. Despite much progress, research is still needed in this area. Elementary features and descriptors suffice for a few applications, but their lack of robustness and invariance puts a heavy burden on the learning method and the training data, ultimately limiting the performance that can be achieved. More sophisticated descriptors allow better interclass separation and hence simpler learning methods, potentially enabling generalization from just a few examples and avoiding the need for large, carefully engineered training databases.

The feature and descriptor families that we advocate typically share several basic properties:

- Locality and redundancy: For resistance to variable intra-class geometry, occlusions, changes of viewpoint and background, and individual feature extraction failures, descriptors should have relatively small spatial support and there should be many of them in each image. Schemes based on collections of image patches or fragments are more robust and better adapted to object-level queries than global whole-image descriptors. A typical scheme thus selects an appropriate set of image fragments, calculates robust appearance descriptors over each of these, and uses the resulting collection of descriptors as a characterization of the image or object (a "bag-of-features" approach see below).
- **Photometric and geometric invariance:** Features and descriptors must be sufficiently invariant to changes of illumination and image quantization and to variations of local image geometry induced by changes of viewpoint, viewing distance, image sampling and by local intra-class variability. In practice, for local features geometric invariance is usually approximated by invariance to Euclidean, similarity or affine transforms of the local image.
- **Repeatability and salience:** Fragments are not very useful unless they can be extracted reliably and found again in other images. Rather than using dense sets of fragments, we often focus on local descriptors based at particularly salient points "keypoints" or "points of interest". This gives a sparser and thus potentially more efficient representation, and one that can be constructed automatically in a preprocessing step. To be useful, such points must be accurately relocalizable in other images, with respect to both position and scale.
- **Informativeness:** Notwithstanding the above forms of robustness, descriptors must also be informative in the sense that they are rich sources of information about image content that can easily be exploited in scene characterization and object recognition tasks. Images contain a lot of variety so high-dimensional descriptions are required. The useful information should also be manifest, not hidden in fine details or obscure high-order correlations. In particular, image formation is essentially a spatial process, so relative position information needs to be made explicit, e.g. using local feature or context style descriptors.

Partly owing to our own investigations, features and descriptors with some or all of these properties have become popular choices for visual correspondence and recognition, particularly when large changes of viewpoint may occur. One notable success to which we contributed is the rise of "bag-of-features" methods for visual object recognition. These characterize images by their (suitably quantized or parametrized) global distributions of local descriptors in descriptor space. The representation evolved from texton based methods in texture analysis. Despite the fact that it does not (explicitly) encode much spatial structure, it turns out to be surprisingly powerful for recognizing more structural object categories.

Our current research on local features is focused on creating detectors and descriptors that are better adapted to describe object classes, on incorporating spatial neighborhood and region constraints to improve informativeness relative to the bag-of-features approach, and on extending the scheme to cover different kinds of locality. Current research also includes the development and evaluation of local descriptors for video, and associated detectors for spatio-temporal content.

3.2. Statistical modeling and machine learning for image analysis

We are interested in learning and statistics mainly as technologies for attacking difficult vision problems, so we take an eclectic approach, using a broad spectrum of techniques ranging from classical statistical generative and discriminative models to modern kernel, margin and boosting based approaches. Hereafter we enumerate a set of approaches that address some problems encountered in this context.

- Parameter-rich models and limited training data are the norm in vision, so overfitting needs to be estimated by cross-validation, information criteria or capacity bounds and controlled by regularization, model and feature selection.
- Visual descriptors tend to be high-dimensional and redundant, so we often preprocess data to reduce it to more manageable terms using dimensionality reduction techniques including PCA and its non-linear variants, latent structure methods such as Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation (LDA), and manifold methods such as Isomap/LLE.
- To capture the shapes of complex probability distributions over high-dimensional descriptor spaces, we either fit mixture models and similar structured semi-parametric probability models, or reduce them to histograms using vector quantization techniques such as K-means or latent semantic structure models.
- Missing data is common owing to unknown class labels, feature detection failures, occlusions and intra-class variability, so we need to use data completion techniques based on variational methods, belief propagation or MCMC sampling.
- Weakly labeled data is also common for example one may be told that a training image contains an object of some class, but not where the object is in the image – and variants of unsupervised, semi-supervised and co-training are useful for handling this. In general, it is expensive and tedious to label large numbers of training images so less supervised data mining style methods are an area that needs to be developed.
- On the discriminative side, machine learning techniques such as Support Vector Machines, Relevance Vector Machines, and Boosting, are used to produce flexible classifiers and regression methods based on visual descriptors.
- Visual categories have a rich nested structure, so techniques that handle large numbers of classes and nested classes are especially interesting to us.
- Images and videos contain huge amounts of data, so we need to use algorithms suited to large-scale learning problems.

3.3. Visual recognition and content analysis

Current progress in visual recognition shows that combining advanced image descriptors with modern learning and statistical modeling techniques is producing significant advances. We believe that, taken together and tightly integrated, these techniques have the potential to make visual recognition a mainstream technology that is regularly used in applications ranging from visual navigation through image and video databases to human-computer interfaces and smart rooms.

The recognition strategies that we advocate make full use of the robustness of our invariant image features and the richness of the corresponding descriptors to provide a vocabulary of base features that already goes a long way towards characterizing the category being recognized. Trying to learn everything from scratch using simpler, non-invariant features would require far too much data: good learning cannot easily make up for bad features. The final classifier is thus responsible "only" for extending the base results to larger amounts of intra-class and viewpoint variation and for capturing higher-order correlations that are needed to fine tune the performance.

That said, learning is not restricted to the classifier and feature sets can not be designed in isolation. We advocate an end-to-end engineering approach in which each stage of the processing chain combines learning with well-informed design and exploitation of statistical and structural domain models. Each stage is thoroughly tested to quantify and optimize its performance, thus generating or selecting robust and informative features, descriptors and comparison metrics, squeezing out redundancy and bringing out informativeness.

LINKMEDIA Project-Team

3. Research Program

3.1. Scientific background

LINKMEDIA is a multidisciplinary research team, with multimedia data as the main object of study. We are guided by the data and their specificity—semantically interpretable, heterogeneous and multimodal, available in large amounts, unstructured and disconnected—, as well as by the related problems and applications.

With multimedia data at the center, orienting our choices of methods and algorithms and serving as a basis for experimental validation, the team is directly contributing to the following scientific fields:

- multimedia: content-based analysis; multimodal processing and fusion; multimedia applications;
- computer vision: compact description of images; object and event detection;
- natural language processing: topic segmentation; information extraction;
- information retrieval: high-dimensional indexing; approximate k-nn search; efficient set comparison;

LINKMEDIA also takes advantage of advances in the following fields, adapting recent developments to the multimedia area:

- signal processing image processing; compression;
- machine learning deep architectures; structured learning; adversarial learning;
- security data encryption; differential privacy;
- data mining time series mining and alignment; pattern discovery; knowledge extraction;

3.2. Workplan

Research activities in LINKMEDIA are organized along three major lines of research which build upon the scientific domains already mentioned.

3.2.1. Unsupervised motif discovery

As an alternative to supervised learning techniques, unsupervised approaches have emerged recently with the goal of discovering directly patterns and events of interest from the data, in a totally unsupervised manner. In the absence of prior knowledge on what we are interested in, meaningfulness can be judged based on one of three main criteria: unexpectedness, saliency and recurrence. This last case posits that repeating patterns, known as motifs, are potentially meaningful, leading to recent work on the unsupervised discovery of motifs in multimedia data [77], [75], [76].

LINKMEDIA seeks to *develop unsupervised motif discovery approaches which are both accurate and scalable*. In particular, we consider the discovery of repeating objects in image collections and the discovery of repeated sequences in video and audio streams. Research activities are organized along the following lines:

- developing the scientific basis for scalable motif discovery: sparse histogram representations; efficient co-occurrence counting; geometry and time aware indexing schemes;
- designing and evaluating accurate and scalable motif discovery algorithms applied to a variety of multimedia content: exploiting efficient geometry or time aware matching functions; fast approximate DTW; symbolic representations of multimedia data, in conjunction with existing symbolic data mining approaches;
- developing methodology for the interpretation, exploitation and evaluation of motif discovery algorithms in various use-cases: image classification; video stream monitoring; transcript-free NLP for spoken document;

3.2.2. Describing and structuring

Content-based analysis has received a lot of attention from the early days of multimedia, with an extensive use of supervised machine learning for all modalities [78], [72]. Progress in large scale entity and event recognition in multimedia content has made available general purpose approaches able to learn from very large data sets and performing fairly decently in a large number of cases. Current solutions are however limited to simple, homogeneous, information and can hardly handle structured information such as hierarchical descriptions, tree-structured or nested concepts.

LINKMEDIA aims at *expanding techniques for multimedia content modeling, event detection and structure analysis.* The main transverse research lines that LINKMEDIA will develop are as follows:

- context-aware content description targeting (homogeneous) collections of multimedia data: latent variable discovery; deep feature learning; motif discovery;
- secure description to enable privacy and security aware multimedia content processing: everaging encryption and diversity; exploring adversarial machine learning in a multimedia context; privacy-oriented image processing;
- multilevel modeling with a focus on probabilistic modeling of structured multimodal data: multiple kernels; structured machine learning; conditionnal random fields;

3.2.3. Linking

Creating explicit links between media content items has been considered on different occasions, with the goal of seeking and discovering information by browsing, as opposed to information retrieval via ranked lists of relevant documents. Content-based link creation has been initially addressed in the hypertext community for well-structured texts [71] and was recently extended to multimedia content [79], [74], [73]. The problem of organizing collections with links remains mainly unsolved for large heterogeneous collections of unstructured documents, with many issues deserving attention: linking at a fine semantic grain; selecting relevant links; characterizing links; evaluating links; etc.

LINKMEDIA targets pioneering research on media linking by **developing scientific ground, methodology and technology for content-based media linking** directed to applications exploiting rich linked content such as navigation or recommendation. Contributions are concentrated along the following lines:

- algorithmic of linked media for content-based link authoring in multimedia collections: time-aware graph construction; multimodal hypergraphs; large scale k-nn graphs;
- link interpretation and characterization to provide links semantics for interpretability: text alignment; entity linking; intention vs. extension;
- linked media usage and evaluation: information retrieval; summarization; data models for navigation; link prediction;

MAGRIT Project-Team

3. Research Program

3.1. Matching and 3D tracking

One of the most basic problems currently limiting AR applications is the registration problem. The objects in the real and virtual worlds must be properly aligned with respect to each other, or the illusion that the two worlds coexist will be compromised.

As a large number of potential AR applications are interactive, real time pose computation is required. Although the registration problem has received a lot of attention in the computer vision community, the problem of real-time registration is still far from being a solved problem, especially for unstructured environments. Ideally, an AR system should work in all environments, without the need to prepare the scene ahead of time, independently of the variations in experimental conditions (lighting, weather condition,...) which may exist between the application and the time the model of the scene was acquired.

For several years, the MAGRIT project has been aiming at developing on-line and marker-less methods for camera pose computation. The main difficulty with on-line tracking is to ensure robustness of the process over time. For off-line processes, robustness is achieved by using spatial and temporal coherence of the considered sequence through move-matching techniques. To get robustness for open-loop systems, we have investigated various methods, ranging from statistical methods to the use of hybrid camera/sensor systems. Many of these methods are dedicated to piecewise-planar scenes and combine the advantage of move-matching methods and model-based methods. In order to reduce statistical fluctuations in viewpoint computation, which lead to unpleasant jittering or sliding effects, we have also developed model selection techniques which allow us to noticeably improve the visual impression and to reduce drift over time. Another line of research which has been considered in the team to improve the reliability and the robustness of pose algorithms is to combine the camera with another form of sensor in order to compensate for the shortcomings of each technology [1].

The success of pose computation over time largely depends on the quality of the matching stage at the initialization stage. Indeed, the current image may be very different from the appearances described in the model both on the geometrical and the photometric sides. Research is thus conducted in the team on the use of probabilistic methods to establish robust correspondences of features. The use of *a contrario* has been investigated to achieve this aim [6]. We especially addressed the complex case of matching in scenes with repeated patterns which are common in urban scenes. We are also investigating the problem of matching images taken from very different viewpoints which is central for the re-localization issue in AR. Within the context of a scene model acquired with structure from motion techniques, we are currently investigating the use of viewpoint simulation in order to allow successful pose computation even if the considered image is far from the positions used to build the model.

Recently, the issue of tracking deformable objects has gained importance in the team. This topic is mainly addressed in the context of medical applications through the design of bio-mechanical models guided by visual features [2]. We have successfully investigated the use of such models in laparoscopy, with a vascularized model of the liver and with an hyper-elastic model for tongue tracking in US images. However, these results have been obtained so far in relatively controlled environments, with non pathological cases. When clinical routine applications are to be considered, many parameters and considerations need to be taken into account. Among the problems that need to be solved are the model representation, the specification of the range of physical parameters and the need to enforce the robustness of the tracking with respect to outliers, which are common in the interventional context...

3.2. Image-based Modeling

Modeling the scene is a fundamental issue in AR for many reasons. First, pose computation algorithms often use a model of the scene or at least some 3D knowledge on the scene. Second, effective AR systems require a model of the scene to support interactions between the virtual and the real objects such as occlusions, lighting reflexions, contacts...in real time. Unlike pose computation which has to be computed in a sequential way, scene modeling can be considered as an off-line or an on-line problem depending on the requirements of the targeted application. Interactive in-situ modeling techniques have thus been developed with the aim to enable the user to define what is relevant at the time the model is being built during the application. On the other hand, we also proposed off-line multimodal techniques, mainly dedicated to AR medical applications, with the aim to obtain realistic and possibly dynamic models of organs suitable for real time simulation.

In-situ modeling

In situ modeling allows a user to directly build a 3D model of his/her surrounding environment and verify the geometry against the physical world in real time. This is of particular interest in using AR in unprepared environments or building scenes that have an ephemeral existences (e.g. a film set) or cannot be accessed frequently (e.g. a nuclear power plant). We have especially investigated two systems, one based on the image content only and the other based on multiple data coming from different sensors (camera, inertial measurement unit, laser rangefinder). Both systems use the camera-mouse principle [5] (i.e. interactions are performed by aiming at the scene through a video camera) and both systems have been designed to acquire polygonal textured models, which are particularly useful for camera tracking and object insertion in AR.

Multimodal modeling for real time simulation

With respect to classical AR applications, AR in medical context differs in the nature and the size of the data which are available: a large amount of multimodal data is acquired on the patient or possibly on the operating room through sensing technologies or various image acquisitions. The challenge is to analyze these data, to extract interesting features, to fuse and to visualize this information in a proper way. Within the MAGRIT team, we address several key problems related to medical augmented environments. Being able to acquire multimodal data which are temporally synchronized and spatially registered is the first difficulty we face when considering medical AR. Another key requirement of AR medical systems is the availability of 3D (+t) models of the organ/patient built from images, to be overlaid onto the users's view of the environment.

Methods for multimodal modeling are strongly dependent on the image modalities and the organ specificities. We thus only address a restricted number of medical applications –interventional neuro-radiology, laparoscopic surgery, Augmented Head project– for which we have a strong expertise and close relationships with motivated clinicians. In these applications, our aim is to produce realistic models and then realistic simulations of the patient to be used for surgeon's training or patient's re-education/learning.

One of our main applications is about neuroradiology. For the last 20 years, we have been working in close collaboration with the neuroradiology laboratory (CHU-University Hospital of Nancy) and GE Healthcare. As several imaging modalities are now available in a intraoperative context (2D and 3D angiography, MRI, ...), our aim is to develop a multi-modality framework to help therapeutic decision and treatment.

We have mainly been interested in the effective use of a multimodality framework in the treatment of arteriovenous malformations (AVM) and aneurysms in the context of interventional neuroradiology. The goal of interventional gestures is to guide endoscopic tools towards the pathology with the aim to perform embolization of the AVM or to fill the aneurysmal cavity by placing coils. We have proposed and developed multimodality and augmented reality tools which make various image modalities (2D and 3D angiography, fluoroscopic images, MRI, ...) cooperate in order to help physicians in clinical routine. One of the successes of this collaboration is the implementation of the concept of *augmented fluoroscopy*, which helps the surgeon to guide endoscopic tools towards the pathology. Lately, in cooperation with the EPC SHACRA, we have proposed new methods for implicit modeling of the aneurysms with the aim of obtaining near real time simulation of the coil deployment in the aneurysm [8]. These works open the way towards near real time patient-based simulations of interventional gestures both for training or for planning.

3.3. Parameter estimation

Many problems in computer vision or image analysis can be formulated in terms of parameter estimation from image-based measurements. This is the case of many problems addressed in the team such as pose computation or image-guided estimation of 3D deformable models... Often traditional robust techniques which take into account the covariance on the measurements are sufficient to achieve reliable parameter estimation. However, depending on their number, their spatial distribution and the uncertainty on these measurements, some problems are very sensitive to noise and there is a considerable interest in considering how parameter estimation could be improved if additional information on the noise is available. Another common problem in our field of research is the need to estimate constitutive parameters of the models, such as (bio)-mechanical parameters for instance. Direct measurement methods are destructive and elaborating image based methods is thus highly desirable. Besides designing appropriate estimation algorithms, a fundamental question is to understand what group of parameters under study can be reliably estimated from a given experimental setup.

This line of research is relatively new in the team. One of the challenges is to improve image-based parameter estimation techniques considering sensor noise and specific image formation models. In a collaboration with the Pascal Institute (Clermont Ferrand), metrological performance enhancement for experimental solid mechanics has been addressed through the development of dedicated signal processing methods [12]. In the medical field, specific methods based on an adaptive evolutionary optimization strategy have been designed for estimating respiratory parameters [7]. In the context of designing realistic simulators for neuroradiology, we are now considering how parameters involved in the simulation could be adapted to fit real images.

MORPHEO Project-Team

3. Research Program

3.1. Shape Acquisition

Multiple camera setups allow to acquire shapes, i.e. geometry, as well as their appearances, i.e. photometry, with a reasonable level of precision. However fundamental limitations still exist, in particular today's stateof-the-art approaches do not fully exploit the redundancy of information over temporal sequences of visual observations. Despite an increasing interest of the computer vision communities in the past years, the problem is still far from solved other than in specific situations with restrictive assumptions and configurations. Our goal in this research axis is to open the acquisition process to more general assumptions, e.g. no specific lighting or background conditions, scenes with evolving topologies, , and fully leverage temporal aspects of the acquisition process.

3.2. Bayesian Inference

Acquisition of 4D Models can often be conveniently formulated as a Bayesian estimation or learning problem. Various generative and graphical models can be proposed for the problems of occupancy estimation, 3D surface tracking in a time sequence, and motion segmentation. The idea of these generative models is to predict the noisy measurements (e.g. pixel values, measured 3D points or speed quantities) from a set of parameters describing the unobserved scene state, which in turn can be estimated using Bayes' rule to solve the inverse problem. The advantages of this type of modeling are numerous, as they enable to model the noisy relationships between observed and unknown quantities specific to the problem, deal with outliers, and allow to efficiently account for various types of priors about the scene and its semantics. Sensor models for different modalities can also easily be seamlessly integrated and jointly used, which remains central to our goals.

Since the acquisition problems often involve a large number of variables, a key challenge is to exhibit models which correctly account for the observed phenoma, while keeping reasonable estimation times, sometimes with a real-time objective. Maximum likelihood / maximum a posteriori estimation and approximate inference techniques, such as Expectation Maximization, Variational Bayesian inference, or Belief Propagation, are useful tools to keep the estimation tractable. While 3D acquisition has been extensively explored, the research community faces many open challenges in how to model and specify more efficient priors for 4D acquisition and temporal evolution.

3.3. Shape Analysis

Shape analysis has received much attention from the scientific community and recovering the intrinsic nature of shapes is currently an active research domain. Of particular interest is the study of human and animal shapes and their associated articulated underlying structures, i.e. skeletons, since applications are numerous, either in the entertainment industry or for medical applications, among others. Our main goals in this research axis are : the understanding of a shape's global structure, and a pose-independent classification of shapes.

3.4. Shape Tracking

Recovering the temporal evolution of a deformable surface is a fundamental task in computer vision, with a large variety of applications ranging from the motion capture of articulated shapes, such as human bodies, to the deformation of complex surfaces such as clothes. Methods that solve for this problem usually infer surface evolutions from motion or geometric cues. This information can be provided by motion capture systems or one of the numerous available static 3D acquisition modalities. In this inference, methods are faced with the challenging estimation of the time-consistent deformation of a surface from cues that can be sparse and noisy. Such an estimation is an ill posed problem that requires prior knowledge on the deformation to be introduced in order to limit the range of possible solutions. Our goal is to devise robust and accurate solutions based on new deformation models that fully exploit the geometric and photometric information available.

3.5. Motion Modeling

Multiple views systems can significantly change the paradigm of motion capture. Traditional motion capture systems provide 3D trajectories of a sparse set of markers fixed on the subject. These trajectories can be transformed into motion parameters on articulated limbs with the help of prior models of the skeletal structure. However, such skeletal models are mainly robotical abstractions that do not describe the true morphology and anatomical motions of humans and animals. On the other hand, 4D models (temporally consistent mesh sequences) provide dense motion information on body's shape while requiring less prior assumption. They represent therefore a new rich source of information on human and animal shape movements. The analysis of such data has nevertheless received few attention yet and tools still need to be developed which is our objective.

PERCEPTION Project-Team

3. Research Program

3.1. Audio-Visual Scene Analysis

From 2006 to 2009, R. Horaud was the scientific coordinator of the collaborative European project POP (Perception on Purpose), an interdisciplinary effort to understand visual and auditory perception at the crossroads of several disciplines (computational and biological vision, computational auditory analysis, robotics, and psychophysics). This allowed the PERCEPTION team to launch an interdisciplinary research agenda that has been very active for the last five years. There are very few teams in the world that gather scientific competences spanning computer vision, audio signal processing, machine learning and humanrobot interaction. The fusion of several sensorial modalities resides at the heart of the most recent biological theories of perception. Nevertheless, multi-sensor processing is still poorly understood from a computational point of view. In particular and so far, audio-visual fusion has been investigated in the framework of speech processing using close-distance cameras and microphones. The vast majority of these approaches attempt to model the temporal correlation between the auditory signals and the dynamics of lip and facial movements. Our original contribution has been to consider that audio-visual localization and recognition are equally important. We have proposed to take into account the fact that the audio-visual objects of interest live in a three-dimensional physical space and hence we contributed to the emergence of audio-visual scene analysis as a scientific topic in its own right. We proposed several novel statistical approaches based on supervised and unsupervised mixture models. The conjugate mixture model (CMM) is an unsupervised probabilistic model that allows to cluster observations from different modalities (e.g., vision and audio) living in different mathematical spaces [9], [16]. We thoroughly investigated CMM, provided practical resolution algorithms and studied their convergence properties. We developed several methods for sound localization using two or more microphones [15]. The Gaussian locally-linear model (GLLiM) is a partially supervised mixture model that allows to map high-dimensional observations (audio, visual, or concatenations of audio-visual vectors) onto low-dimensional manifolds with a partially known structure [19]. This model is particularly well suited for perception because it encodes both observable and unobservable phenomena. A variant of this model, namely probabilistic piecewise affine mapping has also been proposed and successfully applied to the problem of sound-source localization and separation [18]. The European project HUMAVIPS (2010-2013), coordinated by R. Horaud, applied audio-visual scene analysis to human-robot interaction.

3.2. Binocular Vision

Stereoscopy is one of the most studied topics in biological and computer vision. Nevertheless, classical approaches of addressing this problem fail to integrate eye/camera vergence. From a geometric point of view, the integration of vergence is difficult because one has to re-estimate the epipolar geometry at every new eye/camera rotation. From an algorithmic point of view, it is not clear how to combine depth maps obtained with different eyes/cameras relative orientations. Therefore, we addressed the more general problem of binocular vision that combines the low-level eye/camera geometry, sensor rotations, and practical algorithms based on global optimization [4], [11]. We studied the link between mathematical and computational approaches to stereo (global optimization and Markov random fields) and the brain plausibility of some of these approaches: indeed, we proposed an original mathematical model for the complex cells in visual-cortex areas V1 and V2 that is based on steering Gaussian filters and that admits simple solutions [5]. This addresses the fundamental issue of how local image structure is represented in the brain/computer and how this structure is used for estimating a dense disparity field. Therefore, the main originality of our work is to address both computational and biological issues within a unifying model of binocular vision. Another equally important problem that still remains to be solved is how to integrate binocular depth maps over time. Recently, we have addressed this problem and proposed a semi-global optimization framework that starts with sparse yet reliable matches and proceeds with propagating them over both space and time. The concept of seed-match propagation has then been extended to TOF-stereo fusion.

3.3. Binaural Hearing

Audio-visual fusion algorithms necessitate that the two modalities are represented in the same mathematical space. Binaural hearing allows to extract sound-source localization (SSL) information from the acoustic signals recorded with two microphones. We have developed several methods, that perform sound localization in the temporal and the spectral domains. If a direct path is assumed, one can exploit the time difference of arrival (TDOA) between two microphones to recover the position of the sound source with respect to the position of the two microphones. The solution is not unique in this case, the sound source lies onto a 2D manifold. However, if one further assumes that the sound source lies in a horizontal plane, it is then possible to extract the azimuth. We used this approach to predict possible sound locations in order to estimate the direction of a speaker [16]. We also developed a geometric formulation and we showed that with four noncoplanar microphones the azimuth and elevation of a single source can be estimated without ambiguity [15]. We also investigated SSL in the spectral domain. This exploits the filtering effects of the head related transfer function (HRTF): there is a different HRTF for the left and right microphones. The interaural spectral features, namely the ILD (interaural level difference) and IPD (interaural phase difference) can be extracted from the short-time Fourier transforms of the two signals. The sound direction is encoded in these interaural features but it is not clear how to make SSL explicit in this case. We proposed a supervised learning formulation that estimates a mapping from interaural spectral features (ILD and IPD) to source directions using two different setups: audio-motor learning [18] and audio-visual learning [24]. Currently we generalize this approach to an arbitrary number of microphones.

3.4. Visual Reconstruction With Multiple Color and Depth Cameras

For the last decade, one of the most active topics in computer vision has been the visual reconstruction of objects, people, and complex scenes using a multiple-camera setup. The PERCEPTION team has pioneered this field and by 2006 several team members published seminal papers in the field. Recent work has concentrated onto the robustness of the 3D reconstructed data using probabilistic outlier rejection techniques combined with algebraic geometry principles and linear algebra solvers [14]. Subsequently, we proposed to combine 3D representations of shape (meshes) with photometric data [12]. The originality of this work was to represent photometric information as a scalar function over a discrete Riemannian manifold, thus *generalizing image analysis to mesh and graph analysis*. Manifold equivalents of local-structure detectors and descriptors were developed [13]. The outcome of this pioneering work has been twofold: the formulation of a new research topic now addressed by several teams in the world, and allowed us to start a three year collaboration with Samsung Electronics. We developed the novel concept of *mixed camera systems* combining high-resolution color cameras with low-resolution depth cameras [34], [21], [20]. Together with our start-up company 4D Views Solutions and with Samsung, we developed the first practical depth-color multiple-camera multiple-PC system and the first algorithms to reconstruct high-quality 3D content.

3.5. Registration, Tracking and Recognition of People and Actions

The analysis of articulated shapes has challenged standard computer vision algorithms for a long time. There are two difficulties associated with this problem, namely how to represent articulated shapes and how to devise robust registration and tracking methods. We addressed both these difficulties and we proposed a novel kinematic representation that integrates concepts from robotics and from the geometry of vision. In 2008 we proposed a method that parameterizes the occluding contours of a shape with its intrinsic kinematic parameters, such that there is a direct mapping between observed image features and joint parameters [10]. This deterministic model has been motivated by the use of 3D data gathered with multiple cameras. However, this method was not robust to various data flaws and could not achieve state-of-the-art results on standard dataset. Subsequently, we addressed the problem using probabilistic generative models. We formulated the problem of articulated-pose estimation as a maximum-likelihood with missing data and we devised several tractable algorithms [8], [7]. We proposed several expectation-maximization procedures applied to various articulated shapes: human bodies, hands, etc. In parallel, we proposed to segment and register articulated shapes represented with graphs by embedding these graphs using the spectral properties of graph Laplacians

[17]. This turned out to be a very original approach that has been followed by many other researchers in computer vision and computer graphics.

PRIMA Project-Team

3. Research Program

3.1. Situation Models for Context Aware Systems and Services

Context Awareness, Smart Spaces

3.1.1. Summary

Over the last few years, the PRIMA group has pioneered the use of context aware observation of human activity in order to provide non-disruptive services. In particular, we have developed a conceptual framework for observing and modeling human activity, including human-to-human interaction, in terms of situations.

Encoding activity in situation models provides a formal representation for building systems that observe and understand human activity. Such models provide scripts of activities that tell a system what actions to expect from each individual and the appropriate behavior for the system. A situation model acts as a non-linear script for interpreting the current actions of humans, and predicting the corresponding appropriate and inappropriate actions for services. This framework organizes the observation of interaction using a hierarchy of concepts: scenario, situation, role, action and entity. Situations are organized into networks, with transition probabilities, so that possible next situations may be predicted from the current situation.

Current technology allows us to handcraft real-time systems for a specific services. The current hard challenge is to create a technology to automatically learn and adapt situation models with minimal or no disruption of human activity. An important current problem for the PRIMA group is the adaptation of Machine Learning techniques for learning situation models for describing the context of human activity.

3.1.2. Detailed Description

Context Aware Systems and Services require a model for how humans think and interact with each other and their environment. Relevant theories may be found in the field of cognitive science. Since the 1980's, Philippe Johnson-Laird and his colleagues have developed an extensive theoretical framework for human mental models [45], [46]. Johnson Laird's "situation models", provide a simple and elegant framework for predicting and explaining human abilities for spatial reasoning, game playing strategies, understanding spoken narration, understanding text and literature, social interaction and controlling behavior. While these theories are primarily used to provide models of human cognitive abilities, they are easily implemented in programmable systems [34], [33].

In Johnson-Laird's Situation Models, a situation is defined as a configuration of relations over entities. Relations are formalized as N-ary predicates such as beside or above. Entities are objects, actors, or phenomena that can be reliably observed by a perceptual system. Situation models provide a structure for organizing assemblies of entities and relations into a network of situations. For cognitive scientists, such models provide a tool to explain and predict the abilities and limitations of human perception. For machine perception systems, situation models provide the foundation for assimilation, prediction and control of perception. A situation model identifies the entities and relations that are relevant to a context, allowing the perception system to focus limited computing and sensing resources. The situation model can provide default information about the identities of entities and the configuration of relations, allowing a system to continue to operate when perception systems fail or become unreliable. The network of situations provides a mechanism to predict possible changes in entities or their relations. Finally, the situation model provides an interface between perception and human centered systems and services. On the one hand, changes in situations can provide events that drive service behavior. At the same time, the situation model can provide a default description of the environment that allows human-centered services to operate asynchronously from perceptual systems.

We have developed situation models based on the notion of a script. A theatrical script provides more than dialog for actors. A script establishes abstract characters that provide actors with a space of activity for expression of emotion. It establishes a scene within which directors can layout a stage and place characters. Situation models are based on the same principle.

A script describes an activity in terms of a scene occupied by a set of actors and props. Each actor plays a role, thus defining a set of actions, including dialog, movement and emotional expressions. An audience understands the theatrical play by recognizing the roles played by characters. In a similar manner, a user service uses the situation model to understand the actions of users. However, a theatrical script is organised as a linear sequence of scenes, while human activity involves alternatives. In our approach, the situation model is not a linear sequence, but a network of possible situations, modeled as a directed graph.

Situation models are defined using roles and relations. A role is an abstract agent or object that enables an action or activity. Entities are bound to roles based on an acceptance test. This acceptance test can be seen as a form of discriminative recognition.

There is no generic algorithm capable of robustly recognizing situations from perceptual events coming from sensors. Various approaches have been explored and evaluated. Their performance is very problem and environment dependent. In order to be able to use several approaches inside the same application, it is necessary to clearly separate the specification of scenario and the implementation of the program that recognizes it, using a Model Driven Engineering approach. The transformation between a specification and its implementation must be as automatic as possible. We have explored three implementation models :

- *Synchronized petri net*. The Petri Net structure implements the temporal constraints of the initial context model (Allen operators). The synchronisation controls the Petri Net evolution based on roles and relations perception. This approach has been used for the Context Aware Video Acquisition application.
- *Fuzzy Petri Nets*. The Fuzzy Petri Net naturally expresses the smooth changes of activity states (situations) from one state to another with gradual and continuous membership function. Each fuzzy situation recognition is interpreted as a new proof of the recognition of the corresponding context. Proofs are then combined using fuzzy integrals. This approach has been used to label videos with a set of predefined scenarios (context).
- *Hidden Markov Model.* This probabilistic implementation of the situation model integrates uncertainty values that can both refer to confidence values for events and to a less rigid representation of situations and situations transitions. This approach has been used to detect interaction groups and to determinate who is interacting with whom and thus which interaction groups are formed.

Currently situation models are constructed by hand. Our challenge is to provide a technology by which situation models may be adapted and extended by explicit and implicit interaction with the user. An important aspect of taking services to the real world is an ability to adapt and extend service behaviour to accommodate individual preferences and interaction styles. Our approach is to adapt and extend an explicit model of user activity. While such adaptation requires feedback from users, it must avoid or at least minimize disruption. We are currently exploring reinforcement learning approaches to solve this problem.

With a reinforcement learning approach, the system is rewarded and punished by user reactions to system behaviours. A simplified stereotypic interaction model assures a initial behaviour. This prototypical model is adapted to each particular user in a way that maximizes its satisfaction. To minimize distraction, we are using an indirect reinforcement learning approach, in which user actions and consequences are logged, and this log is periodically used for off-line reinforcement learning to adapt and refine the context model.

Adaptations to the context model can result in changes in system behaviour. If unexpected, such changes may be disturbing for the end users. To keep user's confidence, the learned system must be able to explain its actions. We are currently exploring methods that would allow a system to explain its model of interaction. Such explanation is made possible by explicit describing context using situation models.

The PRIMA group has refined its approach to context aware observation in the development of a process for real time production of a synchronized audio-visual stream based using multiple cameras, microphones and other information sources to observe meetings and lectures. This "context aware video acquisition system" is an automatic recording system that encompasses the roles of both the cameraman and the director. The system determines the target for each camera, and selects the most appropriate camera and microphone to record the current activity at each instant of time. Determining the most appropriate camera and microphone requires a model of activities of the actors, and an understanding of the video composition rules. The model of the activities of the actors is provided by a "situation model" as described above.

In collaboration with France Telecom, we have adapted this technology to observing social activity in domestic environments. Our goal is to demonstrate new forms of services for assisted living to provide non-intrusive access to care as well to enhance informal contact with friends and family.

3.2. Service Oriented Architectures for Intelligent Environments

Software Architecture, Service Oriented Computing, Service Composition, Service Factories, Semantic Description of Functionalities

Intelligent environments are at the confluence of multiple domains of expertise. Experimenting within intelligent environments requires combining techniques for robust, autonomous perception with methods for modeling and recognition of human activity within an inherently dynamic environment. Major software engineering and architecture challenges include accomodation of a heterogeneous of devices and software, and dynamically adapting to changes human activity as well as operating conditions.

The PRIMA project explores software architectures that allow systems to be adapt to individual user preferences. Interoperability and reuse of system components is fundamental for such systems. Adopting a shared, common Service Oriented Architecture (SOA) architecture has allowed specialists from a variety of subfields to work together to build novel forms of systems and services.

In a service oriented architecture, each hardware or software component is exposed to the others as a "service". A service exposes its functionality through a well defined interface that abstracts all the implementation details and that is usually available through the network.

The most commonly known example of a service oriented architecture are the Web Services technologies that are based on web standards such as HTTP and XML. Semantic Web Services proposes to use knowledge representation methods such as ontologies to give some semantic to services functionalities. Semantic description of services makes it possible to improve the interoperability between services designed by different persons or vendors.

Taken out of the box, most SOA implementations have some "defects" preventing their adoption. Web services, due to their name, are perceived as being only for the "web" and also as having a notable performance overhead. Other implementations such as various propositions around the Java virtual machine, often requires to use a particular programming language or are not distributed. Intelligent environments involves many specialist and a hard constraint on the programming language can be a real barrier to SOA adoption.

The PRIMA project has developed OMiSCID, a middleware for service oriented architectures that addresses the particular problematics of intelligent environments. OMiSCID has emerged as an effective tool for unifying access to functionalities provided from the lowest abstraction level components (camera image acquisition, image processing) to abstract services such as activity modeling and personal assistant. OMiSCID has facilitated cooperation by experts from within the PRIMA project as well as in projects with external partners.

3.3. Robust view-invariant Computer Vision

Local Appearance, Affine Invariance, Receptive Fields

3.3.1. Summary

A long-term grand challenge in computer vision has been to develop a descriptor for image information that can be reliably used for a wide variety of computer vision tasks. Such a descriptor must capture the information in an image in a manner that is robust to changes the relative position of the camera as well as the position, pattern and spectrum of illumination.

Members of PRIMA have a long history of innovation in this area, with important results in the area of multiresolution pyramids, scale invariant image description, appearance based object recognition and receptive field histograms published over the last 20 years. The group has most recently developed a new approach that extends scale invariant feature points for the description of elongated objects using scale invariant ridges. PRIMA has worked with ST Microelectronics to embed its multi-resolution receptive field algorithms into low-cost mobile imaging devices for video communications and mobile computing applications.

3.3.2. Detailed Description

The visual appearance of a neighbourhood can be described by a local Taylor series [48]. The coefficients of this series constitute a feature vector that compactly represents the neighbourhood appearance for indexing and matching. The set of possible local image neighbourhoods that project to the same feature vector are referred to as the "Local Jet". A key problem in computing the local jet is determining the scale at which to evaluate the image derivatives.

Lindeberg [50] has described scale invariant features based on profiles of Gaussian derivatives across scales. In particular, the profile of the Laplacian, evaluated over a range of scales at an image point, provides a local description that is "equi-variant" to changes in scale. Equi-variance means that the feature vector translates exactly with scale and can thus be used to track, index, match and recognize structures in the presence of changes in scale.

A receptive field is a local function defined over a region of an image [56]. We employ a set of receptive fields based on derivatives of the Gaussian functions as a basis for describing the local appearance. These functions resemble the receptive fields observed in the visual cortex of mammals. These receptive fields are applied to color images in which we have separated the chrominance and luminance components. Such functions are easily normalized to an intrinsic scale using the maximum of the Laplacian [50], and normalized in orientation using direction of the first derivatives [56].

The local maxima in x and y and scale of the product of a Laplacian operator with the image at a fixed position provides a "Natural interest point" [52]. Such natural interest points are salient points that may be robustly detected and used for matching. A problem with this approach is that the computational cost of determining intrinsic scale at each image position can potentially make real-time implementation unfeasible.

A vector of scale and orientation normalized Gaussian derivatives provides a characteristic vector for matching and indexing. The oriented Gaussian derivatives can easily be synthesized using the "steerability property" [39] of Gaussian derivatives. The problem is to determine the appropriate orientation. In earlier work by PRIMA members Colin de Verdiere [31], Schiele [56] and Hall [43], proposed normalising the local jet independently at each pixel to the direction of the first derivatives calculated at the intrinsic scale. This results for many view invariant image recognition tasks are described in the next section.

Key results in this area include

- Fast, video rate, calculation of scale and orientation for image description with normalized chromatic receptive fields [34].
- Robust visual features for face tracking [41], [40].
- Direct computation of time to collision over the entire visual field using rate of change of intrinsic scale [54].

We have achieved video rate calculation of scale and orientation normalized Gaussian receptive fields using an O(N) pyramid algorithm [34]. This algorithm has been used to propose an embedded system that provides real time detection and recognition of faces and objects in mobile computing devices.

Applications have been demonstrated for detection, tracking and recognition of faces as well detection of emotions and posture at video rates.

3.4. Perception for Social Interaction

Affective Computing, Perception for social interaction.

Current research on perception for interaction primarily focuses on recognition and communication of linguistic signals. However, most human-to-human interaction is non-verbal and highly dependent on social context. A technology for natural interaction requires abilities to perceive and assimilate non-verbal social signals, to understand and predict social situations, and to acquire and develop social interaction skills.

The overall goal of this research program is to provide the scientific and technological foundations for systems that observe and interact with people in a polite, socially appropriate manner. We address these objectives with research activities in three interrelated areas:

- Multimodal perception for social interactions.
- Learning models for context aware social interaction, and
- Context aware systems and services.

Our approach to each of these areas is to draw on models and theories from the cognitive and social sciences, human factors, and software architectures to develop new theories and models for computer vision and multimodal interaction. Results will be developed, demonstrated and evaluated through the construction of systems and services for polite, socially aware interaction in the context of smart habitats.

3.4.1. Detailed Description

First part of our work on perception for social interaction has concentrated on measuring the physiological parameters of Valence, Arousal and Dominance using visual observation form environmental sensors as well as observation of facial expressions.

People express and feel emotions with their face. Because the face is both externally visible and the seat of emotional expression, facial expression of emotion plays a central role in social interaction between humans. Thus visual recognition of emotions from facial expressions is a core enabling technology for any effort to adapt systems for social interaction.

Constructing a technology for automatic visual recognition of emotions requires solutions to a number of hard challenges. Emotions are expressed by coordinated temporal activations of 21 different facial muscles assisted by a number of additional muscles. Activations of these muscles are visible through subtle deformations in the surface structure of the face. Unfortunately, this facial structure can be masked by facial markings, makeup, facial hair, glasses and other obstructions. The exact facial geometry, as well as the coordinated expression of muscles is unique to each individual. In additions, these deformations must be observed and measured under a large variety of illumination conditions as well as a variety of observation angles. Thus the visual recognition of emotions from facial expression remains a challenging open problem in computer vision.

Despite the difficulty of this challenge, important progress has been made in the area of automatic recognition of emotions from face expressions. The systematic cataloging of facial muscle groups as facial action units by Ekman [38] has let a number of research groups to develop libraries of techniques for recognizing the elements of the FACS coding system [30]. Unfortunately, experiments with that system have revealed that the system is very sensitive to both illumination and viewing conditions, as well as the difficulty in interpreting the resulting activation levels as emotions. In particular, this approach requires a high-resolution image with a high signal-to-noise ratio obtained under strong ambient illumination. Such restrictions are not compatible with the mobile imaging system used on tablet computers and mobile phones that are the target of this effort.

As an alternative to detecting activation of facial action units by tracking individual face muscles, we propose to measure physiological parameters that underlie emotions with a global approach. Most human emotions can be expressed as trajectories in a three dimensional space whose features are the physiological parameters of Pleasure-Displeasure, Arousal-Passivity and Dominance-Submission. These three physiological parameters can be measured in a variety of manners including on-body accelerometers, prosody, heart-rate, head movement and global face expression.

In our work, we address the recognition of social behaviours multimodal information. These are unconscious inmate cognitive processes that are vital to human communication and interaction. Recognition of social behaviours enables anticipation and improves the quality of interaction between humans. Among social behaviours, we have focused on engagement, the expression of intention for interaction. During the engagement phase, many non-verbal signals are used to communicate the intention to engage to the partner [58]. These include posture, gaze, spatial information, gestures, and vocal cues.

For example, within the context of frail or elderly people at home, a companion robot must also be able to detect the engagement of humans in order to adapt their responses during interaction with humans to increase their acceptability. Classical approaches for engagement with robots use spatial information such as human position and speed, human-robot distance and the angle of arrival. Our believe is that uni-modal methods may be suitable for static display [59] and robots in wide space area [49] but not for home environments. In an apartment, relative spatial information of people and robot are not as discriminative as in an open space. Passing by the robot in a corridor should not lead to an engagement detection, and possible socially inappropriate behaviour by the robot.

In our experiments, we used a kompai robot from Robosoft [29]. As an alternative to wearable physiological sensors (such as pulse bracelet Cardiocam, etc.) we integrate multimodal features using a Kinect sensor (see figure 1). In addition of the spatial cues from the laser telemeter, one can use new multimodal features based on persons and skeletons tracking, sound localization, etc. Some of these new features are inspired from results in cognitive science domain [55].

Figure 1. On the left image, one can see the telemeter range in red, the foot detection (blue spot) and the angle view from the Kinect (in green). the middle and right image represent RGB camera in depth view from the Kinect.

Our multimodal approach has been confronted to a robot centered dataset for multimodal social signal processing recorded in a home-like environment [36]. The evaluation on our corpus highlights its robustness and validates use of such technique in real environment. Experimental validation shows that the use of multimodal sensors gives better results than only spatial features (50% of error reduction). Our experimentations also confirm results from [55]: relative shoulder rotation, speed and facing visage are among crucial features for engagement detection.

3.5. End User control of Smart Environments

End users programming, smart home, smart environment

Pervasive computing promises unprecedented empowerment from the flexible and robust combination of software services with the physical world. Software researchers assimilate this promise as system autonomy where users are conveniently kept out of the loop. Their hypothesis is that services, such as music playback and calendars, are developed by service providers and pre-assembled by software designers to form new service frontends. Their scientific challenge is then to develop secure, multiscale, multi-layered, virtualized infrastructures that guarantee service front-end continuity. Although service continuity is desirable in many circumstances, end users, with this interpretation of ubiquitous computing, are doomed to behave as mere consumers, just like with conventional desktop computing.

Another interpretation of the promises of ubiquitous computing, is the empowerment of end users with tools that allow them to create and reshape their own interactive spaces. Our hypothesis is that end users are willing to shape their own interactive spaces by coupling smart artifacts, building imaginative new functionality that were not anticipated by system designers. A number of tools and techniques have been developed to support this view such as CAMP [57] or iCAP [37].

We are investigating an End-User Programming (EUP) approach to give the control back to the inhabitants. In our vision, smart homes will be incrementally equiped with sensors, actuators and services by inhabitants themselves. Our research programm therefore focus on tools and languages to enable inhabitants in activities related to EUP for Smart Homes :

- Installation and maintenance of devices and services. This may imply having facilities to attribute names.
- Visualizing and controling of the Smart Habitat.
- Programming and testing. This imply one or more programming languages and programming environment which could rely on the previous point. The programming language is especially important. Indeed, in the context of the Smart Homes, End-User Programms are most likely to be routines in the sens of [35] than procedure in the sense of traditionnal programming languages.
- Detecting and solving conflicts related to contradictory programs or goals.

SIROCCO Project-Team

3. Research Program

3.1. Introduction

The research activities on analysis, compression and communication of visual data mostly rely on tools and formalisms from the areas of statistical image modelling, of signal processing, of coding and information theory. However, the objective of better exploiting the Human Visual System (HVS) properties in the above goals also pertains to the areas of perceptual modelling and cognitive science. Some of the proposed research axes are also based on scientific foundations of computer vision (e.g. multi-view modelling and coding). We have limited this section to some tools which are central to the proposed research axes, but the design of complete compression and communication solutions obviously rely on a large number of other results in the areas of motion analysis, transform design, entropy code design, etc which cannot be all described here.

3.2. Parameter estimation and inference

Bayesian estimation, Expectation-Maximization, stochastic modelling

Parameter estimation is at the core of the processing tools studied and developed in the team. Applications range from the prediction of missing data or future data, to extracting some information about the data in order to perform efficient compression. More precisely, the data are assumed to be generated by a given stochastic data model, which is partially known. The set of possible models translates the a priori knowledge we have on the data and the best model has to be selected in this set. When the set of models or equivalently the set of probability laws is indexed by a parameter (scalar or vectorial), the model is said parametric and the model selection resorts to estimating the parameter. Estimation algorithms are therefore widely used at the encoder in order to analyze the data. In order to achieve high compression rates, the parameters are usually not sent and the decoder has to jointly select the model (i.e. estimate the parameters) and extract the information of interest.

3.3. Data Dimensionality Reduction

Manifolds, locally linear embedding, non-negative matrix factorization, principal component analysis

A fundamental problem in many data processing tasks (compression, classification, indexing) is to find a suitable representation of the data. It often aims at reducing the dimensionality of the input data so that tractable processing methods can then be applied. Well-known methods for data dimensionality reduction include principal component analysis (PCA) and independent component analysis (ICA). The methodologies which will be central to several proposed research problems will instead be based on sparse representations, on locally linear embedding (LLE) and on the "non negative matrix factorization" (NMF) framework.

The objective of *sparse representations* is to find a sparse approximation of a given input data. In theory, given $A \in \mathbb{R}^{m \times n}$, m < n, and $\mathbf{b} \in \mathbb{R}^m$ with m << n and A is of full rank, one seeks the solution of $\min\{\|\mathbf{x}\|_0 : A\mathbf{x} = \mathbf{b}\}$, where $\|\mathbf{x}\|_0$ denotes the L_0 norm of x, i.e. the number of non-zero components in z. There exist many solutions x to Ax = b. The problem is to find the sparsest, the one for which x has the fewest non zero components. In practice, one actually seeks an approximate and thus even sparser solution which satisfies $\min\{\|\mathbf{x}\|_0 : \|A\mathbf{x} - \mathbf{b}\|_p \le \rho\}$, for some $\rho \ge 0$, characterizing an admissible reconstruction error. The norm p is usually 2, but could be 1 or ∞ as well. Except for the exhaustive combinatorial approach, there is no known method to find the exact solution under general conditions on the dictionary A. Searching for this sparsest representation is hence unfeasible and both problems are computationally intractable. Pursuit algorithms have been introduced as heuristic methods which aim at finding approximate solutions to the above problem with tractable complexity.

Non negative matrix factorization (NMF) is a non-negative approximate data representation ⁰. NMF aims at finding an approximate factorization of a non-negative input data matrix V into non-negative matrices W and H, where the columns of W can be seen as *basis vectors* and those of H as coefficients of the linear approximation of the input data. Unlike other linear representations like PCA and ICA, the non-negativity constraint makes the representation purely additive. Classical data representation methods like PCA or Vector Quantization (VQ) can be placed in an NMF framework, the differences arising from different constraints being placed on the W and H matrices. In VQ, each column of H is constrained to be unitary with only one non-zero coefficient which is equal to 1. In PCA, the columns of W are constrained to be orthonormal and the rows of H to be orthogonal to each other. These methods of data-dependent dimensionality reduction will be at the core of our visual data analysis and compression activities.

3.4. Perceptual Modelling

Saliency, visual attention, cognition

The human visual system (HVS) is not able to process all visual information of our visual field at once. To cope with this problem, our visual system must filter out irrelevant information and reduce redundant information. This feature of our visual system is driven by a selective sensing and analysis process. For instance, it is well known that the greatest visual acuity is provided by the fovea (center of the retina). Beyond this area, the acuity drops down with the eccentricity. Another example concerns the light that impinges on our retina. Only the visible light spectrum lying between 380 nm (violet) and 760 nm (red) is processed. To conclude on the selective sensing, it is important to mention that our sensitivity depends on a number of factors such as the spatial frequency, the orientation or the depth. These properties are modeled by a sensitivity function such as the Contrast Sensitivity Function (CSF).

Our capacity of analysis is also related to our visual attention. Visual attention which is closely linked to eye movement (note that this attention is called *overt* while the covert attention does not involve eye movement) allows us to focus our biological resources on a particular area. It can be controlled by both top-down (i.e. goal-directed, intention) and bottom-up (stimulus-driven, data-dependent) sources of information ⁰. This detection is also influenced by prior knowledge about the environment of the scene ⁰. Implicit assumptions related to prior knowledge or beliefs play an important role in our perception (see the example concerning the assumption that light comes from above-left). Our perception results from the combination of prior beliefs with data we gather from the environment. A Bayesian framework is an elegant solution to model these interactions ⁰. We define a vector \vec{v}_l of local measurements (contrast of color, orientation, etc.) and vector \vec{v}_c of global and contextual features (global features, prior locations, type of the scene, etc.). The salient locations *S* for a spatial position \vec{x} are then given by:

$$S(\overrightarrow{x}) = \frac{1}{p(\overrightarrow{v}_l | \overrightarrow{v}_c)} \times p(s, \overrightarrow{x} | \overrightarrow{v}_c)$$
(8)

The first term represents the bottom-up salience. It is based on a kind of contrast detection, following the assumption that rare image features are more salient than frequent ones. Most of existing computational models of visual attention rely on this term. However, different approaches exist to extract the local visual features as well as the global ones. The second term is the contextual priors. For instance, given a scene, it indicates which parts of the scene are likely the most salient.

⁰D.D. Lee and H.S. Seung, "Algorithms for non-negative matrix factorization", Nature 401, 6755, (Oct. 1999), pp. 788-791.

 ⁰L. Itti and C. Koch, "Computational Modelling of Visual Attention", Nature Reviews Neuroscience, Vol. 2, No. 3, pp. 194-203, 2001.
 ⁰J. Henderson, "Regarding scenes", Directions in Psychological Science, vol. 16, pp. 219-222, 2007.

⁰L. Zhang, M. Tong, T. Marks, H. Shan, H. and G.W. Cottrell, "SUN: a Bayesian framework for saliency using natural statistics", Journal of Vision, vol. 8, pp. 1-20, 2008.

3.5. Coding theory

OPTA limit (Optimum Performance Theoretically Attainable), Rate allocation, Rate-Distortion optimization, lossy coding, joint source-channel coding multiple description coding, channel modelization, oversampled frame expansions, error correcting codes.

Source coding and channel coding theory 0 is central to our compression and communication activities, in particular to the design of entropy codes and of error correcting codes. Another field in coding theory which has emerged in the context of sensor networks is Distributed Source Coding (DSC). It refers to the compression of correlated signals captured by different sensors which do not communicate between themselves. All the signals captured are compressed independently and transmitted to a central base station which has the capability to decode them jointly. DSC finds its foundation in the seminal Slepian-Wolf 0 (SW) and Wyner-Ziv 0 (WZ) theorems. Let us consider two binary correlated sources X and Y. If the two coders communicate, it is well known from Shannon's theory that the minimum lossless rate for X and Y is given by the joint entropy H(X, Y). Slepian and Wolf have established in 1973 that this lossless compression rate bound can be approached with a vanishing error probability for long sequences, even if the two sources are coded separately, provided that they are decoded jointly and that their correlation is known to both the encoder and the decoder.

In 1976, Wyner and Ziv considered the problem of coding of two correlated sources X and Y, with respect to a fidelity criterion. They have established the rate-distortion function $R *_{X|Y}(D)$ for the case where the side information Y is perfectly known to the decoder only. For a given target distortion D, $R *_{X|Y}(D)$ in general verifies $R_{X|Y}(D) \leq R *_{X|Y}(D) \leq R_X(D)$, where $R_{X|Y}(D)$ is the rate required to encode X if Y is available to both the encoder and the decoder, and R_X is the minimal rate for encoding X without SI. These results give achievable rate bounds, however the design of codes and practical solutions for compression and communication applications remain a widely open issue.

⁰T. M. Cover and J. A. Thomas, Elements of Information Theory, Second Edition, July 2006.

 ⁰D. Slepian and J. K. Wolf, "Noiseless coding of correlated information sources." IEEE Transactions on Information Theory, 19(4), pp. 471-480, July 1973.
 ⁰A. Wyner and J. Ziv, "The rate-distortion function for source coding ith side information at the decoder." IEEE Transactions on

¹A. Wyner and J. Ziv, "The rate-distortion function for source coding ith side information at the decoder." IEEE Transactions on Information Theory, pp. 1-10, January 1976.

STARS Project-Team

3. Research Program

3.1. Introduction

Stars follows three main research directions: perception for activity recognition, semantic activity recognition, and software engineering for activity recognition. **These three research directions are interleaved**: *the software engineering* reserach direction provides new methodologies for building safe activity recognition systems and *the perception* and *the semantic activity recognition* directions provide new activity recognition techniques which are designed and validated for concrete video analytics and healthcare applications. Conversely, these concrete systems raise new software issues that enrich the software engineering research direction.

Transversally, we consider a *new research axis in machine learning*, combining a priori knowledge and learning techniques, to set up the various models of an activity recognition system. A major objective is to automate model building or model enrichment at the perception level and at the understanding level.

3.2. Perception for Activity Recognition

Participants: Guillaume Charpiat, François Brémond, Sabine Moisan, Monique Thonnat.

Computer Vision; Cognitive Systems; Learning; Activity Recognition.

3.2.1. Introduction

Our main goal in perception is to develop vision algorithms able to address the large variety of conditions characterizing real world scenes in terms of sensor conditions, hardware requirements, lighting conditions, physical objects, and application objectives. We have also several issues related to perception which combine machine learning and perception techniques: learning people appearance, parameters for system control and shape statistics.

3.2.2. Appearance Models and People Tracking

An important issue is to detect in real-time physical objects from perceptual features and predefined 3D models. It requires finding a good balance between efficient methods and precise spatio-temporal models. Many improvements and analysis need to be performed in order to tackle the large range of people detection scenarios.

Appearance models. In particular, we study the temporal variation of the features characterizing the appearance of a human. This task could be achieved by clustering potential candidates depending on their position and their reliability. This task can provide any people tracking algorithms with reliable features allowing for instance to (1) better track people or their body parts during occlusion, or to (2) model people appearance for re-identification purposes in mono and multi-camera networks, which is still an open issue. The underlying challenge of the person re-identification approaches have two aspects: (1) establishing correspondences between body parts and (2) generating signatures that are invariant to different color responses. As we have already several descriptors which are color invariant, we now focus more on aligning two people detections and on finding their corresponding body parts. Having detected body parts, the approach can handle pose variations. Further, different body parts might have different influence on finding the correct match among a whole gallery dataset. Thus, the re-identification approaches have to search for matching strategies. As the results of the re-identification are always given as the ranking list, re-identification focuses on learning to rank. "Learning to rank" is a type of machine learning problem, in which the goal is to automatically construct a ranking model from a training data.

Therefore, we work on information fusion to handle perceptual features coming from various sensors (several cameras covering a large scale area or heterogeneous sensors capturing more or less precise and rich information). New 3D RGB-D sensors are also investigated, to help in getting an accurate segmentation for specific scene conditions.

Long term tracking. For activity recognition we need robust and coherent object tracking over long periods of time (often several hours in videosurveillance and several days in healthcare). To guarantee the long term coherence of tracked objects, spatio-temporal reasoning is required. Modelling and managing the uncertainty of these processes is also an open issue. In Stars we propose to add a reasoning layer to a classical Bayesian framework modelling the uncertainty of the tracked objects. This reasoning layer can take into account the a priori knowledge of the scene for outlier elimination and long-term coherency checking.

Controling system parameters. Another research direction is to manage a library of video processing programs. We are building a perception library by selecting robust algorithms for feature extraction, by insuring they work efficiently with real time constraints and by formalizing their conditions of use within a program supervision model. In the case of video cameras, at least two problems are still open: robust image segmentation and meaningful feature extraction. For these issues, we are developing new learning techniques.

3.2.3. Learning Shape and Motion

Another approach, to improve jointly segmentation and tracking, is to consider videos as 3D volumetric data and to search for trajectories of points that are statistically coherent both spatially and temporally. This point of view enables new kinds of statistical segmentation criteria and ways to learn them.

We are also using the shape statistics developed in [5] for the segmentation of images or videos with shape prior, by learning local segmentation criteria that are suitable for parts of shapes. This unifies patchbased detection methods and active-contour-based segmentation methods in a single framework. These shape statistics can be used also for a fine classification of postures and gestures, in order to extract more precise information from videos for further activity recognition. In particular, the notion of shape dynamics has to be studied.

More generally, to improve segmentation quality and speed, different optimization tools such as graph-cuts can be used, extended or improved.

3.3. Semantic Activity Recognition

Participants: Guillaume Charpiat, François Brémond, Sabine Moisan, Monique Thonnat.

Activity Recognition, Scene Understanding, Computer Vision

3.3.1. Introduction

Semantic activity recognition is a complex process where information is abstracted through four levels: signal (e.g. pixel, sound), perceptual features, physical objects and activities. The signal and the feature levels are characterized by strong noise, ambiguous, corrupted and missing data. The whole process of scene understanding consists in analyzing this information to bring forth pertinent insight of the scene and its dynamics while handling the low level noise. Moreover, to obtain a semantic abstraction, building activity models is a crucial point. A still open issue consists in determining whether these models should be given a priori or learned. Another challenge consists in organizing this knowledge in order to capitalize experience, share it with others and update it along with experimentation. To face this challenge, tools in knowledge engineering such as machine learning or ontology are needed.

Thus we work along the following research axes: high level understanding (to recognize the activities of physical objects based on high level activity models), learning (how to learn the models needed for activity recognition) and activity recognition and discrete event systems.

3.3.2. High Level Understanding

A challenging research axis is to recognize subjective activities of physical objects (i.e. human beings, animals, vehicles) based on a priori models and objective perceptual measures (e.g. robust and coherent object tracks).

To reach this goal, we have defined original activity recognition algorithms and activity models. Activity recognition algorithms include the computation of spatio-temporal relationships between physical objects. All the possible relationships may correspond to activities of interest and all have to be explored in an efficient way. The variety of these activities, generally called video events, is huge and depends on their spatial and temporal granularity, on the number of physical objects involved in the events, and on the event complexity (number of components constituting the event).

Concerning the modelling of activities, we are working towards two directions: the uncertainty management for representing probability distributions and knowledge acquisition facilities based on ontological engineering techniques. For the first direction, we are investigating classical statistical techniques and logical approaches. For the second direction, we built a language for video event modelling and a visual concept ontology (including color, texture and spatial concepts) to be extended with temporal concepts (motion, trajectories, events ...) and other perceptual concepts (physiological sensor concepts ...).

3.3.3. Learning for Activity Recognition

Given the difficulty of building an activity recognition system with a priori knowledge for a new application, we study how machine learning techniques can automate building or completing models at the perception level and at the understanding level.

At the understanding level, we are learning primitive event detectors. This can be done for example by learning visual concept detectors using SVMs (Support Vector Machines) with perceptual feature samples. An open question is how far can we go in weakly supervised learning for each type of perceptual concept (i.e. leveraging the human annotation task). A second direction is to learn typical composite event models for frequent activities using trajectory clustering or data mining techniques. We name composite event a particular combination of several primitive events.

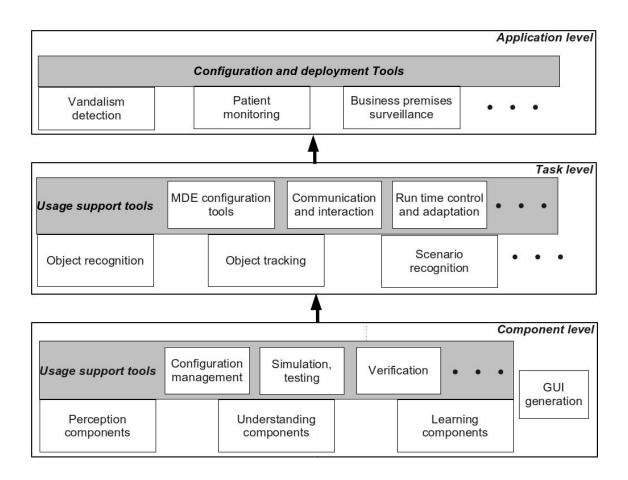
3.3.4. Activity Recognition and Discrete Event Systems

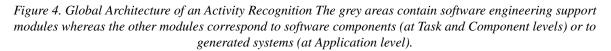
The previous research axes are unavoidable to cope with the semantic interpretations. However they tend to let aside the pure event driven aspects of scenario recognition. These aspects have been studied for a long time at a theoretical level and led to methods and tools that may bring extra value to activity recognition, the most important being the possibility of formal analysis, verification and validation.

We have thus started to specify a formal model to define, analyze, simulate, and prove scenarios. This model deals with both absolute time (to be realistic and efficient in the analysis phase) and logical time (to benefit from well-known mathematical models providing re-usability, easy extension, and verification). Our purpose is to offer a generic tool to express and recognize activities associated with a concrete language to specify activities in the form of a set of scenarios with temporal constraints. The theoretical foundations and the tools being shared with Software Engineering aspects, they will be detailed in section 3.4.

The results of the research performed in perception and semantic activity recognition (first and second research directions) produce new techniques for scene understanding and contribute to specify the needs for new software architectures (third research direction).

3.4. Software Engineering for Activity Recognition


Participants: Sabine Moisan, Annie Ressouche, Jean-Paul Rigault, François Brémond.


Software Engineering, Generic Components, Knowledge-based Systems, Software Component Platform, Object-oriented Frameworks, Software Reuse, Model-driven Engineering

The aim of this research axis is to build general solutions and tools to develop systems dedicated to activity recognition. For this, we rely on state-of-the art Software Engineering practices to ensure both sound design and easy use, providing genericity, modularity, adaptability, reusability, extensibility, dependability, and maintainability.

This research requires theoretical studies combined with validation based on concrete experiments conducted in Stars. We work on the following three research axes: *models* (adapted to the activity recognition domain), *platform architecture* (to cope with deployment constraints and run time adaptation), and *system verification* (to generate dependable systems). For all these tasks we follow state of the art Software Engineering practices and, if needed, we attempt to set up new ones.

3.4.1. Platform Architecture for Activity Recognition

In the former project teams Orion and Pulsar, we have developed two platforms, one (VSIP), a library of realtime video understanding modules and another one, LAMA [14], a software platform enabling to design not only knowledge bases, but also inference engines, and additional tools. LAMA offers toolkits to build and to adapt all the software elements that compose a knowledge-based system.

Figure 4 presents our conceptual vision for the architecture of an activity recognition platform. It consists of three levels:

• The **Component Level**, the lowest one, offers software components providing elementary operations and data for perception, understanding, and learning.

- Perception components contain algorithms for sensor management, image and signal analysis, image and video processing (segmentation, tracking...), etc.
- Understanding components provide the building blocks for Knowledge-based Systems: knowledge representation and management, elements for controlling inference engine strategies, etc.
- *Learning components* implement different learning strategies, such as Support Vector Machines (SVM), Case-based Learning (CBL), clustering, etc.

An Activity Recognition system is likely to pick components from these three packages. Hence, tools must be provided to configure (select, assemble), simulate, verify the resulting component combination. Other support tools may help to generate task or application dedicated languages or graphic interfaces.

• The **Task Level**, the middle one, contains executable realizations of individual tasks that will collaborate in a particular final application. Of course, the code of these tasks is built on top of the components from the previous level. We have already identified several of these important tasks: Object Recognition, Tracking, Scenario Recognition... In the future, other tasks will probably enrich this level.

For these tasks to nicely collaborate, communication and interaction facilities are needed. We shall also add MDE-enhanced tools for configuration and run-time adaptation.

• The **Application Level** integrates several of these tasks to build a system for a particular type of application, e.g., vandalism detection, patient monitoring, aircraft loading/unloading surveillance, etc.. Each system is parameterized to adapt to its local environment (number, type, location of sensors, scene geometry, visual parameters, number of objects of interest...). Thus configuration and deployment facilities are required.

The philosophy of this architecture is to offer at each level a balance between the widest possible genericity and the maximum effective reusability, in particular at the code level.

To cope with real application requirements, we shall also investigate distributed architecture, real time implementation, and user interfaces.

Concerning implementation issues, we shall use when possible existing open standard tools such as NuSMV for model-checking, Eclipse for graphic interfaces or model engineering support, Alloy for constraint representation and SAT solving for verification, etc. Note that, in Figure 4, some of the boxes can be naturally adapted from SUP existing elements (many perception and understanding components, program supervision, scenario recognition...) whereas others are to be developed, completely or partially (learning components, most support and configuration tools).

3.4.2. Discrete Event Models of Activities

As mentioned in the previous section (3.3) we have started to specify a formal model of scenario dealing with both absolute time and logical time. Our scenario and time models as well as the platform verification tools rely on a formal basis, namely the synchronous paradigm. To recognize scenarios, we consider activity descriptions as synchronous reactive systems and we apply general modelling methods to express scenario behaviour.

Activity recognition systems usually exhibit many safeness issues. From the software engineering point of view we only consider software security. Our previous work on verification and validation has to be pursued; in particular, we need to test its scalability and to develop associated tools. Model-checking is an appealing technique since it can be automatized and helps to produce a code that has been formally proved. Our verification method follows a compositional approach, a well-known way to cope with scalability problems in model-checking.

Moreover, recognizing real scenarios is not a purely deterministic process. Sensor performance, precision of image analysis, scenario descriptions may induce various kinds of uncertainty. While taking into account this uncertainty, we should still keep our model of time deterministic, modular, and formally verifiable. To formally describe probabilistic timed systems, the most popular approach involves probabilistic extension of timed automata. New model checking techniques can be used as verification means, but relying on model checking techniques is not sufficient. Model checking is a powerful tool to prove decidable properties but introducing uncertainty may lead to infinite state or even undecidable properties. Thus model checking validation has to be completed with non exhaustive methods such as abstract interpretation.

3.4.3. Model-Driven Engineering for Configuration and Control and Control of Video Surveillance systems

Model-driven engineering techniques can support the configuration and dynamic adaptation of video surveillance systems designed with our SUP activity recognition platform. The challenge is to cope with the many—functional as well as nonfunctional—causes of variability both in the video application specification and in the concrete SUP implementation. We have used *feature models* to define two models: a generic model of video surveillance applications and a model of configuration for SUP components and chains. Both of them express variability factors. Ultimately, we wish to automatically generate a SUP component assembly from an application specification, using models to represent transformations [56]. Our models are enriched with intra- and inter-models constraints. Inter-models constraints specify models to represent transformations. Feature models are appropriate to describe variants; they are simple enough for video surveillance experts to express their requirements. Yet, they are powerful enough to be liable to static analysis [75]. In particular, the constraints can be analysed as a SAT problem.

An additional challenge is to manage the possible run-time changes of implementation due to context variations (e.g., lighting conditions, changes in the reference scene, etc.). Video surveillance systems have to dynamically adapt to a changing environment. The use of models at run-time is a solution. We are defining adaptation rules corresponding to the dependency constraints between specification elements in one model and software variants in the other [55], [84], [78].

WILLOW Project-Team

3. Research Program

3.1. 3D object and scene modeling, analysis, and retrieval

This part of our research focuses on geometric models of specific 3D objects at the local (differential) and global levels, physical and statistical models of materials and illumination patterns, and modeling and retrieval of objects and scenes in large image collections. Our past work in these areas includes research aimed at recognizing rigid 3D objects in cluttered photographs taken from arbitrary viewpoints (Rothganger *et al.*, 2006), segmenting video sequences into parts corresponding to rigid scene components before recognizing these in new video clips (Rothganger *et al.*, 2007), retrieval of particular objects and buildings from images and videos (Sivic and Zisserman, 2003) and (Philbin *et al.*, 2007), and a theoretical study of a general formalism for modeling central and non-central cameras using the formalism and terminology of classical projective geometry (Ponce, 2009 and Batog *et al.*, 2010).

We have also developed multi-view stereopsis algorithms that have proven remarkably effective at recovering intricate details and thin features of compact objects and capturing the overall structure of large-scale, cluttered scenes. We have obtained a US patent 8,331,615 ⁰ for the corresponding software (PMVS, http://grail.cs. washington.edu/software/pmvs/) which is available under a GPL license and used for film production by ILM and Weta as well as by Google in Google Maps. It is also the basic technology used by Iconem, a start-up founded by Y. Ubelmann, a Willow collaborator. We have also applied our multi-view-stereo approach to model archaeological sites together with developing representations and efficient retrieval techniques to enable matching historical paintings to 3D models of archaeological sites (Russel *et al.*, 2011). Our current efforts in this area, outlined in detail in Section 6.2, are focused on: (i) developing new representations of 3D architectural sites for matching and retrieval, (ii) modeling and recognition of objects in complex scenes using underlying 3D object models, and (iii) continuing our theoretical study of multi-view camera geometry.

3.2. Category-level object and scene recognition

The objective in this core part of our research is to learn and recognize quickly and accurately thousands of visual categories, including materials, objects, scenes, and broad classes of temporal events, such as patterns of human activities in picnics, conversations, etc. The current paradigm in the vision community is to model/learn one object category (read 2D aspect) at a time. If we are to achieve our goal, we have to break away from this paradigm, and develop models that account for the tremendous variability in object and scene appearance due to texture, material, viewpoint, and illumination changes within each object category, as well as the complex and evolving relationships between scene elements during the course of normal human activities.

Our current work, outlined in detail in Section 6.3, has focused on: (i) capturing the spatial layout of objects using the formalism of graph matching, (ii) transferring mid-level image representations using convolutional neural networks, and (iii) learning the appearance of objects and their parts in a weakly supervised manner.

3.3. Image restoration, manipulation and enhancement

The goal of this part of our research is to develop models, and methods for image/video restoration, manipulation and enhancement. The ability to "intelligently" manipulate the content of images and video is just as essential as high-level content interpretation in many applications: This ranges from restoring old films or removing unwanted wires and rigs from new ones in post production, to cleaning up a shot of your daughter at her birthday party, which is lovely but noisy and blurry because the lights were out when she blew the candles, or editing out a tourist from your Roman holiday video. Going beyond the modest abilities of current "digital zoom" (bicubic interpolation in general) so you can close in on that birthday cake, "deblock" a football game on TV, or turn your favorite DVD into a blue-ray, is just as important.

⁰The patent: "Match, Expand, and Filter Technique for Multi-View Stereopsis" was issued December 11, 2012 and assigned patent number 8,331,615.

In this context, we believe there is a new convergence between computer vision, machine learning, and signal processing. For example: The idea of exploiting self-similarities in image analysis, originally introduced in computer vision for texture synthesis applications (Efros and Leung, 1999), is the basis for non-local means (Buades *et al.*, 2005), one of today's most successful approaches to image restoration. In turn, by combining a powerful sparse coding approach to non-local means (Dabov *et al.*, 2007) with modern machine learning techniques for dictionary learning (Mairal *et al.*, 2010), we have obtained denoising and demosaicking results that are the state of the art on standard benchmarks (Mairal *et al.*, 2009).

Our current work, outlined in detail in Section 6.4, has focused on (i) image editing using accelerated local Laplacian filters and (ii) developing new formulation for image deblurring cast as a deep learning problem.

3.4. Human activity capture and classification

From a scientific point of view, visual action understanding is a computer vision problem that until recently has received little attention outside of extremely specific contexts such as surveillance or sports. Many of the current approaches to the visual interpretation of human activities are designed for a limited range of operating conditions, such as static cameras, fixed scenes, or restricted actions. The objective of this part of our project is to attack the much more challenging problem of understanding actions and interactions in unconstrained video depicting everyday human activities such as in sitcoms, feature films, or news segments. The recent emergence of automated annotation tools for this type of video data (Everingham, Sivic, Zisserman, 2006; Laptev, Marszałek, Schmid, Rozenfeld, 2008; Duchenne, Laptev, Sivic, Bach, Ponce, 2009) means that massive amounts of labelled data for training and recognizing action models will at long last be available. Our research agenda in this scientific domain is described below and our recent results are outlined in detail in Section 6.5.

3.4.1. Weakly-supervised learning and annotation of human actions in video

We aim to leverage the huge amount of video data using readily-available annotations in the form of video scripts. Scripts, however, often provide only imprecise and incomplete information about the video. We address this problem with weakly-supervised learning techniques both at the text and image levels. To this end we recently explored automatic mining of scene and action categories. Within the PhD of Piotr Bojanowski we are currently extending this work towards exploiting richer textual descriptions of human actions and using them for learning more powerful contextual models of human actions in video.

3.4.2. Descriptors for video representation

Video representation has a crucial role for recognizing human actions and other components of a visual scene. Our work in this domain aims to develop generic methods for representing video data based on realistic assumptions. We explore the ways of enriching standard bag-of-feature representations with the higher-level information on objects, scenes and primitive human actions pre-learned on related tasks. We also investigate highly-efficient methods for computing video features motivated by the need of processing very large and increasing amounts of video.

3.4.3. Crowd characterization in video

Human crowds are characterized by distinct visual appearance and require appropriate tools for their analysis. In our work we develop generic methods for crowd analysis in video aiming to address multiple tasks such as (i) crowd density estimation and localization, (ii) characterization and recognition of crowd behaviours (e.g a person running against the crowd flow) as well as (iii) detection and tracking of individual people in the crowd. We address the challenge of analyzing crowds under the large variation in crowd density, video resolution and scene structure.