
RESEARCH CENTER

FIELD
Algorithmics, Programming, Soft-
ware and Architecture

Activity Report 2014

Section Software

Edition: 2015-03-24

ALGORITHMICS, COMPUTER ALGEBRA AND CRYPTOLOGY

1. ARIC Project-Team . 5
2. CARAMEL Project-Team .8
3. CASCADE Project-Team (section vide) . 11
4. CRYPT Team (section vide) .12
5. GALAAD2 Team . 13
6. GEOMETRICA Project-Team .15
7. GRACE Project-Team . 18
8. LFANT Project-Team . 19
9. POLSYS Project-Team . 22
10. SECRET Project-Team . 23
11. SPECFUN Project-Team .24
12. VEGAS Project-Team . 26

ARCHITECTURE, LANGUAGES AND COMPILATION

13. ALF Project-Team . 28
14. ATEAMS Project-Team . 31
15. CAIRN Project-Team . 34
16. CAMUS Team .39
17. COMPSYS Project-Team . 41
18. DREAMPAL Team . 46
19. GCG Team .47
20. PAREO Project-Team . 48
21. POSTALE Team . 49
22. TASC Project-Team . 52

EMBEDDED AND REAL-TIME SYSTEMS

23. AOSTE Project-Team . 55
24. CONVECS Project-Team . 58
25. HYCOMES Team .61
26. MUTANT Project-Team . 62
27. PARKAS Project-Team .65
28. SPADES Team . 70
29. TEA Project-Team . 71

PROOFS AND VERIFICATION

30. ANTIQUE Team .75
31. CELTIQUE Project-Team .80
32. DEDUCTEAM Exploratory Action . 82
33. ESTASYS Exploratory Action .86
34. GALLIUM Project-Team . 88
35. MARELLE Project-Team .90
36. MEXICO Project-Team .91
37. PARSIFAL Project-Team . 93

4 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team ARIC

38. PI.R2 Project-Team . 95
39. SUMO Project-Team . 99
40. TEMPO Team .100
41. TOCCATA Project-Team . 101
42. VERIDIS Project-Team . 106

SECURITY AND CONFIDENTIALITY

43. CARTE Project-Team . 108
44. CASSIS Project-Team .109
45. COMETE Project-Team . 112
46. DICE Team . 114
47. PRIVATICS Project-Team . 116
48. PROSECCO Project-Team .118

5 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team ARIC

ARIC Project-Team

5. New Software and Platforms

5.1. Overview
AriC software realizations are accessible from the web page http://www.ens-lyon.fr/LIP/AriC/ware. We
describe below only those which progressed in 2014.

5.2. GNU MPFR
Participant: Vincent Lefèvre [correspondant].

GNU MPFR is an efficient multiple-precision floating-point library with well-defined semantics (copying
the good ideas from the IEEE-754 standard), in particular correct rounding in 5 rounding modes. GNU MPFR
provides about 80 mathematical functions, in addition to utility functions (assignments, conversions...). Special
data (Not a Number, infinities, signed zeros) are handled like in the IEEE-754 standard.

MPFR was one of the main pieces of software developed by the old SPACES team at Loria. Since late 2006,
with the departure of Vincent Lefèvre to Lyon, it has become a joint project between the Caramel (formerly
SPACES then CACAO) and the AriC (formerly Arénaire) project-teams. MPFR has been a GNU package
since 26 January 2009.

An MPFR-MPC developers meeting took place from 20 to 22 January 2014 in Nancy. There was no new
release this year, but various developments were done in the trunk.

The main work done in the AriC project-team:
• Changed the behavior of the mpfr_set_exp function to avoid undefined behavior in some cases

(this change mainly impacted the internal usage).
• Bug fixes and various improvements (portability, efficiency, etc.).
• The mpfr_sum function is being rewritten (new-sum branch); see Section 6.2.8 .

URL: http://www.mpfr.org/

GNU MPFR is on the Black Duck Open Hub community platform for free and open source software: https://
www.openhub.net/p/gnu-mpfr

• ACM: D.2.2 (Software libraries), G.1.0 (Multiple precision arithmetic), G.4 (Mathematical soft-
ware).

• AMS: 26-04 Real Numbers, Explicit machine computation and programs.
• APP: no longer applicable (copyright transferred to the Free Software Foundation).
• License: LGPL version 3 or later.
• Type of human computer interaction: C library, callable from C or other languages via third-party

interfaces.
• OS/Middleware: any OS, as long as a C compiler is available.
• Required library or software: GMP.
• Programming language: C.
• Documentation: API in texinfo format (and other formats via conversion); algorithms are also

described in a separate document.

5.3. Exhaustive Tests for the Correct Rounding of Mathematical Functions
Participant: Vincent Lefèvre.

http://www.inria.fr/equipes/aric
http://www.ens-lyon.fr/LIP/AriC/ware
http://raweb.inria.fr/rapportsactivite/RA{$year}/aric/uid92.html
http://www.mpfr.org/
https://www.openhub.net/p/gnu-mpfr
https://www.openhub.net/p/gnu-mpfr
http://gmplib.org/

6 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team ARIC

The search for the worst cases for the correct rounding (hardest-to-round cases) of mathematical functions
(exp, log, sin, cos, etc.) in a fixed precision (mainly double precision) using Lefèvre’s algorithm is imple-
mented by a set of utilities written in Perl, with calls to Maple/intpakX for computations on intervals and with
C code generation for fast computations. It also includes a client-server system for the distribution of intervals
to be tested and for tracking the status of intervals (fully tested, being tested, aborted).

The Perl scripts have been improved (in particular, for the interaction with Grid Engine).

5.4. FPLLL: A Lattice Reduction Library
Participant: Damien Stehlé [correspondant].

fplll contains several algorithms on lattices that rely on floating-point computations. This includes implemen-
tations of the floating-point LLL reduction algorithm, offering different speed/guarantees ratios. It contains a
“wrapper” choosing the estimated best sequence of variants in order to provide a guaranteed output as fast
as possible. In the case of the wrapper, the succession of variants is oblivious to the user. It also includes a
rigorous floating-point implementation of the Kannan-Fincke-Pohst algorithm that finds a shortest non-zero
lattice vector, and the BKZ reduction algorithm.

The fplll library is used or has been adapted to be integrated within several mathematical computation
systems such as Magma, Sage, and PariGP. It is also used for cryptanalytic purposes, to test the resistance
of cryptographic primitives.

This year, several improvements to the BKZ (block Korkine Zolotarev) algorithm have been implemented.
Further, the library is now hosted on github.

URL: https://github.com/dstehle/fplll

• ACM: D.2.2 (Software libraries), G.4 (Mathematical software)

• APP: Procedure started

• License: LGPL v2.1

• Type of human computer interaction: C++ library callable, from any C++ program.

• OS/Middleware: any, as long as a C++ compiler is available.

• Required library or software: MPFR and GMP.

• Programming language: C++.

• Documentation: available in html format on URL:https://github.com/dstehle/fplll

5.5. Sipe
Participant: Vincent Lefèvre.

Sipe is a mini-library in the form of a C header file, to perform radix-2 floating-point computations in very
low precisions with correct rounding, either to nearest or toward zero. The goal of such a tool is to do proofs
of algorithms/properties or computations of tight error bounds in these precisions by exhaustive tests, in order
to try to generalize them to higher precisions. The currently supported operations are addition, subtraction,
multiplication (possibly with the error term), fused multiply-add/subtract (FMA/FMS), and miscellaneous
comparisons and conversions. Sipe provides two implementations of these operations, with the same API and
the same behavior: one based on integer arithmetic, and a new one based on floating-point arithmetic.

New in 2014:

• sipe_to_mpfr function;

• support for __float128 from GCC/libquadmath (implementing the binary128 format);

• some corrections.

https://github.com/dstehle/fplll
https://github.com/dstehle/fplll

7 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team ARIC

URL: https://www.vinc17.net/research/sipe/

• ACM: D.2.2 (Software libraries), G.4 (Mathematical software).

• AMS: 26-04 Real Numbers, Explicit machine computation and programs.

• License: LGPL version 2.1 or later.

• Type of human computer interaction: C header file.

• OS/Middleware: any OS.

• Required library or software: GCC compiler.

• Programming language: C.

• Documentation: comment at the beginning of the code and Research report Inria RR-7832.

5.6. Gfun
Participant: Bruno Salvy.

Gfun is a Maple package for the manipulation of linear recurrence or differential equations. It provides tools for
guessing a sequence or a series from its first terms; for manipulating rigorously solutions of linear differential
or recurrence equations, using the equation as a data-structure. This year, the implementation effort was
focused on speeding up the guessing routines in the case of sequences with symbolic parameters that come up
in general hypergeometric identities.

https://www.vinc17.net/research/sipe/

8 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team CARAMEL

CARAMEL Project-Team

5. New Software and Platforms

5.1. Introduction
A major part of the research done in the CARAMEL team is published within software. On the one hand, this
enables everyone to check that the algorithms we develop are really efficient in practice; on the other hand,
this gives other researchers — and us of course — basic software components on which they — and we —
can build other applications.

5.2. GNU MPFR
Participant: Paul Zimmermann [contact].

GNU MPFR is one of the main pieces of software developed by the CARAMEL team. Since end 2006, it
has become a joint project between CARAMEL and the ARÉNAIRE project-team (now ARIC, INRIA Grenoble
- Rhône-Alpes). GNU MPFR is a library for computing with arbitrary precision floating-point numbers,
together with well-defined semantics, and is distributed under the LGPL license. All arithmetic operations are
performed according to a rounding mode provided by the user, and all results are guaranteed correct to the last
bit, according to the given rounding mode.

No new release was made in 2014. However a developers meeting was organized in January 20 to 22 in Nancy,
together with the developers of GNU MPC.

5.3. GNU MPC
Participant: Paul Zimmermann [contact].

GNU MPC is a floating-point library for complex numbers, which is developed on top of the GNU MPFR
library, and distributed under the LGPL license. It is co-written with Andreas Enge (LFANT project-team,
INRIA Bordeaux - Sud-Ouest). A complex floating-point number is represented by x+ iy, where x and y
are real floating-point numbers, represented using the GNU MPFR library. The GNU MPC library provides
correct rounding on both the real part x and the imaginary part y of any result. GNU MPC is used in particular
in the TRIP celestial mechanics system developed at IMCCE (Institut de Mécanique Céleste et de Calcul des
Éphémérides), and by the Magma and Sage computational number theory systems.

Version 1.0.2 (Fagus silvatica) was released in January, with a few bug fixes, some related to the use in our
own work related to the computation of Igusa class polynomials.

5.4. Finite Fields
Participants: Pierrick Gaudry, Emmanuel Thomé [contact], Luc Sanselme.

mpFq is (yet another) library for computing in finite fields. The purpose of mpFq is not to provide a software
layer for accessing finite fields determined at runtime within a computer algebra system like Magma, but rather
to give a very efficient, optimized code for computing in finite fields precisely known at compile time. mpFq

can adapt to finite fields of any characteristic and any extension degree. However, one of the targets being the
use in cryptology, mpFq somehow focuses on prime fields and on fields of characteristic two.

When it was first written in 2007, mpFq established reference marks for fast elliptic curve cryptography: the
authors improved over the fastest examples of key-sharing software in genus 1 and 2, both over binary fields
and prime fields. A stream of academic works followed the idea behind mpFq and improved over such timings,
notably by Scott, Aranha, Longa, Bos, Hisil, Costello.

http://www.inria.fr/equipes/caramel

9 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team CARAMEL

The library’s purpose being the generation of code rather than its execution, the working core of mpFq consists
of roughly 18,000 lines of Perl code, which generate most of the C code. mpFq is distributed at http://mpfq.
gforge.inria.fr/.

In 2014, mpFq has undergone some sanitization work, related to embedded assembly, build system, coverage
test, and processor feature support. The fact that mpFq is used in CADO-NFS has played an important role in
fostering these changes to the mpFq code. Future plans regarding the linear algebra code in CADO-NFS are
expected to rely on the arithmetic part being implemented in mpFq . Preliminary work in this direction has
been implemented by Luc Sanselme. Preliminary code by Hamza Jeljeli and Bastien Vialla from LIRMM,
Montpellier, based on RNS arithmetic (Residue Number System) is also to be integrated in this context. We
therefore expect more work in this area in the coming months, eventually leading to a new release.

5.5. gf2x
Participants: Pierrick Gaudry, Emmanuel Thomé [contact], Paul Zimmermann.

GF2X is a software library for polynomial multiplication over the binary field, developed together with
Richard Brent (Australian National University, Canberra, Australia). It holds state-of-the-art implementation
of fast algorithms for this task, employing different algorithms in order to achieve efficiency from small to
large operand sizes (Karatsuba and Toom-Cook variants, and eventually Schönhage’s or Cantor’s FFT-like
algorithms). GF2X takes advantage of specific processor instructions (SSE, PCLMULQDQ).

The current version of GF2X is 1.1, released in May 2012 under the GNU GPL. Since 2009, GF2X can be used
as an auxiliary package for the widespread software library NTL, as of version 5.5. GF2X is also packaged in
the Debian Linux distribution.

In 2014, the development version of GF2X has been updated to include some minor cleanups.

An LGPL-licensed portion of GF2X is also part of the CADO-NFS software package.

5.6. CADO-NFS
Participants: Cyril Bouvier, Alain Filbois, Pierrick Gaudry, Alexander Kruppa, Thomas Richard, Emmanuel
Thomé [contact], Paul Zimmermann.

CADO-NFS is a program to factor integers using the Number Field Sieve algorithm (NFS), originally developed
in the context of the ANR-CADO project (November 2006 to January 2010).

NFS is a complex algorithm which contains a large number of sub-algorithms. The implementation of all of
them is now complete, but still leaves some places to be improved. Compared to existing implementations, the
CADO-NFS implementation is already a reasonable player. Several factorizations have been completed using
our implementation.

Since 2009, the source repository of CADO-NFS is publicly available for download, and is referenced from the
software page at http://cado-nfs.gforge.inria.fr/. A major new release, CADO-NFS 2.1, was published in July
2014, with a bug-fix release (2.1.1) in October. Among the main improvements, the polynomial selection now
runs in two stages, several unit tests have been added, various small speed-ups and bug fixes.

More and more people use CADO-NFS to perform medium to large factorizations. In February, Fabien Perigaud
and Cédric Pernet from Cassidian Cybersecurity reverse-engineered a ransomware, which in the end boiled
down to factoring numbers with CADO-NFS.

5.7. Belenios
Participants: Pierrick Gaudry, Stéphane Glondu [contact].

http://mpfq.gforge.inria.fr/
http://mpfq.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/

10 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team CARAMEL

In collaboration with the CASSIS team, we develop an open-source private and verifiable electronic voting
protocol, named BELENIOS. Our system is an evolution of an existing system, Helios, developed by Ben
Adida, and used e.g., by UCL and the IACR association in real elections. The main differences with Helios
are the following ones:

• In Helios, the ballot box publishes the encrypted ballots together with their corresponding voters.
This raises a privacy issue in the sense that whether someone voted or not shall not necessarily be
publicized on the web. Publishing this information is in particular forbidden by CNIL’s recommen-
dation. BELENIOS no longer publishes voters’ identities, still guaranteeing correctness of the tally.

• Helios is verifiable except that one has to trust that the ballot box will not add ballots. The addition
of ballots is particularly hard to detect as soon as the list of voters is not public. We have therefore
introduced an additional authority that provides credentials that the ballot box can verify but not
forge [18], [23].

This new version has been implemented by Stéphane Glondu 0. The first public release has been done in
January 2014. In the last public release (April 2014), BELENIOS still uses a major component of the Helios
system, the booth. Since then, the booth has been reimplemented but is not yet part of a public release. This
development version of BELENIOS has been used in December 2014 for selecting photos of LORIA’s calendar
(187 persons voted for 0 to 6 pictures, within a set of 52 choices).

5.8. CMH
Participant: Emmanuel Thomé [contact].

In collaboration with the LFANT project-team, INRIA Bordeaux – Sud-Ouest, we develop the CMH software
package and library, which holds code for computing Igusa class polynomials. Those characterize principally
polarized abelian varieties of dimension 2 having complex multiplication by the ring of integers of a quartic
CM field.

The source repository of CMH is publicly available for download, and is referenced from the software page
at http://cmh.gforge.inria.fr/.

Version 1.0 has been released in March 2014, simultaneously with the publication of a computation record.

5.9. Platforms
5.9.1. CATREL cluster

Installed in 2013, the CATREL computer cluster now plays an essential role in providing the team with the
necessary resources to achieve significant computations, which illustrate well the efficiency of the algorithms
developed in our research, together with their implementations.

0http://belenios.gforge.inria.fr/

http://raweb.inria.fr/rapportsactivite/RA{$year}/caramel/bibliography.html#caramel-2014-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/caramel/bibliography.html#caramel-2014-bid9
http://cmh.gforge.inria.fr/
http://belenios.gforge.inria.fr/

11 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team CASCADE

CASCADE Project-Team (section vide)

http://www.inria.fr/equipes/cascade

12 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Team CRYPT

CRYPT Team (section vide)

http://www.inria.fr/equipes/crypt

13 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Team GALAAD2

GALAAD2 Team

5. New Software and Platforms

5.1. Mathemagix, a free computer algebra environment
Participant: Bernard Mourrain.

http://www.mathemagix.org/

algebra, univariate polynomial, multivariate polynomial, matrices, series, fast algorithm, interpreter, compiler,
hybrid software.

MATHEMAGIX is a free computer algebra system which consists of a general purpose interpreter, which
can be used for non-mathematical tasks as well, and efficient modules on algebraic objects. It includes
the development of standard libraries for basic arithmetic on dense and sparse objects (numbers, univariate
and multivariate polynomials, power series, matrices, etc., based on FFT and other fast algorithms). These
developments, based on C++, offer generic programming without losing effectiveness, via the parameterization
of the code (template) and the control of their instantiations.

The language of the interpreter is imperative, strongly typed and high level. A compiler of this language is
available. A special effort has been put on embedding of existing libraries written in other languages like C
or C++. An interesting feature is that this extension mechanism supports template types, which automatically
induce generic types inside Mathemagix. Connections with GMP, MPFR for extended arithmetic, LAPACK for
numerical linear algebra are currently available in this framework.

The project aims at building a bridge between symbolic computation and numerical analysis. It is structured
by collaborative software developments of different groups in the domain of algebraic and symbolic-numeric
computation.

In this framework, we are working more specifically on the following components:

• REALROOT: a set of solvers using subdivision methods to isolate the roots of polynomial equations
in one or several variables; continued fraction expansion of roots of univariate polynomials; Bern-
stein basis representation of univariate and multivariate polynomials and related algorithms; exact
computation with real algebraic numbers, sign evaluation, comparison, certified numerical approxi-
mation.

• SHAPE: tools to manipulate curves and surfaces of different types including parameterized, implicit
with different type of coefficients; algorithms to compute their topology, intersection points or
curves, self-intersection locus, singularities, ...

These packages are integrated from the former library SYNAPS (SYmbolic Numeric APplicationS) dedicated
to symbolic and numerical computations. There are also used in the algebraic-geometric modeler AXEL.

Collaborators: Grégoire Lecerf, Joris van der Hoeven and Philippe Trébuchet.

5.2. Axel, a geometric modeler for algebraic objects
Participants: Nicolas Douillet, Anaïs Ducoffe [contact], Valentin Michelet, Bernard Mourrain, Hung
Nguyen, Meriadeg Perrinel.

http://axel.inria.fr.

computational algebraic geometry, curve, implicit equation, intersection, parameterization, resolution, surface,
singularity, topology

http://www.inria.fr/equipes/galaad2
http://www.mathemagix.org/
http://axel.inria.fr

14 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Team GALAAD2

We are developing a software called AXEL (Algebraic Software-Components for gEometric modeLing) dedi-
cated to algebraic methods for curves and surfaces. Many algorithms in geometric modeling require a combi-
nation of geometric and algebraic tools. Aiming at the development of reliable and efficient implementations,
AXEL provides a framework for such combination of tools, involving symbolic and numeric computations.

The software contains data structures and functionalities related to algebraic models used in geometric mod-
eling, such as polynomial parameterizations, B-splines, implicit curves and surfaces. It provides algorithms
for the treatment of such geometric objects, such as tools for computing intersection points of curves or sur-
faces, for detecting and computing self-intersection points of parameterized surfaces, for implicitization, for
computing the topology of implicit curves, for meshing implicit (singular) surfaces, etc.

The developments related to isogeometric analysis have been integrated as dedicated plugins. Optimization
techniques and solvers for partial differential equations developed by R. Duvigneau (OPALE) have been
connected.

The new version of the algebraic-geometric modelers based on the DTK platform is still developed in order to
provide a better modularity and a better interface to existing computation facilities and geometric rendering
interface. This software is intended to be multi-platform, and jobs are running nightly on the Continous
Integration platform https://ci.inria.fr/ of Inria, performing builds and tests on Virtual Machines of different
OS such as Fedora, Ubuntu, Windows.

AXEL is written in C++ and thanks to a wrapping system using SWIG, its data structures and algorithms can
be integrated into C# programs, as well as Python and Java programs. This wrapper was used to integrate
AXEL into the CAD software TopSolid, developed by Missler Company and written in C#. But it also enables
AXEL to embed a Python interpreter.

Other functionalities were also added or improved: the scientific visualization was improved and it is now
possible to create dynamic geometric model in AXEL.

The software is distributed as a source package, as well as binary packages for Linux, MacOSX and Windows.
It is hosted at http://dtk.inria.fr/axel with some of its plugins developed on Inria’s gforge server (http://gforge.
inria.fr) The first version of the software has been downloaded more than 15000 times, since it is available. A
new version, AXEL 2.3.1, was released at the end of this year.

Collaboration with Gang Xu (Hangzhou Dianzi University, China), Julien Wintz (Dream), Elisa Berrini
(MyCFD, Sophia), Angelos Mantzaflaris (GISMO library, Linz, Austria) and Laura Saini (Post-Doc
GALAAD/Missler, TopSolid).

https://ci.inria.fr/
http://dtk.inria.fr/axel
http://gforge.inria.fr
http://gforge.inria.fr

15 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team
GEOMETRICA

GEOMETRICA Project-Team

5. New Software and Platforms

5.1. CGAL, the Computational Geometry Algorithms Library
Participants: Jean-Daniel Boissonnat, Olivier Devillers, Marc Glisse, Aymeric Pellé, Monique Teillaud,
Mariette Yvinec.

With the collaboration of Pierre Alliez, Hervé Brönnimann, Manuel Caroli, Pedro Machado Manhães de
Castro, Frédéric Cazals, Frank Da, Christophe Delage, Andreas Fabri, Julia Flötotto, Philippe Guigue,
Michael Hemmer, Samuel Hornus, Clément Jamin, Menelaos Karavelas, Sébastien Loriot, Abdelkrim Mebarki,
Naceur Meskini, Andreas Meyer, Sylvain Pion, Marc Pouget, François Rebufat, Laurent Rineau, Laurent
Saboret, Stéphane Tayeb, Jane Tournois, Radu Ursu, and Camille Wormser http://www.cgal.org

CGAL is a C++ library of geometric algorithms and data structures. Its development has been initially funded
and further supported by several European projects (CGAL, GALIA, ECG, ACS, AIM@SHAPE) since
1996. The long term partners of the project are research teams from the following institutes: Inria Sophia
Antipolis - Méditerranée, Max-Planck Institut Saarbrücken, ETH Zürich, Tel Aviv University, together with
several others. In 2003, CGAL became an Open Source project (under the LGPL and QPL licenses).

The transfer and diffusion of CGAL in industry is achieved through the company GEOMETRY FACTORY (http://
www.geometryfactory.com). GEOMETRY FACTORY is a Born of Inria company, founded by Andreas Fabri in
January 2003. The goal of this company is to pursue the development of the library and to offer services in
connection with CGAL (maintenance, support, teaching, advice). GEOMETRY FACTORY is a link between the
researchers from the computational geometry community and the industrial users.

The aim of the CGAL project is to create a platform for geometric computing supporting usage in both
industry and academia. The main design goals are genericity, numerical robustness, efficiency and ease of
use. These goals are enforced by a review of all submissions managed by an editorial board. As the focus is
on fundamental geometric algorithms and data structures, the target application domains are numerous: from
geological modeling to medical images, from antenna placement to geographic information systems, etc.

The CGAL library consists of a kernel, a list of algorithmic packages, and a support library. The kernel is made
of classes that represent elementary geometric objects (points, vectors, lines, segments, planes, simplices,
isothetic boxes, circles, spheres, circular arcs...), as well as affine transformations and a number of predicates
and geometric constructions over these objects. These classes exist in dimensions 2 and 3 (static dimension)
and d (dynamic dimension). Using the template mechanism, each class can be instantiated following several
representation modes: one can choose between Cartesian or homogeneous coordinates, use different number
types to store the coordinates, and use reference counting or not. The kernel also provides some robustness
features using some specifically-devised arithmetic (interval arithmetic, multi-precision arithmetic, static
filters...).

A number of packages provide geometric data structures as well as algorithms. The data structures are poly-
gons, polyhedra, triangulations, planar maps, arrangements and various search structures (segment trees, d-
dimensional trees...). Algorithms are provided to compute convex hulls, Voronoi diagrams, Boolean opera-
tions on polygons, solve certain optimization problems (linear, quadratic, generalized of linear type). Through
class and function templates, these algorithms can be used either with the kernel objects or with user-defined
geometric classes provided they match a documented interface.

Finally, the support library provides random generators, and interfacing code with other libraries, tools, or
file formats (ASCII files, QT or LEDA Windows, OpenGL, Open Inventor, Postscript, Geomview...). Partial
interfaces with Python, SCILAB and the Ipe drawing editor are now also available.

http://www.inria.fr/equipes/geometrica
http://www.cgal.org
http://www.geometryfactory.com
http://www.geometryfactory.com

16 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team
GEOMETRICA

GEOMETRICA is particularly involved in general maintenance, in the arithmetic issues that arise in the
treatment of robustness issues, in the kernel, in triangulation packages and their close applications such as
alpha shapes, in mesh generation and related packages. Two researchers of GEOMETRICA are members of the
CGAL Editorial Board, whose main responsibilities are the control of the quality of CGAL, making decisions
about technical matters, coordinating communication and promotion of CGAL.

CGAL is about 700,000 lines of code and supports various platforms: GCC (Linux, Mac OS X, Cygwin...),
Visual C++ (Windows), Intel C++. A new version of CGAL is released twice a year, and it is downloaded
about 10000 times a year. Moreover, CGAL is directly available as packages for the Debian, Ubuntu and
Fedora Linux distributions.

More numbers about CGAL: there are now 12 editors in the editorial board, with approximately 20 additional
developers. The user discussion mailing-list has more than 1000 subscribers with a relatively high traffic of
5-10 mails a day. The announcement mailing-list has more than 3000 subscribers.

5.1.1. High-dimensional kernel Epick_d
Participant: Marc Glisse.

We implemented a new high-dimensional kernel taking advantage of the progress that was made in dimensions
2 and 3. It is meant to be used with a reimplementation of high-dimensional triangulations (in progress).

5.1.2. Number type Mpzf
Participant: Marc Glisse.

We added a new exact ring number type that can represent all finite double floating-point numbers. It makes
building a Delaunay triangulation 8 times faster than with earlier CGAL releases in some degenerate cases.

5.1.3. CGALmesh: a Generic Framework for Delaunay Mesh Generation
Participants: Jean-Daniel Boissonnat, Mariette Yvinec.

In collaboration with Pierre Alliez (EPI Titane), ClémentJamin (EPI Titane)

CGALmesh is the mesh generation software package of the Computational Geometry Algorithm Library
(CGAL). It generates isotropic simplicial meshes – surface triangular meshes or volume tetrahedral meshes –
from input surfaces, 3D domains as well as 3D multi-domains, with or without sharp features. The underlying
meshing algorithm relies on restricted Delaunay triangulations to approximate domains and surfaces, and
on Delaunay refinement to ensure both approximation accuracy and mesh quality. CGALmesh provides
guarantees on approximation quality as well as on the size and shape of the mesh elements. It provides
four optional mesh optimization algorithms to further improve the mesh quality. A distinctive property of
CGALmesh is its high flexibility with respect to the input domain representation. Such a flexibility is achieved
through a careful software design, gathering into a single abstract concept, denoted by the oracle, all required
interface features between the meshing engine and the input domain. We already provide oracles for domains
defined by polyhedral and implicit surfaces. [27] [53]

5.1.4. Periodic Meshes
Participants: Aymeric Pellé, Monique Teillaud.

There is a growing need for a 3D periodic mesh generator for various fields, such as material engineering
or modeling of nano-structures. We are writing a software package answering this need, and which will be
made publicly available in the open source library CGAL. The software is based on the CGAL 3D volume mesh
generator package and the CGAL 3D periodic triangulations package. [42] [63]

5.2. Gudhi library
Participants: Jean-Daniel Boissonnat, Marc Glisse, Clément Maria, Mariette Yvinec.

With the collaboration of David Salinas

http://raweb.inria.fr/rapportsactivite/RA{$year}/geometrica/bibliography.html#geometrica-2014-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/geometrica/bibliography.html#geometrica-2014-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/geometrica/bibliography.html#geometrica-2014-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/geometrica/bibliography.html#geometrica-2014-bid3

17 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team
GEOMETRICA

https://project.inria.fr/gudhi/software/

The GUDHI open source library will provide the central data structures and algorithms that underly appli-
cations in geometry understanding in higher dimensions. It is intended to both help the development of new
algorithmic solutions inside and outside the project, and to facilitate the transfert of results in applied fields.
The first release of the GUDHI library includes: – Data structures to represent, construct and manipulate
simplicial complexes; – Algorithms to compute persistent homology and multi-field persistent homology.

https://project.inria.fr/gudhi/software/

18 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team GRACE

GRACE Project-Team

5. New Software and Platforms

5.1. CADO-NFS-DLOG
F. Morain is one of the developers of CADO-NFS (available at http://cado-nfs.gforge.inria.fr/), which now
includes new algorithms for discrete logarithm computations over finite fields.

5.2. Fast Compact Diffie–Hellman software
Working with C. Costello (Microsoft Research) and H. Hisil (Yasar), B. Smith contributed to the development
of a competitive, high-speed, open implementation of the Diffie–Hellman protocol (described in [21]),
targeting the 128-bit security level on Intel platforms. The source code is freely available at http://research.
microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/ and http://hhisil.yasar.edu.tr/files/
hisil20140318compact.tar.gz.

5.3. Platforms
5.3.1. ACTIS: Contribution to Sage

In the beginning of 2014,D. Augot and C. Pernet submitted an IJD proposal (ingénieur jeune diplomé) to Inria,
called Projet Actis (Algorithmic Coding Theory In Sage). The aim of this project is to vastly improve the state
of the error correcting library in Sage. The existing library does not present a good and usable API, and the
provided algorithms are very basic, irrelevant, and outdated. We thus have two directions for improvement:
renewing the APIs to make them actually usable by researchers, and incorporating efficient programs for
decoding, like J. Nielsen’s CodingLib, which contains many new algorithms.

We hired D. Lucas on October 1st; he has started implementing various basic things, in a standalone manner.
We plan to publish these snippets of code to the Sage community in January 2015. Our plan is to interact a lot
with the Sage community, to ensure that our new APIs will cover most of the needs of various communities.

http://www.inria.fr/equipes/grace
http://cado-nfs.gforge.inria.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/grace/bibliography.html#grace-2014-bid0
http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/
http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/
http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz
http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz

19 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team LFANT

LFANT Project-Team

4. New Software and Platforms

4.1. Pari/Gp
Participants: Karim Belabas [correspondent], Bill Allombert, Henri Cohen, Andreas Enge, Hamish Ivey-
Law.

http://pari.math.u-bordeaux.fr/

PARI/GP is a widely used computer algebra system designed for fast computations in number theory
(factorisation, algebraic number theory, elliptic curves, ...), but it also contains a large number of other
useful functions to compute with mathematical entities such as matrices, polynomials, power series, algebraic
numbers, etc., and many transcendental functions.

• PARI is a C library, allowing fast computations.

• GP is an easy-to-use interactive shell giving access to the PARI functions.

• gp2c, the GP-to-C compiler, combines the best of both worlds by compiling GP scripts to the C
language and transparently loading the resulting functions into GP; scripts compiled by gp2c will
typically run three to four times faster.

• Version of PARI/GP: 2.7.2

• Version of gp2c: 0.0.9

• License: GPL v2+

• Programming language: C

4.2. GNU MPC
Participants: Andreas Enge [correspondent], Mickaël Gastineau [CNRS], Philippe Théveny [INRIA project-
team ARIC], Paul Zimmermann [INRIA project-team CARAMEL].

http://mpc.multiprecision.org/.

GNUMPC is a C library for the arithmetic of complex numbers with arbitrarily high precision and correct
rounding of the result. It is built upon and follows the same principles as GNUMPFR.

It is a prerequisite for the GNU compiler collection GCC since version 4.5, where it is used in the C and Fortran
front ends for constant folding, the evaluation of constant mathematical expressions during the compilation of
a program. Since 2011, it is an official GNU project.

2012 has seen the first release of the major version 1.0.

• Version: 1.0.2 Fagus silvatica

• License: LGPL v3+

• ACM: G.1.0 (Multiple precision arithmetic)

• AMS: 30.04 Explicit machine computation and programs

• APP: Dépôt APP le 2003-02-05 sous le numéro IDDN FR 001 060029 000 R P 2003 000 10000

• Programming language: C

4.3. MPFRCX
Participant: Andreas Enge.

http://mpfrcx.multiprecision.org/

http://www.inria.fr/equipes/lfant
http://pari.math.u-bordeaux.fr/
http://mpc.multiprecision.org/
http://mpfrcx.multiprecision.org/

20 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team LFANT

MPFRCX is a library for the arithmetic of univariate polynomials over arbitrary precision real (MPFR) or
complex (MPC) numbers, without control on the rounding. For the time being, only the few functions needed
to implement the floating point approach to complex multiplication are implemented. On the other hand, these
comprise asymptotically fast multiplication routines such as Toom-Cook and the FFT.

• Version: 0.4.2 Cassava

• License: LGPL v2.1+

• Programming language: C

4.4. CM
Participant: Andreas Enge.

http://cm.multiprecision.org/

The CM software implements the construction of ring class fields of imaginary quadratic number fields and
of elliptic curves with complex multiplication via floating point approximations. It consists of libraries that
can be called from within a C program and of executable command line applications. For the implemented
algorithms, see [8].

• Version: 0.2 Blindhühnchen

• License: GPL v2+

• Programming language: C

4.5. AVIsogenies
Participants: Damien Robert [correspondent], Gaëtan Bisson, Romain Cosset [INRIA project-team
CARAMEL].

http://avisogenies.gforge.inria.fr/.

AVISOGENIES (Abelian Varieties and Isogenies) is a MAGMA package for working with abelian varieties,
with a particular emphasis on explicit isogeny computation.

Its prominent feature is the computation of (`, `)-isogenies between Jacobian varieties of genus-two hyper-
elliptic curves over finite fields of characteristic coprime to `; practical runs have used values of ` in the
hundreds.

It can also be used to compute endomorphism rings of abelian surfaces, and find complete addition laws on
them.

• Version: 0.6

• License: LGPL v2.1+

• Programming language: Magma

4.6. APIP
Participant: Jérôme Milan.

http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml

APIP, Another Pairing Implementation in PARI, is a library for computing standard and optimised variants of
most cryptographic pairings.

The following pairings are available: Weil, Tate, ate and twisted ate, optimised versions (à la Ver-
cauteren–Hess) of ate and twisted ate for selected curve families.

The following methods to compute the Miller part are implemented: standard Miller double-and-add method,
standard Miller using a non-adjacent form, Boxall et al. version, Boxall et al. version using a non-adjacent
form.

http://cm.multiprecision.org/
http://raweb.inria.fr/rapportsactivite/RA{$year}/lfant/bibliography.html#lfant-2014-bid4
http://avisogenies.gforge.inria.fr/
http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml

21 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team LFANT

The final exponentiation part can be computed using one of the following variants: naive exponentiation,
interleaved method, Avanzi–Mihailescu’s method, Kato et al.’s method, Scott et al.’s method.

Part of the library has been included into PARI/GP proper.
• Version: 2012-10-17
• License: GPL v2+
• Programming language: C with libpari

4.7. CMH
Participants: Andreas Enge, Emmanuel Thomé [INRIA project-team CARAMEL].

http://cmh.gforge.inria.fr/

CMH computes Igusa class polynomials, parameterising two-dimensional abelian varieties (or, equivalently,
Jacobians of hyperelliptic curves of genus 2) with given complex multiplication.

• Version: 1.0
• License: GPL v3+
• Programming language: C

4.8. Cubic
Participant: Karim Belabas.

http://www.math.u-bordeaux1.fr/~belabas/research/software/cubic-1.2.tgz

CUBIC is a stand-alone program that prints out generating equations for cubic fields of either signature and
bounded discriminant. It depends on the PARI library. The algorithm has quasi-linear time complexity in the
size of the output.

• Version: 1.2
• License: GPL v2+
• Programming language: C

4.9. Euclid
Participant: Pierre Lezowski.

http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php.

Euclid is a program to compute the Euclidean minimum of a number field. It is the practical implementation of
the algorithm described in [38]. Some corresponding tables built with the algorithm are also available. Euclid
is a stand-alone program depending on the PARI library.

• Version: 1.2
• License: LGPL v2+
• Programming language: C

4.10. KleinianGroups
Participant: Aurel Page.

http://www.normalesup.org/~page/Recherche/Logiciels/logiciels.html

KLEINIANGROUPS is a Magma package that computes fundamental domains of arithmetic Kleinian groups.
• Version: 1.0
• License: GPL v3+
• Programming language: Magma

http://cmh.gforge.inria.fr/
http://www.math.u-bordeaux1.fr/~belabas/research/software/cubic-1.2.tgz
http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php
http://raweb.inria.fr/rapportsactivite/RA{$year}/lfant/bibliography.html#lfant-2014-bid5
http://www.normalesup.org/~page/Recherche/Logiciels/logiciels.html

22 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team POLSYS

POLSYS Project-Team

5. New Software and Platforms

5.1. FGb
Participant: Jean-Charles Faugère [contact].

FGb is a powerful software for computing Gröbner bases.It includes the new generation of algorihms for
computing Gröbner bases polynomial systems (mainly the F4, F5 and FGLM algorithms). It is implemented
in C/C++ (approximately 250000 lines), standalone servers are available on demand. Since 2006, FGb is
dynamically linked with Maple software (version 11 and higher) and is part of the official distribution of this
software.
See also the web page http://www-polsys.lip6.fr/~jcf/Software/FGb/index.html.

5.2. GBLA
Participants: Jean-Charles Faugère [contact], Brice Boyer.

• ACM: I.1.2 Algebraic algorithms

• Programming language: C/C++

GBLA a new open source C library for linear algebra dedicated to Gröbner bases computations (see http://
www-polsys.lip6.fr/~jcf/Software/index.html).

5.3. RAGlib
Participant: Mohab Safey El Din [contact].

RAGLib is a Maple library for solving over the reals polynomial systems and computing sample points in
semi-algebraic sets.

5.4. Epsilon
Participant: Dongming Wang [contact].

Epsilon is a library of functions implemented in Maple and Java for polynomial elimination and decomposition
with (geometric) applications.

5.5. SLV
Participant: Elias Tsigaridas [contact].

SLV is a software package in C that provides routines for isolating (and subsequently refine) the real roots
of univariate polynomials with integer or rational coefficients based on subdivision algorithms and on the
continued fraction expansion of real numbers. Special attention is given so that the package can handle
polynomials that have degree several thousands and size of coefficients hundrends of Megabytes. Currently
the code consists of ∼ 5 000 lines.

• ACM: I.1.2 Algebraic algorithms

• Programming language: C/C++

http://www.inria.fr/equipes/polsys
http://www-polsys.lip6.fr/~jcf/Software/FGb/index.html
http://www-polsys.lip6.fr/~jcf/Software/index.html
http://www-polsys.lip6.fr/~jcf/Software/index.html

23 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team SECRET

SECRET Project-Team

5. New Software and Platforms

5.1. New Software
5.1.1. CFS Implementation

Participants: Grégory Landais, Nicolas Sendrier.

https://gforge.inria.fr/projects/cfs-signature/

Reference implementation of parallel CFS (reinforced version of the digital signature scheme CFS [93] due
to Matthieu Finiasz [95]). Two variants are proposed, one with a « bit-packing » finite field arithmetic and
an evolution with a « bit-slicing » finite-field arithmetic (collaboration with Peter Schwabe). For 80 bits of
security the running time for producing one signature with the « bit-packing » variant is slightly above one
second. This is high but was still the fastest so far. The evolution with the « bit-slicing » arithmetic produces
the same signature in about 100 milliseconds.

5.1.2. Collision Decoding
Participants: Grégory Landais, Nicolas Sendrier.

https://gforge.inria.fr/projects/collision-dec/

Implementation of two variants of information set decoding, Stern-Dumer [97], [94] and MMT [96]. To our
knowledge it is the best full-fledged open-source implementation of generic decoding of binary linear codes.
It is the best generic attack against code-based cryptography. This software has the best score for breaking
existing publicly available challenges (see http://pqcrypto.org/wild-challenges.html).

http://www.inria.fr/equipes/secret
https://gforge.inria.fr/projects/cfs-signature/
http://raweb.inria.fr/rapportsactivite/RA{$year}/secret/bibliography.html#secret-2014-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/secret/bibliography.html#secret-2014-bid1
https://gforge.inria.fr/projects/collision-dec/
http://raweb.inria.fr/rapportsactivite/RA{$year}/secret/bibliography.html#secret-2014-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/secret/bibliography.html#secret-2014-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/secret/bibliography.html#secret-2014-bid4
http://pqcrypto.org/wild-challenges.html

24 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team SPECFUN

SPECFUN Project-Team

5. New Software and Platforms

5.1. SSReflect
SSReflect is a language extension of the Coq system and was originally written by G. Gonthier for his formal
proof of the Four-Color Theorem 0. In the team, A. Mahboubi and E. Tassi participate to its development,
maintenance, distribution, documentation, and user support. A new version (1.5) was released in March 2014.
The proof language now offers fine-grained control on type-classes inference and offers new proof commands
to ease forward reasoning. In particular the ‘have’ tactic now supports new modifiers to ease stating generalized
formulas as well as hoisting out deeply nested forward steps.

5.2. The Mathematical Components library
The Mathematical Components library is a set of Coq libraries that cover the mechanization of the proof
of the Odd Order Theorem, with large contributions by A. Mahboubi and E. Tassi. After the formal proof
was completed in September 2012, stable libraries had been distributed 0 with the SSReflect extension, while
remaining parts of the libraries had remained under continued improvements in view of potential reuse. In
March 2014, version 1.5 of library was released. With it, the library includes 16 more theory files, covering in
particular field and Galois theory, advanced character theory, and a construction of algebraic numbers.

5.3. Coq
The way Coq processes theory files has been improved. When used as a batch compiler, Coq is now able to
decouple the checking of statements and definitions from the checking of proofs. All proofs can be checked
independently taking advantage of modern parallel hardware. When used interactively in conjunction with
PIDE-based interfaces, Coq is now able to process the document asynchronously by delegating most of the
task to external workers.

The Coq build process was also improved to better support the Windows platform and to enable third parties
to provide pre-compiled plugins for such platform.

5.4. Coq/jEdit
Building on top of the asynchronous processing of Coq proofs, we have implemented a plugin that connects
the jEdit generic text editor to Coq. This plugin is an adaptation of a similar plugin, written by M. Wenzel,
for the Isabelle proof assistant. The interaction using this plugin is a significant change from existing user
interfaces, making full use of Coq’s asynchronous processing capabilities to provide richer feedback about the
proof a user is editing.

The plugin was released as a beta in November 2014 and is available at http://pages.saclay.inria.fr/carst.
tankink/jedit.html.

5.5. Other maintained software
We still actively maintain the following other software, which have not had a new release this year.

0http://www.msr-inria.fr/projects/mathematical-components/
0http://www.msr-inria.fr/projects/mathematical-components/

http://www.inria.fr/equipes/specfun
http://pages.saclay.inria.fr/carst.tankink/jedit.html
http://pages.saclay.inria.fr/carst.tankink/jedit.html
http://www.msr-inria.fr/projects/mathematical-components/
http://www.msr-inria.fr/projects/mathematical-components/

25 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team SPECFUN

5.5.1. DDMF
(2007–): Web site consisting of interactive tables of mathematical formulas on elementary and special
functions. The formulas are automatically generated by OCaml and computer-algebra routines. Users can
ask for more terms of the expansions, more digits of the numerical values, proofs of some of the formulas,
etc. See http://ddmf.msr-inria.inria.fr/1.9.1/ddmf. We count hundreds of user sessions per month. Source code
distributed under CeCILL-B. A next release is under preparation: it will base on a different, more user-friendly
rendering tool (MathJax) and will display more contents.

5.5.2. DynaMoW
(2007–): Programming tool for controlling the generation of mathematical websites that embed dynamical
mathematical contents generated by computer-algebra calculations. Implemented in OCaml. See http://ddmf.
msr-inria.inria.fr/DynaMoW/. Source code distributed under CeCILL-B.

5.5.3. Ring
(2004–): Coq normalization tool and decision procedure for expressions in commutative ring theories.
Implemented in Coq and OCaml. Integrated in the standard distribution of the Coq proof assistant since 2005.

5.5.4. Mgfun
(1994–): Maple package for symbolic summation, integration, and other closure properties of multivariate
special functions. Now distributed as part of Algolib, a collection of packages for combinatorics and manipu-
lations of special functions, available at http://algo.inria.fr/libraries/. This software has been used this year for
our formal proof of irrationality of ζ(3).

http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
http://ddmf.msr-inria.inria.fr/DynaMoW/
http://ddmf.msr-inria.inria.fr/DynaMoW/
http://algo.inria.fr/libraries/

26 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team VEGAS

VEGAS Project-Team

4. New Software and Platforms

4.1. QI: Quadrics Intersection
QI stands for “Quadrics Intersection”. QI is the first exact, robust, efficient and usable implementation of
an algorithm for parameterizing the intersection of two arbitrary quadrics, given in implicit form, with integer
coefficients. This implementation is based on the parameterization method described in [5] [29] and represents
the first complete and robust solution to what is perhaps the most basic problem of solid modeling by implicit
curved surfaces.

QI is written in C++ and builds upon the LiDIA computational number theory library [20] bundled with
the GMP multi-precision integer arithmetic [19]. QI can routinely compute parameterizations of quadrics
having coefficients with up to 50 digits in less than 100 milliseconds on an average PC; see [29] for detailed
benchmarks.

Our implementation consists of roughly 18,000 lines of source code. QI has being registered at the Agence
pour la Protection des Programmes (APP). It is distributed under a free for non-commercial use Inria license
and will be distributed under the QPL license in the next release. The implementation can also be queried via
a web interface [21].

Since its official first release in June 2004, QI has been downloaded six times a month on average and it
has been included in the geometric library EXACUS developed at the Max-Planck-Institut für Informatik
(Saarbrücken, Germany). QI is also used in a broad range of applications; for instance, it is used in
photochemistry for studying the interactions between potential energy surfaces, in computer vision for
computing the image of conics seen by a catadioptric camera with a paraboloidal mirror, and in mathematics
for computing flows of hypersurfaces of revolution based on constant-volume average curvature.

4.2. Isotop: Topology and geometry of planar algebraic curves
ISOTOP is a Maple software for computing the topology of an algebraic plane curve, that is, for computing an
arrangement of polylines isotopic to the input curve. This problem is a necessary key step for computing
arrangements of algebraic curves and has also applications for curve plotting. This software has been
developed since 2007 in collaboration with F. Rouillier from Inria Paris - Rocquencourt. It is based on the
method described in [3] which incorporates several improvements over previous methods. In particular, our
approach does not require generic position.

Isotop is registered at the APP (June 15th 2011). This version is competitive with other implementations (such
as ALCIX and INSULATE developed at MPII Saarbrücken, Germany and TOP developed at Santander Univ.,
Spain). It performs similarly for small-degree curves and performs significantly better for higher degrees, in
particular when the curves are not in generic position.

We are currently working on an improved version integrating our new bivariate polynomial solver.

4.3. CGAL: Computational Geometry Algorithms Library
Born as a European project, CGAL (http://www.cgal.org) has become the standard library for computational
geometry. It offers easy access to efficient and reliable geometric algorithms in the form of a C++ library.
CGAL is used in various areas needing geometric computation, such as: computer graphics, scientific
visualization, computer aided design and modeling, geographic information systems, molecular biology,
medical imaging, robotics and motion planning, mesh generation, numerical methods...

http://www.inria.fr/equipes/vegas
http://raweb.inria.fr/rapportsactivite/RA{$year}/vegas/bibliography.html#vegas-2014-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/vegas/bibliography.html#vegas-2014-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/vegas/bibliography.html#vegas-2014-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/vegas/bibliography.html#vegas-2014-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/vegas/bibliography.html#vegas-2014-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/vegas/bibliography.html#vegas-2014-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/vegas/bibliography.html#vegas-2014-bid5
http://www.cgal.org

27 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team VEGAS

In computational geometry, many problems lead to standard, though difficult, algebraic questions such as
computing the real roots of a system of equations, computing the sign of a polynomial at the roots of a
system, or determining the dimension of a set of solutions. We want to make state-of-the-art algebraic software
more accessible to the computational geometry community, in particular, through the computational geometric
library CGAL. On this line, we contributed a model of the Univariate Algebraic Kernel concept for algebraic
computations [23] (see Sections 8.2.2 and 8.4). This CGAL package improves, for instance, the efficiency of
the computation of arrangements of polynomial functions in CGAL [30]. We are currently developing a model
of the Bivariate Algebraic Kernel based on a new bivariate polynomial solver.

4.4. Fast_polynomial: fast polynomial evaluation software
The library fast_polynomial0 provides fast evaluation and composition of polynomials over several types of
data. It is interfaced for the computer algebra system Sage and its algorithms are documented 0. This software
is meant to be a first step toward a certified numerical software to compute the topology of algebraic curves
and surfaces. It can also be useful as is and is submitted for integration in the computer algebra system Sage.

This software is focused on fast online computation, multivariate evaluation, modularity, and efficiency.

Fast online computation. The library is optimized for the evaluation of a polynomial on several point arguments
given one after the other. The main motivation is numerical path tracking of algebraic curves, where a given
polynomial criterion must be evaluated several thousands of times on different values arising along the path.

Multivariate evaluation. The library provides specialized fast evaluation of multivariate polynomials with
several schemes, specialized for different types such as mpz big ints, boost intervals with hardware precision,
mpfi intervals with any given precision, etc.

Modularity. The evaluation scheme can be easily changed and adapted to the user needs. Moreover, the code
is designed to easily extend the library with specialization over new C++ objects.

Efficiency. The library uses several tools and methods to provide high efficiency. First, the code uses templates,
such that after the compilation of a polynomial for a specific type, the evaluation performance is equivalent
to low-level evaluation. Locality is also taken into account: the memory footprint is minimized, such that
an evaluation using the classical Hörner scheme will use O(1) temporary objects and divide and conquer
schemes will use O(log n) temporary objects, where n is the degree of the polynomial. Finally, divide and
conquer schemes can be evaluated in parallel, using a number of threads provided by the user.

0http://trac.sagemath.org/sage_trac/ticket/13358
0http://arxiv.org/abs/1307.5655

http://raweb.inria.fr/rapportsactivite/RA{$year}/vegas/bibliography.html#vegas-2014-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/vegas/bibliography.html#vegas-2014-bid7
http://trac.sagemath.org/sage_trac/ticket/13358
http://arxiv.org/abs/1307.5655

28 Architecture, Languages and Compilation - Software and Platforms - Project-Team ALF

ALF Project-Team

5. New Software and Platforms

5.1. Panorama
The ALF team is developing several software prototypes for research purposes: compilers, architectural
simulators, programming environments

Among the prototypes developed in the project, this section reports only the softwares that had significant
revisions in 2014. Among the softwares available from the project website and not reported here, ATMI http://
www.irisa.fr/alf/atmi, a microarchitecture temperature model for processor simulation, STiMuL http://www.
irisa.fr/alf/stimul, a temperature model for steady state studies, ATC http://www.irisa.fr/alf/atc, an address
trace compressor, and HAVEGE http://www.irisa.fr/alf/havege an unpredictable random number generator.

5.2. TPCalc
Participant: Pierre Michaud.

microarchitecture simulation

TPCalc is a throughput calculator for microarchitecture studies concerned with multi-program workloads
consisting of sequential programs. Because microarchitecture simulators are slow, it is difficult to simulate
throughput experiments where a multicore executes many jobs that enter and leave the system. The usual
practice of measuring instantaneous throughput on independent coschedules chosen more or less randomly
is not a rigorous practice because it assumes that all the coschedules are equally important, which is not
always true. TPCalc can compute the average throughput of a throughput experiment without actually doing
the throughput experiment. The user first defines the workload heterogeneity (number of different job types),
the multicore configuration (number of cores and symmetries). TPCalc provides a list of base coschedules.
The user then simulates these coschedules, using some benchmarks of his/her choice, and feeds back to
TPCalc the measured execution rates (e.g., instructions per cycle or instructions per second).TPCalc eventually
outputs the average throughput. Several throughput metrics are available, corresponding to different workload
assumptions. These metrics are described in our ACM TACO paper, a collaboration with Ghent University
[15].

TPCalc is an open-source software written in C++. It runs on Unix-based systems (Linux, OS X ...). It is
available for download at http://www.irisa.fr/alf/downloads/michaud/tpcalc.html.

5.3. Heptane
Participants: Isabelle Puaut, Damien Hardy.

WCET estimation

Status: Registered with APP (Agence de Protection des Programmes). Available under GNU General Public
License v3, with number IDDN.FR.001.510039.000.S.P.2003.000.10600.

The aim of Heptane is to produce upper bounds of the execution times of applications. It is targeted at
applications with hard real-time requirements (automotive, railway, aerospace domains). Heptane computes
WCETs using static analysis at the binary code level. It includes static analyses of microarchitectural elements
such as caches and cache hierarchies.

For more information, please contact Damien Hardy or Isabelle Puaut.

5.4. Tiptop
Participant: Erven Rohou.

http://www.inria.fr/equipes/alf
http://www.irisa.fr/alf/atmi
http://www.irisa.fr/alf/atmi
http://www.irisa.fr/alf/stimul
http://www.irisa.fr/alf/stimul
http://www.irisa.fr/alf/atc
http://www.irisa.fr/alf/havege
http://raweb.inria.fr/rapportsactivite/RA{$year}/alf/bibliography.html#alf-2014-bid24
http://www.irisa.fr/alf/downloads/michaud/tpcalc.html

29 Architecture, Languages and Compilation - Software and Platforms - Project-Team ALF

Performance, hardware counters, analysis tool.

Status: Registered with APP (Agence de Protection des Programmes). Available under GNU General Public
License v2, with number IDDN.FR.001.450006.000.S.P.2011.000.10800. Current version is 2.2, released
March 2013.

Tiptop has been integrated in major Linux distributions, such as Fedora, Debian, Ubuntu.

Tiptop is a new simple and flexible user-level tool that collects hardware counter data on Linux platforms
(version 2.6.31+). The goal is to make the collection of performance and bottleneck data as simple as possible,
including simple installation and usage. In particular, we stress the following points.

• Installation is only a matter of compiling the source code. No patching of the Linux kernel is needed,
and no special-purpose module needs to be loaded.

• No privilege is required, any user can run tiptop — non-privileged users can only watch processes
they own, ability to monitor anybody’s process opens the door to side-channel attacks.

• The usage is similar to top. There is no need for the source code of the applications of interest,
making it possible to monitor proprietary applications or libraries. And since there is no probe to
insert in the application, understanding of the structure and implementation of complex algorithms
and code bases is not required.

• Applications do not need to be restarted, and monitoring can start at any time (obviously, only events
that occur after the start of tiptop are observed).

• Events can be counted per thread, or per process.

• Any expression can be computed, using the basic arithmetic operators, constants, and counter
values.

• A configuration file lets users define their prefered setup, as well as custom expressions.

Tiptop is written in C. It can take advantage of libncurses when available for pseudo-graphic display.

For more information, please contact Erven Rohou or visit http://tiptop.gforge.inria.fr.

5.5. Padrone
Participants: Erven Rohou, Emmanuel Riou.

Performance, profiling, dynamic optimization

Status: Ongoing development, early prototype. Registered with APP (Agence de Protection des Programmes).

Padrone is new platform for dynamic binary analysis and optimization. It provides an API to help clients
design and develop analysis and optimization tools for binary executables. Padrone attaches to running
applications, only needing the executable binary in memory. No source code or debug information is needed.
No application restart is needed either. This is specially interesting for legacy or commercial applications, but
also in the context of cloud deployment, where actual hardware is unknown, and other applications competing
for hardware resources can vary. The profiling overhead is minimum.

Padrone is instrumental to the PhD developments of Nabil Hallou.

Padrone is written in C.

For more information, please contact Erven Rohou.

5.6. Barra
Participant: Sylvain Collange.

GPU simulator

Other Contributors : David Defour (Université de Perpignan), Alexandre Kouyoumdjian (Inria), Elie Gedeon
(ENS Lyon), Fabrice Mouhartem (Inria)

http://tiptop.gforge.inria.fr

30 Architecture, Languages and Compilation - Software and Platforms - Project-Team ALF

Status : APP registration in progress. Available under the new BSD License

Research on throughput-oriented architectures demands accurate and representative models of GPU architec-
tures in order to be able to evaluate new architectural ideas, explore design spaces and characterize applica-
tions. The Barra project 0 is a simulator of the NVIDIA Tesla GPU architecture.

Barra builds upon knowledge acquired through micro-benchmarking, in order to provide a baseline model
representative of industry practice. The simulator provides detailed statistics to identify optimization opportu-
nities and is fully customizable to experiment ideas of architectural modifications. Barra incorporates both a
functional model and a cycle-level performance model.

Visit http://barra.gforge.inria.fr/ or contact Sylvain Collange.

0http://gforge.inria.fr/plugins/mediawiki/wiki/barra/index.php/Main_Page

http://barra.gforge.inria.fr/
http://gforge.inria.fr/plugins/mediawiki/wiki/barra/index.php/Main_Page

31 Architecture, Languages and Compilation - Software and Platforms - Project-Team ATEAMS

ATEAMS Project-Team

4. New Software and Platforms

4.1. MicroMachinations
Participant: Riemer Van Rozen [correspondent].

Characterization: A-2-up3, SO-4, SM-2-up3, EM-3, SDL-3-up4, OC-DA-3-CD-3-MS-3-TPM-3.

WWW:

Objective: To create an integrated, live environment for modeling and evolving game economies. This
will allow game designers to experiment with different strategies to realize game mechanics. The
environment integrates with the SPIN model checker to prove properties (reachability, liveness). A
runtime system for executing game economies allows MicroMachinations models to be embedded
in actual games.

Users: Game designers

Impact: One of the important problems in game software development is the distance between game
design and implementation in software. MicroMachinations has the potential to bridge this gap by
providing live design tools that directly modify or create the desired software behaviors.

Competition: None.

Engineering: The front-end of MicroMachinations is built using the Rascal language workbench, in-
cluding visualization, model checking, debugging and standard IDE features. The runtime library is
implemented in C++ and will be evaluated in the context of industrial game design.

Publications: [11]

4.1.1. Novelties
• MMLib was finished to allow the execution of game economies directly within games. This supports

“Live programming” of the behavior of games. The library has been used in the development of the
real-life game “Johnny Jetstream”, designed by IC3DMedia.

4.2. Naked Object Algebras
Participant: Tijs Van Der Storm [correspondent].

Characterization: A5, SO-4, SM-4, EM-4, SDL-4-up5, OC-DA-3-CD-3-MS-3-TPM-3.

WWW: https://github.com/cwi-swat/naked-object-algebras

Objective: Supporting modular and extensible language development.

Users: Programmers, language designers.

Impact: Object Algebras promise a new level of modularity and extensibility in the implementation of
recursive data types. The NAO framework lifts this to the implementation of software languages,
including the declarative declaration of concrete syntax.

Competition: Language prototyping tools.

Engineering: NAO consists of a few hundred lines of Java code. It has no external dependencies, except
ANTLR for parsing.

Publications: [27], [33]

http://www.inria.fr/equipes/ateams
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid2
https://github.com/cwi-swat/naked-object-algebras
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid4

32 Architecture, Languages and Compilation - Software and Platforms - Project-Team ATEAMS

4.2.1. Novelties
• NAO has been used to develop an extensible variant of the QL questionnaire language [33].

4.3. Rascal
Participants: Paul Klint, Jurgen Vinju [correspondent], Tijs Van Der Storm, Pablo Inostroza Valdera, Davy
Landman, Bert Lisser, Atze Van Der Ploeg, Vadim Zaytsev, Anastasia Izmaylova, Michael Steindorfer, Jouke
Stoel, Ali Afroozeh, Ashim Shahi.

Characterization: A5, SO-4, SM-4, EM-4, SDL-4-up5, OC-DA-3-CD-3-MS-3-TPM-3.

WWW: http://www.rascal-mpl.org

Objective: Provide a completely integrated programming language parametric meta programming lan-
guage for the construction of any kind of meta program for any kind of programming language:
analysis, transformation, generation, visualization.

Users: Researchers in model driven engineering, programming languages, software engineering, soft-
ware analysis, as well as practitioners that need specialized tools.

Impact: Rascal is making the mechanics of meta programming into a non-issue. We can now focus
on the interesting details of the particular fact extraction, model, source analysis, domain analysis as
opposed to being distracted by the engineering details. Simple things are easy in Rascal and complex
things are manageable, due to the integration, the general type system and high-level programming
features.

Competition: There is a plethora of meta programming toolboxes and frameworks available, ranging
from plain parser generators to fully integrated environments. Rascal is distinguished because it is
a programming language rather than a specification formalism and because it completely integrates
different technical domains (syntax definition, term rewriting, relational calculus). For simple tools,
Rascal competes with scripting languages and for complex tools it competes context-free general
parser generators, with query engines based on relational calculus and with term rewriting and
strategic programming languages.

Engineering: Rascal is about 100 kLOC of Java code, designed by a core team of three and with a team
of around 8 PhD students and post-docs contributing to its design, implementation and maintenance.
The goal is to work towards more bootstrapping and less Java code as the project continues.

Publications: [7], [6], [8], [5], [6]

4.3.1. Novelties
• Improvements of the language-parametric model to represent software projects (M3) [9].

• Performance improvements of the Rascal interpreter throughout.

• Further improvements to the compiler for Rascal, based on new language construct guarded corou-
tines.

• New language feature: keyword parameters. This will further allow simplificiation of the core
language, as well as support better extensibility.

• Significant improvements to the Rascal static type checker.

• Further improvements to the new GLL parser (Iguana).

• Design of a new DSL for describing core banking infrastructure was started (ReBEL). Rascal was
also used to develop a state machine DSL for use in embedded devices (Machino).

4.4. IDE Meta-tooling Platform
Participants: Jurgen Vinju [correspondent], Michael Steindorfer.

http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid4
http://www.rascal-mpl.org
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid9

33 Architecture, Languages and Compilation - Software and Platforms - Project-Team ATEAMS

IMP, the IDE meta tooling platform is an Eclipse plugin developed mainly by the team of Robert M. Fuhrer
at IBM TJ Watson Research institute. It is both an abstract layer for Eclipse, allowing rapid development of
Eclipse based IDEs for programming languages, and a collection of meta programming tools for generating
source code analysis and transformation tools.

Characterization: A5, SO-3, SM4-up5, EM-4, SDL-5, DA-2-CD-2-MS-2-TPM-2

WWW: https://github.com/impulse-org/

Objective: The IDE Meta Tooling Platform (IMP) provides a high-level abstraction over the Eclipse API
such that programmers can extend Eclipse with new programming languages or domain specific
languages in a few simple steps. IMP also provides a number of standard meta tools such as a parser
generator and a domain specific language for formal specifications of configuration parameters.

Users: Designers and implementers of IDEs for programming languages and domain specific languages.
Also, designers and implementers of meta programming tools.

Impact: IMP is a popular among meta programmers especially for it provides the right level of abstrac-
tion.

Competition: IMP competes with other Eclipse plugins for meta programming (such as Model Driven
Engineering tools), but its API is more general and more flexible. IMP is a programmers framework
rather than a set of generators.

Engineering: IMP is a long-lived project of many contributors, which is managed as an Eclipse incu-
bation project at eclipse.org. Currently we are moving the project to Github to explore more
different ways of collaboration.

Publications: [2] [29]

4.4.1. Novelties
• Significant performance improvements to the IMP program database. Performance is now better than

equivalent data structure libraries in Scala and Clojure.

4.5. Ensō
Participant: Tijs Van Der Storm [correspondent].

Characterization: A5, SO-4, SM-3-up-4, EM-2-up-4, SDL-4, OC-DA-4-CD-4-MS-4-TPM-4

WWW: http://www.enso-lang.org

Objective: Together with Prof. Dr. William R. Cook of the University of Texas at Austin, and Alex
Loh, Tijs van der Storm has been designing and implementing a new programming system, called
Ensō. Ensō is theoretically sound and practical reformulation of model-based development. It is
based on model-interpretation as opposed to model transformation and code generation. Currently,
the system already supports models for schemas (data models), web applications, context-free
grammars, diagram editors and security.

Users: All programmers.

Impact: Ensō has the potential to revolutionize the activity of programming. By looking at model driven
engineering from a completely fresh perspective, with as key ingredients interpreters and partial
evaluation, it may make higher level (domain level) program construction and maintenance as
effective as normal programming.

Competition: Ensō competes as a programming paradigm with model driven engineering tools and
generic programming and languages that provide syntax macros and language extensions.

Engineering: Ensō is a completely self-hosted system in 7000 lines of code.

Publications: [14], [16], [13]

https://github.com/impulse-org/
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid11
http://www.enso-lang.org
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/ateams/bibliography.html#ateams-2014-bid14

34 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAIRN

CAIRN Project-Team

5. New Software and Platforms

5.1. Panorama
With the ever raising complexity of embedded applications and platforms, the need for efficient and customiz-
able compilation flows is stronger than ever. This need of flexibility is even stronger when it comes to research
compiler infrastructures that are necessary to gather quantitative evidence of the performance/energy or cost
benefits obtained through the use of reconfigurable platforms. From a compiler point of view, the challenges
exposed by these complex reconfigurable platforms are quite significant, since they require the compiler to
extract and to expose an important amount of coarse and/or fine grain parallelism, to take complex resource
constraints into consideration while providing efficient memory hierarchy and power management.

Because they are geared toward industrial use, production compiler infrastructures do not offer the level of
flexibility and productivity that is required for compiler and CAD tool prototyping. To address this issue,
we have designed an extensible source-to-source compiler infrastructure that takes advantage of leading edge
model-driven object-oriented software engineering principles and technologies.

Figure 2. CAIRN’s general software development framework.

Figure 2 shows the global framework that is being developed in the group. Our compiler flow mixes several
types of intermediate representations. The baseline representation is a simple tree-based model enriched with
control flow information. This model is mainly used to support our source-to-source flow, and serves as
the backbone for the infrastructure. We use the extensibility of the framework to provide more advanced
representations along with their corresponding optimizations and code generation plug-ins. For example,
for our pattern selection and accuracy estimation tools, we use a data dependence graph model in all basic

http://www.inria.fr/equipes/cairn
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/uid22.html

35 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAIRN

blocks instead of the tree model. Similarly, to enable polyhedral based program transformations and analysis,
we introduced a specific representation for affine control loops that we use to derive a Polyhedral Reduced
Dependence Graph (PRDG). Our current flow assumes that the application is specified as a system level
hierarchy of communicating tasks, where each task is expressed using C (or Scilab in the short future),
and where the system level representation and the target platform model are defined using Domain Specific
Languages (DSL).

Gecos (Generic Compiler Suite) is the main backbone of CAIRN’s flow. It is an open source Eclipse-based
flexible compiler infrastructure developed for fast prototyping of complex compiler passes. Gecos is a 100%
Java based implementation and is based on modern software engineering practices such as Eclipse plugin or
model-driven software engineering with EMF (Eclipse Modeling Framework). As of today, our flow offers the
following features:

• An automatic floating-point to fixed-point conversion flow (for HLS and embedded processors).
ID.Fix is an infrastructure for the automatic transformation of software code aiming at the conversion
of floating-point data types into a fixed-point representation. http://idfix.gforge.inria.fr.

• A polyhedral-based loop transformation and parallelization engine (mostly targeted at HLS). http://
gecos.gforge.inria.fr. It was used for source-to-source transformations in the context of Nano2012
projects in collaboration with STMicroelectronics.

• A custom instruction extraction flow (for ASIP and dynamically reconfigurable architectures).
Durase and UPaK are developed for the compilation and the synthesis targeting reconfigurable
platforms and the automatic synthesis of application specific processor extensions. They use ad-
vanced technologies, such as graph matching and graph merging together with constraint program-
ming methods.

• Several back-ends to enable the generation of VHDL for specialized or reconfigurable IPs, and
SystemC for simulation purposes (e.g., fixed-point simulations).

5.2. Gecos
Participants: Steven Derrien [corresponding author], Nicolas Simon, Antoine Morvan.

Keywords: source-to-source compiler, model-driven software engineering, retargetable compilation.

The Gecos (Generic Compiler Suite) project is a source-to-source compiler infrastructure developed in the
Cairn group since 2004. It was designed to enable fast prototyping of program analysis and transformation for
hardware synthesis and retargetable compilation domains.

Gecos is 100% Java based and takes advantage of modern model driven software engineering practices. It uses
the Eclipse Modeling Framework (EMF) as an underlying infrastructure and takes benefits of its features to
make it easily extensible. Gecos is open-source and is hosted on the Inria gforge at http://gecos.gforge.inria.fr.

The Gecos infrastructure is still under very active development, and serves as a backbone infrastructure to
projects of the group. Part of the framework is jointly developed with Colorado State University and since
2012 it is used in the context of the ALMA European project. Recent developments in Gecos have focused on
polyhedral loop transformations and efficient SIMD code generation for fixed point arithmetic data-types as
a part of the ALMA project. Significant efforts were also put to provide a coarse-grain parallelization engine
targeting the data-flow actor model in the context of the COMPA ANR project.

5.3. ID.Fix: Infrastructure for the Design of Fixed-point Systems
Participants: Olivier Sentieys [corresponding author], Romuald Rocher, Nicolas Simon.

Keywords: fixed-point arithmetic, source-to-source code transformation, accuracy optimization, dynamic
range evaluation

http://idfix.gforge.inria.fr
http://gecos.gforge.inria.fr
http://gecos.gforge.inria.fr
http://gecos.gforge.inria.fr

36 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAIRN

The different techniques proposed by the team for fixed-point conversion are implemented on the ID.Fix
infrastructure. The application is described with a C code using floating-point data types and different
pragmas, used to specify parameters (dynamic, input/output word-length, delay operations) for the fixed-point
conversion. This tool determines and optimizes the fixed-point specification and then, generates a C code using
fixed-point data types (ac_fixed) from Mentor Graphics. The infrastructure is made-up of two main modules
corresponding to the fixed-point conversion (ID.Fix-Conv) and the accuracy evaluation (ID.Fix-Eval)

The different developments carried out in 2014 allowed to have a complete compatibility with GeCos. The
structure of each node in the graph has been changed to simplify the graph modifications. The Octave software
has been added instead of Matlab for LTI and recursive systems conversion. A development has started to
replace Matlab/Octave tool by a C code algorithm to reduce optimization time. In the context of the ANR
DEFIS project, the ID.Fix tool has been reorganized to be integrated in the DEFIS toolflow.

In 2014, ID.Fix has been demonstrated during University Booth at IEEE/ACM DATE.

5.4. UPaK: Abstract Unified Pattern-Based Synthesis Kernel for Hardware
and Software Systems
Participants: Christophe Wolinski [corresponding author], François Charot.

Keywords: compilation for reconfigurable systems, pattern extraction, constraint-based programming.

We are developing (with strong collaboration of Lund University, Sweden and Queensland University,
Australia) UPaK Abstract Unified Pattern Based Synthesis Kernel for Hardware and Software Systems
[117]. The preliminary experimental results obtained by the UPak system show that the methods employed
in the systems enable a high coverage of application graphs with small quantities of patterns. Moreover,
high application execution speed-ups are ensured, both for sequential and parallel application execution
with processor extensions implementing the selected patterns. UPaK is one of the basis for our research
on compilation and synthesis for reconfigurable platforms. It is based on the HCDG representation of the
Polychrony software designed at Inria-Rennes in the project-team Espresso.

5.5. DURASE: Automatic Synthesis of Application-Specific Processor
Extensions
Participants: Christophe Wolinski [corresponding author], François Charot.

Keywords: compilation for reconfigurable systems, instruction-set extension, pattern extraction, graph cover-
ing, constraint-based programming.

We are developing a framework enabling the automatic synthesis of application specific processor extensions.
It uses advanced technologies, such as algorithms for graph matching and graph merging together with
constraints programming methods. The framework is organized around several modules.

• CoSaP: Constraint Satisfaction Problem. The goal of CoSaP is to decouple the statement of a
constraint satisfaction problem from the solver used to solve it. The CoSaP model is an Eclipse
plugin described using EMF to take advantage of the automatic code generation and of various EMF
tools.

• HCDG: Hierarchical Conditional Dependency Graph. HCDG is an intermediate representation
mixing control and data flow in a single acyclic representation. The control flow is represented as
hierarchical guards specifying the execution or the definition conditions of nodes. It can be used in
the Gecos compilation framework via a specific pass which translates a CDFG representation into
an HCDG.

• Patterns: Flexible tools for identification of computational pattern in a graph and graph covering.
These tools model the concept of pattern in a graph and provide generic algorithms for the
identification of pattern and the covering of a graph. The following sub-problems are addressed:
(sub)-graphs isomorphism, patterns generation under constraints, covering of a graph using a library
of patterns. Most of the implemented algorithms use constraints programming and rely on the CoSaP
module to solve the optimization problem.

http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2014-bid44

37 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAIRN

5.6. PowWow: Power Optimized Hardware and Software FrameWork for
Wireless Motes (AP-L-10-01)
Participants: Olivier Sentieys [corresponding author], Olivier Berder, Arnaud Carer, Steven Derrien.

Keywords: Wireless Sensor Networks, Low Power, Preamble Sampling MAC Protocol, Hardware and Soft-
ware Platform

PowWow is an open-source hardware and software platform designed to handle wireless sensor network
(WSN) protocols and related applications. Based on an optimized preamble sampling medium access (MAC)
protocol, geographical routing and protothread library, PowWow requires a lighter hardware system than
Zigbee [79] to be processed (memory usage including application is less than 10kb). Therefore, network
lifetime is increased and price per node is significantly decreased.

CAIRN’s hardware platform (see Figure 3) is composed of:

• The motherboard, designed to reduce power consumption of sensor nodes, embeds an MSP430
microcontroller and all needed components to process PowWow protocol except radio chip. JTAG,
RS232, and I2C interfaces are available on this board.

• The radio chip daughter board is currently based on a TI CC2420.

• The coprocessing daughter board includes a low-power FPGA which allows for hardware accel-
eration for some PowWow features and also includes dynamic voltage scaling features to increase
power efficiency. The current version of PowWow integrates an Actel IGLOO AGL250 FPGA and a
programmable DC-DC converter. We have shown that gains in energy of up to 700 can be obtained
by using FPGA acceleration on functions like CRC-32 or error detection with regards to a software
implementation on the MSP430.

• Finally, a last daughter board is dedicated to energy harvesting techniques. Based on the energy
management component LTC3108 from Linear Technologies, the board can be configured with
several types of stored energy (batteries, micro-batteries, super-capacitors) and several types of
energy sources (a small solar panel to recover photovoltaic energy, a piezoelectric sensor for
mechanical energy and a Peltier thermal energy sensor).

Figure 3. CAIRN’s PowWow motherboard with radio and energy-harvesting boards connected

http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2014-bid45
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/uid39.html

38 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAIRN

PowWow distribution also includes a generic software architecture using event-driven programming and
organized into protocol layers (PHY, MAC, LINK, NET and APP). The software is based on Contiki [95],
and more precisely on the Protothread library which provides a sequential control flow without complex
state machines or full multi-threading.

To optimize the network regarding a particular application and to define a global strategy to reduce energy,
PowWow offers the following extra tools: over-the-air reprogramming (and soon reconfiguration), analytical
power estimation based on software profiling and power measurements, a dedicated network analyzer to probe
and fix transmissions errors in the network. More information can be found at http://powwow.gforge.inria.fr.

5.7. Ziggie: a Platform for Wireless Body Sensor Networks
Participants: Olivier Sentieys, Olivier Berder, Arnaud Carer, Antoine Courtay [corresponding author], Robin
Bonamy.

Keywords: Wireless Body Sensor Networks, Low Power, Gesture Recognition, Localization, Hardware and
Software Platform

The Zyggie sensor node has been developed in the team to create an autonomous Wireless Body Sensor
Network (WBSN) with the capabilities of monitoring body movements. The Zyggie platform is part of
the BoWI project funded by CominLabs. Zyggie is composed of: an ATMEGA128RFA1 microcontroller,
an MPU9150 Inertial Measurement Unit (IMU), an RF AS193 switch with two antennas, an LSP331AP
barometer, a DC/DC voltage regulator with a battery charge controller, a wireless inductive battery charge
controller, and some switches and control LEDs.

Figure 4. CAIRN’s Ziggie platform for WBSN

The IMU is composed of a 3-axis accelerometer, a 3-axis gyrometer and a 3-axis magnetometer. The IMU
is communicating its data to the embedded microcontroller via an I2C protocol. We also developed our own
MAC protocol for synchronization and data exchanges between nodes. The Zyggie platform is used in many
PhD works for evaluating data fusion algorithms (RSSI + IMU data) (Zhongwei Zheng, UR1 and Alexis
Aulery, UBS/UR1), low power computing algorithms (Alexis Aulery, UBS/UR1), wireless protocols (Viet
Hoa Nguyen, UR1) and body channel characterization (Rizwan Masood, TB).

http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2014-bid46
http://powwow.gforge.inria.fr

39 Architecture, Languages and Compilation - Software and Platforms - Team CAMUS

CAMUS Team

5. New Software and Platforms

5.1. PolyLib
Participant: Vincent Loechner.

PolyLib 0 is a C library of polyhedral functions, that can manipulate unions of rational polyhedra of any
dimension. It was the first to provide an implementation of the computation of parametric vertices of a
parametric polyhedron, and the computation of an Ehrhart polynomial (expressing the number of integer points
contained in a parametric polytope) based on an interpolation method. Vincent Loechner is the maintainer of
this software. It is distributed under GNU General Public License version 3 or later.

Apart from normal maintenance, it was parallelized using OpenMP with the support of Master student Adilla
Susungi, funded by the ICPS team (ICube laboratory, University of Strasbourg).

5.2. APOLLO software and LLVM
Participants: Aravind Sukumaran-Rajam, Juan Manuel Martinez Caamaño, Willy Wolff, Luis Esteban
Campostrini, Matías Perez, Alexandra Jimborean, Philippe Clauss.

We are developing a framework called APOLLO (Automatic speculative POLyhedral Loop Optimizer) whose
main concepts are based on our previous framework VMAD. However, several important implementation
issues are now handled differently in order to improve the performance and usability of the framework, and
also to open its evolution to new interesting perspectives. APOLLO is dedicated to automatic, dynamic and
speculative parallelization of loop nests that cannot be handled efficiently at compile-time. It is composed of
a static part consisting of specific passes in the LLVM compiler suite, plus a modified Clang frontend, and a
dynamic part consisting of a runtime system. Its last extensions are presented in subsection 6.2 .

5.3. IBB source-to-source xfor compiler
Participants: Imen Fassi, Philippe Clauss, Cédric Bastoul.

Imen Fassi has developped a source-to-source xfor compiler called IBB (Iterate-But-Better) which is automat-
ically translating any C source code containing xfor-loops into an equivalent source code where xfor-loops
have been transformed into equivalent for-loops. The polyhedral code generator CLooG [27] is used to gener-
ate the corresponding code. The IBB compiler has been improved in some aspects in 2014: loop bounds can
now be min and max functions, IBB uses the OpenScop format to encode statements and iteration domains.

The xfor structure is also currently incorporated in the polyhedral parser Clan 0, opening the door of xfor
usage to polyhedral compilation tools. Additionally, an xfor programming wizard is currently being developed,
providing automatic dependence analysis and code verification to users, thanks to the dependence analyzer
Candl 0.

5.4. CLooG
Participant: Cédric Bastoul.

0http://icps.u-strasbg.fr/PolyLib
0http://icps.u-strasbg.fr/~bastoul/development/clan
0http://icps.u-strasbg.fr/~bastoul/development/candl

http://www.inria.fr/equipes/camus
http://raweb.inria.fr/rapportsactivite/RA{$year}/camus/uid37.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/camus/bibliography.html#camus-2014-bid1
http://icps.u-strasbg.fr/PolyLib
http://icps.u-strasbg.fr/~bastoul/development/clan
http://icps.u-strasbg.fr/~bastoul/development/candl

40 Architecture, Languages and Compilation - Software and Platforms - Team CAMUS

CLooG 0 is a free software and library to generate code (or an abstract syntax tree of a code) for scanning
Z-polyhedra. That is, it finds a code (e.g. in C, FORTRAN...) that reaches each integral point of one or
more parameterized polyhedra. CLooG has been originally written to solve the code generation problem for
optimizing compilers based on the polyhedral model. Nevertheless it is used now in various area e.g. to build
control automata for high-level synthesis or to find the best polynomial approximation of a function. CLooG
may help in any situation where scanning polyhedra matters. While the user has full control on generated code
quality, CLooG is designed to avoid control overhead and to produce a very effective code. CLooG is widely
used (including by GCC and LLVM compilers), disseminated (it is installed by default by the main Linux
distributions) and considered as the state of the art in polyhedral code generation.

5.5. OpenScop
Participant: Cédric Bastoul.

OpenScop 0 is an open specification that defines a file format and a set of data structures to represent a static
control part (SCoP for short), i.e., a program part that can be represented in the polyhedral model. The goal of
OpenScop is to provide a common interface to the different polyhedral compilation tools in order to simplify
their interaction. To help the tool developers to adopt this specification, OpenScop comes with an example
library (under 3-clause BSD license) that provides an implementation of the most important functionalities
necessary to work with OpenScop.

5.6. Clan
Participants: Cédric Bastoul, Imen Fassi.

Clan 0 is a free software and library which translates some particular parts of high level programs written in C,
C++, C# or Java into a polyhedral representation called OpenScop. This representation may be manipulated
by other tools to, e.g., achieve complex analyses or program restructurations (for optimization, parallelization
or any other kind of manipulation). It has been created to avoid tedious and error-prone input file writing for
polyhedral tools (such as CLooG, LeTSeE, Candl etc.). Using Clan, the user has to deal with source codes
based on C grammar only (as C, C++, C# or Java). Clan is notably the frontend of the two major high-level
compilers Pluto and PoCC.

5.7. Clay
Participant: Cédric Bastoul.

Clay 0 is a free software and library devoted to semi-automatic optimization using the polyhedral model. It
can input a high-level program or its polyhedral representation and transform it according to a transformation
script. Classic loop transformations primitives are provided. Clay is able to check for the legality of the
complete sequence of transformation and to suggest corrections to the user if the original semantics is
not preserved. Clay is still experimental at this report redaction time but is already used during advanced
compilation labs at Paris-Sud University and is one of the foundations of our ongoing work on simplifying
code manipulation by programmers.

0http://www.cloog.org
0http://icps.u-strasbg.fr/~bastoul/development/openscop
0http://icps.u-strasbg.fr/~bastoul/development/clan
0http://icps.u-strasbg.fr/~bastoul/development/clay

http://www.cloog.org
http://icps.u-strasbg.fr/~bastoul/development/openscop
http://icps.u-strasbg.fr/~bastoul/development/clan
http://icps.u-strasbg.fr/~bastoul/development/clay

41 Architecture, Languages and Compilation - Software and Platforms - Project-Team COMPSYS

COMPSYS Project-Team

5. New Software and Platforms

5.1. Introduction
This section lists and briefly describes the software developments conducted within Compsys. Most are tools
that we extend and maintain over the years. They mainly concern three activities: a) the development of
research tools, in general available on demand, linked to polyhedra and loop/array transformations, b) the
development of tools linked to the start-up XTREMLOGIC (mostly done outside Compsys but partly inspired
by work from Compsys), and c) the development of algorithms in the context of our collaborations with
STMicroelectronics. These last developments have been stopped right now, since the end of the Mediacom
project in 2012. They are described in previous Compsys activity reports: they concerned register allocation,
SSA deconstruction, liveness analysis, intermediate representations, etc. They were done within the compilers
of STMicroelectronics, not as stand-alone tools, so they are not available as the other tools.

Concerning tools based on a polyhedral representation of nested loops, many of them are now available.
They have been developed and maintained over the years by different teams, after the introduction of Paul
Feautrier’s Pip, a tool for parametric integer linear programming. This “polyhedral model” view of codes is
now widely accepted: it was or is used by Cairn, Parkas, and Camus Inria project-teams, PIPS at École des
Mines de Paris, Suif from Stanford University, Compaan at Berkeley and Leiden, PiCo from the HP-Labs
(continued as PicoExpress by Synfora and now Synopsis), the DTSE methodology at Imec, Sadayappan’s
group at Ohio State University, Rajopadhye’s group at Colorado State’s University, etc. In the last 10 years,
several compiler groups have shown their interest in polyhedral methods, e.g., the Gcc group, IBM, and
Reservoir Labs, a company that develops a compiler fully based on the polyhedral model and on the techniques
that we (the french community) introduced for loop and array transformations. Polyhedra are also used in
test and certification projects (Verimag, Lande, Vertecs). Now that these techniques are well-established and
disseminated in and by other groups, we prefer to focus on the development of new techniques and tools, which
are described here. Some of these tools can be used through a web interface on the Compsys tool demonstrator
web page http://compsys-tools.ens-lyon.fr/.

Recent activity concerns the development, by Christophe Alias, of HLS compiler parts to be transferred
to the XTREMLOGIC start-up (Zettice project) (see Section 7.2). An important effort of applied research
and software development [12] has been achieved, resulting in the Dcc (DPN C Compiler) tool, outlined in
Section 5.5 . Also, optimization developments (scalability, memory leaks, parallelization, etc) were performed
on the PoCo compiler framework (see Section 5.6) and the Bee tool (see Section 5.7).

Also, several successive developments have been made related to termination tools. Our first implementation,
RanK (see Section 5.9), was extended by other tools such as SToP (see Section 5.12) and, more recently
Termite, (see Section 5.13).

5.2. Pip
Participants: Cédric Bastoul [professor, Strasbourg University and Inria/CAMUS], Paul Feautrier.

Paul Feautrier is the main developer of Pip (Parametric Integer Programming) since its inception in 1988.
Basically, Pip is an “all integer” implementation of the Simplex, augmented for solving integer programming
problems (the Gomory cuts method), which also accepts parameters in the non-homogeneous term. Pip is
freely available under the GPL at http://www.piplib.org. It is widely used in the automatic parallelization
community for testing dependences, scheduling, several kind of optimizations, code generation, and others.
Beside being used in several parallelizing compilers, Pip has found applications in some unconnected domains,
as for instance in the search for optimal polynomial approximations of elementary functions (see the Inria
project Aric, previously known as Arénaire).

http://www.inria.fr/equipes/compsys
http://compsys-tools.ens-lyon.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid93.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/bibliography.html#compsys-2014-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid52.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid53.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid58.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid60.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid63.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid64.html
http://www.piplib.org

42 Architecture, Languages and Compilation - Software and Platforms - Project-Team COMPSYS

5.3. Cl@k
Participants: Fabrice Baray [Mentor Graphics, Former post-doc in Compsys], Alain Darte.

Cl@k (Critical LAttice Kernel) is a stand-alone optimization tool which computes or approximates the critical
lattice for a given 0-symmetric polytope. (An admissible lattice is a lattice whose intersection with the polytope
is reduced to 0; a critical lattice is an admissible lattice with minimal determinant). This tool is useful for the
automatic derivation of array mappings that enable memory reuse, based on the notions of admissible lattice
and of modular allocation (linear mapping plus modulo operations). It has been developed in 2005-2006 by
Fabrice Baray, former post-doc Inria under Alain Darte’s supervision.

Its application to array contraction has been implemented by Christophe Alias in a tool called Bee (see
Section 5.7). More information is available at http://compsys-tools.ens-lyon.fr/clak/. The Cl@k tool is
unfortunately outdated today (it is hard, if not impossible, to recompile it) and would need to be re-
implemented. An extension of its underlying theory is also in progress.

5.4. Syntol
Participant: Paul Feautrier.

Syntol is a modular process network scheduler. The source language is C augmented with specific constructs
for representing communicating regular process (CRP) systems. The present version features a syntax
analyzer, a semantic analyzer to identify DO loops in C code, a dependence computer, a modular scheduler,
and interfaces for CLooG (loop generator developed by C. Bastoul) and Cl@k (see Sections 5.3 and 5.7).
The dependence computer now handles casts, records (structures), and the modulo operator in subscripts
and conditional expressions. The latest developments are, firstly, a new code generator, and secondly, several
experimental tools for the construction of bounded parallelism programs.

• The new code generator, based on the ideas of Boulet and Feautrier [20], generates a counter
automaton that can be presented as a C program, as a rudimentary VHDL program at the RTL
level, as an automaton in the Aspic input format, or as a drawing specification for the DOT tool.

• Hardware synthesis can only be applied to bounded parallelism programs. Our present aim is to
construct threads with the objective of minimizing communications and simplifying synchronization.
The distribution of operations among threads is specified using a placement function, which is found
using techniques of linear algebra and combinatorial optimization.

5.5. Dcc
Participants: Christophe Alias, Alexandru Plesco [XtremLogic].

Dcc (DPN C Compiler) compiles a C program annotated with pragmas to a data-aware process network
(DPN), a regular process network close to a circuit description that makes explicit the I/O transfers and
the synchronizations. Dcc features throughput optimization, communication vectorization, and automatic
parallelization.

Dcc is registered at the APP (“agence de protection des programmes”) and has been transferred to the
XTREMLOGIC start-up under an Inria licence. It uses a patented technology [12] and serves as a front-end
for the HLS suite of the XTREMLOGIC start-up. Dcc has been implemented by Christophe Alias, using the
PoCo compiler infrastructure (Section 5.6) and the Bee tool (Section 5.7). It represents more than 3000 lines
of C++ code.

5.6. PoCo
Participant: Christophe Alias.

http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid58.html
http://compsys-tools.ens-lyon.fr/clak/
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid48.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid58.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/bibliography.html#compsys-2014-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/bibliography.html#compsys-2014-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid53.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid58.html

43 Architecture, Languages and Compilation - Software and Platforms - Project-Team COMPSYS

PoCo is a polyhedral compilation framework providing many features to prototype program analysis and
optimizations in the polyhedral model:

• C parsing and extraction of the polyhedral representation.
• Symbolic layer on the state-of-art polyhedral libraries Polylib (set operations on polyhedra) and

Piplib (parameterized ILP, see Section 5.2).
• Dependence analysis (PRDG, array dataflow analysis), array region analysis, array liveness analy-

sis.
• C and VHDL code generation.

PoCo is registered at the APP (“agence de protection des programmes”) and has been transferred to the
XTREMLOGIC start-up under an Inria licence. The Bee, Chuba, and RanK tools presented thereafter make
an extensive use of PoCo abstractions. PoCo has been developed by Christophe Alias. It represents more than
19000 lines of C++ code.

5.7. Bee
Participants: Christophe Alias, Alain Darte.

Bee is a source-to-source optimizer that resizes and reallocates optimally the arrays used by a program
under scheduling constraints. Bee applies a fine-grain lifetime analysis for arrays. Then, the mathematical
optimization of the Cl@k tool (Section 5.3) finds the array allocation (expressed as an affine lattice). Finally,
Bee derives the actual array allocation and generates the C code accordingly. Bee was – to our knowledge –
the first complete (i.e., with an element-wise lifetime analyzer integrated with an allocator) array contraction
tool. Bee allows to allocate and to size the channels in process networks, providing a global affine schedule.
This feature is fundamental in HLS (see Section 3.1.2) and more generally in automatic parallelization where
communication buffers must be allocated and sized. An online demonstrator is available at http://compsys-
tools.ens-lyon.fr/bee/index.html.

Bee is registered at the APP (“agence de protection des programmes”) and has been transferred to the
XTREMLOGIC start-up under an Inria licence. It is also used as an external tool by the compiler Gecos
developed in the Cairn team at Irisa. Bee has been implemented by Christophe Alias, using the PoCo compiler
infrastructure (see Section 5.6). It represents more than 2400 lines of C++ code.

5.8. Chuba
Participants: Christophe Alias, Alain Darte, Alexandru Plesco [Compsys/Zettice].

Chuba is a source-level optimizer that improves a C program in the context of the high-level synthesis (HLS)
of hardware. Chuba is an implementation of the work described in the PhD thesis of Alexandru Plesco.
The optimized program specifies a system of multiple communicating accelerators, which optimizes the data
transfers with the external DDR memory. The program is divided into blocks of computations obtained thanks
to tiling techniques, and, in each block, data are fetched by block to reduce the penalty due to line changes in
the DDR accesses. Four accelerators achieve data transfers in a macro-pipeline fashion so that data transfers
and computations (performed by a fifth accelerator) are overlapped.

So far, the back-end of Chuba is specific to the HLS tool C2H but the analysis is quite general and adapting
Chuba to other HLS tools should be possible. Besides, it is interesting to mention that the program analysis and
optimizations implemented in Chuba address a problem that is also very relevant in the context of GPGPUs.
The underlying theory and corresponding experiments are described in [17].

Chuba has been implemented by Christophe Alias, using the PoCo compiler infrastructure (see Section 5.6).
It represents more than 900 lines of C++ code.

5.9. RanK
Participants: Christophe Alias, Alain Darte, Paul Feautrier, Laure Gonnord [Compsys].

http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid47.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid48.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid27.html
http://compsys-tools.ens-lyon.fr/bee/index.html
http://compsys-tools.ens-lyon.fr/bee/index.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid53.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/bibliography.html#compsys-2014-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid53.html

44 Architecture, Languages and Compilation - Software and Platforms - Project-Team COMPSYS

RanK is a software tool that can prove the termination of a program (in some cases) by computing a ranking
function, i.e., a mapping from the operations of the program to a well-founded set that decreases as the
computation advances. In case of success, RanK can also provide an upper bound of the worst-case time
complexity of the program as a symbolic affine expression involving the input variables of the program
(parameters), when it exists. In case of failure, RanK tries to prove the non-termination of the program and then
to exhibit a counter-example input. This last feature is of great help for program understanding and debugging.
The theory underlying RanK was presented at SAS’10 [15].

The input of RanK is an integer automaton, computed by C2fsm (see Section 5.11), representing the control
structure of the program to be analyzed. RanK uses the Aspic tool (see Section 5.10), developed by Laure
Gonnord during her PhD thesis, to compute automaton invariants. RanK has been used to discover successfully
the worst-case time complexity of many benchmarks kernels of the community (see the WTC benchmark suite
at http://compsys-tools.ens-lyon.fr/wtc/index.html). It uses the libraries Piplib (Section 5.2) and Polylib.

RanK has been implemented by Christophe Alias, using the compiler infrastructure PoCo (Section 5.6). It
represents more than 3000 lines of C++. The tool has been presented at the CSTVA’13 workshop [16]. An
online demonstrator is available at http://compsys-tools.ens-lyon.fr/rank.

5.10. Aspic
Participant: Laure Gonnord.

Aspic is an invariant generator for general counter automata. Used with C2fsm (see Section 5.11), it can
be used to derivate invariants for numerical C programs, and also to prove safety. It is also part of the WTC
toolsuite (see http://compsys-tools.ens-lyon.fr/wtc/index.html), a set of examples to demonstrate the capability
of the RanK tool (see Section 5.9) for evaluating worse-case time complexity (number of transitions when
executing an automaton).

Aspic implements the theoretical results of Laure Gonnord’s PhD thesis on acceleration techniques and has
been maintained since 2007.

5.11. C2fsm
Participant: Paul Feautrier.

C2fsm is a general tool that converts an arbitrary C program into a counter automaton. This tool reuses the
parser and pre-processor of Syntol (see Section 5.4), which has been extended to handle while and do while

loops, goto, break, and continue statements. C2fsm reuses also part of the code generator of Syntol and
has several output formats, including FAST (the input format of Aspic, see Section 5.10), a rudimentary
VHDL generator, and a DOT generator which draws the output automaton. In contrast to the FAST format,
an ad hoc format, FLOW, uses a relational representation and retains non-affine constructs. C2fsm is also
able to do elementary transformations on the automaton, such as eliminating useless states, transitions and
variables, simplifying guards, or selecting cut-points, i.e., program points on loops that can be used by RanK
(see Section 5.9) to prove program termination.

5.12. SToP
Participants: Christophe Alias, Guillaume Andrieu [University of Lille], Laure Gonnord [Compsys].

SToP (Scalable Termination of Programs) is the implementation of the modular termination technique
presented at the TAPAS’12 workshop [18]. It takes as input a large irregular C program and conservatively
checks its termination. To do so, SToP generates a set of small programs whose termination implies the
termination of the whole input program. Then, the termination of each small program is checked thanks to
RanK (see Section 5.9). In case of success, SToP infers a ranking (schedule) for the whole program. This
schedule can be used in a subsequent analysis to optimize the program.

SToP represents more than 2000 lines of C++. The first results are available at http://compsys-tools.ens-lyon.
fr/stop.

http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/bibliography.html#compsys-2014-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid62.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid61.html
http://compsys-tools.ens-lyon.fr/wtc/index.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid47.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid53.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/bibliography.html#compsys-2014-bid13
http://compsys-tools.ens-lyon.fr/rank
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid62.html
http://compsys-tools.ens-lyon.fr/wtc/index.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid60.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid49.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid61.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid60.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/bibliography.html#compsys-2014-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid60.html
http://compsys-tools.ens-lyon.fr/stop
http://compsys-tools.ens-lyon.fr/stop

45 Architecture, Languages and Compilation - Software and Platforms - Project-Team COMPSYS

5.13. Termite
Participants: Laure Gonnord, Gabriel Radanne [ENS Rennes], David Monniaux [CNRS/VERIMAG].

Termite (Termination of C programs) is the implementation of our new algorithm “Counter-example based
generation of ranking functions” (see Section 6.4). Based on LLVM and Pagai (a tool that generates
invariants), the tool automatically generates a ranking function for each head of loop. Its implementation
is under consolidation, it will be publicly available soon.

Termite represents 3000 lignes of OCaml.

5.14. Simplifiers
Participant: Paul Feautrier.

The aim of the simple library is to simplify Boolean formulas on affine inequalities. It works by detecting
redundant inequalities in the representation of the subject formula as an ordered binary decision diagram
(OBDD), see details in [23]. It uses PIP (see Section 5.2) for testing the feasibility – or unfeasibility – of a
conjunction of affine inequalities.

The library is written in Java and is presented as a collection of class files. For experimentation, several
front-ends have been written. They differ mainly in their input syntax, among which are a C like syntax, the
Mathematica and SMTLib syntaxes, and an ad hoc Quast (quasi-affine syntax tree) syntax. See the first results
at http://compsys-tools.ens-lyon.fr/stop.

http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid82.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/bibliography.html#compsys-2014-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/compsys/uid47.html
http://compsys-tools.ens-lyon.fr/stop

46 Architecture, Languages and Compilation - Software and Platforms - Team DREAMPAL

DREAMPAL Team

4. New Software and Platforms

4.1. New Software and Platforms
Download page : https://gforge.inria.fr/frs/?group_id=3646

4.1.1. HoMade
HoMade is a softcore processor that we have started developing in 2012. The current version is reflective (i.e.,
the program it executes is self-modifiable), and statically configurable; dynamically reconfigurable multi-
processors are the next steps. Users have to add to it the functionality they need in their applications via IPs.
We have also being developing a library of IPs for the most common processor functions (ALU, registers, ...).
All the design is in VHDL except for some schematic specifications.

The V5 version of HoMade has been developed in the Spring 2014. It has been used by ∼140 4th-year
computer science students at Univ. Lille enrolled in the hardware architecture course (https://sites.google.
com/site/tpm1aev/home). The new features of V5 are listed in Section 5.2 .

4.1.2. JHomade
JHomade is a software suite written in JAVA, including compilers and tools for the HoMade processor. It
allows us to compile HiHope programs to Homade machine code and load the resulting binaries on FPGA
boards. It was first released in 2013. The second version in 2014 includes several new features, like a C-
frontend, a binary decoder and a code-generator for VHDL simulation. New features of the HiHope language
are described in more detail in Section 5.3 .

4.1.3. Kcheck
Kcheck is a tool for the symbolic execution of programs in arbitrary languages defined in the K framework
(http://k-framework.org), such as C and Java as well as the languages HiHope and Homade machine-code
languages developed in out team. It also allow users to formally verify programs against specifications written
in Reachability Logic, a specification formalism that can be seen as a language-independent Hoare logic. More
information about the theory underlying Kcheck is given in Section 5.5 .

In 2014 we have developed a new and improved version of our tool, in order to keep up with the new modular
infrastructure of the K framework. An online interface has been developed and is available at https://fmse.
info.uaic.ro/tools/kcheck/. We have also started (since Nov. 2014) a development in the Coq proof assistant in
order to obtained certificates for the program verifications performed by our tool.

http://www.inria.fr/equipes/dreampal
https://gforge.inria.fr/frs/?group_id=3646
https://sites.google.com/site/tpm1aev/home
https://sites.google.com/site/tpm1aev/home
http://raweb.inria.fr/rapportsactivite/RA{$year}/dreampal/uid19.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/dreampal/uid35.html
http://k-framework.org
http://raweb.inria.fr/rapportsactivite/RA{$year}/dreampal/uid37.html
https://fmse.info.uaic.ro/tools/kcheck/
https://fmse.info.uaic.ro/tools/kcheck/

47 Architecture, Languages and Compilation - Software and Platforms - Team GCG

GCG Team

5. New Software and Platforms

5.1. Givy
Givy is a runtime currently developed as part of the phd thesis of François Gindraud. It is designed for
architectures with distributed memories, with the Kalray MPPA as the main target. It will execute dynamic
data-flow task graphs, annotated with memory dependencies. It will automatically handle scheduling and
placement of tasks (using the memory dependency hints), and generate memory transfers between distributed
memory nodes when needed by using a software cache coherence protocol. Most of the work this year was
done on implementing and testing a memory allocator with specific properties that is a building block of the
whole runtime. This memory allocator is also tuned to work on the MPPA and its constraints, turning with
very little memory and being efficient in the context of multithreaded calls.

5.2. Tirex
The Tirex Intermediate Representation has previously been generated from within both the Path64 and GCC
compilers. In order to increase the usability of Tirex and to decrease the amount of required code maintenance
that is induced by compiler evolutions a Tirex-generator has been written that is capable of creating the Tirex
representation of a program based on its corresponding assembler code.

5.3. LLVM plugins
Work has been started on multiple plugins for the LLVM compiler framework that implement the code
optimisations that have been elaborated by the team. While being work in progress this already provides
us with crucial information for program analysis such as data-dependencies.

http://www.inria.fr/equipes/gcg

48 Architecture, Languages and Compilation - Software and Platforms - Project-Team PAREO

PAREO Project-Team

5. New Software and Platforms

5.1. ATerm
Participant: Pierre-Etienne Moreau [correspondant].

ATerm (short for Annotated Term) is an abstract data type designed for the exchange of tree-like data structures
between distributed applications.

The ATerm library forms a comprehensive procedural interface which enables creation and manipulation of
ATerms in C and Java. The ATerm implementation is based on maximal subterm sharing and automatic garbage
collection.

We are involved (with the CWI) in the implementation of the Java version, as well as in the garbage collector
of the C version. The Java version of the ATerm library is used in particular by Tom.

The ATerm library is documented, maintained, and available at the following address: http://www.meta-
environment.org/Meta-Environment/ATerms.

5.2. Tom
Participants: Jean-Christophe Bach, Christophe Calvès, Horatiu Cirstea, Pierre-Etienne Moreau [correspon-
dant].

Since 2002, we have developed a new system called Tom [27], presented in [11], [12]. This system consists
of a pattern matching compiler which is particularly well-suited for programming various transformations
on trees/terms and XML documents. Its design follows our experiments on the efficient compilation of rule-
based systems [24]. The main originality of this system is to be language and data-structure independent.
This means that the Tom technology can be used in a C, C++ or Java environment. The tool can be
seen as a Yacc-like compiler translating patterns into executable pattern matching automata. Similarly to
Yacc, when a match is found, the corresponding semantic action (a sequence of instructions written in the
chosen underlying language) is triggered and executed. Tom supports sophisticated matching theories such
as associative matching with neutral element (also known as list-matching). This kind of matching theory is
particularly well-suited to perform list or XML based transformations for example.

In addition to the notion of rule, Tom offers a sophisticated way of controlling their application: a strategy
language. Based on a clear semantics, this language allows to define classical traversal strategies such as
innermost, outermost, etc. Moreover, Tom provides an extension of pattern matching, called anti-pattern
matching. This corresponds to a natural way to specify complements (i.e., what should not be there to fire
a rule). Tom also supports the definition of cyclic graph data-structures, as well as matching algorithms and
rewriting rules for term-graphs.

Tom is documented, maintained, and available at http://tom.loria.fr as well as at http://gforge.inria.fr/projects/
tom.

http://www.inria.fr/equipes/pareo
http://www.meta-environment.org/Meta-Environment/ATerms
http://www.meta-environment.org/Meta-Environment/ATerms
http://raweb.inria.fr/rapportsactivite/RA{$year}/pareo/bibliography.html#pareo-2014-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/pareo/bibliography.html#pareo-2014-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/pareo/bibliography.html#pareo-2014-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/pareo/bibliography.html#pareo-2014-bid15
http://tom.loria.fr
http://gforge.inria.fr/projects/tom
http://gforge.inria.fr/projects/tom

49 Architecture, Languages and Compilation - Software and Platforms - Team POSTALE

POSTALE Team

4. New Software and Platforms

4.1. New Software
4.1.1. MyNRC: image-oriented library for allocation and manipulation of SIMD 1D, 2D and

3D structures
Participant: Lionel Lacassagne.

MyNRC is multi-plateform library that can handle SSE, AVX, Neon and ST VECx registers.

4.1.2. CovTrack: agile realtime multi-target tracking algorithm
Participants: Michèle Gouiffès, Lionel Lacassagne, Florence Laguzet, Andrés Romero.

4.1.3. tmLQCD for Blue Gene/Q
Participant: Michael Kruse [correspondant].

tmLQCD is a program suite for lattice quantum chromodynamics (Lattice QCD) using the chirally twisted
Wilson quarks to reduce discretization artifacts. This software is in productive use by the European Twisted
Mass Collaboration (ETMC).

As to not waste precious computation time on the supercomputers it is running on, it is important to optimize
the code in order to run as fast as possible. tmLQCD has already been customized for Intel Xeon processors,
the Blue Gene/L and Blue Gene/P from IBM. For the latter’s successor, the Blue Gene/Q, more profound
changes to the program are necessary. With these changes, tmLQCD reaches a peak performance of up to 55%
of the machines theoretical floating point performance.

The Blue Gene/Q optimized tmLQCD is available at: http://github.com/Meinersbur/tmLQCD

4.1.4. Molly
Participant: Michael Kruse [correspondant].

Using Polly extension, the LLVM compiler framework is able to automatically parallelize general programs
for shared memory threading for by exploiting the powerful analysis and transformations of the polyhedral
model.

Molly adds the ability to manage distributed memory using the polyhedral model and is therefore able to
automatically parallelize even for the largest of today’s supercomputer. Once the distribution of data between
the computer’s nodes is known, Molly determines the values that are required to be transferred between the
nodes and chunks them into as few messages as possible. It also keeps tracks of the buffers required by the
MPI interface. Transfers are asynchronous such that further computations take place while the data is being
transferred.

Molly has not yet been officially released.

4.1.5. Dohko (http://dohko.io/)
Participant: Alessandro Ferreira Leite [correspondant].

http://www.inria.fr/equipes/postale
http://github.com/Meinersbur/tmLQCD

50 Architecture, Languages and Compilation - Software and Platforms - Team POSTALE

Automating multi-cloud configuration is a difficult task. The difficulties are mostly due to clouds’ hetero-
geneity and the lack of tools to coordinate cloud computing configurations automatically. As a result, virtual
machine image (VMI) is the common approach to configure cloud environment. Although VMI can handle
functional properties like minimum disk size, operating system, and software packages, it leads to a high num-
ber of configuration options, increasing the difficulty to select one that matches users’ requirements. Moreover,
the usage of VMI usually results in vendor lock-in. Furthermore, VMI leaves for the users the work of select-
ing a resource to deploy the image and for orchestrating them accordingly, i.e., the work of selecting and
instantiating the VMI in each cloud. In addition, VMI migration across multiple clouds normally has a high
cost due to network traffic. Finally, in case of cloud’s failure, it may be difficult for users to re-create the failed
environment in another cloud, since the image will be inaccessible.

Therefore, to overcome these issues, we developed a configuration management tool for cloud computing. Our
tool, called Dohko, allows the users to configure a multi-cloud computing environment, following a declarative
strategy. In this case, the users describe their applications and requirements and use our tool to select
the resources and to set up the whole computing environment automatically, taking into account temporal
and functional dependencies between the resources. Moreover, following a software product line (SPL)
engineering method, Dohko captures the knowledge of configuring cloud environments in form of reusable
assets. In this case, a product is a cloud computing environment that meets the user requirements, where the
requirements can be either based on high or low-level descriptions. Examples of low-level descriptions include:
virtualization type, disk technology, sustainable performance, among others, whereas high-level descriptions
include the number of CPU cores, the RAM memory size, and the maximum monetary cost per hour. In this
context, a cloud computing environment also matches cloud’s configuration constraints. Besides that, thanks
to the usage of an extended feature model (EFM) with attributes, our approach enables the description of
the whole computing environment (i.e., hardware and software) independent of cloud provider and without
requiring the usage of virtual machine image. In this case, it relies on an off-the-shelf constraint satisfaction
problem (CSP) solver to implement the feature model and to select the resources.

By employing a declarative strategy, Dohko could execute a biological sequence comparison application in
two distinct cloud providers (i.e., Amazon EC2 and Google Compute Engine) considering a single and a
multi-cloud scenario, demanding minimal users’ intervention to instantiate the whole cloud environment, as
well as to execute the application. In particular, our solution tackles the lack of middleware prototypes that
can support different scenarios when using services from many clouds. Moreover, it meets the functional
requirements identified for multiple cloud-unaware systems [136] such as: (a) it provides a way to describe
functional and non-functional requirements through the usage of an SPL engineering method; (b) it can
aggregate services from distinct clouds; (c) it provides a homogeneous interface to access services of multiple
clouds; (d) it allows the service selection of the clouds; (e) it can deploy its components across many clouds; (f)
it provides automatic procedures for deployments; (g) it utilizes an overlay network to connect and to organize
the resources; (h) it does not impose any constraint for the connected clouds.

4.2. Platforms
4.2.1. Fast linear system solvers in public domain libraries (http://icl.cs.utk.edu/magma/)

Participant: Marc Baboulin [correspondant].

Hybrid multicore+GPU architectures are becoming commonly used systems in high performance computing
simulations. In this research, we develop linear algebra solvers where we split the computation over multicore
and graphics processors, and use particular techniques to reduce the amount of pivoting and communication
between the hybrid components. This results in efficient algorithms that take advantage of each computational
unit [12]. Our research in randomized algorithms yields to several contributions to propose public domain
libraries PLASMA and MAGMA in the area of fast linear system solvers for general and symmetric indefinite
systems. These solvers minimize communication by removing the overhead due to pivoting in LU and LDLT
factorization. Different approaches to reduce communication are compared in [2].

See also the web page http://icl.cs.utk.edu/magma/.

http://raweb.inria.fr/rapportsactivite/RA{$year}/postale/bibliography.html#postale-2014-bid132
http://raweb.inria.fr/rapportsactivite/RA{$year}/postale/bibliography.html#postale-2014-bid133
http://raweb.inria.fr/rapportsactivite/RA{$year}/postale/bibliography.html#postale-2014-bid134
http://icl.cs.utk.edu/magma/

51 Architecture, Languages and Compilation - Software and Platforms - Team POSTALE

4.2.2. cTuning Framework (http://cTuning.org): Repository and Tools for Collective
Characterization and Optimization of Computing Systems
Participant: Grigori Fursin [correspondant].

Designing, porting and optimizing applications for rapidly evolving computing systems is often complex, ad-
hoc, repetitive, costly and error prone process due to an enormous number of available design and optimization
choices combined with the complex interactions between all components. We attempt to solve this fundamental
problem based on collective participation of users combined with empirical tuning and machine learning.

We developed cTuning framework that allows to continuously collect various knowledge about application
characterization and optimization in the public repository at cTuning.org. With continuously increasing and
systematized knowledge about behavior of computer systems, users should be able to obtain scientifically
motivated advices about anomalies in the behavior of their applications and possible solutions to effectively
balance performance and power consumption or other important characteristics.

Currently, we use cTuning repository to analyze and learn profitable optimizations for various programs,
datasets and architectures using machine learning enabled compiler (MILEPOST GCC). Using collected
knowledge, we can quickly suggest better optimizations for a previously unseen programs based on their
semantic or dynamic features [10].

We believe that such approach will be vital for developing efficient Exascale computing systems. We are
currently developing the new extensible cTuning2 framework for automatic performance and power tuning of
HPC applications.

For more information, see the web page http://cTuning.org.

4.2.3. NT2 (http://www.github.com/MetaScale/nt2)
Participants: Pierre Esterie, Joël Falcou, Mathias Gaunard, Ian Masliah, Antoine Tran Tan.

NT2 is a C++ high level framework for scientific computing.[18]

4.2.4. Boost.SIMD (http://www.github.com/MetaScale/nt2)
Participants: Pierre Esterie, Joël Falcou, Mathias Gaunard.

Boost.SIMD provides a portable way to vectorize computation on Altivec, SSE or AVX while providing a
generic way to extend the set of supported functions and hardwares.

http://raweb.inria.fr/rapportsactivite/RA{$year}/postale/bibliography.html#postale-2014-bid135
http://cTuning.org
http://raweb.inria.fr/rapportsactivite/RA{$year}/postale/bibliography.html#postale-2014-bid136

52 Architecture, Languages and Compilation - Software and Platforms - Project-Team TASC

TASC Project-Team

5. New Software and Platforms

5.1. Platforms
5.1.1. CHOCO

Participants: Nicolas Beldiceanu, Jean-Guillaume Fages, Xavier Lorca [correspondant], Thierry Petit,
Charles Prud’Homme [main developer], Rémi Douence.

CHOCO is a Java discrete constraints library integrating within a same system explanations, soft constraints
and global constraints (90000 lines of source code). In 2014 developments were focusing on the following
aspects:

• For second consecutive year, CHOCO has participated at the MiniZinc Challenge, an annual
competition of constraint programming solvers. In competition with 16 other solvers, CHOCO has
won three bronze medals in three out of four categories (Free search, Parallel search and Open
class).

• Five versions have been released all year long, the last one (v3.3.0, Dec. 17th) has the particularity to
be promoted on Maven Central Repository. The major modifications were related to a simplification
of the API but also improvement of the overall solver.

• A User Guide is now available: 164 pages describing how to use CHOCO, together with a new
website.

• Finally, Charles Prud’homme and Jean-Guillaume Fages, the main contributors of CHOCO, have
defended their Phd, publishing at the same time their work in the source code. In particular, an
extension of CHOCO now provides support for constraints involving graph variables.

5.1.2. IBEX
Participants: Ignacio Araya, Clément Carbonnel, Gilles Chabert [correspondant], Benoit Desrochers, Luc
Jaulin, Bertrand Neveu, Jordan Ninin, Ignacio Salas Donoso, Gilles Trombettoni.

IBEX (Interval-Based EXplorer) is a C++ library for solving nonlinear constraints over real numbers. The main
feature of Ibex is its ability to build solver/paver strategies declaratively through the contractor programming
paradigm. It also comes with a black-box solver and a global optimizer.

In 2014 the work on IBEX has focused on the following points.
• Global optimizer:

– Rigorous mode in the global optimizer (certification of the feasibility of strict equality con-
straints for the minimum found). This includes Newton-based inflation iteration, Hansen
test for underconstrained systems (see Global Optimization using Interval Analysis, E.
Hansen, 1992).

– Unconstrained local search algorithm (quasi-Newton method with trust regions).
– Rejection test based on first-order conditions (see First Order Rejection Tests For Multiple-

Objective Optimization, A. Goldsztejn et al. [42]).
– Multiple selection technique in exploration (see A new multisection technique in interval

methods for global optimization, L.G. Casado, Computing, 2000)
• Contractors:

– Existentially-quantified constraints, (see Contractor Programming, [8]).
– Mohc contractor, (see Exploiting Monotonicity in Interval Constraint Propagation, I. Araya

et al., [41]).

http://www.inria.fr/equipes/tasc
http://www.choco-solver.org
http://www.choco-solver.org
http://www.minizinc.org/challenge.html
http://www.choco-solver.org
http://search.maven.org/#search%7Cga%7C1%7Cchoco-solver
http://www.choco-solver.org
http://www.choco-solver.org
http://www.emn.fr/z-info/ppc/membres_en.html
http://www.choco-solver.org
http://www.choco-solver.org
http://www.ibex-lib.org/
http://raweb.inria.fr/rapportsactivite/RA{$year}/tasc/bibliography.html#tasc-2014-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/tasc/bibliography.html#tasc-2014-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/tasc/bibliography.html#tasc-2014-bid2

53 Architecture, Languages and Compilation - Software and Platforms - Project-Team TASC

– Q-intersection, (see Q-intersection Algorithms for Constraint-Based Robust Parameter
Estimation, C. Carbonnel et al., AAAI 2014, [27]).

– Contractor based on pixel maps (started in Oct 2014, still in progress, see Using set
membership methods for robust underwater robot localization, PhD, J. Sliwka).

• Miscellanous

– Everyday code improvement (around 400 commits in 2014).

– Symbolic processing features (symbol occurrence splitting, function construction from
strings, progress in differentiation with vector/matrix operations).

– numerous bug fixes (especially in the inner arithmetic routines).

5.1.3. Global Constraint Catalog
Participants: Nicolas Beldiceanu [correspondant], Mats Carlsson, Sophie Demassey, Helmut Simonis.

The global constraint catalog presents and classifies global constraints and describes different aspects with
meta data. It consist of

1. a pdf version that can be downloaded from http://sofdem.github.io/gccat/ (at item working version)
containing 431 constraints, 4070 pages and 1000 figures,

2. an on line version accessible from the previous address,

3. meta data describing the constraints (buton PL for each constraint, e.g., alldifferent.pl),

4. an online service (i.e, a constraint seeker) which provides a web interface to search for global
constraints, given positive and negative ground examples.

This year developments were focusing on:

1. maintaining the content of the catalogue,

2. making more easy the navigation within the pdf version,

3. continuing the redesign of the figures using TikZ: 200 figures were converted and 100 figures remain
to be converted, and adding new illustrations (150 figures).

4. updating the web version of the catalogue (see http://sofdem.github.io/gccat/).

5.1.4. AIUR
Participant: Florian Richoux [correspondant].

AIUR (Artificial Intelligence Using Randomness) is an AI for StarCraft : BroodWartm.

The main idea is to be unpredictable by making some stochastic choices. The AI starts a game with a "mood"
randomly picked up among 5 moods, dictating some behaviors (aggressive, fast expand, macro-game, ...). In
addition, some other choices (productions, timing attacks, early aggressions, ...) are also taken under random
conditions.

Learning is an essential part of AIUR. For this, it uses persistent I/O files system to record which moods are
efficient against a given opponent, in order to modify the probability distribution for the mood selection. The
current system allows both on-line and off-line learning.

AIUR is an open source program under GNU GPL v3 licence, written in C++ (18.000 lines of code). Source
and documentations are available at github.com/AIUR-group/AIUR. AIUR finished 4th to StarCrafttm AI
competitions organized at the conferences AIIDE 2014 and CIG 2014.

5.1.5. GHOST
Participant: Florian Richoux [correspondant].

http://raweb.inria.fr/rapportsactivite/RA{$year}/tasc/bibliography.html#tasc-2014-bid3
https://www.dropbox.com/s/gjaayywrbxo9es4/catalog.pdf?dl=0
http://sofdem.github.io/gccat/
http://www.emn.fr/z-info/sdemasse/aux/src/alldifferent.pl
http://seeker.mines-nantes.fr/
http://en.wikipedia.org/wiki/PGF/TikZ
http://sofdem.github.io/gccat/
https://github.com/AIUR-group/AIUR

54 Architecture, Languages and Compilation - Software and Platforms - Project-Team TASC

GHOST (General meta-Heuristic Optimization Solving Tool) is a template C++11 library designed for
StarCraft : BroodWartm, under the terms of the GNU GPL v3 licence and is about 7500 lines long.
GHOST implements a meta-heuristic solver aiming to solve any kind of combinatorial and optimization
RTS-related problems represented by a CSP/COP [36]. The solver handles dedicated geometric and assignment
constraints in a way that is compatible with very strong real time requirements. The source code as well as
documentation pages are available at github.com/richoux/GHOST.

This framework is a deep extension of an ad-hoc solver. Although GHOST has been developed recently
(during Summer 2014), it got itself quickly noticed by a French video-game developing company. We are
starting discussion about a technology transfer of GHOST.

http://raweb.inria.fr/rapportsactivite/RA{$year}/tasc/bibliography.html#tasc-2014-bid4
https://github.com/richoux/GHOST

55 Embedded and Real-time Systems - Software and Platforms - Project-Team AOSTE

AOSTE Project-Team

5. New Software and Platforms

5.1. TimeSquare
Participants: Nicolas Chleq, Julien Deantoni, Frédéric Mallet [correspondant].

TimeSquare is a software environment for the modeling and analysis of timing constraints in embedded
systems. It relies specifically on the Time Model of the MARTE UML profile (see section 3.2), and more
accurately on the associated Clock Constraint Specification Language (CCSL) for the expression of timing
constraints.

TimeSquare offers five main functionalities:

1. graphical and/or textual interactive specification of logical clocks and relative constraints between
them;

2. definition and handling of user-defined clock constraint libraries;

3. automated simulation of concurrent behavior traces respecting such constraints, using a Boolean
solver for consistent trace extraction;

4. call-back mechanisms for the traceability of results (animation of models, display and interaction
with waveform representations, generation of sequence diagrams...).

5. compilation to pure java code to enable embedding in non eclipse applications or to be integrated as
a time and concurrency solver within an existing tool.

In practice TimeSquare is a set of plug-ins developed for the Eclipse modeling framework.
The software is registered by the Agence pour la Protection des Programmes, under number
IDDN.FR.001.170007.000.S.P.2009.001.10600. It can be downloaded from the site http://timesquare.inria.fr/.
It has been integrated in the OpenEmbeDD ANR RNTL platform and recently in the Gemoc Studio.

5.2. K-Passa
Participants: Jean-Vivien Millo [correspondant], Robert de Simone.

This software is dedicated to the simulation, analysis, and static scheduling of Event/Marked Graphs, SDF and
KRG extensions. A graphical interface allows to edit the Process Networks and their time annotations (latency,
...). Symbolic simulation and graph-theoretic analysis methods allow to compute and optimize static schedules,
with best throughputs and minimal buffer sizes. In the case of KRG the (ultimately k-periodic) routing patterns
can also be provided and transformed for optimal combination of switching and scheduling when channels are
shared. KPASSA also allows for import/export of specific description formats such as UML-MARTE, to and
from our other TimeSquare tool.

The tool was originally developed mainly as support for experimentations following our research results on
the topic of Latency-Insensitive Design. This research was conducted and funded in part in the context of the
CIM PACA initiative, with initial support from ST Microelectronics and Texas Instruments.

KPASSA is registered by the Agence pour la Protection des Programmes, under the number
IDDN.FR.001.310003.000.S.P.2009.000.20700. It can be downloaded from the site http://www-sop.
inria.fr/aoste/index.php?page=software/kpassa.

5.3. SynDEx
Participants: Yves Sorel [correspondant], Meriem Zidouni.

http://www.inria.fr/equipes/aoste
http://raweb.inria.fr/rapportsactivite/RA{$year}/aoste/uid8.html
http://timesquare.inria.fr/
http://openembedd.inria.fr/home_html
http://gemoc.org/studio
http://www-sop.inria.fr/aoste/index.php?page=software/kpassa
http://www-sop.inria.fr/aoste/index.php?page=software/kpassa

56 Embedded and Real-time Systems - Software and Platforms - Project-Team AOSTE

SynDEx is a system level CAD software implementing the AAA methodology for rapid prototyping and for
optimizing distributed real-time embedded applications. Developed in OCaML it can be downloaded free of
charge, under Inria copyright, from the general SynDEx site http://www.syndex.org.

The AAA methodology is described in section 3.3 . Accordingly, SYNDEX explores the space of possible
allocations (spatial distribution and temporal scheduling), from application elements to architecture resources
and services, in order to match real-time requirements; it does so by using schedulability analyses and heuristic
techniques. Ultimately it generates automatically distributed real-time code running on real embedded plat-
forms. The last major release of SYNDEX (V7) allows the specification of multi-periodic applications.

Application algorithms can be edited graphically as directed acyclic task graphs (DAG) where each edge
represents a data dependence between tasks, or they may be obtained by translations from several for-
malisms such as Scicos (http://www.scicos.org), Signal/Polychrony (http://www.irisa.fr/espresso/Polychrony/
download.php), or UML2/MARTE models (http://www.omg.org/technology/documents/profile_catalog.htm).

Architectures are represented as graphical block diagrams composed of programmable (processors) and
non-programmable (ASIC, FPGA) computing components, interconnected by communication media (shared
memories, links and busses for message passing). In order to deal with heterogeneous architectures it may
feature several components of the same kind but with different characteristics.

Two types of non-functional properties can be specified for each task of the algorithm graph. First, a period
that does not depend on the hardware architecture. Second, real-time features that depend on the different types
of hardware components, ranging amongst execution and data transfer time, memory, etc.. Requirements are
generally constraints on deadline equal to period, latency between any pair of tasks in the algorithm graph,
dependence between tasks, etc.

Exploration of alternative allocations of the algorithm onto the architecture may be performed manually
and/or automatically. The latter is achieved by performing real-time multiprocessor schedulability analyses
and optimization heuristics based on the minimization of temporal or resource criteria. For example while
satisfying deadline and latency constraints they can minimize the total execution time (makespan) of the
application onto the given architecture, as well as the amount of memory. The results of each exploration
is visualized as timing diagrams simulating the distributed real-time implementation.

Finally, real-time distributed embedded code can be automatically generated for dedicated distributed real-
time executives, possibly calling services of resident real-time operating systems such as Linux/RTAI or Osek
for instance. These executives are deadlock-free, based on off-line scheduling policies. Dedicated executives
induce minimal overhead, and are built from processor-dependent executive kernels. To this date, executives
kernels are provided for: TMS320C40, PIC18F2680, i80386, MC68332, MPC555, i80C196 and Unix/Linux
workstations. Executive kernels for other processors can be achieved at reasonable cost following these
examples as patterns.

5.4. Lopht
Participants: Thomas Carle, Manel Djemal, Dumitru Potop Butucaru [correspondant].

The Lopht (Logical to Physical Time Compiler) has been designed as an implementation of the AAA
methodology. Like SynDEx, Lopht relies on off-line allocation and scheduling techniques to allow real-
time implementation of dataflow synchronous specifications onto multiprocessor systems. But there are
several originality points: a stronger focus on efficiency, which results in the use of a compilation-like
approach, a focus on novel target architectures (many-core chips and time-triggered embedded systems),
and the possibility to handle multiple, complex non-functional requirements covering real-time (release dates
and deadlines possibly different from period, major time frame, end-to-end flow constraints), ARINC 653
partitioning, the possibility to preempt or not each task, and finally SynDEx-like allocation.

Improved efficiency is attained through the use of classical and novel data structures and optimization
algorithms pertaining to 3 fields: synchronous language compilation, classical compiler theory, and real-
time scheduling. A finer representation of execution conditions allows us to make a better use of double

http://www.syndex.org
http://raweb.inria.fr/rapportsactivite/RA{$year}/aoste/uid9.html
http://www.scicos.org
http://www.irisa.fr/espresso/Polychrony/download.php
http://www.irisa.fr/espresso/Polychrony/download.php
http://www.omg.org/technology/documents/profile_catalog.htm

57 Embedded and Real-time Systems - Software and Platforms - Project-Team AOSTE

resource reservation and thus improve latency and throughput. The use of software pipelining allows the
improvement of computation throughput. The use of post-scheduling optimizations allows a reduction in the
number of preemptions. The focus on novel architectures means that architecture descriptions need to define
novel communication media such as the networks-on-chips (NoCs), and that real-time characteristics must
include those specific to a time-triggered execution model, such as the Major Time Frame (MTF). Attaining
efficiency alse requires a fine-grain description of more classical platform resources, such as the multi-bank
RAMs, to allow efficient allocation during scheduling.

Significant contributions to the Lopht tool have been brought by T. Carle (the extensions concerning time-
triggered platforms), M. Djemal (the extensions concerning many-core platforms), and Zhen Zhang under
the supervision of D. Potop Butucaru. The tool has been used and extended during the PARSEC project.
It is currently used in the direct collaboration with Airbus Defence and Space and the CNES, in the IRT
SystemX/FSF project, and in the CAPACITES project. It has been developed in OCaml.

5.5. SAS
Participants: Daniel de Rauglaudre [correspondant], Yves Sorel.

The SAS (Simulation and Analysis of Scheduling) software allows the user to perform the schedulability
analysis of periodic task systems in the monoprocessor case.

The main contribution of SAS, when compared to other commercial and academic softwares of the same kind,
is that it takes into account the exact preemption cost between tasks during the schedulability analysis. Beside
usual real-time constraints (precedence, strict periodicity, latency, etc.) and fixed-priority scheduling policies
(Rate Monotonic, Deadline Monotonic, Audsley++, User priorities), SAS additionaly allows to select dynamic
scheduling policy algorithms such as Earliest Deadline First (EDF). The resulting schedule is displayed as a
typical Gantt chart with a transient and a permanent phase, or as a disk shape called "dameid", which clearly
highlights the idle slots of the processor in the permanent phase.

For a schedulable task system under EDF, when the exact preemption cost is considered, the period of the
permanent phase may be much longer than the least commun multiple (LCM) of the periods of all tasks, as
often found in traditional scheduling theory. Specific effort has been made to improve display in this case. The
classical utilization factor, the permanent exact utilization factor, the preemption cost in the permanent phase,
and the worst response time for each task are all displayed when the system is schedulable. Response times of
each task relative time can also be displayed (separately).

SAS is written in OCaML, using CAMLP5 (syntactic preprocessor) and OLIBRT (a graphic toolkit under X).
Both are written by Daniel de Rauglaudre. It can be downloaded from the site http://pauillac.inria.fr/~ddr/sas-
dameid/.

http://pauillac.inria.fr/~ddr/sas-dameid/
http://pauillac.inria.fr/~ddr/sas-dameid/

58 Embedded and Real-time Systems - Software and Platforms - Project-Team CONVECS

CONVECS Project-Team

5. New Software and Platforms

5.1. The CADP Toolbox
Participants: Hubert Garavel [correspondent], Frédéric Lang, Radu Mateescu, Wendelin Serwe.

We maintain and enhance CADP (Construction and Analysis of Distributed Processes – formerly known
as CAESAR/ALDEBARAN Development Package) [1], a toolbox for protocols and distributed systems
engineering 0. In this toolbox, we develop and maintain the following tools:

• CAESAR.ADT [41] is a compiler that translates LOTOS abstract data types into C types and
C functions. The translation involves pattern-matching compiling techniques and automatic recog-
nition of usual types (integers, enumerations, tuples, etc.), which are implemented optimally.

• CAESAR [47], [46] is a compiler that translates LOTOS processes into either C code (for rapid
prototyping and testing purposes) or finite graphs (for verification purposes). The translation is done
using several intermediate steps, among which the construction of a Petri net extended with typed
variables, data handling features, and atomic transitions.

• OPEN/CAESAR [42] is a generic software environment for developing tools that explore graphs on
the fly (for instance, simulation, verification, and test generation tools). Such tools can be developed
independently of any particular high level language. In this respect, OPEN/CAESAR plays a central
role in CADP by connecting language-oriented tools with model-oriented tools. OPEN/CAESAR
consists of a set of 16 code libraries with their programming interfaces, such as:

– CAESAR_GRAPH, which provides the programming interface for graph exploration,

– CAESAR_HASH, which contains several hash functions,

– CAESAR_SOLVE, which resolves Boolean equation systems on the fly,

– CAESAR_STACK, which implements stacks for depth-first search exploration, and

– CAESAR_TABLE, which handles tables of states, transitions, labels, etc.

A number of on-the-fly analysis tools have been developed within the OPEN/CAESAR environment,
among which:

– BISIMULATOR, which checks bisimulation equivalences and preorders,

– CUNCTATOR, which performs steady-state simulation of continuous-time Markov
chains,

– DETERMINATOR, which eliminates stochastic nondeterminism in normal, probabilistic,
or stochastic systems,

– DISTRIBUTOR, which generates the graph of reachable states using several machines,

– EVALUATOR, which evaluates MCL formulas,

– EXECUTOR, which performs random execution,

– EXHIBITOR, which searches for execution sequences matching a given regular expres-
sion,

– GENERATOR, which constructs the graph of reachable states,

– PROJECTOR, which computes abstractions of communicating systems,

– REDUCTOR, which constructs and minimizes the graph of reachable states modulo
various equivalence relations,

0http://cadp.inria.fr

http://www.inria.fr/equipes/convecs
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2014-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2014-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2014-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2014-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2014-bid2
http://cadp.inria.fr

59 Embedded and Real-time Systems - Software and Platforms - Project-Team CONVECS

– SIMULATOR, XSIMULATOR, and OCIS, which enable interactive simulation, and

– TERMINATOR, which searches for deadlock states.

• BCG (Binary Coded Graphs) is both a file format for storing very large graphs on disk (using
efficient compression techniques) and a software environment for handling this format. BCG also
plays a key role in CADP as many tools rely on this format for their inputs/outputs. The BCG
environment consists of various libraries with their programming interfaces, and of several tools,
such as:

– BCG_CMP, which compares two graphs,

– BCG_DRAW, which builds a two-dimensional view of a graph,

– BCG_EDIT, which allows the graph layout produced by BCG_DRAW to be modified
interactively,

– BCG_GRAPH, which generates various forms of practically useful graphs,

– BCG_INFO, which displays various statistical information about a graph,

– BCG_IO, which performs conversions between BCG and many other graph formats,

– BCG_LABELS, which hides and/or renames (using regular expressions) the transition
labels of a graph,

– BCG_MIN, which minimizes a graph modulo strong or branching equivalences (and can
also deal with probabilistic and stochastic systems),

– BCG_STEADY, which performs steady-state numerical analysis of (extended) continuous-
time Markov chains,

– BCG_TRANSIENT, which performs transient numerical analysis of (extended)
continuous-time Markov chains, and

– XTL (eXecutable Temporal Language), which is a high level, functional language for
programming exploration algorithms on BCG graphs. XTL provides primitives to handle
states, transitions, labels, successor and predecessor functions, etc.

For instance, one can define recursive functions on sets of states, which allow evaluation
and diagnostic generation fixed point algorithms for usual temporal logics (such as HML
[51], CTL [37], ACTL [39], etc.) to be defined in XTL.

• PBG (Partitioned BCG Graph) is a file format implementing the theoretical concept of Partitioned
LTS [45] and providing a unified access to a graph partitioned in fragments distributed over a set
of remote machines, possibly located in different countries. The PBG format is supported by several
tools, such as:

– PBG_CP, PBG_MV, and PBG_RM, which facilitate standard operations (copying, mov-
ing, and removing) on PBG files, maintaining consistency during these operations,

– PBG_MERGE (formerly known as BCG_MERGE), which transforms a distributed graph
into a monolithic one represented in BCG format,

– PBG_INFO, which displays various statistical information about a distributed graph.

• The connection between explicit models (such as BCG graphs) and implicit models (explored on the
fly) is ensured by OPEN/CAESAR-compliant compilers, e.g.:

– BCG_OPEN, for models represented as BCG graphs,

– CAESAR.OPEN, for models expressed as LOTOS descriptions,

– EXP.OPEN, for models expressed as communicating automata,

– FSP.OPEN, for models expressed as FSP [55] descriptions,

– LNT.OPEN, for models expressed as LNT descriptions, and

– SEQ.OPEN, for models represented as sets of execution traces.

http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2014-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2014-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2014-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2014-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2014-bid11

60 Embedded and Real-time Systems - Software and Platforms - Project-Team CONVECS

The CADP toolbox also includes TGV (Test Generation based on Verification), which has been developed by
the VERIMAG laboratory (Grenoble) and the VERTECS project-team at Inria Rennes – Bretagne-Atlantique.

The CADP tools are well-integrated and can be accessed easily using either the EUCALYPTUS graphical
interface or the SVL [43] scripting language. Both EUCALYPTUS and SVL provide users with an easy and
uniform access to the CADP tools by performing file format conversions automatically whenever needed and
by supplying appropriate command-line options as the tools are invoked.

5.2. The TRAIAN Compiler
Participants: Hubert Garavel [correspondent], Frédéric Lang, Wendelin Serwe.

We develop a compiler named TRAIAN for translating LOTOS NT descriptions into C programs, which will
be used for simulation, rapid prototyping, verification, and testing.

The current version of TRAIAN, which handles LOTOS NT types and functions only, has useful applications
in compiler construction [44], being used in all recent compilers developed by CONVECS.

The TRAIAN compiler can be freely downloaded from the CONVECS Web site 0.

5.3. The PIC2LNT Translator
Participants: Radu Mateescu, Gwen Salaün [correspondent].

We develop a translator named PIC2LNT from an applied π-calculus (see § 6.1) to LNT, which enables the
analysis of concurrent value-passing mobile systems using CADP.

PIC2LNT is developed by using the SYNTAX tool (developed at Inria Paris-Rocquencourt) for lexical and
syntactic analysis together with LOTOS NT for semantical aspects, in particular the definition, construction,
and traversal of abstract trees.

The PIC2LNT translator can be freely downloaded from the CONVECS Web site 0.

5.4. The PMC Partial Model Checker
Participants: Radu Mateescu, Frédéric Lang.

We develop a tool named PMC (Partial Model Checker, see § 6.4), which performs the compositional model
checking of dataless MCL formulas on networks of communicating automata described in the EXP language.

PMC can be freely downloaded from the CONVECS Web site 0.

0http://convecs.inria.fr/software/traian
0http://convecs.inria.fr/software/pic2lnt
0http://convecs.inria.fr/software/pmc

http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2014-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2014-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/uid83.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/uid96.html
http://convecs.inria.fr/software/traian
http://convecs.inria.fr/software/pic2lnt
http://convecs.inria.fr/software/pmc

61 Embedded and Real-time Systems - Software and Platforms - Team HYCOMES

HYCOMES Team

5. New Software and Platforms

5.1. Mica: A Modal Interface Compositional Analysis Toolbox
Participant: Benoît Caillaud.

http://www.irisa.fr/s4/tools/mica/

Mica is an Ocaml library developed by Benoît Caillaud implementing the Modal Interface algebra published
in [5], [4]. The purpose of Modal Interfaces is to provide a formal support to contract based design methods
in the field of system engineering. Modal Interfaces enable compositional reasoning methods on I/O reactive
systems.

In Mica, systems and interfaces are represented by extension. However, a careful design of the state and event
heap enables the definition, composition and analysis of reasonably large systems and interfaces. The heap
stores states and events in a hash table and ensures structural equality (there is no duplication). Therefore
complex data-structures for states and events induce a very low overhead, as checking equality is done in
constant time.

Thanks to the Inter module and the mica interactive environment, users can define complex systems and
interfaces using Ocaml syntax. It is even possible to define parameterized components as Ocaml functions.

Mica is available as an open-source distribution, under the CeCILL-C Free Software License Agreement
(http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html).

5.2. Flipflop and TnF-C++: Test and Flip Net Synthesis Tools for the
Automated Synthesis of Surgical Procedure Models
Participant: Benoît Caillaud.

http://tinyurl.com/oql6f3y

Flipflop is a Test and Flip net synthesis tool implementing a linear algebraic polynomial time algorithm.
Computations are done in the Z/2Z ring. Test and Flip nets extend Elementary Net Systems by allowing test
to zero, test to one and flip arcs. The effect of flip arcs is to complement the marking of the place. While the net
synthesis problem has been proved to be NP hard for Elementary Net Systems, thanks to flip arcs, the synthesis
of Test and Flip nets can be done in polynomial time. Test and flip nets have the required expressivity to give
concise and accurate representations of surgical processes (models of types of surgical operations). Test and
Flip nets can express causality and conflict relations. The tool takes as input either standard XES log files (a
standard XML file format for process mining tools) or a specific XML file format for surgical applications.
The output is a Test and Flip net, solution of the following synthesis problem: Given a finite input language
(log file), compute a net, which language is the least language in the class of Test and Flip net languages,
containing the input language.

TnF-C++ is a robust and portable re-implementation of Flipflop, developed in 2014 and integrated in the
S3PM toolchain. Both software have been designed in the context of the S3PM project on surgical procedure
modeling and simulation (see section 7.1).

http://www.inria.fr/equipes/hycomes
http://www.irisa.fr/s4/tools/mica/
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2014-bid32
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2014-bid13
http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html
http://tinyurl.com/oql6f3y
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/uid51.html

62 Embedded and Real-time Systems - Software and Platforms - Project-Team MUTANT

MUTANT Project-Team

5. New Software and Platforms

5.1. Antescofo
Participants: Arshia Cont, Jean-Louis Giavitto, Florent Jacquemard, José Echeveste.

Antescofo is a modular polyphonic Score Following system as well as a Synchronous Programming language
for musical composition. The module allows for automatic recognition of music score position and tempo
from a realtime audio Stream coming from performer(s), making it possible to synchronize an instrumental
performance with computer realized elements. The synchronous language within Antescofo allows flexible
writing of time and interaction in computer music.

Figure 4. General scheme of Antescofo virtual machine

A complete new version of Antescofo has been released in November 2014 on Ircam Forumnet. This version
includes major improvements over the previous version as a result of MuTant’s research and development.
Its development has benefited from of intensive interactions with composers, especially Julia Blondeau, José-
Miguel Fernandez, and Marco Stroppa.

One major and sensible improvement is a total review of Antescofo’s realtime machine listening as a result
of [12], which allows robust recognition in highly polyphonic and noisy environments with the help of
novel notions of Probabilistic Time Coherency. This improvement allowed team members to participate in
collaborative work with Paris Orchestra among others.

The 2014 release of Antescofo also includes new anticipative synchronization strategies. In the context of
the PhD of José Echeveste, they are systematically studied with the help of the Orchestre de Paris and the
composer Marco Stroppa. This work won the best presentation award at ICMC 2014.

http://www.inria.fr/equipes/mutant
http://repmus.ircam.fr/antescofo
http://forumnet.ircam.fr
http://raweb.inria.fr/rapportsactivite/RA{$year}/mutant/bibliography.html#mutant-2014-bid17

63 Embedded and Real-time Systems - Software and Platforms - Project-Team MUTANT

The new internal architecture unifies the handling of external (musical) events and the handling of internal
(logical) events in a framework able to manage multiple time frames (relative, absolute or computed). The
notion of synchronization has been extended to be able to synchronize on the update of a variable in addition
to the update of the listening machine. This mechanism offers new opportunities, especially in the context of
open scores and improvised music [16].

The 2014 version targets the Max and PureData (Pd) environments on Mac, but also on Linux on Windows (Pd
version). A standalone version is used to simulate a performance in Ascograph and to offer batch processing
capabilities as well as a testing framework.

5.2. Ascograph: Antescofo Visual Editor
Participants: Thomas Coffy [ADT], Arshia Cont.

The Antescofo programming language can be extended to visual programing to better integrate existing scores
and to allow users to construct complex and embedded temporal structures that are not easily integrated into
text. This project is held since October 2012 thanks to Inria ADT Support.

AscoGraph, the Antescofo graphical score editor released in 2013, provides a autonomous Integrated Devel-
opment Environment (IDE) for the authoring of Antescofo scores. Antescofo listening machine, when going
forward in the score during recognition, uses the message passing paradigm to perform tasks such as automatic
accompaniment, spatialization, etc. The Antescofo score is a text file containing notes (chord, notes, trills, ...)
to follow, synchronization strategies on how to trigger actions, and electronic actions (the reactive language).
This editor shares the same score parsing routines with Antescofo core, so the validity of the score is checked
on saving while editing in AscoGraph, with proper parsing errors handling. Graphically, the application is
divided in two parts (see Figure 2). On the left side, a graphical representation of the score, using a timeline
with tracks view. On the right side, a text editor with syntax coloring of the score is displayed. Both views can
be edited and are synchronized on saving. Special objects such as "curves", are graphically editable: they are
used to provide high-level variable automation facilities like breakpoints functions (BPF) with more than 30
interpolations possible types between points, graphically editable.

An important feature of AscoGraph is the score import from MusicXML or MIDI files, which make the
complete workflow of the composition of a musical piece much easier than before.

AscoGraph is strongly connected with Antescofo core object (using OSC over UDP): when a score is edited
and modified it is automatically reloaded in Antescofo, and on the other hand, when Antescofo follows a score
(during a concert or rehearsal) both graphical and textual view of the score will scroll and show the current
position of Antescofo.

AscoGraph is released under Open-Source MIT license and has been released publicly along with new
Antescofo architecture during IRCAM Forum 2013. Recent development was published in [11].

5.3. Antescofo Timed Test Platform
Participants: Florent Jacquemard, Clément Poncelet.

The frequent use of Antescofo in live and public performances with human musicians implies strong
requirements of temporal reliability and robustness to unforeseen errors in input. To address these requirements
and help the development of the system and authoring of pieces by users, we are developing a platform for the
automation of testing the behavior of Antescofo on a given score, with of focus on timed behavior. It makes
possible to automate the following main tasks:

1. (1) generation of relevant input data for testing, with the sake of exhaustiveness,

2. (2) computation of the corresponding expected output, according to a formal specification of the
expected behavior of the system on a given mixed score,

3. (3) black-box execution of the input test data,

4. (4) comparison of expected and real output and production of a test verdict.

http://raweb.inria.fr/rapportsactivite/RA{$year}/mutant/bibliography.html#mutant-2014-bid19
http://cycling74.com/products/max/
http://puredata.info/
http://raweb.inria.fr/rapportsactivite/RA{$year}/mutant/uid15.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/mutant/bibliography.html#mutant-2014-bid20

64 Embedded and Real-time Systems - Software and Platforms - Project-Team MUTANT

The input and output data are timed traces (sequences of events together with inter-event durations).

Our platform uses state of the art techniques and tools for model-based testing of embedded systems [31].
Some models of The environment of the system (the musicians) and the expected behavior of the system are
both represented by formal models. We have developed a compiler for producing automatically such models,
in an intermediate representation language (IR), from mixed scores. The IR are in turn converted into Timed
Automata and passed, to the model-checker Uppaal.

Uppaal is used, with its extension Cover, for the above generation Task (1). Following some coverage criteria,
this tools makes a systematic exploration of the state space of the model. We propose also an alternative
approach for the generation of input traces by fuzzing of an ideal trace obtained from the score (a trace
represented a perfectly timed performance of the score).

Task (2) is also performed by Uppaal, by simulation, using the model of the system and the generated test
input.

Moreover, we have implemented several tools for Tasks (3) and (4), corresponding to different boundaries for
the implementation under test (black box): e.g. the interpreter of Antescofo’s synchronous language alone, or
with tempo detection, or the whole system.

http://raweb.inria.fr/rapportsactivite/RA{$year}/mutant/bibliography.html#mutant-2014-bid21

65 Embedded and Real-time Systems - Software and Platforms - Project-Team PARKAS

PARKAS Project-Team

5. New Software and Platforms

5.1. Lucid Synchrone
Participant: Marc Pouzet [contact].

Synchronous languages, type and clock inference, causality analysis, compilation

Lucid Synchrone is a language for the implementation of reactive systems. It is based on the synchronous
model of time as provided by Lustre combined with features from ML languages. It provides powerful
extensions such as type and clock inference, type-based causality and initialization analysis and allows to
arbitrarily mix data-flow systems and hierarchical automata or flows and valued signals.

It is distributed under binary form, at URL http://www.di.ens.fr/~pouzet/lucid-synchrone/.

The language was used, from 1996 to 2006 as a laboratory to experiment various extensions of the lan-
guage Lustre. Several programming constructs (e.g. merge, last, mix of data-flow and control-structures like
automata), type-based program analysis (e.g., typing, clock calculus) and compilation methods, originaly
introduced in Lucid Synchrone are now integrated in the new SCADE 6 compiler developped at Esterel-
Technologies and commercialized since 2008.

Three major release of the language has been done and the current version is V3 (dev. in 2006). As of 2014,
the language is still used for teaching and in our research but we do not develop it anymore. Nonetheless,
we have integrated several features from Lucid Synchrone in new research prototypes described below. The
Heptagon language and compiler are a direct descendent of it. The new language Zélus for hybrid systems
modeling borrows many features originaly introduced in Lucid Synchrone.

5.2. ReactiveML
Participant: Guillaume Baudart [contact].

Programming language, synchronous reactive programming, concurrent systems, dedicated type-systems.

With Louis Mandel (IBM Watson, USA) and Cédric Pasteur.

ReactiveML is a programming language dedicated to the implementation of interactive systems as found
in graphical user interfaces, video games or simulation problems. ReactiveML is based on the synchronous
reactive model due to Boussinot, embedded in an ML language (OCaml).

The Synchronous reactive model provides synchronous parallel composition and dynamic features like the
dynamic creation of processes. In ReactiveML, the reactive model is integrated at the language level (not as a
library) which leads to a safer and a more natural programming paradigm.

ReactiveML is distributed at URL http://reactiveml.org. The compiler is distributed under the terms of the Q
Public License and the library is distributed under the terms of the GNU Library General Public License. The
development of ReactiveML started at the University Paris 6 (from 2002 to 2006).

The language was mainly used for the simulation of mobile ad hoc networks at the Pierre and Marie Curie
University and for the simulation of sensor networks at France Telecom and Verimag (CNRS, Grenoble). A
new application to mixed music programming has been developed.

5.3. Heptagon
Participants: Adrien Guatto, Marc Pouzet [contact].

Synchronous languages, compilation, optimizing compilation, parallel code generation, behavioral synthesis.

With Cédric Pasteur, Léonard Gérard, and Brice Gelineau.

http://www.inria.fr/equipes/parkas
http://www.di.ens.fr/~pouzet/lucid-synchrone/
http://reactiveml.org

66 Embedded and Real-time Systems - Software and Platforms - Project-Team PARKAS

Heptagon is an experimental language for the implementation of embedded real-time reactive systems. It
is developed inside the Synchronics large-scale initiative, in collaboration with Inria Rhones-Alpes. It is
essentially a subset of Lucid Synchrone, without type inference, type polymorphism and higher-order. It is
thus a Lustre-like language extended with hierchical automata in a form very close to SCADE 6. The intention
for making this new language and compiler is to develop new aggressive optimization techniques for sequential
C code and compilation methods for generating parallel code for different platforms. This explains much of
the simplifications we have made in order to ease the development of compilation techniques.

Some extensions have already been made, most notably automata, a parallel code generator with Futures,
support for correct and efficient in-place array computations. It’s currently used to experiment with linear
typing for arrays and also to introduce a concept of asynchronous parallel computations. The compiler
developed in our team generates C, C++, java and VHDL code.

Transfer activities based on our experience in Heptagon are taking place through the “Fiabilité and Sûreté de
Fonctionnement” project at IRT SystemX, led by Alstom Transport, since 2013.

Heptagon is jointly developed with Gwenael Delaval and Alain Girault from the Inria POP ART team
(Grenoble). Gwenael Delaval is developing the controller synthesis tool BZR (http://bzr.inria.fr/) above
Heptagon. Both software are distributed under a GPL licence.

5.4. Lucy-n: an n-synchronous data-flow programming language
Participants: Albert Cohen, Adrien Guatto, Marc Pouzet.

With Louis Mandel (IBM Watson, USA).

Lucy-n is a language to program in the n-synchronous model. The language is similar to Lustre with a buffer
construct. The Lucy-n compiler ensures that programs can be executed in bounded memory and automatically
computes buffer sizes. Hence this language allows to program Kahn networks, the compiler being able to
statically compute bounds for all FIFOs in the program.

The language compiler and associated tools are available in a binary form at http://www.lri.fr/~mandel/lucy-n.

In 2013, a complete re-implementation has been started. This new version will take into account the new
features developed during the PhD of Adrien Guatto. Parallel code generation for this new version also involves
compilation and runtime system research in collaboration with Nhat Minh Lê and Robin Morisset.

5.5. ML-Sundials
Participants: Timothy Bourke, Jun Inoue, Marc Pouzet [contact].

Sundials/ML is a comprehensive OCaml interface to the Sundials suite of numerical solvers (CVODE,
CVODES, IDA, IDAS, KINSOL). Its structure mostly follows that of the Sundials library, both for ease of
reading the existing documentation and for adapting existing source code, but several changes have been made
for programming convenience and to increase safety, namely:

• solver sessions are mostly configured via algebraic data types rather than multiple function calls;
• errors are signalled by exceptions not return codes (also from user-supplied callback routines);
• user data is shared between callback routines via closures (partial applications of functions);
• vectors are checked for compatibility (using a combination of static and dynamic checks); and
• explicit free commands are not necessary since OCaml is a garbage-collected language.

OCaml versions of the standard examples usually have an overhead of about 50% compared to the original C
versions, and almost never more than 100%.

The current version of Sundials/ML comprises about 30,000 lines of OCaml (plus 10,000 lines of api
documentation) and 12,000 lines of C (plus 1000 lines of commentary). In comparison to our previous
development (called ML-Sundials), the current version includes a major rewrite of the ‘nvector’ interface
to allow easier generalisation to parallel and custom vectors (both of which have now been implemented), a
rewrite of the linear solver interfaces, a redesign of the linear solver interface (now including the ability to
specify linear solvers in OCaml), and the inclusion of the CVODES and IDAS solvers.

http://bzr.inria.fr/
http://www.lri.fr/~mandel/lucy-n

67 Embedded and Real-time Systems - Software and Platforms - Project-Team PARKAS

Sundials/ML allows the use of the state-of-the-art Sundials numerical simulation library from OCaml pro-
grams. We use it within PARKAS for the Zélus compiler (documented elsewhere) and our ongoing experi-
ments with Modelica. The binding is, however, complete and general purpose. It can potentially replace the
less complete libraries underlying three or four open source projects.

The Sundials/ML source code has now been released under a BSD-3 license. It is available on github and
through opam.

5.6. Zélus
Participants: Timothy Bourke, Marc Pouzet [contact].

Zélus is a new programming language for hybrid system modeling. It is based on a synchronous language
but extends it with Ordinary Differential Equations (ODEs) to model continuous-time behaviors. It allows
for combining arbitrarily data-flow equations, hierarchical automata and ODEs. The language keeps all the
fundamental features of synchronous languages: the compiler statically ensure the absence of deadlocks
and critical races; it is able to generate statically scheduled code running in bounded time and space and a
type-system is used to distinguish discrete and logical-time signals from continuous-time ones. The ability to
combines those features with ODEs made the language usable both for programming discrete controllers and
their physical environment.

The Zélus implementation has two main parts: a compiler that transforms Zélus programs into OCaml
programs and a runtime library that orchestrates compiled programs and numeric solvers. The runtime
can use the Sundials numeric solver, or custom implementations of well-known algorithms for numerically
approximating continuous dynamics.

This year we reimplemented several basic numeric solver algorithms after a careful analysis of the Simulink
versions together with the binding to SUNDIALS CVODE. This was necessary to enable detailed comparsions
between our tool and Simulink (the de facto industrial standard in this domain). We also improved the
algorithm for zero-crossing detection, simplified and streamlined the back-end interface.

We developed several new examples to aid in the development, debugging, and dissemination of our work
together with various talks and demonstrations. These included a simple backhoe model (which served as a
introducing example in the HSCC paper), an adaptive control example from Astrom and Wittenmark’s text,
and a model of Zeno behaviour based on a zig-zagging object (presented at Synchron).

Zélus was been released officially in 2013 with several complete documented examples on http://zelus.di.
ens.fr. Work continued in 2014 with many refinements to the compilation passes. The runtime has also been
improved and simplified.

5.7. GCC
Participants: Albert Cohen [contact], Tobias Grosser, Feng Li, Riyadh Baghdadi, Nhat Minh Lê.

Compilation, optimizing compilation, parallel data-flow programming automatic parallelization, polyhedral
compilation. http://gcc.gnu.org

Licence: GPLv3+ and LGPLv3+

The GNU Compiler Collection includes front ends for C, C++, Objective-C, Fortran, Java, Ada, and Go, as
well as libraries for these languages (libstdc++, libgcj,...). GCC was originally written as the compiler for the
GNU operating system. The GNU system was developed to be 100% free software, free in the sense that it
respects the user’s freedom.

PARKAS contributes to the polyhedral compilation framework, also known as Graphite. We also distribute an
experimental branch for a stream-programming extension of OpenMP called OpenStream (used in numerous
research activites and grants). This effort borrows key design elements to synchronous data-flow languages.

Tobias Grosser is one of main contributors of the Graphite optimization pass of GCC.

https://github.com/inria-parkas/sundialsml
https://opam.ocaml.org/packages/sundialsml/sundialsml.2.5.0p2/
http://zelus.di.ens.fr
http://zelus.di.ens.fr
http://gcc.gnu.org

68 Embedded and Real-time Systems - Software and Platforms - Project-Team PARKAS

5.8. isl
Participants: Sven Verdoolaege [contact], Tobias Grosser, Albert Cohen.

Presburger arithmetic, integer linear programming, polyhedral library, automatic parallelization, polyhedral
compilation. http://freshmeat.net/projects/isl

Licence: MIT

isl is a library for manipulating sets and relations of integer points bounded by linear constraints. Supported
operations on sets include intersection, union, set difference, emptiness check, convex hull, (integer) affine
hull, integer projection, transitive closure (and over-approximation), computing the lexicographic minimum
using parametric integer programming. It includes an ILP solver based on generalized basis reduction, and
a new polyhedral code generator. isl also supports affine transformations for polyhedral compilation, and
increasingly abstract representations to model source and intermediate code in a polyhedral framework.

isl has become the de-facto standard for every recent polyhedral compilation project. Thanks to a license
change from LGPL to MIT, its adoption is also picking up in industry.

5.9. ppcg
Participants: Sven Verdoolaege [contact], Tobias Grosser, Riyadh Baghdadi, Albert Cohen.

Presburger arithmetic, integer linear programming, polyhedral library, automatic parallelization, polyhedral
compilation. http://freshmeat.net/projects/ppcg

Licence: MIT

More tools are being developed, based on isl. PPCG is our source-to-source research tool for automatic
parallelization in the polyhedral model. It serves as a test bed for many compilation algorithms and heuristics
published by our group, and is currently the best automatic parallelizer for CUDA and OpenCL (on the
Polybench suite).

5.10. Tool support for the working semanticist
Participants: Basile Clément, Francesco Zappa Nardelli [contact].

Languages, semantics, tool support, theorem prouvers.

We are working on tools to support large scale semantic definitions, for programming languages and architec-
ture specifications. For that we develop two complementary tools, Ott and Lem.

Ott is a tool for writing definitions of programming languages and calculi. It takes as input a definition of a
language syntax and semantics, in a concise and readable ASCII notation that is close to what one would write
in informal mathematics. It generates output:

1. a LaTeX source file that defines commands to build a typeset version of the definition;

2. a Coq version of the definition;

3. an Isabelle version of the definition; and

4. a HOL version of the definition.

Additionally, it can be run as a filter, taking a LaTeX/Coq/Isabelle/HOL source file with embedded (symbolic)
terms of the defined language, parsing them and replacing them by typeset terms.

The main goal of the Ott tool is to support work on large programming language definitions, where the scale
makes it hard to keep a definition internally consistent, and to keep a tight correspondence between a definition
and implementations. We also wish to ease rapid prototyping work with smaller calculi, and to make it easier
to exchange definitions and definition fragments between groups. The theorem-prover backends should enable
a smooth transition between use of informal and formal mathematics.

http://freshmeat.net/projects/isl
http://freshmeat.net/projects/ppcg

69 Embedded and Real-time Systems - Software and Platforms - Project-Team PARKAS

Lem is a lightweight tool for writing, managing, and publishing large scale semantic definitions. It is
also intended as an intermediate language for generating definitions from domain-specific tools, and for
porting definitions between interactive theorem proving systems (such as Coq, HOL4, and Isabelle). As
such it is a complementary tool to Ott. Lem resembles a pure subset of Objective Caml, supporting typical
functional programming constructs, including top-level parametric polymorphism, datatypes, records, higher-
order functions, and pattern matching. It also supports common logical mechanisms including list and set
comprehensions, universal and existential quantifiers, and inductively defined relations. From this, Lem
generates OCaml, HOL4, Coq, and Isabelle code.

In collaboration with Peter Sewell (Cambridge University) and Scott Owens (University of Kent).

The current version of Ott is about 30000 lines of OCaml. The tool is available from http://moscova.inria.fr/
~zappa/software/ott (BSD licence). It is widely used in the scientific community.

The development version of Lem is available from http://www.cs.kent.ac.uk/people/staff/sao/lem/.

In addition to the usual bug-fixes, in 2014 we have investigated several approaches to interactively explore
a semantics definition, with the aim of building a toolbox to debug operational semantics and to attempt to
falsify expected properties. This code is not yet released.

5.11. Cmmtest: a tool for hunting concurrency compiler bugs
Participants: Francesco Zappa Nardelli [contact], Robin Morisset, Pejman Attar.

Languages, concurrency, memory models, C11/C++11, compiler, bugs.

The Cmmtest tool performs random testing of C and C++ compilers against the C11/C++11 memory model.
A test case is any well-defined, sequential C program; for each test case, cmmtest:

1. compiles the program using the compiler and compiler optimisations that are being tested;

2. runs the compiled program in an instrumented execution environment that logs all memory accesses
to global variables and synchronisations;

3. compares the recorded trace with a reference trace for the same program, checking if the recorded
trace can be obtained from the reference trace by valid eliminations, reorderings and introductions.

Cmmtest identified several mistaken write introductions and other unexpected behaviours in the latest release
of the gcc compiler. These have been promptly fixed by the gcc developers.

Cmmtest is available from http://www.di.ens.fr/~zappa/projects/cmmtest/ and a list of bugs reported thanks to
cmmtest is available from http://www.di.ens.fr/~zappa/projects/cmmtest/gcc-bugs.html.

In 2014 Cmmtest has been used by the ThreadSanitizer team at Google to debug some subtle false positive
race reports, due to the compiler introducing memory accesses.

http://moscova.inria.fr/~zappa/software/ott
http://moscova.inria.fr/~zappa/software/ott
http://www.cs.kent.ac.uk/people/staff/sao/lem/
http://www.di.ens.fr/~zappa/projects/cmmtest/
http://www.di.ens.fr/~zappa/projects/cmmtest/gcc-bugs.html

70 Embedded and Real-time Systems - Software and Platforms - Team SPADES

SPADES Team

5. New Software and Platforms

5.1. Prototypes
5.1.1. Logical Causality

Participant: Gregor Goessler.

We are developing LOCA, a prototype tool written in Scala that implements the analysis of logical causality
described in 6.3.3 . LOCA currently supports causality analysis in BIP and networks of timed automata. The
core analysis engine is implemented as an abstract class, such that support for other models of computation
(MoC) can be added by instantiating the class with the basic operations of the MoC.

5.1.2. Cosyma
Participant: Gregor Goessler.

We have developed COSYMA, a tool for automatic controller synthesis for incrementally stable switched
systems based on multi-scale discrete abstractions. The tool accepts a description of a switched system
represented by a set of differential equations and the sampling parameters used to define an approximation
of the state-space on which discrete abstractions are computed. The tool generates a controller — if it exists
— for the system that enforces a given safety or time-bounded reachability specification.

5.1.3. The SIAAM virtual machine
Participant: Jean-Bernard Stefani.

The SIAAM abstract machine is an object-based realization of the Actor model of concurrent computation.
Actors can exchange arbitrary object graphs in messages while still enjoying a strong isolation property. It
guarantees that each actor can only directly access objects in its own local heap, and that information between
actors can only flow via message exchange. The SIAAM machine has been implemented for Java as a modified
Jikes virtual machine. The resulting SIAAM software comprises:

• A modified Jikes RVM that implements actors and actor isolation as specified by the SIAAM
machine.

• A set of static analyses build using the Soot Java optimization framework for optimizing the
execution of the SIAAM/Jikes virtual machine, and for helping programmers diagnose potential
performance issues.

• A formal proof using the Coq proof assistant of the SIAAM isolation property.

The SIAAM machine is the subject of Quentin Sabah’s PhD thesis [67].

5.1.4. pyCPA_TCA
Participant: Sophie Quinton.

We are developing PYCPA_TCA, a PYCPA plugin for Typical Worst-Case Analysis as described in
Section 6.2.2 . PYCPA is an open-source Python implementation of Compositional Performance Analysis
developed at TU Braunschweig, which allows in particular response-time analysis. PYCPA_TCA is an exten-
sion of this tool that is co-developed by Sophie Quinton and Zain Hammadeh at TU Braunschweig. It allows
in particular the computation of weakly-hard guarantees for real-time tasks, i.e. number of deadline misses out
of a sequence of executions. So far, PYCPA_TCA is restricted to uniprocessor systems of independent tasks,
scheduled according to static priority scheduling.

http://www.inria.fr/equipes/spades
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/uid43.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2014-bid34
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/uid37.html

71 Embedded and Real-time Systems - Software and Platforms - Project-Team TEA

TEA Project-Team

5. New Software and Platforms

5.1. The Eclipse project POP
Participants: Loïc Besnard, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

The distribution of project POP 0 is a major achievement of the ESPRESSO project. The Eclipse project
POP is a model-driven engineering front-end to our open-source toolset Polychrony. It was finalised in the
frame of project OPEES, as a case study: by passing the POLARSYS qualification kit as a computer aided
simulation and verification tool. This qualification was implemented by CS Toulouse in conformance with
relevant generic (platform independent) qualification documents. Polychrony is now distributed by the Eclipse
project POP on the platform of the POLARSYS industrial working group. Team TEA aims at continuing its
dissemination to academic partners, as to its principles and features, and industrial partners, as to the services
it can offer.

Technically, project POP is composed of the Polychrony toolset, under GPL license, and its Eclipse framework,
under EPL license.

The Polychrony toolset. The Polychrony toolset is an Open Source development environment for criti-
cal/embedded systems. It is based on Signal, a real-time polychronous dataflow language. It provides a unified
model-driven environment to perform design exploration by using top-down and bottom-up design method-
ologies formally supported by design model transformations from specification to implementation and from
synchrony to asynchrony. It can be included in heterogeneous design systems with various input formalisms
and output languages.

The Polychrony toolset provides a formal framework:
• to validate a design at different levels, by the way of formal verification and/or simulation,
• to refine descriptions in a top-down approach,
• to abstract properties needed for black-box composition,
• to assemble heterogeneous predefined components (bottom-up with COTS),
• to generate executable code for various architectures.

The Polychrony toolset contains three main components and an experimental interface to GNU Compiler
Collection (GCC):

• The Signal toolbox, a batch compiler for the Signal language, and a structured API that provides a
set of program transformations. The Signal toolbox can be installed without other components. The
Signal toolbox is distributed under GPL V2 license.

• The Signal GUI, a Graphical User Interface to the Signal toolbox (editor + interactive access to
compiling functionalities). The Signal GUI is distributed under GPL V2 license.

• The SME/SSME platform, a front-end to the Signal toolbox in the Eclipse environment. The
SME/SSME platform is distributed under EPL license.

• GCCst, a back-end to GCC that generates Signal programs (not yet available for download).

In 2013, to be able to use the Signal GUI both as a specific tool and as a graphical view under Eclipse, the code
of the Signal GUI has been restructured in three parts: a common part used by both tools (28 classes), a specific
part for the Signal GUI (2 classes), a specific part for Eclipse (2 classes). Such a structuration facilitates the
maintenance of the products.

0Polychrony on POLARSYS (POP), an Eclipse project in the POLARSYS Industry Working Group, 2013. https://www.POLARSYS.
org/projects/POLARSYS.pop

http://www.inria.fr/equipes/tea
https://www.POLARSYS.org/projects/POLARSYS.pop
https://www.POLARSYS.org/projects/POLARSYS.pop

72 Embedded and Real-time Systems - Software and Platforms - Project-Team TEA

The Polychrony toolset also provides:

• libraries of Signal programs,

• a set of Signal program examples,

• user oriented and implementation documentations,

• facilities to generate new versions.

Figure 1. The Polychrony toolset high-level architecture

Dassault Systèmes, supplies a commercial implementation of Polychrony, called RT-Builder, used for indus-
trial scale projects.

As part of its open-source release, the Polychrony toolset not only comprises source code libraries but also
an important corpus of structured documentation, whose aim is not only to document each functionality and
service, but also to help a potential developer to package a subset of these functionalities and services, and
adapt them to developing a new application-specific tool: a new language front-end, a new back-end compiler.
This multi-scale, multi-purpose documentation aims to provide different views of the software, from a high-
level structural view to low-level descriptions of basic modules. It supports a distribution of the software “by
apartment” (a functionality or a set of functionalities) intended for developers who would only be interested
by part of the services of the toolset.

The Eclipse POP Framework. We have developed a meta-model and interactive editor of Polychrony in
Eclipse. Signal-Meta is the meta-model of the Signal language implemented with Eclipse/Ecore. It describes
all syntactic elements specified in 0: all Signal operators (e.g. arithmetic, clock synchronization), model (e.g.
process frame, module), and construction (e.g. iteration, type declaration).

0SIGNAL V4-Inria version: Reference Manual. Besnard, L., Gautier, T. and Le Guernic, P. http://www.irisa.fr/espresso/Polychrony,
2009

http://www.irisa.fr/espresso/Polychrony

73 Embedded and Real-time Systems - Software and Platforms - Project-Team TEA

The meta-model primarily aims at making the language and services of the Polychrony environment available
to inter-operation and composition with other components (e.g. AADL, Simulink, GeneAuto) within an
Eclipse-based development toolchain. Polychrony now comprises the capability to directly import and export
Ecore models instead of textual Signal programs, in order to facilitate interaction between components within
such a toolchain.

Figure 2. The Eclipse POP Environment

It also provides a graphical modelling framework allowing to design applications using a component-based
approach. Application architectures can be easily described by just selecting components via drag and drop,
creating some connections between them and specifying their parameters as component attributes. Using
the modelling facilities provided with the Topcased framework, we have created a graphical environment
for Polychrony called SME (Signal-Meta under Eclipse). To highlight the different parts of the modelling
in Signal, we split the modelling of a Signal process in three diagrams: one to model the interface of the
process, one to model the computation (or dataflow) part, and one to model all explicit clock relations and
dependences. The SME environment is available through the ESPRESSO update site 0. A new meta-model
of Signal, called SSME (Syntactic Signal-Meta under Eclipse), closer to the Signal abstract syntax, has been
defined and integrated in the Polychrony toolset.

It should be noted that the Eclipse Foundation does not host code under GPL license. So, the Signal toolbox
useful to compile Signal code from Eclipse is hosted on our web server. For this reason, the building of the
Signal toolbox, previously managed under Eclipse, has now been exported. The interface of the Signal toolbox
for Eclipse is now managed using the CMake tool like the Signal toolbox and the Signal GUI.

5.2. Integrated Modular Avionics design using Polychrony
Participants: Loïc Besnard, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin.

0Polychrony Update Site for Eclipse plug-ins. http://www.irisa.fr/espresso/Polychrony/update, 2009.

http://www.irisa.fr/espresso/Polychrony/update

74 Embedded and Real-time Systems - Software and Platforms - Project-Team TEA

The Apex interface, defined in the ARINC standard 0, provides an avionics application software with the set
of basic services to access the operating-system and other system-specific resources. Its definition relies on the
Integrated Modular Avionics approach (IMA). A main feature in an IMA architecture is that several avionics
applications (possibly with different critical levels) can be hosted on a single, shared computer system. Of
course, a critical issue is to ensure safe allocation of shared computer resources in order to prevent fault
propagations from one hosted application to another. This is addressed through a functional partitioning of the
applications with respect to available time and memory resources. The allocation unit that results from this
decomposition is the partition.

A partition is composed of processes which represent the executive units (an ARINC partition/process is akin
to a Unix process/task). When a partition is activated, its owned processes run concurrently to perform the
functions associated with the partition. The process scheduling policy is priority preemptive. Each partition
is allocated to a processor for a fixed time window within a major time frame maintained by the operating
system. Suitable mechanisms and devices are provided for communication and synchronization between
processes (e.g. buffer, event, semaphore) and partitions (e.g. ports and channels). The specification of the
ARINC 651-653 services in Signal [4] is now part of the Polychrony distribution and offers a complete
implementation of the Apex communication, synchronization, process management and partitioning services.
Its Signal implementation consists of a library of generic, parameterizable Signal modules.

5.3. Safety-Critical Java Level 1 Code generation from Dataflow Graph
Specifications
Participants: Adnan Bouakaz, Thierry Gautier, Jean-Pierre Talpin.

We have proposed a dataflow design model [2] of SCJ/L1 applications 0 in which handlers (periodic and
aperiodic actors) communicate only through lock-free channels. Hence, each mission is modeled as a dataflow
graph. The presented dataflow design model comes with a development tool integrated in the Eclipse IDE for
easing the development of SCJ/L1 applications and enforcing the restrictions imposed by the design model. It
consists of a GMF editor where applications are designed graphically and timing and buffering parameters can
be synthesized. Indeed, abstract affine scheduling is first applied on the dataflow subgraph, that consists only
of periodic actors, to compute timeless scheduling constraints (e.g. relation between the speeds of two actors)
and buffering parameters. Then, symbolic fixed-priority schedulability analysis (i.e., synthesis of timing and
scheduling parameters of actors) considers both periodic and aperiodic actors.

Through a model-to-text transformation, using Acceleo, the SCJ code for missions, interfaces of handlers,
and the mission sequencer is automatically generated in addition to the annotations needed by the memory
checker. Channels are implemented as cyclic arrays or cyclical asynchronous buffers; and a fixed amount of
memory is hence reused to store the infinite streams of tokens. The user must provide the SCJ code of all the
handleAsyncEvent() methods. We have integrated the SCJ memory checker 0 in our tool so that potential
dangling pointers can be highlighted at compile-time. To enhance functional determinism, we would like to
develop an ownership type system to ensure that actors are strongly isolated and communicate only through
buffers.

0ARINC Report 651-1: Design Guidance for Integrated Modular Avionics. Airlines Electronic Engineering Committee, 1997
0Safety critical Java technology specification. JSR-302, Year = 2010
0Static checking of safety critical Java annotations. Tang, D. Plsek, A. and Vitek, J. International Workshop on Java Technologies for

Real-Time and Embedded Systems, 2010

http://raweb.inria.fr/rapportsactivite/RA{$year}/tea/bibliography.html#tea-2014-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/tea/bibliography.html#tea-2014-bid1

75 Proofs and Verification - Software and Platforms - Team ANTIQUE

ANTIQUE Team

5. New Software and Platforms

5.1. The Apron Numerical Abstract Domain Library
Participants: Antoine Miné [correspondent], Bertrand Jeannet [team PopArt, Inria-RA].

The APRON library is dedicated to the static analysis of the numerical variables of a program by abstract
interpretation. Its goal is threefold: provide ready-to-use numerical abstractions under a common API for
analysis implementers, encourage the research in numerical abstract domains by providing a platform for
integration and comparison of domains, and provide a teaching and demonstration tool to disseminate
knowledge on abstract interpretation.

The APRON library is not tied to a particular numerical abstraction but instead provides several domains
with various precision versus cost trade-offs (including intervals, octagons, linear equalities and polyhedra). A
specific C API was designed for domain developers to minimize the effort when incorporating a new abstract
domain: only few domain-specific functions need to be implemented while the library provides various generic
services and fallback methods (such as scalar and interval operations for most numerical data-types, parametric
reduced products, and generic transfer functions for non-linear expressions). For the analysis designer, the
APRON library exposes a higher-level API with C, C++, OCaml, and Java bindings. This API is domain-
neutral and supports a rich set of semantic operations, including parallel assignments (useful to analyze
automata), substitutions (useful for backward analysis), non-linear numerical expressions, and IEEE floating-
point arithmetic.

The APRON library is freely available on the web at http://apron.cri.ensmp.fr/library; it is distributed under the
LGPL license and is hosted at InriaGForge. Packages exist for the Debian and Fedora Linux distributions. In
order to help disseminate the knowledge on abstract interpretation, a simple inter-procedural static analyzer for
a toy language is included. An on-line version is deployed at http://pop-art.inrialpes.fr/interproc/interprocweb.
cgi.

The APRON library is developed since 2006 and currently consists of 130 000 lines of C, C++, OCaml, and
Java.

Current and past external library users include the Constraint team (LINA, Nantes, France), the Proval/Démon
team (LRI Orsay, France), the Analysis of Computer Systems Group (New-York University, USA), the Sierum
software analysis platform (Kansas State University, USA), NEC Labs (Princeton, USA), EADS CCR (Paris,
France), IRIT (Toulouse, France), ONERA (Toulouse, France), CEA LIST (Saclay, France), VERIMAG
(Grenoble, France), ENSMP CRI (Fontainebleau, France), the IBM T.J. Watson Research Center (USA), the
University of Edinburgh (UK).

Additionally, APRON is used internally by the team to assist the research on numeric domains and static
analyses by enabling the development of fast prototypes. Specifically, in 2014, APRON has been used to
support the design of piece-wise linear ranking function domains to infer termination and functional liveness
properties in the implementation of the FUNCTION prototype analyzer, and to implement and experiment a
new numeric domain for octagonal constraints with absolute values. It has also been used in the introductory
course on program verification given by members of the team.

5.2. The Astrée Static Analyzer of Synchronous Software
Participants: Patrick Cousot [project scientific leader, correspondent], Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, Xavier Rival.

ASTRÉE is a static analyzer for sequential programs based on abstract interpretation [40], [35], [41], [36].

http://www.inria.fr/equipes/antique
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
https://gforge.inria.fr/projects/apron/
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/
http://www.di.ens.fr/~urban/FuncTion.html
http://www.astree.ens.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid4

76 Proofs and Verification - Software and Platforms - Team ANTIQUE

The ASTRÉE static analyzer [34], [44][1] www.astree.ens.fr aims at proving the absence of runtime errors in
programs written in the C programming language.

ASTRÉE analyzes structured C programs, with complex memory usages, but without dynamic memory
allocation nor recursion. This encompasses many embedded programs as found in earth transportation, nuclear
energy, medical instrumentation, and aerospace applications, in particular synchronous control/command. The
whole analysis process is entirely automatic.

ASTRÉE discovers all runtime errors including:
• undefined behaviors in the terms of the ANSI C99 norm of the C language (such as division by 0 or

out of bounds array indexing);
• any violation of the implementation-specific behavior as defined in the relevant Application Binary

Interface (such as the size of integers and arithmetic overflows);
• any potentially harmful or incorrect use of C violating optional user-defined programming guidelines

(such as no modular arithmetic for integers, even though this might be the hardware choice);
• failure of user-defined assertions.

The analyzer performs an abstract interpretation of the programs being analyzed, using a parametric domain
(ASTRÉE is able to choose the right instantiation of the domain for wide families of software). This analysis
produces abstract invariants, which over-approximate the reachable states of the program, so that it is possible
to derive an over-approximation of the dangerous states (defined as states where any runtime error mentioned
above may occur) that the program may reach, and produces alarms for each such possible runtime error. Thus
the analysis is sound (it correctly discovers all runtime errors), yet incomplete, that is it may report false alarms
(i.e., alarms that correspond to no real program execution). However, the design of the analyzer ensures a high
level of precision on domain-specific families of software, which means that the analyzer produces few or no
false alarms on such programs.

In order to achieve this high level of precision, ASTRÉE uses a large number of expressive abstract domains,
which allow expressing and inferring complex properties about the programs being analyzed, such as
numerical properties (digital filters, floating-point computations), Boolean control properties, and properties
based on the history of program executions.

ASTRÉE has achieved the following two unprecedented results:
• A340–300. In Nov. 2003, ASTRÉE was able to prove completely automatically the absence of any

RTE in the primary flight control software of the Airbus A340 fly-by-wire system, a program of
132,000 lines of C analyzed in 1h20 on a 2.8 GHz 32-bit PC using 300 MB of memory (and 50mn
on a 64-bit AMD Athlon 64 using 580 MB of memory).

• A380. From Jan. 2004 on, ASTRÉE was extended to analyze the electric flight control codes then in
development and test for the A380 series. The operational application by Airbus France at the end
of 2004 was just in time before the A380 maiden flight on Wednesday, 27 April, 2005.

These research and development successes have led to consider the inclusion of ASTRÉE in the production
of the critical software for the A350. ASTRÉE is currently industrialized by AbsInt Angewandte Informatik
GmbH and is commercially available.

5.3. The AstréeA Static Analyzer of Asynchronous Software
Participants: Patrick Cousot [project scientific leader, correspondent], Radhia Cousot, Jérôme Feret, Antoine
Miné, Xavier Rival.

ASTRÉEA is a static analyzer prototype for parallel software based on abstract interpretation [42], [43], [37]. It
started with support from THÉSÉE ANR project (2006–2010) and is continuing within the ASTRÉEA project
(2012–2015).

The ASTRÉEA prototype www.astreea.ens.fr is a fork of the ASTRÉE static analyzer (see 5.2) that adds
support for analyzing parallel embedded C software.

http://www.astree.ens.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid7
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.absint.com/
http://www.absint.com/
http://www.absint.com/astree/
http://www.astree.ens.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid10
http://www.di.ens.fr/~cousot/projets/THESEE/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astreea.ens.fr/
http://www.astree.ens.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/uid18.html

77 Proofs and Verification - Software and Platforms - Team ANTIQUE

ASTRÉEA analyzes C programs composed of a fixed set of threads that communicate through a shared
memory and synchronization primitives (mutexes, FIFOs, blackboards, etc.), but without recursion nor
dynamic creation of memory, threads nor synchronization objects. ASTRÉEA assumes a real-time scheduler,
where thread scheduling strictly obeys the fixed priority of threads. Our model follows the ARINC 653 OS
specification used in embedded industrial aeronautic software. Additionally, ASTRÉEA employs a weakly-
consistent memory semantics to model memory accesses not protected by a mutex, in order to take into
account soundly hardware and compiler-level program transformations (such as optimizations). ASTRÉEA
checks for the same run-time errors as ASTRÉE, with the addition of data-races.

Compared to ASTRÉE, ASTRÉEA features: a new iterator to compute thread interactions, a refined memory
abstraction that takes into account the effect of interfering threads, and a new scheduler partitioning domain.
This last domain allows discovering and exploiting mutual exclusion properties (enforced either explicitly
through synchronization primitives, or implicitly by thread priorities) to achieve a precise analysis.

ASTRÉEA is currently being applied to analyze a large industrial avionic software: 1.6 MLines of C and 15
threads, completed with a 2,500-line model of the ARINC 653 OS developed for the analysis. The analysis
currently takes a few tens of hours on a 2.9 GHz 64-bit intel server using one core and generates around 1,050
alarms. The low computation time (only a few times larger than the analysis time by ASTRÉE of synchronous
programs of a similar size and structure) shows the scalability of the approach (in particular, we avoid the usual
combinatorial explosion associated to thread interleavings). Precision-wise, the result, while not as impressive
as that of ASTRÉE, is quite encouraging. The development of ASTRÉEA continues within the scope of the
ASTRÉEA ANR project.

5.4. ClangML: A binding with the CLANG C-frontend
Participants: François Berenger [Correspondent], Devin Mccoughlin, Pippijn Van Steenhoeven.

CLANGML is an OCaml binding with the CLANG front-end of the LLVM compiler suite. Its goal is to
provide an easy to use solution to parse a wide range of C programs, that can be called from static analysis
tools implemented in OCaml, which allows to test them on existing programs written in C (or in other idioms
derived from C) without having to redesign a front-end from scratch. CLANGML features an interface to a
large set of internal AST nodes of CLANG, with an easy to use API. Currently, CLANGML supports all C
language AST nodes, as well as a large part of the C nodes related to C++ and Objective-C.

It has been applied to the parsing of the Minix micro-kernel as well as of other C programs.

CLANGML has been implemented in C++, OCaml and Camlp4. It has been released as an open source
contribution on GitHUB and as an OPAM package.

5.5. FuncTion: An Abstract Domain Functor for Termination
Participants: Caterina Urban, Antoine Miné [Correspondent].

FUNCTION is a research prototype static analyzer to analyze the termination and functional liveness properties
of programs. It accepts programs in a small non-deterministic imperative language. It is also parameterized
by a property: either termination, or a recurrence or a guarantee property (according to the classification
by Manna and Pnueli of program properties). It then performs a backward static analysis that automatically
infers sufficient conditions at the beginning of the program so that all executions satisfying the conditions also
satisfy the property. FUNCTION is based on an extension to liveness properties of the framework to analyze
termination by abstract interpretation proposed by Patrick Cousot and Radhia Cousot in [39]. FUNCTION
infers ranking functions using piecewise-defined abstract domains. Several domains are available to partition
the ranking function, including intervals, octagons, and polyhedra. Two domains are also available to represent
the value of ranking functions: a domain of affine ranking functions, and a domain of ordinal-valued ranking
functions (which allows handling programs with unbounded non-determinism).

The analyzer is written in OCaml and implemented on top of the APRON library. It can be used on-line through
a web interface: http://www.di.ens.fr/~urban/FuncTion.html.

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
https://github.com/Antique-team/clangml/
http://www.di.ens.fr/~urban/FuncTion.html
http://www.di.ens.fr/~urban/FuncTion.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid11
http://www.di.ens.fr/~urban/FuncTion.html
http://apron.cri.ensmp.fr/library/
http://www.di.ens.fr/~urban/FuncTion.html

78 Proofs and Verification - Software and Platforms - Team ANTIQUE

FUNCTION participated to SV-COMP 2014 (3rd Competition on Software Verification, demonstration section)
and is also selected to participate to SV-COMP 2015 in the termination category [31].

5.6. HOO: Heap Abstraction for Open Objects
Participant: Arlen Cox [Correspondent].

JSAna with HOO is a static analyzer for JavaScript programs. The primary component, HOO, which
is designed to be reusable by itself, is an abstract domain for a dynamic language heap. A dynamic
language heap consists of open, extensible objects linked together by pointers. Uniquely, HOO abstracts these
extensible objects, where attribute/field names of objects may be unknown. Additionally, it contains features
to keeping precise track of attribute name/value relationships as well as calling unknown functions through
desynchronized separation.

As a library, HOO is useful for any dynamic language static analysis. It is designed to allow abstractions for
values to be easily swapped out for different abstractions, allowing it to be used for a wide-range of dynamic
languages outside of JavaScript.

5.7. The MemCADstatic analyzer
Participants: Xavier Rival [correspondent], François Berenger, Huisong Li, Antoine Toubhans.

Shape analysis. MEMCADis a static analyzer that focuses on memory abstraction. It takes as input C
programs, and computes invariants on the data structures manipulated by the programs. It can also verify
memory safety. It comprises several memory abstract domains, including a flat representation, and two graph
abstractions with summaries based on inductive definitions of data-structures, such as lists and trees and several
combination operators for memory abstract domains (hierarchical abstraction, reduced product). The purpose
of this construction is to offer a great flexibility in the memory abstraction, so as to either make very efficient
static analyses of relatively simple programs, or still quite efficient static analyses of very involved pieces of
code. The implementation consists of over 30 000 lines of ML code, and relies on the CLANGML front-end.
The current implementation comes with over 300 small size test cases that are used as regression tests.

5.8. The OpenKappa Modeling Plateform
Participants: Pierre Boutillier [Paris VII], Monte Brown [Harvard Medical School], Vincent Danos [Univer-
sity of Edinburgh], Jérôme Feret [Correspondent], Luca Grieco, Walter Fontana [Harvard Medical School],
Russ Harmer [ENS Lyon], Jean Krivine [Paris VII].

Causal traces, Model reduction, Rule-based modeling, Simulation, Static analysis. OPENKAPPA is a collection
of tools to build, debug and run models of biological pathways. It contains a compiler for the Kappa Language
[50], a static analyzer [49] (for debugging models), a simulator [48], a compression tool for causal traces [47],
[45], and a model reduction tool [4], [46], [53].

OPENKAPPA is developed since 2007 and, the OCaml version currently consists of 46 000 lines of OCaml.
Software are available in OCaml and in Java. Moreover, an Eclipse pluggin is available.A compiler from
CellDesigner into Kappa has been released in 2013.

OPENKAPPA is freely available on the web at http://kappalanguage.org under the LGPL license. Discussion
groups are also available on line.

Current external users include the ETH Zürich, the UNAM-Genomics Mexico team. It is used as pedagocical
material in graduate lessons at Harvard Medical School, and at the Interdisciplinary Approaches to Life science
(AIV) Master Program (Université de Médecine Paris-Descartes).

5.9. QUICr set abstract domain
Participant: Arlen Cox [Correspondent].

http://www.di.ens.fr/~urban/FuncTion.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid12
http://www.di.ens.fr/~rival/memcad.html
http://www.kappalanguage.org/
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid17
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid18
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid19
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2014-bid20
http://www.kappalanguage.org/
http://www.kappalanguage.org/
http://kappalanguage.org

79 Proofs and Verification - Software and Platforms - Team ANTIQUE

QUICr is an OCaml library that implements a parametric abstract domain for sets. It is constructed as a functor
that accepts any numeric abstract domain that can be adapted to the interface and produces an abstract domain
for sets of numbers combined with numbers. It is relational, flexible, and tunable. It serves as a basis for future
exploration of set abstraction.

5.10. Translation Validation
Participant: Xavier Rival [correspondent].

Abstract interpretation, Certified compilation, Static analysis, Translation validation, Verifier. The main goal
of this software project is to make it possible to certify automatically the compilation of large safety critical
software, by proving that the compiled code is correct with respect to the source code: When the proof
succeeds, this guarantees that no compiler bug did cause incorrect code to be generated. Furthermore, this
approach should allow to meet some domain specific software qualification criteria (such as those in DO-178
regulations for avionics software), since it allows proving that successive development levels are correct with
respect to each other i.e., that they implement the same specification. Last, this technique also justifies the use
of source level static analyses, even when an assembly level certification would be required, since it establishes
separately that the source and the compiled code are equivalent.

The compilation certification process is performed automatically, thanks to a prover designed specifically. The
automatic proof is done at a level of abstraction which has been defined so that the result of the proof of
equivalence is strong enough for the goals mentioned above and so that the proof obligations can be solved by
efficient algorithms.

The current software features both a C to Power-PC compilation certifier and an interface for an alternate
source language frontend, which can be provided by an end-user.

5.11. Zarith
Participants: Antoine Miné [Correspondent], Xavier Leroy [Inria Paris-Rocquencourt], Pascal Cuoq [CEA
LIST].

ZARITH is a small (10K lines) OCaml library that implements arithmetic and logical operations over arbitrary-
precision integers. It is based on the GNU MP library to efficiently implement arithmetic over big integers.
Special care has been taken to ensure the efficiency of the library also for small integers: small integers are
represented as Caml unboxed integers and use a specific C code path. Moreover, optimized assembly versions
of small integer operations are provided for a few common architectures.

ZARITH is an open-source project hosted at OCamlForge (http://forge.ocamlcore.org/projects/zarith) and
distributed under a modified LGPL license.

ZARITH is currently used in the ASTRÉE analyzer to enable the sound analysis of programs featuring 64-bit
(or larger) integers. It is also used in the Frama-C analyzer platform developed at CEA LIST and Inria Saclay.

http://forge.ocamlcore.org/projects/zarith
http://forge.ocamlcore.org/projects/zarith
http://forge.ocamlcore.org/projects/zarith
http://forge.ocamlcore.org/projects/zarith
http://www.astree.ens.fr/

80 Proofs and Verification - Software and Platforms - Project-Team CELTIQUE

CELTIQUE Project-Team

4. New Software and Platforms
4.1. Javalib

Participants: Frédéric Besson [correspondant], David Pichardie, Pierre Vittet, Laurent Guillo.

Javalib is an efficient library to parse Java .class files into OCaml data structures, thus enabling the OCaml
programmer to extract information from class files, to manipulate and to generate valid .class files.
See also the web page http://sawja.inria.fr/.

• Version: 2.3
• Programming language: Ocaml

4.2. SAWJA
Participants: Frédéric Besson [correspondant], David Pichardie, Pierre Vittet, Laurent Guillo.

Sawja is a library written in OCaml, relying on Javalib to provide a high level representation of Java bytecode
programs. It name comes from Static Analysis Workshop for JAva. Whereas Javalib is dedicated to isolated
classes, Sawja handles bytecode programs with their class hierarchy and with control flow algorithms.

Moreover, Sawja provides some stackless intermediate representations of code, called JBir and A3Bir. The
transformation algorithm, common to these representations, has been formalized and proved to be semantics-
preserving.
See also the web page http://sawja.inria.fr/.

• Version: 1.5
• Programming language: Ocaml

4.3. Jacal
Participants: Frédéric Besson [correspondant], Thomas Jensen, David Pichardie, Delphine Demange.

Static program analysis, Javacard, Certification, AFSCM

Jacal is a JAvaCard AnaLyseur developed on top of the SAWJA (see Section 4.2) platform. This proprietary
software verifies automatically that Javacard programs conform with the security guidelines issued by
the AFSCM (Association Française du Sans Contact Mobile). Jacal is based on the theory of abstract
interpretation and combines several object-oriented and numeric analyses to automatically infer sophisticated
invariants about the program behaviour. The result of the analysis is thereafter harvest to check that it is
sufficient to ensure the desired security properties.

4.4. Timbuk
Participant: Thomas Genet [correspondant].

Timbuk is a library of OCAML functions for manipulating tree automata. More precisely, Timbuk deals with
finite bottom-up tree automata (deterministic or not). This library provides the classical operations over tree
automata (intersection, union, complement, emptiness decision) as well as exact or approximated sets of terms
reachable by a given term rewriting system. This last operation can be certified using a checker extracted from
a Coq specification. The checker is now part of the Timbuk distribution. Timbuk distribution now also provides
a CounterExample Guided Abstraction Refinement (CEGAR) tool for tree automata completion. The CEGAR
part is based on the Buddy BDD library. Timbuk also provides an implementation of Lattice Tree Automata to
(efficiently) represent built-in values such as integers, strings, etc. in recognized tree languages. See also the
web page http://www.irisa.fr/celtique/genet/timbuk/.

• Version: 3.1
• Programming language: Ocaml

http://www.inria.fr/equipes/celtique
http://sawja.inria.fr/
http://sawja.inria.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/celtique/uid22.html
http://www.afscm.org
http://www.irisa.fr/celtique/genet/timbuk/

81 Proofs and Verification - Software and Platforms - Project-Team CELTIQUE

4.5. JSCert
Participants: Alan Schmitt [correspondant], Martin Bodin.

The JSCert project aims to really understand JavaScript. JSCert itself is a mechanised specification of
JavaScript, written in the Coq proof assistant, which closely follows the ECMAScript 5 English standard.
JSRef is a reference interpreter for JavaScript in OCAML, which has been proved correct with respect to
JSCert and tested with the Test 262 test suite.

We plan to build other verification and analysis projects on top of JSCert and JSRef, in particular the
certification of derivations in program logics or static analyses.

This project is an ongoing collaboration between Inria and Imperial College. More information, including the
source code, is available at http://jscert.org/.

http://jscert.org/

82 Proofs and Verification - Software and Platforms - Exploratory Action DEDUCTEAM

DEDUCTEAM Exploratory Action

5. New Software and Platforms

5.1. Dedukti
Dedukti is a proof-checker for the λΠ-calculus modulo. As it can be parametrized by an arbitrary set of
rewrite rules, defining an equivalence relation, this calculus can express many different theories. Dedukti has
been created for this purpose: to allow the interoperability of different theories.

Dedukti’s core is based on the standard algorithm [29] for type-checking semi-full pure type systems and
implements a state-of-the-art reduction machine inspired from Matita’s [28] and modified to deal with rewrite
rules.

Dedukti’s input language features term declarations and definitions (opaque or not) and rewrite rule definitions.
A basic module system allows the user to organize its project in different files and compile them separately.

Dedukti now features matching modulo beta for a large class of patterns called Miller’s patterns, allowing for
more rewriting rules to be implemented in Dedukti.

Dedukti has been developed by Mathieu Boespflug, Olivier Hermant, Quentin Carbonneaux and Ronan
Saillard. It is composed of about 2500 lines of OCaml.

5.2. Coqine, Holide, Focalide and Sigmaid
Dedukti comes with four companion tools: Holide, an embedding of HOL proofs through the OpenTheory
format [41], Coqine, an embedding of Coq proofs, Focalide, an embedding of FoCaLiZe certified programs,
and Sigmaid, a type-checker for the simply-typed ς-calculus with subtyping and a translator to Dedukti. All
of the OpenTheory standard library and a part of Coq’s and FoCaLiZe’s libraries are checked by Dedukti.

A preliminary version of Coqine supports the following features of Coq: the raw Calculus of Constructions,
inductive types, and fixpoint definitions. Coqine is currently being rewritten to support universes. Coqine has
been developed by Mathieu Boespflug, Guillaume Burel, and Ali Assaf.

Holide supports all the features of HOL, including ML-polymorphism, constant definitions, and type defini-
tions. It is able to translate all of the OpenTheory standard theory library. Holide has been developed by Ali
Assaf.

Focalide has been improved to support FoCaLiZe proofs found by Zenon using the Dedukti backend for Zenon
developped by Frédéric Gilbert. This backend has been improved by a simple typing mechanism in order to
work with Focalide. Focalide has also been updated again to work with the latest version of FoCaLiZe.

Sigmaid implements a shallow embedding of the simply-typed ς-calculus of Abadi and Cardelli with subtyping
in the λΠ-calculus modulo. This translation has been proved[21] to preserve the typing judgments and the
semantics of the simply-typed ς-calculus and tested on the examples of Abadi and Cardelli.

Focalide and Sigmaid have been developed by Raphaël Cauderlier.

Translators from Version 2.0 of the SMT-LIB standard and from the SMT-solver veriT have been initiated.
They are currently developed by Frédéric Gilbert.

http://www.inria.fr/equipes/deducteam
https://www.rocq.inria.fr/deducteam/Dedukti
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2014-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2014-bid16
https://www.rocq.inria.fr/deducteam/Holide
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2014-bid17
http://www.ensiie.fr/~guillaume.burel/blackandwhite_coqInE.html.en
https://www.rocq.inria.fr/deducteam/Focalide
http://sigmaid.gforge.inria.fr
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2014-bid18

83 Proofs and Verification - Software and Platforms - Exploratory Action DEDUCTEAM

5.3. iProver Modulo
iProver Modulo is an extension of the automated theorem prover iProver originally developed by Konstantin
Korovin at the University of Manchester. It implements Ordered polarized resolution modulo, a refinement
of the Resolution method based on Deduction modulo. It takes as input a proposition in predicate logic and a
clausal rewriting system defining the theory in which the formula has to be proved. Normalization with respect
to the term rewriting rules is performed very efficiently through translation into OCaml code, compilation and
dynamic linking. Experiments have shown that Ordered polarized resolution modulo dramatically improves
proof search compared to using raw axioms. iProver modulo is also able to produce proofs that can be checked
by Dedukti, therefore improving confidence. iProver modulo is written in OCaml, it consists of 1,200 lines of
code added to the original iProver.

A tool that transforms axiomatic theories into polarized rewriting systems, thus making them usable in iProver
Modulo, has also been developed. Autotheo supports several strategies to orient the axioms, some of them
being proved to be complete, in the sense that Ordered polarized resolution modulo the resulting systems is
refutationally complete, some others being merely heuristics. In practice, autotheo takes a TPTP input file and
transforms the axioms into rewriting rules, and produces an input file for iProver Modulo.

iProver Modulo and autotheo have been developed by Guillaume Burel. iProver Modulo is released under a
GPL license.

5.4. Super Zenon and Zenon Modulo
Several extensions of the Zenon automated theorem prover (developed by Damien Doligez at Inria in the
Gallium team) to Deduction modulo have been studied. These extensions intend to be applied in the context of
the automatic verification of proof rules and obligations coming from industrial applications formalized using
the B method.

The first extension, developed by Mélanie Jacquel and David Delahaye, is called Super Zenon and is an
extension of Zenon to superdeduction, which can be seen as a variant of Deduction modulo. This extension is
a generalization of previous experiments [42] together with Catherine Dubois and Karim Berkani (Siemens),
where Zenon has been used and extended to superdeduction to deal with the B set theory and automatically
prove proof rules of Atelier B. This generalization consists in allowing us to apply the extension of Zenon to
superdeduction to any first order theory by means of a heuristic that automatically transforms axioms of the
theory into rewrite rules. This work is described in [13] [35], which also proposes a study of the possibility of
recovering intuition from automated proofs using superdeduction.

The second extension, developed by Pierre Halmagrand, David Delahaye, Damien Doligez, and
Olivier Hermant, is called Zenon Modulo and is an extension of Zenon to Deduction modulo. Com-
pared to Super Zenon, this extension allows us to deal with rewrite rules both over propositions and terms.
Like Super Zenon, Zenon Modulo is able to deal with any first order theory by means of a similar heuristic.
To assess the approach of Zenon Modulo, we have applied this extension to the first order problems coming
from the TPTP library. An increase of the number of proved problems has been observed, with in particular
a significant increase in the category of set theory. Over these problems of the TPTP library, we have also
observed a significant proof size reduction, which confirms this aspect of Deduction modulo. These results
are gathered into two publications [33], [34].

The third extension, developed by Guillaume Bury and David Delahaye, is an extension of Zenon to (rational
and integer) linear arithmetic (using the simplex algorithm), that has been integrated to Zenon Modulo by
Guillaume Bury and Pierre Halmagrand, in order to be applied in the framework of the B set theory to the
verification of proof obligations of Atelier B [17]. Experiments have been conducted over the benchmarks
of the BWare project, and it turns out that more than 95% of the proof obligations are proved thanks to this
extension.

5.5. Zipperposition (and extensions) and Logtk

http://www.ensiie.fr/~guillaume.burel/blackandwhite_iProverModulo.html.en
http://www.ensiie.fr/~guillaume.burel/blackandwhite_autotheo.html.en
http://cedric.cnam.fr/~delahaye/super-zenon/
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2014-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2014-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2014-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2014-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2014-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2014-bid19

84 Proofs and Verification - Software and Platforms - Exploratory Action DEDUCTEAM

Zipperposition is an implementation of the superposition method; it relies on the library Logtk for basic logic
data structures and algorithms. Zipperposition is designed as a testbed for extensions to superposition, and can
currently deal with polymorphic typed logic, integer arithmetic, and total orderings; an extension to handle
structural induction is being worked on by Simon Cruanes.

Those pieces of software also depend on many smaller tools and libraries developped by Simon Cruanes
in OCaml. In particular, efficient iterators were key to implementing arithmetic rules successfully, and a
lightweight extension to the standard library has been developped steadily and released regularly.

5.6. CoLoR
CoLoR is a Coq library on rewriting theory and termination of more than 83,000 lines of code [2]. It provides
definitions and theorems for:

• Mathematical structures: relations, (ordered) semi-rings.

• Data structures: lists, vectors, polynomials with multiple variables, finite multisets, matrices, finite
graphs.

• Term structures: strings, algebraic terms with symbols of fixed arity, algebraic terms with varyadic
symbols, pure and simply typed λ-terms.

• Transformation techniques: conversion from strings to algebraic terms, conversion from algebraic to
varyadic terms, arguments filtering, rule elimination, dependency pairs, dependency graph decom-
position, semantic labelling.

• Termination criteria: polynomial interpretations, multiset ordering, lexicographic ordering, first and
higher order recursive path ordering, matrix interpretations.

CoLoR is distributed under the CeCILL license. It is currently developed by Frédéric Blanqui and Kim-Quyen
Ly, but various people participated to its development since 2006 (see the website for more information).

5.7. HOT
HOT is an automated termination prover for higher-order rewrite systems based on the notion of computability
closure and size annotation [31]. It won the 2012 competition in the category “higher-order rewriting union
beta”. The sources (5000 lines of OCaml) are not public. It is developed by Frédéric Blanqui.

5.8. Moca
Moca is a construction functions generator for OCaml data types with invariants.

It allows the high-level definition and automatic management of complex invariants for data types. In addition,
it provides the automatic generation of maximally shared values, independently or in conjunction with the
declared invariants.

A relational data type is a concrete data type that declares invariants or relations that are verified by its
constructors. For each relational data type definition, Moca compiles a set of construction functions that
implements the declared relations.

Moca supports two kinds of relations:

• predefined algebraic relations (such as associativity or commutativity of a binary constructor),

• user-defined rewrite rules that map some pattern of constructors and variables to some arbitrary
user’s define expression.

The properties that user-defined rules should satisfy (completeness, termination, and confluence of the
resulting term rewriting system) must be verified by a programmer’s proof before compilation. For the
predefined relations, Moca generates construction functions that allow each equivalence class to be uniquely
represented by their canonical value.

https://www.rocq.inria.fr/deducteam/Zipperposition/index.html
https://www.rocq.inria.fr/deducteam/Logtk/
https://github.com/c-cube/sequence/
https://github.com/c-cube/ocaml-containers/
http://color.inria.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2014-bid20
https://who.rocq.inria.fr/Frederic.Blanqui/hot.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2014-bid21
http://termination-portal.org/wiki/Termination_Competition
http://moca.inria.fr/
http://caml.inria.fr/

85 Proofs and Verification - Software and Platforms - Exploratory Action DEDUCTEAM

Moca is distributed under QPL. It is written in OCaml (14,000 lines) It is developed by Frédéric Blanqui,
Pierre Weis (EPI Pomdapi) and Richard Bonichon (CEA).

5.9. Rainbow
Rainbow is a set of tools for automatically verifying the correctness of termination certificates expressed in
the CPF format used in the termination competition. It contains:

• a tool xsd2coq for generating Coq data types for representing XML files valid wrt some XML
Schema,

• a tool xsd2ml for generating OCaml data types and functions for parsing XML files valid wrt some
XML Schema,

• a tool for translating a CPF file into a Coq script,

• a standalone Coq certified tool for verifying the correctness of a CPF file.

Rainbow is distributed under the CeCILL license. It is developed in OCaml (10,000 lines) and Coq (19,000
lines). It is currently developed by Frédéric Blanqui and Kim-Quyen Ly. See the website for more information.

5.10. mSAT
mSAT is a modular, proof-producing, SAT and SMT core based on Alt-Ergo Zero, written in OCaml. The
solver accepts user-defined terms, formulas and theory, making it a good tool for experimenting. This tool
produces resolution proofs as trees in which the leaves are user-defined proof of lemmas.

An encoding of tableaux rules as a theory for SMT solvers has been implemented and tested in mSAT. mSat
has also been extended to implement model constructing satisfiability calculus, a variant of SMT solvers in
which assignment of variables to values are propagated along with the usual boolean assignment of litterals.

http://color.inria.fr/rainbow.html
http://cl-informatik.uibk.ac.at/software/cpf/
http://termination-portal.org/wiki/Termination_Competition

86 Proofs and Verification - Software and Platforms - Exploratory Action ESTASYS

ESTASYS Exploratory Action

5. New Software and Platforms

5.1. The Plasma Statistical Model Checker
Participants: Axel Legay [Coordinator], Sean Sedwards, Benoît Boyer, Louis-Marie Traonouez, Kevin
Corre.

5.1.1. PLASMA
Statistical model checking (SMC) is a fast emerging technology for industrial scale verification and optimisa-
tion problems. In recognition of this, our group is developing a Platform for Learning and Advanced Statistical
Model checking Algorithms: PLASMA.

PLASMA (see https://project.inria.fr/plasma-lab/) was conceived to have high performance and be extensible,
using a proprietary virtual machine [48]. Since SMC requires only an executable semantics and is not con-
strained by decidability, we can easily implement different modelling languages and logics. Our involvement
in the DANSE 0 and DALi 0 European projects has also made us aware of the need to provide efficient ver-
ification for externally implemented simulators. We thus devised PLASMA-lab, a modular SMC library that
allows external users to tightly integrate their own code with our efficient SMC algorithms and integrated
development environment [47]. PLASMA-lab has now been successfully integrated with DESYRE 0, Scilab 0

and MATLAB 0.

The PLASMA-lab architecture is now the basis of our free-standing tool, 0 which includes all the modelling
languages, logics and algorithms developed by our group. In particular, we have recently developed cutting
edge algorithms for rare events [50], [49], [26], nondeterminism [28], [34], [37] and learning [14], [41].

5.2. Quail
Participants: Axel Legay [Coordinator], Fabrizio Biondi [Coordinator], Jean Quilbeuf.

Privacy is a central for Systems of Systems and interconnected objects. We propose QUAIL, a tool that can
be used to quantify privacy of components. QUAIL is the only tool able to perform an arbitrary-precision
quantitative analysis of the security of a system depending on private information. Thanks to its Markovian
semantics model, QUAIL computes the correlation between the system’s observable output and the private
information, obtaining the amount of bits of the secret that the attacker will infer by observing the output.
QUAIL is open source and can be downloaded at https://project.inria.fr/quail/.

QUAIL is able to evaluate the safety of randomized protocols depending on secret data, allowing to verify a
security protocol’s effectiveness. QUAIL can also be used to find previously unknown security vulnerabilities
in software systems and security protocols. The tool can verify whether a protocol is protecting its secret in a
perfect way, and quantify how much the secret is exposed to being revealed otherwise.

QUAIL has been used to quantify whether voting protocols respect the anonymity of the voters, proving that
preference ranking voting schemes are more secure than single preference ones. It has also been applied to the
security of smart grids and a number of classic examples like dining cryptographers, authentication protocols
and grades protocol.

0http://www.danse-ip.eu
0http://www.ict-dali.eu
0http://www.ales.eu.com
0http://www.scilab.org
0http://www.mathworks.com
0https://project.inria.fr/plasma-lab

http://www.inria.fr/equipes/estasys
https://project.inria.fr/plasma-lab/
http://raweb.inria.fr/rapportsactivite/RA{$year}/estasys/bibliography.html#estasys-2014-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/estasys/bibliography.html#estasys-2014-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/estasys/bibliography.html#estasys-2014-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/estasys/bibliography.html#estasys-2014-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/estasys/bibliography.html#estasys-2014-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/estasys/bibliography.html#estasys-2014-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/estasys/bibliography.html#estasys-2014-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/estasys/bibliography.html#estasys-2014-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/estasys/bibliography.html#estasys-2014-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/estasys/bibliography.html#estasys-2014-bid9
 https://project.inria.fr/quail/
http://www.danse-ip.eu
http://www.ict-dali.eu
http://www.ales.eu.com
http://www.scilab.org
http://www.mathworks.com
https://project.inria.fr/plasma-lab

87 Proofs and Verification - Software and Platforms - Exploratory Action ESTASYS

Since its initial release in 2013, QUAIL’s algorithm has been improved employing abstract trace exploration
and statistical estimation techniques, making it thousands of times faster than the initial version and outper-
forming other comparable analysis tools on most use cases.

5.3. PyEcdar
Participants: Axel Legay [Coordinator], Louis-Marie Traonouez [Coordinator].

One of the main difficulties with Systems of Systems is to describe the connection and interactions between the
components. We propose PYECDAR as a solution to this problem. PYECDAR (https://project.inria.fr/pyecdar/)
is a free software that analyses timed games and timed specifications. The goal of the tool is to allow a fast
prototyping of new analysis techniques. It currently allows to solve timed games based on timed automata
models. These can be extended with adaptive features to represent dynamicity and to model software product
lines.

The tool has been originally developed to analyze the robustness of timed specifications, in extension
of the tool ECDAR (http://people.cs.aau.dk/~adavid/ecdar/). As ECDAR, it allows to compose components
specifications based on Timed I/O Automata (TIOA), and it implements timed game algorithms for checking
consistency and compatibility. Additionally, it features original methods for checking the robustness of these
specifications.

The tool has been later extended to analyse adaptive systems. It therefore implements original algorithms for
checking featured timed games against requirements expressed in the timed AdaCTL logic.

The tool is written in Python with around 3’000 lines of code. It uses a Python console as user interface, from
which it can load TIOA components from XML files written in the UPPAAL format (http://www.uppaal.org/),
and design complex system by combining the components using a simple algebra. Then, it can analyze these
systems, transform them and save them in a new XML file.

https://project.inria.fr/pyecdar/
http://people.cs.aau.dk/~adavid/ecdar/
http://www.uppaal.org/

88 Proofs and Verification - Software and Platforms - Project-Team GALLIUM

GALLIUM Project-Team

5. New Software and Platforms

5.1. OCaml
Participants: Damien Doligez [correspondant], Alain Frisch [LexiFi], Jacques Garrigue [Nagoya University],
Fabrice Le Fessant, Xavier Leroy, Luc Maranget, Gabriel Scherer, Mark Shinwell [Jane Street], Leo White
[OCaml Labs, Cambridge University], Jeremy Yallop [OCaml Labs, Cambridge University].

OCaml, formerly known as Objective Caml, is our flagship implementation of the Caml language. From a
language standpoint, it extends the core Caml language with a fully-fledged object and class layer, as well as
a powerful module system, all joined together by a sound, polymorphic type system featuring type inference.
The OCaml system is an industrial-strength implementation of this language, featuring a high-performance
native-code compiler for several processor architectures (IA32, AMD64, PowerPC, ARM, ARM64) as well
as a bytecode compiler and interactive loop for quick development and portability. The OCaml distribution
includes a standard library and a number of programming tools: replay debugger, lexer and parser generators,
documentation generator, and compilation manager.

Web site: http://caml.inria.fr/

5.2. CompCert C
Participants: Xavier Leroy [correspondant], Sandrine Blazy [EPI Celtique], Jacques-Henri Jourdan.

The CompCert C verified compiler is a compiler for a large subset of the C programming language that
generates code for the PowerPC, ARM and x86 processors. The distinguishing feature of Compcert is that it
has been formally verified using the Coq proof assistant: the generated assembly code is formally guaranteed
to behave as prescribed by the semantics of the source C code. The subset of C supported is quite large,
including all C types except long double, all C operators, almost all control structures (the only exception
is unstructured switch), and the full power of functions (including function pointers and recursive functions
but not variadic functions). The generated PowerPC code runs 2–3 times faster than that generated by GCC
without optimizations, and only 7% (resp. 12%) slower than GCC at optimization level 1 (resp. 2).

Web site: http://compcert.inria.fr/

5.3. The diy tool suite
Participants: Luc Maranget [correspondant], Jade Alglave [Microsoft Research, Cambridge], Jacques-Pascal
Deplaix, Susmit Sarkar [University of St Andrews], Peter Sewell [University of Cambridge].

The diy suite provides a set of tools for testing shared memory models: the litmus tool for running tests
on hardware, various generators for producing tests from concise specifications, and herd, a memory model
simulator. Tests are small programs written in x86, Power or ARM assembler that can thus be generated from
concise specification, run on hardware, or simulated on top of memory models. Test results can be handled
and compared using additional tools.

Web site: http://diy.inria.fr/

5.4. Zenon
Participant: Damien Doligez.

Zenon is an automatic theorem prover based on the tableaux method. Given a first-order statement as input,
it outputs a fully formal proof in the form of a Coq proof script. It has special rules for efficient handling
of equality and arbitrary transitive relations. Although still in the prototype stage, it already gives satisfying
results on standard automatic-proving benchmarks.

http://www.inria.fr/equipes/gallium
http://caml.inria.fr/
http://compcert.inria.fr/
http://diy.inria.fr/

89 Proofs and Verification - Software and Platforms - Project-Team GALLIUM

Zenon is designed to be easy to interface with front-end tools (for example integration in an interactive proof
assistant), and also to be easily retargeted to output scripts for different frameworks (for example, Isabelle and
Dedukti).

Web site: http://zenon-prover.org/

http://zenon-prover.org/

90 Proofs and Verification - Software and Platforms - Project-Team MARELLE

MARELLE Project-Team

5. New Software and Platforms

5.1. Coq
Participants: Enrico Tassi, Benjamin Grégoire.

Coq is developed mainly in the project-team π.r2 with contributions from many other individuals. Enrico Tassi
and Benjamin Grégoire are regular contributors. In particular for 2014, Benjamin Grégoire provided advice on
connecting virtual machine execution with other aspects of the Coq system and Enrico Tassi worked on a new
interactive mode that supports a document view of the proof script, with faster user experience. Enrico Tassi
also worked on improvements for the use of Coq on Windows.

5.2. Easycrypt
Participants: Gilles Barthe [IMDEA Software Institute], François Dupressoir [IMDEA Software Institute],
Benjamin Grégoire [correspondant], César Kunz [IMDEA Software Institute], Benedikt Schmid [IMDEA
Software Institute], Pierre-Yves Strub [IMDEA Software Institute].

EasyCrypt is a toolset for reasoning about relational properties of probabilistic computations with adversarial
code. Its main application is the construction and verification of game-based cryptographic proofs. EasyCrypt
can also be used for reasoning about differential privacy.

5.3. zoocrypt
Participants: Gilles Barthe [IMDEA Software Institute], François Dupressoir [IMDEA Software Institute],
Benjamin Grégoire [correspondant], César Kunz [IMDEA Software Institute], Benedikt Schmid [IMDEA
Software Institute], Pierre-Yves Strub [IMDEA Software Institute].

ZooCrypt (see http://www.easycrypt.info/zoocrypt/) is an automated tool for analyzing the security of
padding-based public-key encryption schemes (i.e. schemes built from trapdoor permutations and hash func-
tions). This years we extended the tool to be able to deal with schemes based on cyclic groups and bilinear
maps.

5.4. CoqApprox
Participants: Nicolas Brisebarre [CNRS], Mioara Joldes, Érik Martin-Dorel, Micaela Mayero [Iut de Villeta-
neuse], Jean-Michel Muller, Ioana Paşca [Iut de Nimes], Laurence Rideau, Laurent Théry [correspondant].

We develop a formalization of rigorous polynomial approximation using Taylor models inside the Coq proof
assistant, with a special focus on genericity and efficiency for the computations. In 2014, this library has been
included in CoqInterval, distributed by the Toccata research team.

5.5. Ssreflect and Mathematical Components
Participants: Yves Bertot, Cyril Cohen, Laurence Rideau, Enrico Tassi [correspondant], Laurent Théry.

Most of the formal proofs developed in our team are integrated in the Ssreflect extension of the Coq system
and the Mathematical Components library. Work this year has concentrated on providing new versions of
ssreflect that are compatible with the evolutions of Coq (to prepare for the upcoming release) and integrating
our results in the description of real numbers. We also laid the foundations for a book explaining the structure
and principles at work in the Math-components library.

http://www.inria.fr/equipes/marelle
http://www.easycrypt.info/zoocrypt/

91 Proofs and Verification - Software and Platforms - Project-Team MEXICO

MEXICO Project-Team

5. New Software and Platforms

5.1. Software
5.1.1. Software
5.1.1.1. Mole/Cunf: unfolders for Petri Nets

Participant: Stefan Schwoon [correspondant].

Mole computes, given a safe Petri net, a finite prefix of its unfolding. It is designed to be compatible with
other tools, such as PEP and the Model-Checking Kit, which are using the resulting unfolding for reachability
checking and other analyses. The tool Mole arose out of earlier work on Petri nets. Details on Mole can be
found at http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/. Mole served as an experimentation platform for
several of our papers in recent years, most recently [33].

In the context of MExICo, we have created a new tool called Cunf [82], which is able to handle contextual
nets, i.e. Petri nets with read arcs [80].While in principle every contextual net can be transformed into an
equivalent Petri net and then unfolded using Mole, Cunf can take advantage of their special features to do the
job faster and produce a smaller unfolding. Cunf has recently been extended with a verification component
that takes advantage of these features; More details can be found at http://www.lsv.ens-cachan.fr/~rodrigue/
tools/cunf/. Moreover, Cunf has been integrated into the CosyVerif environment (see section 5.2.1). Cunf has
also participated in the Model Checking Contest held at the Petri Nets conference in 2013 and 2014.

5.1.1.2. TOURS: Testing On Unfolded Reactive Systems
Participant: Hernán Ponce de León [correspondant].

The MOLE - based testing tool TOURS [42] has been developed in 2014 with the help of intern Konstantinos
Athanasiou, jointly supervised by Hernán Ponce de León and Stefan Schwoon of the MExICo team at LSV);
it has served successfully to experiment the partial-order based testing methodology on a scalable benchmark
example (elevator control).

5.1.1.3. COSMOS : a Statistical Model Checker for the Hybrid Automata Stochastic Logic
Participant: Benoît Barbot [correspondant].

COSMOS is a statistical model checker for the Hybrid Automata Stochastic Logic (HASL). HASL employs
Linear Hybrid Automata (LHA), a generalization of Deterministic Timed Automata (DTA), to describe
accepting execution paths of a Discrete Event Stochastic Process (DESP), a class of stochastic models which
includes, but is not limited to, Markov chains. As a result HASL verification turns out to be a unifying
framework where sophisticated temporal reasoning is naturally blended with elaborate reward-based analysis.
COSMOS takes as input a DESP (described in terms of a Generalized Stochastic Petri Net), an LHA and
an expression Z representing the quantity to be estimated. It returns a confidence interval estimation of Z;
recently, it has been equipped with functionalities for rare event analysis. COSMOS is written in C++ and is
freely available to the research community.

Details on COSMOS can be found at http://www.lsv.ens-cachan.fr/~barbot/cosmos/

5.2. Platforms
5.2.1. Platform CosyVerif

CosyVerif (http://www.cosyverif.org/) is a platform dedicated to the formal specification and verification of
dynamic systems. It allows to specify systems using several formalisms (such as automata and Petri nets),
and to run verification tools on these models. CosyVerif integrates several tools, that are mainly developed by
researchers of the MeFoSyLoMa group (a Parisian verification group, http://www.mefosyloma.fr/).

http://www.inria.fr/equipes/mexico
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2014-bid38
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2014-bid40
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2014-bid41
http://www.lsv.ens-cachan.fr/~rodrigue/tools/cunf/
http://www.lsv.ens-cachan.fr/~rodrigue/tools/cunf/
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/uid60.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2014-bid42
http://www.lsv.ens-cachan.fr/~barbot/cosmos/
http://www.cosyverif.org/
http://www.mefosyloma.fr/

92 Proofs and Verification - Software and Platforms - Project-Team MEXICO

The platform is client/server based. The modeler creates models on the client side, either programmatically, or
in a dedicated graphical editor. Tools are then executed on the server side.

CosyVerif is available as installable bundles, that embed the client, the server, and also the tools. It is also
usable through a public server hosted within the laboratory.

The platform offers a common language for the description of the models, in order to create interoperability
between clients and tools. It also provides a way to define easily new formalisms within the platform, and to
manipulate models that are instances of these formalisms. To the best of our knowledge, no other verification
framework presents such a feature.

CosyVerif targets three different kinds of users:

• Students use this platform in two M2 courses in modeling and verification courses. Citer les deux
cours

• Tool developers, that are usually researchers, use the platform to distribute their tools, and have
a demonstration version easily available. They also use CosyVerif for tutorials in conferences or
workshops Citer Petri nets 2014.

• Industrial case studies have used the platform since its creation to prove properties on systems in
various fields, such as: transportation systems, scheduling, hardware, robotics, databases, banking
systems, home automation...

The platform is managed by a steering committee consisting of researchers and engineers of three laboratories:
LIP6, LIPN, LSV. This committee decides strategic orientations as well as technical choices.

This year, we have fully redesigned the platform, with two goals in mind: first, to use technologies that target
better our users; and second, to provide more functionalities.

• We switched to lightweight web technologies, in order to ease the deployment and use of CosyVerif.
For the users, it means that they can access a graphical editor within their web browser. They can
also access the platform through an API, usable with any HTTP client.

• We improved the language for formalisms and models in order to allow the modular definition of new
formalisms. We switched from a class/instance paradigm to a prototype one, that allows to represent
complex models in a both efficient and usable way.

• We extended the server to handle not only executions. It is now primarily a repository of formalismes,
models, services and executions, that belong to users or project. It also handles the tools executions,
and the collaborative edition of models.

• We started working on a system to help building packages for the various components of the platform
(client, server, tools, ...), to ease its installation. It is used to create the bundles of CosyVerif, that are
available to download. Another team (Secsi) of the LSV laboratory is interested in this system, and
will support its development in 2015.

All the developed software are open source and free software tools.

Two engineers have worked this year on CosyVerif:

• Francis Hulin-Hubard, part-time (CNRS engineer);

• Alban Linard, full-time (Inria engineer).

CosyVerif has been used for teaching in two master programs (Universities Paris 6 and Paris 13/Villetaneuse)
It has been used in a tutorial in the Petri Nets 2014 conference.

We are currently in the process of giving a better visibility to the project, by transforming it into a consortium.
Our goal is to identify industrial fields where the tools of the platform can be applied successfully, by proposing
services to the industry. The strength of the platform relies on the variety of techniques offered by the tools,
that adapt to a wide range of problems. In order to increase the number of techniques, we have been joined by
another partner from Geneva.

93 Proofs and Verification - Software and Platforms - Project-Team PARSIFAL

PARSIFAL Project-Team

5. New Software and Platforms

5.1. Abella
Participants: Kaustuv Chaudhuri [correspondant], Matteo Cimini [Indiana University], Dale Miller, Olivier
Savary-Bélanger [Princeton University], Mary Southern [University of Minnesota], Yuting Wang [University
of Minnesota].

Main web-site: http://abella-prover.org.

Abella is an interactive theorem prover for reasoning about data structures with binding constructs using the
λ-tree approach to syntax. It consists of a sophisticated reasoning logic that supports induction, co-induction,
and generic reasoning. Abella also supports the two-level logic approach by means of a specification logic
based on the logic programming language λProlog.

In 2014, the following additions were made to the system.

• A new translation layer was added to Abella’s specification layer, which was used to build an
interface to the LF dependent type theory [61]. This extension was documented in the following
paper: [27]. A number of examples of the use of this new specification language are available at the
following URL: http://abella-prover.org/lf

• Two minor releases were made, versions 2.0.2 and 2.0.3, that fixed a number of bugs and added
several convenience features. Consult the change log for more details.

Accompanying these additions were the following publications.

• A new comprehensive tutorial for the Abella system has been accept to appear in the Journal of
Formalized Reasoning [31].

• The new tactical plugin architecture and the dynamic contexts plugin of Abella in the following
paper: [26].

• The use of co-induction and higher-order relations to formalize the meta-theory of various
bisimulation-up-to techniques for common process calculi: [19].

5.2. Bedwyr
Participants: Quentin Heath, Dale Miller [correspondant].

Main web-site: http://slimmer.gforge.inria.fr/bedwyr/.

Quentin Heath has continued to maintain and enhance this model checking system. In particular, the tabling
mechanism has been extended and formalized to a greater extent. The tabling mechanism is now able to use
Horn clause lemmas in order to increase the power of the table. For example, given this enhancement it is
possible to tell Bedwyr that if a given board position (in some game) has a winning strategy then symmetric
versions of that board also have winning strategies. Thus, when a given board position is recognized as
winning, then table will understand that all symmetric versions of that board are winning.

Significant energies have also gone into trying to understand how cyclic proofs (recognized using the tabling
mechanism) can be turned into certifiable proof evidence. Good results are currently developed for treating
bisimulation and non-reachability: in these cases, cyclic proofs are used to supply invariants for induction and
co-induction.

5.3. Psyche
Participants: Stéphane Graham-Lengrand [correspondant], Assia Mahboubi, Jean-Marc Notin.

http://www.inria.fr/equipes/parsifal
http://abella-prover.org
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2014-bid36
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2014-bid37
http://abella-prover.org/lf
http://abella-prover.org/changelog.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2014-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2014-bid38
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2014-bid39
http://slimmer.gforge.inria.fr/bedwyr/

94 Proofs and Verification - Software and Platforms - Project-Team PARSIFAL

Psyche (Proof-Search factorY for Collaborative HEuristics) is a modular proof-search engine whose first
version, 1.0, was released in 2012:
http://www.lix.polytechnique.fr/~lengrand/Psyche/

The engine implements the ideas developed in the section “Trustworthy implementations of theorem proving
techniques” above, and was the object of the system description [56].

Psyche’s proof-search mechanism is simply the incremental construction of proof-trees in the polarized and
focused sequent calculus. Its architecture organizes an interaction between a trusted universal kernel and smart
plugins that are meant be efficient at solving certain kinds of problems:

The kernel contains the mechanisms for exploring the proof-search space in a sound and complete way, taking
into account branching and backtracking. The output of Psyche comes from the (trusted) kernel and is therefore
correct by construction. The plugins then drive the kernel by specifying how the branches of the search space
should be explored, depending on the kind of problem that is being treated. The quality of the plugin is how
fast it drives the kernel towards the final answer.

In 2014, major developments were achieved in Psyche, whose version 2.0 was released on 20th September
2014. It is now equipped with the machinery to handle quantifiers and quantifier-handling techniques.
Concretely, it uses meta-variables to delay the instantiation of existential variables, and constraints on
meta-variables are propagated through the various branches of the search-space, in a way that allows local
backtracking. The kernel, of about 800 l.o.c., is purely functional.

http://www.lix.polytechnique.fr/~lengrand/Psyche/
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2014-bid40

95 Proofs and Verification - Software and Platforms - Project-Team PI.R2

PI.R2 Project-Team

4. New Software and Platforms

4.1. COQ (http://coq.inria.fr)
Participants: Bruno Barras [Inria Saclay], Yves Bertot [Marelle team, Sophia], Pierre Boutillier, Xavier Clerc
[SED team], Pierre Courtieu [CNAM], Maxime Dénès [Gallium team, Rocquencourt], Julien Forest [CNAM],
Stéphane Glondu [CARAMEL team, Nancy Grand Est], Benjamin Grégoire [Marelle team, Sophia], Vincent
Gross [Consultant at NBS Systems], Hugo Herbelin [correspondant], Pierre Letouzey, Assia Mahboubi
[SpecFun team, Saclay], Julien Narboux [University of Strasbourg], Jean-Marc Notin [Ecole Polytechnique],
Christine Paulin [Toccata team, Saclay], Pierre-Marie Pédrot, Loïc Pottier [Marelle team, Sophia], Matthias
Puech, Yann Régis-Gianas, François Ripault, Matthieu Sozeau, Arnaud Spiwack [Mines Paritech], Pierre-Yves
Strub [IMDEA, Madrid], Enrico Tassi [Marelle team, Sophia], Benjamin Werner [Ecole Polytechnique].

4.1.1. Version 8.5
Version 8.5 was expected to be released after the summer of 2014, but this got delayed until the Coq
Programming Language workshop mid-January 2015.

Coq 8.5 is a major release of the Coq proof assistant, including 5 major new features:

• Parallel development and compilation, inside files and across files, by Enrico Tassi (Inria SpecFun,
then Marelle), a result of the Paral-ITP ANR project.

• Availability of all the features of Arnaud Spiwack’s new proof engine, with more expressive, clearer
semantics, multigoal tactics, deep backtracking,

• A compilation scheme from Coq to OCaml to native code by Maxime Dénès and Benjamin Grégoire
(Inria Marelle, then University of Pennsylvania, then Inria Gallium), considerably improving on the
previous virtual machine implementation by B. Grégoire.

• A Universe Polymorphic extension by Matthieu Sozeau that allows universe-generic developments,
as required by the Homotopy Type Theory library for example,

• Primitive projections for records by Matthieu Sozeau, with significant efficiency improvements.

Coq 8.5 also includes many improvements at different levels: the primitive tactics, the tactic language, the
specification language, the tools associated to Coq, etc. For a full list of changes, the reader is invited to look
at http://coq.inria.fr or at the files CHANGES of the Coq archive.

4.1.2. Evaluation algorithms
The new unfolding algorithm for global constants that was proposed by Pierre Boutillier is ready for use in
Coq 8.5.

4.1.3. Internal representation of projections
A new internal representation of record projections has been implemented in the 8.5 release by Matthieu
Sozeau. During the stabilisation of this feature, we added a backwards compatibility layer that allows users to
switch seamlessly to the new representation, keeping the same user-level interface for primitive and non-
primitive projections (the record types and values being unchanged). This new representation adds eta-
conversion of records defined with primitive projections to the definitional equality of Coq, enlarging the
set of conversion problems that can be automatically handled by the system.

http://www.inria.fr/equipes/pi.r2
http://coq.inria.fr

96 Proofs and Verification - Software and Platforms - Project-Team PI.R2

4.1.4. Universes
The new universe polymorphism system by Matthieu Sozeau is part of the 8.5 release. The implementation
has been stabilised, benchmarked and tested heavily in the last year, with much input from the Homotopy Type
Theory development team. In [27], Matthieu Sozeau and Nicolas Tabareau presented the system formally. It
has since been extended with user-friendly features like named universes and commands to display the status
of universe constraints. With the help from Maxime Dénès (Gallium Team), the native compilation system has
also been extended to fully support universe polymorphism.

4.1.5. Internal architecture of the Coq software
Pierre Letouzey, Pierre-Marie Pédrot and Xavier Clerc have continued to work at improving the quality of the
OCaml code which composes Coq :

• Many modules have been revised, in particular with cleaner naming conventions.

• Almost all uses of the generic OCaml comparison have been chased and transformed into specific
code, thereby avoiding many potential bugs with advanced structures, while improving performances
at the same time.

• The codes handling OCaml exceptions have been reworked to avoid undue interceptions of critical
exceptions.

• Issues involving exceptions are now quite simpler to debug, thanks to easy-to-obtain backtraces.

4.1.6. Efficiency
Pierre-Marie Pédrot has been working on the overall optimisation of Coq, by tracking hotspots in the code.
Coq trunk is currently much more efficient than its v8.4 counterpart, and is about as quick as v8.3, while
having been expanded with a lot of additional features.

4.1.7. Documentation generation
Yann Régis-Gianas continued the development of a new version of coqdoc, the documentation generator of
Coq. This new implementation is based on the interaction protocol with the Coq system and should be more
robust with respect to the evolution of Coq.

4.1.8. Maintenance and coordination
The maintenance and coordination of Coq has been jointly done by Hugo Herbelin, Pierre Boutillier, Pierre
Letouzey, Matthieu Sozeau, Pierre-Marie Pédrot, in relation with the other participants to the development.

A Coq working group is organised every two months (5 times a year). From the end of October, a Coq lunch
holds weekly welcoming any person interested in the development of Coq in general. Discussions about the
development happen, in particular, on coq-dev@inria.fr and http://coq.inria.fr/bugs.

4.1.9. The Coq extraction
In 2014, Pierre Letouzey built an extension of the Coq extraction that targets directly one of the internal layers
of the OCaml compiler. This way, it is possible to avoid the generation of OCaml concrete syntax by the
extraction, followed by a parsing phase when the OCaml compiler is launched on the extracted code. Our
extension is able to shortcut these two phases. The interest is twofold. First, it seriously reduces the amount
of code that should be considered as critical during a program development via extraction. Secondly, with
this approach we are able to directly compile and run certain extracted examples, and internalise the result
back into Coq, leading to a new promising command Extraction Compute. This extension is currently quite
experimental.

4.1.10. Parametricity for the Coq proof assistant
During his stay in the πr2 team, Marc Lasson developed a plugin for parametricity theory in the Coq proof
assistant.

http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2014-bid22
http://coq.inria.fr/bugs

97 Proofs and Verification - Software and Platforms - Project-Team PI.R2

Parametricity theory was originally introduced by John Reynolds in his seminal paper about polymorphic λ-
calculus (also known as System F). It is used to formalise the opacity of abstract datatypes in programming
languages that provide idioms to handle types generically. Polymorphic functions cannot inspect their
arguments with an abstract type, and have to use them uniformly. The main tool of parametricity theory is
that of logical relations, which are relations between programs of the same type that are defined by induction
on the structure of types.

Marc Lasson’s work consisted in developing a parametricity theory for the terms of Coq. The result of this
work is a new plugin for the proof assistant that computes logical relations as well as the proof witnesses that
programs satisfy these logical relations. It is available on github http://github.com/mlasson/paramcoq.

The purpose of this plugin is to allow to use parametric arguments in Coq proofs, the main direct application
is the certification of parametric programs. Thanks to powerful expressiveness of the proof assistant, this
plugin will allow future users to use parametric arguments to a larger scale. Although parametricity theory
was originally developed for studying programs, the fact that we can use it in a proof assistant enables new
uses in other contexts, such as the formalisation of mathematics and the meta-theory of proof assistants).

In [24], Marc Lasson showed that parametricity may also be useful to derive properties about the groupoidal
interpretation of Type Theory. It was known that the equality types (also known as identity types) of type theory
carry the algebraic structure of ω-groupoids (which is a higher-dimensional version of groups). Parametricity
theory allows us to prove that the terms witnessing these algebraic laws are canonical, in the sense that there
is only one way to implement them (up to higher-order equalities).

4.1.11. Formalisation in Coq
Hugo Herbelin’s type-theoretic construction of semi-simplicial sets [9] has been formalised in Coq.

Matthieu Sozeau and Nicolas Tabareau formalised a setoid model of type theory in Coq http://github.com/
mattam82/groupoid. They are working on extending this work to the groupoid model using the latest tools
available in Coq 8.5.

Frédéric Loulergue collaborates with Frédéric Dabrowski and Thomas Pinsard (Univ. Orléans) to verify in
Coq the compilation pass [21] for a language with nested atomic sections and thread escape to a language with
only threads and locks, building on [45].

4.1.12. Systematic development of programs for parallel and cloud computing
During his stay in the πr2 team, Frédéric Loulergue continues to collaborate with Kento Emoto (Kyushu
Institute of Technology), Zhenjiang Hu (National Institute for Informatics, Japan), Julien Tesson (Univ. Paris-
Est Créteil), Wadoud Bousdira (Univ. Orléans), Kiminori Matsuzaki (Kochi University of Technology) and
Vitor Rodrigues (Rochester Institute of Technology) to develop the SyDPaCC framework (http://traclifo.univ-
orleans.fr/SyDPaCC).

The goal of this framework is to ease the systematic development of correct parallel programs, in particular
large scale data-intensive applications. In Coq, users write inefficient (sequential) functional programs and
through (partly automated) program transformations based on the theory of list homomorphisms [32], bulk
synchronous parallel homomorphisms [59] and semi-ring homomorphisms [48], an efficient sequential version
is obtained. This version can then be automatically parallelised thanks to type class instance resolution and
instances relating specific functions to their parallel counterparts. The parallel versions of the programs are
written with a Coq axiomatisation of Bulk Synchronous Parallel ML (BSML) primitives. To obtain the final
code, these Coq programs are extracted towards OCaml with calls to a parallel implementation of the BSML
library.

As the SyDPaCC framework currently mixes certified code extracted from Coq and unverified code, Frédéric
Loulergue and Pierre Letouzey are working on an extended extraction that generates, when possible, OCaml
asserts for preconditions on function arguments. The next version of the generate-test-aggregate library of
SyDPaCC will use Marc Lasson’s plugin for parametricity to prove a “theorem for free”: currently only
instantiations of this theorem for each provided generator are proved.

http://github.com/mlasson/paramcoq
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2014-bid23
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2014-bid24
http://github.com/mattam82/groupoid
http://github.com/mattam82/groupoid
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2014-bid25
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2014-bid26
http://traclifo.univ-orleans.fr/SyDPaCC
http://traclifo.univ-orleans.fr/SyDPaCC
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2014-bid27
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2014-bid28
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2014-bid29

98 Proofs and Verification - Software and Platforms - Project-Team PI.R2

4.1.13. Proofs of algorithms on graphs
Jean-Jacques Lévy’s current research is to review basic algorithms and make their formal proofs of correctness
in Why3 + Coq. Filliâtre and Pottier already started this research, but we plan to focus on graph algorithms,
with concerns on the feasability of these formal proofs and on the design of good libraries on top of Coq
or Ssreflect. The goal is not to disprove these algorithms which are most probably correct, but to develop a
theory of tools for proving algorithms with proof assistants and provers. Standard techniques use assertions
in Hoare logic or TLA or any other logic, which are written on paper. With the recent development of good
computer proof-assistants and the fantastic progress of SMT provers, the goal of providing algorithms with
their correctness proofs checked by computer seems possible. The plan of this research is to use Why3,
Coq, Ssreflect on standard computing systems, and also to motivate a few students to work on this project.
The challenge would be to compete with Filliâtre, Pottier and Monate’s group at CEA (France), or Fournet,
Swamy and Pierce at Microsoft Research or Univ. of Pennsylvania. We want to demonstrate that the use of
SMT provers can be well coupled with the one of interactive provers as already done in Why3 and in F*
with refined types in probable future. The expected outcome would be to extend to larger programs and real
software. But this seems quite ambitious at present time, since large scale needs more technology as showed
by Gonthier for his long proofs of mathematical theorems, and since the world of programming is much less
structured than the world of mathematics.

We completed proofs of the following major algorithms as exposed in Sedgewick’s book: sorting, searching,
depth-first search in graphs. This work is performed in collaboration with Chen Ran at Iscas (Institute of
Software, Chinese Academy of Sciences). Proofs can be found at http://jeanjacqueslevy.net/why3 (see also
[10]).

4.2. Other software developments
In collaboration with François Pottier (Inria Gallium), Yann Régis-Gianas maintained Menhir, an LR parser
generator for OCaml.

Yann Régis-Gianas has been developing the “Hacking Dojo”, with the help of Alexandre Ly (master student
of Paris Diderot). a web platform to automatically grade programming exercises. The platform is now used in
several courses of the University Paris Diderot.

In collaboration with Grégoire Duchêne (master student at Paris Diderot), Yann Régis-Gianas developed
Tamasheq, a fully-customisable interpreter for the OCaml programming language. Users of this interpreter can
write plugins to instrument the interpretation of an OCaml program with visualisation, interactive debugging
or logging. A paper is in preparation.

Yves Guiraud has updated the Catex tool for Latex, whose purpose is to automate the production of string
diagrams from algebraic expressions (http://www.pps.univ-paris-diderot.fr/~guiraud/catex/catex.zip).

Yves Guiraud has developed the Python library Cox for the computation of coherent presentations of Artin
monoids, after [18] (http://www.pps.univ-paris-diderot.fr/~guiraud/cox/cox.zip).

Yves Guiraud collaborates with Samuel Mimram (LIX) to develop the prototype Rewr that implements the
homotopical completion-reduction procedure of [6] (http://www.pps.univ-paris-diderot.fr/~smimram/rewr).

Eric Finster has developed a new proof assistant, called Orchard, which aims to pursue the emerging con-
nections between type theory and higher category theory by providing an environment in which to explicitly
manipulate higher categorical diagrams using a notation based on a collection of shapes called opetopes.
Opetopes have strong connections to concepts from computer science: they have a natural interpretation as a
series of canonical indexed inductive types, and thus can be implemented and reasoned about using standard
techniques from functional programming. The goal of the Orchard project is to forge links between the ho-
motopical ideas of homotopy type theory, and the higher categorical ideas coming from higher-dimensional
rewriting theory by providing a common language in which to reason about both. A preliminary implementa-
tion is available at https://github.com/ericfinster/orchard.

http://jeanjacqueslevy.net/why3
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2014-bid30
http://www.pps.univ-paris-diderot.fr/~guiraud/catex/catex.zip
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2014-bid31
http://www.pps.univ-paris-diderot.fr/~guiraud/cox/cox.zip
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2014-bid32
http://www.pps.univ-paris-diderot.fr/~smimram/rewr
https://github.com/ericfinster/orchard

99 Proofs and Verification - Software and Platforms - Project-Team SUMO

SUMO Project-Team

5. New Software and Platforms

5.1. Sigali
Participants: Hervé Marchand, Nicolas Berthier.

Sigali is a model-checking tool that operates on ILTS (Implicit Labeled Transition Systems, an equational
representation of an automaton), an intermediate model for discrete event systems. It offers functionalities for
verification of reactive systems and discrete controller synthesis. It is developed jointly by the TEA and SUMO
teams. The techniques used consist in manipulating the system of equations instead of the set of solutions,
which avoids the enumeration of the state space. Each set of states is uniquely characterized by a predicate and
the operations on sets can be equivalently performed on the associated predicates. Therefore, a wide spectrum
of properties, such as liveness, invariance, reachability and attractivity, can be checked. Algorithms for the
computation of predicates on states are also available. Sigali is connected with the Polychrony environment
(Tea project-team) as well as the Matou environment (VERIMAG), thus allowing the modeling of reactive
systems by means of Signal Specification or Mode Automata and the visualization of the synthesized controller
by an interactive simulation of the controlled system. Sigali is registered at APP under the identification
number IDDN.FR.001.370006.S.P.1999.000.10600.

Sigali is also integrated as part of the compiler of the language BZR (web site).

We are currently developing a new version of Sigali that will be able to handle numerical variables.

5.2. Tipex
Participants: Thierry Jéron, Hervé Marchand, Srinivas Pinisetty.

We are implementing a prototype tool named Tipex (TImed Properties Enforcement during eXecution) for the
enforcement of timed properties, in collaboration with Ylies Falcone (LIG, Grenoble). Tipex is based on the
theory and algorithms that we develop for the synthesis of enforcement monitors for properties specified by
timed automata (TA). The prototype is developped in python, and uses the PyUPPAAL and DBMpyuppaal
libraries of the UPPAAL tool. It is currently restricted to safety and co-safety timed property. The property
provided as input to the tool is a TA that can be specified using the UPPAAL tool, and is stored in XML format.
The tool synthesizes an enforcement monitor from this TA, which can then be used to enforce a sequence of
timed events to satisfy the property. Experiments have been conducted on a set of case studies. This allowed
to validate the architecture and feasibility of enforcement monitoring in a timed setting and to have a first
assessment of performance (and to what extent the overhead induced by monitoring is negligible).

5.3. DAXML
Participant: Loïc Hélouët.

DAXML is an implementation of Distributed Active Documents, a formalism for data centric design of Web
Services proposed by Serge Abiteboul. This implementation is based on a REST framework, and can run on a
network of machines connected to internet and equipped with JAVA. This implementation was realized during
the post doc of Benoit Masson in 2011. A demo of the software is available at this web page. This year, the
source code of DAXML has been submitted at the APP, and a distribution with free ad-hoc licence will follow
in 2015.

http://www.inria.fr/equipes/sumo
http://bzr.inria.fr/
http://people.cs.aau.dk/~adavid/python/
http://people.cs.aau.dk/~adavid/python/
http://www.uppaal.org/
http://www.irisa.fr/sumo/Software/DAXML/

100 Proofs and Verification - Software and Platforms - Team TEMPO

TEMPO Team

5. New Software and Platforms

5.1. SimSoC
We have continued to work on the SimSoC virtual prototyping framework distributed by Inria. Because of
issues in the design of the Power Architecture simulator, we did a redesign of the Power simulator and a new
implementation, so that we can simulate in the future both the Power Classic and Power Extended architectures
in both 32 bits or 64 bits. We also contributed new extensions as described below.

http://www.inria.fr/equipes/tempo

101 Proofs and Verification - Software and Platforms - Project-Team TOCCATA

TOCCATA Project-Team

5. New Software and Platforms

5.1. The Why3 system
Participants: Jean-Christophe Filliâtre [contact], Claude Marché, Guillaume Melquiond, Andrei Paskevich.

Criteria for Software Self-Assessment: A-3-up, SO-4, SM-4, EM-4, SDL-5, OC-4.0

Why3 is the next generation of Why. Why3 clearly separates the purely logical specification part from
generation of verification conditions for programs. It features a rich library of proof task transformations
that can be chained to produce a suitable input for a large set of theorem provers, including SMT solvers,
TPTP provers, as well as interactive proof assistants.

It is distributed as open source, under GPL license, at http://why3.lri.fr/. It is also distributed as part of major
Linux distributions and in the OPAM packaging system http://opam.ocaml.org/packages/why3/why3.0.85/.

Why3 is used as back-end of our own tools Krakatoa and Jessie, but also as back-end of the GNATprove tool
(Adacore company), and of the WP plugin of Frama-C. Why3 has been used to develop and prove a significant
part of the programs of our team gallery http://proval.lri.fr/gallery/index.en.html, and used for teaching (e.g.,
at the Master Parisien de Recherche en Informatique).

Why3 is used by other academic research groups, e.g. within the CertiCrypt/EasyCrypt project (http://
easycrypt.gforge.inria.fr/) for certifying cryptographic programs. The Why3 web site http://why3.lri.fr lists
a few other works done by external researchers and relying on the use of Why3.

Two versions were released in 2014: 0.83 released in March and 0.84 in September, plus a few days later a
bugfix version 0.85.

5.2. The Alt-Ergo theorem prover
Participants: Sylvain Conchon [contact], Évelyne Contejean, Alain Mebsout, Mohamed Iguernelala.

Criteria for Software Self-Assessment: A-3-up, SO-4, SM-4-up, EM-4, SDL-5, OC-4.

Alt-Ergo is an automated proof engine, dedicated to program verification, whose development started in 2006.
It is fully integrated in the program verification tool chain developed in our team. It solves goals that are
directly written ina Why’s annotation language; this means that Alt-Ergo fully supports first order polymorphic
logic with quantifiers. Alt-Ergo also supports the standard [116] defined by the SMT-lib initiative.

It is currently used in our team to prove correctness of C and Java programs as part of the Why platform and the
new Why3 system. It is used as back-end prover in the environments Frama-C and CAVEAT for static analysis
of C developed at CEA. In this context, Alt-Ergo has been qualified by Airbus and is integrated in the next
generation of Airbus development process. Alt-Ergo is usable as a back-end prover in the SPARK verifier for
ADA programs, since Oct 2010, and is also the main back-end prover of the new SPARK2014.

Alt-Ergo is integrated in several other tools and platforms: the Bware platform for discharging VCs generated
by Atelier B, the EasyCrypt environment for verifying cryptographic protocols, the Pangolin programming
language http://code.google.com/p/pangolin-programming-language/, etc.

Last but not least, Alt-Ergo is the solver used by the Cubicle model checker described below.

0self-evaluation following the guidelines (http://www.inria.fr/content/download/11783/409665/version/4/file/SoftwareCriteria-V2-CE.
pdf) of the Software Working Group of Inria Evaluation Committee (http://www.inria.fr/institut/organisation/instances/commission-d-
evaluation)

http://www.inria.fr/equipes/toccata
http://why3.lri.fr/
http://opam.ocaml.org/packages/why3/why3.0.85/
http://proval.lri.fr/gallery/index.en.html
http://easycrypt.gforge.inria.fr/
http://easycrypt.gforge.inria.fr/
http://why3.lri.fr
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2014-bid76
http://code.google.com/p/pangolin-programming-language/
http://www.inria.fr/content/download/11783/409665/version/4/file/SoftwareCriteria-V2-CE.pdf
http://www.inria.fr/content/download/11783/409665/version/4/file/SoftwareCriteria-V2-CE.pdf
http://www.inria.fr/institut/organisation/instances/commission-d-evaluation
http://www.inria.fr/institut/organisation/instances/commission-d-evaluation

102 Proofs and Verification - Software and Platforms - Project-Team TOCCATA

Figure 2.

Alt-Ergo is distributed as open source, under the CeCILL-C license, at URL http://alt-ergo.lri.fr/, and in the
OPAM packaging system http://opam.ocaml.org/packages/alt-ergo/alt-ergo.0.95.2/. Latest public version is
0.99.1, released in Dec. 2014. Maintenance is done by the OcamlPro company http://alt-ergo.ocamlpro.com/.

5.3. The Cubicle model checker modulo theories
Participants: Sylvain Conchon [contact], Alain Mebsout.

Partners: A. Goel, S. Krstić (Intel Strategic Cad Labs in Hillsboro, OR, USA), F. Zaïdi (LRI, Université Paris-
sud)

Cubicle is an open source model checker for verifying safety properties of array-based systems, which
corresponds to a syntactically restricted class of parametrized transition systems with states represented
as arrays indexed by an arbitrary number of processes. Cache coherence protocols and mutual exclusion
algorithms are typical examples of such systems.

Cubicle model-checks by a symbolic backward-reachability analysis on infinite sets of states represented by
specific simple formulas, called cubes. Cubicle is based on ideas introduced by MCMT (http://users.mat.
unimi.it/users/ghilardi/mcmt/) from which, in addition to revealing the implementation details, it differs in a
more friendly input language and a concurrent architecture. Cubicle is written in OCaml. Its SMT solver is a
tightly integrated, lightweight and enhanced version of Alt-Ergo; and its parallel implementation relies on the
Functory library.

Cubicle is distributed as open source, under the Apache license, at URL http://cubicle.lri.fr/, and in the OPAM
packaging system http://opam.ocaml.org/packages/cubicle/cubicle.1.0.1/. Latest version is 1.0.1, released in
Nov. 2014.

5.4. The Flocq library
Participants: Sylvie Boldo [contact], Guillaume Melquiond.

Criteria for Software Self-Assessment: A-2, SO-3, SM-3, EM-3, SDL-5, OC-4.

The Flocq library for the Coq proof assistant is a comprehensive formalization of floating-point arithmetic:
core definitions, axiomatic and computational rounding operations, high-level properties [6]. It provides a
framework for developers to formally certify numerical applications.

Flocq is currently used by the CompCert certified compiler for its support of floating-point computations.

It is distributed as open source, under a LGPL license, at http://flocq.gforge.inria.fr/. It was first released in
2010. Current version is 2.4.0 released in Sep. 2014.

http://alt-ergo.lri.fr/
http://opam.ocaml.org/packages/alt-ergo/alt-ergo.0.95.2/
http://alt-ergo.ocamlpro.com/
http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/
http://cubicle.lri.fr/
http://opam.ocaml.org/packages/cubicle/cubicle.1.0.1/
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2014-bid38
http://flocq.gforge.inria.fr/

103 Proofs and Verification - Software and Platforms - Project-Team TOCCATA

5.5. The Gappa tool
Participant: Guillaume Melquiond [contact].

Criteria for Software Self-Assessment: A-3, SO-4, SM-4, EM-3, SDL-5, OC-4.

Given a logical property involving interval enclosures of mathematical expressions, Gappa tries to verify
this property and generates a formal proof of its validity. This formal proof can be machine-checked by an
independent tool like the Coq proof-checker, so as to reach a high level of confidence in the certification [82],
[123].

Since these mathematical expressions can contain rounding operators in addition to usual arithmetic operators,
Gappa is especially well suited to prove properties that arise when certifying a numerical application, be it
floating-point or fixed-point. Gappa makes it easy to compute ranges of variables and bounds on absolute or
relative roundoff errors.

Gappa is being used to certify parts of the mathematical libraries of several projects, including CRlibm, FLIP,
and CGAL. It is distributed as open source, under a Cecill-B / GPL dual-license, at http://gappa.gforge.inria.fr/.
Latest version is 1.1.2 released in October 2014.

Part of the work on this tool was done while in the Arénaire team (Inria Rhône-Alpes), until 2008.

5.6. The Interval package for Coq
Participants: Guillaume Melquiond [contact], Érik Martin-Dorel.

Criteria for Software Self-Assessment: A-3, SO-4, SM-3, EM-3, SDL-4, OC-4.

The Interval package provides several tactics for helping a Coq user to prove theorems on enclosures of real-
valued expressions. The proofs are performed by an interval kernel which relies on a computable formalization
of floating-point arithmetic in Coq.

Versions 1.0 and 2.0 were released in 2014. Version 2.0 integrates the CoqApprox library for computing Taylor
models, so as to greatly improve performances when bounding univariate expressions [43].

It is distributed as open source, under a CeCILL-C license, at http://coq-interval.gforge.inria.fr/. Latest version
is 2.0 released in November 2014.

Part of the work on this library was done while in the Mathematical Components team (Microsoft Re-
search–Inria Joint Research Center).

5.7. The Coquelicot library for real analysis
Participants: Sylvie Boldo [contact], Catherine Lelay, Guillaume Melquiond.

Criteria for Software Self-Assessment: A-3, SO-4, SM-2, EM-3, SDL-4, OC-4.

The Coquelicot library is designed with three principles in mind. The first is the user-friendliness, achieved by
implementing methods of automation, but also by avoiding dependent types in order to ease the stating and
readability of theorems. This latter part was achieved by defining total function for basic operators, such as
limits or integrals. The second principle is the comprehensiveness of the library. By experimenting on several
applications, we ensured that the available theorems are enough to cover most cases. We also wanted to be
able to extend our library towards more generic settings, such as complex analysis or Euclidean spaces. The
third principle is for the Coquelicot library to be a conservative extension of the Coq standard library, so that it
can be easily combined with existing developments based on the standard library. Moreover, we achieved this
compatibility without adding any additional axiom.

The result is the Coquelicot library available at http://coquelicot.saclay.inria.fr. Latest version is 2.0.1 released
in March 2014. It contains about 1,700 theorems and 37,000 lines of Coq.

5.8. The CFML tool for verifying OCaml code
Participant: Arthur Charguéraud [contact].

http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2014-bid72
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2014-bid23
http://gappa.gforge.inria.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2014-bid77
http://coq-interval.gforge.inria.fr/
http://coquelicot.saclay.inria.fr

104 Proofs and Verification - Software and Platforms - Project-Team TOCCATA

Criteria for Software Self-Assessment: A-2, SO-4, SM-2, EM-3, SDL-1, OC-4.

The CFML tool supports the verification of OCaml programs through interactive Coq proofs. CFML proofs
establish the full functional correctness of the code with respect to a specification. They may also be used to
formally establish bounds on the asymptotic complexity of the code. The tool is made of two parts: on the
one hand, a characteristic formula generator implemented as an OCaml program that parses OCaml code
and produces Coq formulae; and, on the other hand, a Coq library that provides notation and tactics for
manipulating characteristic formulae interactively in Coq.

CFML is distributed under the LGPL license, and is available at http://arthur.chargueraud.org/softs/cfml/. It
has been continuously extended since its first release in 2010. In particular, in 2014 support for the verification
of asymptotic complexity bounds has been added.

5.9. Other Maintained Tools
5.9.1. The ALEA library for randomized algorithms

Participant: Christine Paulin-Mohring [contact].

Criteria for Software Self-Assessment: A-2, SO-3, SM-2, EM-3, SDL-4, OC-4.

The ALEA library is a Coq development for modeling randomized functional programs as distributions using
a monadic transformation. It contains an axiomatisation of the real interval [0, 1] and its extension to positive
real numbers. It introduces definition of distributions and general rules for approximating the probability that
a program satisfies a given property.

ALEA is used as a basis of the Certicrypt environment (MSR-Inria joint research center, Imdea Madrid, Inria
Sophia-Antipolis) for formal proofs for computational cryptography [55]. It is also experimented in LABRI
as a basis to study formal proofs of probabilistic distributed algorithms.

ALEA is distributed as open source, at http://www.lri.fr/~paulin/ALEA. Latest version is 8 released in May
2013. In particular, it includes a module to reason about random variables with values in positive real numbers.

5.9.2. Bibtex2html
Participants: Jean-Christophe Filliâtre [contact], Claude Marché.

Criteria for Software Self-Assessment: A-5, SO-3, SM-3, EM-3, SDL-5, OC-4.

Bibtex2html is a generator of HTML pages of bibliographic references. Distributed as open source since 1997,
under the GPL license, at http://www.lri.fr/~filliatr/bibtex2html/. Latest version is 1.98 released in July 2014.
Bibtex2html is also distributed as a package in most Linux distributions, and in the OPAM packaging system
http://opam.ocaml.org/packages/bibtex2html/bibtex2html.1.98/.

We estimate that between 10000 and 100000 web pages have been generated using Bibtex2html.

5.9.3. The Coccinelle library for term rewriting
Participant: Évelyne Contejean [contact].

Criteria for Software Self-Assessment: A-2, SO-3, SM-2, EM-2, SLD-2, OC-4.

Coccinelle is a Coq library for term rewriting. Besides the usual definitions and theorems of term algebras,
term rewriting and term ordering, it also models a number of algorithms implemented in the CiME toolbox,
such as matching, matching modulo associativity-commutativity, computation of the one-step reducts of a
term, recursive path ordering (RPO) comparison between two terms, etc. The RPO algorithm can effectively
be run inside Coq, and is used in the Color developement (http://color.inria.fr/) as well as for certifying Spike
implicit induction theorems in Coq (Sorin Stratulat).

Coccinelle is available at http://www.lri.fr/~contejea/Coccinelle, and is distributed under the Cecill-C license.

5.9.4. OCamlgraph
Participants: Jean-Christophe Filliâtre [contact], Sylvain Conchon.

http://arthur.chargueraud.org/softs/cfml/
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2014-bid78
http://www.lri.fr/~paulin/ALEA
http://www.lri.fr/~filliatr/bibtex2html/
http://opam.ocaml.org/packages/bibtex2html/bibtex2html.1.98/
http://color.inria.fr/
http://www.lri.fr/~contejea/Coccinelle

105 Proofs and Verification - Software and Platforms - Project-Team TOCCATA

OCamlgraph is a graph library for OCaml. It features many graph data structures, together with many graph
algorithms. Data structures and algorithms are provided independently of each other, thanks to OCaml module
system. OCamlgraph is distributed as open source, under the LGPL license, at http://OCamlgraph.lri.fr/. Latest
version is 1.8.5, released in March 2014. It is also distributed as a package in several Linux distributions.
OCamlgraph is now widely spread among the community of OCaml developers, and available as an OPAM
package http://opam.ocaml.org/packages/ocamlgraph/ocamlgraph.1.8.5/.

5.9.5. Mlpost
Participant: Jean-Christophe Filliâtre [contact].

Mlpost is a tool to draw scientific figures to be integrated in LaTeX documents. Contrary to other tools such as
TikZ or MetaPost, it does not introduce a new programming language; it is instead designed as a library of an
existing programming language, namely OCaml. Yet it is based on MetaPost internally and thus provides high-
quality PostScript figures and powerful features such as intersection points or clipping. Mlpost is distributed
as open source, under the LGPL license, at http://mlpost.lri.fr/. Mlpost was presented at JFLA’09 [52].

Mlpost is available as an OPAM package http://opam.ocaml.org/packages/mlpost/mlpost.0.8.1/.

5.9.6. Functory
Participant: Jean-Christophe Filliâtre [contact].

Functory is a distributed computing library for OCaml. The main features of this library include (1) a
polymorphic API, (2) several implementations to adapt to different deployment scenarios such as sequential,
multi-core or network, and (3) a reliable fault-tolerance mechanism. Functory was presented at JFLA 2011
[91] and at TFP 2011 [90].

Functory is distributed as open source, under the LGPL license, at http://functory.lri.fr/, and in the OPAM
packaging system http://opam.ocaml.org/packages/functory/functory.0.5/. Latest version is 0.5, release in
March 2013.

5.9.7. The Why Environment
Participants: Claude Marché [contact], Jean-Christophe Filliâtre, Guillaume Melquiond, Andrei Paskevich.

Criteria for Software Self-Assessment: A-3, SO-4, SM-3, EM-2, SDL-5-down, OC-4.

The Why platform is a set of tools for deductive verification of Java and C source code. In both cases, the
requirements are specified as annotations in the source, in a special style of comments. For Java (and Java
Card), these specifications are given in JML and are interpreted by the Krakatoa tool. Analysis of C code must
be done using the external Frama-C environment, and its Jessie plugin which is distributed in Why.

The platform is distributed as open source, under GPL license, at http://why.lri.fr/.

It also distributed as part of major Linux distributions and in the OPAM packaging system http://opam.ocaml.
org/packages/why/why.2.34/. Version 2.34 was released in August 2014, to provide a version compatible with
both Frama-CNeon and Why3 0.83.

The internal VC generator and the translators to external provers are no longer under active development,
as superseded by the Why3system described above. The Krakatoa and Jessie front-ends are still maintained,
although using now by default the Why3 VC generator. These front-ends are described in a specific web
page http://krakatoa.lri.fr/. They are used for teaching (University of Evry, École Polytechnique, etc.), used by
several research groups in the world, e.g at Fraunhofer Institute in Berlin [92], at Universidade do Minho in
Portugal [50], at Moscow State University, Russia (http://journal.ub.tu-berlin.de/eceasst/article/view/255).

http://OCamlgraph.lri.fr/
http://opam.ocaml.org/packages/ocamlgraph/ocamlgraph.1.8.5/
http://mlpost.lri.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2014-bid79
http://opam.ocaml.org/packages/mlpost/mlpost.0.8.1/
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2014-bid80
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2014-bid81
http://functory.lri.fr/
http://opam.ocaml.org/packages/functory/functory.0.5/
http://why.lri.fr/
http://opam.ocaml.org/packages/why/why.2.34/
http://opam.ocaml.org/packages/why/why.2.34/
http://krakatoa.lri.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2014-bid82
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2014-bid54
http://journal.ub.tu-berlin.de/eceasst/article/view/255

106 Proofs and Verification - Software and Platforms - Project-Team VERIDIS

VERIDIS Project-Team

5. New Software and Platforms
5.1. The veriT Solver

Participants: Haniel Barbosa, David Déharbe, Pablo Federico Dobal, Pascal Fontaine [contact].

The veriT solver is an SMT (Satisfiability Modulo Theories) solver developed in cooperation with David
Déharbe from the Federal University of Rio Grande do Norte in Natal, Brazil. The solver can handle large
quantifier-free formulas containing uninterpreted predicates and functions, and arithmetic over integers and
reals. It features a very efficient decision procedure for uninterpreted symbols, as well as a simplex-based
reasoner for linear arithmetic. It also has some support for user-defined theories, quantifiers, and lambda-
expressions. This allows users to easily express properties about concepts involving sets, relations, etc. The
prover can produce explicit proof traces when it is used as a decision procedure for quantifier-free formulas
with uninterpreted symbols and arithmetic. To support the development of the tool, non-regression tests use
Inria’s grid infrastructure; it allows us to extensively test the solver on thousands of benchmarks in a few
minutes. The veriT solver is available as open source under the BSD license at the veriT Web site.

Efforts in 2014 have been focused on efficiency and stability. The decision procedures for uninterpreted
symbols and linear arithmetic have been further improved. There has also been some progress in the integration
of the solver Redlog (section 5.4) for non-linear arithmetic in the context of the SMArT project (section 8.2).

The veriT solver participated in the SMT competition SMT-COMP 2014, part of the Vienna Summer Of Logic
Olympic Games, and received the gold medal for SMT. The success of the different solvers was measured as a
combination of the number of benchmark problems solved in the various categories, the number of erroneous
answers, and the time taken.

We target applications where validation of formulas is crucial, such as the validation of TLA+ and B
specifications, and work together with the developers of the respective verification platforms to make veriT
even more useful in practice. The solver is available as a plugin for the Rodin platform for discharging proof
obligations generated in Event-B [50]; on a large repository of industrial and academic cases, this SMT-based
plugin decreased by 75% the number of proof obligations requiring human interactions, compared to the
original B prover.

5.2. The TLA+ Proof System
Participants: Stephan Merz [contact], Hernán Pablo Vanzetto.

TLAPS, the TLA+ proof system developed at the Joint MSR-Inria Centre, is a platform for developing and
mechanically verifying proofs about TLA+ specifications. The TLA+ proof language is hierarchical and
explicit, allowing a user to decompose the overall proof into independent proof steps. TLAPS consists of
a proof manager that interprets the proof language and generates a collection of proof obligations that are
sent to backend verifiers. The current backends include the tableau-based prover Zenon for first-order logic,
Isabelle/TLA+, an encoding of TLA+ as an object logic in the logical framework Isabelle, an SMT backend
designed for use with any SMT-lib compatible solver, and an interface to a decision procedure for propositional
temporal logic.

The current version 1.3.2 of TLAPS was released in May 2014, it is distributed under a BSD-like license
at http://tla.msr-inria.inria.fr/tlaps/content/Home.html. The prover fully handles the non-temporal part of
TLA+. The SMT backend, developed in Nancy, has been further improved in 2014, in particular through
the development of an appropriate type synthesis procedure, and is now the default backend. A new interface
with a decision procedure for propositional temporal logic has been developed in 2014, so that simple temporal
proof obligations can now be discharged. It is based on a technique for “coalescing” first-order subformulas
of temporal logic, described in section 6.2 . The standard proof library has also been further developed, partly
in response to the needs of the ADN4SE project on verifying a real-time micro-kernel system (section 7.2).

http://www.inria.fr/equipes/veridis
http://www.veriT-solver.org
http://www.redlog.eu/
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/uid17.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/uid43.html
http://www.smtcomp.org
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2014-bid15
http://tla.msr-inria.inria.fr/tlaps/content/Home.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/uid20.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/uid40.html

107 Proofs and Verification - Software and Platforms - Project-Team VERIDIS

TLAPS was presented at tutorials at the TLA+ community event organized during ABZ 2014 in Toulouse in
June and at the SPES_XT summer school at the University of Twente (The Netherlands) in September.

5.3. SPASS: An Automated Theorem Prover for First-Order Logic With
Equality
Participants: Martin Bromberger, Arnaud Fietzke, Thomas Sturm, Marco Voigt, Uwe Waldmann, Christoph
Weidenbach [contact].

SPASS is an automated theorem prover based on superposition that handles first-order logic with equality and
several extensions for particular classes of theories. It has been developed since the mid-1990s at the Max-
Planck Institut für Informatik in Saarbrücken. Version 3.7 is the current stable release; it is distributed under
the FreeBSD license at http://www.spass-prover.org.

The next major release of SPASS will mainly focus on improved theory support: many applications of
automated deduction require reasoning in first-order logic modulo background theories, in particular some
form of arithmetic. In 2014, we have continued our efforts to improve the superposition calculus as well as to
develop dedicated arithmetic decision procedures for various arithmetic theories. Our results are:

• specialized reasoning support for finite subsets,
• specialized decision procedures for linear real arithmetic with one quantifier alternation,
• new efficient and complete procedures for (mixed) linear integer arithmetic,
• decidability results and respective procedures for various combinations of linear arithmetic with

first-order logic.

5.4. The Redlog Computer Logic System
Participants: Thomas Sturm [contact], Marek Košta.

Redlog is an integral part of the interactive computer algebra system Reduce. It supplements Reduce’s
comprehensive collection of powerful methods from symbolic computation by supplying more than 100
functions on first-order formulas. Redlog has been publicly available since 1995 and is constantly being
improved. The name Redlog stands for Reduce Logic System. Andreas Dolzmann from Schloss Dagstuhl
Leibniz-Zentrum is a co-developer of Redlog.

Reduce and Redlog are open-source and freely available under a modified BSD license at http://reduce-
algebra.sourceforge.net/. The Redlog homepage is located at http://www.redlog.eu/. Redlog generally works
with interpreted first-order logic in contrast to free first-order logic. Each first-order formula in Redlog must
exclusively contain atoms from one particular Redlog-supported theory, which corresponds to a choice of
admissible functions and relations with fixed semantics. Redlog-supported theories include Nonlinear Real
Arithmetic (Real Closed Fields), Presburger Arithmetic, Parametric QSAT, and many more.

Effective quantifier elimination procedures for the various supported theories establish an important class
of methods available in Redlog. For the theories supported by Redlog, quantifier elimination procedures
immediately yield decision procedures. Besides these quantifier elimination-based decision methods there
are specialized, and partly incomplete, decision methods, which are tailored to input from particular fields of
application.

In 2014, Redlog made two important steps into distinct but equally important future directions. On the one
hand, it integrated for the first time learning strategies, as they are known from CDCL-based SMT solving,
into a classical real quantifier elimination procedure, viz. virtual substitution for linear formulas [28]. On the
other hand, there was important progress concerning incomplete decision procedures for the reals. A journal
submission currently under review describes identification of a Hopf bifurcation for the important MAPK
model within less than a minute. The corresponding polynomial relevant for root-finding has dimension 10,
total degree 100, and contains more than 850,000 monomials.

Redlog is a widely accepted tool and highly visible in mathematics, informatics, engineering and the sciences.
The seminal article on Redlog [4] has received more than 300 citations in the scientific literature so far.

http://www.spass-prover.org
http://reduce-algebra.sourceforge.net/
http://reduce-algebra.sourceforge.net/
http://www.redlog.eu
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2014-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2014-bid5

108 Security and Confidentiality - Software and Platforms - Project-Team CARTE

CARTE Project-Team

5. New Software and Platforms

5.1. Morphus/MMDEX
MMDEX is a virus detector based on morphological analysis. It is composed of our own disassembler tool, on
a graph transformer and a specific tree-automaton implementation. The tool is used in the EU-Fiware project
and by some other partners (e.g., DAVFI project).
Written in C, 20k lines.
APP License, IDDN.FR.001.300033.000.R.P.2009.000.10000, 2009.

5.2. DynamicTracer
DynamicTracer is a new tool with a public web interface which provides run trace of executable files. The trace
is obtained by recording a dynamic execution in a safe environment. The trace contain instruction addresses,
instruction opcodes and other optional informations.
Written in C++, 2.5k lines.
http://www.lhs.loria.fr/wp/?page_id=96

5.3. CoDisasm
Codisasm is a new disassembly program which support self-modifying code and code overlapping. Up to our
knowledge, this is the first to cope both aspects of program obfuscation. The tool is based on the notion of
wave developed in the group.
Written in C, 3k lines.

http://www.inria.fr/equipes/carte
http://www.lhs.loria.fr/wp/?page_id=96

109 Security and Confidentiality - Software and Platforms - Project-Team CASSIS

CASSIS Project-Team

5. New Software and Platforms

5.1. Protocol Verification Tools
Participants: Véronique Cortier, Stéphane Glondu, Pierre-Cyrille Héam, Olga Kouchnarenko, Steve Kremer,
Michaël Rusinowitch, Mathieu Turuani, Laurent Vigneron.

5.1.1. CL-AtSe
We develop CL-AtSe, a Constraint Logic based Attack Searcher for cryptographic protocols, initiated and
continued by the European projects AVISPA, AVANTSSAR (for web-services) and Nessos respectively. The
CL-AtSe approach to verification consists in a symbolic state exploration of the protocol execution for a
bounded number of sessions, thus is both correct and complete. CL-AtSe includes a proper handling of
sets, lists, choice points, specification of any attack states through a language for expressing e.g., secrecy,
authentication, fairness, or non-abuse freeness, advanced protocol simplifications and optimizations to reduce
the problem complexity, and protocol analysis modulo the algebraic properties of cryptographic operators such
as XOR (exclusive or) and Exp (modular exponentiation).

CL-AtSe has been successfully used to analyse protocols from e.g., France Telecom R&D, Siemens AG,
IETF, Gemalto, Electrum in funded projects. It is also employed by external users, e.g., from the AVISPA’s
community. Moreover, CL-AtSe achieves good analysis times, comparable and sometimes better than other
state-of-the art tools.

CL-AtSe has been enhanced in various ways. It fully supports the Aslan semantics designed in the context
of the AVANTSSAR project, including Horn clauses (for intruder-independent deductions, e.g., for credential
management), and a large fragment of LTL-based security properties. A Bugzilla server collects bug reports,
and online analysis and orchestration are available on our team server (https://cassis.loria.fr). Large models
can be analysed on the TALC Cluster in Nancy with parallel processing. CL-AtSe also supports negative
constraints on the intruder’s knowledge, which reduces drastically the orchestrator’s processing times and
allows separation of duties and non-disclosure policies, as well as conditional security properties, like: i) an
authentication to be verified iff some session key is safe; ii) relying on a leaking condition on some private
data instead of an honesty predicate to trigger or block some agent’s property. This was crucial for e.g., the
Electrum’s wallet where all clients can be dishonest but security guarantees must be preserved anyway.

5.1.2. Akiss
Akiss (Active Knowledge in Security Protocols) is a tool for verifying indistinguishability properties in
cryptographic protocols, modelled as trace equivalence in a process calculus. Indistinguishability is used to
model a variety of properties including anonymity properties, strong versions of confidentiality and resistance
against offline guessing attacks, etc. Akiss implements a procedure to verify equivalence properties for a
bounded number of sessions based on a fully abstract modelling of the traces of a bounded number of sessions
of the protocols into first-order Horn clauses and a dedicated resolution procedure. The procedure can handle
a large set of cryptographic primitives, namely those that can be modeled by an optimally reducing convergent
rewrite system.

Recent developments include the possibility for checking everlasting indistinguishability properties [72]. This
feature was added when analyzing everlasting privacy properties in electronic voting protocols. The tool is still
under active development, including optimisations to improve efficiency, but also the addition of new features,
such as the possibility to model protocols using weak secrets.

The Akiss tool is freely available at https://github.com/glondu/akiss.

http://www.inria.fr/equipes/cassis
https://cassis.loria.fr
http://raweb.inria.fr/rapportsactivite/RA{$year}/cassis/bibliography.html#cassis-2014-bid6
https://github.com/glondu/akiss

110 Security and Confidentiality - Software and Platforms - Project-Team CASSIS

5.1.3. Belenios
In collaboration with the Caramel project-team, we develop an open-source private and verifiable electronic
voting protocol, named Belenios. Our system is an evolution and a new implementation of an existing system,
Helios, developed by Ben Adida, and used e.g., by UCL and the IACR association in real elections. The
main differences with Helios are a cryptographic protection against ballot stuffing and a practical threshold
decryption system that allows to split the decryption key among several authorities, k out of n authorities
being sufficient to decrypt. We will continue to add new cryptographic and protocol improvements to offer a
secure, proved, and practical electronic voting system.

Belenios has been implemented (cf. http://belenios.gforge.inria.fr) by Stéphane Glondu and has been tested in
December 2014 “in real conditions”, in a test election involving the members of Inria Nancy-Grand Est center
and of the Loria lab (more than 500 potential voters) that had to elect the best pictures of the Loria.

5.1.4. SAPIC
SAPIC is a tool that translates protocols from a high-level protocol description language akin to the applied pi
calculus into multiset rewrite rules, that can then be be analysed using the Tamarin Prover.

Its aim is the analysis of protocols that include states, for example Hardware Security Tokens communicating
with a possibly malicious user, or protocols that rely on databases. It has been succesfully applied on several
case studies including the Yubikey authentication protocol.

A recent extension, SAPIC∗ extends SAPIC by a Kleene star operator (*) which allows to iterate a process a
finite but arbitrary number of times. This construction is useful to specify for instance stream authentication
protocols. We used it to analyse a simple version of the TESLA protocol.

The SAPIC tool is freely available at http://sapic.gforge.inria.fr/.

5.2. Testing Tools
Participants: Fabrice Bouquet, Frédéric Dadeau, Kalou Cabrera, Ivan Enderlin.

5.2.1. Hydra
Hydra is an Eclipse-like platform, based on Plug-ins architecture. Plug-ins can be of five kinds: parser is used
to analyze source files and build an intermediate format representation of the source; translator is used to
translate from a format to another or to a specific file; service denotes the application itself, i.e., the interface
with the user; library denotes an internal service that can be used by a service, or by other libraries; tool
encapsulates an external tool. The following services have been developed so far:

• BZPAnimator: performs the animation of a BZP model (a B-like intermediate format);

• Angluin: makes it possible to perform a machine learning algorithm (à la Angluin) in order to extract
an abstraction of a system behavior;

• UML2SMT: aims at extracting first order logic formulas from the UML Diagrams and OCL code of
a UML/OCL model to check them with a SMT solver.

These services involve various libraries (sometimes reusing each other), and rely on several tool plug-ins
that are: SMTProver (encapsulating the Z3 solver), PrologTools (encapsulating the CLPS-B solver), Grappa
(encapsulating a graph library). We are currently working on transferringthe existing work on test generation
from B abstract machines, JML, and statecharts using constraint solving techniques.

5.2.2. jMuHLPSL
jMuHLPSL [6] is a mutant generator tool that takes as input a verified HLPSL protocol, and computes mutants
of this protocol by applying systematic mutation operators on its contents. The mutated protocol then has to
be analyzed by a dedicated protocol analysis tool (here, the AVISPA tool-set). Three verdicts may then arise.
The protocol can still be safe, after the mutation, this means that the protocol is not sensitive to the realistic
“fault” represented by the considered mutation. This information can be used to inform the protocol designers

http://belenios.gforge.inria.fr
http://sapic.gforge.inria.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/cassis/bibliography.html#cassis-2014-bid7

111 Security and Confidentiality - Software and Platforms - Project-Team CASSIS

of the robustness of the protocol w.r.t. potential implementation choices, etc. The protocol can also become
incoherent, meaning that the mutation introduced a functional failure that prevents the protocol from being
executed entirely (one of the participants remains blocked in a given non-final state). The protocol can finally
become unsafe when the mutation introduces a security flaw that can be exploited by an attacker. In this case,
the AVISPA tool-set is able to compute an attack-trace, that represents a test case for the implementation of the
protocol. If the attack can be replayed entirely, then the protocol is not safe. If the attack can not be replayed
then the implementation does not contain the error introduced in the original protocol.

The tool is written in Java, and it is freely available at: http://members.femto-st.fr/sites/femto-st.fr.frederic-
dadeau/files/content/pub/jMuHLPSL.jar.

5.2.3. Praspel
Praspel is both a specification language, a test data generator and test execution driver for PHP programs. These
latter are annotated to describe class (resp. method) contracts using invariants (resp. pre- and postconditions).
Praspel contracts allow to describe data typing informations, by means of realistic domains. According to the
contract-driven testing principles, the tool uses the contracts to both generate test data, using dedicated test
generators (random for integer variables, grammar-based for strings, constraint-based for arrays), and establish
the test verdict by checking the contract assertions at run-time.

The tool is open source and freely available at: http://hoa-project.net. It has been integrated into a PHP
framework named Hoa, and coupled with the atoum tool (https://github.com/atoum/atoum) that can be used to
execute the tests and report on their code coverage.

5.3. Other Tools
Several software tools described in previous sections are using tools that we have developed in the past. For
instance BZ-TT uses the set constraints solver CLPS. Note that the development of the SMT prover haRVey
has been stopped. The successor of haRVey is called veriT and is developed by David Déharbe (UFRN Natal,
Brasil) and Pascal Fontaine (Veridis team). We have also developed, as a second back-end of AVISPA, TA4SP
(Tree Automata based on Automatic Approximations for the Analysis of Security Protocols), an automata
based tool dedicated to the validation of security protocols for an unbounded number of sessions.

We have also designed tools to manage collaborative works on shared documents using flexible access control
models. These tools have been developed in order to validate and evaluate our approach on combining
collaborative edition with optimistic access control.

http://members.femto-st.fr/sites/femto-st.fr.frederic-dadeau/files/content/pub/jMuHLPSL.jar
http://members.femto-st.fr/sites/femto-st.fr.frederic-dadeau/files/content/pub/jMuHLPSL.jar
http://hoa-project.net
https://github.com/atoum/atoum

112 Security and Confidentiality - Software and Platforms - Project-Team COMETE

COMETE Project-Team

5. New Software and Platforms

5.1. Location Guard
Participants: Konstantinos Chatzikokolakis [correspondant], Marco Stronati.

https://github.com/chatziko/location-guard

The purpose of Location Guard is to implement obfuscation techniques for achieving location privacy, in a an
easy and intuitive way that makes them available to the general public. Various modern applications, running
either on smartphones or on the web, allow third parties to obtain the user’s location. A smartphone application
can obtain this information from the operating system using a system call, while web application obtain it from
the browser using a JavaScript call.

Although both mobile operating systems and browsers require the user’s permission to disclose location
information, the user faces an “all-or-nothing” choice: either disclose his exact location and give up his privacy,
or stop using the application. This forces many users to disclose their location, although ideally they would
like to enjoy some privacy.

The API level of a browser or an operating system is an ideal place for integrating a location obfuscation
technique, in a way that is easy to understand for the average user, and readily available to all applications.
When an application asks for the user’s location, the browser or operating system can ask the user’s permission,
but including the option to provide an obfuscated location instead of the real one! Different levels of
obfuscation can be also offered, so that the user can chose to provide more accurate location to applications
that really need it, and more noisy location to those that don’t.

Location Guard was created as a prototype for Google Chrome at the end for 2013. In 2014, Location Guard
matured from a prototype to a high quality software, supporting both desktop and mobile browsers:

• Google Chrome / Chromium

• Mozilla Firefox and Firefox for Android

• Opera

After only a short period online, the extension has more than 8500 daily users, and it was presented in an
article by the popular technology news site Ghacks. Our experience so far shows that end users do care about
location privacy, and geo-indistinguishability is a practical approach for providing it.

In the future we plan to make Location Guard more widely available on smartphones, supporting more mobile
browsers as well as providing direct integration into the operating system, primarily on Android.

5.2. libqif - A Quantitative Information Flow C++ Toolkit Library
Participants: Konstantinos Chatzikokolakis [correspondant], Marco Stronati.

https://github.com/chatziko/libqif

The goal of libqif is to provide an efficient C++ toolkit implementing a variety of techniques and algorithms
from the area of quantitative information flow and differential privacy. We plan to implement all techniques
produced by Comète in recent years, as well as several ones produced outside the group, giving the ability
to privacy researchers to reproduce our results and compare different techniques in a uniform and efficient
framework.

http://www.inria.fr/equipes/comete
https://github.com/chatziko/location-guard
http://www.ghacks.net/2014/12/01/change-the-default-geolocation-in-firefox-using-location-guard/
http://www.ghacks.net/2014/12/01/change-the-default-geolocation-in-firefox-using-location-guard/
https://github.com/chatziko/libqif

113 Security and Confidentiality - Software and Platforms - Project-Team COMETE

Some of these techniques were previously implemented in an ad-hoc fashion, in small, incompatible with
each-other, non-maintained and usually inefficient tools, used only for the purposes of a single paper and then
abandoned. We aim at reimplementing those – as well as adding several new ones not previously implemented
– in a structured, efficient and maintainable manner, providing a tool of great value for future research. Of
particular interest is the ability to easily re-run evaluations, experiments and case-studies from all our papers,
which will be of great value for comparing new research results in the future.

The library is still in under heavy development but substantial progress has been made in 2014. Some of the
techniques already implemented are:

• Standard leakage measures: Shannon, min-entropy, guessing entropy

• Measures from the g-leakage framework [32]

• Channel factorization

• Standard differential privacy mechanisms from the literature

• The planar Laplace mechanism of [33]

• The standard Kantorovich metric as well as the multiplicative variant from [19]

• All operations are supported for both doubles (for precision) and floats (for memory efficiency)

• All operations involving only rational quantities are supported using arbitrary precision rational
arithmetic, allowing to obtain exact results

• Native linear programing for rationals

Many more are scheduled to be added in the near future.

5.3. LeakWatch: Estimating Information Leakage from Java Programs
Participant: Yusuke Kawamoto.

http://www.cs.bham.ac.uk/research/projects/infotools/leakwatch/

Comète contributed to the development of LeakWatch, a quantitative information leakage analysis tool for the
Java programming language, created by several people at the University of Birmingham.

LeakWatch is based on a flexible "point-to-point" information leakage model, where secret and publicly-
observable data may occur at any time during a program’s execution. LeakWatch repeatedly executes a Java
program containing both secret and publicly-observable data and uses robust statistical techniques to provide
estimates, with confidence intervals, for min-entropy leakage (using a new theoretical result from [23]) and
mutual information.

http://raweb.inria.fr/rapportsactivite/RA{$year}/comete/bibliography.html#comete-2014-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/comete/bibliography.html#comete-2014-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/comete/bibliography.html#comete-2014-bid2
http://www.cs.bham.ac.uk/research/projects/infotools/leakwatch/
http://raweb.inria.fr/rapportsactivite/RA{$year}/comete/bibliography.html#comete-2014-bid3

114 Security and Confidentiality - Software and Platforms - Team DICE

DICE Team

4. New Software and Platforms

4.1. GPeer: a peer-to-peer javascript communication library
Our software development has been oriented towards systems working in browsers, with the support of an
Inria ADT project in cooperation with the ASAP team. To answer our technological objectives, we are
working on decentralized architectures, browser to browser, developed in javascript/HTML5. We rely on the
WebRTC JavaScript protocol proposed by Google to develop a communication layer between peers. Many
peer-to-peer protocols share common elements, that we group in a generic library for developing peer-to-peer
systems. The joint library developed with the ASAP team handles any gossip based communication overlay.
We design peer messages, tracker management and resilient behavior. The library is a standard bridge between
complex browser to browser applications and low level networking layers such as WebRTC. With the use of
our library, we can reproduce systems such as BitTorrent, but also provide new applications without the need
of either native applications or identified servers.

4.2. Fluxion: a software plugin for flows in AngularJS
The joint project with Worldline aims at managing mobile code in complex Web architectures. Load
variation in data-centers is currently poorly resolved. Most of the time, systems overestimate resource
consumption in order to absorb burst usage. These consumption overestimation has a cost both in terms of
the SLA negotiated with the client and the non-availability of reserved resources. With Wordline we focus on
code mobility for high performance Web architectures and design a fast and reactive framework, transparently
moving functions between running systems. The Fluxion model is our approach to design mobile application
modules that are a mix of functional programming and flow based reactive systems.

4.3. BitBallot: a decentralized voting protocol
The BitBallot voting protocol is designed to target large scale communities. The protocol allows users to share
only restricted amounts of their data and computation with central platforms as well as other peers. Convinced
by the need of new election mechanisms, to support emerging forms of more continuous democracy, we are
developing BitBallot, to allow elections to be organized independently of any central authority. The protocol
guarantees the following properties, anonymity of the data sources, non interruptible run-time, global access
to results, and non predictability of results through partial communication spying.

4.4. Odin: an intermediation platform
Odin is a middleware framework for building intermediation platforms. It is build over a kernel that stores
users data and activities on a noSQL database and a full client/server JavaScript communication stack. The
kernel is used to build intermediation platforms for any kind of project management systems, and where
projects peculiarities are handled through a plugin architecture. Plugins are used to define dedicated crawlers
over the Web that gather information and push recommendation toward users. The framework maintains an
internal currency used to trigger a subset of agents used for recommendation. These recommendations must be
mapped to the project keywords and user profile. Each user project is associated to a specific amount of money
in our currency, and project users may use this currency to drive their virtual agents. If agents are correctly
driven, projects may gain more money used to obtain better recommendations or used on other projects. Our
goal is to gather a huge amount of users in order to study system scalability in a real life application. We
use odin to test and validate search engines, recommendation engines, external resource crawling, and social
network user experiences.

http://www.inria.fr/equipes/dice

115 Security and Confidentiality - Software and Platforms - Team DICE

4.5. C3PO: Collaborative Creation of Contents and Publishing using
Opportunistic Networks
Social networks put together individuals with common interests and/or existing real-life relationships so that
they can produce and share information. There is a strong interest of individuals towards those networks. They
rely on a stable, centralized network infrastructure and a user will always be provided with the same services
no matter what their current context is. By contrast, the C3PO project aims at promoting “spontaneous and
ephemeral social networks” (SESN), built on top of a peer-to-peer distributed architecture leveraging ad-hoc
mobile networks and the resources and services offered by mobile devices. As with traditional social networks,
SESN can put together nomad individuals based on their affinities and common interests so that they can
collaboratively work on tasks as part of a SESN. In C3PO, we strive for incitation in collaborating through
a SESN. Several application domains have been anticipated for SESN, especially those involving gathering
information and producing content as part of cultural or sport events. In such types of SESN, photo sharing,
collaborative document edition and sport results spreading services can be used for building structured digital
contents that relate the events of sports gatherings. Generated contents can be consulted through the multiple
production sources. They can then be replicated on dedicated servers or published to traditional, centralized
social networks and made available to Internet users beyond the lifespan of the SESN where they were initially
produced. The C3PO project aims at investigating the problems posed by SESN, and especially those induced
by the dynamic and unreliable nature of the ad-hoc mobile networks. It will offer innovative scientific and
software solutions for services provision with intermittent connectivity, the definition of an infrastructure for
the collaborative management of services in the context of SESN, and an analysis of the value adapted to
this context. C3PO is a 3 years ANR industrial research project involving 4 academic research groups and an
industrial partner. The proposed contributions will be validated by experimentation in real-world conditions.

116 Security and Confidentiality - Software and Platforms - Project-Team PRIVATICS

PRIVATICS Project-Team

4. New Software and Platforms
4.1. Mobilitics

Mobilitics is a joint project, started in 2012 between Inria and CNIL, which targets privacy issues on
smartphones. The goal is to analyze the behavior of smartphones applications and their operating system
regarding users private data, that is, the time they are accessed or sent to third party companies usually neither
with user’s awareness nor consent.

In the presence of a wide range of different smartphones available in terms of operating systems and hardware
architecture, Mobilitics project focuses actually its study on the two mostly used mobile platforms, IOS
(Iphone) and Android. Both versions of the Mobilitics software: (1) capture any access to private data, any
modification (e.g., ciphering or hashing of private data), or transmission of data to remote locations on the
Internet; (2) store these events in a local database on the phone for offline analysis; and (3) provide the ability
to perform an in depth database analysis in order to identify personnal information leakage.

A Mobilitics prototype for iOS has been developed since early 2012. A Mobilitics prototype for Android has
been developped since mid-2013, running on Galaxy Nexus smartphones. In parallel an analysis tool has been
developped, capable of analyzing the databases containing the raw data of both Mobile Operating Systems.

A first live experiment has been conducted by CNIL with the Mobilitics sofwtare for IOS with the help of
volunteers equipped with iphones in September 2012-January 2013. As a result, some visualization tools
have been developed for the data collected in order to showcase private data leakage by the apps which the
participants of the experiment have used. A press conference has been held by CNIL and Inria in Paris in April
2013 and several Mobilitics results have been published in French newspapers (see Section 8.3).

A second live experiment has been conducted by CNIL with the Mobilitics software for Android, with the help
of volunteers equipped with Galaxy Nexus smartphones, in June-September 2014. A press conference has been
held by CNIL and Inria in December 2014, and several results have been published in French newspapers (see
Section 8.3).

4.2. Omen+
Omen+ is a password cracker following our previous work. It is used to guess possible passwords based on
specific information about the target. It can also be used to check the strength of user password by effectively
looking at the similarity of that password with both usual structures and information relative to the user, such
as his name, birth date...

It is based on a Markov analysis of known passwords to build guesses. The previous work Omen needs to be
cleaned in order to be scaled to real problems and to be distributed or transfered to the security community
(maintainability): eventually it will become an open source software. The main challenge of Omen+ is to
optimize the memory consumption.

The actual efficiency of that implementation in the cracking of passwords will be tested in the coming days.
The processing of the personal information will be implemented before the end of January. The hardest part
of that side of Omen+ will be the collection and classification of the information for a particular target.

4.3. OpenFEC
OpenFEC (http://openfec.org) is an open-source C-language implementation of several Application-Level
Forward Erasure Correction (AL-FEC) codecs, namely: 2D-parity, Reed-Solomon (RFC 5510, http://tools.ietf.
org/html/rfc5510) and LDPC-Staircase (RFC 5170, http://tools.ietf.org/html/rfc5170) codes. The OpenFEC
project also provides a complete performance evaluation tool-set, capable of automatically assessing the
performance of various codecs, both in terms of erasure recovery and encoding/decoding speed or memory
consumption.

http://www.inria.fr/equipes/privatics
http://raweb.inria.fr/rapportsactivite/RA{$year}/privatics/uid212.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/privatics/uid212.html
http://openfec.org
http://tools.ietf.org/html/rfc5510
http://tools.ietf.org/html/rfc5510
http://tools.ietf.org/html/rfc5170

117 Security and Confidentiality - Software and Platforms - Project-Team PRIVATICS

A commercial, highly optimized version of OpenFEC is available, along with an implementation of the FLUTE
(RFC 6726, http://tools.ietf.org/html/rfc6726) large scale content delivery protocol, and both softwares are
currently commercialized by the Expway (http://expway.com) French SME. These softwares have been
deployed in many places throughout the world (for instance there were more than 1.5 millions of terminals
in Japan implementing the ISDB-Tmm standard, powered by our FLUTE/LDPC-Staircase softwares, in Q3-
2013).

Thanks to the success of the industrial transfer of the OpenFEC and FLUTE softwares to Expway, Vincent
Roca has been awarded the third FIEEC (Federation des Industries Electriques, Electroniques et Communica-
tions) applied research prize in October 2014.

http://tools.ietf.org/html/rfc6726
http://expway.com

118 Security and Confidentiality - Software and Platforms - Project-Team PROSECCO

PROSECCO Project-Team

5. New Software and Platforms

5.1. ProVerif
Participants: Bruno Blanchet [correspondant], Xavier Allamigeon [April–July 2004], Vincent Cheval [Sept.
2011–], Benjamin Smyth [Sept. 2009–Feb. 2010].

PROVERIF (proverif.inria.fr) is an automatic security protocol verifier in the symbolic model (so called Dolev-
Yao model). In this model, cryptographic primitives are considered as black boxes. This protocol verifier is
based on an abstract representation of the protocol by Horn clauses. Its main features are:

• It can handle many different cryptographic primitives, specified as rewrite rules or as equations.

• It can handle an unbounded number of sessions of the protocol (even in parallel) and an unbounded
message space.

The PROVERIF verifier can prove the following properties:

• secrecy (the adversary cannot obtain the secret);

• authentication and more generally correspondence properties, of the form “if an event has been
executed, then other events have been executed as well”;

• strong secrecy (the adversary does not see the difference when the value of the secret changes);

• equivalences between processes that differ only by terms.

PROVERIF is widely used by the research community on the verification of security protocols (see http://
proverif.inria.fr/proverif-users.html for references).

PROVERIF is freely available on the web, at proverif.inria.fr, under the GPL license.

5.2. CryptoVerif
Participants: Bruno Blanchet [correspondant], David Cadé [Sept. 2009–].

CRYPTOVERIF(cryptoverif.inria.fr) is an automatic protocol prover sound in the computational model. In
this model, messages are bitstrings and the adversary is a polynomial-time probabilistic Turing machine.
CRYPTOVERIF can prove secrecy and correspondences, which include in particular authentication. It provides
a generic mechanism for specifying the security assumptions on cryptographic primitives, which can handle
in particular symmetric encryption, message authentication codes, public-key encryption, signatures, hash
functions, and Diffie-Hellman key agreements.

The generated proofs are proofs by sequences of games, as used by cryptographers. These proofs are valid
for a number of sessions polynomial in the security parameter, in the presence of an active adversary.
CRYPTOVERIF can also evaluate the probability of success of an attack against the protocol as a function
of the probability of breaking each cryptographic primitive and of the number of sessions (exact security).

CRYPTOVERIF has been used in particular for a study of Kerberos in the computational model, and as a
back-end for verifying implementations of protocols in F# and C.

CRYPTOVERIF is freely available on the web, at cryptoverif.inria.fr, under the CeCILL license.

5.3. Cryptosense Analyzer
Participants: Graham Steel [correspondant], Romain Bardou.

See also the web page http://cryptosense.com.

http://www.inria.fr/equipes/prosecco
http://proverif.inria.fr/
proverif.inria.fr
http://proverif.inria.fr/
http://proverif.inria.fr/
http://proverif.inria.fr/proverif-users.html
http://proverif.inria.fr/proverif-users.html
http://proverif.inria.fr/
http://proverif.inria.fr/
http://cryptoverif.inria.fr/
cryptoverif.inria.fr
http://cryptoverif.inria.fr/
http://cryptoverif.inria.fr/
http://cryptoverif.inria.fr/
http://cryptoverif.inria.fr/
http://cryptoverif.inria.fr/
http://cryptosense.com

119 Security and Confidentiality - Software and Platforms - Project-Team PROSECCO

Cryptosense Analyzer (formerly known as Tookan) is a security analysis tool for cryptographic devices such
as smartcards, security tokens and Hardware Security Modules that support the most widely-used industry
standard interface, RSA PKCS#11. Each device implements PKCS#11 in a slightly different way since the
standard is quite open, but finding a subset of the standard that results in a secure device, i.e. one where
cryptographic keys cannot be revealed in clear, is actually rather tricky. Cryptosense Analyzer analyses a
device by first reverse engineering the exact implementation of PKCS#11 in use, then building a logical model
of this implementation for a model checker, calling a model checker to search for attacks, and in the case
where an attack is found, executing it directly on the device. It has been used to find at least a dozen previously
unknown flaws in commercially available devices.

In June 2013 we submitted a patent application (13 55374) on the reverse engineering process. We also
concluded a license agreement between Inria PROSECCO and the nascent spin-off company Cryptosense
to commercialize the tool.

5.4. miTLS
Participants: Karthikeyan Bhargavan [correspondant], Antoine Delignat-Lavaud, Cedric Fournet [Microsoft
Research], Markulf Kohlweiss [Microsoft Research], Alfredo Pironti, Pierre-Yves Strub [IMDEA], Santiago
Zanella-Béguelin [Microsoft Research], Jean Karim Zinzindohoue.

miTLS is a verified reference implementation of the TLS security protocol in F#, a dialect of OCaml for the
.NET platform. It supports SSL version 3.0 and TLS versions 1.0-1.2 and interoperates with mainstream web
browsers and servers. miTLS has been verified for functional correctness and cryptographic security using the
refinement typechecker F7.

A paper describing the miTLS library was published at IEEE S&P 2013, and two updates to the software were
released in 2013. The software and associated research materials are available from http://mitls.rocq.inria.fr.

5.5. WebSpi
Participants: Karthikeyan Bhargavan [correspondant], Chetan Bansal [Microsoft], Antoine Delignat-Lavaud,
Sergio Maffeis [Imperial College London].

WebSpi is a library that aims to make it easy to develop models of web security mechanisms and protocols
and verify them using ProVerif. It captures common modeling idioms (such as principals and dynamic
compromise) and defines a customizable attacker model using a set of flags. It defines an attacker API that is
designed to make it easy to extract concrete attacks from ProVerif counterexamples.

WebSpi has been used to analyze social sign-on and social sharing services offered by prominent social
networks, such as Facebook, Twitter, and Google, on the basis of new open standards such as the OAuth
2.0 authorization protocol.

WebSpi has also been used to investigate the security of a number of cryptographi web applications, including
password managers, cloud storage providers, an e-voting website and a conference management system.

WebSpi is under development and released as an open source library at http://prosecco.inria.fr/webspi/

5.6. Defensive JavaScript
Participants: Antoine Delignat-Lavaud [correspondant], Karthikeyan Bhargavan, Sergio Maffeis [Imperial
College London].

Defensive JavaScript (DJS) is a subset of the JavaScript language that guarantees the behaviour of trusted
scripts when loaded in an untrusted web page. Code in this subset runs independently of the rest of the
JavaScript environment. When propertly wrapped, DJS code can run safely on untrusted pages and keep secrets
such as decryption keys. DJS is especially useful to write security APIs that can be loaded in untrusted pages,
for instance an OAuth library such as the one used by "Login with Facebook". It is also useful to write secure
host-proof web applications, and more generally for cryptography that happens on the browser.

http://mitls.rocq.inria.fr
http://prosecco.inria.fr/webspi/

120 Security and Confidentiality - Software and Platforms - Project-Team PROSECCO

The DJS type checker and various libraries written in DJS are available from http://www.defensivejs.com.

5.7. F*
Participants: Nikhil Swamy [Microsoft Research], Karthikeyan Bhargavan, Antoine Delignat-Lavaud,
Cedric Fournet [Microsoft Research], Catalin Hritcu, Chantal Keller, Aseem Rastogi, Pierre-Yves Strub.

F* is a new higher order, effectful programming language (like ML) designed with program verification in
mind. Its type system is based on a core that resembles System Fω (hence the name), but is extended with
dependent types, refined monadic effects, refinement types, and higher kinds. Together, these features allow
expressing precise and compact specifications for programs, including functional correctness properties. The
F* type-checker aims to prove that programs meet their specifications using an automated theorem prover
(usually Z3) behind the scenes to discharge proof obligations. Programs written in F* can be translated to
OCaml, F#, or JavaScript for execution.

A detailed description of F* (circa 2011) appeared in the Journal of Functional Programming [88]. F* has
evolved substantially since then. The latest version of F* is written entirely in F*, and bootstraps in OCaml
and F#. It is under active development at GitHub: https://github.com/FStarLang and the official webpage is at
http://fstar-lang.org.

http://www.defensivejs.com
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2014-bid19
https://github.com/FStarLang
http://fstar-lang.org

