

Activity Report 2015

Section Application Domains

Edition: 2016-03-21

ALGORITHMICS, PROGRAMMING, SOFTWARE AND ARCHITECTURE
1. ALF Project-Team 9
2. ANTIQUE Project-Team
3. AOSTE Project-Team 12
4. ARIC Project-Team
5. ATEAMS Project-Team (section vide)
6. CAIRN Project-Team
7. CAMUS Team
8. CARAMEL Project-Team
9. CARTE Project-Team 19
10. CASCADE Project-Team21
11. CASSIS Project-Team23
12. CELTIQUE Project-Team (section vide)
13. COMETE Project-Team26
14. COMPSYS Project-Team
15. CONVECS Project-Team 28
16. CORSE Team
17. CRYPT Team (section vide)
18. DECENTRALISE Team 31
19. DEDUCTEAM Team32
20. DICE Team
21. DREAMPAL Project-Team (section vide)
22. ESTASYS Team (section vide)
23. GALAAD2 Team
24. GALLIUM Project-Team
25. GEOMETRICA Project-Team 39
26. GRACE Project-Team 40
27. HYCOMES Team (section vide)
28. LFANT Project-Team (section vide)
29. MARELLE Project-Team43
30. MEXICO Project-Team
31. MUTANT Project-Team
32. PARKAS Project-Team (section vide)
33. PARSIFAL Project-Team 49
34. PI.R2 Project-Team (section vide)
35. POLSYS Project-Team (section vide)
36. POSET Team53
37. POSTALE Team (section vide)
38. PRIVATICS Project-Team
39. PROSECCO Project-Team 57
40. SECRET Project-Team

	41. SPADES Project-Team	59
	42. SPECFUN Project-Team (section vide)	60
	43. SUMO Project-Team	61
	44. TASC Project-Team	63
	45. TEA Project-Team	64
	46. TOCCATA Project-Team	66
	47. VEGAS Project-Team	67
	48. VERIDIS Project-Team	68
Appli	ED MATHEMATICS, COMPUTATION AND SIMULATION	
	49. ACUMES Team	69
	50. APICS Project-Team	72
	51. ASPI Project-Team	77
	52. BIPOP Project-Team	78
	53. CAGIRE Team	80
	54. CARDAMOM Team	81
	55. COMMANDS Project-Team	87
	56. CQFD Project-Team	88
	57. DEFI Project-Team	89
	58. DISCO Project-Team	92
	59. DOLPHIN Project-Team	93
	60. ECUADOR Project-Team	95
	61. GAMMA3 Project-Team (section vide)	98
	62. GECO Project-Team	99
	63. GEOSTAT Project-Team	03
	64. I4S Project-Team	04
	65. INOCS Team	06
	66. IPSO Project-Team (section vide)	07
	67. MATHERIALS Project-Team	08
	68. MATHRISK Project-Team	11
	69. Maxplus Team	12
	70. MCTAO Project-Team	16
	71. MEMPHIS Team	19
	72. MEPHYSTO Team	23
	73. MISTIS Project-Team	25
	74. MODAL Project-Team	26
	75. MOKAPLAN Project-Team	27
	76. NACHOS Project-Team	31
	77. NANO-D Project-Team	37
	78. NECS Project-Team	40
	79. NON-A Project-Team (section vide)	42
	80. POEMS Project-Team	43

81. QUANTIC Project-Team
82. RAPSODI Team
83. REALOPT Project-Team
84. SELECT Project-Team
85. SEQUEL Project-Team
86. SIERRA Project-Team 155
87. SPHINX Team
88. TAO Project-Team
89. TOSCA Project-Team
DIGITAL HEALTH, BIOLOGY AND EARTH
90. ABS Project-Team (section vide)
91. AIRSEA Team
92. AMIB Project-Team (section vide)
93. ANGE Project-Team 165
94. ARAMIS Project-Team
95. ASCLEPIOS Project-Team (section vide)
96. ATHENA Project-Team 170
97. BEAGLE Project-Team171
98. BIGS Project-Team 172
99. BIOCORE Project-Team 174
100. BONSAI Project-Team
101. CAPSID Project-Team 178
102. CARMEN Team
103. CASTOR Project-Team (section vide)
104. CLIME Project-Team 182
105. COFFEE Project-Team
106. DEMAR Project-Team (section vide)
107. DRACULA Project-Team 187
108. DYLISS Project-Team 192
109. ERABLE Project-Team 194
110. FLUMINANCE Project-Team 195
111. GALEN Project-Team
112. GENSCALE Project-Team 197
113. IBIS Project-Team (section vide)
114. LEMON Team
115. LIFEWARE Project-Team
116. M3DISIM Team
117. MAGIQUE-3D Project-Team 202
118. MAMBA Project-Team 204
119. MIMESIS Team (section vide)
120. MNEMOSYNE Project-Team

	121. MODEMIC Project-Team	
	122. Monc Team	211
	123. MORPHEME Project-Team (section vide)	. 212
	124. MYCENAE Project-Team	213
	125. NEUROMATHCOMP Project-Team (section vide)	. 215
	126. NEUROSYS Project-Team	216
	127. NUMED Project-Team (section vide)	218
	128. PARIETAL Project-Team	. 219
	129. PLEIADE Team	. 221
	130. POPIX Team	. 223
	131. REO Project-Team	. 224
	132. SAGE Project-Team	226
	133. SERENA Team	. 227
	134. SERPICO Project-Team	. 228
	135. SISTM Project-Team	. 230
	136. STEEP Project-Team (section vide)	. 231
	137. TONUS Team	. 232
	138. VIRTUAL PLANTS Project-Team (section vide)	. 233
	139. VISAGES Project-Team	. 234
NETWO	ORKS, SYSTEMS AND SERVICES, DISTRIBUTED COMPUTING	
	140. ALPINES Project-Team	. 235
	141. ASAP Project-Team (section vide)	. 237
	142. ASCOLA Project-Team	238
	143. ATLANMODELS Team	. 240
	144. AVALON Project-Team	241
	145. CIDRE Project-Team	243
	146. COAST Project-Team (section vide)	244
	147. COATI Project-Team	. 245
	148. CTRL-A Team	246
	149. DANTE Project-Team	
	150. DIANA Project-Team (section vide)	250
	151. DIONYSOS Project-Team (section vide)	. 251
	152. DIVERSE Project-Team	. 252
	153. DYOGENE Project-Team	253
	154. EVA Team	255
	155. FOCUS Project-Team	. 257
	156. FUN Project-Team	. 258
	157. GANG Project-Team	. 259
	158. HIEPACS Project-Team	260
	159. INDES Project-Team	. 263
	160. INFINE Team (section vide)	264

161. KERDATA Project-Team	
162. MADYNES Project-Team	
163. MAESTRO Project-Team	267
164. MESCAL Project-Team	
165. MIMOVE Team	
166. MOAIS Project-Team (section vide)	271
167. MUSE Team	272
168. MYRIADS Project-Team	275
169. PHOENIX Project-Team	276
170. RAP Project-Team (section vide)	278
171. REGAL Project-Team (section vide)	279
172. RMOD Project-Team	280
173. ROMA Project-Team	281
174. SCALE Team	
175. SOCRATE Project-Team (section vide)	284
176. SPIRALS Project-Team	285
177. STORM Team	286
178. TACOMA Team	287
179. TADAAM Team	289
180. URBANET Team	290
181. WHISPER Project-Team	292
Perception, Cognition and Interaction	
182. ALICE Project-Team	293
183. ALPAGE Project-Team	294
184. AVIZ Project-Team	297
185. AYIN Team	298
186. Chroma Team	
187. DAHU Project-Team	301
188. DEFROST Team	302
189. DREAM Project-Team	304
190. EX-SITU Team	306
191. EXMO Project-Team	307
192. FLOWERS Project-Team	
193. GRAPHDECO Project-Team	309
194. GRAPHIK Project-Team	
195. HEPHAISTOS Project-Team	
196. HYBRID Project-Team	
197. ILDA Team	
198. IMAGINE Project-Team (section vide)	
199. LAGADIC Project-Team	
200. LARSEN Team	316

201. LEAR Project-Team	317
202. LINKMEDIA Project-Team	
203. LINKS Team	
204. MAGNET Team	
205. MAGRIT Project-Team	
206. MANAO Project-Team	
207. MAVERICK Project-Team (section vide)	
208. MIMETIC Project-Team	
209. MINT Project-Team (section vide)	
210. Mjolnir Team	
211. MORPHEO Project-Team	
212. MULTISPEECH Project-Team	
•	
213. OAK Project-Team	
214. ORPAILLEUR Project-Team	
215. PANAMA Project-Team	
216. PERCEPTION Project-Team (section vide)	
217. POTIOC Project-Team	
218. PRIMA Project-Team (section vide)	
219. RITS Project-Team	
220. SEMAGRAMME Project-Team	
221. SIROCCO Project-Team	
222. SMIS Project-Team	
223. STARS Project-Team	
224. TITANE Project-Team	
225. TYREX Project-Team	350
226. WILLOW Project-Team	351
227. WIMMICS Project-Team	352
228 ZENITH Project-Team	354

ALF Project-Team

4. Application Domains

4.1. Any computer usage

The ALF team is working on the fundamental technologies for computer science: processor architecture, performance-oriented compilation and guaranteed response time for real-time. The research results may have impacts on any application domain that requires high performance execution (telecommunication, multimedia, biology, health, engineering, environment ...), but also on many embedded applications that exhibit other constraints such as power consumption, code size and guaranteed response time. Our research activity implies the development of software prototypes.

ANTIQUE

ANTIQUE Project-Team

4. Application Domains

4.1. Verification of safety critical embedded software

The verification of safety critical embedded software is a very important application domain for our group. First, this field requires a high confidence in software, as a bug may cause disastrous events. Thus, it offers an obvious opportunity for a strong impact. Second, such software usually have better specifications and a better design than many other families of software, hence are an easier target for developing new static analysis techniques (which can later be extended for more general, harder to cope with families of programs). This includes avionics, automotive and other transportation systems, medical systems...

For instance, the verification of avionics systems represent a very high percentage of the cost of an airplane (about 30 % of the overall airplane design cost). The state of the art development processes mainly resort to testing in order to improve the quality of software. Depending on the level of criticality of a software (at highest levels, any software failure would endanger the flight) a set of software requirements are checked with test suites. This approach is both costly (due to the sheer amount of testing that needs to be performed) and unsound (as errors may go unnoticed, if they do not arise on the test suite).

By contrast, static analysis can ensure higher software quality at a lower cost. Indeed, a static analyzer will catch all bugs of a certain kind. Moreover, a static analysis run typically lasts a few hours, and can be integrated in the development cycle in a seamless manner. For instance, ASTRÉE successfully verified the absence of runtime error in several families of safety critical fly-by-wire avionic software, in at most a day of computation, on standard hardware. Other kinds of synchronous embedded software have also been analyzed with good

In the future, we plan to greatly extend this work so as to verify other families of embedded software (such as communication, navigation and monitoring software) and other families of properties (such as security and liveness properties).

Embedded software in charge of communication, navigation, monitoring typically rely on a parallel structure, where several threads are executed in parallel, and manage different features (input, output, user interface, internal computation, logging...). This structure is also often found in automotive software. An even more complex case is that of distributed systems, where several separate computers are run in parallel and take care of several sub-tasks of a same feature, such as braking. Such a logical structure is not only more complex than the synchronous one, but it also introduces new risks and new families of errors (deadlocks, data-races...). Moreover, such less well designed, and more complex embedded software often utilizes more complex datastructures than synchronous programs (which typically only use arrays to store previous states) and may use dynamic memory allocation, or build dynamic structures inside static memory regions, which are actually even harder to verify than conventional dynamically allocated data structures. Complex data-structures also introduce new kinds of risks (the failure to maintain structural invariants may lead to runtime errors, non termination, or other software failures). To verify such programs, we will design additional abstract domains, and develop new static analysis techniques, in order to support the analysis of more complex programming language features such as parallel and concurrent programming with threads and manipulations of complex data structures. Due to their size and complexity, the verification of such families of embedded software is a major challenge for the research community.

Furthermore, embedded systems also give rise to novel security concerns. It is in particular the case for some aircraft-embedded computer systems, which communicate with the ground through untrusted communication media. Besides, the increasing demand for new capabilities, such as enhanced on-board connectivity, e.g. using mobile devices, together with the need for cost reduction, leads to more integrated and interconnected systems. For instance, modern aircrafts embed a large number of computer systems, from safety-critical cockpit avionics to passenger entertainment. Some systems meet both safety and security requirements. Despite thorough segregation of subsystems and networks, some shared communication resources raise the concern of possible intrusions. Because of the size of such systems, and considering that they are evolving entities, the only economically viable alternative is to perform automatic analyses. Such analyses of security

and confidentiality properties have never been achieved on large-scale systems where security properties interact with other software properties, and even the mapping between high-level models of the systems and the large software base implementing them has never been done and represents a great challenge. Our goal is to prove empirically that the security of such large scale systems can be proved formally, thanks to the design of dedicated abstract interpreters.

The long term goal is to make static analysis more widely applicable to the verification of industrial software.

4.2. Static analysis of software components and libraries

An important goal of our work is to make static analysis techniques easier to apply to wider families of software. Then, in the longer term, we hope to be able to verify less critical, yet very commonly used pieces of software. Those are typically harder to analyze than critical software, as their development process tends to be less rigorous. In particular, we will target operating systems components and libraries. As of today, the verification of such programs is considered a major challenge to the static analysis community.

As an example, most programming languages offer Application Programming Interfaces (API) providing ready-to-use abstract data structures (e.g., sets, maps, stacks, queues, etc.). These APIs, are known under the name of containers or collections, and provide off-the-shelf libraries of high level operations, such as insertion, deletion and membership checks. These container libraries give software developers a way of abstracting from low-level implementation details related to memory management, such as dynamic allocation, deletion and pointer handling or concurrency aspects, such as thread synchronization. Libraries implementing data structures are important building bricks of a huge number of applications, therefore their verification is paramount. We are interested in developing static analysis techniques that will prove automatically the correctness of large audience libraries such as Glib and Threading Building Blocks.

4.3. Biological systems

Computer Science takes a more and more important role in the design and the understanding of biological systems such as signaling pathways, self assembly systems, DNA repair mechanisms. Biology has gathered large data-bases of facts about mechanistic interactions between proteins, but struggles to draw an overall picture of how these systems work as a whole. High level languages designed in Computer Science allow to collect these interactions in integrative models, and provide formal definitions (i.e., semantics) for the behavior of these models. This way, modelers can encode their knowledge, following a bottom-up discipline, without simplifying a priori the models at the risk of damaging the key properties of the system. Yet, the systems that are obtained this way suffer from combinatorial explosion (in particular, in the number of different kinds of molecular components, which can arise at run-time), which prevents from a naive computation of their behavior.

We develop various abstract interpretation-based analyses, tailored to different phases of the modeling process. We propose automatic static analyses in order to detect inconsistencies in the early phases of the modeling process. These analyses are similar to the analysis of classical safety properties of programs. They involve both forward and backward reachability analyses as well as causality analyses, and can be tuned at different levels of abstraction. We also develop automatic static analyses so as to identify the key elements in the dynamics of these models. The results of these analyses are sent to another tool, which is used to automatically simplify the models. The correctness of this simplification process is proved by the means of abstract interpretation: this ensures formally that the simplification preserves the quantitative properties that have been specified beforehand by the modeler. The whole pipeline is parameterized by a large choice of abstract domains which exploits different features of the high level description of models.

AOSTE Project-Team

4. Application Domains

4.1. System Engineering Environments

Participants: Robert de Simone, Julien Deantoni, Frédéric Mallet, Marie-Agnès Peraldi Frati.

In the case of Embedded and Cyber-Physical Systems, the cyber/digital design of discrete controlers is only a part of a larger design process, we other aspects of the physical environment need to be condidered as well, involving constraints and requirements on the global system (people even talk of Systems of Systems. Dedicated environments are now being defined, also considering system life-cycle and component reuse in this larger setting, under the name of Atelier Génie Système (in French). Such efforts usually involve large industrial end-users, together with software houses of tool vendors, and academic partners altogether. An instance of such environment is the Cappella (open-source, Eclipse) environment, promoted by the Clarity project and its associated consortium 9.2.3.2.

4.2. Many-Core Embedded Architectures

Participants: Robert de Simone, Dumitru Potop Butucaru, Liliana Cucu, Yves Sorel.

The AAA approach (fitting embedded applications onto embedded architectures) requires a sufficiently precise description of (a model of) the architecture (description platform). Such platforms become increasingly heterogeneous, and we had to consider a number of emerging ones with that goal in mind, such as Kalray MPPA (in the CAPACITES project 9.2.3.3, IntelCore dual CPU/GPU structure in a collaboration with Kontron 8.1.1, ARM big.LITTLE architecture in the course of the HOPE ANR project 9.2.1.1, or a dedicated supercomputer based on Network-on-Board interconnect in the Clistine project 9.2.2.2.

4.3. Transportation and the avionic domain

Participants: Robert de Simone, Julien Deantoni, Frédéric Mallet, Marie-Agnès Peraldi Frati, Dumitru Potop Butucaru, Liliana Cucu, Yves Sorel.

A large number of our generic activities, both on modeling and design, and on analysis and implementation of real-time embedded systems, found specific applications in the avionic field (with partners such as Airbus, Thales, Safran,...), while other targets remained less attainable (car industry for instance).

ARIC Project-Team

4. Application Domains

4.1. Floating-point and Validated Numerics

Our expertise on validated numerics is useful to analyze and improve, and guarantee the quality of numerical results in a wide range of applications including:

- scientific simulation;
- global optimization;
- control theory.

Much of our work, in particular the development of correctly rounded elementary functions, is critical to the

• reproducibility of floating-point computations.

4.2. Cryptography, Cryptology, Communication Theory

Lattice reduction algorithms have direct applications in

- public-key cryptography;
- diophantine equations;
- communications theory.

ATEAMS Project-Team (section vide)

CAIRN Project-Team

4. Application Domains

4.1. Panorama

keywords: telecommunications, wireless communications, wireless sensor networks, content-based image retrieval, video coding, intelligent transportation systems, automotive, security

Our research is based on realistic applications, in order to both discover the main needs created by these applications and to invent realistic and interesting solutions.

Wireless Communication is our privileged application domain. Our research includes the prototyping of (subsets of) such applications on reconfigurable and programmable platforms. For this application domain, the high computational complexity of the 5G Wireless Communication Systems calls for the design of high-performance and energy-efficient architectures. In Wireless Sensor Networks (WSN), where each wireless node is expected to operate without battery replacement for significant periods of time, energy consumption is the most important constraint. Sensor networks are a very dynamic domain of research due, on the one hand, to the opportunity to develop innovative applications that are linked to a specific environment, and on the other hand to the challenge of designing totally autonomous communicating objects.

Other important fields are also considered: hardware cryptographic and security modules, high-speed true-random number generation, content-based image retrieval, automotive, and multimedia processing.

CAMUS Team

4. Application Domains

4.1. Application Domains

Performance being our main objective, our developments' target applications are characterized by intensive computation phases. Such applications are numerous in the domains of scientific computations, optimization, data mining and multimedia.

Applications involving intensive computations are necessarily high energy consumers. However this consumption can be significantly reduced thanks to optimization and parallelization. Although this issue is not our prior objective, we can expect some positive effects for the following reasons:

- Program parallelization tries to distribute the workload equally among the cores. Thus an equivalent
 performance, or even a better performance, to a sequential higher frequency execution on one single
 core, can be obtained.
- Memory and memory accesses are high energy consumers. Lowering the memory consumption, lowering the number of memory accesses and maximizing the number of accesses in the low levels of the memory hierarchy (registers, cache memories) have a positive consequence on execution speed, but also on energy consumption.

CARAMEL Project-Team

4. Application Domains

4.1. Cryptology

The first application domain for our research is cryptology. This includes cryptography (constructive side) and cryptanalysis (breaking systems). For the cryptanalysis part, although it has practical implications, we do not expect any transfer in the classical sense of the term: it is more directed to governmental agencies and the end-users who build their trust, based on the cryptanalysis effort. It is noteworthy that analysis documents from governmental agencies (see e.g., [24]) use cryptanalysis results as their key material.

4.1.1. Cryptography

Our cryptographic contributions are related to multiple facets of the large realm of curve-based cryptology. While it is quite clear that enough algorithms exist in order to provide cryptographers with elliptic curves having a suitably hard discrete logarithm (as found in cryptographic standards for instance), one must bear in mind that refinements of the requirements and extensions to curves of higher genus raise several interesting problems. Our work contributes to expanding the cryptographer's capabilities in these areas.

In the context of genus-2 curves, our work aims at two goals. First, improvements on the group law on selected curves yield better speed for the associated cryptosystems. The cryptographic primitives, and then the whole suite of cryptographic protocols built upon such curves would be accelerated. The second goal is the expansion of the set of curves that can be built given a set of desired properties. Using point counting algorithms for arbitrary curves, a curve offering a 128-bit security level, together with nice properties for fast arithmetic, has been computed by CARAMEL [5]. Another natural target for construction of curves for cryptography is also the suitability of curves for pairings. We expect to be able to compute such curves.

Important objects related to the structure of genus-2 curves are the isogenies between their Jacobians. Computing such isogenies is a key point in understanding important underlying objects such as the endomorphism ring, and can be useful in various situations, including for cryptographic or cryptanalytic applications. The team has produced important results in this context [7], [3].

4.1.2. Cryptanalysis

Our research on cryptanalysis is important for the cryptographic industry: by detecting weak instances, and setting new records we contribute to the definition of recommended families of systems together with their key sizes. The user's confidence in a cryptographic primitive is also related to how well the underlying problem is studied by researchers.

In particular, our involvement in computations with "NFS-like" algorithms encompasses of course the task of assessing the computational limits for integer factorization (as was done by the team by factoring RSA-768 [6]) and discrete-logarithm computations (as was done by the team in 2013 for the field $GF(2^{809})$ [25]). The impact of the former is quite clear as it concerns the RSA algorithm; record-sized computations attract broad interest and determine updates on key-length recommendations. The latter are particularly important for pairing-based cryptography, since, in this context, one naturally encounters discrete-logarithm problems in extension fields of large degree. To this regard the breakthrough provided by the new quasi-polynomial discrete logarithm [26] is of course of utmost importance.

4.2. Computer Algebra Systems

Some of our software libraries are being used by computer algebra systems. Most of those libraries are free software, with a license that allows proprietary systems to link them. This gives us a maximal visibility, with a large number of users.

4.2.1. Magma

Magma is a very large computational algebra package. It provides a mathematically rigorous environment for computing with algebraic, number-theoretic, combinatorial, and geometric objects. It is developed in Sydney, by the team around John Cannon. It is non-commercial (in the sense that its goal is not to make profit), but is not freely distributed and is not open-source.

Several members of the team have visited Sydney — several years ago — to contribute to the development of Magma, by implementing their algorithms or helping in integrating their software. Our link to Magma exists also via the libraries it uses: it currently links GNU MPFR and GNU MPC for its floating-point calculations, and links GMP-ECM as part of its factorization suite.

4.2.2. Pari/GP

Pari/GP is a computational number theory system that is composed of a C library and an interpreter on top of it. It is developed in Bordeaux, where Karim Belabas from the LFANT project-team is the main maintainer. Its license is GPL. Although we do not directly contribute to this package, we have good contact with the developers.

4.2.3. Sage

Sage is a fairly large scale and open-source computer algebra system written in Python. Sage aggregates a large amount of existing free software, aiming at selecting the fastest free software package for each given task. The motto of Sage is that instead of "reinventing the wheel" all the time, Sage is "building the car". To date, Sage links GNU MPFR, GMP-ECM, and GNU MPC as standard packages.

4.3. Standardization

4.3.1. Floating-point arithmetic

The IEEE 754 standard for floating-point arithmetic was revised in 2008. The main new features are some new formats for decimal computations, and the recommendation of correctly rounded transcendental functions. The new decimal formats should not have an impact on our work, since we either use integer-only arithmetic, or arbitrary-precision binary floating-point arithmetic through the GNU MPFR library.

A new standard (P1788) is currently under construction for interval arithmetic. We are not officially involved in this standard, but we follow the discussions, to check in particular that the proposed standard will also cover arbitrary precision (interval) arithmetic.

CARTE Project-Team

4. Application Domains

4.1. Computer Virology

4.1.1. The theoretical track

It is rightful to wonder why there are only a few fundamental studies on computer viruses while it is one of the important flaws in software engineering. The lack of theoretical studies explains maybe the weakness in the anticipation of computer diseases and the difficulty to improve defenses. For these reasons, we do think that it is worth exploring fundamental aspects, and in particular self-reproducing behaviors.

4.1.2. The virus detection track

The crucial question is how to detect viruses or self-replicating malwares. Cohen demonstrated that this question is undecidable. The anti-virus heuristics are based on two methods. The first one consists in searching for virus signatures. A signature is a regular expression, which identifies a family of viruses. There are obvious defects. For example, an unknown virus will not be detected, like ones related to a 0-day exploit. We strongly suggest to have a look at the independent audit [52] in order to understand the limits of this method. The second one consists in analyzing the behavior of a program by monitoring it. Following [54], this kind of methods is not yet really implemented. Moreover, the large number of false-positive implies this is barely usable. To end this short survey, intrusion detection encompasses virus detection. However, unlike computer virology, which has a solid scientific foundation as we have seen, the IDS notion of "malwares" with respect to some security policy is not well defined. The interested reader may consult [72].

4.1.3. The virus protection track

The aim is to define security policies in order to prevent malware propagation. For this, we need (i) to define what is a computer in different programming languages and setting, (ii) to take into consideration resources like time and space. We think that formal methods like rewriting, type theory, logic, or formal languages, should help to define the notion of a formal immune system, which defines a certified protection.

4.1.4. The experimentation track

This study on computer virology leads us to propose and construct a "high security lab" in which experiments can be done in respect with the French law.

4.2. Computations and Dynamical Systems

4.2.1. Continuous computation theories

Understanding computation theories for continuous systems leads to studying hardness of verification and control of these systems. This has been used to discuss problems in fields as diverse as verification (see e.g., [36]), control theory (see e.g., [44]), neural networks (see e.g., [73]), and so on. We are interested in the formal decidability of properties of dynamical systems, such as reachability [64], the Skolem-Pisot problem [40], the computability of the ω -limit set [63]. Those problems are analogous to verification of safety properties.

Contrary to computability theory, complexity theory over continuous spaces is underdeveloped and not well understood. A central issue is the choice of the representation of objects by discrete data and its effects on the induced complexity notions. As for computability, it is well known that a representation is gauged by the topology it induces. However more structure is needed to capture the complexity notions: topologically equivalent representations may induce different classes of polynomial-time computable objects, e.g., developing a sound complexity theory over continuous structures would enable us to make abstract computability results more applicable by analyzing the corresponding complexity issues. We think that the preliminary step towards such a theory is the development of higher-order complexity, which we are currently carrying out.

In contrast with the discrete setting, it is of utmost importance to compare the various models of computation over the reals, as well as their associated complexity theories. In particular, we focus on the General Purpose Analog Computer of Claude Shannon [74], on recursive analysis [79], on the algebraic approach [70] and on Markov computability [66]. A crucial point for future investigations is to fill the gap between continuous and discrete computational models. This is one deep motivation of our work on computation theories for continuous systems.

4.2.2. Analysis and verification of adversary systems

The other research direction on dynamical systems we are interested in is the study of properties of adversary systems or programs, i.e., of systems whose behavior is unknown or indistinct, or which do not have classical expected properties. We would like to offer proof and verification tools, to guarantee the correctness of such systems. On one hand, we are interested in continuous and hybrid systems. In a mathematical sense, a hybrid system can be seen as a dynamical system, whose transition function does not satisfy the classical regularity hypotheses, like continuity, or continuity of its derivative. The properties to be verified are often expressed as reachability properties. For example, a safety property is often equivalent to (non-)reachability of a subset of unsure states from an initial configuration, or to stability (with its numerous variants like asymptotic stability, local stability, mortality, etc ...). Thus we will essentially focus on verification of these properties in various classes of dynamical systems.

We are also interested in rewriting techniques, used to describe dynamic systems, in particular in the adversary context. As they were initially developed in the context of automated deduction, the rewriting proof techniques, although now numerous, are not yet adapted to the complex framework of modelization and programming. An important stake in the domain is then to enrich them to provide realistic validation tools, both in providing finer rewriting formalisms and their associated proof techniques, and in developing new validation concepts in the adversary case, i.e., when usual properties of the systems like, for example, termination are not verified. For several years, we have been developing specific procedures for property proofs of rewriting, for the sake of programming, in particular with an inductive technique, already applied with success to termination under strategies [55], [56], [57], to weak termination [58], sufficient completeness [59] and probabilistic termination [61]. The last three results take place in the context of adversary computations, since they allow for proving that even a divergent program, in the sense where it does not terminate, can give the expected results. A common mechanism has been extracted from the above works, providing a generic inductive proof framework for properties of reduction relations, which can be parametrized by the property to be proved [60], [62]. Provided program code can be translated into rule-based specifications, this approach can be applied to correctness proof of software in a larger context. A crucial element of safety and security of software systems is the problem of resources. We are working in the field of Implicit Computational Complexity. Interpretation based methods like Quasi-interpretations (QI) or sup-interpretations, are the approach we have been developing these last years [67], [68], [69]. Implicit complexity is an approach to the analysis of the resources that are used by a program. Its tools come essentially from proof theory. The aim is to compile a program while certifying its complexity.

CASCADE

CASCADE Project-Team

4. Application Domains

4.1. Privacy for the Cloud

Many companies have already started the migration to the Cloud and many individuals share their personal informations on social networks. While some of the data are public information, many of them are personal and even quite sensitive. Unfortunately, the current access mode is purely right-based: the provider first authenticates the client, and grants him access, or not, according to his rights in the access-control list. Therefore, the provider itself not only has total access to the data, but also knows which data are accessed, by whom, and how: privacy, which includes secrecy of data (confidentiality), identities (anonymity), and requests (obliviousness), should be enforced. Moreover, while high availability can easily be controlled, and thus any defect can immediately be detected, failures in privacy protection can remain hidden for a long time. The industry of the Cloud introduces a new implicit trust requirement: nobody has any idea at all of where and how his data are stored and manipulated, but everybody should blindly trust the providers. The providers will definitely do their best, but this is not enough. Privacy-compliant procedures cannot be left to the responsibility of the provider: however strong the trustfulness of the provider may be, any system or human vulnerability can be exploited against privacy. This presents too huge a threat to tolerate. The distribution of the data and the secrecy of the actions must be given back to the users. It requires promoting privacy as a global security notion.

In order to protect the data, one needs to encrypt it. Unfortunately, traditional encryption systems are inadequate for most applications involving big, complex data. Recall that in traditional public key encryption, a party encrypts data to a single known user, which lacks the expressiveness needed for more advanced data sharing. In enterprise settings, a party will want to share data with groups of users based on their credentials. Similarly, individuals want to selectively grant access to their personal data on social networks as well as documents and spreadsheets on Google Docs. Moreover, the access policy may even refer to users who do not exist in the system at the time the data is encrypted. Solving this problem requires an entirely new way of encrypting data.

A first natural approach would be **fully homomorphic encryption** (FHE, see above), but a second one is also **functional encryption**, that is an emerging paradigm for public-key encryption: it enables more fine-grained access control to encrypted data, for instance, the ability to specify a decryption policy in the ciphertext so that only individuals who satisfy the policy can decrypt, or the ability to associate keywords to a secret key so that it can only decrypt documents containing the keyword. Our work on functional encryption centers around two goals:

- 1. to obtain more efficient pairings-based functional encryption;
- 2. and to realize new functionalities and more expressive functional encryption schemes.

Another approach is **secure multi-party computation protocols**, where interactivity might provide privacy in a more efficient way. Recent implicit interactive proofs of knowledge can be a starting point. But stronger properties are first expected for improving privacy. They can also be integrated into new ad-hoc broadcast systems, in order to distribute the management among several parties, and eventually remove any trust requirements.

Strong privacy for the Cloud would have a huge societal impact since it would revolutionize the trust model: users would be able to make safe use of outsourced storage, namely for personal, financial and medical data, without having to worry about failures or attacks of the server.

CASCADE

4.2. Hardware Security

Cryptography is only one component of information security, but it is a crucial component. Without cryptography, it would be impossible to establish secure communications between users over insecure networks like the Internet. In particular, public-key cryptography (invented by Diffie and Hellman in 1976) enables to establish secure communications between users who have never met physically before. One can argue that companies like E-Bay or Amazon could not exist without public-key cryptography. Since 30 years the theory of cryptography has developed considerably. However cryptography is not only a theoretical science; namely at some point the cryptographic algorithms must be implemented on physical devices, such as PCs, smart cards or RFIDs. Then problems arise: in general smart cards and RFIDs have limited computing power and leak information through power consumption and electro-magnetic radiations. Similarly a PC can be exposed to various computer viruses which can leak private informations to a remote attacker. Such information leakage can be exploited by an attacker; this is called a side-channel attack. It is well known that a cryptographic algorithm which is perfectly secure in theory can be completely insecure in practice if improperly implemented.

In general, countermeasures against side-channel attacks are heuristic and can only make a particular implementation resist particular attacks. Instead of relying on ad-hoc security patches, a better approach consists in working in the framework of provable security. The goal is to prove that a cryptosystem does not only resist specific attacks but can resist any possible side-channel attack. As already demonstrated with cryptographic protocols, this approach has the potential to significantly increase the security level of cryptographic products. Recently the cryptography research community has developed new security models to take into account these practical implementation attacks; the most promising such model is called the leakage-resilient model.

Therefore, our goal is to define new security models that take into account any possible side-channel attack, and then to design new cryptographic schemes and countermeasures with a proven security guarantee against side-channel attacks.

CASSIS Project-Team

4. Application Domains

4.1. Verification of Security Protocols

Security protocols such as SET, TLS and Kerberos, are designed for establishing the confidence of electronic transactions. They rely on cryptographic primitives, the purpose of which is to ensure integrity of data, authentication or anonymity of participants, confidentiality of transactions, etc.

Experience has shown that the design of those protocols is often erroneous, even when assuming that cryptographic primitives are perfect, i.e., that an encoded message cannot be decrypted without the appropriate key. An intruder can intercept, analyze and modify the exchanged messages with very few computations and therefore, for example, generate important economic damage.

Analyzing cryptographic protocols is complex because the set of configurations to consider is very large, and can even be *infinite*: one has to consider any number of sessions, any size of messages, sessions interleaving, some algebraic properties of encryption or data structures.

Our objective is to automatize as much as possible the analysis of protocols starting from their specification. This consists in designing a tool that is easy to use, enables the specification of a large number of protocols thanks to a standard high-level language, and can either look for flaws in a given protocol or check whether it satisfies a given property. Such a tool is essential for verifying existing protocols, but also for helping in designing new ones. For our tool to be easy to use, it has to provide a graphical interface allowing a user to easily perform push-button verification.

Our tools for verifying security protocols are available as components of the AVISPA and AVANTSSAR platforms.

4.2. Automated Boundary Testing from Formal Specifications

We have introduced a new approach for test generation from set-oriented formal specifications: the BZ-TT method. This method is based on Constraint Logic Programming (CLP) techniques. The goal is to test every operation of the system at every boundary state using all input boundary values of that operation. It has been validated in several industry case studies for smart card OS and application validation (GSM 11-11 standard [65] and Java Card Virtual Machine Transaction mechanism [67]), information systems and for embedded software [78].

This test generation method can be summed up as follows: from the formal model, the system computes boundary values to create boundary states; test cases are generated by traversal of the state space with a preamble part (sequences of operations from the initial state to a boundary state), a body part (critical invocations), an identification part (observation and oracle state computation) and a post-amble part (return path to initial or boundary state). Then, an executable test script file is generated using a test pattern and a table of correspondence between abstract operations (from the model) and concrete ones. This approach differs in several main points from previous works (e.g., [72]): first, using boundary goals as test objectives avoids the complete construction of the reachability graph; second, this process is fully automated and the test engineer could just drive it at the boundary value computation level or for the path computation.

The BZ-TT method is fully supported by the BZ-Testing-Tools tool-set. This environment is a set of tools dedicated to animation and test cases generation from B, Z or State-Chart formal specifications. It is based on the CLPS constraint solver, able to simulate the execution of the specification. By execution, we mean that the solver computes a so-called constrained state by applying the pre- and post-condition of operations. A constrained state is a constraint store where state variables and also input and output variables support constraints.

One orientation of the current work is to go beyond the finiteness assumption limitations by using symbolic constraint propagation during the test generation process. Second orientation is to extend the result to object oriented specifications as UML/OCL. Third orientation is to adapt the method to security aspect.

4.3. Program Debugging and Verification

Catching bugs in programs is difficult and time-consuming. The effort of debugging and proving correct even small units of code can surpass the effort of programming. Bugs inserted while "programming in the small" can have dramatic consequences for the consistency of a whole software system as shown, e.g., by viruses which can spread by exploiting buffer overflows, a bug which typically arises while coding a small portion of code. To detect this kind of errors, many verification techniques have been put forward such as static analysis and software model checking.

Recently, in the program verification community, there seems to be a growing demand for more declarative approaches in order to make the results of the analysis readily available to the end user. To meet this requirement, a growing number of program verification tools integrate some form of theorem proving.

The goals of our research are twofold. First, we perform theoretical investigations of various combinations of propositional and first-order satisfiability checking in order to automate the theorem proving activity required to solve a large class of program analysis problems which can be encoded as first-order formulae. Second, we experimentally investigate how our techniques behave on real problems in order to make program analysis more precise and scalable. Building tools capable of providing a good balance between precision and scalability is one of the crucial challenges to transfer theorem proving technology to the industrial domains.

4.4. Verification of Web Services

Driven by rapidly changing requirements and business needs, IT systems and applications are undergoing a paradigm shift: components are replaced by services, distributed over the network, and composed and reconfigured dynamically in a demand-driven way into service-oriented architectures. Exposing services in future network infrastructures means a wide range of trust and security issues need to be adressed. Solving them is extremely hard since making the service components trustworthy is not sufficient: composing services leads to new subtle and dangerous vulnerabilities due to interference between component services and policies, the shared communication layer, and application functionality. Thus, one needs validation of both the service components and their composition into secure service architectures. In this context, there is an obvious need of applying formal methods. Our project aims at applying our proof and constraint solving techniques to reason on web services. More precisely, we focus on the composition problem in the presence of security policies.

4.5. Model-Checking of Collaborative Systems

Collaborative systems constitute a class of distributed systems where real human interactions are predominant. In these systems, users at geographically distributed sites interact by simultaneously manipulating shared objects like text documents, XML trees, filesystems, etc. To improve data availability, the shared objects are replicated so that the users update their local replicas and exchange their updates between them. One of the main challenges here is how to ensure the data consistency when the updates are executed in arbitrary orders at different replicas. Operational Transformation (OT) is an optimistic technique which has been proposed to overcome the consistency problem. This technique consists of an application-dependent protocol to enforce the out-of-order execution of updates even though these updates do not naturally commute. The data consistency relies crucially on the correctness of OT protocols whose proof is extremely hard. Indeed, possibly infinitely many cases should be tested. Our research work aims at applying symbolic model-checking techniques to automatically verify OT protocols. Most importantly, we are interested in finding under which conditions the model-checking problem can be reduced to a finite-state model.

CELTIQUE Project-Team (section vide)

COMETE Project-Team

4. Application Domains

4.1. Security and privacy

Participants: Konstantinos Chatzikokolakis, Catuscia Palamidessi, Ehab Elsalamouny, Marco Stronati, Joris Lamare.

The aim of our research is the specification and verification of protocols used in mobile distributed systems, in particular security protocols. We are especially interested in protocols for *information hiding*.

Information hiding is a generic term which we use here to refer to the problem of preventing the disclosure of information which is supposed to be secret or confidential. The most prominent research areas which are concerned with this problem are those of *secure information flow* and of *privacy*.

Secure information flow refers to the problem of avoiding the so-called *propagation* of secret data due to their processing. It was initially considered as related to software, and the research focussed on type systems and other kind of static analysis to prevent dangerous operations, Nowadays the setting is more general, and a large part of the research effort is directed towards the investigation of probabilistic scenarios and treaths.

Privacy denotes the issue of preventing certain information to become publicly known. It may refer to the protection of *private data* (credit card number, personal info etc.), of the agent's identity (*anonymity*), of the link between information and user (*unlinkability*), of its activities (*unobservability*), and of its *mobility* (*untraceability*).

The common denominator of this class of problems is that an adversary can try to infer the private information (*secrets*) from the information that he can access (*observables*). The solution is then to obfuscate the link between secrets and observables as much as possible, and often the use randomization, i.e. the introduction of *noise*, can help to achieve this purpose. The system can then be seen as a *noisy channel*, in the information-theoretic sense, between the secrets and the observables.

We intend to explore the rich set of concepts and techniques in the fields of information theory and hypothesis testing to establish the foundations of quantitive information flow and of privacy, and to develop heuristics and methods to improve mechanisms for the protection of secret information. Our approach will be based on the specification of protocols in the probabilistic asynchronous π -calculus, and the application of model-checking to compute the matrices associated to the corresponding channels.

COMPSYS Project-Team

4. Application Domains

4.1. Compilers for Embedded Computing Systems

The previous sections described our main activities in terms of research directions, but also places Compsys within the embedded computing systems domain, especially in Europe. We will therefore not come back here to the importance, for industry, of compilation and embedded computing systems design.

In terms of application domain, the embedded computing systems we consider are mostly used for multimedia: phones, TV sets, game platforms, etc. But, more than the final applications developed as programs, our main application is <u>the computer itself</u>: how the system is organized (architecture) and designed, how it is programmed (software), how programs are mapped to it (compilation and high-level synthesis).

The industry that can be impacted by our research is thus all the companies that develop embedded processors, hardware accelerators (programmable or not), embedded systems, and those (the same plus other) that need software tools to map applications to these platforms, i.e., that need to use or even develop programming languages, program optimization techniques, compilers, operating systems. Compsys do not focus on all these critical parts, but our activities are connected to them.

4.2. Users of HPC Platforms and Scientific Computing

The convergence between embedded computing systems and high-performance computing (HPC) technologies offers new computing platforms and tools for the users of scientific computing (e.g., people working in numerical analysis, in simulation, modeling, etc.). The proliferation of "cheap" hardware accelerators and multicores makes the "small HPC" (as opposed to computing centers with more powerful computers, grid computing, and exascale computing) accessible to a larger number of users, even though it is still difficult to exploit, due to the complexity of parallel programming, code tuning, interaction with compilers, which result from the multiple levels of parallelism and of memories in the recent architectures. The link between compiler and code optimization research (as in Compsys) and such users are still to be reinforced, both to guarantee the relevance of compiler research efforts with respect to application needs, and to help users better interact with compiler choices and understand performance issues.

The support of Labex MILYON (through its thematic quarters, such as the thematic quarter on compilation we organized in 2013 ⁰, or the upcoming 2016 thematic quarter on high-performance computing) and the activities of the LyonCalcul initiative ⁰ are means to get closer to users of scientific computing, even if it is too early to know if Compsys will indeed be directly helpful to them.

OThematic quarter on compilation: http://labexcompilation.ens-lyon.fr/

⁰Lyon Calcul federation: http://lyoncalcul.univ-lyon1.fr

CONVECS Project-Team

4. Application Domains

4.1. Application Domains

The theoretical framework we use (automata, process algebras, bisimulations, temporal logics, etc.) and the software tools we develop are general enough to fit the needs of many application domains. They are applicable to virtually any system or protocol that consists of distributed agents communicating by asynchronous messages. The list of recent case studies performed with the CADP toolbox (see in particular § 6.5) illustrates the diversity of applications:

- Bioinformatics: genetic regulatory networks, nutritional stress response, metabolic pathways,
- Component-based systems: Web services, peer-to-peer networks,
- Databases: transaction protocols, distributed knowledge bases, stock management,
- *Distributed systems:* virtual shared memory, dynamic reconfiguration algorithms, fault tolerance algorithms, cloud computing,
- Embedded systems: air traffic control, avionic systems, medical devices,
- *Hardware architectures:* multiprocessor architectures, systems on chip, cache coherency protocols, hardware/software codesign,
- Human-machine interaction: graphical interfaces, biomedical data visualization, plasticity,
- Security protocols: authentication, electronic transactions, cryptographic key distribution,
- Telecommunications: high-speed networks, network management, mobile telephony, feature interaction detection.

CORSE Team

4. Application Domains

4.1. Transfer

The main industrial sector related to the research activities of CORSE is the one of semi-conductor (programmable architectures spanning from embedded systems to servers). Obviously any computing application which has the objective of exploiting as much as possible the resources (in terms of high-performance but also low energy consumption) of the host architecture is intended to take advantage of advances in compiler and runtime technology. These applications are based over numerical kernels (linear algebra, FFT, convolution...) that can be adapted on a large spectrum of architectures. Members of CORSE already maintain fruitful and strong collaborations with several companies such as STMicroelectronics, Bull, Kalray, or Aselta.

Applying our techniques to a specific real application domain is cherished by all members of the team. In particular we believe (multi-scale) computational mechanics (such as fluid mechanics, molecular dynamics) to be a challenging domain that could take advantage both of compiler and run-time technologies that we intend to develop in CORSE. The goal is to provide an end-to-end solution to the automatic optimization (thus targeting portability of optimized code) of a specific application that requires extensive computational power. If we succeed our research should contribute indirectly to advances in that domain. We are still in the process of prospecting for the most appropriate application.

CRYPT Team (section vide)

DECENTRALISE Team

4. Application Domains

4.1. Identity management and naming

The GNU Name System (GNS) is a fully decentralized and censorship-resistant public key infrastructure. Names in GNS are personal, as each user is in full control of his ".gnu" zone. Users can delegate subdomains to the namespaces of other users, and resolve each other's names using a privacy-preserving, censorship-resistant secure network lookup mechanism. GNS is interoperable with DNS, and can be used as an alternative to the X.509 PKI or the Web-of-Trust.

Using GNS for identity management, we will build the foundation for fully decentralized social networking. Key design goals include never storing (or transmitting) unencrypted data at third parties, and the use of a messaging protocol for semantic extensibility, that is, to allow smooth migration of data to new revisions of the protocol.

4.2. Social networking applications

Peer-to-peer messaging applications need to support protocol evolution. As next generation applications are being deployed, existing clients must continue to be able to interact with newer versions. Furthermore, legacy information must continue to be available after software updates.

We want to realize our vision of a protocol that uses object-oriented techniques to provide semantic extensibility at the protocol layer, thus ensuring that all applications that are created using this infrastructure benefit.

Secure multiparty computation-based voting can be used to realize secure polls or even elections within social groups. Ultimately, the system might result in an integrated application that also includes file-sharing, conversation, payment and news distribution.

4.3. News distribution and collaborative editing

We want to create a new application that allows users to distribute news using collaborative filtering. News would be gossipped among peers based on the rating assigned to news items by the various users. Furthermore, ratings would influence the timeline of news items displayed for each user, reflecting the user's preferences. A reputation system would enable established contributors to have their articles start with a higher a-priori ranking, allowing them to instantly rise above the noise generated by advertising. New contributors can use a proof-of-work calculation to increase the visibility of their work. The payment system can be used to reward contributors.

When peers compare scores, preserving the privacy of the individual rankings is important as users might not want to expose their political views, and as malicious participants might be able to game the process if they are able to determine the ranking of another peer. We thus propose to use the SMC scalar product (together with an efficient set intersection mechanism to deal with sparcity) for these joint computations.

DEDUCTEAM Team

4. Application Domains

4.1. Safety of aerospace systems

In parallel with this effort in logic and in the development of proof checkers and automated theorem proving systems, we always have been interested in using such tools. One of our favorite application domain is the safety of aerospace systems. Together with César Muñoz' team in Nasa-Langley, we have proved the correctness of several geometric algorithms used in air traffic control.

This has led us sometimes to develop such algorithms ourselves, and sometimes to develop tools for automating these proofs.

4.2. B-set theory

Set theory appears to be an appropriate theory for automated theorem provers based on Deduction modulo, in particular the several extensions of Zenon (SuperZenon and ZenonModulo). Modeling techniques using set theory are therefore good candidates to assess these tools. This is what we have done with the B method whose formalism relies on set theory. A collaboration with Siemens has been developed to automatically verify the B proof rules of Atelier B [48]. From this work presented in the Doctoral dissertation of Mélanie Jacquel, the SuperZenon tool [49] [44] has been designed in order to be able to reason modulo the B set theory. As a sequel of this work, we contribute to the BWare project whose aim is to provide a mechanized framework to support the automated verification of B proof obligations coming from the development of industrial applications. In this context, we have recently designed ZenonModulo [42], [43] (Pierre Halmagrand's PhD thesis, which has started on October 2013) to deal with the B set theory. In this work, the idea is to manually transform the B set theory into a theory modulo and provide it to ZenonModulo in order to verify the proof obligations of the BWare project.

4.3. Termination certificate verification

Termination is an important property to verify, especially in critical applications. Automated termination provers use more and more complex theoretical results and external tools (e.g. sophisticated SAT solvers) that make their results not fully trustable and very difficult to check. To overcome this problem, a language for termination certificates, called CPF, has been developed since several years now. Deducteam develops a formally certified tool, Rainbow, based on the Coq library CoLoR, that is able to automatically verify the correctness of such termination certificates.

DICE Team

4. Application Domains

4.1. Two-sided markets

Intermediation platforms operate in two-sided markets, that is in environments with two types of actors, producers of good or services on one side, and consumers on the other side. Intermediaries play a fundamental role by allowing the connection of both thypes of actors. If intermediaries already existed in the pre-digital era — banks constitute a historical example of intermediaries — it is really only the advent of digital technologies which boosts the development of intermediation. A large number of activity sectors fall in such a framework, including transportation, press, education, health, etc. We decided to focus on some of them in greater details for their particular relevance.

4.2. Education platforms

Education institutions are at stake because of the new technologies that not only change the access to knowledge, and therefore the traditional euilibrium between teachers and students, but also provide new means to produce knowledge, and share studying experiences.

Our objective is to develop a platform - called Jumplyn - that offers disruptive services for students, helps them produce their work, connects them to other students in the same area, and preserves their contribution online. The platforms targets students. It also aims at offering services on the other side of the education market, i.e. to institutions, by allowing them to organise the work of their students, as well as their evaluation. Jumplyn is accessible online and, as other platforms, evolves continuously.

4.3. Decentralised Voting

Online voting systems are controversial. They are advocated for their simplicity, which could contribute to enhance participation, but criticised for their failure to ensure the same properties as traditional voting systems. We propose an alternative path to online voting relying on decentralised systems with no concentration of data. A patent is under evaluation for the BitBallot protocol.

4.4. City administration

The team is actively participating to the Inria International Project Lab IPL CityLab on smart cities. We work also with the metropole of Lyon, and its Chief Data Officer in particular, to better understand the equilibrium between online plateforms and the public administration, and the policy regarding data and its accessibility to other parties.

4.5. Metrics for Digital Economy

While economic metrics based on trade of goods and services, as well as financial exchanges are well-established, exchanges of data, and more generally transborder activities on platforms are not included in standard economic measurements. Defining such metrics both theoretically and practically with means to evaluate them is of great relevance in economy, and beyond.

DREAMPAL Project-Team (section vide)

ESTASYS Team (section vide)

GALAAD2 Team

4. Application Domains

4.1. Shape modeling

Geometric modeling is increasingly familiar for us (synthesized images, structures, vision by computer, Internet, ...). Nowadays, many manufactured objects are entirely designed and built by means of geometric software which describe with accuracy the shape of these objects. The involved mathematical models used to represent these shapes have often an algebraic nature. Their treatment can be very complicated, for example requiring the computations of intersections or isosurfaces (CSG, digital simulations, ...), the detection of singularities, the analysis of the topology, etc. Optimizing these shapes with respect to some physical constraints is another example where the choice of the models and the design process are important to lead to interesting problems in algebraic geometric modeling and computing. We propose the development of methods for shape modeling that take into account the algebraic specificities of these problems. We tackle questions whose answer strongly depends on the context of the application being considered, in direct relationship with the industrial contacts that we are developing in Computer Aided Geometric Design.

4.2. Shape processing

Many problems encountered in the application of computer sciences start from measurement data, from which one wants to recover a curve, a surface, or more generally a shape. This is typically the case in image processing, computer vision or signal processing. This also appears in computer biology where the geometry of distances plays a significant role, for example, in the reconstruction from NMR (Nuclear Magnetic Resonance) experiments, or the analysis of realizable or accessible configurations. In another domain, scanners which tend to be more and more easily used yield large set of data points from which one has to recover a compact geometric model. We are working in collaboration with groups in agronomy on the problem of reconstruction of branching models (which represent trees or plants). We are investigating the application of algebraic techniques to these reconstruction problems. Geometry is also highly involved in the numerical simulation of physical problems such as heat conduction, ship hull design, blades and turbines analysis, mechanical stress analysis. We apply our algebraic-geometric techniques in the isogeometric approach which uses the same (B-spline) formalism to represent both the geometry and the solutions of partial differential equations on this geometry.

GALLIUM Project-Team

4. Application Domains

4.1. High-assurance software

A large part of our work on programming languages and tools focuses on improving the reliability of software. Functional programming, program proof, and static type-checking contribute significantly to this goal.

Because of its proximity with mathematical specifications, pure functional programming is well suited to program proof. Moreover, functional programming languages such as OCaml are eminently suitable to develop the code generators and verification tools that participate in the construction and qualification of high-assurance software. Examples include Esterel Technologies's KCG 6 code generator, the Astrée static analyzer, the Caduceus/Jessie program prover, and the Frama-C platform. Our own work on compiler verification combines these two aspects of functional programming: writing a compiler in a pure functional language and mechanically proving its correctness.

Static typing detects programming errors early, prevents a number of common sources of program crashes (null dereferences, out-of bound array accesses, etc), and helps tremendously to enforce the integrity of data structures. Judicious uses of generalized abstract data types (GADTs), phantom types, type abstraction and other encapsulation mechanisms also allow static type checking to enforce program invariants.

4.2. Software security

Static typing is also highly effective at preventing a number of common security attacks, such as buffer overflows, stack smashing, and executing network data as if it were code. Applications developed in a language such as OCaml are therefore inherently more secure than those developed in unsafe languages such as C.

The methods used in designing type systems and establishing their soundness can also deliver static analyses that automatically verify some security policies. Two examples from our past work include Java bytecode verification [45] and enforcement of data confidentiality through type-based inference of information flow and noninterference properties [49].

4.3. Processing of complex structured data

Like most functional languages, OCaml is very well suited to expressing processing and transformations of complex, structured data. It provides concise, high-level declarations for data structures; a very expressive pattern-matching mechanism to destructure data; and compile-time exhaustiveness tests. Therefore, OCaml is an excellent match for applications involving significant amounts of symbolic processing: compilers, program analyzers and theorem provers, but also (and less obviously) distributed collaborative applications, advanced Web applications, financial modeling tools, etc.

4.4. Rapid development

Static typing is often criticized as being verbose (due to the additional type declarations required) and inflexible (due to, for instance, class hierarchies that must be fixed in advance). Its combination with type inference, as in the OCaml language, substantially diminishes the importance of these problems: type inference allows programs to be initially written with few or no type declarations; moreover, the OCaml approach to object-oriented programming completely separates the class inheritance hierarchy from the type compatibility relation. Therefore, the OCaml language is highly suitable for fast prototyping and the gradual evolution of software prototypes into final applications, as advocated by the popular "extreme programming" methodology.

4.5. Teaching programming

Our work on the Caml language family has an impact on the teaching of programming. Caml Light is one of the programming languages selected by the French Ministry of Education for teaching Computer Science in *classes préparatoires scientifiques*. OCaml is also widely used for teaching advanced programming in engineering schools, colleges and universities in France, the USA, and Japan.

GEOMETRICA

GEOMETRICA Project-Team

4. Application Domains

4.1. Main Application Domains

Our work is mostly of a fundamental nature but finds applications in a variety of application domains. Transfer is mostly conducted via GeometryFactory, the startup company that commercializes CGAL (see Section 8.1.2).

- Medical Imaging
- Numerical simulation
- Geometric modeling
- Visualization
- Data analysis

4.2. Secondary Application Domains

- Geographic information systems
- Geophysics
- Astrophysics
- Material physics

GRACE Project-Team

4. Application Domains

4.1. Cryptography and Cryptanalysis

In the twenty-first century, cryptography plays two essential roles: it is used to ensure *security* and *integrity* of communications and communicating entities. Contemporary cryptographic techniques can be used to hide private data, and to prove that public data has not been modified; to provide anonymity, and to assert and prove public identities. The creation and testing of practical cryptosystems involves

- 1. The design of provably secure protocols;
- 2. The design and analysis of compact and efficient algorithms to implement those protocols, and to attack their underlying mathematical and computational problems;
- 3. The robust implementation of those algorithms in low-level software and hardware, and their deployment in the wild.

While these layers are interdependent, GRACE's cryptographic research is focused heavily on the middle layer: we design, implement, and analyze the most efficient algorithms for fundamental tasks in contemporary cryptography. Our "clients", in a sense, are protocol designers on the one hand, and software and hardware engineers on the other.

F. Morain and B. Smith work primarily on the number-theoretic algorithms that underpin the current state-of-the-art in public-key cryptography (which is used to establish secure connections, and create and verify digital signatures, among other applications). For example, their participation in the ANR CATREL project aims to give a realistic assessment of the security of systems based on the Discrete Logarithm Problem, by creating a free, open, algorithmic package implementing the fastest known algorithms for attacking DLP instances. This will have an extremely important impact on contemporary pairing-based cryptosystems, as well as legacy finite field-based cryptosystems. On a more constructive note, F. Morain' elliptic curve point counting and primality proving algorithms are essential tools in the everyday construction of strong public-key cryptosystems, while B. Smith's recent work on elliptic curves aims to improve the speed of curve-based cryptosystems (such as Elliptic Curve Diffie–Hellman key exchange, a crucial step in establishing secure internet connections) without compromising their security.

D. Augot, F. Levy-dit-Vehel, and A. Couvreur's research on codes has far-reaching applications in *code-based cryptography*. This is a field which is growing rapidly in importance—partly due to the supposed resistance of code-based cryptosystems to attacks from quantum computing, partly due to the range of new techniques on offer, and partly because the fundamental problem of parameter selection is relatively poorly understood. For example, A. Couvreur's work on filtration attacks on codes has an important impact on the design of code-based systems using wild Goppa codes or algebraic geometry codes, and on the choice of parameter sizes for secure implementations.

Coding theory also has important practical applications in the improvement of conventional symmetric cryptosystems. For example, D. Augot's recent work on MDS matrices via BCH codes gives a more efficient construction of optimal diffusion layers in block ciphers. Here we use combinatorial, non-algorithmic properties of codes, in the internals of designs of block ciphers.

While coding theory brings tools as above for the classical problems of encryption, authentication, and so on, it can also provide solutions to new cryptographic problems. This is classically illustrated by the use of Reed-Solomon codes in secret sharing schemes. Grace is involved in the study, construction and implementation of locally decodable codes, which have applications in quite a few cryptographic protocols: *Private Information Retrieval, Proofs of Retrievability, Proofs of Ownership*, etc.

HYCOMES Team (section vide)

LFANT Project-Team (section vide)

MARELLE Project-Team

4. Application Domains

4.1. Reliability of embedded software

Software embedded in physical devices performs computations where the inputs are provided by measures and the outputs are transformed into actions performed by actuators, to improve the quality of these devices, we expect that all the computations performed in this kind of software will need to be made more and more reliable. We claim that formal methods can serve this purpose and we develop the libraries and techniques to support this claim. This implies that we take a serious look at how mathematics can be included in formal methods, especially concerning geometry and calculus.

4.2. Security and Cryptography

The modern economy relies on the possibility for every actor to trust the communications they perform with their colleagues, customers, or providers. We claim that this trust can only be built by a careful scrutiny of the claims made by all public protocols and software that are reproduced in all portable devices, computers, and internet infrastructure systems. We advocate the use of formal methods in these domains and we provide easy-to-use tools for cryptographers so that the formal verification of cryptographic algorithms can become routine and amenable to public scrutiny.

4.3. Mathematics and Education

As librairies for theorem provers evolve, they tend to cover an ever increasing proportion of the mathematical background expected from engineers and scientists of all domains. Because the content of a formally verified library is extremely precise and explicit, we claim that this will provide a new kind of material for teaching mathematics, especially useful in remote education.

MEXICO

MEXICO Project-Team

4. Application Domains

4.1. Telecommunications

Participants: Stefan Haar, Serge Haddad.

MExICo's research is motivated by problems on system management in several domains:

- In the domain of service oriented computing, it is often necessary to insert some Web service into an existing orchestrated business process, e.g. to replace another component after failures. This requires to ensure, often actively, conformance to the interaction protocol. One therefore needs to synthesize *adaptators* for every component in order to steer its interaction with the surrounding processes.
- Still in the domain of telecommunications, the supervision of a network tends to move from outof-band technology, with a fixed dedicated supervision infrastructure, to in-band supervision where the supervision process uses the supervised network itself. This new setting requires to revisit the existing supervision techniques using control and diagnosis tools.

We have participated in the Univerself Projecton self-aware networks, and will be searching new cooperations.

4.2. Transport Systems

Participants: Stefan Haar, Serge Haddad, Yann Duplouy, Simon Theissing.

We participate in the IRT System X's system of systems program TMM, in two projects:

- project MIC on multi-modal transport systems with academic partners UPMC, IFSTTAR and CEA, and several industrial partners including Alstom (project leader), COSMO and Renault. Transportation operators in an urban area need to plan, supervise and steer different means of transportation with respect to several criteria:
 - Maximize capacity;
 - guarantee punctuality and robustness of service;
 - minimize energy consumption.

The systems must achieve these objectives not only under ideal conditions, but also be robust to perturbations (such as a major cultural or sport event creating additional traffic), modifications of routes (roadwork, accidents, demonstrations, ...) and tolerant to technical failures. Therefore, systems must be enabled to raise appropriate alarms upon detection of anomalies, diagnose the type of anomaly and select the appropriate response. While the above challenges belong already to the tasks of individual operators in the unimodal setting, the rise of and increasing demand for *multi-modal* transports forces to achieve these planning, optimization and control goals not in isolation, but in a cooperative manner, across several operators. The research task here is first to analyze the transportation system regarding the available means, capacities and structures, and so as to identify the impacting factors and interdependencies of the system variables. Based on this analysis, the task is to derive and implement robust planning, with tolerance to technical faults; diagnosis and control strategies that are optimal under several, possibly different, criteria (average case vs worst case performance, energy efficiency, etc.) and allow to adapt to changes e.g. from nominal mode to reduced mode, sensor failures, etc.

• the project SVA (Simulation pour la Sécurité du Véhicule Autonome), where the PhD Thesis of Yann Duplouy targets the application of formal methods to the development of embedded systems for autonomous vehicles.

4.3. Biological Systems

Participants: Stefan Haar, Serge Haddad, Stefan Schwoon, Thomas Chatain.

We have begun in 2014 to examine concurrency issues in systems biology, and are currently enlarging the scope of our research's applications in this direction. To see the context, note that in recent years, a considerable shift of biologists' interest can be observed, from the mapping of static genotypes to gene expression, i.e. the processes in which genetic information is used in producing functional products. These processes are far from being uniquely determined by the gene itself, or even jointly with static properties of the environment; rather, regulation occurs throughout the expression processes, with specific mechanisms increasing or decreasing the production of various products, and thus modulating the outcome. These regulations are central in understanding cell fate (how does the cell differenciate? Do mutations occur? etc), and progress there hinges on our capacity to analyse, predict, monitor and control complex and variegated processes. Our first step in this domain is related in the conference contribution [57], where we apply Petri net unfolding techniques for the efficient computation of attractors in a regulatory network; that is, to identify strongly connected reachability components that correspond to stable evolutions, e.g. of a cell that differentiates into a specific functionality (or mutation). This constitutes the starting point of a broader research with Petri net unfolding techniques in regulation. In fact, the use of ordinary Petri nets for capturing regulatory network (RN) dynamics overcomes the limitations of traditional RN models: those impose e.g. Monotonicity properties in the influence that one factor had upon another, i.e. always increasing or always decreasing, and were thus unable to cover all actual behaviours (see [75]). Rather, we follow the more refined model of boolean networks of automata, where the local states of the different factors jointly determine which state transitions are possible. For these connectors, ordinary PNs constitute a first approximation, improving greatly over the literature but leaving room for improvement in terms of introducing more refined logical connectors. Future work thus involves transcending this class of PN models. Via unfoldings, one has access - provided efficient techniques are available – to all behaviours of the model, rather than over-or under-approximations as previously. This opens the way to efficiently searching in particular for determinants of the cell fate: which attractors are reachable from a given stage, and what are the factors that decide in favor of one or the other attractor, etc. The list of potential applications in biology and medicine of such a methodology would be too long to reproduce here.

MUTANT Project-Team

4. Application Domains

4.1. Authoring and Performing Interactive Music

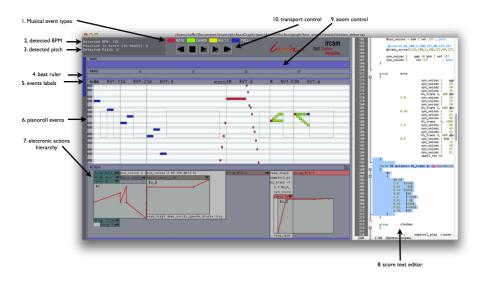


Figure 2. Screenshot of Ascograph, the Antescofo graphical score editor

The combination of both realtime machine listening systems and reactive programming paradigms has enabled the *authoring* of interactive music systems as well as their realtime performance within a coherent synchronous framework called Antescofo (See also 6.1). The module, developed since 2008 by the team members, has gained increasing attention within the user community worldwide with more than 50 prestigious public performances yearly. The outcomes of the teams's research will enhance the interactive and reactive aspects of this emerging paradigm as well as creating novel authoring tool for such purposes.

The *AscoGraph* authoring environment, started in 2013 and shown in Figure 2, is the first step towards such authoring environment and extended specifically in 2015 as reported in [12], [13].

The outcome of the ANR Project INEDIT (with LABRI and GRAME and coordinated by team leader), has further extended applications of *Antescofo* to other domains where temporal scenari are necessary such as in robotics and automatic scene understanding.

The Antescofo User Community counts more than 150 active members as of early 2016 from prestigeous institutions and music ensembles from all around the world. 90% of internal Ircam productions in 2015 used *Antescofo* language as front-end language for deployment.

MUTANT

4.2. Realtime Machine Listening

Realtime Music Information Retrieval is used as front-end for various applications requiring sonic interaction between software/hardware and the physical worlds. MuTant has focused on realtime machine listening since its inception and holds state-of-the-art algorithms for realtime alignment of audio to symbolic score, realtime tempo detection, realtime multiple-pitch extraction. Recent results have pushed our application to more generalised listening schemes beyond music signals as reported in [11]. The Masters thesis of M. Sibru [32] provides benchmark for possible extensions of this paradigm to general Sound Scenes and is currently being pursued as a PhD project.

In 2015, MuTant acquired a Poppy Robot and has started developping tools for *real-time Sound Scene Understanding*. We hope to publish preliminary stable results in 2016.

4.3. Interactive Tools for Entertainment Industry

Figure 3. Automatic Accompaniment Session with Antescofo during ACM CHI 2013 Conference

Technologies developed by MuTant can find their way with general public (besides professional musicians) and within the entertainment industry. Recent trends in music industry show signs of tendencies towards more intelligent and interactive interfaces for music applications. We tested the Singing Accompaniment version of *Antescofo* during Ircam's Open House in June 2015 with more than 100 participants in our Open Mic Secssion (See Video).

MuTant team leader was awarded the French Ministry of Research's iLab Award (17th Edition) in the emergence category, which should culminate to the creation of a spin-off out of this technology.

PARKAS Project-Team (section vide)

PARSIFAL Project-Team

4. Application Domains

4.1. Integrating a model checker and a theorem prover

The goal of combining model checking with inductive and co-inductive theorem in a rather appealing one. The strengths of systems in these two different approaches are strikingly different. A model checker is capable of exploring a finite space automatically: such a tool can repeatedly explores all possible cases of a given a computational space. On the other hand, a theorem prover might be able to prove clever things about a search space. For example, a model checker could attempt to discover whether or not there exists a winning strategy for, say, tic-tac-toe while an inductive theorem prover might be able to prove that if there is a winning strategy for one board then there is a winning strategy for any symmetric version of that board. Of course, the ability to combine proofs from these approaches could drastically reduce the amount of state exploration and verification of proof certificates that are needed to prove the existence of winning strategies.

Our first step to providing an integration of model checking and (inductive) theorem proving was the development of a strong logic, that we call \mathcal{G} , which extends intuitionistic logic with notions of least and greatest fixed points. We had developed the proof theory of this logic in earlier papers [4] [63]. We have now recently converted the Bedwyr system so that it formally accepts almost all definitions and theorem statements that are accepted by the inductive theorem prover Abella. Thus, these two systems are proving theorems in the same logic and their results can now be shared.

Bedwyr's tabling mechanism has been extended so that its it can make use of previously proved lemmas. For instance, when trying to prove that some board position has a winning strategy, an available stored lemma can now be used to obtain the result if some symmetric board position is already in the table.

For more about recent progress on providing checkable proof certificates for model checking, see the web site for Bedwyr http://slimmer.gforge.inria.fr/bedwyr/.

4.2. Implementing trusted proof checkers

Traditionally, theorem provers—whether interactive or automatic—are usually monolithic: if any part of a formal development was to be done in a particular theorem prover, then the whole of it would need to be done in that prover. Increasingly, however, formal systems are being developed to integrate the results returned from several, independent and high-performing, specialized provers: see, for example, the integration of Isabelle with an SMT solver [62] as well as the Why3 and ESC/Java systems.

Within the Parsifal team, we have been working on foundational aspects of this multi-prover integration problem. As we have described above, we have been developing a formal framework for defining the semantics of proof evidence. We have also been working on prototype checkers of proof evidence which are capable of executing such formal definitions. The proof definition language described in the papers [59], [58] is currently given an implementation in the λ Prolog programming language [76]. This initial implementation will be able to serve as a "reference" proof checker: others who are developing proof evidence definitions will be able to use this reference checker to make sure that they are getting their definitions to do what they expect.

Using λ Prolog as an implementation language has both good and bad points. The good points are that it is rather simple to confirm that the checker is, in fact, sound. The language also supports a rich set of abstracts which make it impossible to interfere with the code of the checker (no injection attacks are possible). On the negative side, however, the performance of our λ Prolog interpreters is lower than that of specially written checkers and kernels.

4.3. Trustworthy implementations of theorem proving techniques

Instead of integrating different provers by exchanging proof evidence and relying on a backend proof-checker, another approach to integration consists in re-implementing the theorem proving techniques as proof-search strategies, on an architecture that guarantees correctness. Focused systems can serve as the basis of such an architecture, identifying points for choice and backtracking, and providing primitives for the exploration of the search space. These form a trusted *Application Programming Interface* that can be used to program and experiment various proof-search heuristics without worrying about correctness. No proof-checking is needed if one trusts the implementation of the API.

This approach has led to the development of the Psyche engine.

Two major research directions are currently being explored, based on the above:

- The first one is about understanding how to deal with quantifiers in presence of one or more theories: On the one hand, traditional techniques for quantified problems, such as *unification* [47] or *quantifier elimination* are usually designed for either the empty theory or very specific theories. On the other hand, the industrial techniques for combining theories (Nelson-Oppen, Shostak) are designed for quantifier-free problems, and quantifiers are there dealt with incomplete *clause instantiation* methods or *trigger*-based techniques [61]. We are working on making the two approaches compatible.
- The above architecture's modular approach raises the question of how its different modules can safely cooperate (in terms of guaranteed correctness), while some of them are trusted and others are not. The issue is particularly acute if some of the techniques are run concurrently and exchange data at unpredictable times. For this we explore new solutions based on Milner's *LCF* [79]. In [30], we argued that our solutions in particular provide a way to fulfil the "Strategy Challenge for SMT-solving" set by De Moura and Passmore [88].

PI.R2 Project-Team (section vide)

POLSYS Project-Team (section vide)

POSET Team

4. Application Domains

4.1. Application Domains

4.1.1. Temporal media analysis and creation

Our first application domain concerns temporal media analysis and creation. Of course, many existing tools allow to create, combine and transform temporal media such as sounds, music, videos, animations. Strictly speaking, we do not aim at offering new possibilities. However, with an approach based on modern development theory and software technologies, we shall offer more reliable tools, that enjoy much higher productivity and reusability. As an immediate application, the fruit of our research may increase the quality of the technological assistance provided by Art & Science studios such as the SCRIME ⁰. In this view, we shall concentrate our application perspectives on temporal media analysis (e.g. structure inference algorithms and learning tools) and on temporal media combination and synthesis (e.g. tools for music composition).

4.1.2. Interactive and distributed interfaces

Our second application domain lays in the field of interaction. New technologies already used in artistic installations are connected and interactive. But there is still a whole world to be discovered and equipped with adequate technologies to design tomorrow's interactive and distributed pieces of digital arts. In this perspective, we shall concentrate on developing techniques for the capture and the on-the-fly analysis of input streams, together with techniques to combine them and turn them into new media types.

⁰Studio de Création et de Recherche en Informatique et Musiques Expérimentales

POSTALE Team (section vide)

PRIVATICS Project-Team

3. Application Domains

3.1. Domain 1: Privacy in smart environments.

Privacy in smart environments. One illustrative example is our latest work on privacy-preserving smartmetering [2]. Several countries throughout the world are planning to deploy smart meters in house-holds in the very near future. Traditional electrical meters only measure total consumption on a given period of time (i.e., one month or one year). As such, they do not provide accurate information of when the energy was consumed. Smart meters, instead, monitor and report consumption in intervals of few minutes. They allow the utility provider to monitor, almost in real-time, consumption and possibly adjust generation and prices according to the demand. Billing customers by how much is consumed and at what time of day will probably change consumption habits to help matching energy consumption with production. In the longer term, with the advent of smart appliances, it is expected that the smart grid will remotely control selected appliances to reduce demand. Although smart metering might help improving energy management, it creates many new privacy problems. Smart-meters provide very accurate consumption data to electricity providers. As the interval of data collected by smart meters decreases, the ability to disaggregate low-resolution data increases. Analysing high-resolution consumption data, Non-intrusive Appliance Load Monitoring (NALM) can be used to identify a remarkable number of electric appliances (e.g., water heaters, well pumps, furnace blowers, refrigerators, and air conditioners) employing exhaustive appliance signature libraries. We developed DREAM, DiffeRentially privatE smArt Metering, a scheme that is private under the differential privacy model and therefore provides strong and provable guarantees. With our scheme, an (electricity) supplier can periodically collect data from smart-meters and derive aggregated statistics while learning only limited information about the activities of individual households. For example, a supplier cannot tell from a user's trace when he watched TV or turned on heating.

3.2. Domain 2: Big Data and Privacy

We believe that another important problem will be related to privacy issues in big data. Public datasets are used in a variety of applications spanning from genome and web usage analysis to location-based and recommendation systems. Publishing such datasets is important since they can help us analyzing and understanding interesting patterns. For example, mobility trajectories have become widely collected in recent years and have opened the possibility to improve our understanding of large-scale social networks by investigating how people exchange information, interact, and develop social interactions. With billion of handsets in use worldwide, the quantity of mobility data is gigantic. When aggregated, they can help understand complex processes, such as the spread of viruses, and build better transportation systems. While the benefits provided by these datasets are indisputable, they unfortunately pose a considerable threat to individual privacy. In fact, mobility trajectories might be used by a malicious attacker to discover potential sensitive information about a user, such as his habits, religion or relationships. Because privacy is so important to people, companies and researchers are reluctant to publish datasets by fear of being held responsible for potential privacy breaches. As a result, only very few of them are actually released and available. This limits our ability to analyze such data to derive information that could benefit the general public. It is now an urgent need to develop Privacy-Preserving Data Analytics (PPDA) systems that collect and transform raw data into a version that is immunized against privacy attacks but that still preserves useful information for data analysis. This is one of the objectives of Privatics. There exists two classes of PPDA according to whether the entity that is collecting and anonymizing the data is trusted or not. In the trusted model, that we refer to as Privacy-Preserving Data Publishing (PPDP), individuals trust the publisher to which they disclose their data. In the untrusted model, that we refer to as Privacy-Preserving Data Collection (PPDC), individuals do not trust the data publisher. They may add some noise to their data to protect sensitive information from the data publisher. Privacy-Preserving Data Publishing: In the trusted model, individuals trust the data publisher and disclose all their data to it. For example, in a medical scenario, patients give their true information to hospitals to receive proper treatment. It is then the responsibility of the data publisher to protect privacy of the individuals' personal data. To prevent potential data leakage, datasets must be sanitized before possible release. Several proposals have been recently proposed to release private data under the Differential Privacy model [25, 56, 26, 57, 50]. However most of these schemes release a "snapshot" of the datasets at a given period of time. This release often consists of histograms. They can, for example, show the distributions of some pathologies (such as cancer, flu, HIV, hepatitis, etc.) in a given population. For many analytics applications, "snapshots" of data are not enough, and sequential data are required. Furthermore, current work focusses on rather simple data structures, such as numerical data. Release of more complex data, such as graphs, are often also very useful. For example, recommendation systems need the sequences of visited websites or bought items. They also need to analyse people connection graphs to identify the best products to recommend. Network trace analytics also rely on sequences of events to detect anomalies or intrusions. Similarly, traffic analytics applications typically need sequences of visited places of each user. In fact, it is often essential for these applications to know that user A moved from position 1 to position 2, or at least to learn the probability of a move from position 1 to position 2. Histograms would typically represent the number of users in position 1 and position 2, but would not provide the number of users that moved from position 1 to position 2. Due to the inherent sequentiality and high-dimensionality of sequential data, one major challenge of applying current data sanitization solutions on sequential data comes from the uniqueness of sequences (e.g., very few sequences are identical). This fact makes existing techniques result in poor utility. Schemes to privately release data with complex data structures, such as sequential, relational and graph data, are required. This is one the goals of Privatics. In our current work, we address this challenge by employing a variable-length n-gram model, which extracts the essential information of a sequential database in terms of a set of variable-length n - grams [15]. We then intend to extend this approach to more complex data structures.

Privacy-Preserving Data Collection: In the untrusted model, individuals do not trust their data publisher. For example, websites commonly use third party web analytics services, such as Google Analytics to obtain aggregate traffic statistics such as most visited pages, visitors' countries, etc. Similarly, other applications, such as smart metering or targeted advertising applications, are also tracking users in order to derive aggregated information about a particular class of users. Unfortunately, to obtain this aggregate information, services need to track users, resulting in a violation of user privacy. One of our goals is to develop Privacy-Preserving Data Collection solutions. We propose to study whether it is possible to provide efficient collection/aggregation solutions without tracking users, i.e. without getting or learning individual contributions.

PROSECCO Project-Team

4. Application Domains

4.1. Cryptographic Protocol Libraries

Cryptographic protocols such as TLS, SSH, IPSec, and Kerberos are the trusted base on which the security of modern distributed systems is built. Our work enables the analysis and verification of such protocols, both in their design and implementation. Hence, for example, we build and verify models and reference implementations for well-known protocols such as TLS and SSH, as well as analyze their popular implementations such as OpenSSL.

4.2. Hardware-based security APIs

Cryptographic devices such as Hardware Security Modules (HSMs) and smartcards are used to protect long-terms secrets in tamper-proof hardware, so that even attackers who gain physical access to the device cannot obtain its secrets. These devices are used in a variety of scenarios ranging from bank servers to transportation cards (e.g. Navigo). Our work investigates the security of commercial cryptographic hardware and evaluates the APIs they seek to implement.

4.3. Web application security

Web applications use a variety of cryptographic techniques to securely store and exchange sensitive data for their users. For example, a website may serve pages over HTTPS, authenticate users with a single sign-on protocol such as OAuth, encrypt user files on the server-side using XML encryption, and deploy client-side cryptographic mechanisms using a JavaScript cryptographic library. The security of these applications depends on the public key infrastructure (X.509 certificates), web browsers' implementation of HTTPS and the same origin policy (SOP), the semantics of JavaScript, HTML5, and their various associated security standards, as well as the correctness of the specific web application code of interest. We build analysis tools to find bugs in all these artifacts and verification tools that can analyze commercial web applications and evaluate their security against sophisticated web-based attacks.

SECRET Project-Team

4. Application Domains

4.1. Cryptographic primitives

Our major application domain is the design of cryptographic primitives, especially for platforms with restricting implementation requirements. For instance, we aim at recommending (or designing) low-cost (or extremely fast) encryption schemes.

4.2. Code Reconstruction

To evaluate the quality of a cryptographic algorithm, it is usually assumed that its specifications are public, as, in accordance with Kerckhoffs principle, it would be dangerous to rely, even partially, on the fact that the adversary does not know those specifications. However, this fundamental rule does not mean that the specifications are known to the attacker. In practice, before mounting a cryptanalysis, it is necessary to strip off the data. This reverse-engineering process is often subtle, even when the data formatting is not concealed on purpose. A typical case is interception: some raw data, not necessarily encrypted, is observed out of a noisy channel. To access the information, the whole communication system has first to be disassembled and every constituent reconstructed. A transmission system actually corresponds to a succession of elements (symbol mapping, scrambler, channel encoder, interleaver...), and there exist many possibilities for each of them. In addition to the "preliminary to cryptanalysis" aspect, there are other links between those problems and cryptology. They share some scientific tools (algorithmics, discrete mathematics, probability...), but beyond that, there are some very strong similarities in the techniques.

SPADES Project-Team

4. Application Domains

4.1. Industrial Applications

Our applications are in the embedded system area, typically: transportation, energy production, robotics, telecommunications, systems on chip (SoC). In some areas, safety is critical, and motivates the investment in formal methods and techniques for design. But even in less critical contexts, like telecommunications and multimedia, these techniques can be beneficial in improving the efficiency and the quality of designs, as well as the cost of the programming and the validation processes.

Industrial acceptance of formal techniques, as well as their deployment, goes necessarily through their usability by specialists of the application domain, rather than of the formal techniques themselves. Hence, we are looking to propose domain-specific (but generic) realistic models, validated through experience (e.g., control tasks systems), based on formal techniques with a high degree of automation (e.g., synchronous models), and tailored for concrete functionalities (e.g., code generation).

4.2. Industrial Design Tools

The commercially available design tools (such as UML with real-time extensions, MATLAB/ SIMULINK/dSPACE⁰) and execution platforms (OS such as VXWORKS, QNX, real-time versions of LINUX ...) start now to provide besides their core functionalities design or verification methods. Some of them, founded on models of reactive systems, come close to tools with a formal basis, such as for example STATEMATE by iLOGIX.

Regarding the synchronous approach, commercial tools are available: SCADE⁰ (based on LUSTRE), CONTROLBUILD and RT-BUILDER (based on SIGNAL) from GEENSYS⁰ (part of DASSAULTSYSTEMES), specialized environments like CELLCONTROL for industrial automatism (by the INRIA spin-off ATHYS—now part of DASSAULTSYSTEMES). One can observe that behind the variety of actors, there is a real consistency of the synchronous technology, which makes sure that the results of our work related to the synchronous approach are not restricted to some language due to compatibility issues.

4.3. Current Industrial Cooperations

Regarding applications and case studies with industrial end-users of our techniques, we cooperate with Thales on schedulability analysis for evolving or underspecified real-time embedded systems, with Orange Labs on software architecture for cloud services and with Daimler on reduction of nondeterminism and analysis of deadline miss models for the design of automotive systems.

⁰http://www.dspaceinc.com

http://www.esterel-technologies.com

⁰http://www.geensoft.com

SPECFUN Project-Team (section vide)

SUMO Project-Team

4. Application Domains

4.1. Telecommunication network management

The domain of autonomic network management, will remain an important playground for SUMO. It covers a wide variety of problems, ranging from distributed (optimal) control to distributed diagnosis, optimization, reconfiguration, provisioning, etc. We have a long experience in model-based diagnosis, in particular distributed (active) diagnosis, and have recently proposed promising techniques for self-modeling. It consists in building the model of the managed network on the fly, guided by the needs of the diagnosis algorithm. This approach allows one to deal with potentially huge models, that are only described by their construction grammar, and discovered at runtime. Another important research direction concerns the management of "multi-resolution" models, that can be considered at different granularity levels. This feature is central to network design, but has no appropriate modeling formalism nor management approaches. This is a typical investigation field for abstraction techniques. Technology is ahead of theory in this domain since networks are already driven or programmed through management policies, that assign high level objectives to an abstract view of the network, leaving open the question of their optimal implementation. As a last topic of investigation, today management issues are no longer isolated within one operator, but range accross several of them, up to the supported services, which brings game theory aspects into the picture.

4.2. Control of data centers

Data centers are another example of a large scale reconfigurable and distributed system: they are composed of thousands of servers on which Virtual Machines (VM) can be (de)activated, migrated, etc. depending on the requests of the customers, on the load of the servers and on the power consumption. Autonomic management functionalities already exist to deploy and configure applications in such a distributed environment. They can also monitor the environment and react to events such as failures or overloads and reconfigure applications and/or infrastructures accordingly and autonomously. To supervise these systems, Autonomic Managers (AM) can be deployed in order to apply administration policies of specific aspects to the different entities of a data center (servers, VM, web services, power supply, etc). These AMs may be implemented in different layers: the hardware level, the operating system level or the middleware level. Therefore several control loops may coexists, and they have to take globally consistent decisions to manage the trade-off between availability, performance, scalability, security and energy consumption. This leads to multi-criteria optimization and control problems in order to automatically derive controllers in charge of the coordination of the different AMs. We are relatively new on this topic, that will require more technical investment. But we are driven to it by both the convergence of IT and networking, by virtualization techniques that reach networks (see the growing research effort about network operating systems), and by the call for more automation in the management of clouds. We believe our experience in network management can help. Some members of the SUMO team are already involved in the ANR Ctrl-Green, which addresses the controller coordination problem. We are also in contact with the Myriads team, which research interests moved from OS for grids/clouds to autonomic methods. This is supported as well by the activities of b<>com, the local IRT, where some projects in cloud management and in networking may start joint activities.

4.3. Web services and distributed active documents

Data centric systems are already deployed, and our goal is not to design new languages, architectures, or standards for them, but rather to propose techniques for the verification and monitoring of existing systems. A bottleneck is the complexity and heterogeneity of web-based systems, that make them difficult to model and analyze. However, one can still hope for some lightweight verification or monitoring techniques for some specific aspects, for example to check the absence of conflict of interest in a transaction system, to verify (off

line) and maintain (on line) the QoS, to prevent security breaches, etc. Safety aspects of Web Services have received little attention; any progress in that area would be useful. Besides, modeling issues are central for some applications of data centric systems. Collaborative work environments with shared active documents can be found in many domains ranging from banking, maintenance of critical systems, webstores... We think that models for data driven systems can find applications in most of these areas. Our approach will be to favor purely declarative approaches for the specification of such collaborative environments. We have contacts with Centre Pasteur in Yaoundé on the design of diseases monitoring systems in developing countries. Diseases monitoring systems can be seen as a collaborative edition work, where each actor in the system reports and aggregates information about cases he or she is aware of. This collaboration is an opportunity to confront our models to real situations and real users needs. Formally modeling such a large distributed system can be seen as a way to ensure its correctness. We also envision to promote this approach as a support for maintenance operations in complex environments (train transportation, aeronautics,...). We believe this framework can be useful both for the specification of distributed maintenance procedures, for circulating information and sharing processes across teams, but also for the analysis of the correctness of procedures, possibly for their optimization or redesign, and finally to automatically elaborate logs of maintenance operations. We are in contact with several major companies on these topics, for the maintenance application side. Other industrial contacts need to be built: we have preliminary contact with IBM (leader in business artifacts), and would like to establish relations with SAP (leader in service architectures).

TASC Project-Team

4. Application Domains

4.1. Introduction

Constraint programming deals with the resolution of decision problems by means of rational, logical and computational techniques. Above all, constraint programming is founded on a clear distinction between, on the one hand the description of the constraints intervening in a problem, and on the other hand the techniques used for the resolution. The ability of constraint programming to handle in a flexible way heterogeneous constraints has raised the commercial interest for this paradigm in the early nighties. Among his fields of predilection, one finds traditional applications such as computer aided decision-making, scheduling, planning, placement, logistics or finance, as well as applications such as electronic circuits design (simulation, checking and test), DNA sequencing and phylogeny in biology, configuration of manufacturing products or web sites, formal verification of code.

4.2. Panorama

In 2015 the TASC team was involved in the following application domains:

- Replanning in industrial timetabling problems in a Labcom project with Eurodécision.
- Planning and replanning in Data Centres taking into account energy consumption in the EPOC (Energy Proportional and Opportunistic Computing system) project.
- Packing complex shapes in the context of a warehouse (NetWMS2 project).
- Building decision support system for resilient city development planning wrt climat change (GRACeFUL project).
- Optimizing electricity production in the context of the Gaspard Monge call program for Optimisation and Operation Research in the context of electricity production. In 2015 we were focusing on the systematic reformulation of time-series constraints for MIP solvers. This was done in order to integrate time-series constraints in existing integer linear programming models for electricity production.

TEA Project-Team

4. Application Domains

4.1. Automotive and Avionics

From our continuous collaboration with major academic and industrial partners through projects TOPCASED, OPENEMBEDD, SPACIFY, CESAR, OPEES, P and CORAIL, our experience has primarily focused on the aerospace domain. The topics of time and architecture of team TEA extend to both avionics and automotive. Yet, the research focus on time in team TEA is central in any aspect of, cyber-physical, embedded system design in factory automation, automotive, music synthesis, signal processing, software radio, circuit and system on a chip design; many application domains which, should more collaborators join the team, would definitely be worth investigating.

Multi-scale, multi-aspect time modelling, analysis and software synthesis will greatly contribute to architecture modelling in these domains, with applications to optimised (distributed, parallel, multi-core) code generation for avionics (project Corail with Thales avionics, section 8) as well as modelling standards, real-time simulation and virtual integration in automotive (project with Toyota ITC, section 8).

Together with the importance of open-source software, one of these projects, the FUI Project P (section 8), demonstrated that a centralised model for system design could not just be a domain-specific programming language, such as discrete Simulink data-flows or a synchronous language. Synchronous languages implement a fixed model of time using logical clocks that are abstraction of time as sensed by software. They correspond to a fixed viewpoint in system design, and in a fixed hardware location in the system, which is not adequate to our purpose and must be extended.

In project P, we first tried to define a centralised model for importing discrete-continuous models onto a simplified implementation of SIMULINK: P models. Certified code generators would then be developed from that format. Because this does not encompass all aspects being translated to P, the P meta-model is now being extended to architecture description concepts (of the AADL) in order to become better suited for the purpose of system design. Another example is the development of System Modeller on top of SCADE, which uses the more model-engineering flavoured formalism SysML to try to unambiguously represent architectures around SCADE modules.

An abstract specification formalism, capable of representing time, timing relations, with which heterogeneous models can be abstracted, from which programs can be synthesised, naturally appears better suited for the purpose of virtual prototyping. RT-Builder, based on Signal like Polychrony and developed by TNI, was industrially proven and deployed for that purpose at Peugeot. It served to develop the virtual platform simulating all onboard electronics of PSA cars. This 'hardware in the loop" simulator was used to test equipments supplied by other manufacturers with respect to virtual cars. In the avent of the related automotive standard, RT-Builder then became AUTOSAR-Builder.

4.2. Factory Automation

In the new collaboration with Mitsubishi R&D, started in 2015, we explore another application domain where time and domain heterogeneity are prime concerns: factory automation. In factory automation alone, a system is conventionally built from generic computing modules: PLCs (Programmable Logic Controllers), connected to the environment with actuators and detectors, and linked to a distributed network. Each individual, physically distributed, PLC module must be timely programmed to perform individually coherent actions and fulfill the global physical, chemical, safety, power efficiency, performance and latency requirements of the whole production chain. Factory chains are subject to global and heterogeneous (physical, electronical, functional) requirements whose enforcement must be orchestrated for all individual components.

Model-based analysis in factory automation emerges from different scientific domains and focus on different CPS abstractions that interact in subtle ways: logic of PLC programs, real-time electromechanical processing, physical and chemical environments. This yields domain communication problems that render individual domain analysis useless. For instance, if one domain analysis (e.g. software) modifies a system model in a way that violates assumptions made by another domain (e.g. chemistry) then the detection of its violation may well be impossible to explain to either of the software and chemistry experts.

As a consequence, cross-domain analysis issues are discovered very late during system integration and lead to costly fixes. This is particularly prevalent in multi-tier industries, such as avionic, automotive, factories, where systems are prominently integrated from independently-developed parts.

TOCCATA Project-Team

4. Application Domains

4.1. Safety-Critical Software

The application domains we target involve safety-critical software, that is where a high-level guarantee of soundness of functional execution of the software is wanted. Currently our industrial collaborations mainly belong to the domain of transportation, including aeronautics, railroad, space flight, automotive.

Verification of C programs, Alt-Ergo at Airbus Transportation is the domain considered in the context of the ANR U3CAT project, led by CEA, in partnership with Airbus France, Dassault Aviation, Sagem Défense et Sécurité. It included proof of C programs via Frama-C/Jessie/Why, proof of floating-point programs [99], the use of the Alt-Ergo prover via CAVEAT tool (CEA) or Frama-C/WP. Within this context, we contributed to a qualification process of Alt-Ergo with Airbus industry: the technical documents (functional specifications and benchmark suite) have been accepted by Airbus, and these documents were submitted by Airbus to the certification authorities (DO-178B standard) in 2012. This action is continued in the new project Soprano.

Certified compilation, certified static analyzers Aeronautics is the main target of the Verasco project, led by Verimag, on the development of certified static analyzers, in partnership with Airbus. This is a follow-up of the transfer of the CompCert certified compiler (Inria team Gallium) to which we contributed to the support of floating-point computations [13].

Transfer to the community of Ada development The former FUI project Hi-Lite, led by Adacore company, introduced the use of Why3 and Alt-Ergo as back-end to SPARK2014, an environment for verification of Ada programs. This is applied to the domain of aerospace (Thales, EADS Astrium). At the very beginning of that project, Alt-Ergo was added in the Spark Pro toolset (predecessor of SPARK2014), developed by Altran-Praxis: Alt-Ergo can be used by customers as an alternate prover for automatically proving verification conditions. Its usage is described in the new edition of the Spark book ⁰ (Chapter "Advanced proof tools"). This action is continued in the new joint laboratory ProofInUse. A recent paper [60] provides an extensive list of applications of SPARK, a major one being the British air control management *iFacts*.

Transfer to the community of Atelier B In the current ANR project BWare, we investigate the use of Why3 and Alt-Ergo as an alternative back-end for checking proof obligations generated by *Atelier B*, whose main applications are railroad-related software ⁰, a collaboration with Mitsubishi Electric R&D Centre Europe (Rennes) (joint publication [104]) and ClearSy (Aix-en-Provence).

SMT-based Model-Checking: Cubicle S. Conchon (with A. Mebsout and F. Zaidi from VALS team at LRI) has a long-term collaboration with S. Krstic and A. Goel (Intel Strategic Cad Labs in Hillsboro, OR, USA) that aims in the development of the SMT-based model checker Cubicle (http://cubicle.lri. fr/) based on Alt-Ergo [101][8]. It is particularly targeted to the verification of concurrent programs and protocols.

Apart from transportation, energy is naturally an application in particular with our long-term partner CEA, in the context of U3CAT and Soprano projects. We also indirectly target communications and data, in particular in contexts with a particular need for security or confidentiality: smart phones, Web applications, health records, electronic voting, etc. These are part of the applications of SPARK [60], including verification of security-related properties, including cryptographic algorithms. Also, our new AJACS project addresses issues related to security and privacy in web applications written in Javascript, also including correctness properties.

http://www.altran-praxis.com/book/

 $^{^0}http://www.methode-b.com/documentation_b/ClearSy-Industrial_Use_of_B.pdf$

VEGAS Project-Team

3. Application Domains

3.1. Computer graphics

We are interested in the application of our work to virtual prototyping, which refers to the many steps required for the creation of a realistic virtual representation from a CAD/CAM model.

When designing an automobile, detailed physical mockups of the interior are built to study the design and evaluate human factors and ergonomic issues. These hand-made prototypes are costly, time consuming, and difficult to modify. To shorten the design cycle and improve interactivity and reliability, realistic rendering and immersive virtual reality provide an effective alternative. A virtual prototype can replace a physical mockup for the analysis of such design aspects as visibility of instruments and mirrors, reachability and accessibility, and aesthetics and appeal.

Virtual prototyping encompasses most of our work on effective geometric computing. In particular, our work on 3D visibility should have fruitful applications in this domain. As already explained, meshing objects of the scene along the main discontinuities of the visibility function can have a dramatic impact on the realism of the simulations.

3.2. Solid modeling

Solid modeling, i.e., the computer representation and manipulation of 3D shapes, has historically developed somewhat in parallel to computational geometry. Both communities are concerned with geometric algorithms and deal with many of the same issues. But while the computational geometry community has been mathematically inclined and essentially concerned with linear objects, solid modeling has traditionally had closer ties to industry and has been more concerned with curved surfaces.

Clearly, there is considerable potential for interaction between the two fields. Standing somewhere in the middle, our project has a lot to offer. Among the geometric questions related to solid modeling that are of interest to us, let us mention: the description of geometric shapes, the representation of solids, the conversion between different representations, data structures for graphical rendering of models and robustness of geometric computations.

VERIDIS Project-Team

4. Application Domains

4.1. Application Domains

Distributed algorithms and protocols are found at all levels of computing infrastructure, from many-core processors and systems-on-chip to wide-area networks. We are particularly interested in the verification of algorithms that are developed for supporting novel computing paradigms, including ad-hoc networks that underly mobile and low-power computing or overlay networks and peer-to-peer networking that provide services for telecommunication or cloud computing services. Computing infrastructure must be highly available and is ideally invisible to the end user, therefore correctness is crucial. One should note that standard problems of distributed computing such as consensus, group membership or leader election have to be reformulated for the dynamic context of these modern systems. We are not ourselves experts in the design of distributed algorithms, but work together with domain experts on designing formal models of these protocols, and on verifying their properties. These cooperations help us focus on concrete algorithms and ensure that our work is relevant to the distributed algorithm community.

Formal verification techniques can contribute to certifying the correctness of systems. In particular, they help assert under which assumptions an algorithm or system functions as required. For example, the highest levels of the Common Criteria for Information Technology Security Evaluation encourage the use of formal methods. While initially the requirements of certified development have mostly been restricted to safety-critical systems, the cost of unavailable services due to malfunctioning system components and software provides wider incentives for verification. For example, we are working on modeling and verifying medical devices that require closed-loop models of both the system and its environment.

ACUMES Team

4. Application Domains

4.1. Active flow control for transportation systems

The reduction of CO2 emissions represents a great challenge for the automotive and aeronautic industries, which committed respectively a decrease of 20% for 2020 and 75% for 2050. This goal will not be reachable, unless a significant improvement of the aerodynamic performance of cars and aircrafts is achieved (e.g. aerodynamic resistance represents 70% of energy losses for cars above 90 km/h). Since vehicle design cannot be significantly modified, due to marketing or structural reasons, active flow control technologies are one of the most promising approaches to improve aerodynamic performance. This consists in introducing micro-devices, like pulsating jets or vibrating membranes, that can modify vortices generated by vehicles. Thanks to flow non-linearities, a small energy expense for actuation can significantly reduce energy losses. The efficiency of this approach has been demonstrated, experimentally as well as numerically, for simple configurations [142]. However, the lack of efficient and flexible numerical models, that allow to simulate and optimize a large number of such devices on realistic configurations, is still a bottleneck for the emergence of this technology in an industrial context. In particular, the prediction of actuated flows requires the use of advanced turbulence closures, like Detached Eddy Simulation or Large Eddy Simulation [98]. They are intrinsically three-dimensional and unsteady, yielding a huge computational effort for each analysis, which makes their use tedious for optimization purpose. In this context, we intend to contribute to the following research axes:

- Sensitivity analysis for actuated flows. Adjoint-based (reverse) approaches, classically employed in design optimization procedure to compute functional gradients, are not well suited to this context. Therefore, we propose to explore the alternative (direct) formulation, which is not so much used, in the perspective of a better characterization of actuated flows and optimization of control devices.
- *Hierarchical optimization of control devices*. The optimization of dozen of actuators, in terms of locations, frequencies, amplitudes, will be practically tractable only if a hierarchical approach is adopted, which mixes fine (DES) and coarse (URANS) simulations, and possibly experiments. We intend to develop such an optimization strategy on the basis of Gaussian Process models (*multifidelity kriging*).

4.2. Performance optimization in water sports

Phenomena encountered in water sports provide challenging modeling and optimization problems. Complex flows are usually considered in this context, including turbulence with strong unsteadiness effects and free surface. These problems can be multi-physic, for instance the simulation of a sail behavior requires to solve a fluid-structure interaction problem. Moreover, from an optimization point of view, a delicate compromise between performance and robustness with respect to the uncertain environment is usually sought. Nevertheless, a significant improvement of the performance can be achieved in this area, for which the use of simulation and optimization methods is just beginning. In this context, we are working with specialists of different disciplines (racing kayak and yachting) to develop specific optimization strategies. In particular, the use of meta-modeling techniques, able to aggregate simulations of different accuracies, is studied, as well as robust optimization formulations to account for uncertainties.

4.3. Concurrent design for building systems

The lifetime of a building goes through three stages: construction, use and destruction. To each of these phases correspond quality criteria related in particular to:

- Safety: structural, fire, evacuation, chemical spread, etc.
- Well-being of its occupants: thermal and acoustic comfort.
- Functionality of its intended use.
- Environmental impact.

These stages and criteria form a complex system, the so-called building system, whose overall quality (in an intuitive sense) is directly impacted by many factors, very heterogeneous, such as the geographical location or the shape or material composition of some of its components (windows, frames, thermal convectors positions, etc.) It is obvious that the optimization process of these settings must be performed at the "zero" stage of the project design. Moreover, the optimization process has to follow a global approach, taking into account all the concurrent criteria that intervene in the design of building systems.

The application of up-to-date concurrent optimization machinery (games, Pareto Fronts) for multiphysics systems involved in the building is an original approach. With our industrial partner, who wishes routine use of new high performance components in the construction of buildings, we expect that our approach will yield breakthrough building performances (with respect to the above criteria) compared to the current standards.

The research project relies on the ADT BuildingSmart (see software development section) for the implementation of industrial standard software demonstrators.

4.4. Vehicular and pedestrian traffic flows

Intelligent Transportation Systems (ITS) is nowadays a booming sector, where the contribution of mathematical modeling and optimization is widely recognized. In this perspective, traffic flow models are a commonly cited example of "complex systems", in which individual behavior and self-organization phenomena must be taken into account to obtain a realistic description of the observed macroscopic dynamics [103]. Further improvements require more advanced models, keeping into better account interactions at the microscopic scale, and adapted control techniques, see [57] and references therein. In particular, we will focus on the following aspects:

- Junction models. We are interested in designing a general junction model both satisfying basic analytical properties guaranteeing well-posedness and being realistic for traffic applications. In particular, the model should be able to overcome severe drawbacks of existing models, such as restrictions on the number of involved roads and prescribed split ratios [70], [96], which limit their applicability to real world situations. Hamilton-Jacobi equations could be also an interesting direction of research, following the recent results obtained in [107].
- Data assimilation. In traffic flow modeling, the capability of correctly estimating and predicting the state of the system depends on the availability of rich and accurate data on the network. Up to now, the most classical sensors are fixed ones. They are composed of inductive loops (electrical wires) that are installed at different spatial positions of the network and that can measure the traffic flow, the occupancy rate (i.e. the proportion of time during which a vehicle is detected to be over the loop) and the speed (in case of a system of two distant loops). These data are useful / essential to calibrate the phenomenological relationship between flow and density which is known in the traffic literature as the Fundamental Diagram. Nowadays, thanks to the wide development of mobile internet and geolocalization techniques and its increasing adoption by the road users, smartphones have turned into perfect mobile sensors in many domains, including in traffic flow management. They can provide the research community with a large database of individual trajectory sets that are known as Floating Car Data (FCD), see [105] for a real field experiment. Classical macroscopic models, say (hyperbolic systems of) conservation laws, are not designed to take into account this new kind of microscopic data. Other formulations, like Hamilton-Jacobi partial differential equations, are most suited and have been intensively studied in the past five years (see [64], [65]), with a stress on the (fixed) Eulerian framework. Up to our knowledge, they have not been studied in the time-Lagrangian as well as space-Lagrangian frameworks, where data coming from mobile sensors could be easily assimilated, due to the fact that the Lagrangian coordinate (say the label of a vehicle) is fixed.
- Control of autonomous vehicles. Traffic flow is usually controlled via traffic lights or variable
 speed limits, which have fixed space locations. The deployment of autonomous vehicles opens new
 perspectives in traffic management, as the use of a small fraction of cars to optimize the overall
 traffic. In this perspective, the possibility to track vehicles trajectories either by coupled micro-macro

models [78], [97] or via the Hamilton-Jacobi approach [64], [65] could allow to optimize the flow by controlling some specific vehicles corresponding to internal conditions.

4.5. Modeling cell dynamics

Migration and proliferation of epithelial cell sheets are the two keystone aspects of the collective cell dynamics in most biological processes such as morphogenesis, embryogenesis, cancer and wound healing. It is then of utmost importance to understand their underlying mechanisms.

The cells in epithelial sheets (monolayers) maintain strong cell-cell contact during their collective migration. Although it is well known that under some experimental conditions apical and basal sites play distinctive important roles during the migration, as well as the substrate itself [130], we consider here biological experiments where the apico-basal polarization does not take place. Thus, the cell monolayer can be considered as a 2 dimensional continuous structure. These epithelial monolayers, as the Madin-Darby Canine Kidney (MDCK) cells [53], [90], are universally used as multicellular models to study the migratory mechanisms.

Semilinear reaction-diffusion equations are widely used to give a phenomenological description of the temporal and spatial changes occurring within cell populations that undergo scattering (moving), spreading (expanding cell surface) and proliferation. We have followed the same methodology and contributed to assess the validity of such approaches in different settings (cell sheets [101], dorsal closure [49], actin organization [48]). However, epithelial cell-sheet movement is complex enough to undermine most of the mathematical approaches based on *locality*, that is mainly traveling wavefront-like partial differential equations. In [89] it is shown that MDCK cells extend cryptic lamellipodia to drive the migration, several rows behind the wound edge. In [125] MDCK monolayers are shown to exhibit similar non-local behavior (long range velocity fields, very active border-localized leader cells).

Our aim is to start from a mesoscopic description of interaction of the cells (at the cell-cell level, including the F-actin, but not e.g. the migration-related protein scale). Considering cells as independent anonymous agents, we plan to investigate the use of mathematical techniques adapted from the mean-field game theory. Otherwise, looking at them as interacting particles, we will use a multi-agent approach (at least for the actin dynamics). We intend also to consider approaches stemming from compartment-based simulation in the spirit of those developed in [87], [92], [94].

4.6. Nanotechnologies

Our team takes part in a larger collaboration with CEA/LETI (Grenoble), initiated by the Inria Project-Team Nachos, and related to the Maxwell equations. Our component in this activity relates to the optimization of nanophotonic devices, in particular with respect to the control of thermal loads.

We have first identified a gradation of representative test-cases of increasing complexity:

- infrared micro-source
- micro-photoacoustic cell
- nanaphotonic device.

These cases involve from a few geometric parameters to be optimized to a functional minimization subject to a finite-element solution involving a large number of dof's. CEA disposes of such codes, but considering the computational cost of the objective functions in the complex cases, the first part of our study is focused on the construction and validation of meta-models, typically of RBF-type. Multi-objective optimization will be carried out subsequently by MGDA, and possibly Nash games.

This research activity is aimed to make our methodologies and application fields more diverse, and we expect to be confronted to novel optimization problematics raised by the specific context.

APICS Project-Team

4. Application Domains

4.1. Introduction

Application domains are naturally linked to the problems described in Sections 3.2.1 and 3.2.2. By and large, they split into a systems-and-circuits part and an inverse-source-and-boundary-problems part, united under a common umbrella of function-theoretic techniques as described in Section 3.3.

4.2. Inverse source problems in EEG

Participants: Laurent Baratchart, Juliette Leblond, Jean-Paul Marmorat, Christos Papageorgakis, Nicolas Schnitzler.

This work is conducted in collaboration with Maureen Clerc and Théo Papadopoulo from the Athena EPI.

Solving overdetermined Cauchy problems for the Laplace equation on a spherical layer (in 3-D) in order to extrapolate incomplete data (see Section 3.2.1) is a necessary ingredient of the team's approach to inverse source problems, in particular for applications to EEG, see [7]. Indeed, the latter involves propagating the initial conditions through several layers of different conductivities, from the boundary shell down to the center of the domain where the singularities (*i.e.* the sources) lie. Once propagated to the innermost sphere, it turns out that traces of the boundary data on 2-D cross sections coincide with analytic functions with branched singularities in the slicing plane [38][5]. The singularities are related to the actual location of the sources, namely their moduli reach in turn a maximum when the plane contains one of the sources. Hence we are back to the 2-D framework of Section 3.3.3, and recovering these singularities can be performed *via* best rational approximation. The goal is to produce a fast and sufficiently accurate initial guess on the number and location of the sources in order to run heavier descent algorithms on the direct problem, which are more precise but computationally costly and often fail to converge if not properly initialized.

Numerical experiments obtained with our software FindSources3D give very good results on simulated data and we are now engaged in the process of handling real experimental data (see Sections 3.4.2 and 6.1), in collaboration with the Athena team at Inria Sophia Antipolis, neuroscience teams in partner-hospitals (la Timone, Marseille), and the BESA company (Munich).

4.3. Inverse magnetization problems

Participants: Laurent Baratchart, Sylvain Chevillard, Juliette Leblond, Konstantinos Mavreas, Dmitry Ponomarev.

Generally speaking, inverse potential problems, similar to the one appearing in Section 4.2, occur naturally in connection with systems governed by Maxwell's equation in the quasi-static approximation regime. In particular, they arise in magnetic reconstruction issues. A specific application is to geophysics, which led us to form the Inria Associate Team "IMPINGE" (Inverse Magnetization Problems IN GEosciences) together with MIT and Vanderbilt University. A recent collaboration with Cerege (CNRS, Aix-en-Provence), in the framework of the ANR-project MagLune, completes this picture, see Section 8.2.2.

To set up the context, recall that the Earth's geomagnetic field is generated by convection of the liquid metallic core (geodynamo) and that rocks become magnetized by the ambient field as they are formed or after subsequent alteration. Their remanent magnetization provides records of past variations of the geodynamo, which is used to study important processes in Earth sciences like motion of tectonic plates and geomagnetic reversals. Rocks from Mars, the Moon, and asteroids also contain remanent magnetization which indicates the past presence of core dynamos. Magnetization in meteorites may even record fields produced by the young sun and the protoplanetary disk which may have played a key role in solar system formation.

For a long time, paleomagnetic techniques were only capable of analyzing bulk samples and compute their net magnetic moment. The development of SQUID microscopes has recently extended the spatial resolution to sub-millimeter scales, raising new physical and algorithmic challenges. This associate team aims at tackling them, experimenting with the SQUID microscope set up in the Paleomagnetism Laboratory of the department of Earth, Atmospheric and Planetary Sciences at MIT. Typically, pieces of rock are sanded down to a thin slab, and the magnetization has to be recovered from the field measured on a parallel plane at small distance above the slab.

Mathematically speaking, both inverse source problems for EEG from Section 4.2 and inverse magnetization problems described presently amount to recover the (3-D valued) quantity m (primary current density in case of the brain or magnetization in case of a thin slab of rock) from measurements of the vector potential:

$$\int_{\Omega} \frac{\operatorname{div} m(x') \, dx'}{|x - x'|} \,, \tag{1}$$

outside the volume Ω of the object. The difference is that the distribution m is located in a volume in the case of EEG, and on a plane in the case of rock magnetization. This results in quite different identifiability properties, see [33] and Section 6.1.2, but the two situations share a substantial Mathematical common core.

4.4. Identification and design of microwave devices

Participants: Laurent Baratchart, Sylvain Chevillard, Jean-Paul Marmorat, Martine Olivi, Fabien Seyfert.

This is joint work with Stéphane Bila (XLIM, Limoges).

One of the best training grounds for function-theoretic applications by the team is the identification and design of physical systems whose performance is assessed frequency-wise. This is the case of electromagnetic resonant systems which are of common use in telecommunications.

In space telecommunications (satellite transmissions), constraints specific to on-board technology lead to the use of filters with resonant cavities in the microwave range. These filters serve multiplexing purposes (before or after amplification), and consist of a sequence of cylindrical hollow bodies, magnetically coupled by irises (orthogonal double slits). The electromagnetic wave that traverses the cavities satisfies the Maxwell equations, forcing the tangent electrical field along the body of the cavity to be zero. A deeper study of the Helmholtz equation states that an essentially discrete set of wave vectors is selected. In the considered range of frequency, the electrical field in each cavity can be decomposed along two orthogonal modes, perpendicular to the axis of the cavity (other modes are far off in the frequency domain, and their influence can be neglected).

Each cavity (see Figure 1) has three screws, horizontal, vertical and midway (horizontal and vertical are two arbitrary directions, the third direction makes an angle of 45 or 135 degrees, the easy case is when all cavities show the same orientation, and when the directions of the irises are the same, as well as the input and output slits). Since screws are conductors, they behave as capacitors; besides, the electrical field on the surface has to be zero, which modifies the boundary conditions of one of the two modes (for the other mode, the electrical field is zero hence it is not influenced by the screw), the third screw acts as a coupling between the two modes. The effect of an iris is opposite to that of a screw: no condition is imposed on a hole, which results in a coupling between two horizontal (or two vertical) modes of adjacent cavities (in fact the iris is the union of two rectangles, the important parameter being their width). The design of a filter consists in finding the size of each cavity, and the width of each iris. Subsequently, the filter can be constructed and tuned by adjusting the screws. Finally, the screws are glued once a satisfactory response has been obtained. In what follows, we shall consider a typical example, a filter designed by the CNES in Toulouse, with four cavities near 11 GHz.

Near the resonance frequency, a good approximation to the Helmholtz equations is given by a second order differential equation. Thus, one obtains an electrical model of the filter as a sequence of electrically-coupled resonant circuits, each circuit being modeled by two resonators, one per mode, the resonance frequency of which represents the frequency of a mode, and whose resistance accounts for electric losses (surface currents) in the cavities.

Figure 1. Picture of a 6-cavities dual mode filter. Each cavity (except the last one) has 3 screws to couple the modes within the cavity, so that 16 quantities must be optimized. Quantities such as the diameter and length of the cavities, or the width of the 11 slits are fixed during the design phase.

This way, the filter can be seen as a quadripole, with two ports, when plugged onto a resistor at one end and fed with some potential at the other end. One is now interested in the power which is transmitted and reflected. This leads one to define a scattering matrix S, which may be considered as the transfer function of a stable causal linear dynamical system, with two inputs and two outputs. Its diagonal terms $S_{1,1}$, $S_{2,2}$ correspond to reflections at each port, while $S_{1,2}$, $S_{2,1}$ correspond to transmission. These functions can be measured at certain frequencies (on the imaginary axis). The filter is rational of order 4 times the number of cavities (that is 16 in the example on Figure 2), and the key step consists in expressing the components of the equivalent electrical circuit as functions of the S_{ij} (since there are no formulas expressing the lengths of the screws in terms of parameters of this electrical model). This representation is also useful to analyze the numerical simulations of the Maxwell equations, and to check the quality of design, in particular the absence of higher resonant modes.

In fact, resonance is not studied via the electrical model, but via a low-pass equivalent circuit obtained upon linearizing near the central frequency, which is no longer conjugate symmetric (*i.e.* the underlying system may no longer have real coefficients) but whose degree is divided by 2 (8 in the example).

In short, the strategy for identification is as follows:

- measuring the scattering matrix of the filter near the optimal frequency over twice the pass band (which is 80MHz in the example).
- Solving bounded extremal problems for the transmission and the reflection (the modulus of he response being respectively close to 0 and 1 outside the interval measurement, cf. Section 3.3.1). This provides us with a scattering matrix of order roughly 1/4 of the number of data points.
- Approximating this scattering matrix by a rational transfer-function of fixed degree (8 in this example) via the Endymion or RARL2 software (cf. Section 3.3.2.2).
- A realization of the transfer function is thus obtained, and some additional symmetry constraints are imposed.

• Finally one builds a realization of the approximant and looks for a change of variables that eliminates non-physical couplings. This is obtained by using algebraic-solvers and continuation algorithms on the group of orthogonal complex matrices (symmetry forces this type of transformation).

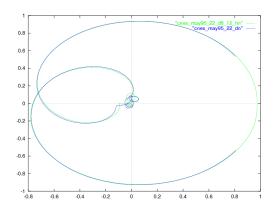


Figure 2. Nyquist Diagram. Rational approximation (degree 8) and data - S_{22} .

The final approximation is of high quality. This can be interpreted as a confirmation of the linearity assumption on the system: the relative L^2 error is less than 10^{-3} . This is illustrated by a reflection diagram (Figure 2). Non-physical couplings are less than 10^{-2} .

The above considerations are valid for a large class of filters. These developments have also been used for the design of non-symmetric filters, which are useful for the synthesis of repeating devices.

The team also investigates problems relative to the design of optimal responses for microwave devices. The resolution of a quasi-convex Zolotarev problems was proposed, in order to derive guaranteed optimal multiband filter responses subject to modulus constraints [8]. This generalizes the classical single band design techniques based on Chebyshev polynomials and elliptic functions. The approach relies on the fact that the modulus of the scattering parameter $|S_{1,2}|$ admits a simple expression in terms of the filtering function $D = |S_{1,1}|/|S_{1,2}|$, namely

$$|S_{1,2}|^2 = \frac{1}{1 + D^2}.$$

The filtering function appears to be the ratio of two polynomials p_1/p_2 , the numerator of the reflection and transmission scattering factors, that can be chosen freely. The denominator q is obtained as the unique stable unitary polynomial solving the classical Feldtkeller spectral equation:

$$qq^* = p_1p_1^* + p_2p_2^*.$$

The relative simplicity of the derivation of a filter's response, under modulus constraints, owes much to the possibility of forgetting about Feldtkeller's equation and express all design constraints in terms of the filtering function. This no longer the case when considering the synthesis N-port devices for N>3, like multiplexers, routers power dividers or when considering the synthesis of filters under matching conditions. The efficient derivation of multiplexers responses is among the team's recent investigation, where techniques based on constrained Nevanlinna-Pick interpolation problems are being considered (see Section 6.2).

Through contacts with CNES (Toulouse) and UPV (Bilbao), Apics got further involved in the design of amplifiers which, unlike filters, are active devices. A prominent issue here is stability. A twenty years back, it was not possible to simulate unstable responses, and only after building a device could one detect instability. The advent of so-called *harmonic balance* techniques, which compute steady state responses of linear elements in the frequency domain and look for a periodic state in the time domain of a network connecting these linear elements *via* static non-linearities made it possible to compute the harmonic response of a (possibly nonlinear and unstable) device [75]. This has had tremendous impact on design, and there is a growing demand for software analyzers.

There are two types of stability involved. The first is stability of a fixed point around which the linearized transfer function accounts for small signal amplification. The second is stability of a limit cycle which is reached when the input signal is no longer small and truly nonlinear amplification is attained (*e.g.* because of saturation). Work by the team so far has been concerned with the first type of stability, and emphasis is put on defining and extracting the "unstable part" of the response, see Section 7.2.

ASPI Project-Team

4. Application Domains

4.1. Localisation, navigation and tracking

Among the many application domains of particle methods, or interacting Monte Carlo methods, ASPI has decided to focus on applications in localisation (or positioning), navigation and tracking [50], [43], which already covers a very broad spectrum of application domains. The objective here is to estimate the position (and also velocity, attitude, etc.) of a mobile object, from the combination of different sources of information, including

- a prior dynamical model of typical evolutions of the mobile, such as inertial estimates and prior model for inertial errors,
- measurements provided by sensors,
- and possibly a digital map providing some useful feature (terrain altitude, power attenuation, etc.) at each possible position.

In some applications, another useful source of information is provided by

• a map of constrained admissible displacements, for instance in the form of an indoor building map,

which particle methods can easily handle (map-matching). This Bayesian dynamical estimation problem is also called filtering, and its numerical implementation using particle methods, known as particle filtering, has been introduced by the target tracking community [49], [63], which has already contributed to many of the most interesting algorithmic improvements and is still very active, and has found applications in

target tracking, integrated navigation, points and / or objects tracking in video sequences, mobile robotics, wireless communications, ubiquitous computing and ambient intelligence, sensor networks, etc.

ASPI is contributing (or has contributed recently) to several applications of particle filtering in positioning, navigation and tracking, such as geolocalisation and tracking in a wireless network, terrain–aided navigation, and data fusion for indoor localisation.

4.2. Rare event simulation

```
See 3.3, and 5.1, 5.2, 5.3, and 5.4.
```

Another application domain of particle methods, or interacting Monte Carlo methods, that ASPI has decided to focus on is the estimation of the small probability of a rare but critical event, in complex dynamical systems. This is a crucial issue in industrial areas such as

nuclear power plants, food industry, telecommunication networks, finance and insurance industry, air traffic management, etc.

In such complex systems, analytical methods cannot be used, and naive Monte Carlo methods are clearly unefficient to estimate accurately very small probabilities. Besides importance sampling, an alternate widespread technique consists in multilevel splitting [57], where trajectories going towards the critical set are given off-springs, thus increasing the number of trajectories that eventually reach the critical set. This approach not only makes it possible to estimate the probability of the rare event, but also provides realizations of the random trajectory, given that it reaches the critical set, i.e. provides realizations of typical critical trajectories, an important feature that methods based on importance sampling usually miss.

ASPI is contributing (or has contributed recently) to several applications of multilevel splitting for rare event simulation, such as risk assessment in air traffic management, detection in sensor networks, and protection of digital documents.

BIPOP Project-Team

4. Application Domains

4.1. Computational neuroscience

Modeling in neuroscience makes extensive use of nonlinear dynamical systems with a huge number of interconnected elements. Our current theoretical understanding of the properties of neural systems is mainly based on numerical simulations, from single cell models to neural networks. To handle correctly the discontinuous nature of integrate-and-fire networks, specific numerical schemes have to be developed. Our current works focus on event-driven, time-stepping and voltage-stepping strategies, to simulate accurately and efficiently neuronal networks. Our activity also includes a mathematical analysis of the dynamical properties of neural systems. One of our aims is to understand neural computation and to develop it as a new type of information science [19], [20].

4.2. Electronic circuits

Whether they are integrated on a single substrate or as a set of components on a board, electronic circuits are very often a complex assembly of many basic components with non linear characteristics. The IC technologies now allow the integration of hundreds of millions of transistors switching at GHz frequencies on a die of 1cm². It is out of the question to simulate a complete IC with standard tools such as the SPICE simulator. We currently work on a dedicated plug-in able to simulate a whole circuit comprising various components, some modelled in a nonsmooth way [1].

4.3. Walking robots

As compared to rolling robots, the walking ones – for example hexapods – possess definite advantages whenever the ground is not flat or free: clearing obstacles is easier, holding on the ground is lighter, adaptivity is improved. However, if the working environment of the system is adapted to man, the biped technology must be preferred, to preserve good displacement abilities without modifying the environment. This explains the interest displayed by the international community in robotics toward humanoid systems, whose aim is to back man in some of his activities, professional or others. For example, a certain form of help at home to disabled persons could be done by biped robots, as they are able to move without any special adaptation of the environment.

4.4. Computer graphics animation

Computer graphics animation is dedicated to the numerical modeling and simulation of physical phenomena featuring a high visual impact. Typically, deformable objects prone to strong deformation, large displacements, complex and nonlinear or even nonsmooth behavior, are of interest for this community. We are interested in two main mechanical phenomena: on the one hand, the behavior of slender (nonlinear) structures such as rods, plates and shells; on the other hand, the effect of frictional contact between rigid or deformable bodies. In both cases the goal is to design realistic, efficient, robust, and controllable computational models. Whereas the problem of collision detection has become a mature field those recent years, simulating the collision response (in particular frictional contacts) in a realistic, robust and efficient way, still remains an important challenge. Another related issue we began to study is the simulation of heterogeneous objects such as granular or fibrous materials, which requires the design of new high-scales models for dynamics and contacts; indeed, for such large systems, simulating each interacting particle/fiber individually would be too much time-consuming for typical graphics applications. We also pursue some study on the design of high-order models for slender structures such as rods, plates or shells. Our current activity includes the static inversion of mechanical objects, which is of great importance in the field of artistic design, for the making of movies

and video games for example. Such problems typically involve geometric fitting and parameters identification issues, both resolved with the help of constrained optimization. Finally, we are interested in studying certain discrepancies (inexistence of solution) due to the combination of incompatible models such as contacting rigid bodies subject to Coulomb friction.

4.5. Multibody Systems: Modeling, Control, Waves, Simulation

Multibody systems are assemblies of rigid or flexible bodies, typically modeled with Newton-Euler or Lagrange dynamics, with bilateral and unilateral constraints, with or without tangential effects like friction. These systems are highly nonlinear and nonsmooth, and are therefore challenging for modeling aspects (impact dynamics, especially multiple –simultaneous– collisions), feedback control [10], state observation, as well as numerical analysis and simulation (software development) [2], [4], [5]. Biped robots are a particular, interesting subclass of multibody systems subject to various constraints. Granular materials are another important field, in which nonlinear waves transmissions are crucial (one celebrated example being Newton's cradle) [18], [13], [6], [14]. Fibers assemblies [11], circuit breakers, systems with clearances, are also studied in the team.

4.6. Stability and Feedback Control

Lyapunov stability of nonsmooth, complementarity dynamical systems is challenging, because of possible state jumps, and varying system's dimension (the system may live on lower-dimensional subspaces), which may induce instability if not incorporated in the analysis [8], [9], [7]. On the other hand, the nonsmoothness (or the set-valuedness) may be introduced through the feedback control, like for instance the well-known sliding-mode controllers or state observers. The time-discretisation of set-valued controllers is in turn of big interest [3]. The techniques we study originate from numerical analysis in Contact Mechanics (the Moreau-Jean time-stepping algorithm) and are shown to be very efficient for chattering suppression and Lyapunov finite-time stability.

CAGIRE Team

4. Application Domains

4.1. Aeronautical combustion chambers

The combustion chamber of aeronautical engines is the system of practical interest we are interested in as far as propulsion devices are concerned. The MAVERIC test facility was developed by P. Bruel in that framework during the theses (CIFRE Turbomeca) of A. Most (2007) and J.-L. Florenciano (2013). The initial objective was to reproduce experimentally a simplified flow configuration (jet(s) in crossflow) representative of that encountered at the level of the effusion cooled aeronautical combustion chambers walls. The experimental data were used by Safran/Turbomeca to assess the predictive capability of LES simulations during our joint participation in the EU-FP7 KIAI program (2009-2013). Concerning DNS, the jet in crossflow configurations of our AeroSol based simulations which represent our contribution to the EU IMPACT-AE program (2011-2016) were chosen in partnership with Turbomeca who is leading the corresponding work package. Last but not least, tests aimed at demonstrating the feasibility of characterizing in situ by PIV the velocity field of flows emerging from different kinds of fuel nozzles were carried out at the Turbomeca premises in 2012 and 2013. Although our main present industrial partners are large companies, we are and will be actively targeting much smaller companies (SMEs) especially in the southwest part of France. In that respect, the partnership we just started with AD Industries which is manufacturing fuel nozzles as well as combustion chambers for business jet engines is emblematic of our involvement in such kind of partnership.

4.2. Power stations

The cooling of key components of power stations in case of emergency stops is a critical issue. R. Manceau has established a long term collaboration (4 PhD thesis) with the R & D center of EDF of Chatou, for the development of refined turbulence models in the in-house CFD code of EDF, Code_Saturne, in order to improve the physical description of the complex interaction phenomena involved in such applications. In the framework of the co-supervision of the PhD thesis (CIFRE EDF) of J.-F. Wald, strategies are developed to adapt the EB-RSM turbulence model to a local modification of the scale of description of the flow in the near-wall region: refined scale (fine mesh in the near-wall region) or coarse scale (with wall functions). Indeed, the complexity of the industrial geometries is such that a fine mesh along solid boundaries in the whole system is usually not possible/desirable.

CARDAMOM Team

4. Application Domains

4.1. De-anti icing systems

Impact of large ice debris on downstream aerodynamic surfaces and ingestion by aft mounted engines must be considered during the aircraft certification process. It is typically the result of ice accumulation on unprotected surfaces, ice accretions downstream of ice protected areas, or ice growth on surfaces due to delayed activation of ice protection systems (IPS) or IPS failure. This raises the need for accurate ice trajectory simulation tools to support pre-design, design and certification phases while improving cost efficiency. Present ice trajectory simulation tools have limited capabilities due to the lack of appropriate experimental aerodynamic force and moment data for ice fragments and the large number of variables that can affect the trajectories of ice particles in the aircraft flow field like the shape, size, mass, initial velocity, shedding location, etc... There are generally two types of model used to track shed ice pieces. The first type of model makes the assumption that ice pieces do not significantly affect the flow. The second type of model intends to take into account ice pieces interacting with the flow. We are concerned with the second type of models, involving fully coupled time-accurate aerodynamic and flight mechanics simulations, and thus requiring the use of high efficiency adaptive tools, and possibly tools allowing to easily track moving objects in the flow. We will in particular pursue and enhance our initial work based on adaptive immerse boundary capturing of moving ice debris, whose movements are computed using basic mechanical laws.

In [75] it has bee proposed to model ice shedding trajectories by an innovative paradigm that is based on CArtesian grids, PEnalization and LEvel Sets (LESCAPE code). Our objective is to use the potential of high order unstructured mesh adaptation and immersed boundary techniques to provide a geometrically flexible extension of this idea. These activities will be linked to the development of efficient mesh adaptation and time stepping techniques for time dependent flows, and their coupling with the immersed boundary methods we started developing in the FP7 EU project STORM [65], [122]. In these methods we compensate for the error at solid walls introduced by the penalization by using anisotropic mesh adaptation [94], [113], [114]. From the numerical point of view one of the major challenges is to guarantee efficiency and accuracy of the time stepping in presence of highly stretched adaptive and moving meshes. Semi-implicit, locally implicit, multi-level, and split discretizations will be explored to this end.

Besides the numerical aspects, we will deal with modelling challenges. One source of complexity is the initial conditions which are essential to compute ice shedding trajectories. It is thus extremely important to understand the mechanisms of ice release. With the development of next generations of engines and aircraft, there is a crucial need to better assess and predict icing aspects early in design phases and identify breakthrough technologies for ice protection systems compatible with future architectures. When a thermal ice protection system is activated, it melts a part of the ice in contact with the surface, creating a liquid water film and therefore lowering ability of the ice block to adhere to the surface. The aerodynamic forces are then able to detach the ice block from the surface [77]. In order to assess the performance of such a system, it is essential to understand the mechanisms by which the aerodynamic forces manage to detach the ice. The current state of the art in icing codes is an empirical criterion. However such an empirical criterion is unsatisfactory. Following the early work of [79], [74] we will develop appropriate asymptotic PDE approximations allowing to describe the ice formation and detachment, trying to embed in this description elements from damage/fracture mechanics. These models will constitute closures for aerodynamics/RANS and URANS simulations in the form of PDE wall models, or modified boundary conditions.

In addition to this, several sources of uncertainties are associated to the ice geometry, size, orientation and the shedding location. In very few papers [125], some sensitivity analysis based on Monte Carlo method have been conducted to take into account the uncertainties of the initial conditions and the chaotic nature of the ice particle motion. We aim to propose some systematic approach to handle every source of uncertainty in an efficient way relying on some state-of-art techniques developed in the Team. In particular, we will perform an uncertainty propagation of some uncertainties on the initial conditions (position, orientation, velocity,...) through a low-fidelity model in order to get statistics of a multitude of particle tracks. This study will be done in collaboration with ETS (Ecole de Technologies Supérieure, Canada). The longterm objective is to produce footprint maps and to analyse the sensitivity of the models developed.

4.2. Space re-entry

As already mentioned, atmospheric re-entry involves multi-scale fluid flow physics including highly rarefied effects, aerothermochemistry, radiation. All this must be coupled to the response of thermal protection materials to extreme conditions. This response is most often the actual objective of the study, to allow the certification of Thermal Protection Systems (TPS).

One of the applications we will consider is the so-called post-flight analysis of a space mission. This involves reconstructing the history of the re-entry module (trajectory and flow) from data measured on the spacecraft by means of a Flush Air Data System (FADS), a set of sensors flush mounted in the thermal protection system to measure the static pressure (pressure taps) and heat flux (calorimeters). This study involves the accurate determination of the freestream conditions during the trajectory. In practice this means determining temperature, pressure, and Mach number in front of the bow shock forming during re-entry. As shown by zur Nieden and Olivier [144], state of the art techniques for freestream characterization rely on several approximations, such as e.g. using an equivalent calorically perfect gas formulas instead of taking into account the complex aero-thermo-chemical behaviour of the fluid. These techniques do not integrate measurement errors nor the heat flux contribution, for which a correct knowledge drives more complex models such as gas surface interaction. In this context, CFD supplied with UQ tools permits to take into account chemical effects and to include both measurement errors and epistemic uncertainties, e.g. those due to the fluid approximation, on the chemical model parameters in the bulk and at the wall (surface catalysis).

Rebuilding the freestream conditions from the stagnation point data therefore amounts to solving a stochastic inverse problem, as in robust optimization. Our objective is to build a robust and global framework for rebuilding freestream conditions from stagnation-point measurements for the trajectory of a re-entry vehicle. To achieve this goal, methods should be developed for

- an accurate simulation of the flow in all the regimes, from rarefied, to transitional, to continuous;
- providing a complete analysis about the reliability and the prediction of the numerical simulation in hypersonic flows, determining the most important source of error in the simulation (PDE model, discretization, mesh, etc)
- reducing the overall computational cost of the analysis.

Our work on the improvement of the simulation capabilities for re-entry flows will focus both on the models and on the methods. We will in particular provide an approach to extend the use of standard CFD models in the transitional regime, with CPU gains of several orders of magnitude w.r.t. Boltzmann solvers. To do this we will use the results of a boundary layer analysis allowing to correct the Navier-Stokes equations. This theory gives modified (or extended) boundary conditions that are called "slip velocity" and "temperature jump" conditions. This theory seems to be completely ignored by the aerospace engineering community. Instead, people rather use a simpler theory due to Maxwell that also gives slip and jump boundary conditions: however, the coefficients given by this theory are not correct. This is why several teams have tried to modify these coefficients by some empirical methods, but it seems that this does not give any satisfactory boundary conditions.

Our project is twofold. First, we want to revisit the asymptotic theory, and to make it known in the aerospace community. Second, we want to make an intensive sensitivity analysis of the model to the various coefficients of the boundary conditions. Indeed, there are two kinds of coefficients in these boundary conditions. The first one is the accomodation coefficient: in the kinetic model, it gives the proportion of molecules that are specularly reflected, while the others are reflected according to a normal distribution (the so-called diffuse reflexion). This coefficient is a data of the kinetic model that can be measured by experiments: it depends on the material and the structure of the solid boundary, and of the gas. Its influence on the results of a Navier-Stokes simulation is certainly quite important. The other coefficients are those of the slip and jump boundary conditions: they are issued from the boundary layer analysis, and we have absolutely no idea of the order of magnitude of their influence on the results of a Navier-Stokes solution. In particular, it is not clear if these results are more sensitive to the accomodation coefficient or to these slip and jump coefficients.

In this project, we shall make use of the expertise of the team on uncertainty quantification to investigate the sensitivity of the Navier-Stokes model with slip and jump coefficients to these various coefficients. This would be rather new in the field of aerospace community. It could also have some impacts in other sciences in which slip and jump boundary conditions with incorrect coefficients are still used, like for instance in spray simulations: for very small particles immersed in a gas, the drag coefficient is modified to account for rarefied effects (when the radius of the particle is of the same order of magnitude as the mean free path in the gas), and slip and jump boundary conditions are used.

Another application which has very close similarities to the physics of de-anti icing systems is the modelling of the solid and liquid ablation of the thermal protective system of the aircraft. This involves the degradation and recession of the solid boundary of the protection layer due to the heating generated by the friction. As in the case of de-anti icing systems, the simulation of these phenomena need to take into account the heat conduction in the solid, its phase change, and the coupling between a weakly compressible and a compressible phase. Fluid/Solid coupling methods are generally based on a weak approach. Here we will both study, by theoretical and numerical techniques, a strong coupling method for the interaction between the fluid and the solid, and, as for de-anti icing systems, attempt at developing appropriate asymptotic models. These would constitute some sort of thin layer/wall models to couple to the external flow solver.

These modelling capabilities will be coupled to high order adaptive discretizations to provide high fidelity flow models. One of the most challenging problems is the minimization of the influence of mesh and scheme on the wall conditions on the re-entry module. To reduce this influence, we will investigate both high order adaptation across the bow shock, and possibly adaptation based on uncertainty quantification high order moments related to the heat flux estimation, or shock fitting techniques [78], [117]. These tools will be coupled to our robust inverse techniques. One of our objectives is to development of a low-cost strategy for improving the numerical prediction by taking into account experimental data. Some methods have been recently introduced [124] for providing an estimation of the numerical errors/uncertainties. We will use some metamodels for solving the inverse problem, by considering all sources of uncertainty, including those on physical models. We will validate the framework sing the experimental data available in strong collaboration with the von Karman Institute for Fluid dynamics (VKI). In particular, data coming from the VKI Longshot facility will be used. We will show application of the developed numerical tool for the prediction in flight conditions.

These activities will benefit from our strong collaborations with the CEA and with the von Karman Institute for Fluid Dynamics and ESA.

4.3. Energy

We will develop modelling and design tools, as well as dedicated platforms, for Rankine cycles using complex fluids (organic compounds), and for wave energy extraction systems.

Organic Rankine Cycles (ORCs) use heavy organic compounds as working fluids. This results in superior efficiency over steam Rankine cycles for source temperatures below 900 K. ORCs typically require only a single-stage rotating component making them much simpler than typical multi-stage steam turbines. The strong pressure reduction in the turbine may lead to supersonic flows in the rotor, and thus to the appearance of shocks, which reduces the efficiency due to the associated losses. To avoid this, either a larger multi stage installation is used, in which smaller pressure drops are obtained in each stage, or centripetal turbines are used, at very high rotation speeds (of the order of 25,000 rpm). The second solution allows to keep the simplicity of the expander, but leads to poor turbine efficiencies (60-80%) - w.r.t. modern, highly optimized, steam and gas turbines - and to higher mechanical constraints. The use of dense-gas working fluids, i.e. operating close to the saturation curve, in properly chosen conditions could increase the turbine critical Mach number avoiding the formation of shocks, and increasing the efficiency. Specific shape optimization may enhance these effects, possibly allowing the reduction of rotation speeds. However, dense gases may have significantly different properties with respect to dilute ones. Their dynamics is governed by a thermodynamic parameter known as the fundamental derivative of gas dynamics

$$\Gamma = 1 + \frac{\rho}{c} \left(\frac{\partial c}{\partial \rho} \right)_s, \tag{2}$$

where ρ is the density, c is the speed of sound and s is the entropy. For ideal gas $\Gamma=(\gamma+1)/2>1$. For some complex fluids and some particular conditions of pressure and temperature, Γ may be lower that one, implying that $(\partial c/\partial \rho)_s < 0$. This means that the acceleration of pressure perturbations through a variable density fluids may be reversed and become a deceleration. It has been shown that, for $\Gamma << 1$, compression shocks are strongly reduced, thus alleviating the shock intensity. This has great potential in increasing the efficiency. This is why so much interest is put on dense gas ORCs.

The simulation of these gases requires accurate thermodynamic models, such as Span-Wagner or Peng-Robinson (see [87]). The data to build these models is scarce due to the difficulty of performing reliable experiments. The related uncertainty is thus very high. Our work will go in the following directions:

- develop deterministic models for the turbine and the other elements of the cycle. These will involve multi-dimensional high fidelity, as well as intermediate and low fidelity (one- and zero-dimensional), models for the turbine, and some 0D/1D models for other element of the cycle (pump, condenser, etc);
- 2. validation of the coupling between the various elements. The following aspects will be considered: characterization of the uncertainties on the cycle components (e.g. empirical coefficients modelling the pump or the condenser), calibration of the thermodynamic parameters, model the uncertainty of each element, and the influence of the unsteady experimental data;
- 3. demonstrate the interest of a specific optimization of geometry, operating conditions, and the choice of the fluid, according to the geographical location by including local solar radiation data. Multi-objective optimization will be considered to maximize performance indexes (e.g. Carnot efficiency, mechanical work and energy production), and to reduce the variability of the output.

This work will provide modern tools for the robust design of ORCs systems. It benefits from the direct collaboration with the SME EXOES (ANR LAbCom VIPER), and from a collaboration with LEMMA. Wave energy conversion is an emerging sector in energy engineering. The design of new and efficient Wave Energy Converters (WECs) is thus a crucial activity. As pointed out by Weber [143], it is more economical to raise the technology performance level (TPL) of a wave energy converter concept at low technology readiness level (TRL). Such a development path puts a greater demand on the numerical methods used. The findings of Weber also tell us that important design decisions as well as optimization should be performed as early in the development process as possible. However, as already mentioned, today the wave energy sector relies heavily on the use of tools based on simplified linear hydrodynamic models for the prediction of motions, loads, and power production. Our objective is to provide this sector, and especially SMEs, with robust design tools to minimize the uncertainties in predicted power production, loads, and costs of wave energy.

Following our initial work [98], we will develop, analyse, compare, and use for multi-fidelity optimization,non-linear models of different scales (fidelity) ranging from simple linear hydrodynamics over asymptotic discrete nonlinear wave models, to non-hydrostatic anisoptropic Euler free surface solvers. We will not work on the development of small scale models (VOF-RANS or LES) but may use such models, developed by our collaborators, for validation purposes. These developments will benefit from all our methodological work on asymptotic modelling and high order discretizations. As shown in [98], asymptotic models foe WECs involve an equation for the pressure on the body inducing a PDE structure similar to that of incompressible flow equations. The study of appropriate stable and efficient high order approximations (coupling velocity-pressure, efficient time stepping) will be an important part of this activity. Moreover, the flow-floating body interaction formulation introduces time stepping issues similar to those encountered in fluid structure interaction problems, and require a clever handling of complex floater geometries based on adaptive and ALE techniques. For this application, the derivation of fully discrete asymptotics may actually simplify our task.

Once available, we will use this hierarchy of models to investigate and identify the modelling errors, and provide a more certain estimate of the cost of wave energy. Subsequently we will look into optimization cycles by comparing time-to-decision in a multi-fidelity optimization context. In particular, this task will include the development and implementation of appropriate surrogate models to reduce the computational cost of expensive high fidelity models. Here especially artificial neural networks (ANN) and Kriging response surfaces (KRS) will be investigated. This activity on asymptotic non-linear modelling for WECs, which has had very little attention in the past, will provide entirely new tools for this application. Multi-fidelity robust optimization is also an approach which has never been applied to WECs.

This work is the core of the EU OCEANEranet MIDWEST project, which we coordinate. It will be performed in collaboration with our European partners, and with a close supervision of European SMEs in the sector, which are part of the steering board of MIDWEST (WaveDragon, Waves4Power, Tecnalia).

4.4. Materials engineering

Because of their high strength and low weight, ceramic-matrix composite materials (CMCs) are the focus of active research for aerospace and energy applications involving high temperatures, either military or civil. Though based on brittle ceramic components, these composites are not brittle due to the use of a fibre/matrix interphase that preserves the fibres from cracks appearing in the matrix. Recent developments aim at implementing also in civil aero engines a specific class of Ceramic Matrix Composite materials (CMCs) that show a self-healing behaviour. Self-healing consists in filling cracks appearing in the material with a dense fluid formed in-situ by oxidation of part of the matrix components. Self-healing (SH) CMCs are composed of a complex three-dimensional topology of woven fabrics containing fibre bundles immersed in a matrix coating of different phases. The oxide seal protects the fibres which are sensitive to oxidation, thus delaying failure. The obtained lifetimes reach hundreds of thousands of hours [128].

The behaviour of a fibre bundle is actually extremely variable, as the oxidation reactions generating the self-healing mechanism have kinetics strongly dependent on temperature and composition. In particular, the lifetime of SH-CMCs depends on: (i) temperature and composition of the surrounding atmosphere; (ii) composition and topology of the matrix layers; (iii) the competition of the multidimensional diffusion/oxidation/volatilization processes; (iv) the multidimensional flow of the oxide in the crack; (v) the inner topology of fibre bundles; (vi) the distribution of critical defects in the fibres. Unfortunately, experimental investigations on the full materials are too long (they can last years) and their output too qualitative (the coupled effects can only be observed a-posteriori on a broken sample). Modelling is thus essential to study and to design SH-CMCs.

In collaboration wit the LCTS laboratory (a joint CNRS-CEA-SAFRAN-Bordeaux University lab devoted to the study of thermo-structural materials in Bordeaux), we are developing a multi-scale model in which a structural mechanics solver is coupled with a closure model for the crack physico chemistry. This model is obtained as a multi-dimensional asymptotic crack averaged approximation fo the transport equations (Fick's laws) with chemical reactions sources, plus a potential model for the flow of oxide [90], [95], [126]. We

have demonstrated the potential of this model in showing the importance of taking into account the multi-dimensional topology of a fibre bundle (distribution of fibres) in the rupture mechanism. This means that the 0-dimensional model used in most of the studies (se e.g. [86]) will underestimate appreciably the lifetime of the material. Based on these recent advances, we will further pursue the development of multi-scale multi-dimensional asymptotic closure models for the parametric design of self healing CMCs. Our objectives are to provide: (i) new, non-linear multi-dimensional mathematical model of CMCs, in which the physico-chemistry of the self-healing process is more strongly coupled to the two-phase (liquid gas) hydro-dynamics of the healing oxide; (ii) a model to represent and couple crack networks; (iii) a robust and efficient coupling with the structural mechanics code; (iv) validate this platform with experimental data obtained at the LCTS laboratory. The final objective is to set up a multi-scale platform for the robust prediction of lifetime of SH-CMCs, which will be a helpful tool for the tailoring of the next generation of these materials.

4.5. Coastal and civil engineering

Our objective is to bridge the gap between the development of high order adaptive methods, which has mainly been performed in the industrial context and environmental applications, with particular attention to coastal and hydraulic engineering. We want to provide tools for adaptive non-linear modelling at large and intermediate scales (near shore, estuarine and river hydrodynamics). We will develop multi-scale adaptive models for free surface hydrodynamics. Beside the models and codes themselves, based on the most advanced numerics we will develop during this project, we want to provide sufficient know how to control, adapt and optimize these tools.

We will focus our effort in the understanding of the interactions between asymptotic approximations and numerical approximations. This is extremely important in at least two aspects. The first is the capability of a numerical model to handle highly dispersive wave propagation. This is usually done by high accuracy asymptotic PDE expansions. Here we plan to make heavily use of our results concerning the relations between vertical asymptotic expansions and standard finite element approximations. In particular, we will invest some effort in the development of xy+z adaptive finite element approximations of the incompressible Euler equations. Local p-adaptation of the vertical approximation may provide a "variable depth" approximation exploiting numerics instead of analytical asymptotics to control the physical behaviour of the model.

Another important aspect which is not understood well enough at the moment is the role of dissipation in wave breaking regions. There are several examples of breaking closure, going from algebraic and PDE-based eddy viscosity methods [110], [132], [123], [92], to hybrid methods coupling dispersive PDEs with hyperbolic ones, and trying to mimic wave breaking with travelling bores [136], [137], [135], [107], [100]. In both cases, numerical dissipation plays an important role and the activation or not of the breaking closure, as the quantitative contribution of numerical dissipation to the flow has not been properly investigated. These elements must be clarified to allow full control of adaptive techniques for the models used in this type of applications.

Another point we want to clarify is how to optimize the discretization of asymptotic PDE models. In particular, when adding mesh size(s) and time step, we are in presence of at least 3 (or even more) small parameters. The relations between physical ones have been more or less investigates, as have been the ones between purely numerical ones. We plan to study the impact of numerics on asymptotic PDE modelling by reverting the usual process and studying asymptotic limits of finite element discretizations of the Euler equations. Preliminary results show that this does allow to provide some understanding of this interaction and to possibly propose considerably improved numerical methods [76].

COMMANDS Project-Team

4. Application Domains

4.1. Fuel saving by optimizing airplanes trajectories

We have a collaboration with the startup Safety Line on the optimization of trajectories for civil aircrafts. Key points include the reliable identification of the plane parameters (aerodynamic and thrust models) using data from the flight recorders, and the robust trajectory optimization of the climbing and cruise phases.

4.2. Hybrid vehicles

We have a collaboration with IFPEN on the energy management for hybrid vehicles. A significant direction is the analysis and classification of traffic data.

4.3. Energy production planning

We work with colleagues from U. Chile, in the framework of Inria Chile, on the management of electricity production and storage for a microgrid.

CQFD Project-Team

4. Application Domains

4.1. Dependability and safety

Our abilities in probability and statistics apply naturally to industry in particular in studies of dependability and safety.

An illustrative example which gathers several topics of team is a collaboration started in September 2013 with Airbus Defence & Space. The goal of this project is the optimization of the assembly line of the future European launcher, taking into account several kinds of economical and technical constraints. We have started with a simplified model with five components to be assembled in workshops liable to breakdowns. We have modeled the problem using the Markov Decision Processes (MDP) framework and built a simulator of the process in order to run a simulation-based optimization procedure.

A second example concerns the optimization of the maintenance of a on board system equipped with a HUMS (Health Unit Monitoring Systems) in collaboration with THALES Optronique. The physical system under consideration is modeled by a piecewise deterministic Markov process. In the context of impulse control, we propose a dynamic maintenance policy, adapted to the state of the system and taking into account both random failures and those related to the degradation phenomenon.

However the spectrum of applications of the topics of the team is larger and may concern many other fields. Indeed non parametric and semi-parametric regression methods can be used in biometry, econometrics or engineering for instance. Gene selection from microarray data and text categorization are two typical application domains of dimension reduction among others. We had for instance the opportunity via the scientific program PRIMEQUAL to work on air quality data and to use dimension reduction techniques as principal component analysis (PCA) or positive matrix factorization (PMF) for pollution sources identification and quantization.

DEFI Project-Team

4. Application Domains

4.1. Radar and GPR applications

Conventional radar imaging techniques (ISAR, GPR, etc.) use backscattering data to image targets. The commonly used inversion algorithms are mainly based on the use of weak scattering approximations such as the Born or Kirchhoff approximation leading to very simple linear models, but at the expense of ignoring multiple scattering and polarization effects. The success of such an approach is evident in the wide use of synthetic aperture radar techniques.

However, the use of backscattering data makes 3-D imaging a very challenging problem (it is not even well understood theoretically) and as pointed out by Brett Borden in the context of airborne radar: "In recent years it has become quite apparent that the problems associated with radar target identification efforts will not vanish with the development of more sensitive radar receivers or increased signal-to-noise levels. In addition it has (slowly) been realized that greater amounts of data - or even additional "kinds" of radar data, such as added polarization or greatly extended bandwidth - will all suffer from the same basic limitations affiliated with incorrect model assumptions. Moreover, in the face of these problems it is important to ask how (and if) the complications associated with radar based automatic target recognition can be surmounted." This comment also applies to the more complex GPR problem.

Our research themes will incorporate the development, analysis and testing of several novel methods, such as sampling methods, level set methods or topological gradient methods, for ground penetrating radar application (imaging of urban infrastructures, landmines detection, underground waste deposits monitoring,) using multistatic data.

4.2. Biomedical imaging

Among emerging medical imaging techniques we are particularly interested in those using low to moderate frequency regimes. These include Microwave Tomography, Electrical Impedance Tomography and also the closely related Optical Tomography technique. They all have the advantage of being potentially safe and relatively cheap modalities and can also be used in complementarity with well established techniques such as X-ray computed tomography or Magnetic Resonance Imaging.

With these modalities tissues are differentiated and, consequentially can be imaged, based on differences in dielectric properties (some recent studies have proved that dielectric properties of biological tissues can be a strong indicator of the tissues functional and pathological conditions, for instance, tissue blood content, ischemia, infarction, hypoxia, malignancies, edema and others). The main challenge for these functionalities is to built a 3-D imaging algorithm capable of treating multi-static measurements to provide real-time images with highest (reasonably) expected resolutions and in a sufficiently robust way.

Another important biomedical application is brain imaging. We are for instance interested in the use of EEG and MEG techniques as complementary tools to MRI. They are applied for instance to localize epileptic centers or active zones (functional imaging). Here the problem is different and consists into performing passive imaging: the epileptic centers act as electrical sources and imaging is performed from measurements of induced currents. Incorporating the structure of the skull is primordial in improving the resolution of the imaging procedure. Doing this in a reasonably quick manner is still an active research area, and the use of asymptotic models would offer a promising solution to fix this issue.

4.3. Non destructive testing and parameter identification

One challenging problem in this vast area is the identification and imaging of defaults in anisotropic media. For instance this problem is of great importance in aeronautic constructions due to the growing use of composite materials. It also arises in applications linked with the evaluation of wood quality, like locating knots in timber in order to optimize timber-cutting in sawmills, or evaluating wood integrity before cutting trees. The anisotropy of the propagative media renders the analysis of diffracted waves more complex since one cannot only relies on the use of backscattered waves. Another difficulty comes from the fact that the micro-structure of the media is generally not well known a priori.

Our concern will be focused on the determination of qualitative information on the size of defaults and their physical properties rather than a complete imaging which for anisotropic media is in general impossible. For instance, in the case of homogeneous background, one can link the size of the inclusion and the index of refraction to the first eigenvalue of so-called interior transmission problem. These eigenvalues can be determined form the measured data and a rough localization of the default. Our goal is to extend this kind of idea to the cases where both the propagative media and the inclusion are anisotropic. The generalization to the case of cracks or screens has also to be investigated.

In the context of nuclear waste management many studies are conducted on the possibility of storing waste in a deep geological clay layer. To assess the reliability of such a storage without leakage it is necessary to have a precise knowledge of the porous media parameters (porosity, tortuosity, permeability, etc.). The large range of space and time scales involved in this process requires a high degree of precision as well as tight bounds on the uncertainties. Many physical experiments are conducted in situ which are designed for providing data for parameters identification. For example, the determination of the damaged zone (caused by excavation) around the repository area is of paramount importance since microcracks yield drastic changes in the permeability. Level set methods are a tool of choice for characterizing this damaged zone.

4.4. Diffusion MRI

In biological tissues, water is abundant and magnetic resonance imaging (MRI) exploits the magnetic property of the nucleus of the water proton. The imaging contrast (the variations in the grayscale in an image) in standard MRI can be from either proton density, T1 (spin-lattice) relaxation, or T2 (spin-spin) relaxation and the contrast in the image gives some information on the physiological properties of the biological tissue at different physical locations of the sample. The resolution of MRI is on the order of millimeters: the greyscale value shown in the imaging pixel represents the volume-averaged value taken over all the physical locations contained that pixel.

In diffusion MRI, the image contrast comes from a measure of the average distance the water molecules have moved (diffused) during a certain amount of time. The Pulsed Gradient Spin Echo (PGSE) sequence is a commonly used sequence of applied magnetic fields to encode the diffusion of water protons. The term 'pulsed' means that the magnetic fields are short in duration, an the term gradient means that the magnetic fields vary linearly in space along a particular direction. First, the water protons in tissue are labelled with nuclear spin at a precession frequency that varies as a function of the physical positions of the water molecules via the application of a pulsed (short in duration, lasting on the order of ten milliseconds) magnetic field. Because the precessing frequencies of the water molecules vary, the signal, which measures the aggregate phase of the water molecules, will be reduced due to phase cancellations. Some time (usually tens of milliseconds) after the first pulsed magnetic field, another pulsed magnetic field is applied to reverse the spins of the water molecules. The time between the applications of two pulsed magnetic fields is called the 'diffusion time'. If the water molecules have not moved during the diffusion time, the phase dispersion will be reversed, hence the signal loss will also be reversed, the signal is called refocused. However, if the molecules have moved during the diffusion time, the refocusing will be incomplete and the signal detected by the MRI scanner if weaker than if the water molecules have not moved. This lack of complete refocusing is called the signal attenuation and is the basis of the image contrast in DMRI. the pixels showning more signal attenuation is associated with further water displacement during the diffusion time, which may be linked to physiological factors, such as higher cell membrane permeability, larger cell sizes, higher extra-cellular volume fraction.

We model the nuclear magnetization of water protons in a sample due to diffusion-encoding magnetic fields by a multiple compartment Bloch-Torrey partial differential equation, which is a diffusive-type time-dependent PDE. The DMRI signal is the integral of the solution of the Bloch-Torrey PDE. In a homogeneous medium, the intrinsic diffusion coeffcient D will appear as the slope of the semi-log plot of the signal (in approporiate units). However, because during typical scanning times, 50-100ms, water molecules have had time to travel a diffusion distance which is long compared to the average size of the cells, the slope of the semi-log plot of the signal is in fact a measure of an 'effective' diffusion coefficient. In DMRI applications, this measured quantity is called the 'apparent diffusion coefficient' (ADC) and provides the most commonly used form the image contrast for DMRI. This ADC is closely related to the effective diffusion coefficient obtainable from mathematical homogenization theory.

DISCO Project-Team

4. Application Domains

4.1. Control of engineering systems

The team considers control problems in the aeronautic area and studies delay effects in automatic visual tracking on mobile carriers in collaboration with SAGEM.

4.2. Analysis and Control of life sciences systems

The team is also involved in life sciences applications. The two main lines are the analysis of bioreactors models and the modeling of cell dynamics in Acute Myeloblastic Leukemias (AML) in collaboration with St Antoine Hospital in Paris.

4.3. Energy Management

The team is interested in Energy management and considers optimization and control problems in energy networks.

DOLPHIN Project-Team

4. Application Domains

4.1. Transportation and logistics

- Scheduling problems under uncertainty: The flow-shop scheduling problem is one of the most well-known problems from scheduling. However, most of the works in the literature use a deterministic single-objective formulation. In general, the minimized objective is the total completion time (makespan). Many other criteria may be used to schedule tasks on different machines: maximum tardiness, total tardiness, mean job flowtime, number of delayed jobs, maximum job flowtime, etc. In the DOLPHIN project, a bi-criteria model, which consists in minimizing the makespan and the total tardiness, is studied. A bi-objective flow-shop problem with uncertainty on the duration, minimizing in addition the maximum tardiness, is also studied. It allows us to develop and test multi-objective (and not only bi-objective) optimization methods under uncertanty.
- Routing problems under uncertainty: The vehicle routing problem (VRP) is a well-known problem and it has been studied since the end of the fifties. It has a lot of practical applications in many industrial areas (ex. transportation, logistics, etc). Existing studies of the VRP are almost all concerned with the minimization of the total distance only. The model studied in the DOLPHIN project introduces a second objective, whose purpose is to balance the length of the tours. This new criterion is expressed as the minimization of the difference between the length of the longest tour and the length of the shortest tour. Uncertainty on the demands has also been introduced in the model.

4.2. Bioinformatics and Health care

Bioinformatic research is a great challenge for our society and numerous research entities of different specialities (biology, medical or information technology) are collaborating on specific themes.

4.2.1. Genomic and post-genomic studies

Previous studies of the DOLPHIN project mainly deal with genomic and postgenomic applications. These have been realized in collaboration with academic and industrial partners (IBL: Biology Institute of Lille; IPL: Pasteur Institute of Lille; IT-Omics firm).

First, genomic studies aim at analyzing genetic factors which may explain multi-factorial diseases such as diabetes, obesity or cardiovascular diseases. The scientific goal was to formulate hypotheses describing associations that may have any influence on diseases under study.

Secondly, in the context of post-genomic, a very large amount of data are obtained thanks to advanced technologies and have to be analyzed. Hence, one of the goals of the project was to develop analysis methods in order to discover knowledge in data coming from biological experiments.

These problems can be modeled as classical data mining tasks (Association rules, feature selection). As the combinatoric of such problems is very high and the quality criteria not unique, we proposed to model these problems as multi-objective combinatorial optimization problems. Evolutionary approaches have been adopted in order to cope with large scale problems.

Nowadays the technology is still going fast and the amount of data increases rapidly. Within the collaboration with Genes Diffusion, specialized in genetics and animal reproduction for bovine, swine, equine and rabbit species, we study combinations of Single Nucleotide Polymorphisms (SNP) that can explain some phenotypic characteristics. Therefore feature selection for regression is addressed using metaheuristics.

4.2.2. Optimization for health care

The collaboration with the Alicante company, a major actor in the hospital decision making, deals with knowledge extraction by optimization methods for improving the process of inclusion in clinical trials. Indeed, conducting a clinical trial, allowing for example to measure the effectiveness of a treatment, involves selecting a set of patients likely to participate to this test. Currently existing selection processes are far from optimal, and many potential patients are not considered. The objective of this collaboration consists in helping the practitioner to quickly determine if a patient is interesting for a clinical trial or not. Exploring different data sources (from a hospital information system, patient data...), a set of decision rules have to be generated. For this, approaches from multi-objective combinatorial optimization are implemented, requiring extensive work to model the problem, to define criteria optimization and to design specific optimization methods.

4.2.3. Molecular sampling and docking on large hybrid clusters

A Phd thesis is started in September 2015 in this context in collaboration with UMONS and University of Strasbourg. Flexible molecular docking is a very complex combinatorial opitmization problem especially when two components (ligand and protein) involved in the mechanism are together flexible. To deal in a reasonable time with such highly combinatorial process approximate optimization methods and massively parallel computing are absolutely The focus of the Ph.D thesis is on the flexibility-aware modeling and the design and implementation of near-approached optimization methods for solving the docking problem on large hybrid clusters including GPU accelerators and MIC coprocessors.

ECUADOR Project-Team

4. Application Domains

4.1. Algorithmic Differentiation

Algorithmic Differentiation of programs gives sensitivities or gradients, useful for instance for:

- optimum shape design under constraints, multidisciplinary optimization, and more generally any algorithm based on local linearization,
- inverse problems, such as parameter estimation and in particular 4Dvar data assimilation in climate sciences (meteorology, oceanography),
- first-order linearization of complex systems, or higher-order simulations, yielding reduced models for simulation of complex systems around a given state,
- mesh adaptation and mesh optimization with gradients or adjoints,
- equation solving with the Newton method,
- sensitivity analysis, propagation of truncation errors.

4.2. Multidisciplinary optimization

A CFD program computes the flow around a shape, starting from a number of inputs that define the shape and other parameters. On this flow one can define optimization criteria e.g. the lift of an aircraft. To optimize a criterion by a gradient descent, one needs the gradient of the output criterion with respect to all the inputs, and possibly additional gradients when there are constraints. Adjoint AD is the most efficient way to compute these gradients.

4.3. Inverse problems and Data Assimilation

Inverse problems aim at estimating the value of hidden parameters from other measurable values, that depend on the hidden parameters through a system of equations. For example, the hidden parameter might be the shape of the ocean floor, and the measurable values of the altitude and velocities of the surface.

One particular case of inverse problems is *data assimilation* [32] in weather forecasting or in oceanography. The quality of the initial state of the simulation conditions the quality of the prediction. But this initial state is not well known. Only some measurements at arbitrary places and times are available. A good initial state is found by solving a least squares problem between the measurements and a guessed initial state which itself must verify the equations of meteorology. This boils down to solving an adjoint problem, which can be done though AD [35]. Figure 1 shows an example of a data assimilation exercise using the oceanography code OPA [33] and its AD-adjoint produced by Tapenade.

The special case of *4Dvar* data assimilation is particularly challenging. The 4th dimension in "4D" is time, as available measurements are distributed over a given assimilation period. Therefore the least squares mechanism must be applied to a simulation over time that follows the time evolution model. This process gives a much better estimation of the initial state, because both position and time of measurements are taken into account. On the other hand, the adjoint problem involved is more complex, because it must run (backwards) over many time steps. This demanding application of AD justifies our efforts in reducing the runtime and memory costs of AD adjoint codes.

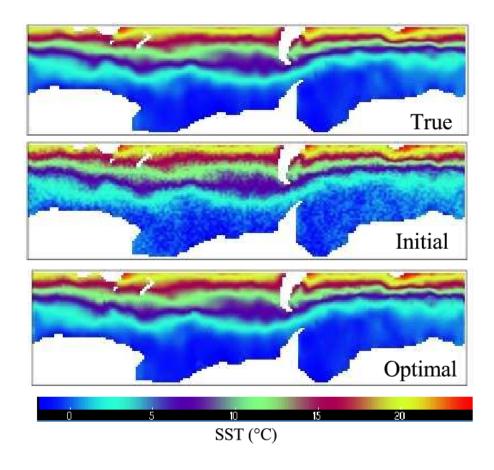


Figure 1. Twin experiment using the adjoint of OPA. Random noise, added to a simulation of the sea surface temperature around the Antarctic, is removed by minimizing the discrepancy with the physical model

4.4. Linearization

Simulating a complex system often requires solving a system of Partial Differential Equations. This can be too expensive, in particular in the context of real time. When one wants to simulate the reaction of this complex system to small perturbations around a fixed set of parameters, there is an efficient approximation: just suppose that the system is linear in a small neighborhood of the current set of parameters. The reaction of the system is thus approximated by a simple product of the variation of the parameters with the Jacobian matrix of the system. This Jacobian matrix can be obtained by AD. This is especially cheap when the Jacobian matrix is sparse. The simulation can be improved further by introducing higher-order derivatives, such as Taylor expansions, which can also be computed through AD. The result is often called a *reduced model*.

4.5. Mesh adaptation

Some approximation errors can be expressed by an adjoint state. Mesh adaptation can benefit from this. The classical optimization step can give an optimization direction not only for the control parameters, but also for the approximation parameters, and in particular the mesh geometry. The ultimate goal is to obtain optimal control parameters up to a precision prescribed in advance.

GAMMA3 Project-Team (section vide)

GECO Project-Team

4. Application Domains

4.1. Quantum control

The issue of designing efficient transfers between different atomic or molecular levels is crucial in atomic and molecular physics, in particular because of its importance in those fields such as photochemistry (control by laser pulses of chemical reactions), nuclear magnetic resonance (NMR, control by a magnetic field of spin dynamics) and, on a more distant time horizon, the strategic domain of quantum computing. This last application explicitly relies on the design of quantum gates, each of them being, in essence, an open loop control law devoted to a prescribed simultaneous control action. NMR is one of the most promising techniques for the implementation of a quantum computer.

Physically, the control action is realized by exciting the quantum system by means of one or several external fields, being them magnetic or electric fields. The resulting control problem has attracted increasing attention, especially among quantum physicists and chemists (see, for instance, [89], [94]). The rapid evolution of the domain is driven by a multitude of experiments getting more and more precise and complex (see the recent review [50]). Control strategies have been proposed and implemented, both on numerical simulations and on physical systems, but there is still a large gap to fill before getting a complete picture of the control properties of quantum systems. Control techniques should necessarily be innovative, in order to take into account the physical peculiarities of the model and the specific experimental constraints.

The area where the picture got clearer is given by finite dimensional linear closed models.

- **Finite dimensional** refers to the dimension of the space of wave functions, and, accordingly, to the finite number of energy levels.
- **Linear** means that the evolution of the system for a fixed (constant in time) value of the control is determined by a linear vector field.
- **Closed** refers to the fact that the systems are assumed to be totally disconnected from the environment, resulting in the conservation of the norm of the wave function.

The resulting model is well suited for describing spin systems and also arises naturally when infinite dimensional quantum systems of the type discussed below are replaced by their finite dimensional Galerkin approximations. Without seeking exhaustiveness, let us mention some of the issues that have been tackled for finite dimensional linear closed quantum systems:

- controllability [32],
- bounds on the controllability time [28],
- STIRAP processes [99],
- simultaneous control [72],
- optimal control ([68], [41], [52]),
- numerical simulations [78].

Several of these results use suitable transformations or approximations (for instance the so-called rotating wave) to reformulate the finite-dimensional Schrödinger equation as a sub-Riemannian system. Open systems have also been the object of an intensive research activity (see, for instance, [33], [69], [90], [47]).

In the case where the state space is infinite dimensional, some optimal control results are known (see, for instance, [37], [48], [65], [38]). The controllability issue is less understood than in the finite dimensional setting, but several advances should be mentioned. First of all, it is known that one cannot expect exact controllability on the whole Hilbert sphere [98]. Moreover, it has been shown that a relevant model, the quantum oscillator, is not even approximately controllable [91], [81]. These negative results have been more recently completed by positive ones. In [39], [40] Beauchard and Coron obtained the first positive controllability result for a quantum particle in a 1D potential well. The result is highly nontrivial and is based on Coron's return method (see [54]). Exact controllability is proven to hold among regular enough wave functions. In particular, exact controllability among eigenfunctions of the uncontrolled Schrödinger operator can be achieved. Other important approximate controllability results have then been proved using Lyapunov methods [80], [85], [66]. While [80] studies a controlled Schrödinger equation in \mathbb{R} for which the uncontrolled Schrödinger operator has mixed spectrum, [85], [66] deal mainly with general discrete-spectrum Schrödinger operators.

In all the positive results recalled in the previous paragraph, the quantum system is steered by a single external field. Different techniques can be applied in the case of two or more external fields, leading to additional controllability results [57], [44].

The picture is even less clear for nonlinear models, such as Gross-Pitaevski and Hartree-Fock equations. The obstructions to exact controllability, similar to the ones mentioned in the linear case, have been discussed in [63]. Optimal control approaches have also been considered [36], [49]. A comprehensive controllability analysis of such models is probably a long way away.

4.2. Neurophysiology

At the interface between neurosciences, mathematics, automatics and humanoid robotics, an entire new approach to neurophysiology is emerging. It arouses a strong interest in the four communities and its development requires a joint effort and the sharing of complementary tools.

A family of extremely interesting problems concerns the understanding of the mechanisms supervising some sensorial reactions or biomechanics actions such as image reconstruction by the primary visual cortex, eyes movement and body motion.

In order to study these phenomena, a promising approach consists in identifying the motion planning problems undertaken by the brain, through the analysis of the strategies that it applies when challenged by external inputs. The role of control is that of a language allowing to read and model neurological phenomena. The control algorithms would shed new light on the brain's geometric perception (the so-called neurogeometry [87]) and on the functional organization of the motor pathways.

 A challenging problem is that of the understanding of the mechanisms which are responsible for the process of image reconstruction in the primary visual cortex V1.

The visual cortex areas composing V1 are notable for their complex spatial organization and their functional diversity. Understanding and describing their architecture requires sophisticated modeling tools. At the same time, the structure of the natural and artificial images used in visual psychophysics can be fully disclosed only using rather deep geometric concepts. The word "geometry" refers here to the internal geometry of the functional architecture of visual cortex areas (not to the geometry of the Euclidean external space). Differential geometry and analysis both play a fundamental role in the description of the structural characteristics of visual perception.

A model of human perception based on a simplified description of the visual cortex V1, involving geometric objects typical of control theory and sub-Riemannian geometry, has been first proposed by Petitot ([88]) and then modified by Citti and Sarti ([53]). The model is based on experimental observations, and in particular on the fundamental work by Hubel and Wiesel [62] who received the Nobel prize in 1981.

In this model, neurons of V1 are grouped into orientation columns, each of them being sensitive to visual stimuli arriving at a given point of the retina and oriented along a given direction. The retina is modeled by the real plane, while the directions at a given point are modeled by the projective line. The fiber bundle having as base the real plane and as fiber the projective line is called the *bundle of directions of the plane*.

From the neurological point of view, orientation columns are in turn grouped into hypercolumns, each of them sensitive to stimuli arriving at a given point, oriented along any direction. In the same hypercolumn, relative to a point of the plane, we also find neurons that are sensitive to other stimuli properties, such as colors. Therefore, in this model the visual cortex treats an image not as a planar object, but as a set of points in the bundle of directions of the plane. The reconstruction is then realized by minimizing the energy necessary to activate orientation columns among those which are not activated directly by the image. This gives rise to a sub-Riemannian problem on the bundle of directions of the plane.

• Another class of challenging problems concern the functional organization of the motor pathways.

The interest in establishing a model of the motor pathways, at the same time mathematically rigorous and biologically plausible, comes from the possible spillovers in robotics and neurophysiology. It could help to design better control strategies for robots and artificial limbs, yielding smoother and more progressive movements. Another underlying relevant societal goal (clearly beyond our domain of expertise) is to clarify the mechanisms of certain debilitating troubles such as cerebellar disease, chorea and Parkinson's disease.

A key issue in order to establish a model of the motor pathways is to determine the criteria underlying the brain's choices. For instance, for the problem of human locomotion (see [35]), identifying such criteria would be crucial to understand the neural pathways implicated in the generation of locomotion trajectories.

A nowadays widely accepted paradigm is that, among all possible movements, the accomplished ones satisfy suitable optimality criteria (see [97] for a review). One is then led to study an inverse optimal control problem: starting from a database of experimentally recorded movements, identify a cost function such that the corresponding optimal solutions are compatible with the observed behaviors.

Different methods have been taken into account in the literature to tackle this kind of problems, for instance in the linear quadratic case [67] or for Markov processes [86]. However all these methods have been conceived for very specific systems and they are not suitable in the general case. Two approaches are possible to overcome this difficulty. The direct approach consists in choosing a cost function among a class of functions naturally adapted to the dynamics (such as energy functions) and to compare the solutions of the corresponding optimal control problem to the experimental data. In particular one needs to compute, numerically or analytically, the optimal trajectories and to choose suitable criteria (quantitative and qualitative) for the comparison with observed trajectories. The inverse approach consists in deriving the cost function from the qualitative analysis of the data.

4.3. Switched systems

Switched systems form a subclass of hybrid systems, which themselves constitute a key growth area in automation and communication technologies with a broad range of applications. Existing and emerging areas include automotive and transportation industry, energy management and factory automation. The notion of hybrid systems provides a framework adapted to the description of the heterogeneous aspects related to the interaction of continuous dynamics (physical system) and discrete/logical components.

The characterizing feature of switched systems is the collective aspect of the dynamics. A typical question is that of stability, in which one wants to determine whether a dynamical system whose evolution is influenced by a time-dependent signal is uniformly stable with respect to all signals in a fixed class ([74]).

The theory of finite-dimensional hybrid and switched systems has been the subject of intensive research in the last decade and a large number of diverse and challenging problems such as stabilizability, observability, optimal control and synchronization have been investigated (see for instance [95], [75]).

The question of stability, in particular, because of its relevance for applications, has spurred a rich literature. Important contributions concern the notion of common Lyapunov function: when there exists a Lyapunov function that decays along all possible modes of the system (that is, for every possible constant value of the signal), then the system is uniformly asymptotically stable. Conversely, if the system is stable uniformly with respect to all signals switching in an arbitrary way, then a common Lyapunov function exists [76]. In the *linear* finite-dimensional case, the existence of a common Lyapunov function is actually equivalent to the global uniform exponential stability of the system [82] and, provided that the admissible modes are finitely many, the Lyapunov function can be taken polyhedral or polynomial [42], [43], [55]. A special role in the switched control literature has been played by common quadratic Lyapunov functions, since their existence can be tested rather efficiently (see [56] and references therein). Algebraic approaches to prove the stability of switched systems under arbitrary switching, not relying on Lyapunov techniques, have been proposed in [73], [29].

Other interesting issues concerning the stability of switched systems arise when, instead of considering arbitrary switching, one restricts the class of admissible signals, by imposing, for instance, a dwell time constraint [61].

Another rich area of research concerns discrete-time switched systems, where new intriguing phenomena appear, preventing the algebraic characterization of stability even for small dimensions of the state space [70]. It is known that, in this context, stability cannot be tested on periodic signals alone [45].

Finally, let us mention that little is known about infinite-dimensional switched system, with the exception of some results on uniform asymptotic stability ([79], [92], [93]) and some recent papers on optimal control ([60], [100]).

GEOSTAT Project-Team

4. Application Domains

4.1. Application Domains

Application aspects in GEOSTAT encompass biomedical data (heartbeat signal analysis with IHU LIRYC, biomedical applications in speech signal analysis) and the study of universe science datasets. GEOSTAT's objectives in analysis of biomedical data hinge on the following observations:

- The analysis and detection of cardiac arrhythmia and pathological voice disorders is a paradigm in nonlinear methodologies applied to these types of signals.
- The classical hypothesis under linear approaches are confronted with strong nonlinearities, aperiodicity and chaotic phenomena present in theses signals.
- Existing nonlinear approaches are lacking physiological interpretation. Our objective in this part is to propose new measures based on low-level transition characteristics, these transition phenomena being related to general concepts associated to predictability in complex systems.

I4S Project-Team

4. Application Domains

4.1. Civil Engineering

For at least three decades, monitoring the integrity of the civil infrastructure has been an active research topic because of major economical and societal issues, such as durability and safety of infrastructures, buildings and networks. Control of civil structures began a century ago. At stake is the mastering of the aging of the bridges, as in America (US, Canada) and Great Britain, or the resistance to seismic events and the protection of the cultural heritage, as in Italy and Greece. The research effort in France is very ancient since for example early developments of optical methods to monitor civil structures began in the 70s and SHM practice can be traced back to the 50s with the vibrating wire sensors as strain gauges for dams. Stille the number of sensors actually placed on civil structures is kept to a minimum, mainly for cost reasons, but also because the return on investment sensing and data processing technologies is not properly established for civil structures. One of the current thematic priorities of the C2D2 governmental initiative is devoted to construction monitoring and diagnostics. The picture in Asia (Japan, and also China) is somewhat different, in that recent or currently built bridges are equipped with hundreds if not thousands of sensors, in particular the Hong Kong-Shenzen Western Corridor and Stonecutter Bridge projects. However, the actual use of available data for operational purpose remains unclear.

Among the challenges for vibration-based bridges health monitoring, two major issues are the different kinds of (non measured) excitation sources and the environmental effects. Typically the traffic on *and* under the bridge, the wind and also the rain, contribute to excite the structure, and influence the measured dynamics. Moreover, the temperature is also known to affect the eigenfrequencies and mode-shapes, to an extent which can be significant w.r.t. the deviations to be monitored.

Thermomechanical prestress states affect the dynamic and the static behavior of most bridges, not only of very long and flexible ones. So, the reliable and fast determination of the state of prestress and prestrain associated with a temperature field becomes a crucial step in several engineering processes such as the health monitoring of civil structures. The best possible reconstruction of the temperature field could then become part of a complete process including massively distributed sensing of thermomechanical information on the structure, modeling and algorithms for the on-line detection of damages in the sense of abnormalities with regard to a nominal state, the whole chain being encapsulated in professional tools used by engineers in charge of real-life structural monitoring. For lack of an adequate mobilization of the useful multidisciplinary skills, this way remains about unexplored today.

4.2. Electrical cable and network monitoring

The fast development of electronic devices in modern engineering systems comes with more and more connections through cables, and consequently, the reliability of electric connections becomes a crucial issue. For example, in a modern automotive vehicle, the total length of onboard cables has tremendously increased during the last decades and is now up to 4km. These wires and connectors are subject to aging or degradation because of severe environmental conditions. In this area, reliability becomes a safety issue. In some other domains, cable defects may have catastrophic consequences. It is thus a crucial challenge to design smart embedded diagnosis systems able to detect wired connection defects in real time. This fact has motivated research projects on methods for fault diagnosis in electric transmission lines and wired networks. Original methods have been recently developed by Inria, notably based on the inverse scattering theory, for cable and network monitoring. Further developments concern both theoretic study and industrial applications.

4.3. Aeronautics

Improved safety and performance and reduced aircraft development and operating costs are major concerns in aeronautics industry. One critical design objective is to clear the aircraft from unstable aero-elastic vibrations (flutter) in all flight conditions. Opening of flight domain requires a careful exploration of the dynamical behavior of the structure subject to vibration and aero-servo-elastic forces. This is achieved via a combination of ground vibration tests and in flight tests. For both types of tests, various sensors data are recorded, and modal analyses are performed. Important challenges of the in-flight modal analyses are the limited choices for measured excitation inputs, and the presence of unmeasured natural excitation inputs (turbulence). Today, structural flight tests require controlled excitation by ailerons or other devices, stationary flight conditions (constant elevation and speed), and no turbulence. As a consequence, flight domain opening requires a lot of test flights and its costly. This is even worse for aircrafts having a large number of variants (business jets, military aircrafts). A key challenge is therefore to allow for exploiting more data under more conditions during flight tests: uncontrolled excitation, nonstationary conditions.

INOCS Team

4. Application Domains

4.1. Introduction

It is hard to find an aspect of our modern-day economy whose design, management and control do not critically depend on the solution of one or more CS decision problems. Even if they are pervasive, many of them are still not "satisfactorily" solved and constitute a strong challenge to research teams nowadays. The innovative research goals of INOCS have, without doubt, a strategic importance in the application field. CS problems appear in a broad range of application fields such as the next one cited hereafter.

- 1. *the energy sector* where decisions of distinct nature such as production and distribution are jointly determined;
- 2. *supply chain management* where location and routing decisions have to be defined jointly even if they refer to different time horizons;
- 3. *revenue management* where the determination of prices for services or products requires to take explicitly into account the strategic consumers' behaviour.

IPSO Project-Team (section vide)

MATHERIALS Project-Team

4. Application Domains

4.1. Homogenization and related problems

Over the years, the project-team has developed an increasing expertise on how to couple models written at the atomistic scale, with more macroscopic models, and, more generally, an expertise in multiscale modelling for materials science.

The following observation motivates the idea of coupling atomistic and continuum representation of materials. In many situations of interest (crack propagation, presence of defects in the atomistic lattice, ...), using a model based on continuum mechanics is difficult. Indeed, such a model is based on a macroscopic constitutive law, the derivation of which requires a deep qualitative and quantitative understanding of the physical and mechanical properties of the solid under consideration. For many solids, reaching such an understanding is a challenge, as loads they are submitted to become larger and more diverse, and as experimental observations helping designing such models are not always possible (think of materials used in the nuclear industry). Using an atomistic model in the whole domain is not possible either, due to its prohibitive computational cost. Recall indeed that a macroscopic sample of matter contains a number of atoms on the order of 10^{23} . However, it turns out that, in many situations of interest, the deformation that we are looking for is not smooth in *only a small part* of the solid. So, a natural idea is to try to take advantage of both models, the continuum mechanics one and the atomistic one, and to couple them, in a domain decomposition spirit. In most of the domain, the deformation is expected to be smooth, and reliable continuum mechanics models are then available. In the rest of the domain, the expected deformation is singular, so that one needs an atomistic model to describe it properly, the cost of which remains however limited as this region is small.

From a mathematical viewpoint, the question is to couple a discrete model with a model described by PDEs. This raises many questions, both from the theoretical and numerical viewpoints:

- first, one needs to derive, from an atomistic model, continuum mechanics models, under some regularity assumptions that encode the fact that the situation is smooth enough for such a macroscopic model to provide a good description of the materials;
- second, couple these two models, e.g. in a domain decomposition spirit, with the specificity that
 models in both domains are written in a different language, that there is no natural way to write
 boundary conditions coupling these two models, and that one would like the decomposition to be
 self-adaptive.

More generally, the presence of numerous length scales in material science problems represents a challenge for numerical simulation, especially when some randomness is assumed on the materials. It can take various forms, and includes defects in crystals, thermal fluctuations, and impurities or heterogeneities in continuous media. Standard methods available in the literature to handle such problems often lead to very costly computations. Our goal is to develop numerical methods that are more affordable. Because we cannot embrace all difficulties at once, we focus on a simple case, where the fine scale and the coarse-scale models can be written similarly, in the form of a simple elliptic partial differential equation in divergence form. The fine scale model includes heterogeneities at a small scale, a situation which is formalized by the fact that the coefficients in the fine scale model vary on a small length scale. After homogenization, this model yields an effective, macroscopic model, which includes no small scale. In many cases, a sound theoretical groundwork exists for such homogenization results. We consider mostly the setting of stochastic homogenization of linear, scalar, second order elliptic PDEs, where analytical formulas for the effective properties are known. The difficulty stems from the fact that they generally lead to prohibitively costly computations. For such a case, simple from the theoretical viewpoint, our aim is to focus on different practical computational approaches to speedup the computations. One possibility, among others, is to look for specific random materials, relevant from the practical viewpoint, and for which a dedicated approach can be proposed, that is less expensive than the general approach.

4.2. Electronic structure of large systems

As the size of the systems one wants to study increases, more efficient numerical techniques need to be resorted to. In computational chemistry, the typical scaling law for the complexity of computations with respect to the size of the system under study is N^3 , N being for instance the number of electrons. The Holy Grail in this respect is to reach a linear scaling, so as to make possible simulations of systems of practical interest in biology or material science. Efforts in this direction must address a large variety of questions such as

- how can one improve the nonlinear iterations that are the basis of any *ab initio* models for computational chemistry?
- how can one more efficiently solve the inner loop which most often consists in the solution procedure for the linear problem (with frozen nonlinearity)?
- how can one design a sufficiently small variational space, whose dimension is kept limited while the size of the system increases?

An alternative strategy to reduce the complexity of *ab initio* computations is to try to couple different models at different scales. Such a mixed strategy can be either a sequential one or a parallel one, in the sense that

- in the former, the results of the model at the lower scale are simply used to evaluate some parameters that are inserted in the model for the larger scale: one example is the parameterized classical molecular dynamics, which makes use of force fields that are fitted to calculations at the quantum level;
- while in the latter, the model at the lower scale is concurrently coupled to the model at the larger scale: an instance of such a strategy is the so called QM/MM coupling (standing for Quantum Mechanics/Molecular Mechanics coupling) where some part of the system (typically the reactive site of a protein) is modeled with quantum models, that therefore accounts for the change in the electronic structure and for the modification of chemical bonds, while the rest of the system (typically the inert part of a protein) is coarse grained and more crudely modeled by classical mechanics.

The coupling of different scales can even go up to the macroscopic scale, with methods that couple a microscopic representation of matter, or at least a mesoscopic one, with the equations of continuum mechanics at the macroscopic level.

4.3. Computational Statistical Mechanics

The orders of magnitude used in the microscopic representation of matter are far from the orders of magnitude of the macroscopic quantities we are used to: The number of particles under consideration in a macroscopic sample of material is of the order of the Avogadro number $\mathcal{N}_A \sim 6 \times 10^{23}$, the typical distances are expressed in Å $(10^{-10} \, \mathrm{m})$, the energies are of the order of $k_{\mathrm{B}}T \simeq 4 \times 10^{-21} \, \mathrm{J}$ at room temperature, and the typical times are of the order of $10^{-15} \, \mathrm{s}$ when the proton mass is the reference mass.

To give some insight into such a large number of particles contained in a macroscopic sample, it is helpful to compute the number of moles of water on earth. Recall that one mole of water corresponds to 18 mL, so that a standard glass of water contains roughly 10 moles, and a typical bathtub contains 10^5 mol. On the other hand, there are approximately 10^{18} m 3 of water in the oceans, $i.e.7 \times 10^{22}$ mol, a number comparable to the Avogadro number. This means that inferring the macroscopic behavior of physical systems described at the microscopic level by the dynamics of several millions of particles only is like inferring the ocean's dynamics from hydrodynamics in a bathtub...

For practical numerical computations of matter at the microscopic level, following the dynamics of every atom would require simulating \mathcal{N}_A atoms and performing $O(10^{15})$ time integration steps, which is of course impossible! These numbers should be compared with the current orders of magnitude of the problems that can be tackled with classical molecular simulation, where several millions of atoms only can be followed over time scales of the order of $0.1~\mu s$.

Describing the macroscopic behavior of matter knowing its microscopic description therefore seems out of reach. Statistical physics allows us to bridge the gap between microscopic and macroscopic descriptions of matter, at least on a conceptual level. The question is whether the estimated quantities for a system of N particles correctly approximate the macroscopic property, formally obtained in the thermodynamic limit $N \to +\infty$ (the density being kept fixed). In some cases, in particular for simple homogeneous systems, the macroscopic behavior is well approximated from small-scale simulations. However, the convergence of the estimated quantities as a function of the number of particles involved in the simulation should be checked in all cases.

Despite its intrinsic limitations on spatial and timescales, molecular simulation has been used and developed over the past 50 years, and its number of users keeps increasing. As we understand it, it has two major aims nowadays.

First, it can be used as a *numerical microscope*, which allows us to perform "computer" experiments. This was the initial motivation for simulations at the microscopic level: physical theories were tested on computers. This use of molecular simulation is particularly clear in its historic development, which was triggered and sustained by the physics of simple liquids. Indeed, there was no good analytical theory for these systems, and the observation of computer trajectories was very helpful to guide the physicists' intuition about what was happening in the system, for instance the mechanisms leading to molecular diffusion. In particular, the pioneering works on Monte-Carlo methods by Metropolis *et al.*, and the first molecular dynamics simulation of Alder and Wainwright were performed because of such motivations. Today, understanding the behavior of matter at the microscopic level can still be difficult from an experimental viewpoint (because of the high resolution required, both in time and in space), or because we simply do not know what to look for! Numerical simulations are then a valuable tool to test some ideas or obtain some data to process and analyze in order to help assessing experimental setups. This is particularly true for current nanoscale systems.

Another major aim of molecular simulation, maybe even more important than the previous one, is to compute macroscopic quantities or thermodynamic properties, typically through averages of some functionals of the system. In this case, molecular simulation is a way to obtain *quantitative* information on a system, instead of resorting to approximate theories, constructed for simplified models, and giving only qualitative answers. Sometimes, these properties are accessible through experiments, but in some cases only numerical computations are possible since experiments may be unfeasible or too costly (for instance, when high pressure or large temperature regimes are considered, or when studying materials not yet synthesized). More generally, molecular simulation is a tool to explore the links between the microscopic and macroscopic properties of a material, allowing one to address modelling questions such as "Which microscopic ingredients are necessary (and which are not) to observe a given macroscopic behavior?"

MATHRISK Project-Team

4. Application Domains

4.1. Application Domains

Risk management, Quantitative finance, Computational Finance, Market Microstructure analysis, Systemic risk, Portfolio optimization, Risk modeling, Option pricing and hedging in incomplete markets, insurance.

Maxplus Team

4. Application Domains

4.1. Systèmes à événements discrets (productique, réseaux)/Discrete event systems (manufacturing systems, networks)

Une partie importante des applications de l'algèbre max-plus provient des systèmes dynamiques à événements discrets [6]. Les systèmes linéaires max-plus, et plus généralement les systèmes dynamiques monotones contractants, fournissent des modèles naturels dont les résultats analytiques peuvent être appliqués aux problèmes d'évaluation de performance. Relèvent de l'approche max-plus, tout au moins sous forme simplifiée : des problèmes de calcul de temps de cycle pour des circuits digitaux [77], des problèmes de calcul de débit pour des ateliers [125], pour des réseaux ferroviaires [76] ou routiers, et l'évaluation de performance des réseaux de communication [67]. L'approche max-plus a été appliquée à l'analyse du comportement temporel de systèmes concurrents, et en particulier à l'analyse de "high level sequence message charts" [71], [135]. Le projet Maxplus collabore avec le projet Metalau, qui étudie particulièrement les applications des modèles max-plus à la modélisation microscopique du trafic routier [142], [139], [105].

English version

One important part of applications of max-plus algebra comes from discrete event dynamical systems [6]. Max-plus linear systems, and more generally, monotone nonexpansive dynamical systems, provide natural models for which many analytical results can be applied to performance evaluation problems. For instance, problems like computing the cycle time of asynchronous digital circuits [77], or computing the throughput of a workshop [125] or of a transportation network, and performance evaluation problems for communication networks, are often amenable to max-plus algebra, at least in some simplified form, see in particular [76] and [67]. The max-plus approach has been applied to the analysis of the time behaviour of concurrent systems, and in particular, to the analysis of high level sequence message charts [71], [135]. The Maxplus team collaborates with the Metalau team, working particularly on the applications of max-plus models to the microscopic modelling of road traffic [142], [139], [105].

4.2. Commande optimale et jeux/Optimal control and games

La commande optimale et la théorie des jeux ont de nombreuses applications bien répertoriées: économie, finance, gestion de stock, optimisation des réseaux, aide à la décision, etc. En particulier, le projet Mathfi travaille sur les applications à des problèmes de mathématiques financières. Il existe une tradition de collaborations entre les chercheurs des projets Mathfi et Maxplus sur ces questions, voir par exemple [5] qui comprend un résultat exploitant des idées de théorie spectrale non-linéaire, présentées dans [3].

English version

Optimal control and game theory have numerous well established applications fiels: mathematical economy and finance, stock optimization, optimization of networks, decision making, etc. In particular, the Mathfi team works on applications in mathematical finance. There is a tradition of collaboration between researchers of the Maxplus team and of the Mathfi team on these questions, see as an illustration [5] where ideas from the spectral theory of monotone homogeneous maps [3] are applied.

4.3. Recherche opérationnelle/Operations research

L'algèbre max-plus intervient de plusieurs manières en Recherche opérationnelle. Premièrement, il existe des liens profonds entre l'algèbre max-plus et les problèmes d'optimisation discrète, voir [78]. Ces liens conduisent parfois à de nouveaux algorithmes pour les problèmes de recherche opérationnelle classiques,

comme le problème de circuit de poids moyen maximum [85]. Certains problèmes combinatoires, comme des problèmes de programmation disjonctive, peuvent être décomposés par des méthodes de type max-plus [168]. Ensuite, le rôle de l'algèbre max-plus dans les problèmes d'ordonnancement est bien connu depuis les années 60, les dates de complétion pouvant souvent être calculées à partir d'équations linéaires max-plus. Plus récemment, des représentations de problèmes d'ordonnancement ont pu être obtenues à partir de semi-groupes de matrices max-plus : une première représentation a été obtenue dans [113] pour le cas du "jobshop", une représentation plus simple a été obtenue dans [136] dans le cas du "flowshop". Ce point de vue algébrique a été très utile dans le cas du "flowshop" : il permet de retrouver des résultats anciens de dominance et d'obtenir ainsi de nouvelles bornes [136]. Finalement, en regardant l'algèbre max-plus comme une limite de l'algèbre classique, on peut utiliser des outils algébriques en optimisation combinatoire [133].

English version

Max-plus algebra arise in several ways in Operations Research. First, there are intimate relations between max-plus algebra and discrete optimisation problems, see [78]. Sometimes, these relations lead to new algorithms for classical Operations Research problems, like the maximal circuit mean [85]. There are also special combinatorial problems, like certain problems of disjunctive programming, which can be decomposed by max-plus type methods [168]. Next, the role of max-plus algebra in scheduling problems has been known since the sixties: completion dates can often be computed by max-plus linear equations. Recently, representations of certain scheduling problems using max-plus matrix semigroups have appeared, a first representation was given in [113] for the jobshop case, a simpler representation was given in [136] in the flowshop case. This algebraic point of view turned out to be particularly fruitful in the flowshop case: it allows one to recover old dominance results and to obtain new bounds [136]. Finally, viewing max-plus algebra as a limit of classical algebra allows to use algebraic tools in combinatorial optimisation [133].

4.4. Analyse statique de programmes/Static analysis of computer programs

L'interprétation abstraite est une technique, introduite par P. et R. Cousot [89], qui permet de déterminer des invariants de programmes en calculant des points fixes minimaux d'applications monotones définies sur certains treillis. On associe en effet à chaque point de contrôle du programme un élément du treillis, qui représente une sur-approximation valide de l'ensemble des valeurs pouvant être prises par les variables du programme en ce point. Le treillis le plus simple exprimant des propriétés numériques est celui des produits Cartésiens d'intervalles. Des treillis plus riches permettent de mieux tenir compte de relations entre variables, en particulier, des classes particulières de polyèdres sont souvent employées.

Voici, en guise d'illustration, un petit exemple de programme, avec le système de point fixe associé, pour le treillis des intervalles:

Si l'on s'intéresse par exemple aux valeurs maximales prise par la variable x au point de contrôle 2, soit $x_2^+ := \max x_2$, après une élimination, on parvient au problème de point fixe:

$$x_2^+ = \min(99, \max(0, x_2^+ + 1))$$
, (3)

qui a pour plus petite solution $x_2^+ = 99$, ce qui prouve que x est majoré par 99 au point 2.

On reconnait ici un opérateur de point fixe associé à un problème de jeux à deux joueurs et somme nulle. Cette analogie est en fait générale, dans le cadre d'un collaboration que l'équipe entretient depuis plusieurs années avec l'équipe MeASI d'Eric Goubault (CEA et LIX), spécialiste d'analyse statique, nous avons en effet mis progressivement en évidence une correspondance [88], [110], entre les problèmes de jeux à somme nulle et les problèmes d'analyse statique, qui peut se résumer par le dictionnaire suivant:

Jeux
système dynamique
opérateur de Shapley
espace d'état
problème en horizon n
limite du problème en horizon fini
itération sur les valeurs

Interprétation abstraite programme fonctionnelle (# points de contrôle) \times (# degrés de liberté du treillis) exécution de n pas invariant optimal (borne) itération de Kleene

Pour que le nombre d'états du jeu soit fini, il est nécessaire de se limiter à des treillis d'ensembles ayant un nombre fini de degrés de liberté, ce qui est le cas de domaines communément utilisés (intervalles, ensembles définis par des contraintes de potentiel de type $x_i - x_j \le \text{cst}$, mais aussi, les "templates" qui sont des sous-classes de polyèdres introduits récemment par Sankaranarayanan, Sipma et Manna [160]). L'ensemble des actions est alors fini si on se limite à une arithmétique affine. Signalons cependant qu'en toute généralité, on aboutit à des jeux avec un taux d'escompte négatif, ce qui pose des difficultés inédites. Cette correspondance entre jeux et analyse statique est non intuitive, au sens où les actions du minimiseur consistent à sélectionner des points extrêmes de certains polyèdres obtenus par un mécanisme de dualité.

Une pathologie bien répertoriée en analyse statique est la lenteur des algorithmes de point fixe, qui peuvent effectuer un nombre d'itérations considérable (99 itérations pour obtenir le plus petit point fixe de (8)). Celle-ci est usuellement traitée par des méthodes d'accélération de convergence dites d'élargissement et rétrécissement [90], qui ont cependant l'inconvénient de conduire à une perte de précision des invariants obtenus. Nous avons exploité la correspondance entre analyse statique et jeux pour développer des algorithmes d'une nature très différente, s'inspirant de nos travaux antérieurs sur l'itération sur les politiques pour les jeux répétés [111], [83], [84],[7]. Une version assez générale de cet algorithme, adaptée au domaine des templates, est décrite dans [110] et a fait l'objet d'une implémentation prototype. Chaque itération combine de la programmation linéaire et des algorithmes de graphes. Des résultats expérimentaux ont montré le caractère effectif de la méthode, avec souvent un gain en précision par rapport aux approches classiques, par exemple pour des programmes comprenant des boucles imbriquées.

Ce domaine se trouve être en pleine évolution, un enjeu actuel étant de traiter d'une manière qui passe à l'échelle des invariants plus précis, y compris dans des situations où l'arithmétique n'est plus affine.

English version

The abstract interpretation method introduced by P. and R. Cousot [89], allows one to determine automatically invariants of programs by computing the minimal fixed point of an order preserving map defined on a complete lattice. To every breakpoint of the program is associated an element of the lattice, which yields a valid overapproximation of the set of reachable values of the vectors of variables of the program, at this breakpoint. The simplest lattice expressing numerical invariants consists of Cartesian products of intervals. More sophisticated lattices, taking into account relations between variables, consisting in particular of subclasses of polyhedra, are often used.

As an illustration, we gave before Eqn (8) a simple example of program, together with the associated fixed-point equation. In this example, the value of the variable x at the breakpoint 2 is bounded by the smallest solution x_2^+ of the fixed point problem (8), which is equal to 99.

The fixed point equation (8) is similar to the one arising in the theory of zero-sum repeated games. This analogy turns out to be general. Un a series of joint works of our team with the MeASI team of Eric Goubault (CEA and LIX), we brought progressively to light a correspondence [88], [110], between the zero-sum game problems and the static analysis problems, which can be summarized by the following dictionnary:

Games
dynamical system
Shapley operator
state space
horizon n problem
limit of the value in horizon nvalue iteration

Abstract interpretation program functional (# breakpoints) \times (# degrees of freedom) execution of n logical steps optimal invariant (bound) Kleene iteration

For the game to have a finite state space, we must restrict our attention to lattices of sets with a finite number of degrees of freedom, which is the case of the domains commonly used in static analysis (intervals, sets defined by potentials constraints of the form $x_i - x_j \le \text{cst}$, and also the subclasses of polyhedra called "templates", introduced recently by Sankaranarayanan, Sipma and Manna [160]). Then, the action space is finite if the arithmetics of the program is affine. However, in full generality, the games we end up with have a negative discount rate, which raises difficulties which are unfamiliar from the game theory point of view. This correspondence between games and static analysis turns out to be non intuitive, in that the action of the minimizer consist of selecting an extreme point of a polyhedron arising from a certain duality construction.

A well known pathology in static analysis is the fact that the standard Kleene fixed point algorithm may have a very slow behavior (99 iterations are needed to get the smallest fixed point of (8)). This is usually solved by using some accelerations of convergence, called widening and narrowing [90], which however lead to a loss of precision. We exploited the correspondence between static analysis and games to develop algorithms of a very different nature, inspired by our earlier work on policy iteration for games [111], [83], [84],[7]. A rather general version of this policy iteration algorithm, adpated to the domain of templates, is described in [110], together with a prototype implementation. Every iteration combines linear programming and combinatorial algorithms. Some experimental results indicate that the method often leads to invariants which are more accurate than the ones obtained by alternative methods, in particular for some programs with nested loops.

This topic of research is currently evolving, a question of current interest being to find accurate invariants, in a scalable way, in situations in which the arithmetics is not affine.

4.5. Autres applications/Other applications

L'algèbre max-plus apparaît de manière naturelle dans le calcul de scores de similitudes dans la comparaison de séquences génétiques. Voir par exemple [87].

English version

Max-plus algebra arises naturally in the computation of similarity scores, in biological sequence comparison. See for instance [87].

MCTAO Project-Team

4. Application Domains

4.1. Space engineering, satellites, low thrust control

Space engineering is very demanding in terms of safe and high-performance control laws (for instance optimal in terms of fuel consumption, because only a finite amount of fuel is onboard a sattelite for all its "life"). It is therefore prone to real industrial collaborations.

We are especially interested in trajectory control of space vehicles using their own propulsion devices, outside the atmosphere. Here we discuss "non-local" control problems (in the sense of section 3.1 point 1): orbit transfer rather than station keeping; also we do not discuss attitude control.

In the geocentric case, a space vehicle is subject to

- gravitational forces, from one or more central bodies (the corresponding acceleration is denoted by $F_{\rm grav.}$ below),
- a thrust, the control, produced by a propelling device; it is the Gu term below; assume for simplicity that control in all directions is allowed, *i.e.G* is an invertible matrix
- other "perturbating" forces (the corresponding acceleration is denoted by F_2 below).

In position-velocity coordinates, its dynamics can be written as

$$\ddot{x} = F_{\text{grav.}}(x,t) \left[+ F_2(x,\dot{x},t) \right] + G(x,\dot{x}) u, \quad ||u|| \le u_{\text{max}}.$$
 (4)

In the case of a single attracting central body (the earth) and in a geocentric frame, $F_{\rm grav.}$ does not depend on time, or consists of a main term that does not depend on time and smaller terms reflecting the action of the moon or the sun, that depend on time. The second term is often neglected in the design of the control at first sight; it contains terms like athmospheric drag or solar pressure. G could also bear an explicit dependence on time (here we omit the variation of the mass, that decreases proportionnally to $\|u\|$.

4.1.1. Low thrust

Low thrust means that $u_{\rm max}$ is small, or more precisely that the maximum magnitude of Gu is small with respect to the one of $F_{\rm grav}$. (but in genral not compared to F_2). Hence the influence of the control is very weak instantaneously, and trajectories can only be significantly modified by accumulating the effect of this low thrust on a long time. Obviously this is possible only because the free system is somehow conservative. This was "abstracted" in section 3.5.

Why low thrust? The common principle to all propulsion devices is to eject particles, with some relative speed with respect to the vehicle; conservation of momentum then induces, from the point of view of the vehicle alone, an external force, the "thrust" (and a mass decrease). Ejecting the same mass of particles with a higher relative speed results in a proportionally higher thrust; this relative speed (specific impulse, I_{sp}) is a characteristic of the engine; the higher the I_{sp} , the smaller the mass of particles needed for the same change in the vehicle momentum. Engines with a higher I_{sp} are highly desirable because, for the same maneuvers, they reduce the mass of "fuel" to be taken on-board the satellite, hence leaving more room (mass) for the payload. "Classical" chemical engines use combustion to eject particles, at a somehow limited speed even with very efficient fuel; the more recent electric engines use a magnetic field to accelerate particles and eject them at a considerably higher speed; however electrical power is limited (solar cells), and only a small amount of particles can be accelerated per unit of time, inducing the limitation on thrust magnitude.

Electric engines theoretically allow many more maneuvers with the same amount of particles, with the drawback that the instant force is very small; sophisticated control design is necessary to circumvent this drawback. High thrust engines allow simpler control procedures because they almost allow instant maneuvers (strategies consist in a few burns at precise instants).

4.1.2. Typical problems

Let us mention two.

- Orbit transfer or rendez-vous. It is the classical problem of bringing a satellite to its operating position from the orbit where it is delivered by the launcher; for instance from a GTO orbit to the geostationary orbit at a prescribed longitude (one says rendez-vous when the longitude, or the position on the orbit, is prescribed, and transfer if it is free). In equation (1) for the dynamics, F_{grav} is the Newtonian gravitation force of the earth (it then does not depend on time); F₂ contains all the terms coming either from the perturbations to the Newtonian potential or from external forces like radiation pressure, and the control is usually allowed in all directions, or with some restrictions to be made precise.
- Three body problem. This is about missions in the solar system leaving the region where the attraction of the earth, or another single body, is preponderant. We are then no longer in the situation of a single central body, F_{grav}. contains the attraction of different planets and the sun. In regions where two central bodies have an influence, say the earth and the moon, or the sun and a planet, the term F_{grav}. in (1) is the one of the restricted three body problem and dependence on time reflects the movement of the two "big" attracting bodies.

An issue for future experimental missions in the solar system is interplanetary flight planning with gravitational assistance. Tackling this global problem, that even contains some combinatorial problems (itinerary), goes beyond the methodology developed here, but the above considerations are a brick in this puzzle.

4.1.3. Properties of the control system.

If there are no restrictions on the thrust direction, i.e., in equation (1), if the control u has dimension 3 with an invertible matrix G, then the control system is "static feedback linearizable", and a fortiori flat, see section 3.2. However, implementing the static feedback transformation would consist in using the control to "cancel" the gravitation; this is obviously impossible since the available thrust is very small. As mentioned in section 3.1, point 3, the problem remains fully nonlinear in spite of this "linearizable" structure 0 .

4.2. Quantum Control

These applications started by a collaboration between B. Bonnard and D. Sugny (a physicist from ICB) in the ANR project Comoc, localized mainly at the University of Dijon. The problem was the control of the orientation of a molecule using a laser field, with a model that does take into account the dissipation due to the interaction with the environment, molecular collisions for instance. The model is a dissipative generalization of the finite dimensional Schrödinger equation, known as Lindblad equation. It is a 3-dimensional system depending upon 3 parameters, yielding a very complicated optimal control problem that we have solved for prescribed boundary conditions. In particular we have computed the minimum time control and the minimum energy control for the orientation or a two-level system, using geometric optimal control and appropriate numerical methods (shooting and numerical continuation) [32], [31].

⁰However, the linear approximation around *any* feasible trajectory is controllable (a periodic time-varying linear system); optimal control problems will have no singular or abnormal trajectories.

More recently, based on this project, we have reoriented our control activity towards Nuclear Magnetic Resonance (MNR). In MNR medical imaging, the contrast problem is the one of designing a variation of the magnetic field with respect to time that maximizes the difference, on the resulting image, between two different chemical species; this is the "contrast". This research is conducted with Prof. S. Glaser (TU-München), whose group is performing both in vivo and in vitro experiments; experiments using our techniques have successfully measured the improvement in contrast between materials chemical species that have an importance in medicine, like oxygenated and de-oxygenated blood, see [30]; this is however still to be investigated and improved. The model is the Bloch equation for spin $\frac{1}{2}$ particles, that can be interpreted as a sub-case of Lindblad equation for a two-level system; the control problem to solve amounts to driving in minimum time the magnetization vector of the spin to zero (for parameters of the system corresponding to one of the species), and generalizations where such spin $\frac{1}{2}$ particles are coupled: double spin inversion for instance.

A reference book by B. Bonnard and D. Sugny has been published on the topic [33].

4.3. Applications of optimal transport

Optimal Transportation in general has many applications. Image processing, biology, fluid mechanics, mathematical physics, game theory, traffic planning, financial mathematics, economics are among the most popular fields of application of the general theory of optimal transport. Many developments have been made in all these fields recently. Three more specific examples:

- In image processing, since a grey-scale image may be viewed as a measure, optimal transportation has been used because it gives a distance between measures corresponding to the optimal cost of moving densities from one to the other, see e.g. the work of J.-M. Morel and co-workers [54].
- In representation and approximation of geometric shapes, say by point-cloud sampling, it is also interesting to associate a measure, rather than just a geometric locus, to a distribution of points (this gives a small importance to exceptional "outlier" mistaken points); this was developed in Q. Mérigot's PhD [55] in the GEOMETRICA project-team. The relevant distance between measures is again the one coming from optimal transportation.
- The specific to the type of costs that we have considered in some mathematical work, i.e. these coming from optimal control, are concerned with evolutions of densities under state or velocity constraints. A fluid motion or a crowd movement can be seen as the evolution of a density in a given space. If constraints are given on the directions in which these densities can evolve, we are in the framework of non-holonomic transport problems.

4.4. Applications to some domains of mathematics.

Control theory (in particular thinking in terms of inputs and reachable set) has brought novel ideas and progresses to mathematics. For instance, some problems from classical calculus of variations have been revisited in terms of optimal control and Pontryagin's Maximum Principle [44]; also, closed geodesics for perturbed Riemannian metrics where constructed in [47], [48] using control techniques.

Inside McTAO, a work like [10], [9] is definitely in this line, applying techniques from control to construct some perturbations under constraints of Hamiltonian systems to solve longstanding open questions in the field of dynamical systems.

MEMPHIS Team

4. Application Domains

4.1. Energy conversion

We consider applications in the domain of wind engineering and sea-wave converters. As an example of application of our methods, we show a recent realisation where we model a sea-wave energy converter, see figure 1. In this unsteady example, the full interaction between the rigid floater, air and water is described by a monolithic model, the Newton's law, where physical parameters such as densities, viscosities and rigidity vary across the domain. The appropriate boundary conditions are imposed at interfaces that arbitrarily cross the grid using adapted schemes built thanks to geometrical information computed via level set functions. The background method for fluid structure interface is the volume penalization method where the level set functions is used to improve the degree of accuracy of the method and also to follow the object. The simulations are unsteady, three dimensional, with $O(10^8)$ grid points on 512 CPUs.

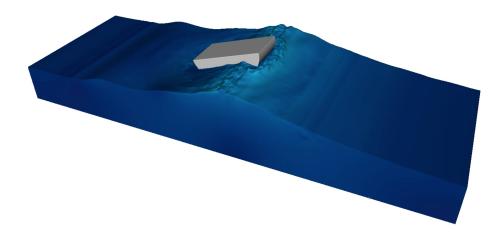


Figure 1. Numerical modeling of a sea-wave converter by a monolithic model and Cartesian meshes.

4.2. Impacts

We study hyper-velocity phenomena where several materials are involved. An example of this approach is the impact of a projectile immersed in air over a shield, see figure 2. Using the same set of equations across the entire domain, we model the compressible fluid, the hyperelastic material and the interaction at the interface that models possible rebounds. Only the constitutive laws characterize the different materials.

The simulation is performed over a 4000^2 fixed Cartesian grid so that the resulting numerical scheme allows an efficient parallelization (512 processors in this case) with an isomorphism between grid partitioning and processor topology. The challenge for our team is to increase the accuracy of the simulation thanks to grid refinement in the vicinity of the moving interfaces, still guaranteeing scalability and a simple computational set up.

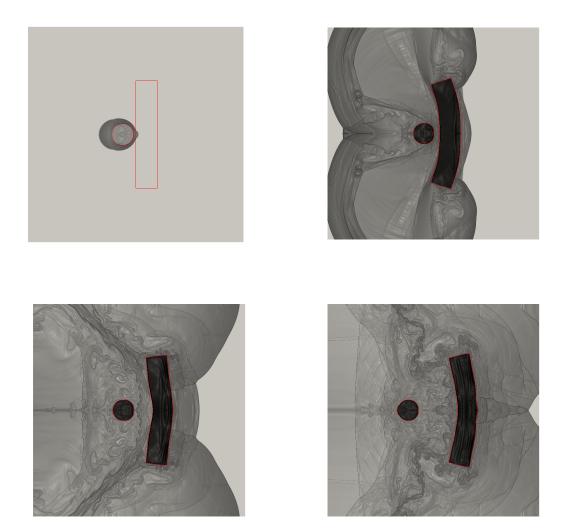
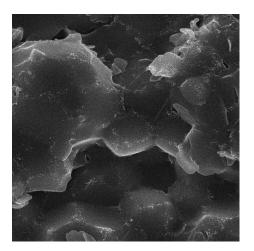



Figure 2. Impact and rebound of a copper projectile on a copper plate. Interface and schlieren at $50\mu s$, $199\mu s$, $398\mu s$ and $710\mu s$. From left to right, top to bottom.

4.3. New materials

Thanks to the multiscale schemes that we develop, we can charcterize new materials from constituents. As an example, consider the material presented in figure 3 left. It is a picture of a dry foam that is used as dielectric material. This micrography is taken at the scale of the dry bubbles, where on the surface of the bubble one can observe the carbon nanotubes as white filaments. The presence of nanotubes in the dry emulsion makes the electrical capacitance of this material significantly affected by its strain state by creating aligned dipoles at a larger scale compared to the size of the dielectric molecules. It is a typical multi-scale phenomenon in presence of widely varying physical properties. This material is used to generate micro currents when it undergoes vibrations. The schemes that we device allow to model this multi-scale irregular material by a monolithic model (same equation in the whole domain), in this case a variable coefficient diffusion equation. In order to recover adequate accuracy, the numerical scheme is adapted near the interfaces between the different subdomains. The computational hierarchical mesh is directly derived by the micrography of the material (figure 3 right).

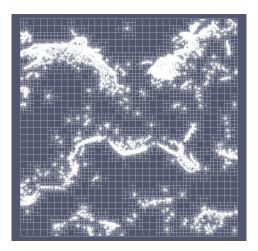


Figure 3. A micrography of an electrostrictive material is shown on the left: the bright regions visualize the carbon nanotubes. The hierarchical grid adapted to the nanotubes is shown on the right. The ratio between the largest and the smallest cell side is 2⁷. Project developed in collaboration with the CRPP physics and chemistry lab of the CNRS in Bordeaux (Annie Colin, Philippe Poulin).

4.4. Bio-inspired robotic swimming

In bioinspired robotic swimming the aim is of simulating a three-dimensional swimmer starting from pictures. The first step is to build the three-dimensional fish profile based on two-dimensional data retrieved from the picture of an undeformed fish at rest. This is done by a skeleton technique and a three-dimensional level set function describing the body surface. Then the skeleton is deformed using an appropriate swimming law to obtain a sequence of level set functions corresponding to snapshots of the body surface uniformly taken at different instants.

Thanks to skeleton deformation we typically reconstruct 20% of the snapshots necessary to simulate a swimming stroke, since the time scale of the simulation is significantly smaller than the time step between two subsequent reconstructed snapshots. Also, the surface deformation velocity is required to set the boundary conditions of the flow problem. For this reason it is necessary to build intermediate level set functions and to compute the deformation velocity field between subsequent fish snapshots. Optimal transportation is well

suited to achieve this goal providing an objective model to compute intermediate geometries and deformation velocities.

Numerical simulations have been performed in 3D, see figure 4. However, it has been observed that these algorithms do not preserve the physics/features of the represented objects. Indeed, the fish tends to compress during the deformation.

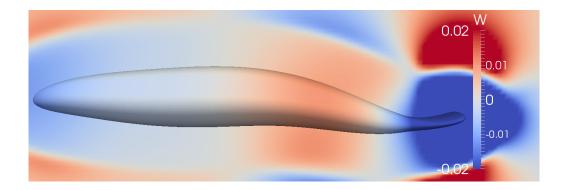


Figure 4. Comparison of the exact deformation velocity (presented inside the swimmer) and the approximated velocity identified using optimal transport (represented outside the fish). The error of the identification scheme is negligible for this component of the velocity, as it can be inferred by comparing the two velocities on the boundary of the swimmer.

For this reason, we will consider incompressible or rigid transports.

MEPHYSTO Team

4. Application Domains

4.1. Mechanics of heterogeneous media

The mechanics of heterogeneous materials aims at characterizing the macroscopic properties of heterogeneous materials using the properties of their constituents.

The homogenization theory is a natural tool for this task. In particular, for linear problems (linear conductivity or linear elasticity), the macroscopic properties are encoded into a single (conductivity or elasticity) homogenized tensor. The numerical approximation of this homogenized tensor is a typical objective of quantitative homogenization.

For nonlinear problems, such as rubber elasticity, the macroscopic properties are no longer characterized by a single tensor, but rather by a nonlinear energy density. Our aim is to relate qualitatively and quantitatively the (precise but unpractical) statistical physics picture to explicit macroscopic constitutive laws that can be used for practical purposes. This endeavor is relevant both in science and technology. The rigorous derivation of rubber elasticity from polymer-physics was indeed emphasized by John Ball as an important open problem of nonlinear elasticity in his survey [44] on the field. Its solution could shed light on some aspects of polymer-physics. The associated ab initio derivation of constitutive laws (as an alternative to phenomenological laws) would also be of interest to computational mechanics and rubber industry.

For this application domain, we work in close collaboration with physicists (François Lequeux, ESPCI) and researchers from mechanics and computational mechanics (Patrick Le Tallec, Ecole polytechnique).

4.2. Numerical simulation in heterogeneous media

Solving numerically PDEs in highly heterogeneous media is a problem encountered in many situations, such as the transport of pollutants or the design of oil extraction strategies in geological undergrounds. When such problems are discretized by standard numerical methods the number of degrees of freedom may become prohibitive in practice, whence the need for other strategies.

Numerical solution methods inspired by asymptotic analysis are among the very few feasible alternatives, and started fifteen years ago with the contributions of Hou and Wu [59], Arbogast [40] etc. We refer to [54], [70],[3] for a recent state of the art. Numerical homogenization methods usually amount to looking for the solution of the problem (1) in the form $u_{\varepsilon}(x) \simeq u_0(x) + \varepsilon \nabla u_0(x) \cdot \Phi(x, \frac{x}{\varepsilon})$, where Φ is a proxy for the corrector field computed locally at point x (in particular, one does not use explicitly that the problem is periodic so that the method can be used for more general coefficients) and u_0 is a function which does not oscillate at scale.

Relying on our quantitative insight in stochastic homogenization, a first task consists in addressing the three following prototypical academic examples: periodic, quasi-periodic, and stationary ergodic coefficients with short range dependence. The more ambitious challenge is to address more complex coefficients (of interest to practioners), and design adaptive and efficient algorithms for diffusion in heterogeneous media.

4.3. Laser physics

Our contribution to the analysis of models in laser physics is motivated by the LabEx CEMPI (Centre Européen pour les Mathématiques, la Physique et leurs Interactions, a large eight-year research and training project approved by the French government in February 2012 as a "Laboratoire d'Excellence" and an initiative of mathematicians and physicists of the Université Lille 1). For this application domain, we work in close collaboration with physicists, which ensures our direct impact on these scientific issues. We focus on two applications: optical fibers and cold atoms.

In collaboration with physicists from the PhLAM laboratory in Lille, we aim at developing new techniques for the numerical integration of a family of 1D Schrödinger-like equations modelling the propagation of laser pulses in optical fibers. The questions arising are challenging since physicists would like to have fairly fast and cheap methods for their problems, with correct qualitative and quantitative behaviors. Another point is that they are interested in methods and codes that are able to handle different physical situations, hence different terms in the NLS equation. To meet these requirements, we will have to use numerical time-integration techniques such as splitting methods or exponential Runge-Kutta methods, space discretization techniques such as finite differences and fast Fourier transforms, and absorbent boundary conditions. Our goal, together with the physicists is to be able to reproduce numerically the results of the experiments they make in actual optical fibers, and then to be able to tune parameters numerically to get more insight into the appearance of rogue waves beyond the dispersive blowup phenomenon.

Recall that the Schrödinger equation also describes Bose-Einstein condensates. A second experimental team at PhLAM projects to study questions related to Anderson localization in such condensates. In fact, they will realize the "kicked rotor" (see [51]), which provides a paradigm for Anderson localization, in a Bose-Einstein condensate. We plan to collaborate with them on the theoretical underpinnings of their findings, which pose many challenging questions.

MISTIS Project-Team

4. Application Domains

4.1. Image Analysis

Participants: Alexis Arnaud, Aina Frau Pascual, Florence Forbes, Stéphane Girard, Pascal Rubini, Alessandro Chiancone, Thomas Perret, Pablo Mesejo Santiago.

As regards applications, several areas of image analysis can be covered using the tools developed in the team. More specifically, in collaboration with team Perception, we address various issues in computer vision involving Bayesian modelling and probabilistic clustering techniques. Other applications in medical imaging are natural. We work more specifically on MRI data, in collaboration with the Grenoble Institute of Neuroscience (GIN) and the NeuroSpin center of CEA Saclay. We also consider other statistical 2D fields coming from other domains such as remote sensing, in collaboration with Laboratoire de Planétologie de Grenoble. We worked on hyperspectral images. In the context of the "pole de competivite" project I-VP, we worked of images of PC Boards.

4.2. Biology, Environment and Medicine

Participants: Pablo Mesejo Santiago, Aina Frau Pascual, Florence Forbes, Stéphane Girard, Seydou-Nourou Sylla, Marie-José Martinez, Jean-Baptiste Durand.

A second domain of applications concerns biology and medicine. We consider the use of missing data models in epidemiology. We also investigated statistical tools for the analysis of bacterial genomes beyond gene detection. Applications in neurosiences are also considered. Finally, in the context of the ANR VMC project Medup, we studied the uncertainties on the forecasting and climate projection for Mediterranean high-impact weather events.

MODAL Project-Team

4. Application Domains

4.1. Application domains

Potential application areas of statistical modeling for mixed data are (credit scoring, marketing, environment, medical, economic, hydrology,...), but MODAL favors applications related to biology, phylogeny, genetics and medicine. Members of the team are already experienced in these directions with complementary skills.

MOKAPLAN Project-Team

4. Application Domains

4.1. Freeform Optics

Following the pioneering work of Caffarelli and Oliker [88], Wang [182] has shown that the inverse problem of freeforming a *convex* reflector which sends a prescribed source to a target intensity is a particular instance of Optimal Transportation. This is a promising approach to automatize the industrial design of optimized energy efficient reflectors (car/public lights for instance). We show in figure 10 the experiment setting and one of the first numerical simulations produced by the ADT Mokabajour.

The method developed in [63] has been used by researchers of TU Eindhoven in collaboration with Philips Lightning Labs to compute reflectors [165] in a simplified setting (directional light source). Another approach, based on a geometric discretization of Optimal Transportation has been developed in [8], and is able to handle more realistic conditions (punctual light source).

Solving the exact Optimal Transportation model for the Reflector inverse problem involves a generalized Monge-Ampère problem and is linked to the open problem of c-convexity compatible discretization we plan to work on. The corresponding software development is the topic of the starting ADT Mokabajour.

4.1.1. Software and industrial output.

See section 4.3 below for softwares. These method will clearly become mainstream in reflector design but also in lense design [168]. The industrial problems are mainly on efficiency (light pollution) and security (car head lights) based on free tailoring of the illumination. The figure below is an extreme test case where we exactly reproduce an image. They may represent one of the first incursion on PDE discretization based methods into the field of non-imaging optics.

Figure 10. A constant source to a prescribed image (center). The reflector is computed (but not shown) and a resimulation using ray tracing shows the image reflected by the computed reflector.

4.2. Metric learning for natural language processing

The analysis of large scale datasets to perform un-supervised (clustering) and supervised (classification, regression) learning requires the design of advanced models to capture the geometry of the input data. We believe that optimal transport is a key tool to address this problem because (i) many of these datasets are composed of histograms (social network activity, image signatures, etc.) (ii) optimal transport makes use of a ground metric that enhances the performances of classical learning algorithms, as illustrated for instance in [114].

Some of the theoretical and numerical tools developed by our team, most notably Wasserstein barycenters [46], [71], are now becoming mainstream in machine learning [67], [114]. In its simplest (convex) form where one seeks to only maximize pairwise wasserstein distances, metric learning corresponds to the congestion problem studied by G. Carlier and collaborators [102], [74], and we will elaborate on this connection to perform both theoretical analysis and develop numerical schemes (see for instance our previous work [64]).

We aim at developing novel variational estimators extending classification regression energies (SVM, logistic regression [129]) and kernel methods (see [173]). One of the key bottleneck is to design numerical schemes to learn an optimal metric for these purpose, extending the method of Marco Cuturi [113] to large scale and more general estimators. Our main targeted applications is natural language processing. The analysis and processing of large corpus of texts is becoming a key problems at the interface between linguistic and machine learning [50]. Extending classical machine learning methods to this field requires to design suitable metrics over both words and bag-of-words (i.e. histograms). Optimal transport is thus a natural candidate to bring innovative solutions to these problems. In a collaboration with Marco Cuturi (Kyoto University), we aim at unleashing the power of transportation distances by performing ground distance learning on large database of text. This requires to lift previous works on distance on words (see in particular [159]) to distances on bags-of-words using transport and metric learning.

Figure 11. Examples of two histogram (bag-of-words) extracted from the congress speech of US president. In this application, the goal is to infer a meaningful metric on the words of the english language and lift this metric to histogram using OT technics.

4.3. Physics

The Brenier interpretation of the generalized solutions of Euler equations in the sense of Arnold is an instance of multi-marginal optimal transportation, a recent and expanding research field which also appears in DFT (see chemistry below). Recent numerical developments in OT provide new means of exploring these class of solutions.

In the years 2000 and after the pioneering works of Otto, the theory of *many-particle systems* has become "geometrized" thanks to the observed intimate relation between the geometric theory of geodesic convexity in the Wasserstein distance and the proof of entropy dissipation inequalities that determine the trend to

equilibrium. The OT approach to the study of equilibration is still an extremely active field, in particular the various recently established connections to sharp functional inequalities and isoperimetric problems.

A third specific topic is the use of optimal transport models in *non-imaging optics*. Light intensity here plays the role of the source/target prescribed mass and the transport map defines the physical shape of specular reflector or refracting lense achieving such a transformation. This models have been around since the works of Oliker and Wang in the 90's. Recent numerical progresses indicate that OT may have an important industrial impact in the design of optical elements and calls for further modelisation and analysis.

4.4. Chemistry

The treatment of *chemical reactions* in the framework of OT is a rather recent development. The classical theory must be extended to deal with the transfer of mass between different particle species by means of chemical reactions. That extension is still far from complete at the moment, but there is a lot of progress currently, some of which we try to capture in the workshop.

A promising and significant recent advance is the introduction and analysis of a novel metric that combines the pure transport elements of the Wasserstein distance with the annihilation and creation of mass, which is a first approximation of chemical reactions. The logical next challenge is the extension of OT concepts to vectorial quantities, which allows to rewrite cross-diffusion systems for the concentration of several chemical species as gradient flows in the associated metric. An example of application is the modeling of a *chemical vapor deposition process*, used for the manufacturing of thin-film solar cells for instance. This leads to a degenerate cross-diffusion equations, whose analysis — without the use of OT theory — is delicate. Finding an appropriate OT framework to give the formal gradient flow structure a rigorous meaning would be a significant advance for the applicability of the theory, also in other contexts, like for biological multi-species diffusion.

A very different application of OT in chemistry is a novel approach to the understanding of *density functional theory* (DFT) by using optimal transport with "Coulomb costs", which is highly non convex and singular. Albeit this theory shares some properties with the usual optimal transportation problems, it does not induce a metric between probability measures. It also uses the multi-marginal extension of OT, which is an active field on its own right.

4.5. Biology

OT methods have been introduced in biology via gradient flows in the Wasserstein metric. Writing certain *chemotaxis* systems in variational form allowed to prove sharp estimates on the long time asymptotics of the bacterial aggregation. This application had a surprising payback on the theory: it lead to a better understanding and novel proofs of important functional inequalities, like the logarithmic Hardy-Littlewood-Sobolev inequality. Further applications followed, like transport models for species that avoid over-crowding, or cross-diffusion equations for the description of *biologic segregation*. The inclusion of dissipative cross-diffusion systems into the framework of gradient flows in OT-like metrics appears to be one of the main challenges for the future development of the theory. This extension is not only relevant for biological applications, but is clearly of interest to participants with primary interest in physics or chemistry as well.

Further applications include the connection of OT with game theory, following the idea that many selection processes are based on competition. The ansatz is quite universal and has been used in other areas of the *life sciences* as well, like for the modeling of personal income in economics. If time permits, some of those "exotic" applications will be discussed in the workshop as well.

4.6. Medical Imaging

Applications of variational methods are widespread in medical imaging and especially for diffeomorphic image matching. The formulation of large deformation by diffeomorphisms consists in finding geodesics on a group of diffeomorphisms. This can be seen as a non-convex and smoothed version of optimal transport where a correspondence is sought between objects that can be more general than densities. Whereas the

diffeomorphic approach is well established, similarity measures between objects of interest are needed in order to drive the optimization. While being crucial for the final registration results, these similarity measures are often non geometric due to a need of fast computability and gradient computation. However, our team pioneered the use of entropic smoothing for optimal transport which gives fast and differentiable similarity measures that take into account the geometry. Therefore, we expect an important impact on this topic, work still in progress. This example of application belongs to the larger class of inverse problems where a geometric similarity measure such as optimal transport might enhance notably the results. Concerning this particular application, potential interactions with the Inria team ARAMIS and also the team ASCLEPIOS can leverage new proposed similarity measure towards a more applicative impact.

4.7. Economics

Recent years have seen intense cross-fertilization between OT and various problems arising in economics. The principal-agent problem with adverse selection is particularly important in modern microeconomics, mathematically it consists in minimizing a certain integral cost functional among the set of *c*-concave functions, this problem is convex under some conditions related to the MTW regularity theory for OT as shown in the important paper [120]. Other examples of fruitful interactions between mathematical economics concern multi-marginal OT and multi-populations matching [98], or games with a continuum of agents and Cournot-Nash equilibria [68]. The team has as strong expertise, both numerical and theoretical in the field of variational problems subject to a convexity constraint and their applications to the principal-agent problem. Our expertise in numerical OT and entropic regularization will also enable us to develop efficient solvers for realistic matching and hedonic pricing models.

NACHOS Project-Team

4. Application Domains

4.1. Electromagnetic wave propagation

Electromagnetic devices are ubiquitous in present day technology. Indeed, electromagnetism has found and continues to find applications in a wide array of areas, encompassing both industrial and societal purposes. Applications of current interest include (among others) those related to communications (e.g transmission through optical fiber lines), to biomedical devices (e.g microwave imaging, micro-antenna design for telemedecine, etc.), to circuit or magnetic storage design (electromagnetic compatibility, hard disc operation), to geophysical prospecting, and to non-destructive evaluation (e.g crack detection), to name but just a few. Equally notable and motivating are applications in defence which include the design of military hardware with decreased signatures, automatic target recognition (e.g bunkers, mines and buried ordnance, etc.) propagation effects on communication and radar systems, etc. Although the principles of electromagnetics are well understood, their application to practical configurations of current interest, such as those that arise in connection with the examples above, is significantly complicated and far beyond manual calculation in all but the simplest cases. These complications typically arise from the geometrical characteristics of the propagation medium (irregular shapes, geometrical singularities), the physical characteristics of the propagation medium (heterogeneity, physical dispersion and dissipation) and the characteristics of the sources (wires, etc.).

Although many of the above-mentioned application contexts can potentially benefit from numerical modeling studies, the team currently concentrates its efforts on two physical situations.

4.1.1. Microwave interaction with biological tissues

Two main reasons motivate our commitment to consider this type of problem for the application of the numerical methodologies developed in the NACHOS project-team:

- First, from the numerical modeling point of view, the interaction between electromagnetic waves and biological tissues exhibit the three sources of complexity identified previously and are thus particularly challenging for pushing one step forward the state-of-the art of numerical methods for computational electromagnetics. The propagation media is strongly heterogeneous and the electromagnetic characteristics of the tissues are frequency dependent. Interfaces between tissues have rather complicated shapes that cannot be accurately discretized using cartesian meshes. Finally, the source of the signal often takes the form of a complicated device (e.g a mobile phone or an antenna array).
- Second, the study of the interaction between electromagnetic waves and living tissues is of interest
 to several applications of societal relevance such as the assessment of potential adverse effects
 of electromagnetic fields or the utilization of electromagnetic waves for therapeutic or diagnostic
 purposes. It is widely recognized nowadays that numerical modeling and computer simulation
 of electromagnetic wave propagation in biological tissues is a mandatory path for improving the
 scientific knowledge of the complex physical mechanisms that characterize these applications.

Despite the high complexity both in terms of heterogeneity and geometrical features of tissues, the great majority of numerical studies so far have been conducted using variants of the widely known FDTD (Finite Difference Time Domain) method due to Yee [62]. In this method, the whole computational domain is discretized using a structured (cartesian) grid. Due to the possible straightforward implementation of the algorithm and the availability of computational power, FDTD is currently the leading method for numerical assessment of human exposure to electromagnetic waves. However, limitations are still seen, due to the rather difficult departure from the commonly used rectilinear grid and cell size limitations regarding very detailed structures of human tissues. In this context, the general objective of the contributions of the NACHOS project-team is to demonstrate the benefits of high order unstructured mesh based Maxwell solvers for a realistic numerical modeling of the interaction of electromagnetic waves and biological tissues with emphasis on

applications related to numerical dosimetry. Since the creation of the team, our works on this topic have mainly been focussed on the study of the exposure of humans to radiations from mobile phones or wireless communication systems (see Fig. 1). This activity has been conducted in close collaboration with the team of Joe Wiart at Orange Labs/Whist Laboratory http://whist.institut-telecom.fr/en/index.html (formerly, France Telecom Research & Development) in Issy-les-Moulineaux [12].

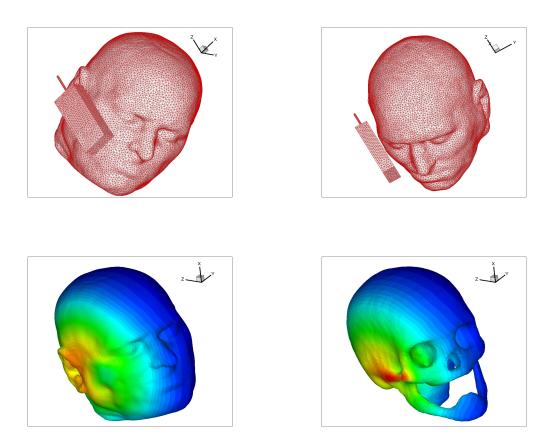


Figure 1. Exposure of head tissues to an electromagnetic wave emitted by a localized source. Top figures: surface triangulations of the skin and the skull. Bottom figures: contour lines of the amplitude of the electric field.

4.1.2. Light/matter interaction on the nanoscale

Nanostructuring of materials has opened up a number of new possibilities for manipulating and enhancing light-matter interactions, thereby improving fundamental device properties. Low-dimensional semiconductors, like quantum dots, enable one to catch the electrons and control the electronic properties of a material, while photonic crystal structures allow to synthesize the electromagnetic properties. These technologies may, e.g., be employed to make smaller and better lasers, sources that generate only one photon at a time, for applications in quantum information technology, or miniature sensors with high sensitivity. The incorporation of metallic structures into the medium add further possibilities for manipulating the propagation of electromagnetic waves. In particular, this allows subwavelength localisation of the electromagnetic field and, by subwavelength structuring of the material, novel effects like negative refraction, e.g. enabling super lenses, may be realized. Nanophotonics is the recently emerged, but already well defined, field of science and technology aimed at establishing and using the peculiar properties of light and light-matter interaction in various nanostructures. Nanophotonics includes all the phenomena that are used in optical sciences for the development of optical

devices. Therefore, nanophotonics finds numerous applications such as in optical microscopy, the design of optical switches and electromagnetic chips circuits, transistor filaments, etc. Because of its numerous scientific and technological applications (e.g. in relation to telecommunication, energy production and biomedicine), nanophotonics represents an active field of research increasingly relying on numerical modeling beside experimental studies.

Plasmonics is a related field to nanophotonics. Metallic nanostructures whose optical scattering is dominated by the response of the conduction electrons are considered as plasmomic media. If the structure presents an interface with e.g. a dielectric with a positive permittivity, collective oscillations of surface electrons create surface-plasmons-polaritons (SPPs) that propagate along the interface. SPPs are guided along metal-dielectric interfaces much in the same way light can be guided by an optical fiber, with the unique characteristic of subwavelength-scale confinement perpendicular to the interface. Nanofabricated systems that exploit SPPs offer fascinating opportunities for crafting and controlling the propagation of light in matter. In particular, SPPs can be used to channel light efficiently into nanometer-scale volumes, leading to direct modification of mode dispersion properties (substantially shrinking the wavelength of light and the speed of light pulses for example), as well as huge field enhancements suitable for enabling strong interactions with non-linear materials. The resulting enhanced sensitivity of light to external parameters (for example, an applied electric field or the dielectric constant of an adsorbed molecular layer) shows great promise for applications in sensing and switching. In particular, very promising applications are foreseen in the medical domain [55]- [63].

Numerical modeling of electromagnetic wave propagation in interaction with metallic nanostructures at optical frequencies requires to solve the system of Maxwell equations coupled to appropriate models of physical dispersion in the metal, such as the Drude and Drude-Lorentz models. Here again, the FDTD method is a widely used approach for solving the resulting system of PDEs [60]. However, for nanophotonic applications, the space and time scales, in addition to the geometrical characteristics of the considered nanostructures (or structured layouts of the latter), are particularly challenging for an accurate and efficient application of the FDTD method. Recently, unstructured mesh based methods have been developed and have demonstrated their potentialities for being considered as viable alternatives to the FDTD method [58]- [59]- [53]. Since the end of 2012, nanophotonics/plasmonics is increasingly becoming a focused application domain in the research activities of the team in close collaboration with physicists from CNRS laboratories, and also with researchers from international institutions.

4.2. Elastodynamic wave propagation

Elastic wave propagation in interaction with solids are encountered in a lot of scientific and engineering contexts. One typical example is geoseismic wave propagation, in particular in the context of earthquake dynamics or resource prospection.

4.2.1. Earthquake dynamics

To understand the basic science of earthquakes and to help engineers better prepare for such an event, scientists want to identify which regions are likely to experience the most intense shaking, particularly in populated sediment-filled basins. This understanding can be used to improve buildings in high hazard areas and to help engineers design safer structures, potentially saving lives and property. In the absence of deterministic earthquake prediction, forecasting of earthquake ground motion based on simulation of scenarios is one of the most promising tools to mitigate earthquake related hazard. This requires intense modeling that meets the spatial and temporal resolution scales of the continuously increasing density and resolution of the seismic instrumentation, which record dynamic shaking at the surface, as well as of the basin models. Another important issue is to improve the physical understanding of the earthquake rupture processes and seismic wave propagation. Large-scale simulations of earthquake rupture dynamics and wave propagation are currently the only means to investigate these multiscale physics together with data assimilation and inversion. High resolution models are also required to develop and assess fast operational analysis tools for real time seismology and early warning systems.

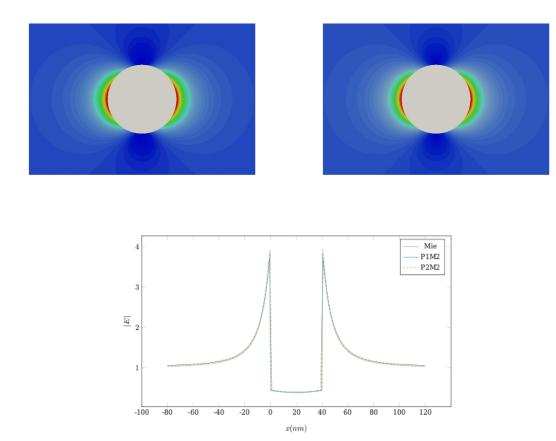
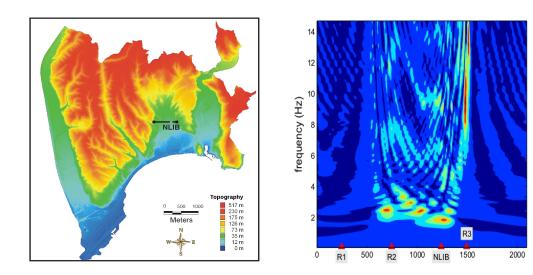



Figure 2. Scattering of a 20 nanometer radius gold nanosphere by a plane wave. The gold properties are described by a Drude dispersion model. Modulus of the electric field in the frequency domain. Top left figure: Mie solution. Top right figure: numerical solution. Bottom figure: 1d plot of the electric field modulus for various orders of approximation.

Numerical methods for the propagation of seismic waves have been studied for many years. Most of existing numerical software rely on finite difference type methods. Among the most popular schemes, one can cite the staggered grid finite difference scheme proposed by Virieux [61] and based on the first order velocity-stress hyperbolic system of elastic waves equations, which is an extension of the scheme derived by Yee [62] for the solution of the Maxwell equations. Many improvements of this method have been proposed, in particular, higher order schemes in space or rotated staggered-grids allowing strong fluctuations of the elastic parameters. Despite these improvements, the use of cartesian grids is a limitation for such numerical methods especially when it is necessary to incorporate surface topography or curved interface. Moreover, in presence of a non planar topography, the free surface condition needs very fine grids (about 60 points by minimal Rayleigh wavelength) to be approximated. In this context, our objective is to develop high order unstructured mesh based methods for the numerical solution of the system of elastodynamic equations for elastic media in a first step, and then to extend these methods to a more accurate treatment of the heterogeneities of the medium or to more complex propagation materials such as viscoelastic media which take into account the intrinsic attenuation. Initially, the team has considered in detail the necessary methodological developments for the large-scale simulation of earthquake dynamics [1]. More recently, the team has initiated a close collaboration with CETE Méditerranée http://www.cete-mediterranee.fr/gb which is a regional technical and engineering centre whose activities are concerned with seismic hazard assessment studies, and IFSTTAR http://www. ifsttar.fr/en/welcome which is the French institute of science and technology for transport, development and networks, conducting research studies on control over aging, risks and nuisances.

1.5

0.5

Figure 3. Propagation of a plane wave in a heterogeneous model of Nice area (provided by CETE Méditerranée). Left figure: topography of Nice and location of the cross-section used for numerical simulations (black line). Right figure: transfer functions (amplification) for a vertically incident plane wave; receivers every 5 m at the surface. This numerical simulation was performed using a numerical method for the solution of the elastodynamics equations coupled to a Generalized Maxwell Body (GMB) model of viscoelasticity.

4.2.2. Seismic exploration

This application topic has been considered recently by the NACHOS project-team and this is done in close collaboration with the MAGIQUE-3D project-team at Inria Bordeaux - Sud-Ouest which is coordinating the Depth Imaging Partnership (DIP) http://dip.inria.fr between Inria and TOTAL. The research program of DIP includes different aspects of the modeling and numerical simulation of sesimic wave propagation that must be considered to construct an efficient software suites for producing accurate images of the subsurface. Our

common objective with the MAGIQUE-3D project-team is to design high order unstructured mesh based methods for the numerical solution of the system of elastodynamic equations in the time-domain and in the frequency domain, that will be used as forward modelers in appropriate inversion procedures.

NANO-D Project-Team

4. Application Domains

4.1. Overview

NANO-D is *a priori* concerned with all applications domains involving atomistic representations, including chemistry, physics, electronics, material science, biology, etc.

Historically, though, our first applications have been in biology, as the next two sections detail. Thanks to the development of algorithms to efficiently simulate reactive force fields, as well as to perform interactive quantum mechanical calculations, however, we now have the possibility to address problems in chemistry, and physics.

4.2. Structural Biology

Structural biology is a branch of molecular biology, biochemistry, and biophysics concerned with the molecular structure of biological macromolecules, especially proteins and nucleic acids. Structural biology studies how these macromolecules acquire the structures they have, and how alterations in their structures affect their function. The methods that structural biologists use to determine the structure typically involve measurements on vast numbers of identical molecules at the same time, such as X-Ray crystallography, NMR, cryo-electron microscopy, etc. In many cases these methods do not directly provide the structural answer, therefore new combinations of methods and modeling techniques are often required to advance further.

We develop a set of tools that help biologists to model structural features and motifs not resolved experimentally and to understand the function of different structural fragments.

- Symmetry is a frequent structural trait in molecular systems. For example, most of the water-soluble and membrane proteins found in living cells are composed of symmetrical subunits, and nearly all structural proteins form long oligomeric chains of identical subunits. Only a limited number of symmetry groups is allowed in crystallography, and thus, in many cases the native macromolecular conformation is not present on high-resolution X-ray structures. Therefore, to understand the realistic macromolecular packing, modeling techniques are required.
- Many biological experiments are rather costly and time-demanding. For instance, the complexity of
 mutagenesis experiments grows exponentially with the number of mutations tried simultaneously.
 In other experiments, many candidates are tried to obtain a desired function. For example, about
 250,000 candidates were tested for the recently discovered antibiotic Platensimycin. Therefore, there
 is a vast need in advance modeling techniques that can predict interactions and foresee the function
 of new structures.
- Structure of many macromolecules is still unknown. For other complexes, it is known only partially.
 Thus, software tools and new algorithms are needed by biologists to model missing structural fragments or predict the structure of those molecule, where there is no experimental structural information available.

4.3. Pharmaceutics and Drug Design

Drug design is the inventive process of finding new medications based on the knowledge of the biological target. The drug is most commonly an organic small molecule which activates or inhibits the function of a biomolecule such as a protein, which in turn results in a therapeutic benefit to the patient. In the most basic sense, drug design involves design of small molecules that are complementary in shape and charge to the biomolecular target to which they interact and therefore will bind to it. Drug design frequently relies on computer modeling techniques. This type of modeling is often referred to as computer-aided drug design.

Structure-based drug design attempts to use the structure of proteins as a basis for designing new ligands by applying accepted principles of molecular recognition. The basic assumption underlying structure-based drug design is that a good ligand molecule should bind tightly to its target. Thus, one of the most important principles for designing or obtaining potential new ligands is to predict the binding affinity of a certain ligand to its target and use it as a criterion for selection.

We develop new methods to estimate the binding affinity using an approximation to the binding free energy. This approximation is assumed to depend on various structural characteristics of a representative set of native complexes with their structure solved to a high resolution. We study and verify different structural characteristics, such as radial distribution functions, and their affect on the binding free energy approximation.

4.4. Nano-engineering

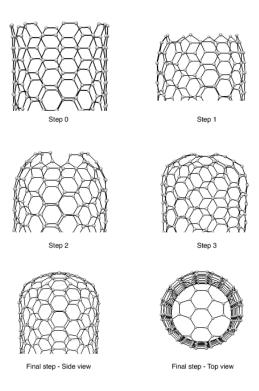


Figure 1. Snapshots of a nanotube capping process with the adaptive interactive modeler. Thanks to the adaptive methodology, this operation can be done in a few minutes.

In general, we want to develop methods to ease nano-engineering of artificial nanosystems, such as the ones described above (DNA nanotechnology, nano-mechanisms, etc.). We have shown, for example, that our incremental and adaptive algorithms allow us to easily edit and model complex shapes, such as a nanotube (Fig. 1) and the "nano-pillow" below (Fig. 2). Please read more about the SAMSON software platform for more examples.

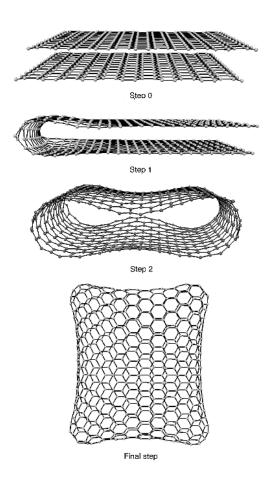


Figure 2. Different steps to prototype a "nano-pillow" with the adaptive interactive modeler.

NECS Project-Team

4. Application Domains

4.1. A large variety of application domains

Sensor and actuator networks are ubiquitous in modern world, thanks to the advent of cheap small devices endowed with communication and computation capabilities. Potential application domains for research in networked control and in distributed estimation are extremely various, and include the following examples.

- Intelligent buildings, where sensor information on CO_2 concentration, temperature, room occupancy, etc. can be used to control the heating, ventilation and air conditioning (HVAC) system under multi-objective considerations of comfort, air quality, and energy consumption.
- Smart grids: the operation of electrical networks is changing from a centralized optimization
 framework towards more distributed and adaptive protocols, due to the high number of small local
 energy producers (e.g., solar panels on house roofs) that now interact with the classic large powerplants.
- Disaster relief operations, where data collected by sensor networks can be used to guide the actions
 of human operators and/or to operate automated rescue equipment.
- Surveillance using swarms of Unmanned Aerial Vehicles (UAVs), where sensor information (from sensors on the ground and/or on-board) can be used to guide the UAVs to accomplish their mission.
- Environmental monitoring and exploration using self-organized fleets of Autonomous Underwater Vehicles (AUVs), collaborating in order to reach a goal such as finding a pollutant source or tracing a seabed map.
- Infrastructure security and protection using smart camera networks, where the images collected are shared among the cameras and used to control the cameras themselves (pan-tilt-zoom) and ensure tracking of potential threats.

In particular, NECS team is currently focusing in the areas described in detail below.

4.2. Vehicular transportation systems

4.2.1. Intelligent transportation systems

Throughout the world, roadways are notorious for their congestion, from dense urban network to large freeway systems. This situation tends to get worse over time due to the continuous increase of transportation demand whereas public investments are decreasing and space is lacking to build new infrastructures. The most obvious impact of traffic congestion for citizens is the increase of travel times and fuel consumption. Another critical effect is that infrastructures are not operated at their capacity during congestion, implying that fewer vehicles are served than the amount they were designed for. Using macroscopic fluid-like models, the NECS team has initiated new researches to develop innovative traffic management policies able to improve the infrastructure operations. The research activity is on two main challenges: forecasting, so as to provide accurate information to users, e.g., travel times; and control, via ramp-metering and/or variable speed limits. The Grenoble Traffic Lab (see http://necs.inrialpes.fr/pages/grenoble-traffic-lab.php) is an experimental platform, collecting traffic infrastructure information in real time from Grenoble South Ring, together with innovative software e.g. for travel-time prediciton, and a show-case where to graphically illustrate results to the end-user. This activity is done in close collaboration with local traffic authorities (DIR-CE, CG38, La Metro), and with the start-up company Karrus (http://www.karrus-its.com/)

4.2.2. Advanced and interactive vehicle control

Car industry has been already identified as a potential homeland application for Networked Control [36], as the evolution of micro-electronics paved the way for introducing distributed control in vehicles. In addition, automotive control systems are becoming the more complex and iterative, as more on-board sensors and actuators are made available through technology innovations. The increasing number of subsystems, coupled with overwhelming information made available through on-board and off-board sensors and communication systems, rises new and interesting challenges to achieve optimal performance while maintaining the safety and the robustness of the total system. Causes of such an increase of complexity/difficulties are diverse: interaction between several control sub-systems (ABS, TCS, ESP, etc.), loss of synchrony between subsystems, limitations in the computation capabilities of each dedicate processor, etc. The team had several past collaborations with the car industry (Renault since 1992, and Ford).

More recently, in the ANR project VOLHAND (2009-2013), the team has been developing a new generation of electrical power-assisted steering specifically designed for disabled and aged persons.

Currently, on-going work under a grant with IFPEN studies how to save energy and reduce pollution, by controlling a vehicle's speed in a smart urban environment, where infrastructure-to-vehicle and vehicle-to-vehicle communications happen and can be taken into account in the control.

4.3. Inertial navigation

Inertial navigation is a research area related to the determination of 3D attitude and position of a rigid body. Attitude estimation is based on data fusion from accelerometers, magnetometers and gyroscopes. Attitude is used in general to determine the linear acceleration, which needs to be integrated after to calculate the position. More recently, in the Persyval project LOCATE-ME (2014-2015), the team has started exploring Pedestrian navigation algorithms in collaboration with the Tyrex team (INRIA-Rhône-Alpes). The goal is to provide guidance to pedestriants, e.g., to first responders after a disaster, or to blind people walking in unfamiliar environments. This tasks is particularly challenging for indoor navigation, where no GPS is available.

4.4. Multi-robot collaborative coordination

Due to the cost or the risks of using human operators, many tasks of exploration, or of after-disaster intervention are performed by un-manned drones. When communication becomes difficult, e.g., under water, or in spatial exploration, such robots must be autonomous. Complex tasks, such as exploration, or patrolling, or rescue, cannot be achieved by a single robot, and require a self-coordinated fleet of autonomous devices. NECS team has studied the marine research application, where a fleet of Autonomous Underwater Vehicles (AUVs) self-organize in a formation, adapting to the environment, and reaching a source, e.g., of a pollutant. This has been done in collaboration with IFREMER, within the national project ANR CONNECT and the European FP7 project FeedNetBack [1]. On-going research in the team concerns source localization, with a fleet of mobile robots, including wheeled land vehicles.

4.5. Control design of hydroelectric powerplants

We have started a collaboration with ALSTOM HYDRO, on collaborative and reconfigurable resilient control design of hydroelectric power plants. This work is within the framework of the joint laboratory Inria/ALSTOM (see http://www.inria.fr/innovation/actualites/laboratoire-commun-inria-alstom). A first concrete collaboration has been established with the CIFRE thesis of Simon Gerwig, who is currently studying how to improve performance of a hydro-electric power-plant outside its design operation conditions, by cancellation of oscillations that occur in such operation range.

NON-A Project-Team (section vide)

POEMS Project-Team

4. Application Domains

4.1. Acoustics

Two particular subjects have retained our attention recently.

Aeroacoustics, or more precisely, acoustic propagation in a moving compressible fluid, has been for our team a very challenging topic, which gave rise to a lot of open questions, from the modeling until the numerical approximation of existing models. Our works in this area are partially supported by Airbus Group. The final objective is to reduce the noise radiated by planes.

Musical acoustics constitutes a particularly attractive application. We are concerned by the simulation of musical instruments. The objective is both a better understanding of the behavior of existing instruments and an aid for the manufacturing of new instruments. We have successively considered the timpani, the guitar and the piano. This activity is continuing in the framework of the European Project BATWOMAN.

4.2. Electromagnetism

Applied mathematics for electromagnetism during the last ten years have mainly concerned stealth technology and electromagnetic compatibility. These areas are still motivating research in computational sciences (large scale computation) and mathematical modeling (derivation of simplified models for multiscale problems). These topics are developed in collaboration with CEA, DGA and ONERA.

Electromagnetic propagation in non classical media opens a wide and unexplored field of research in applied mathematics. This is the case of wave propagation in photonic crystals, metamaterials or magnetized plasmas. Two ANR projects (METAMATH and CHROME) support this research.

Other subjects are motivated by our partnership with CEA-LIST concerning the simulation of non-destructive testing methods: the development of asymptotic models for complex electromagnetic networks and the simulation by integral equations of eddy current phenomena.

4.3. Elastodynamics

Wave propagation in solids is with no doubt, among the three fundamental domains that are acoustics, electromagnetism and elastodynamics, the one that poses the most significant difficulties from mathematical and numerical points of view. A major application topic has emerged during the past years: the non destructive testing by ultra-sounds which is the main topic of our collaboration with CEA-LIST. On the other hand, we are developing efficient integral equation modelling for geophysical and civil engineering applications (soil-structure interaction for civil engineering, seismology).

QUANTIC Project-Team

4. Application Domains

4.1. Quantum engineering

A new field of quantum systems engineering has emerged during the last few decades. This field englobes a wide range of applications including nano-electromechanical devices, nuclear magnetic resonance applications, quantum chemical synthesis, high resolution measurement devices and finally quantum information processing devices for implementing quantum computation and quantum communication. Recent theoretical and experimental achievements have shown that the quantum dynamics can be studied within the framework of estimation and control theory, but give rise to new models that have not been fully explored yet.

The QUANTIC team's activities are defined at the border between theoretical and experimental efforts of this emerging field with an emphasis on the applications in quantum information, computation and communication. The main objective of this interdisciplinary team is to develop quantum devices ensuring a robust processing of quantum information.

On the theory side, this is done by following a system theory approach: we develop estimation and control tools adapted to particular features of quantum systems. The most important features, requiring the development of new engineering methods, are related to the concept of measurement and feedback for composite quantum systems. The destructive and partial ⁰ nature of measurements for quantum systems lead to major difficulties in extending classical control theory tools. Indeed, design of appropriate measurement protocols and, in the sequel, the corresponding quantum filters estimating the state of the system from the partial measurement record, are themselves building blocks of the quantum system theory to be developed.

On the experimental side, we develop new quantum information processing devices based on quantum superconducting circuits. Indeed, by realizing superconducting circuits at low temperatures and using microwave measurement techniques, the macroscopic and collective degrees of freedom such as the voltage and the current are forced to behave according to the laws of quantum mechanics. Our quantum devices are aimed to protect and process quantum information through these integrated circuits.

⁰Here the partiality means that no single quantum measurement is capable of providing the complete information on the state of the system.

RAPSODI Team

4. Application Domains

4.1. Porous media flows

Porous media flows are of great interest in many contexts, like, e.g., oil engineering, water resource management, nuclear waste repository management, or carbon dioxyde sequestration. We refer to [47], [46] for an extensive discussion on porous media flow models.

From a mathematical point of view, the transport of complex fluids in porous media often leads to possibly degenerate parabolic conservation laws. The porous rocks can be highly heterogeneous and anisotropic. Moreover, the grids on which one intends to solve numerically the problems are prescribed by the geological data, and might be non-conformal with cells of various shapes. Therefore, the schemes used for simulating such complex flows must be particularly robust.

4.2. Corrosion

The concept for long term storage of high-level radioactive waste in France under study is based on an underground repository. The waste shall be confined in a glass matrix and then placed into cylindrical steel canisters. These containers shall be placed into micro-tunnels in the highly impermeable Callovo-Oxfordian claystone layer at a depth of several hundred meters. At the request of the French nuclear waste management agency ANDRA, investigations are conducted to optimize and finalize this repository concept with the aim to ensure its long-term safety and its reversibility. The long-term safety assessment of the geological repository has to take into account the degradation of the carbon steel used for the waste overpacks and the cell disposal liners, which are in contact with the claystone formation. This degradation is mainly caused by generalized corrosion processes which form a passive layer on the metal surface consisting of a dense oxide inner layer and a porous hydroxide outer layer in contact with the groundwater in the pore space of the claystones. The processes take place under anaerobic conditions, since the groundwater is anoxic.

As a tool to investigate the corrosion processes at the surface of the carbon steel canisters, the Diffusion Poisson Coupled Model (DPCM) for corrosion has been developed by Bataillon *et al.* [1]. The numerical approximation of this corrosion model and some associated models by accurate and efficient methods is challenging. Theoretical study of the models (existence of solutions, long time behavior) is also worth of interest.

4.3. Complex fluid flow simulations

The team is interested in some numerical methods for the simulation of systems of PDEs describing complex flows, like for instance, mixture flows or granular gases.

Let us first focus on fluid mixture flows. The fluid is described by its density, its velocity and its pressure. These quantities obey mass and momentum conservation. On the one hand, when we deal with the 2D variable density incompressible Navier-Stokes equations, we aim to study the ability of the numerical scheme to reproduce some instabilities phenomena such as the Rayleigh-Taylor instability. On the other hand, diffuse interface models have gained renewed interest for the last few years in fluid mechanics applications. From a physical viewpoint, they allow to describe some phase transition phenomena. If the Fick's law relates the divergence of the velocity field to derivatives of the density, one obtains the so called Kazhikhov-Smagulov model [61]. Here, the density of the mixture is naturally highly non homogeneous, and the constitutive law accounts for diffusion effects between the constituents of the mixture. The first phenomena that we want to reproduce are the powder-snow avalanches. We investigate the influence of the characteristics parameters (Froude, Schmidt and Reynolds numbers) on the progression of the front. Other similar hydrodynamic models arise in combustion theory or transport of pollutants.

Kinetic theory of molecular gases models a gas as a system of elastically colliding spheres, conserving mechanical energy during impact. Once initialized, it takes a molecular gas not more than few collisions per particle to relax to its equilibrium state, characterized by a Maxwellian velocity distribution and a certain homogeneous density (in the absence of external forces). A granular gas is a system of dissipatively colliding, macroscopic particles (grains). This slight change in the microscopic dynamics (converting energy into heat) cause drastic changes in the behavior of the gas: granular gases are open systems, which exhibits self-organized spatio-temporal cluster formations, and has no equilibrium distribution. They can be used to model silos, avalanches, pollen or planetary rings.

4.4. Stratigraphy

The knowledge of the geology is a prerequisite before simulating flows within the subsoil. Numerical simulations of the geological history thanks to stratigraphy numerical codes allow to complete the knowledge of the geology where experimental data are lacking. Stratigraphic models consist in a description of the erosion and sedimentation phenomena at geological scales.

The characteristic time scales for the sediments are much larger than the characteristic time scales for the water in the river. However, the (time-averaged) water flux plays a crucial role in the evolution of the stratigraphy. Therefore, defining appropriate models that take the coupling between the rivers and the sediments into account is fundamental and challenging. Once the models are at hand, efficient numerical methods must be developed.

4.5. Low frequency electromagnetism

Numerical simulation is nowadays an essential tool in order to design electromagnetic systems, by estimating the electromagnetic fields generated in a wide variety of devices. An important challenge for many applications is to quantify the intensity of the electric field induced in a conductor by a current generated in its neighborhood. In the low-frequency regime, we can for example quote the study of the impact on the human body of a high-tension line or, for higher frequencies, the one of a smartphone. But the ability to simulate accurately some electromagnetic fields is also very useful for non destructive control, in the context of the maintenance of nuclear power stations for example. The development of efficient numerical tools, among which the so-called"a posteriori error estimators", is consequently necessary to reach a high precision of calculations in order to provide estimations as reliable as possible.

REALOPT Project-Team

4. Application Domains

4.1. Introduction

Our group has tackled applications in logistics, transportation and routing [60], [59], [55], [57], in production planning [77] and inventory control [55], [57], in network design and traffic routing [38], [47], [53], [80], [35], [48], [66], [73], in cutting and placement problems [63], [64], [74], [75], [76], [78], and in scheduling [6], [67], [33].

4.2. Network Design and Routing Problems

We are actively working on problems arising in network topology design, implementing a survivability condition of the form "at least two paths link each pair of terminals". We have extended polyhedral approaches to problem variants with bounded length requirements and re-routing restrictions [47]. Associated to network design is the question of traffic routing in the network: one needs to check that the network capacity suffices to carry the demand for traffic. The assignment of traffic also implies the installation of specific hardware at transient or terminal nodes.

To accommodate the increase of traffic in telecommunication networks, today's optical networks use grooming and wavelength division multiplexing technologies. Packing multiple requests together in the same optical stream requires to convert the signal in the electrical domain at each aggregation of disaggregation of traffic at an origin, a destination or a bifurcation node. Traffic grooming and routing decisions along with wavelength assignments must be optimized to reduce opto-electronic system installation cost. We developed and compared several decomposition approaches [82], [81], [80] to deal with backbone optical network with relatively few nodes (around 20) but thousands of requests for which traditional multi-commodity network flow approaches are completely overwhelmed. We also studied the impact of imposing a restriction on the number of optical hops in any request route [79]. We also developed a branch-and-cut approach to a problem that consists in placing sensors on the links of a network for a minimum cost [53], [54].

We studied several time dependent formulations for the unit demand vehicle routing problem [40], [39]. We gave new bounding flow inequalities for a single commodity flow formulation of the problem. We described their impact by projecting them on some other sets of variables, such as variables issued of the Picard and Queyranne formulation or the natural set of design variables. Some inequalities obtained by projection are facet defining for the polytope associated with the problem. We are now running more numerical experiments in order to validate in practice the efficiency of our theoretical results.

We also worked on the p-median problem, applying the matching theory to develop an efficient algorithm in Y-free graphs and to provide a simple polyhedral characterization of the problem and therefore a simple linear formulation [72] simplifying results from Baiou and Barahona.

We considered the multi-commodity transportation problem. Applications of this problem arise in, for example, rail freight service design, "less than truckload" trucking, where goods should be delivered between different locations in a transportation network using various kinds of vehicles of large capacity. A particularity here is that, to be profitable, transportation of goods should be consolidated. This means that goods are not delivered directly from the origin to the destination, but transferred from one vehicle to another in intermediate locations. We proposed an original Mixed Integer Programming formulation for this problem which is suitable for resolution by a Branch-and-Price algorithm and intelligent primal heuristics based on it.

For the problem of routing freight railcars, we proposed two algorithmes based on the column generation approach. These algorithmes have been testes on a set of real-life instances coming from a Russian freight real transportation company. Our algorithmes have been faster on these instances than the current solution approach being used by the company.

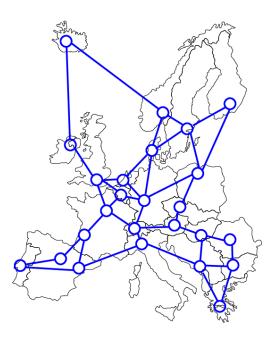


Figure 1. Design of a SDH/SONET european network where demands are multiplexed.

4.3. Packing and Covering Problems

Realopt team has a strong experience on exact methods for cutting and packing problems. These problems occur in logistics (loading trucks), industry (wood or steel cutting), computer science (parallel processor scheduling).

We developed a branch-and-price algorithm for the Bin Packing Problem with Conflicts which improves on other approaches available in the literature [71]. The algorithm uses our methodological advances like the generic branching rule for the branch-and-price and the column based heuristic. One of the ingredients which contributes to the success of our method are fast algorithms we developed for solving the subproblem which is the Knapsack Problem with Conflicts. Two variants of the subproblem have been considered: with interval and arbitrary conflict graphs.

We also developed a branch-and-price algorithm for a variant of the bin-packing problem where the items are fragile. In [31] we studied empirically different branching schemes and different algorithms for solving the subproblems.

We studied a variant of the knapsack problem encountered in inventory routing problem [57]: we faced a multiple-class integer knapsack problem with setups [56] (items are partitioned into classes whose use implies a setup cost and associated capacity consumption). We showed the extent to which classical results for the knapsack problem can be generalized to this variant with setups and we developed a specialized branch-and-bound algorithm.

We studied the orthogonal knapsack problem, with the help of graph theory [50], [49], [52], [51]. Fekete and Schepers proposed to model multi-dimensional orthogonal placement problems by using an efficient representation of all geometrically symmetric solutions by a so called *packing class* involving one *interval graph* for each dimension. Though Fekete & Schepers' framework is very efficient, we have however identified several weaknesses in their algorithms: the most obvious one is that they do not take advantage of the different possibilities to represent interval graphs. We propose to represent these graphs by matrices with consecutive

ones on each row. We proposed a branch-and-bound algorithm for the 2d knapsack problem that uses our 2D packing feasibility check. We are currently developping exacti optimization tools for glass-cutting problems in a collaboration with Saint-Gobain. This 2D-3stage-Guillotine cut problems are very hard to solve given the scale of the instance we have to deal with. Moreover one has to issue cutting patterns that avoid the defaults that are present in the glass sheet that are used as raw material. They are extra sequencing constraints regarding the production that make the problem even more complex.

Finally, let us add that we are now organizing a european challenge on packing with society Renault: see http://challenge-esicup-2015.org/. This challenge is about loading trucks under practical constraints. The final results will be announced in March 2015.

4.4. Planning, Scheduling, and Logistic Problems

Inventory routing problems combine the optimization of product deliveries (or pickups) with inventory control at customer sites. We considered an industrial application where one must construct the planning of single product pickups over time; each site accumulates stock at a deterministic rate; the stock is emptied on each visit. We have developed a branch-and-price algorithm where periodic plans are generated for vehicles by solving a multiple choice knapsack subproblem, and the global planning of customer visits is coordinated by the master program. [58]. We previously developed approximate solutions to a related problem combining vehicle routing and planning over a fixed time horizon (solving instances involving up to 6000 pick-ups and deliveries to plan over a twenty day time horizon with specific requirements on the frequency of visits to customers [60].

Together with our partner company GAPSO from the associate team SAMBA, we worked on the equipment routing task scheduling problem [65] arising during port operations. In this problem, a set of tasks needs to be performed using equipments of different types with the objective to maximum the weighted sum of performed tasks.

We participated to the project on an airborne radar scheduling. For this problem, we developed fast heuristics [46] and exact algorithms [33]. A substantial research has been done on machine scheduling problems. A new compact MIP formulation was proposed for a large class of these problems [32]. An exact decomposition algorithm was developed for the NP-hard maximizing the weighted number of late jobs problem on a single machine [67]. A dominant class of schedules for malleable parallel jobs was discovered in the NP-hard problem to minimize the total weighted completion time [69]. We proved that a special case of the scheduling problem at cross docking terminals to minimize the storage cost is polynomially solvable [70], [68].

Another application area in which we have successfully developed MIP approaches is in the area of tactical production and supply chain planning. In [30], we proposed a simple heuristic for challenging multi-echelon problems that makes effective use of a standard MIP solver. [29] contains a detailed investigation of what makes solving the MIP formulations of such problems challenging; it provides a survey of the known methods for strengthening formulations for these applications, and it also pinpoints the specific substructure that seems to cause the bottleneck in solving these models. Finally, the results of [34] provide demonstrably stronger formulations for some problem classes than any previously proposed. We are now working on planning phytosanitary treatments in vineries.

We have been developing robust optimization models and methods to deal with a number of applications like the above in which uncertainty is involved. In [42], [41], we analyzed fundamental MIP models that incorporate uncertainty and we have exploited the structure of the stochastic formulation of the problems in order to derive algorithms and strong formulations for these and related problems. These results appear to be the first of their kind for structured stochastic MIP models. In addition, we have engaged in successful research to apply concepts such as these to health care logistics [36]. We considered train timetabling problems and their re-optimization after a perturbation in the network [44], [43]. The question of formulation is central. Models of the literature are not satisfactory: continuous time formulations have poor quality due to the presence of discrete decision (re-sequencing or re-routing); arc flow in time-space graph blow-up in size (they can only handle a single line timetabling problem). We have developed a discrete time formulation that strikes a compromise between these two previous models. Based on various time and network aggregation strategies,

we develop a 2-stage approach, solving the contiguous time model having fixed the precedence based on a solution to the discrete time model.

Currently, we are conducting investigations on a real-world planning problem in the domain of energy production, in the context of a collaboration with EDF. The problem consists in scheduling maintenance periods of nuclear power plants as well as production levels of both nuclear and conventional power plants in order to meet a power demand, so as to minimize the total production cost. For this application, we used a Dantzig-Wolfe reformulation which allows us to solve realistic instances of the deterministic version of the problem [45]. In practice, the input data comprises a number of uncertain parameters. We deal with a scenario-based stochastic demand with help of a Benders decomposition method. We are working on Multistage Robust Optimization approaches to take into account other uncertain parameters like the duration of each maintenance period, in a dynamic optimization framework. The main challenge adressed in this work is the joint management of different reformulations and solving techniques coming from the deterministic (Dantzig-Wolfe decomposition, due to the large scale nature of the problem), stochastic (Benders decomposition, due to the number of demand scenarios) and robust (reformulations based on duality and/or column and/or row generation due to maintenance extension scenarios) components of the problem [37].

SELECT Project-Team

4. Application Domains

4.1. Introduction

A key goal of SELECT is to produce methodological contributions in statistics. For this reason, the SELECT team works with applications that serve as an important source of interesting practical problems, and require innovative methodology to address them. Many of our applications involve contracts with industrial partners, e.g., in reliability, although we also have several academic collaborations, e.g., in genetics and image analysis.

4.2. Curve classification

The field of classification for complex data such as curves, functions, spectra and time series, is an important problem in current research. Standard data analysis questions are being looked into anew, in order to define novel strategies that take the functional nature of such data into account. Functional data analysis addresses a variety of applied problems, including longitudinal studies, analysis of fMRI data, and spectral calibration.

We are focused in particular on unsupervised classification. In addition to standard questions such as the choice of the number of clusters, the norm for measuring the distance between two observations, and vectors for representing clusters, we must also address a major computational problem: the functional nature of the data, which requires new approaches.

4.3. Computer experiments and reliability

For several years now, SELECT has collaborated with the EDF-DER *Maintenance des Risques Industriels* group. One important theme involves the resolution of inverse problems using simulation tools to analyze incertainty in highly complex physical systems.

The other major theme concerns probabilistic modeling in fatigue analysis, in the context of a research collaboration with SAFRAN, a high-technology group (Aerospace propulsion, Aicraft equipment, Defense Security, Communications).

Moreover, a collaboration has begun with Dassault Aviation on the modal analysis of mechanical structures, which aims to identify the vibration behavior of structures under dynamic excitation. From the algorithmic point of view, modal analysis amounts to estimation in parametric models on the basis of measured excitations and structural response data. In literature and existing implementations, the model selection problem associated with this estimation is currently treated by a rather weighty and heuristic procedure. In the context of our own research, model selection via penalization methods are to be tested on this model selection problem.

4.4. Dynamic contrast enhanced imaging

Yves Rozenholc was with SELECT until September 2015, and introduced research for quantifying tumor microcirculation to monitor treatments in cancer. Dynamic Contrast Enhanced (DCE) imaging provides information on the properties of vascular networks. It enables biostatisticians to design biomarkers that can be used for diagnosis, prognosis and treatment monitoring. To make available robust tumoral microcirculation biomarkers in DCE imaging, Yves Rozenholc has developed several tools for denoising and clustering the dynamics found in DCE imaging sequences, and testing equality of survival functions coming from two DCE imaging sequences.

4.5. Analysis of genomic data

For many years now, SELECT collaborates with Marie-Laure Martin-Magniette (URGV) for the analysis of genomic data. An important theme of this collaboration is using statistically sound model-based clustering methods to discover groups of co-expressed genes from microarray and high-throughput sequencing data. In particular, identifying biological entities that share similar profiles across several treatment conditions, such as co-expressed genes, may help identify groups of genes that are involved in the same biological processes.

Yann Vasseur has started a thesis co-supervised by Gilles Celeux and Marie-Laure Martin-Magniette on this topic, which is also an interesting investigation domain for the latent block model developed by SELECT.

SELECT collaborates with Anavaj Sakuntabhai and Benno Schwikowski (Pasteur Institute) on prediction of dengue fever severity from high-dimensional gene expression data. One project involves using/finding new and computationally efficient methods (e.g., 2d isotonic regression, lasso regression) for predicting dengue severity. Due to the high-dimensional nature of the data and low-dimensional nature of the number of individuals, false discovery rate (FDR) methods are used to provide statistical justification of results. A second project involves statistical meta-analysis of newly collected dengue gene expression data along with recently published data sets from other groups.

SELECT is involved in the ANR "jeunes chercheurs" MixStatSeq directed by Cathy Maugis (INSA Toulouse), which is concerned with statistical analysis and clustering of RNASeq genomics data.

4.6. Pharmacovigilance

A collaboration has been started with Pascale Tubert-Bitter, Ismael Ahmed and Mohamed Sedki (Pharma-coepidemiology and Infectious Diseases, PhEMI) for the analysis of pharmacovigilance data. In this framework, the goal is to detect, as soon as possible, potential associations between certain drugs and adverse effects, which appeared after the authorized marketing of these drugs. Instead of working on aggregate data (contingency table) like is usually the case, the approach developed aims to deal with individual's data, which perhaps gives more information. Valerie Robert has begun a thesis co-supervised by Gilles Celeux and Christine Keribin on this topic, which should enable the development of a new model-based clustering method, inspired by latent block models.

4.7. Spectroscopic imaging analysis of ancient materials

Ancient materials, encountered in archaeology and paleontology are often complex, heterogeneous and poorly characterized before physico-chemical analysis. A popular technique to gather as much physico-chemical information as possible, is spectro-microscopy or spectral imaging, where a full spectra, made of more than a thousand samples, is measured for each pixel. The produced data is tensorial with two or three spatial dimensions and one or more spectral dimensions, and requires the combination of an "image" approach with a "curve analysis" approach. Since 2010 SELECT, collaborates with Serge Cohen (IPANEMA) on the development of conditional density estimation through GMM, and non-asymptotic model selection, to perform stochastic segmentation of such tensorial datasets. This technique enables the simultaneous accounting for spatial and spectral information, while producing statistically sound information on morphological and physico-chemical aspects of the studied samples.

SEQUEL Project-Team

4. Application Domains

4.1. Recommendation systems in a broad sense

Recommendation systems have been a major field of applications of our research for a few years now. Recommendation systems should be understood in a broad sense, as systems that aim at providing personalized responses/items to users, based on their characteristics, and the environment in which the interaction happens.

In that broad sense, we have collaborated with companies on computational advertizing and recommendation systems. These collaborations have involved research studies on the following issues:

- cold-start problem,
- time varying environment,
- ability to deal with large amounts of users and items,
- ability to design algorithms to respond within a reasonnable amount of time, usually below 1 millisecond.

We have also competed in challenges, winning some of them ⁰, and we have also organized a challenge ⁰, on those topics.

A company has been awarded an innovation award in 2015, thanks to the research work done in collaboration with SEQUEL (cf. sec. 1).

In these works, we develop an original ⁰ point of view on such systems. While traditional (before say 2010) recommendation systems were seen as solving a supervised learning task, or a ranking task, we have developed the idea that recommender systems are really a problem of sequential decision making under uncertainty.

We also started a new work aiming to introduce deep learning in recommender systems. An engineer (Florian Strub) was recruited to work on this topic and presented some results at the NIPS'2015 workshop on "Machine Learning for (e-)Commerce". Moreover we released some code to handle sparse data with the Torch7 framework and GPUs https://github.com/fstrub95/nnsparse.

4.2. Spoken dialog systems

A Spoken Dialogue System (SDS) is a system enabling human people to interact with machines through speech. In contrast with command-and-control systems or question-answering systems that react to a single utterances, SDS build a real interaction over time and try to achieve complex tasks (like hotel booking, appointment scheduling etc.) by gathering pieces of information through several turns of dialogue. To do so, besides the required speech and language processing modules (e.g. speech recognition and synthesis, language understanding and generation), there is a need for a dialogue management module that decides what to say in any situation so as to achieve the goal in the most natural and efficient way, recovering from speech processing errors in a seamless manner.

The dialogue management module is thus taking sequences of decisions to achieve a long-term goal in an unknown, noisy and hard to model environment (since it includes human users). For this reason, we work on machine learning techniques such as reinforcement and imitation learning to optimize this specific sequential decision making under uncertainty problem.

OSEQUEL ranked first and second at the "Pascal Exploration & Exploitation Challenge 2011"; SEQUEL ranked first at the "RecSys Challenge 2014: User Engagement as Evaluation".

⁰ICML 2012 new Challenges for Exploration & Exploitation 3.

⁰the originality fades away as years pass since this idea is exploited by other researchers.

In addition to bring novel and efficient solutions to this problem, we are interested in the new challenges brought to our research in machine learning by this type of application. Indeed, having the human in the learning loop typically requires dealing with non-stationarity, data-efficiency, safety as well as cooperation and imitation.

We collaborate with companies such as Orange Labs on this topic and several projects are ongoing (ANR MaRDi, CHIST-ERA IGLU). We will also be participating to a H2020 project on human robot-interaction starting in 2016 (BabyRobot). We organised a workshop at ICML this year: Machine Learning for Interactive Systems (MLIS). Olivier Pietquin was invited as a panelist at the NIPS Workshop on spoken language understanding and dialogue.

4.3. Adaptive/learning systems more generally

Reinforcement learning leads to the design of systems that adapts their behavior to their environment, hence adaptive systems. We have worked on various applications of this idea, beyond the two main applications domaines mentioned above (recommendation systems, and spoken dialog systems). Let us briefly mention: educative tutoring systems; adaptive heating system in buildings; players that adapt their strength to that of their human opponent; bioreactor.

4.4. Prediction in general

Since the goal of our research is to design systems that learn to act in an optimal way in their environment, prediction is a major issue. Hence, we are doing some research activities on this particular task, without always being in direct connection with learning a policy.

We have done some research in the area of prediction web-server load in a non stationary environment. We also have activities in the prediction in bug in software code.

SIERRA Project-Team

4. Application Domains

4.1. Application Domains

Machine learning research can be conducted from two main perspectives: the first one, which has been dominant in the last 30 years, is to design learning algorithms and theories which are as generic as possible, the goal being to make as few assumptions as possible regarding the problems to be solved and to let data speak for themselves. This has led to many interesting methodological developments and successful applications. However, we believe that this strategy has reached its limit for many application domains, such as computer vision, bioinformatics, neuro-imaging, text and audio processing, which leads to the second perspective our team is built on: Research in machine learning theory and algorithms should be driven by interdisciplinary collaborations, so that specific prior knowledge may be properly introduced into the learning process, in particular with the following fields:

- Computer vision: object recognition, object detection, image segmentation, image/video processing, computational photography. In collaboration with the Willow project-team.
- Bioinformatics: cancer diagnosis, protein function prediction, virtual screening. In collaboration with Institut Curie.
- Text processing: document collection modeling, language models.
- Audio processing: source separation, speech/music processing. In collaboration with Telecom Paristech
- Neuro-imaging: brain-computer interface (fMRI, EEG, MEG). In collaboration with the Parietal project-team.

SPHINX Team

4. Application Domains

4.1. Robotic swimmers

Some companies aim at building biomimetic toys robots that can swim in an aquarium for entertainment purposes (Robotswim) ⁰ and also for medical objectives. During the last three years, some members of the Inria Project-Team CORIDA ⁰ (Munnier, Scheid and Takahashi) together with members of the automatics laboratory of Nancy CRAN (Daafouz, Jungers) have initiated an active collaboration (CPER AOC) to construct a swimming ball in a very viscous fluid. This ball has a macroscopic size but since the fluid is highly viscous, its motion is similar to the motion of a nanorobot. Such nanorobots could be used for medical purposes to bring some medicine or perform small surgical operations. In order to get a better understanding of such robotic swimmers, we have obtained control results via shape changes and we have developed simulation tools (see [75], [74], [73]). However, in practice the admissible deformations of the ball are limited since they are realized using piezo-electric actuators. In the next four years, we will take into account these constraints by developing two approaches:

- 1. Solve the control problem by limiting the set of admissible deformations.
- 2. Find the "best" location of the actuators, in the sense of being the closest to the exact optimal control.

The main tools for this investigation are the 3D codes that we have developed for simulation of fishes into a viscous incompressible fluid (SUSHI3D) or into a inviscid incompressible fluid (SOLEIL).

4.2. Aeronautics

We develop robust and efficient solvers for problems arising in aeronautics (or aerospace) like electromagnetic compatibility and acoustic problems related to noise reduction in an aircraft. Our interest for these issues is motivated by our close contacts with companies like Airbus or "Thales Systèmes Aéroportés". We develop new software needed by these partners and assist them in integrating these new scientific developments in their home-made solvers. In particular, in collaboration with C. Geuzaine (Université de Liège), we are building a freely available parallel solver based on Domain Decomposition Methods that can handle complex engineering simulations, in terms of geometry, discretization methods as well as physics problems, see http://onelab.info/wiki/GetDDM. Part of this development is done through the grant ANR BECASIM (in particular with the postdoc position).

⁰The website http://www.robotic-fish.net/ presents a list of several robotic fishes that have been built in the last years.

⁰Most members of SPHINX where members of the former Inria project-team CORIDA

TAO Project-Team

4. Application Domains

4.1. Energy Management

Energy management, our prioritary application field, involves sequential decision making with:

- stochastic uncertainties (typically weather);
- both high scale combinatorial problems (as induced by nuclear power plants) and non-linear effects;
- high dimension (including hundreds of hydroelectric stocks);
- multiple time scales:
 - minutes (dispatching, ensuring the stability of the grid), essentially beyond the scope of our work, but introducing constraints for our time scales;
 - days (unit commitment, taking care of compromises between various power plants);
 - years, for evaluating marginal costs of long term stocks (typically hydroelectric stocks);
 - decades, for investments.

Significant challenges also include:

- spatial distribution of problems; due to capacity limits we can not consider a power grid like Europe + North Africa as a single "production = demand" constraint; with extra connections we can equilibrate excess production by renewables for remote areas, but not in an unlimited manner.
- other uncertainties, which might be modelized by adversarial or stochastic frameworks (e.g. technological breakthroughs, decisions about ecological penalization).

We have had several related projects (Citines, a European (FP7) project; IOMCA, a ANR project), and we now work on the POST project, a ADEME BIA about investments in power systems. Our collaboration with company Artelys (working on optimization in general, and in particular on energy management) is formalized as an Inria ILAB.

Technical challenges: Our work focuses on the combination of reinforcement learning tools, with their anytime behavior and asymptotic guarantees, with existing fast approximate algorithms. Our goal is to extend the state of the art by taking into account non-linearities which are often neglected in power systems due to the huge computational cost. We study various modelling errors, such as bias due to finite samples, linearization, and propose corrections.

Related Activities:

- Joint team with Taiwan, namely the Indema associate team (see Section 9.4.1.1).
- Ilab METIS, in progress with Artelys (see Section 6.6) for industrialization of our work. In particular, the Crystal tool is adopted by the European Community (http://www.artelys.com/news/120/90/Energy-The-European-Commission-Chooses-Artelys-Crystal)
- Organization of various forums and meetings around Energy Management
- Visit of Edgar Galvan Lopez also includes applications to energy management, more precisely Demand-Side Management systems. In [40], Differential Evolution is used to generate optimal plans to use the accumulators of electrical vehicles in order to reduce the peak household consumption loads.

4.2. TAO & Humanities

Several projects related to research for Humanities and/or research transfer have started in 2015:

- Personal semantics (Gregory Grefenstette). In the current digital world, individuals generate increasing amount of personal data. Our work involves discovering semantic axes for organizing and exploiting this data for personal use.
- Gregorius (Cécile Germain & Gregory Grefenstette). An application of semantic structuring and automatic enrichment of existing digital humanities archives.
- Cartolabe (Ph. Caillou, Gregory Grefenstette, Jean-Daniel Fekete AVIZ, Michèle Sebag). The Cartolabe project applies machine learning techniques to determine comprehensible structures in unstructured data. The goal is to use raw textual data, and underspecified ontologies, to provide intuitive access to pertinent research activities in a large research organisation.
- AmiQap (Ph. Caillou, Michèle Sebag). The multivariate analysis of questionaire data relative to the quality of life at work, in relation with the socio-economical indicators of firms, aims at investigating the relationship between quality of life and economic performances (depending on the activity domain).
- Collaborative Hiring (Ph. Caillou, Michèle Sebag). Thomas Schmitt's PhD, started in 2014, aims at handling job offers and demands matching as a collaborative filtering problem.
- IODS (Wikidata for Science).

Significant challenges include some Big Data problems:

- learning interpretable clusters from bottom-up treatment of mixed text and numerical data
- aligning bottom-up clusters with existing manually created top-down structures
- building a unified system integrating the "dire d'experts".

Partners:

- Amiqap is funded by ISN, with Telecom SES, RITM and La Fabrique as partners.
- The collaborative hiring study is conducted in cooperation with J.P. Nadal from EHESS.

TOSCA Project-Team

4. Application Domains

4.1. Application Domains

TOSCA is interested in developing stochastic models and probabilistic numerical methods. Our present motivations come from models with singular coefficients, with applications in Geophysics, Molecular Dynamics and Neurosciences; Lagrangian modeling in Fluid Dynamics and Meteorology; Population Dynamics, Evolution and Genetics; Neurosciences; and Financial Mathematics.

4.1.1. Stochastic models with singular coefficients: Analysis and simulation

Stochastic differential equations with discontinuous coefficients arise in Geophysics, Chemistry, Molecular Dynamics, Neurosciences, Oceanography, etc. In particular, they model changes of diffusion of fluids, or diffractions of particles, along interfaces.

For practioners in these fields, Monte Carlo methods are popular as they are easy to interpret — one follows particles — and are in general easy to set up. However, dealing with discontinuities presents many numerical and theoretical challenges. Despite its important applications, ranging from brain imaging to reservoir simulation, very few teams in mathematics worldwide are currently working in this area. The Tosca project-team has tackled related problems for several years providing rigorous approach. Based on stochastic analysis as well as interacting with researchers in other fields, we developed new theoretical and numerical approaches for extreme cases such as Markov processes whose generators are of divergence form with discontinuous diffusion coefficient.

The numerical approximation of singular stochastic processes can be combined with backward stochastic differential equations (BSDEs) or branching diffusions to obtain Monte Carlo methods for quasi-linear PDEs with discontinuous coefficients. The theory of BSDEs has been extensively developed since the 1980s, but the general assumptions for their existence can be quite restrictive. Although the probabilistic interpretation of quasi-linear PDEs with branching diffusions has been known for a long time, there have been only a few works on the related numerical methods.

Another motivation to consider stochastic dynamics in a discontinuous setting came to us from time evolution of fragmentation and coagulation phenomena, with the objective to elaborate stochastic models for the avalanche formation of soils, snow, granular materials or other geomaterials. Most of the models and numerical methods for avalanches are deterministic and involve a wide variety of physical parameters such as the density of the snow, the yield, the friction coefficient, the pressure, the basal topography, etc. One of these methods consists in studying the safety factor (or limit load) problem, related to the shallow flow of a visco-plastic fluid/solid with heterogeneous thickness over complex basal topography. The resulting nonlinear partial differential equation of this last theory involves many singularities, which motivates us to develop an alternative stochastic approach based on our past works on coagulation and fragmentation. Our approach consists in studying the evolution of the size of a typical particle in a particle system which fragments in time.

4.1.2. Stochastic Lagrangian modeling in Computational Fluid Dynamics

Stochastic Lagrangian models were introduced in the eighties to simulate complex turbulent flows, particularly two-phase flows. In Computational Fluid Dynamics (CFD), they are intensively used in the so-called Probability Density Functions (PDF) methods in order to model and compute the reaction-phase terms in the fundamental equations of fluid motions. The PDF methods are currently developed in various laboratories by specialists in scientific computation and physicists. However, to our knowledge, we are innovating in two ways:

- our theoretical studies are the pioneering mathematical analysis of Lagrangian stochastic models in CFD:
- our work on the Stochastic Downscaling Method (SDM) for wind simulation is the first attempt to solve the fundamental equations themselves by a fully 3D stochastic particle method.

We emphasize that our numerical analysis is essential to the SDM development which takes benefits from our deep expertise on numerical schemes for McKean-Vlasov-non-linear SDEs.

4.1.3. Population Dynamics, Evolution and Genetics

The activity of the team on stochastic modeling in population dynamics and genetics mainly concerns application in adaptive dynamics, a branch of evolutionary biology studying the interplay between ecology and evolution, ecological modeling, population genetics in growing populations, and stochastic control of population dynamics, with applications to cancer growth modeling. Stochastic modeling in these areas mainly considers individual-based models, where the birth and death of each individual is described. This class of model is well-developed in Biology, but their mathematical analysis is still fragmentary. Another important topic in population dynamics is the study of populations conditioned to non-extinction, and of the corresponding stationary distributions, called quasi-stationary distributions (QSD). This domain has been the object of a lot of studies since the 1960's, but we made recently significant progresses on the questions of existence, convergence and numerical approximation of QSDs using probabilistic tools rather than the usual spectral tools.

Our activity in population dynamics also involves a fully new research project on cancer modeling at the cellular level by means of branching processes. In 2010 the International Society for Protons Dynamics in Cancer was launched in order to create a critical mass of scientists engaged in research activities on Proton Dynamics in Cancer, leading to the facilitation of international collaboration and translation of research to clinical development. Actually, a new branch of research on cancer evolution is developing intensively; it aims in particular to understand the role of proteins acting on cancerous cells' acidity, their effects on glycolysis and hypoxia, and the benefits one can expect from controlling pH regulators in view of proposing new therapies.

4.1.4. Stochastic modeling in Neuroscience

It is generally accepted that many different neural processes that take place in the brain involve noise. Indeed, one typically observes experimentally underlying variability in the spiking times of an individual neuron in response to an unchanging stimulus, while a predictable overall picture emerges if one instead looks at the average spiking time over a whole group of neurons. Sources of noise that are of interest include ionic currents crossing the neural membrane, synaptic noise, and the global effect of the external environment (such as other parts of the brain).

It is likely that these stochastic components play an important role in the function of both the neurons and the networks they form. The characterization of the noise in the brain, its consequences at a functional level and its role at both a microscopic (individual neuron) level and macroscopic level (network of thousands of neurons) is therefore an important step towards understanding the nervous system.

To this end, a large amount of current research in the neuroscientific literature has involved the addition of noise to classical purely deterministic equations resulting in new phenomena being observed. The aim of the project is thus to rigorously study these new equations in order to be able to shed more light on the systems they describe.

4.1.5. Stochastic modeling in Financial Mathematics

4.1.5.1. Technical Analysis

In the financial industry, there are three main approaches to investment: the fundamental approach, where strategies are based on fundamental economic principles; the technical analysis approach, where strategies are based on past price behavior; and the mathematical approach where strategies are based on mathematical models and studies. The main advantage of technical analysis is that it avoids model specification, and thus calibration problems, misspecification risks, etc. On the other hand, technical analysis techniques have limited theoretical justifications, and therefore no one can assert that they are risk-less, or even efficient.

4.1.5.2. Financial Risks Estimation and Hedging

Popular models in financial mathematics usually assume that markets are perfectly liquid. In particular, each trader can buy or sell the amount of assets he/she wants at the same price (the "market price"). They moreover assume that the decision taken by the trader does not affect the price of the asset (the small investor assumption). In practice, the assumption of perfect liquidity is never satisfied but the error due to liquidity is generally negligible with respect to other sources of error such as model error or calibration error, etc.

Derivatives of interest rates are singular for at least two reasons: firstly the underlying (interest rate) is not directly exchangeable, and secondly the liquidity costs usually used to hedge interest rate derivatives have large variation in times.

Due to recurrent crises, the problem of risk estimation is now a crucial issue in finance. Regulations have been enforced (Basel Committee II). Most asset management software products on the markets merely provide basic measures (VaR, Tracking error, volatility) and basic risk explanation features (e.g., "top contributors" to risk, sector analysis, etc).

4.1.5.3. Energy and Carbon Markets

With the rise of renewable energy generation (from wind, waves...), engineers face new challenges which heavily rely on stochastic and statistical problems.

Besides, in the context of the beginning of the second phase (the Kyoto phase) in 2008 of the European carbon market, together with the fact that French carbon tax was scheduled to come into law on Jan. 1, 2010, the year 2009 was a key year for the carbon price modeling. Our research approach adopts the point of view of the legislator and energy producers. We used both financial mathematical tools and a game theory approach. Today, with the third phase of the EU-ETS, that didn't yet start, and the report form the Cour des Comptes (October 2013) that pointed out (among many others point) the lack of mathematical modeling on such carbon market design, we continue our research in this direction.

4.1.5.4. Optimal Stopping Problems

The theory of optimal stopping is concerned with the problem of taking a decision at the best time, in order to maximise an expected reward (or minimise an expected cost). We work on the general problem of optimal stopping with random discounting and additional cost of observation.

4.1.5.5. First hitting times distributions

Diffusion hitting times are of great interest in finance (a typical example is the study of barrier options) and also in Geophysics and Neurosciences. On the one hand, analytic expressions for hitting time densities are well known and studied only in some very particular situations (essentially in Brownian contexts). On the other hand, the study of the approximation of the hitting times for stochastic differential equtions is an active area of research since very few results still are available in the literature.

ABS Project-Team (section vide)

AIRSEA Team

4. Application Domains

4.1. The Ocean-Atmosphere System

The evolution of natural systems, in the short, mid, or long term, has extremely important consequences for both the global Earth system and humanity. Forecasting this evolution is thus a major challenge from the scientific, economic, and human viewpoints.

Humanity has to face the problem of **global warming**, brought on by the emission of greenhouse gases from human activities. This warming will probably cause huge changes at global and regional scales, in terms of climate, vegetation and biodiversity, with major consequences for local populations. Research has therefore been conducted over the past 15 to 20 years in an effort to model the Earth's climate and forecast its evolution in the 21st century in response to anthropic action.

With regard to short-term forecasts, the best and oldest example is of course **weather forecasting**. Meteorological services have been providing daily short-term forecasts for several decades which are of crucial importance for numerous human activities.

Numerous other problems can also be mentioned, like **seasonal weather forecasting** (to enable powerful phenomena like an El Niño event or a drought period to be anticipated a few months in advance), **operational oceanography** (short-term forecasts of the evolution of the ocean system to provide services for the fishing industry, ship routing, defense, or the fight against marine pollution) or the prediction of **floods**.

As mentioned previously, mathematical and numerical tools are omnipresent and play a fundamental role in these areas of research. In this context, the vocation of AIRSEA is not to carry out numerical prediction, but to address mathematical issues raised by the development of prediction systems for these application fields, in close collaboration with geophysicists.

AMIB Project-Team (section vide)

ANGE Project-Team

4. Application Domains

4.1. Overview

Sustainable development and environment preservation have a growing importance and scientists have to address difficult issues such as: management of water resources, renewable energy production, biogeochemistry of oceans, resilience of society w.r.t. hazardous flows, ...

As mentioned above, the main issue is to propose models of reduced complexity, suitable for scientific computing and endowed with stability properties (continuous and/or discrete). In addition, models and their numerical approximations have to be confronted with experimental data, as analytical solutions are hardly accessible for these problems/models. A. Mangeney (IPGP) and N. Goutal (EDF) may provide useful data.

4.2. Geophysical flows

Reduced models like the shallow water equations are particularly well-adapted to the modelling of geophysical flows since there are characterized by large time or/and space scales. For long time simulations, the preservation of equilibria is essential as global solutions are a perturbation around them. The analysis and the numerical preservation of non-trivial equilibria, more precisely when the velocity does not vanish, are still a challenge. In the fields of oceanography and meteorology, the numerical preservation of the so-called geostrophic quasisteady state, which is the balance between the gravity field and the Coriolis force, can significantly improve the forecasts. In addition, data assimilation is required to improve the simulations and correct the dissipative effect of the numerical scheme.

The sediment transport modelling is of major interest in terms of applications, in particular to estimate the sustainability of facilities with silt or scour, such as canals and bridges. Dredging or filling-up operations are costly and generally not efficient in long term. The objective is to determine a configuration almost stable with the facilities. In addition, it is also important to determine the impact of major events like emptying dam which is aimed at evacuating the sediments in the dam reservoir and requires a large discharge. However, the downstream impact should be measured in terms of turbidity, river morphology and flood.

4.3. Hydrological disasters

It is a violent, sudden and destructive flow. Between 1996 and 2005, nearly 80% of natural disasters in the world have meteorological or hydrological origines. The main interest of their study is to predict the areas in which they may occur most probably and to prevent damages by means of suitable amenities. In France, floods are the most recurring natural disasters and produce the worst damages. For example, it can be a cause or a consequence of a dam break. The large surface they cover and the long period they can last require the use of reduced models like the shallow water equations. In urban areas, the flow can be largely impacted by the debris, in particular cars, and this requires fluid/structure interactions be well understood. Moreover, underground flows, in particular in sewers, can accelerate and amplify the flow. To take them into account, the model and the numerical resolution should be able to treat the transition between free surface and underground flows.

Tsunamis are another hydrological disaster largely studied. Even if the propagation of the wave is globally well described by the shallow water model in oceans, it is no longer the case close to the epicenter and in the coastal zone where the bathymetry leads to vertical accretions and produces substantial dispersive effects. The non-hydrostatic terms have to be considered and an efficient numerical resolution should be induced.

While the viscous effects can often be neglected in water flows, they have to be taken into account in situations such as avalanches, debris flows, pyroclastic flows, erosion processes, ...i.e. when the fluid rheology becomes more complex. Gravity driven granular flows consist of solid particles commonly mixed with an interstitial lighter fluid (liquid or gas) that may interact with the grains and decrease the intensity of their contacts, thus reducing energy dissipation and favoring propagation. Examples include subaerial or subaqueous rock avalanches (e.g. landslides).

4.4. Biodiversity and culture

Nowadays, simulations of the hydrodynamic regime of a river, a lake or an estuary, are not restricted to the determination of the water depth and the fluid velocity. They have to predict the distribution and evolution of external quantities such as pollutants, biological species or sediment concentration.

The potential of micro-algae as a source of biofuel and as a technological solution for CO2 fixation is the subject of intense academic and industrial research. Large-scale production of micro-algae has potential for biofuel applications owing to the high productivity that can be attained in high-rate raceway ponds. One of the key challenges in the production of micro-algae is to maximize algae growth with respect to the exogenous energy that must be used (paddlewheel, pumps, ...). There is a large number of parameters that need to be optimized (characteristics of the biological species, raceway shape, stirring provided by the paddlewheel). Consequently our strategy is to develop efficient models and numerical tools to reproduce the flow induced by the paddlewheel and the evolution of the biological species within this flow. Here, mathematical models can greatly help us reduce experimental costs. Owing to the high heterogeneity of raceways due to gradients of temperature, light intensity and nutrient availability through water height, we cannot use depth-averaged models. We adopt instead more accurate multilayer models that have recently been proposed. However, it is clear that many complex physical phenomena have to be added to our model, such as the effect of sunlight on water temperature and density, evaporation and external forcing.

Many problems previously mentioned also arise in larger scale systems like lakes. Hydrodynamics of lakes is mainly governed by geophysical forcing terms: wind, temperature variations, ...

4.5. Sustainable energy

One of the booming lines of business is the field of renewable and decarbonated energies. In particular in the marine realm, several processes have been proposed in order to produce electricity thanks to the recovering of wave, tidal and current energies. We may mention water-turbines, buoys turning variations of the water height into electricity or turbines motioned by currents. Although these processes produce an amount of energy which is less substantial than in thermal or nuclear power plants, they have smaller dimensions and can be set up more easily.

The fluid energy has kinetic and potential parts. The buoys use the potential energy whereas the water-turbines are activated by currents. To become economically relevant, these systems need to be optimized in order to improve their productivity. While for the construction of a harbour, the goal is to minimize swell, in our framework we intend to maximize the wave energy.

This is a complex and original issue which requires a fine model of energy exchanges and efficient numerical tools. In a second step, the optimisation of parameters that can be changed in real-life, such as bottom bathymetry and buoy shape, must be studied. Eventually, physical experiments will be necessary for the validation.

ARAMIS Project-Team

4. Application Domains

4.1. Introduction

We develop different applications of our new methodologies to brain pathologies, mainly neurodegenerative diseases, epilepsy and cerebrovascular disorders. These applications aim at:

- better understanding the pathophysiology of brain disorders;
- designing biomarkers of pathologies for diagnosis, prognosis and assessment of drug efficacy;
- developping brain computer interfaces for clinical applications;
- improving the localisation of stimulation targets in Deep Brain Stimulation protocol.

These applications are developed in close collaboration with biomedical researchers of the ICM and clinicians of the Pitié-Salpêtrière hospital.

4.2. Understanding brain disorders

The approaches that we develop allow to characterize anatomical and functional alterations, thus making it possible to study these alterations in different clinical populations. This can provide provide new insights into the mechanisms and progression of brain diseases. This typically involves the acquisition of neuroimaging data in a group of patients with a given pathology and in a group of healthy controls. Measures of anatomical and functional alterations are then extracted in each subject (for instance using segmentation of anatomical structures, shape models or graph-theoretic measures of functional connectivity). Statistical analyses are then performed to identify: i) significant differences between groups, ii) correlations between anatomical/functional alterations on the one hand, and clinical, cognitive or biological measures on the other hand, iii) progression of alterations over time.

We propose to apply our methodologies to study the pathophysiology of neurodegenerative diseases (mostly Alzheimer's disease and fronto-temporal dementia), epilepsy, cerebrovascular pathologies and neurodevelopmental disorders (Gilles de la Tourette syndrome). In neurodegenerative diseases, we aim at establishing the progression of alterations, starting from the early and even asymptomatic phases. In Gilles de la Tourette syndrome, we study the atypical anatomical patterns that may contribute to the emergence of symptoms. In epilepsy, we aim at studying the relationships between the different functional and structural components of epileptogenic networks.

4.3. Biomarkers for diagnosis, prognosis and clinical trials

Currently, the routine diagnosis of neurological disorders is mainly based on clinical examinations. This is also true for clinical trials, aiming to assess the efficacy of new treatments. However, clinical diagnoses only partially overlap with pathological processes. For instance, the sensitivity and specificity of clinical diagnosis of Alzheimer's disease (AD) based on established consensus criteria are of only about 70-80% compared to histopathological confirmation. Furthermore, the pathological processes often begin years before the clinical symptoms. Finally, clinical measures embed subjective aspects and have a limited reproducibility and are thus not ideal to track disease progression. It is thus crucial to supplement clinical examinations with biomarkers that can detect and track the progression of pathological processes in the living patient. This has potentially very important implications for the development of new treatments as it would help: i) identifying patients with a given pathology at the earliest stage of the disease, for inclusion in clinical trials; ii) providing measures to monitor the efficacy of treatments.

The derivation of biomarkers from image analysis approaches requires large-scale validation in well-characterized clinical populations. The ARAMIS team is strongly engaged in such efforts, in particular in the field of neurodegenerative disorders. To that purpose, we collaborate to several national studies (see section Partnerships) that involve multicenter and longitudinal acquisitions. Moreover, ARAMIS is strongly involved in the CATI which manages over 15 multicenter studies, including the national cohort MEMENTO (2000 patients).

4.4. Brain computer interfaces for clinical applications

A brain computer interface (BCI) is a device aiming to decode brain activity, thus creating an alternate communication channel between a person and the external environment. BCI systems can be categorized on the base of the classification of an induced or evoked brain activity. The central tenet of a BCI is the capability to distinguish different patterns of brain activity, each being associated to a particular intention or mental task. Hence adaptation, as well as learning, is a key component of a BCI because users must learn to modulate their brainwaves to generate distinct brain patterns. Usually, a BCI is considered a technology for people to substitute some lost functions. However, a BCI could also help in clinical rehabilitation to recover motor functions. Indeed, in current neuroscience-based rehabilitation it is recognized that protocols based on mental rehearsal of movements (like motor imagery practicing) are a way to access the motor system because they can induce an activation of sensorimotor networks that were affected by lesions. Hence, a BCI based on movement imagery can objectively monitor patients' progress and their compliance with the protocol, monitoring that they are actually imagining movements. It also follows that feedback from such a BCI can provide patients with an early reinforcement in the critical phase when there is not yet an overt sign of movement recovery. The BCI approaches that we develop are based on the characterization of the information contained in the functional connectivity patterns. We expect to significantly increase the performance of the BCI system with respect to the sole use of standard power spectra of the activity generated by single local brain areas. Such an improvement will concretely provide the user with a more precise control of the external environment in open-loop BCI tasks and a more coherent feedback in the closed-loop BCI schemes.

4.5. Deep Brain Stimulation

Deep Brain Stimulation (DBS) is a surgical technique, which consists in sending electrical impulses, through implanted electrodes, to specific parts of the brain for the treatment of movement and affective disorders. The technique has been initially developped for otherwise-treatment-resistant patients with essential tremors or Parkinson's disease. Its benefit in other affections, such as dystonia, obsessive-compulsive disorders, Tourette syndrome is currently investigated. The localisation of the stimulation target in specific nucleus in deep brain regions is key to the success of the surgery. This task is difficult since the target nucleus, or the precise subterritory of a given nucleus is rarely visible in the Magnetic Resonance Image (MRI) of the patients. To address this issue, a possible technique is to personalize a high-resolution histological atlas of the brain to each patient. This personalization is achieved by registering the histological atlas, which consists of an image and meshes of deep brain structures, to the pre-operative MRI of each patient. The registration is currently done by optimally aligning image intensities in the atlas and patient's MRI using a block-matching algorithm. The linear nature of the transform makes the technique robust at the cost of a lack of precision, especially for elderly patients with expanded ventricles. We investigate the use of non-linear registration techniques to optimally align both image intensities and contours of visible structures surrounding the target. We expect to improve the localisation of the target for patients with large ventricles while keeping the method robust in all cases.

ASCLEPIOS Project-Team (section vide)

ATHENA Project-Team

4. Application Domains

4.1. Applications of diffusion MRI

Clinical domain: Diagnosis of neurological disorder

Various examples of CNS diseases as Alzheimer's and Parkinson's diseases and others like multiple sclerosis, traumatic brain injury and schizophrenia have characteristic abnormalities in the micro-structure of brain tissues that are not apparent and cannot be revealed reliably by standard imaging techniques. Diffusion MRI can make visible these co-lateral damages to the fibers of the CNS white matter that connect different brain regions. This is why in our research, Diffusion MRI is the major anatomical imaging modality that will be considered to recover the CNS connectivity.

4.2. Applications of M/EEG

Applications of EEG and MEG:

Clinical domain: Diagnosis of neurological disorders

The dream of all M/EEG researchers is to alleviate the need for invasive recordings (electrocorticograms or intracerebral electrodes), which are often necessary prior to brain surgery, in order to precisely locate both pathological and vital functional areas. We are involved in this quest, particularly through our collaborations with the La Timone hospital in Marseille.

Subtopics include:

- Diagnosis of neurological disorders such as epilepsy, schizophrenia, tinnitus, ...
- Presurgical planning of brain surgery.

Cognitive research

- Aims at better understanding the brain spatio-temporal organisation.
- Collaboration with the *Laboratory for Neurobiology of Cognition* in order to develop methods that suit their needs for sophisticated data analysis.

Brain Computer Interfaces (BCI) aim to allow direct control of external devices using brain signals such as measured through EEG. In our project, BCI can be seen as an application of EEG processing techniques, but also as an object of fundamental and applied research as they open the way for more dynamical and active brain cognitive protocols.

We are developing research collaborations with the Neurelec company in Sophia Antipolis (subsidiary of Oticon Medical) and with the leading EEG software company BESA based in Munich. We are conducting a feasibility study with the Nice University Hospital on the usage of BCI-based communication for ALS ⁰ patients.

⁰Nice University Hospital hosts a regional reference center for patients suffering from Amyotrophic Lateral Sclerosis

BEAGLE Project-Team

4. Application Domains

4.1. Domain

- Genome Evolution
- Computational Systems Biology
- Evolution of Genetic Regulation
- Intracellular Signal Transduction

BIGS Project-Team

4. Application Domains

4.1. Tumor growth

Cancer is the result of inter-dependent multi-scale phenomena and this is mainly why the understanding of its spread is still an unsolved problem. In integrative biology, mathematical models play a central role; they help biologists and clinicians to answer complex questions through numerical simulations and statistical analyses. The main issue here is to better understand and describe the role of cell damage heterogeneity and associated mutant cell phenotypes in the therapeutic responses of cancer cell populations submitted to a radiotherapy sessions during *in vitro* experiments. The cell heterogeneity is often described as randomness in mathematical modeling and different representations, such as Markov chains, branching processes and even stochastic differential equations, have been recently used.

4.2. Photodynamic therapy

Since 1988, some control system scientists and biologists at the Centre de Recherche en Automatique de Nancy (CRAN in short) http://www.cran.uhp-nancy.fr/francais/themes_rech/sbs/beam/index.php have worked together to develop the photodynamic therapy (PDT in the sequel), an alternative treatment for cancer, by means of a model-based approach. The global aim in this direction is to use statistical as well as mechanistic models in order to improve the response reproducibility, help biologists and chemists in the design of new photosensitizing agents and provide insight into complex phenomena associated with oncogenesis, tumor angiogenesis and interactions with the treatment. This heavily relies on the production of accurate and simple enough models involving various type of stochastic processes, such as Markov chains, branching processes and stochastic differential equations. The main questions here concern generally identification or estimation properties, but simulation issues can be important too.

4.3. Genomic data and micro-organisms population study

Generation genomic technologies allow clinicians and biomedical researchers to drastically increase the amount of genomic data collected on large cohort of patients and populations. We want to contribute to a better understanding of the correlations between gene trough their expression data, of the structure of ARN and of the genetic bases of drug response and disease and to detect significant sequences characterizing a gene. For instance the biopharmaceutical company Transgene recently contacts us to analyse their genomic and proteomic data particularly for the purpose to find markers of the success of therapies that they develop against cancer.

Network inference has also applications for the analysis of micro-organisms population, that we apply to micro-organism inside and around the truffle trough a collaboration with INRA Nancy. We want also study other specific complex microbial communities like that found at tree roots in order to characterize phenotype of the tree. There is also application in human health (for instance identification of network between bacteria inside colon).

4.4. Epidemiology and e-health

Trough J.-M. Monnez and his collaborator Pr E. Albuisson, BIGS is stakeholder of projects with University Hospital of Nancy that is FHU CARTAGE (Fédération Hospitalo Universitaire Cardial and ARTerial AGEing; leader: Pr Athanase BENETOS), RHU Fight HF (Fighting Heart Failure; leader: Pr Patrick ROSSIGNOL), and "Handle your heart", team responsible for the creation of a drug prescription support software for the treatment of heart failure. All these projects are in the context of personalized medicine and deal with biomarkers research; prognostic value of quantitative variables and events and scoring of heart failure. Other collaborations with clinicians concern foetopathology and cancer again.

4.5. Dynamics of telomeres

A telomere is a region of repetitive and non coding nucleotide sequences at each end of a chromosome. The telomeres are disposable buffers at the ends of chromosomes which are truncated during cell division; so that, over time, due to each cell division, the telomere ends become shorter. By this way, they are markers of aging. Mathematical modeling of telomeres dynamics is recent [44], [115], [101], [56]. Trough a collaboration with Pr A. Benetos, geriatrician at CHU Nancy, and some members of Inria team TOSCA, we want to work in three connected directions: (1) propose a dynamical model for the lengths of telomeres and study its mathematical properties (long term behavior of the distribution of lengths, quasi-stationarity, etc); (2) use these properties to develop new statistical methods for estimating the various parameters; and (3) find and use a suitable methodology for the analysis of the available data (Pr Benetos) for instance for the study of the length distribution for a subject and its evolution.

BIOCORE Project-Team

4. Application Domains

4.1. Bioenergy

Finding sources of renewable energy is a key challenge for our society. We contribute to this topic through two main domains for which a strong and acknowledged expertise has been acquired over the years. First, we consider anaerobic digesters, the field of expertise of the members of the team at the Laboratory of Environmental Biotechnology (LBE), for the production of methane and/or biohydrogen from organic wastes. The main difficulty is to make these processes more reliable and exploit more efficiently the produced biogas by regulating both its quality and quantity despite high variability in the influent wastes. One of the specific applications that needs to be tackled is the production of biogas in a plant when the incoming organic waste results from the mixing of a finite number of substrates. The development of control laws that optimize the input mix of the substrates as a function of the actual state of the system is a key challenge for the viability of this industry.

The second topic consists in growing microalgae, the field of expertise of the members of the team at the Oceanographic Laboratory of Villefranche-sur-Mer (LOV), to produce biofuel. These microorganisms can synthesize lipids with a much higher productivity than terrestrial oleaginous species. The difficulty is to better understand the involved processes, which are mainly transient, to stimulate and optimize them on the basis of modeling and control strategies. Predicting and optimizing the productivity reached by these promising systems in conditions where light received by each cell is strongly related to hydrodynamics, is a crucial challenge.

Finally, for the energy balance of the process, it is important to couple microalgae and anaerobic digestion to optimize the solar energy that can be recovered from microalgae, as was explored within the ANR Symbiose project (2009-2012) [2].

4.2. CO₂ fixation and fluxes

Phytoplanktonic species, which assimilate CO_2 during photosynthesis, have received a lot of attention in the last years. Microalgal based processes have been developed in order to mitigate industrial CO_2 . As for biofuel productions, many problems arise when dealing with microalgae which are more complex than bacteria or yeasts. Several models have been developed within our team to predict the CO_2 uptake in conditions of variable light and nitrogen availability. The first modeling challenge in that context consists in taking temperature effects and light gradient into account.

The second challenge consists in exploiting the microalgal bioreactors which have been developed in the framework of the quantification of carbon fluxes between ocean and atmospheres. The SEMPO platform (simulator of variable environment computer controlled), developed within the LOV team, has been designed to reproduce natural conditions that can take place in the sea and to accurately measure the cells behavior. This platform, for which our team has developed models and control methods over the years, is an original and unique tool to develop relevant models which stay valid in dynamic conditions. It is worth noting that a better knowledge of the photosynthetic mechanisms and improved photosynthesis models will benefit both thematics: CO_2 mitigation and carbon fluxes predictions in the sea.

4.3. Biological control for plants and micro-plants production systems

This research concentrates on the protection of cultures of photosynthetic organisms against their pests or their competitors. The cultures we study are crop and micro-algae productions. In both cases, the devices are more or less open to the outside, depending on the application (greenhouse/field, photobioreactor/raceway), so that they may give access to harmful pathogens and invading species. We opt for protecting the culture through the use of biocontrol in a broad sense.

In crop production, biocontrol is indeed a very promising alternative to reduce pesticide use: it helps protecting the environment, as well as the health of consumers and producers; it limits the development of resistance (compared to chemicals)... The use of biocontrol agents, which are, generically, natural enemies (predators, parasitoids or pathogens) of crop pests [6], is however not widespread yet because it often lacks efficiency in real-life crop production systems (while its efficiency in the laboratory is much higher) and can fail to be economically competitive. Resistant crops are also used instead of pesticides to control pests and pathogens, but the latter eventually more or less rapidly overcome the resistance, so these crops need to be replaced by new resistant crops. As resistant genes are a potentially limited resource, a challenge is to ensure the durability of crop resistance. Our objective is to propose models that would help to explain which factors are locks that prevent the smooth transition from the laboratory to the agricultural crop, as well as develop new methods for the optimal deployment of the pests natural enemies and of crop resistance.

Microalgae production is faced with exactly the same problems since predators of the produced microalgae (e.g. zooplankton) or simply other species of microalgae can invade the photobioreactors and outcompete or eradicate the one that we wish to produce. Methods need therefore to be proposed for fighting the invading species; this could be done by introducing predators of the pest and so keeping it under control, or by controling the conditions of culture in order to reduce the possibility of invasion; the design of such methods could greatly take advantage of our knowledge developed in crop protection since the problems and models are related.

4.4. Biological depollution

These works will be carried out with the LBE, mainly on anaerobic treatment plants. This process, despite its strong advantages (methane production and reduced sludge production) can have several locally stable equilibria. In this sense, proposing reliable strategies to stabilize and optimise this process is a key issue. Because of the recent (re)development of anaerobic digestion, it is crucial to propose validated supervision algorithms for this technology. A problem of growing importance is to take benefit of various waste sources in order to adapt the substrate quality to the bacterial biomass activity and finally optimize the process. This generates new research topics for designing strategies to manage the fluxes of the various substrate sources meeting at the same time the depollution norms and providing a biogas of constant quality. In the past years, we have developed models of increasing complexity. However there is a key step that must be considered in the future: how to integrate the knowledge of the metabolisms in such models which represent the evolution of several hundreds bacterial species? How to improve the models integrating this two dimensional levels of complexity? With this perspective, we wish to better represent the competition between the bacterial species, and drive this competition in order to maintain, in the process, the species with the highest depollution capability. This approach, initiated in [103] must be extended from a theoretical point of view and validated experimentally.

4.5. Experimental Platforms

To test and validate our approach, we use experimental platforms developed by our partner teams; these are highly instrumented for accurately monitoring the state of biological species:

- At LOV: A photobioreactor (SEMPO) for experimental simulation of the Lagrangian dynamical environment of marine microalgae with computer controlled automata for high frequency measurement and on-line control. This photobioreactor is managed by Amélie Talec and Eric Pruvost.
- At LOV: the Full Spectrum platform is dedicated to experimental pilots for microalgae production.
 This 60 m2 greenhouse contains four instrumented raceways. The light received by the cultivation
 devices can be modified with spectral filters. The objective of the platform is to grow algae in outdoor
 conditions, with the natural fluctuations of light and temperature. Finally this pilot allows to test
 management strategies in conditions closer to industrial production.
- At LBE: Several pilot anaerobic digesters that are highly instrumented and computerized and the
 algotron, that is the coupling of a digester and a photobioreactor for microalgae production. Eric
 Latrille is our main contact for this platform at LBE.

 AT ISA: Experimental greenhouses of various sizes (from laboratory to semi-industrial size) and small scale devices for insect behavior testing. A device for microalgae growth in greenhouses has also been set up at ISA. Christine Poncet is our main contact regarding experimental setups at ISA.

Moreover, we may use the data given by several experimental devices at EPI IBIS/ Hans Geiselmann Laboratory (University J. Fourier, Grenoble) for microbial genomics.

4.6. Software development

4.6.1. ODIN

We are developing ODIN, a software platform for the supervision of bioreactors. ODIN [76] supports the smart management of bioreactors (data acquisition, fault diagnosis, automatic control algorithm,...). This C++ application (working under Windows and Linux) is structured in order to rapidly develop and deploy advanced control algorithms through the use of a Scilab interpreter. It also contains a Scilab-based process simulator (developed jointly with Inria Chile) which can be harnessed for experimentation and training purposes. ODIN is made of different modules which can be distributed along different platforms, and which interact through CORBA.

It has been implemented and validated with four different applications in four different laboratories. A licence with the start-up BioEnTech was signed for remote monitoring of anaerobic digesters.

4.6.2. In@lgae

The simulation platform In@lgae is jointly developed with the Inria Ange team. Its objective is to simulate the productivity of a microalgae production system, taking into account both the process type and its location and time of the year. A first module (Freshkiss) developed by Ange computes the hydrodynamics, and reconstructs the Lagrangian trajectories perceived by the cells. Coupled with the Han model, it results in the computation of an overall photosynthesis yield. A second module is coupled with a GIS (geographic information system) to take into account the meteorology of the considered area (any location on earth). The evolution of the temperature in the culture medium together with the solar flux is then computed. Finally, the productivity in terms of biomass, lipids, pigments together with CO_2 , nutrients, water consumption, ... are assessed. The productivity map which is produced can then be coupled with a resource map describing the availability in CO_2 nutrients and land.

BONSAI Project-Team

4. Application Domains

4.1. Life Sciences and health

Our research plays a pivotal role in all fields of life sciences and health where genomic data are involved. This includes more specifically the following topics: plant genomics (genome structure, evolution, microR-NAs), cancer (leukemia, mosaic tumors), drug design (NRPSs), environment (metagenomics and metatranscriptomics), virology (evolution, RNA structures) ...

CAPSID Project-Team

4. Application Domains

4.1. Biomedical Knowledge Discovery

Participants: Marie-Dominique Devignes [contact person], David Ritchie.

This project is in collaboration with the Orpailleur Team.

Increasing amounts of biomedical data provided as Linked Open Data (LOD) offer novel opportunities for knowledge discovery in biomedicine. We published an approach for selecting, integrating, and mining LOD with the goal of discovering genes responsible for a disease [46]. The selection step relies on a set of choices made by a domain expert to isolate relevant pieces of LOD. Because these pieces are potentially not linked, an integration step is required to connect unlinked pieces. The resulting graph is subsequently mined using Inductive Logic Programming (ILP) that presents two main advantages. First, the input format compliant with ILP (first order logic) is close to the format of LOD (RDF triples). Second, domain knowledge can be added to this input and used during the induction step. We have applied this approach to the characterization of genes responsible for intellectual disability. For this real-world use case, we could evaluate ILP results and assess the contribution of domain knowledge. Our ongoing efforts explore how the combination of rules coming from distinct theories can improve the prediction accuracy [45], [55].

4.2. Prokaryotic Type IV Secretion Systems

Participants: Marie-Dominique Devignes [contact person], Bernard Maigret, David Ritchie.

Prokaryotic type IV secretion systems constitute a fascinating example of a family of nanomachines capable of translocating DNA and protein molecules through the cell membrane from one cell to another [20]. The complete system involves at least 12 proteins. The structure of the core channel involving three of these proteins has recently been determined by cryo-EM experiments [30], [51]. However, the detailed nature of the interactions between the remaining components and those of the core channel remains to be resolved. Therefore, these secretion systems represent another family of complex biological systems (scales 2 and 3) that call for integrated modeling approaches to fully understand their machinery.

In the frame of the MBI platform (see Section 6.8), MD Devignes has initiated a collaboration with Nathalie Leblond of the Genome Dynamics and Microbial Adaptation (DynAMic) laboratory (UMR 1128, Université de Lorraine, INRA) on the discovery of new integrative conjugative elements (ICEs) and integrative mobilisable elements (IMEs) in prokaryotic genomes. These elements use Type IV secretion systems for transferring DNA horizontally from one cell to another. We have discovered more than 40 new ICEs/IMEs by systematic exploration of 72 Streptococcus genome. As these elements encode all or a subset of the components of the Type IV secretion system, they constitute a valuable source of sequence data and constraints for modeling these systems in 3D. Another interesting aspect of this particular system is that unlike other secretion systems, the Type IV secretion systems are not restricted to a particular group of bacteria.

4.3. G-protein Coupled Receptors

Participants: Bernard Maigret [contact person], David Ritchie, Vincent Leroux, Ana Carolline Toledo.

G-protein coupled receptors (GPCRs) are cell surface proteins which detect chemical signals outside a cell and which transform these signals into a cascade of cellular changes. Historically, the most well documented signaling cascade is the one driven by G-proteins trimers (guanine nucleotide binding proteins) [31] which ultimately regulate many cellular processes such as transcription, enzyme activity, and homeostatis, for example. But other pathways have recently been associated with the signals triggered by GPCRs, involving other proteins such as arrestins and kinases which drive other important cellular activities. For example, β -arrestin activation can block GPCR-mediated apoptosis (cell death). Malfunctions in such processes are related to diseases such as diabetes, neurological disorders, cardiovascular disease, and cancer. Thus, GPCRs are one of the main protein families targeted by therapeutic drugs [27] and the focus of much bio-medical research. Indeed, approximately 40–50% of current therapeutic molecules target GPCRs. However, despite enormous efforts, the main difficulty here is the lack of experimentally solved 3D structures for most GPCRs. Hence, computational modeling tools are widely recognized as necessary to help understand GPCR functioning and thus biomedical innovation and drug design.

CARMEN Team

4. Application Domains

4.1. Scientific context: the LIRYC

Our fields of application are naturally: electrophysiology and cardiac physiopathology at the tissue scale on one side; medical and clinical cardiology on the other side.

The team's research project is part of the IHU LIRYC project, initiated by Pr. M. Haissaguerre. It is concerned by the major issues of modern electrocardiology: atrial arrhythmias, sudden death due to ventricular fibrillation and heart failure related to ventricular dyssynchrony.

We aim at bringing applied mathematics and scientific computing closer to biomedical research applied to cardiac rhythmology and clinical cardiology. It aims at enhancing our fundamental knowledge of the normal and abnormal cardiac electrical activity, of the patterns of the electrocardiogram; and we will develop new simulation tools for training, biological and clinical applications.

4.2. Basic experimental electrophysiology

Our modeling is carried out in coordination with the experimental teams from the LIRYC. It will help to write new concepts concerning the multiscale organisation of the cardiac action potentials and will serve our understanding in many electrical pathologies:

At the atrial level, we apply our models to understand the mechanisms of complex arrythmias and the relation with the heterogeneities at the insertion of the pulmonary vein.

At the ventricula level, we focus on (1) modeling the complex coupling between the Purkinje network and the ventricles and (2) modeling the structural heterogeneities at the cellular scale, taking into account the complex organisation and disorganisation of the myocytes and fibroblasts. Point (1) is supposed to play a major role in sudden cardiac death and point (2) is important in the study of infarct scars for instance.

CASTOR Project-Team (section vide)

CLIME Project-Team

4. Application Domains

4.1. Introduction

One application domain of the project-team is atmospheric chemistry. We take part to the development (in partnership with École des Ponts ParisTech and EDF R&D) of the air quality modeling system Polyphemus, which includes several numerical models (Gaussian models, Lagrangian model, two 3D Eulerian models including Polair3D) and their adjoints, and different high level methods: ensemble forecast, sequential and variational data assimilation algorithms.

The activity on assimilation of satellite data is mainly carried out for meteorology and oceanography, but it is planned to extend it to agriculture. This research is addressed in cooperation with external partners who provide the numerical models. Concerning oceanography, the aim is to assess ocean surface circulation, by assimilating fronts and vortices displayed on image acquisitions. Concerning meteorology, the focus is on correcting the location of structures related to high-impact weather events (cyclones, convective storms, etc.) by assimilating image features.

4.2. Air quality

Air quality modeling implies studying the interactions between meteorology and atmospheric chemistry in the various phases of matter, which leads to the development of highly complex models. The different usages of these models comprise operational forecasting, case studies, impact studies, etc., with both societal (e.g., public information on pollution) and economical impacts (e.g., impact studies for dangerous industrial sites). Models lack some appropriate data, for instance better emissions, to perform an accurate forecast and data assimilation techniques are recognized as a major key point for improving the forecasts' quality.

In this context, Clime is interested in various problems, the following being the crucial ones:

- The development of ensemble forecast methods for estimating the quality of the prediction, in relation with the quality of the model and the observations. The ensemble methods allow sensitivity analysis with respect to the model's parameters so as to identify physical and chemical processes, whose modeling must be improved.
- The development of methodologies for sequential aggregation of ensemble simulations. What ensembles should be generated for that purpose, how spatialized forecasts can be generated with aggregation, how can the different approaches be coupled with data assimilation?
- The definition of second-order data assimilation methods for the design of optimal observation networks. The two main objectives are: management of combinations of sensor types and deployment modes and dynamic management of mobile sensors' trajectories.
- How to estimate the emission rate of an accidental release of a pollutant, using observations and a dispersion model (from the near-field to the continental scale)? How to optimally predict the evolution of a plume? Hence, how to help people in charge of risk evaluation for the population?
- The assimilation of satellite measurements of troposphere chemistry.

The activities of Clime in air quality are supported by the development, in partnership with École des Ponts ParisTech and EDF R&D, of the Polyphemus air quality modeling system. This system has a modular design, which makes it easier to manage high level applications such as inverse modeling, data assimilation and ensemble forecast.

4.3. Oceanography

The capacity of performing a high quality forecast of the state of the ocean, from the regional to the global scales, is of major interest. Such a forecast can only be obtained by systematically coupling numerical models and observations (in situ and satellite data). In this context, being able to assimilate image structures becomes a key point of current research. Examples of such image structures are:

- surface velocity;
- trajectories, obtained either by tracking features or by integrating the velocity field;
- spatial objects, such as fronts, eddies or filaments.

Image models of these structures are developed and take into account the underlying physical processes. Image acquisitions are assimilated with these models to derive pseudo-observations of state variables, which are further assimilated in ocean forecasting models.

4.4. Meteorology

Meteorological forecasting constitutes a major applicative challenge for image assimilation. Although satellite data are operationally assimilated with models, this is mainly done on an independent pixel basis: the observed radiance at one position is linked to the state variables via a radiative transfer model, that plays the role of an observation operator. Indeed, because of their limited spatial and temporal resolutions, numerical weather forecast models fail to exploit image structures, such as precursors of high impact weather:

- cyclogenesis related to the intrusion of dry stratospheric air in the troposphere (a precursor of cyclones),
- convective systems (supercells) leading to heavy winter time storms,
- low-level temperature inversion leading to fog and ice formation, etc.

To date, there is no available method for operational assimilation of such data, which are characterized by a strong coherence in space and time. Meteorologists have developed qualitative Conceptual Models (CMs), for describing the high impact weathers and their signature on images, and tools to detect these CMs on image data. The result of this detection is used for correcting the numerical models, for instance by modifying the initialization. The aim is therefore to develop a methodological framework allowing to assimilate the detected CMs with numerical forecast models. This is a challenging issue given the considerable impact of the related meteorological events.

COFFEE Project-Team

4. Application Domains

4.1. Porous Media

Clearly, the analysis and simulation of flows in porous media is a major theme in our team. It is strongly motivated by industrial partnerships, with Total, GdF-Suez, ANDRA, BRGM, etc. with direct applications in geothermy, geological storages, and oil and gas recovery.

Our research has first dealt with the discretization and convergence analysis of multiphase Darcy flows on general polyhedral meshes and for heterogeneous anisotropic media. We have investigated both the Vertex Approximate Gradient (VAG) scheme using both cell and vertex unknowns and the Hybrid Finite Volume (HFV) scheme using both cell and face unknowns. It is remarkable that the VAG scheme is much more accurate than existing nodal approaches (such as CVFE) for heterogeneous test cases: since it avoids the mixing of different rocktypes inside the control volumes, while preserving the low cost of nodal discretizations thanks to the elimination of cell unknowns without any fill-in. The convergence of the numerical discretizations has been studied for the problem of contaminant transport with adsorption in the case of HFV scheme and for two phase Darcy flows in global pressure formulation using particular VAG or HFV schemes, as well as the more general framework of gradient schemes. To reduce the Grid Orientation Effect, a general methodology is proposed in on general meshes. It is based on the recombination of given conservative fluxes to define new conservative fluxes on a richer stencil. On the same token, we have considered the transport of radionucleides by water in porous media. The question is naturally motivated by security studies of nuclear waste storage. We have dealt with the non linear Peaceman system, set on a heterogeneous domain, typically a layered geological medium. The system couples anisotropic diffusion equation and a diffusion-dispersion equation for the pollutant concentration. We have developed and analyzed a specific DDFV scheme to investigate such

4.2. Particulate and mixture flows

We investigate fluid mechanics models referred to as "multi-fluids" flows. A large part of our activity is more specifically concerned with the case where a disperse phase interacts with a dense phase. Such flows arise in numerous applications, like for pollutant transport and dispersion, the combustion of fuel particles in air, the modelling of fluidized beds, the dynamic of sprays and in particular biosprays with medical applications, engine fine particles emission... There are many possible modelings of such flows: microscopic models where the two phases occupy distinct domains and where the coupling arises through intricate interface conditions; macroscopic models which are of hydrodynamic (multiphase) type, involving non standard state laws, possibly with non conservative terms, and the so-called mesoscopic models. The latter are based on Eulerian-Lagrangian description where the disperse phase is described by a particle distribution function in phase space. Following this path we are led to a Vlasov-like equation coupled to a system describing the evolution of the dense phase that is either the Euler or the Navier-Stokes equations. It turns out that the leading effect in such models is the drag force. However, the role of other terms, of more or less phenomenological nature, deserves to be discussed (close packing terms, lift term, Basset force...). Of course the fluid/kinetic model is interesting in itself and needs further analysis and dedicated numerical schemes. In particular, in collaboration with the Atomic Energy Commission (CEA), we have proposed a semi-Lagrangian scheme for the simulation of particulate flows, extending the framework established in plasma physics to such flows.

We also think it is worthwhile to identify hydrodynamic regimes: it leads to discuss hierarchies of coupled hydrodynamic systems, the nature of which could be quite intriguing and original, while they share some common features of the porous media problems. We are particularly interested in revisiting the modeling of mixture flows through the viewpoint of kinetic models and hydrodynamic regimes. We propose to revisit the derivation of new mixture models, generalizing Kazhikov-Smagulov equations, through hydrodynamic asymptotics. The model is of "hybrid" type in the sense that the constraint reduces to the standard incompressibility condition when the disperse phase is absent, while it involves derivatives of the particle volume fraction when the disperse phase is present.

4.3. Biological degradation, biofilms formation and algae proliferation

Members of the team have started an original research program devoted to biofilms formation and algae proliferation. We started working on this subject through a collaboration with Roberto Natalini and a group of experts in Firenze interested in preventing damages on historical monuments. It is also motivated by Ostreopsis proliferation in the Mediterranean Sea. The multidisciplinary character of this research relies on discussions with researchers of the Oceanography Laboratory in Villefranche-sur-Mer, a leading marine research unit, and the Inria team BIOCORE, led by J-L Gouzé. This research is supported by a ANR-project, led by M. Ribot, and it is the main topic of the PhD thesis of B. Polizzi.

DEMAR Project-Team (section vide)

DRACULA Project-Team

4. Application Domains

4.1. Normal hematopoiesis

4.1.1. Introduction

Modelling normal hematopoiesis will allow us to explore the dynamical appearance of the various cell types, originating from the stem cell compartment, through the bone marrow development up to the blood stream. The differentiated cell types will both fulfill physiological functions, and play a key role on the feedback control on homeostasis (balance of the system) in their own lineages. We will describe the hematopoiesis from three different points of view:

- The initial cell type, the hematopoietic stem cell (HSC);
- The lineage choice question;
- Three differentiated lineages that are responsible for specific function, namely oxygen transport, immune response and coagulation.

The basic mechanisms of our modelling approach are as follows:

- Any cell type can have two possibilities at each time step: to divide or to die.
- At any division step, the cell can either give rise to two daughter cells which are identical to the mother cell (self-renewal) or that are more advanced in their differentiation.

All these processes will be first modelled at the cellular level. In parallel, we will develop models of intracellular molecular networks (as some proteins controlling the cell cycle) influencing this decision making process, so as to be able to describe both micro-to-macro effects (molecules influencing the global cell behaviour) as well as macro-to-micro effects (like the global state of the cell population influencing the molecular behaviour).

4.1.2. Hematopoietic stem cells (HSC)

Although widely studied by biologists, HSC are still poorly understood and many questions remain open: How fast and how frequently do they divide? How many of them are in the bone marrow and where? How is their behaviour modified under stress conditions such as blood loss or transfusion?

Our modelling approach will be based on two methods: deterministic and stochastic differential equations with delays (discrete and distributed), on one hand, and the DPD method using the individual based modelling on the other hand. The differential equation models based on the work initiated by Mackey [43] will describe the HSC compartment in normal conditions and the behaviour of these cells under some stress. The DPD method, as a complementary approach, will emphasize the spatial regulation of stem cell behaviour, and we will focus our attention to give a possible answer regarding their location in the bone marrow and the roles of the niche, their number in the system, their possible role under stress (that is their reaction under the different feedback controls).

4.1.3. Blood cell functions

(i) O2 transport: red lineage

 O_2 transport is provided by red blood cells (RBC) also called erythrocytes. Many different stages of maturity (including progenitors, precursors, reticulocytes and erythrocytes) are necessary to achieve the complete formation of RBC. These latter are then released in the blood stream where they transport oxygen. The whole process is tightly dependent on a robust well-balanced equilibrium called homeostasis.

It has been shown in the 1990's that apoptosis is regulated by EPO, a growth factor released by the kidneys under hypoxia. But also, under severe stress (like an important blood loss) some other molecules known as glucocorticoids can be released leading to an increase of the self-renewing rate for each generation. This led to the formulation of a first model, demonstrating the role of self-renewal.

The study of the red blood cell lineage will involve different scale levels, from the molecular one, with the effects of the hormones on the surface and internal parts of the cell, the cell contacts in each stage of RBC formation, and the red branch population in its whole with all the interactions taken into account (see Figure 3) in normal and stress conditions.

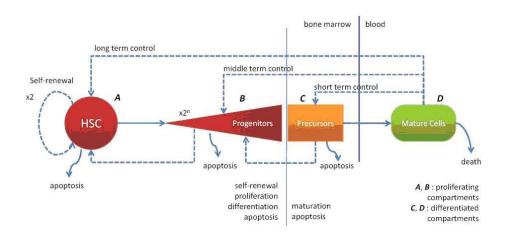


Figure 3. Scheme of Erythropoiesis Modelling ([34]). Without considering explicitly growth factor mediated regulation, all controls (proliferation, self-renewal, differentiation, apoptosis) are mediated by cell populations (dashed arrows). Mature cells can either regulate immature (HSC, progenitors) or almost mature (precursors) cells, precursors may act on progenitor dynamics, etc..

In order to couple the cellular behaviour to explicit molecular events, we will describe the events through a molecular network that is based upon the work of [47]. A first version of this model is shown in Figure 2.

(ii) Immune response

We will focus on the production of T-cells during an immune response. This represents an important activity of the lymphoid branch, part of leucopoiesis (white blood cell production). Several models of the myeloid branch of leucopoiesis have been investigated in the frame of specific diseases (for instance cyclical neutropenia ([42], [39]), chronic myelogenous leukemia [44]).

Time evolution of T-cell counts during an infection is well known: following the antigen presentation, the number of cells quickly increases (expansion), then decreases more slowly (contraction) and stabilizes around a value higher than the initial value. Memory cells have been produced, and will allow a faster response when encountering the antigen for a second time. Mechanisms that regulate this behaviour are however not well known.

A recent collaboration just started with immunologists (J. Marvel, Ch. Arpin) from the INSERM U851 in Lyon, who provide experimental data that are essential to assess the significance of models, based on strongly nonlinear ordinary differential equations, that can be proposed for T-cell production (Figure 4). By considering molecular events leading to cell activation when encountering a virus, we will propose a multi-scale model of the immune response.

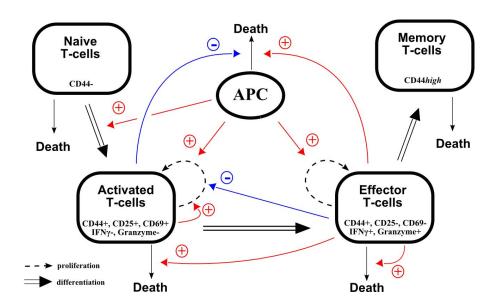


Figure 4. Model of the immune response resulting in the generation of CD8 memory T cells. The response starts with a viral infection resulting in the presentation of viral antigens through antigen presenting cells (APC) to naive T-cells. These latter, once activated, differentiate into activated cells which, under specific feedback loops will either die, differentiate into effector cells or self-renew. Differentiation of effector cells (killer cells) will result in the production of memory cells.

(iii) Coagulation: platelet lineage

Thrombopoiesis, the process of production and regulation of platelets, is similar to erythropoiesis although important differences are observed. These two processes have an immature progenitor (MEP) in common. Platelets are involved in blood coagulation, and can be the source of blood diseases (thrombopenia, thrombocytosis). Their production is mainly regulated by thrombopoietin (TPO), a growth factor similar to EPO.

It is important to mention that very few experimental data exist in the literature, and mathematical modelling of thrombopoiesis did not attract so much attention in the past 20 years. However, collaboration with some leading hematologists in this domain will allow us to get updated and new data regarding this process.

Deterministic models, in the form of structured transport partial differential equations, will be proposed to describe platelet dynamics, through the description of HSC, megakaryocytic progenitor and megacaryocyte (platelet precursor) compartments. Circulating TPO, regulated by platelets, will induce feedback loops in thrombopoiesis, and we will investigate the dynamics of platelet production and emergence of platelet-related diseases.

4.2. Pathological hematopoiesis

The knowledge of hematopoiesis and related diseases has evolved to become a great deal in the past years, and Mackey's previous models (ref. [37]) do not allow us to correctly answer current questions that are clearly oriented toward the investigation of cell signalling pathways. These models nevertheless bring relevant ideas about the essential features of such modelling. It is also noteworthy that even though models of hematopoiesis have existed for quite a long time, their application to questions of explanation and prediction of hematopoiesis dynamics that are encountered in the clinic is still not sufficiently frequent, even though much progress has been achieved in the cooperation between hematologists and mathematicians [45]. This is in the optic of testable experimental predictions that the multi-scale model for pathological hematopoiesis will be developed. For instance, we will concentrate on myeloid leukemias (CML and AML) and their treatment.

4.2.1. Leukemia Modelling

(i) Chronic Myeloid Leukemia

The strong tyrosine kinase activity of the BCR-ABL protein is the basis for the main cell effects that are observed in CML: significant proliferation, anti-apoptotic effect, disruption of stroma adhesion properties, genomic instability. This explains the presence in CML blood of a very important number of cells belonging to the myeloid lineage, at all stages of maturation.

We will consider models based on ordinary differential equations for the action of the main intra- and extracellular proteins involved in CML (as BCR-ABL protein), and of transport equations (with or without delay, physiologically structured or not to represent healthy and leukemic cell populations, take into account many interactions between proteins (especially BCR-ABL), cells (anti-apoptotic effect, etc.), and their environment (disruption of stroma adhesion properties, for example). Transport pertains thus to cells from one compartment (or a group of compartments) to another compartment, with a determined speed of aging or maturation. These compartments may be detailed or not: the less mature are stem cells, then progenitor cells, etc.

(ii) Acute Myeloid Leukemia

The natural history of CML leads to its transformation ("blast crisis") in acute myeloid leukemia (AML), following supplementary genetic alterations that produce a maturation arrest (myeloid in 3/4 of cases, lymphoid in 1/4 of cases, confirming the insult to pluripotent stem cells), leading to an accumulation of immature cells in the bone marrow and in the general circulation, resulting in deep medullary impairment and fast fatal outcome, in spite of chemotherapy. This phenomenon is the same as the one observed in de novo AML, i.e., AML without a previous chronic phase.

The different modelling methods of AML will be similar to the ones described for CML, with some exceptions: the appearance of BCR-ABL mutations, which are not relevant in the case of AML, the appearance of a gene (spi-1) involved in the differentiation arrest, and constitutive activation of EPO receptor or Kit activating mutations promote proliferation and survival. This explains the accumulation of immature cells in the bone marrow and in the blood stream.

4.2.2. Treatment

As far as treatment of pathological hematopoiesis is concerned, two main strategies currently exist that aim at slowing down or eliminating damaged cell proliferation. The first of these strategies consists in launching the apoptotic process during the cell division cycle. This process is activated, for example when the cell is unable to repair damages, e.g., after exposure to cytostatic drugs. A typical example is apoptosis induced by chemotherapy-induced DNA damage: The damage is recognised by the cell, which then activates the sentinel protein p53 ("guardian of the genome") that arrests the cell cycle to allow, if possible, damage repair. If the latter is unrecoverable, then p53 activates the endogenous apoptotic processes.

The second strategy aims at pushing damaged cells toward the differentiation that has been stopped in the course of their genetic mutation. Since a few years back, a new approach has been developed around the strategy of differentiation therapy. This therapy relies on molecules (growth factors and specific cytokines) that are able to re-initialise the cell differentiation programs that have been modified during malignant transformation. The cancer that is most concerned by the development of this differentiation therapy is AML whose malignant cells present highly undifferentiated features and the ones that present a translocation responsible for the differentiation (PML/RAR of the promyelocytic form, AML1/ETO and CBFbeta/MyH11, involving Core Binding Factors alpha and beta).

Mathematical models based on ordinary differential equations will be developed to describe the action of drugs (in the two cases mentioned above). They will take into account interactions between drugs and their environment. Our goal will be the optimization of possible synergies between drugs acting on distinct cellular targets, and the control of resistances to these treatments as well as their toxicities.

Curative and palliative strategies must take into account the dynamics of healthy and leukemic hematopoietic cells at multiple scales. In time, from optimal scheduling of combination therapy (hours) to avoiding the development of resistances and relapse (months to years). In space, from the stem cell niche to circulating blood. In organization, from gene and signalling networks (JAK/STAT, BCR-ABL) to cell populations and cytokine regulation (EPO, CSFs). Several recent qualitative models have provided insight in the complex dynamics of the disease and the response to treatments. Many of these models focus on the control or regulation processes that promote homeostasis or oscillatory behavior in cell number. However, as A. Morley points out, "once the control-systems features of hematopoiesis are accepted, the ability to construct a model that shows oscillatory behavior, even if the model incorporates the latest advances in hematopoietic cell biology, really adds little new knowledge. Rather, the challenge to modellers would seem to be to provide detailed predictions for the input-output characteristics of the different parts of the various control systems so that these predictions can be tested by experimental hematologists and a truly quantitative description of hematopoiesis can emerge".

We propose for instance, to use models in the form of structured transport partial differential equations (with or without delay, physiologically structured or not) to represent the competition between target, resistant and healthy cell populations. The resulting models to describe the dynamic of these cell populations under the action of drugs are multi-scale systems of the form (Hyperbolic PDE)-ODE or DDE-ODE. For instance, we will develop mathematical models of chronotherapy and pharmacotherapy for CML and AML.

DYLISS Project-Team

4. Application Domains

4.1. Formal models in molecular biology

As mentioned before, our main goal in biology is to characterize groups of genetic actors that control the response of living species capable of facing extreme environments. To focus our developments, applications and collaborations, we have identified three biological questions which deserve integrative studies. Each axis may be considered independently from the others although their combination, a mid-term challenge, will have the best impact in practice towards the long-term perspective of identifying proteins controlling the production of a metabolite of industrial interest. It is illustrated in our presentation for a major algae product: polyunsaturated fatty acids (PUFAs) and their derivatives.

Biological data integration. The first axis of the project (data integration) aims at identifying *who* is involved in the specific response of a biological system to an environmental stress. Targeted actors will mainly consist in groups of genetic products or biological pathways. For instance, which pathways are implied in the specific production of PUFAs in brown algae? The main work is to represent in a system of logical constraints the full knowledge at hand concerning the genetic or metabolic actors, the available observations and the effects of the system dynamics. To this aim, we focus on the use of Answer Set Programming as we are experienced in modeling with this paradigm and we have a strong partnership with a computer science team leader in the development of dedicated grounders and solvers (Potsdam university). See Sec. 3.1.

Asymptotic dynamics of a biological system Once a model is built and its main actors are identified, the next step is to clarify *how* they combine to control the system. This is the second axis of the project. Roughly, the fine tuning of the system response may be of two types. Either it results from the discrete combinatorics of the actors, as the result of a genetic adaptation to extreme environmental conditions or the difference between species is rather at the enzyme-efficiency level. For instance, if Pufa's are found to be produced using a set of pathways specific to brown algae, the work in axis 2 will consist to apply constraint-based combinatorial approaches to select consistent combinations of pathways controlling the metabolite production. Otherwise, if enzymes controlling the production of Pufa's are found to be expressed in other algaes, it suggests that the response of the system is rather governed by a fine quantitative tuning of pathways. In this case, we use symbolic dynamics and average-case analysis of algorithms to weight the respective importance of interactions in observed phenotypes (see Sec. 3.2 and Fig. 2). This specific approach is motivated by the quite restricted spectrum of available physiological observations over the asymptotic dynamics of the biological system.

Biological sequence annotation In order to check the accuracy of in-silico predictions, a third research axis of the team is to extract genetic actors responsible of biological pathways of interest in the targeted organism and locate them in the genome. In our guiding example, active proteins implied in Pufa's controlling pathways have to be precisely identified. Actors structures are represented by syntactic models (see Fig. 4). We use knowledge-based induction on far instances for the recognition of new members of a given sequence family within non-model genomes (see Fig. 3). A main objective is to model enzyme specificity with highly expressive syntactic structures - context-free model - in order to take into account constraints imposed by local domains or long-distance interactions within a protein sequence. See Sec. 3.3 for details.

A posteriori classification of pools of model candidates All the methods presented in the previous section usually result in pools of candidates which equivalently explain the data and knowlegde. These candidates can by dynamical systems, compounds, biological sequences, proteins... In any case, the output of our formal methods generally deserves a a-posteriori investigation and filtering. To that goal, we rely on two classes of symbolic technics: semantic web technologies and Formal Concept Analysis See Sec. 3.4 for details.

4.2. Application fields

Our methods are applied in several fields of molecular biology.

Our main application field is **marine biology**, as it is a transversal field with respect to issues in integrative biology, dynamical systems and sequence analysis. Our main collaborators work at the Station Biologique de Roscoff. We are strongly involved in the study of brown algae: the *meneco*, *memap and memerge* tools were designed to realize a complete reconstruction of metabolic networks for non-benchmark species [77], [64]. On the same application model, the pattern discovery tool *protomata learner* combined with supervised bi-clustering based on formal concept analysis allows for the classification of sub-families of specific proteins [61]. The same tool also allowed us to gain a better understanding of cyanobacteria proteins [3]. At the larger level of 4D structures, classification technics have also allowed us to introduce new methods for the characterization of viruses in marine metagenomic sample [18]. Finally, in dynamical systems, we use asymptotic analysis (tool *pogg*) to decipher the initiation of sea urchin translation [49]. We are currently in two new applications in this domain: the team participates to a Inria Project Lab program with the Biocore and Ange Inria teams, focused on the understanding on green micro-algae; and we are involved in the deciphering of phytoplancton variability at the system biology level in collaboration with the Station Biologique de Roscoff (ANR Samosa).

In **micro-biology**, our main issue is the understanding of bacteria living in extreme environments, mainly in collaboration with the group of bioinformatics at Universidad de Chile (funded by CMM, CRG and Inria-Chile). In order to elucidate the main characteristics of these bacteria, we develop efficient methods to identify the main groups of regulators for their specific response in their living environment. To that purpose, we use constraints-based modeling and combinatorial optimization. The integrative biology tools *meneco bioquali*, *ingranalysis*, *shogen*, *lombarde* were designed in this context [6]. In parallel, in collaboration with Ifremer (Brest), we have conducted similar work to decipher protein-protein interactions within archebacteria [75]. Our sequence analysis tool (*logol*) allowed us to build and maintain a very expressive CRISPR database [10] [48].

Similarly, in **animal biology**, our goal is to propose methods to identify regulators of very complex phenotypes related to nutritional issues. In collaboration with researchers from Inra/Pegase and Inra/Igeep laboratories, we develop methods to distinguish the response of cows, chicken or porks to different diaries or treatments [40] and characterize upstream transcriptional regulators for such a response [53], with relevant applications in porks [24], [37]. The pattern matching tool *logol* also allows for a fine identification of transcription factor motifs [63] [48]. Constraints-based programming also allows us to decipher regulators of reproduction for pea aphids [69], [92]. Semantic-based analysis was useful for interpreting differences of gene expression in pork meat [67].

We are less involved in **bio-medical applications** as the models and data studied in this application field are well informed and rather data-driven. In collaboration with Institut Curie, we have studied the Ewing Sarcoma regulation network to test the capability of our tool *bioquali* to accurately correct and predict a large-scale network behavior [45]. Our ongoing studies in this field focus on the exhaustive learning of discrete dynamical networks matching with experimental data, as a case study for modeling experimental design with constraints-based approaches. To that purpose, we collaborate with J. Saez Rodriguez group at EBI [89] and N. Theret group at Inserm/Irset (Rennes) [42]. The dynamical system tools *caspo and cadbiom* were designed within these collaborations. Ongoing studies focus on the understanding of the metabolism of xenobiotics (mecagenotox program) and the filtering of sets of regulatory compounds within large-scale signaling network (TGFSysBio project).

ERABLE Project-Team

4. Application Domains

4.1. Biology

The main area of application of ERABLE is biology understood in its more general sense, with a special focus on symbiosis and on intracellular interactions.

FLUMINANCE Project-Team

4. Application Domains

4.1. Introduction

By designing new approaches for the analysis of fluid-image sequences the FLUMINANCE group aims at contributing to several application domains of great interest for the community and in which the analysis of complex fluid flows plays a central role. The group focuses mainly on two broad application domains:

- Environmental sciences;
- Experimental fluid mechanics and industrial flows.

We detail hereafter these two application domains.

4.2. Environmental sciences

The first huge application domain concerns all the sciences that aim at observing the biosphere evolution such as meteorology, climatology or oceanography but also remote sensing study for the monitoring of meteorological events or human activities consequences. For all these domains image analysis is a practical and unique tool to *observe, detect, measure, characterize or analyze* the evolution of physical parameters over a large domain. The design of generic image processing techniques for all these domains might offer practical software tools to measure precisely the evolution of fluid flows for weather forecasting or climatology studies. It might also offer possibilities of close surveillance of human and natural activities in sensible areas such as forests, river edges, and valley in order to monitor pollution, floods or fire. The need in terms of local weather forecasting, risk prevention, or local climate change is becoming crucial for our tomorrow's life. At a more local scale, image sensors may also be of major utility to analyze precisely the effect of air curtains for safe packaging in agro-industrial.

4.3. Experimental fluid mechanics and industrial flows

In the domain of **experimental fluid mechanics**, the visualization of fluid flows plays a major role, especially for turbulence study since high frequency imaging has been made currently available. Together with analysis of turbulence at different scales, one of the major goals pursued at the moment by many scientists and engineers consists in studying the ability to manipulate a flow to induce a desired change. This is of huge technological importance to enhance or inhibit mixing in shear flows, improve energetic efficiency or control the physical effects of strain and stresses. This is for instance of particular interest for:

- military applications, for example to limit the infra-red signatures of fighter aircraft;
- aeronautics and transportation, to limit fuel consumption by controlling drag and lift effects of turbulence and boundary layer behavior;
- industrial applications, for example to monitor flowing, melting, mixing or swelling of processed materials, or preserve manufactured products from contamination by airborne pollutants, or in industrial chemistry to increase chemical reactions by acting on turbulence phenomena.

.

GALEN Project-Team

4. Application Domains

4.1. Lung Tumor Detection and Characterization

The use of Diffusion Weighted MR Imaging (DWI) is investigated as an alternative tool to radiologists for tumor detection, tumor characterization, distinguishing tumor tissue from non-tumor tissue, and monitoring and predicting treatment response. In collaboration with Hôpitaux Universitaires Henri-Mondor in Paris, France and Chang Gung Memorial Hospital – Linkou in Taipei, Taiwan we investigate the use of model-based methods of 3D image registration, clustering and segmentation towards the development of a framework for automatic interpretation of images, and in particular extraction of meaningful biomarkers in aggressive lymphomas.

4.2. Co-segmentation and Co-registration of Subcortical Brain Structures

New algorithms to perform co-segmentation and co-registration of subcortical brain structures on MRI images are investigated in collaboration with Ecole Polytechnique de Montreal and the Sainte-Justine Hospital Research Center from Montreal. Brain subcortical structures are involved in different neurodegenerative and neuropsychiatric disorders, including schizophrenia, Alzheimers disease, attention deficit, and subtypes of epilepsy. Segmenting these parts of the brain enables a physician to extract indicators, facilitating their quantitative analysis and characterization. We are investigating how estimated maps of semantic labels (obtained using machine learning techniques) can be used as a surrogate for unlabelled data. We are exploring how to combine them with multi-population deformable registration to improve both alignment and segmentation of these challenging brain structures.

GENSCALE Project-Team

4. Application Domains

4.1. Introduction

Today, sequencing data are intensively used in many life science projects. The methodologies developed by the GenScale group are generic approaches that can be applied to a large panel of domains such as health, agronomy or environment areas. The next sections briefly describe examples of our activity in these different domains.

4.2. Health

Cancer diagnostic: from a pool of known genes, the aim is to detect potential mutations that perturb the activity of these genes. Pointing out the right gene help in prescribing the right drug. The bioinformatics analysis is based on the detection of SNPs (Single Nucleotide Polymorphism) from a set of target genes.

Microbiology: Streptococcus bacteria are considered as major pathogens for humans and lead to many infections. The cause of their pathogenicity can be studied from their genomic structure by comparing different strains. Text of the genomes must first be constructed (assembly process) before to be analyzed (comparative genomic).

HLA genotyping: The human leukocyte antigen (HLA) system drives the regulation of the Human immune system. The HLA genes reside on chromosome 6 and have a large number of alleles. Genotyping this group of genes can be done by a deep sequencing of the HLA region, and by comparing reads with a HLA databank (intensive sequence comparison).

4.3. Agronomy and Environment

Improving plant breeding: such projects aims at 1) identifying favorable alleles at loci contributing to phenotypic variation, 2) characterizing N-traits at the functional level and 3) providing robust multi-locus SNP-based predictors of the breeding value of agronomical traits under polygenic control. Underlying bioinformatics processing is the detection of informative zones (QTL) on the plant genomes.

Insect study: Insects represent major crop pests, justifying the need for control strategies to limit population outbreaks and the dissemination of plant viruses they frequently transmit. Several issues are investigated through the analysis and comparison of their genomes: understanding their phenotypic plasticity such as their reproduction mode changes, identifying the genomic sources of adaptation to their host plant and of ecological speciation, and understanding the relationships with their bacterial symbiotic communities.

Ocean biodiversity: The metagenomic analysis of seawater samples provides an original way to study the ecosystems of the oceans. Through the biodiversity analysis of different ocean spots, many biological questions can be addressed, such as the plankton biodiversity and their role, for example, in the CO2 sequestration.

IBIS Project-Team (section vide)

LEMON Team

4. Application Domains

4.1. Coastal Oceanography

Participants: Fabien Marche, Antoine Rousseau.

Saint-Venant and Boussinesq equations have been widely applied until recently to model and simulate the propagation and transformations of waves in the nearshore area, over rapidly varying topography. However, the first equations do not include dispersive effects, and consequently have a domain of validity limited to the surf zone. The second set of equations overcome the limitations of the SV equations but relies on a "small amplitude assumption" and is therefore unable to model the whole range of waves transformations. This is the reason why they are usually called "weakly nonlinear Boussinesq equations". A better suited set of equations is known as the Green-Naghdi equations, but until recently, they have received far less attention, both from the theoretical and numerical point of view. In particular, there is no available numerical method of arbitrary ordre for 2d simulations on unstructured meshes. Additionally, the construction of rigorous positive preserving schemes is a paramount for the study of waves run-up.

4.2. Urban Floods

Participants: Carole Delenne, Vincent Guinot, Antoine Rousseau.

Floods have been identified by the National Accounting Authority (Cour des Comptes) to represent up to 1% of the GNP in terms of damage cost. For crisis management purposes, modeling urban floods at the scale of the conurbation is highly desirable. This however cannot be achieved in the current state of technology because of the meshing and computational cost (5569up to one billion cells being needed to mesh an entire urban area). This can be overcome by upscaling the shallow water equations so as to obtain large scale models that can operate three orders of magnitude faster than refined 2D models. Various upscaled versions of the upscaled 2D Shallow Water Equations have been proposed in the literature, some of which by members of the Lemon team. Further developments are being carried out, including the subgrid-scale description of topography variations and a better representation of energy dissipation terms. Laboratory experiments are also needed to discriminate between the various existing models.

4.3. River Hydraulics

Participants: Vincent Guinot, Antoine Rousseau.

Shallow Water (SW) models are widely used for the numerical modeling of river flows. Depending on the geometry of the domain, of the flow regime, and of required accuracy, either 1D or 2D SW models are implemented. It is thus necessary to couple 1D models with 2D models when both models are used to represent different portions of the same river. Moreover, when a river flows into the sea/ocean (e.g. the Rhône river in the Mediterranean), one may need to couple a 2D SW with a full 3D model (such as the Navier-Stokes equations) of the estuary. These issues have been widely addressed by the river-engineering community, but often with somehow crude approaches in terms of coupling algorithms. This may be improved thanks to more advanced boundary conditions, and with the use of Schwarz iterative methods for example.

LIFEWARE Project-Team

4. Application Domains

4.1. Preamble

Our collaborative work on biological applications is expected to serve as a basis for groundbreaking advances in cell functioning understanding, cell monitoring and control, and novel therapy design and optimization. We work mainly on eukaryotic cells. Our collaborations with biologists are focused on **concrete biological questions**, and on the building of predictive models of biological systems to answer them. However, one important application of our research is the development of a **modeling platform** for systems biology.

4.2. Modeling platform for systems biology

Since 2002, we develop an open-source software environment for modeling and analyzing biochemical reaction systems. This software, called the Biochemical Abstract Machine (BIOCHAM), is compatible with SBML for importing and exporting models from repositories such as BioModels. It can perform a variety of static analyses, specify behaviors in Boolean or quantitative temporal logics, search parameter values satisfying temporal constraints, and make various simulations. While the primary reason of this development effort is to be able to **implement our ideas and experiment them quickly on a large scale**, BIOCHAM is used by other groups either for building models, for comparing techniques, or for teaching (see statistics in software section). BIOCHAM-WEB is a web application which makes it possible to use BIOCHAM without any installation. We plan to continue developing BIOCHAM for these different purposes and improve the software quality.

4.3. Couplings between the cell cycle and the circadian clock

Recent advances in cancer chronotherapy techniques support the evidence that there exist important links between the cell cycle and the circadian clock genes. One purpose for modeling these links is to better understand how to efficiently target malignant cells depending on the phase of the day and patient characterictics. These questions are at the heart of our collaboration with Franck Delaunay (CNRS Nice) and Francis Lévi (Univ. Warwick, GB, formerly INSERM Hopital Paul Brousse, Villejuif) and of our participation in the ANR Hyclock project and in the submitted EU H2020 C2SyM proposal, following the former EU EraNet Sysbio C5Sys and FP6 TEMPO projects. In the past, we developed a coupled model of the Cell Cycle, Circadian Clock, DNA Repair System, Irinotecan Metabolism and Exposure Control under Temporal Logic Constraints ⁰. We now focus on the bidirectional coupling between the cell cycle and the circadian clock and expect to gain fundamental insights on this complex coupling from computational modeling and single-cell experiments.

4.4. Biosensor design and implementation in non-living vesicles

In collaboration with Franck Molina (CNRS, Sys2Diag, Montpellier) and Jie-Hong Jiang (NTU, Taiwan) we ambition to apply our techniques to the design and implementation of biosensors in non-living vesicles for medical applications. Our approach is based on purely protein computation and on our ability to compile controllers and programs in biochemical reactions. The realization will be prototyped using a microfluidic device at CNRS Sys2Diag which will allow us to precisely control the size of the vesicles and the concentrations of the injected proteins. It is worth noting that the choice of non-living chassis, in contrast to living cells in synthetic biology, is particularly appealing for security considerations and compliance to forthcoming EU regulation.

⁰Elisabetta De Maria, François Fages, Aurélien Rizk, Sylvain Soliman. Design, Optimization, and Predictions of a Coupled Model of the Cell Cycle, Circadian Clock, DNA Repair System, Irinotecan Metabolism and Exposure Control under Temporal Logic Constraints. Theoretical Computer Science, 412(21):2108 2127, 2011.

M3DISIM Team

4. Application Domains

4.1. Clinical applications

After several validation steps – based on clinical and experimental data – we have reached the point of having validated the heart model in a pre-clinical context where we have combined direct and inverse modeling in order to bring predictive answers on specific patient states. For example, we have demonstrated the predictive ability of our model to set up pacemaker devices for a specific patient in cardiac resynchronization therapies, see [10]. We have also used our parametric estimation procedure to provide a quantitative characterization of an infarct in a clinical experiment performed with pigs, see [1].

MAGIQUE-3D Project-Team

4. Application Domains

4.1. Seismic Imaging

The main objective of modern seismic processing is to find the best representation of the subsurface that can fit the data recorded during the seismic acquisition survey. In this context, the seismic wave equation is the most appropriate mathematical model. Numerous research programs and related publications have been devoted to this equation. An acoustic representation is suitable if the waves propagate in a fluid. But the subsurface does not contain fluids only and the acoustic representation is not sufficient in the general case. Indeed the acoustic wave equation does not take some waves into account, for instance shear waves, turning waves or the multiples that are generated after several reflections at the interfaces between the different layers of the geological model. It is then necessary to consider a mathematical model that is more complex and resolution techniques that can model such waves. The elastic or viscoelastic wave equations are then reference models, but they are much more difficult to solve, in particular in the 3D case. Hence, we need to develop new high-performance approximation methods.

Reflection seismics is an indirect measurement technique that consists in recording echoes produced by the propagation of a seismic wave in a geological model. This wave is created artificially during seismic acquisition surveys. These echoes (i.e., reflections) are generated by the heterogeneities of the model. For instance, if the seismic wave propagates from a clay layer to sand, one will observe a sharp reflected signal in the seismic data recorded in the field. One then talks about reflection seismics if the wave is reflected at the interface between the two media, or talks about seismic refraction if the wave is transmitted along the interface. The arrival time of the echo enables one to locate the position of this transition, and the amplitude of the echo gives information on some physical parameters of the two geological media that are in contact. The first petroleum exploration surveys were performed at the beginning of the 1920's and for instance, the Orchard Salt Dome in Texas (USA) was discovered in 1924 by the seismic-reflection method.

4.2. Modeling of Multiperforated plates in turboreactors

In the turbo-engine, the temperature can reach 2000 K inside the combustion chamber. To protect its boundary, "fresh" air at 800 K is injected through thousands of perforations. The geometry of the network of perforations is chosen in order to optimize the cooling and the mechanical properties of the chamber. It has been experimentally observed that these perforations have a negative impact on the stability of the combustion. This is due to the interaction with an acoustic wave generated by the combustion. Due to the large number of holes (2000) and their small sizes (0.5 mm) with respect to the size of the combustion chamber (50 cm), it is not conceivable to rely on numerical computations (even with supercomputers) to predict the influence of these perforations.

In collaboration with ONERA, we develop new models which allow to take into account these multiperforated plates at the macroscopic scale.

4.3. Helioseismology

This collaboration with the Max Planck Institute for solar system, which started in 2014, aims at designing efficient numerical methods for the wave propagation problems that arise in helioseismology in the context of inverse problems. The final goal is to retrieve information about the structure of the sun i.e. inner properties such as density or pressure via the inversion of a wave propagation problem. Acoustic waves propagate inside the sun which, in a first approximation and regarding the time scales of physical phenomena, can be considered as a moving fluid medium with constant velocity of motion. Some other simplifications lead to computational saving, such as supposing a radial or axisymmetric geometry of the sun. Aeroacoustic equations must be

adapted and efficiently solved in this context, this has been done in the finite elements code Montjoie 5.3. In other situations, a full 3D simulation is required and demands large computational resources. Ultimately, we aim at modeling the coupling with gravity potential and electromagnetic waves (MHD equations) in order to be able to better understand sun spots.

MAMBA Project-Team

4. Application Domains

4.1. Cancer modelling

Evolution of healthy or cancer cell populations under environmental pressure; drug resistance. Considering cancer as an *evolutionary disease* – evolution meaning here Darwinian evolution, but also Lamarckian instruction, of populations structured according to relevant phenotypes – in collaboration with our biologist partners within the Institut Universitaire de Cancérologie (IUC) of UPMC, we tackle the problem of understanding and limiting: a) the evolution from pre-malignancy to malignancy in cell populations (in particular we study early leukaemogenesis, leading to acute myeloid leukaemia), and b) in established cancer cell populations, the evolution towards (drug-induced) drug resistance. The environmental pressure guiding evolution has many sources, including signalling molecules induced by the peritumoral stroma (e.g., between a breast tumour and its adipocytic stroma), and anticancer drugs and their effects on both the tumour and its stromal environment. The models we use [82], [81], [23], [41] are close to models used in ecology for adaptive dynamics.

Multi-scale modelling of EMT. The major step from a benign tumour that can be eradicated by surgery and an invasive cancer is the development step at which cells detach from the tumour mass and invade individually the surrounding tissue ⁰. The invasion is preceded by a transition (called EMT - epithelial mesenchymal transition) of the cancer phenotype from an epithelial type to a mesenchymal type cell. We have so far worked on multi-scale modelling of EMT ⁰, and the step by which invading cancer cells enter blood vessels, called intravasation ⁰. We currently perform *in vitro* simulations of cancer cell invasion for non-small cell lung cancer (NSCLC) cells having a 5-year survival fraction of about 20%, and for breast cancer. Under development (in collaboration with our biologist partners within the IUC for the experimental part) is also a phenotype-structured PDE model of the interactions between colonies of MCF7 breast cancer and adipocyte stromal support populations (see below, in "New results", Lung and breast cancer).

Drugs: pharmacokinetics-pharmacodynamics, therapy optimisation. We focus on multi-drug multi-targeted anticancer therapies aiming at finding combinations of drugs that theoretically minimise cancer cell population growth with the constraint of limiting unwanted toxic side effects under an absolute threshold (this is not L^2 nor L^1 , but L^∞ optimisation, i.e. the constraints as well as the objective function are L^∞) in healthy cell populations and avoiding the emergence of resistant cell clones in cancer cell populations [62], [81], [63], [80]. Prior to using optimisation methods, we design models of the targeted cell populations (healthy and tumour, including molecular or functional drug targets [61]) by PDEs or agent-based models [59], and molecular pharmacological (pharmacokinetic-pharmacodynamic, PK-PD) models of the fate and effects in the organism of the drugs used, usually by ODE models. A special aspect of such modelling is the representation of multicellular spatio-temporal patterns emerging from therapies.

⁰Weinberg, The biology of cancer, Garland, 2007

⁰Ramis-Conde, Drasdo, Anderson, Chaplain, Biophys. J., 2008

⁰Ramis-Conde, Chaplain, Anderson, Drasdo, Phys. Biol. 2009

4.2. Cell motion

Several processes are employed by cells to communicate, regulate and control their movements, and generate collective motion. Among them, chemotaxis is the phenomenon by which cells direct their active motion in response to an external chemical (or physical) agent. In chemotaxis, cells not only respond but can also produce the chemical agent, leading to a feedback loop. Understanding this phenomenon is a major challenge for describing the collective behaviour of cells. Many mathematical models have been proposed at different scales, yielding a good description of cell aggregation. In collaboration with biophysicists at Institut Curie in Paris, we develop and study ⁰ mathematical models based on kinetic equations for bacterial travelling waves in a microchannel. These models have shown a remarkable quantitative agreement with experimental observations.

Cell motion arises also in the growth of solid tumours, which can be described through cell population models or multiphase flows ⁰. This is a very active subject because several bio-chemico-physical mechanisms are at work; for instance motion can arise from pressure forces resulting from cell divisions and from active cell motility. At the smaller scale stochastic agent-based models of tumour cells invading the tumour environment or blood vessels are considered ⁰, and allow to represent detailed behaviours and interactions. At a larger scale, free boundary problems are widely used, e.g., for image-based prediction because of the reduced number of parameters ⁰. Asymptotic analysis makes a link between these different mechanistic models [91].

One other setting where we will study cell motion is epithelial gap closure, a form of collective cell migration that is a very widespread phenomenon both during development and adult life - it is essential for both the formation and for the maintenance of epithelial layers. Due to their importance, in vivo wound healing and morphogenetic movements involving closure of holes in epithelia have been the object of many studies (including some involving members of this project like [57]). Several theoretical models have also been proposed recently for the advancement of tissue covering unoccupied areas (see, for instance, [58]). It is particularly interesting to study epithelial gap closure in vivo. However, the complexity of the process and the difficulty to measure relevant quantities directly and to control the parameters in vivo, lead biologists to seek alternative systems where epithelial gap closure can be studied under better-defined and better-controlled conditions. We extended our work from in vivo studies to in vitro situations taking advantage of a collaboration with the group of Benoît Ladoux who performed experiments on cell monolayers of human keratinocytes and of MDCK cells. We could single out some similar geometry dependence of the wound closure strategies between these two settings, indicating the existence of conserved mechanisms that should be widespread across living beings. In our model we consider viscous behaviour in the tissue and some simple friction with the substrate, plus boundary terms associated to cable and lamellipodial forces. The numerical simulations obtained using this model are in good agreement with the experimental results [30], [27].

4.3. Protein polymerisation

Self-assembly of proteins into amyloid aggregates is an important biological phenomenon associated with various human neurodegenerative diseases such as Alzheimer's, Parkinson's, Prion (in particular variant Creutzfeldt-Jakob disease, epidemically linked to bovine spongiform encephalopathy, or so-called "mad cow", disease), Huntington's disease. Amyloid fibrils also have potential applications in nano-engineering of biomaterials.

However, the mechanisms of polymerisation are far from being quantitatively understood by biologists. They can be modelled with the help of coagulation-fragmentation equations, a field of expertise of MAMBA [67], [65], or with stochastic models. One difficulty of this application is that the reactions imply both very small and very large scales for the sizes of polymers, experimental data giving only access to the time evolution of

⁰N. Bournaveas, V. Calvez, S. Gutiérrez and B. Perthame, Global existence for a kinetic model of chemotaxis via dispersion and Strichartz estimates, *Comm. PDE*, 2008

⁰J. Ranft et al, Fluidization of tissues by cell division and apoptosis, *PNAS*, 2010 and L. Preziosi and A. Tosin, Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications, *J. Math. Biol.*, 2009.

⁰I. Ramis-Conde et al., J. Phys. Biol., 2009

⁰Works by O. Saut, T. Colin, A. Iollo, N. Ayache, J. Lowengrub

size-averaged quantities. Moreover, there exists an intrinsic variability among experiments, which has to be distinguished from a lack of reproducibility [44].

The European starting grant SKIPPER AD , which follows the ANR project TOPPAZ, came up very naturally from a cooperation established with Human Rezaei, a biologist expert in amyloid diseases at INRA Jouy-en-Josas. It allowed us to further develop new collaborations, in particular with W.F. Xue's team in Canterbury, who is one of the rare biophysicists in this area who is able to measure not only size-averaged quantities, as for instance the time-evolution of the total polymerised mass, but also size distribution of polymers (at least over a certain threshold). Such measurements allow us to use much more powerful inverse problems methods, linked to the ones previously developed for bacteria [13].

Moreover, this field of applications to human neurogenerative diseases brings us new questions, which is a stimulation for our mathematical research and at the same time allows us to provide biologists with a new and efficient tool.

4.4. Physics of tissue organisation

Many new insights in the last years indicate that migration, growth and division of cells are largely impacted by cell and tissue mechanics (0 , 0). Centre-based growth models already account for many of the observed phenomena (e.g. 0 , 0). They furthermore allow calculation of the stress tensor in the tissue. Agent-based models resolving cells at higher resolution 0 allow to calculate cell deformation as function of stress emerging in the tissue, hence the stress tensor cannot only be resolved at the position of the cell centre, as in the case of centre-based models, but in this case at any point on the cell surface or inside the cell. This allows to relate stress and strain in tissues and the deformation and stress a cell feels at subcellular scale. We extended a deformable cell model towards cell division, which enables us to calculate precise stress - strain relationships for cells, which later can be used to calibrate forces in center-based models. This is fundamental to understand the impact of mechanical stress on cell cycle progression or other cell decisions. Moreover, we established a model to explain the proliferation pattern of cells growing in closed capsules.

4.5. Liver modelling

Liver is the main detoxifying organ of the human body and can regenerate up to about 70% of its mass. It performs its task by using a complex tissue architecture, with hepatocytes aligning along micro-capillaries and forming a dense network. The incidence rate of liver diseases is steadily increasing, liver cancer ranking 6th among all cancers. About one person in 12, otherwise said 500 million people worldwide, suffer from viral hepatitis. Hepatitis B and C as well as misuse of drugs or alcohol are major causes of liver cancer. Notwithstanding the importance of this public health problem, disease pathogenesis and regeneration in liver are still not well understood.

So far systems biology approaches addressing the tissue scale are rare. Most of those which do so base on compartment models (e.g. ⁰); only recently are approaches addressing the tissue scale being developed ([75], ⁰, ⁰, ⁰). We are developing a multi-scale model of liver regeneration representing the tissue architecture, the different cell types, the flow systems, hepatocyte metabolism and signal transduction controlling cell cycle entrance in the regeneration processes, taking into account extrahepatic compartments when relevant. Applications are regeneration after drug-induced damage and after partial hepatectomy, drug pharmacodynamics and

⁰Ingber, Proc. Natl. Acad. Sci (USA), 2005

⁰Trepat et. al., Nat. Phys. 2009

OAlessandri et. al., Proc. Natl. Acad. Sci. (USA) 2013

⁰Drasdo and Hoehme, Phys. Biol. 2005

⁰Drasdo and Hoehme, New Journal of Physics 2012

⁰Odenthal, Smeets, van Liedekerke, et. al., PloS Comput Biol. 2013

ODiaz-Ochoa et. al. Frontiers in Pharmacology, 2013

Ricken, Dahmen, Dirsch, Biomech. Model. Mechanobiol. 2010

ODebbaut et. al., J. Biomech. Eng. 2014

⁰Siggers, Leungchavphongse, Ho, Repetto, Biomech. Model. Mechanobiol. 2014

⁰Schwen et. al., PLoS Comput. Biol. 2014

pharmacokinetics in liver and liver cancer, and model-based prediction of in-vivo drug toxicity from in-vitro measurements ⁰. The research work is performed within the EU project NOTOX, the BMBF project Virtual Liver Network and the ANR project IFLOW.

 $^{^0\}mathrm{Godoy}$ et al., Arch Toxicol. 2013 Aug;87(8):1315-1530

MIMESIS Team (section vide)

MNEMOSYNE Project-Team

4. Application Domains

4.1. Overview

One of the most original specificity of our team is that it is part of a laboratory in Neuroscience (with a large spectrum of activity from the molecule to the behavior), focused on neurodegenerative diseases and consequently working in tight collaboration with the medical domain. As a consequence, neuroscientists and the medical world are considered as the primary end-users of our researches. Beyond data and signal analysis where our expertise in machine learning may be possibly useful, our interactions are mainly centered on the exploitation of our models. They will be classically regarded as a way to validate biological assumptions and to generate new hypotheses to be investigated in the living. Our macroscopic models and their implementation in autonomous robots will allow an analysis at the behavioral level and will propose a systemic framework, the interpretation of which will meet aetiological analysis in the medical domain and interpretation of intelligent behavior in cognitive neuroscience.

The study of neurodegenerative diseases is targeted because they match the phenomena we model. Particularly, the Parkinson disease results from the death of dopaminergic cells in the basal ganglia, one of the main systems that we are modeling. The Alzheimer disease also results from the loss of neurons, in several cortical and extracortical regions. The variety of these regions, together with large mnesic and cognitive deficits, require a systemic view of the cerebral architecture and associated functions, very consistent with our approach.

Of course, numerical sciences are also impacted by our researches, at several levels. At a global level, we will propose new control architectures aimed at providing a higher degree of autonomy to robots, as well as machine learning algorithms working in more realistic environment. More specifically, our focus on some cognitive functions in closed loop with a real environment will address currently open problems. This is obviously the case for planning and decision making; this is particularly the case for the domain of affective computing, since motivational characteristics arising from the design of an artificial physiology allow to consider not only cold rational cognition but also hot emotional cognition. The association of both kinds of cognition is undoublty an innovative way to create more realistic intelligent systems but also to elaborate more natural interfaces between these systems and human users.

At last, we think that our activities in well-founded distributed computations and high performance computing are not just intended to help us design large scale systems. We also think that we are working here at the core of informatics and, accordingly, that we could transfer some fundamental results in this domain.

MODEMIC Project-Team

4. Application Domains

4.1. Wastewater treatment systems

The water resources of our planet are limited, and today the quality of drinking water is considered to be responsible of more human deaths than malnutrition. Pollution and over-exploitation of water resources affect almost all the water reservoirs on Earth. Preserving the quality of water has thus become a worldwide problem. The industry of decontamination is thus a necessity, but waste-water treatment is costly and requires large plants. It relies on the use of micro-organisms that concentrate toxic soluble substances into sludge (that can be used as a fertilizer in agriculture). Today, a water decontamination plant costs about 1000 to 5000 euros per inhabitant. 30 to 40% of its running costs are devoted to the energy necessary for pool ventilation.

The waste-water treatment industry use software to optimize the plant design (number, size, interconnections of tanks), but design and improvements of bio-processes remain costly. This is why modeling allows numerical simulations of *virtual* bio-processes that can save substantial amount of money, avoiding tests at a real scale.

There is presently a growing need to conceive treatment systems in a more global framework, including the valorization of the "outputs" such as:

- the bio-gas production,
- the reuse of treated water for agriculture or dam refill in case of drought.

This requires to re-think the use of the models or to couple them with other models with new outputs and novel criteria to be optimized.

This is our most important domain of transfer and dissemination.

4.2. Environmental microbiology

Chemostat-like models (see Section 3.1.1) are also quite popular in theoretical marine ecology or in soil bio-chemistry, because micro-organisms play again a crucial role in the bio-geo-chemical cycles on Earth. Questioning are here a bit different than the ones depicted in Section 4.1, because it is much more oriented towards comprehension and prediction than decision making (at the present time). Grasping the role of the microbial biodiversity appears to be an everlasting and common important question among scientists of various domains.

Nevertheless, mathematical models are quite similar but with some specificity (much more resources are available in marine microbiology; the spatial heterogeneity play a crucial role in underground processes).

A recent trend of considering natural microbial ecosystems on Earth to be able to delivering new 'ecosystemic services' has emerged, especially in terms of bio-remediation. Modeling and simulating tools are much relevant as in site experiments are quite costly and time-consuming.

4.3. Bioprocesses industry

Several industries use micro-organisms or yeasts to product substances of commercial interest (in pharmaceutics, green biotechnology, food making...). Novel investigation techniques in microbiology (such as multistage continuous bioreactors) brings new insights on the metabolic functioning of the various strains. This conducts to revisit old models such as Monod's one, and to look for new estimation and piloting strategies. Those questions are quite closed from the ones studied in 4.1 and 4.2, although the ecological dimension is less present (most of the culture are pure ones). The team is naturally solicited to contribute together with the specialists about problems related to modeling, simulation and control of these bio-processes.

Monc Team

4. Application Domains

4.1. Introduction

We now present our contribution to these above challenges. We do an investigation of particular cancers:

- Gliomas (brain tumors),
- Meningioma,
- Colorectal cancers,
- Lung and liver metastasis,
- Breast cancer.

4.2. Axis 1: Tumor modeling for patient-specific simulations

- Patient-specific simulations
- Parameter estimations (with the help of low order models)

4.3. Axis 2: Bio-physical modeling for personalized therapies

• Modelling of electrochemotherapy

4.4. Axis 3: Quantitative cancer modeling for biological and preclinical studies

- Theoretical biology of the metastatic process: dynamics of a population of tumors in mutual interactions, dormancy, pre-metastatic and metastatic niche, quantification of metastatic potential and differential effects of anti-angiogenic therapies on primary tumor and metastases.
- Mathematical models for preclinical cancer research: description and prediction of tumor growth and metastatic development, effect of anti-cancerous therapies

MORPHEME Project-Team (section vide)

MYCENAE Project-Team

4. Application Domains

4.1. Introduction

MYCENAE addresses rather "upstream" questions in neuroendocrinology and neuroscience. Nevertheless, MYCENAE's expected results can contribute to more applied issues in these fields, mainly by helping understand the mechanisms underlying physiological and pathological processes and also by designing new concepts for biomedical data analysis. MYCENAE thematics are related to societal issues concerning endocrine disruptors, reproductive biotechnologies, and neurological diseases, especially in case of pathological synchronizations encountered in epilepsy and Parkinson's disease.

4.2. Neuroendocrinology and Neuroscience

We are interested in the complex dynamical processes arising within neuroendocrine axes, with a special focus on the reproductive (hypothalamo-pituitary-gonadal) axis. This axis can be considered as the paragon of neuroendocrine axes, since it both concentrates all remarkable dynamics that can be exhibited by these axes and owns its unique specificities, as gonads are the only organs that host germ cells. Since, in neuroendocrine axes, neural systems are embedded within endocrine feedback loops and interact with peripheral organs, one also needs to get interested in the peripheral dynamics to be able to "close the loop" and account for the effect of peripheral inputs on neural dynamics. In the case of the HPG axis, these dynamics are especially complex, because they involve developmental processes that occur even in adult organisms and combine the glandular function of the gonads with their gametogenic function.

Neuroendocrinology is thus a scientific field at the interface between Neuroscience, Endocrinology and Physiology (and even of Developmental Biology in the case of the HPG axis). On a neuroscience ground, mathematical neuroendocrinology is specifically interested in endocrine neurons, which have the uncommon ability of secreting neurohormones into the blood stream. Neuroendocrine networks are characterized by the emergence of very slow rhythms (on the order of an hour), finite size effects due to their relative small number of neurons (on the order of a few thousands for the Gonadotropin-Releasing-Hormone network) and neuroanatomical particularities, that impact the way they can synchronize and desynchronize. On a physiological ground, gonadal cell biology raises specific cell biology issues on more than one account. First, the gonads are the only organs sheltering the germ cell lines (corresponding to oogenesis in ovaries and spermatogenesis in testes). Hence, the two modes of cell division, mitosis and meiosis are encountered in these tissues. Second, there are intricate interactions between the gonadal somatic cells (granulosa cells in the ovaries, sertoli cells in the testes) and the germ cells. Third, the control of gonadal cell populations is exerted within endocrine feedback loops involving both the hypothalamus and pituitary, which results naturally in multiscale population dynamics coupled with hormonally-controlled cell kinetics.

MYCENAE's research topics in mathematical neuroscience deal with complex oscillations, synchronization and plasticity.

We study (i) the emergence of network-level behaviors from individual dynamics of excitable cells (mainly neurons, but not exclusively, as the pituitary cells belong to the family of excitable cells): complete synchronization or synchronization of specific events, effect of the recruitment rate in the synchronization process, dependence on the neuro-anatomical and functional coupling properties; (ii) the control of the different possible configurations of the network depending on external (e.g. daylength) and/or internal inputs (e.g. metabolic status), at the source of plasticity processes in cognitive (vision learning) or neuroendocrine systems (differential sensitivity to gonadal steroids and peptides across the different steps of the reproductive life); (iii) the encoding of neuro-hormonal signals as complex oscillations, on the electrical, ionic (calcium dynamics) and secretory levels; and (iv) the decoding of these signals by their target neuronal or non-neuronal cells.

More recently, we have been interested into developmental biology issues in neurosciences: neurogenesis and brain development. The anatomical and functional organization of the nervous system, and especially the brain, is highly structured and tightly regulated. The surface of the cortex, its thickness, but also the size and shape of the brain areas associated to the different sensory or motor areas are very reliable quantities across different individuals. In collaboration with different teams of biologists, we develop and investigate models of the development of the brain, at different time and spatial scale.

The biological relevance of our modeling and model-based signal analysis approaches is grounded on our network of collaborations with teams of experimentalist biologists. In particular, we have long standing collaborations with the UMR 6175 (INRA-CNRS-Université François Rabelais-Haras Nationaux) "Physiologie de la Reproduction et des Comportements" that covers most our research topics in reproductive neuroendocrinology. We have especially close links with the Bingo (Integrative Biology of the ovary) and Bios (Biology and Bioinformatics of Signaling Systems) teams, which were partners of the REGATE LSIA. We have been jointly investigating issues relative to terminal or basal follicular development [6], [7], analysis of neurosecretory patterns [15] and modeling of GPCR (G-Protein Coupled Receptors) signaling networks [9]. We also have special links with the Center for Interdisciplinary Research in Biology (CIRB, Collège de France), headed by Alain Prochiantz, that help us get a better understanding of how the brain connectivity develops and how it is functionally organized. An instance of a recent collaborative work is the study of the organization of spatial frequencies in the primary visual cortex [40].

NEUROMATHCOMP Project-Team (section vide)

NEUROSYS Project-Team

4. Application Domains

4.1. General Remarks

The research directions of the team are motivated by general anaesthesia (GA) that has attracted our attention in the last years. The following sections explain in some detail the motivation of our work on the four major phenomena of GA: loss of consciousness, immobility, amnesia and analgesia.

During general anaesthesia, the electroencephalogram (EEG) on the scalp changes characteristically: increasing the anaesthetic drug concentration the amplitudes of oscillations in the alpha band ($\sim 8-12$ Hz) and in the delta band (2-8Hz) increase amplitudes in frontal electrodes at low drug concentrations whereas the spectral power decreases in the gamma band ($\sim 20-60$ Hz). This characteristic change in the power is the basis of today's EEG-monitors that assist the anaesthetist in the control of the anaesthesia depths of patients during surgery. However, the conventional monitors exhibit a large variability between the patients detected anaesthetic depth and their real depth. Moreover, a certain number of patients re-gain consciousness during surgery (about 1-2 out of 1000) and a large percentage of patients suffer from diverse after-effects, such as nausea or long-lasting cognitive impairments such as partial amnesia (from days to weeks). Since surgery under general anaesthesia is part of a hospital's everyday practice, a large number of patients suffer from these events everyday. One reason for the lacking control of such disadvantageous effects is the dramatic lack of knowledge on what is going on in the brain during general anaesthesia and a weak EEG-online monitoring system during anaesthesia. Consequently, to improve the situation of patients during and after surgery and to develop improved anaesthetic procedures or even drugs, research is necessary to learn more about the neural processes in the brain and develop new monitoring machines.

4.2. Level of Consciousness

The EEG originates from coherent neural activity of populations in the cortex. Hence to understand better the characteristic power changes in EEG during anaesthesia, it is necessary to study neural population dynamics subject to the concentration of anaesthetic drugs and their action on receptors on the single neuron level. We study mathematical models which will be constrained by the signal features extracted from experimental data, such as EEG (data provided by Jamie Sleigh, University of Auckland and Christoph Destrieux, University of Tours), Local Field Potentials (data provided by Flavio Frohlich, University of North Carolina - Chapel Hill) and behavior. The combination of model and analysis of experimental data provides the optimal framework to reveal new knowledge on the neural origin of behavioral features, such as the loss of consciousness or the uncontrolled gain of consciousness during surgery. For instance, modelling studies show that the characteristic changes of spectral power (second-order statistics) are not sufficient to deduce all underlying neural mechanisms. Consequently, additional higher-order statistical measures may provide additional insight into underlying neural mechanisms and may provide a novel marker for the loss of consciousness.

Moreover, the constant supervision of anaesthetized patients in intensive care is a demanding task for the medical staff. It is almost not possible to take care of a patient constantly and hence todays' medicine demands monitoring devices that control automatically the level of anaesthetic drugs based on the patients' neural activity (e.g., EEG). Brain-Computer-Interfaces (BCI) have already demonstrated their potential for the detection of consciousness in non-responsive patients. We will apply the data analysis techniques known in BCI to extract new markers for the depth of anaesthesia. More specifically, for deeper anaesthesia, auditory-evoked and Event-Related Desynchronization/Event-Related Synchronization (ERD/ERS) BCI could be used to better identify the state of consciousness in patients under anaesthesia. In this context, we have established a first contact to the University of Wuerzburg. Another research direction will link intracranial EEG and scalp EEG by characterising micro-awake episodes during sleep.

4.3. Immobility

A research direction will be to leverage the relationship between the motor activity and anesthesia. Indeed, even if no movement is visually perceptible, a study by electroencephalographic recordings of brain activity in motor areas, quantifying the characteristics of amplitude and phase synchronization observed in the alpha and beta frequency bands, may reveal an intention movement. This feature is important because it demonstrates that the patient is aware. Thus, we will develop an experimental protocol in collaboration with an anesthesiologist of the regional hospital on stimulating the median nerve at forearm level to track the evolution of the shape of the beta rebound in the motor cortex for various doses of the anesthetic agent.

4.4. Amnesia

Patients sometimes develop post-traumatic disorders associated with the surgery they underwent because they either woke up during the surgery or because the amnesiant effect of the general anaesthesia was only partial, declarative memory being maintained in some unexplained cases. It is still unknown how memory can be maintained under general anaesthesia and it needs to be investigated to improve the recovery from anaesthesia and to avoid as much as possible post-traumatic disorders. To learn more about memory under anaesthesia, we will focus our theoretical studies on the oscillation regimes observed in the hippocampus, mainly in the theta and gamma ranges, respectively $(0.5-4\mathrm{Hz})$ and $(20-80\mathrm{Hz})$, which are correlated with memory formation and retrieval.

4.5. Analgesia

One of the most important aspect in general anaesthesia is the loss of pain. During surgery, it is very difficult to find out whether the anaesthetized patient feels pain and hence will develop cognitive impairment after surgery. Today, the anesthesiologist knows and detects physiological signs of pain, such as sweat, colour of skin or spontaneous involuntary movements. However, more objective criteria based on EEG may assist the pain detection and hence improves the patients' situation. To this end, we analyze large sets of patient EEG-data observed during surgery and aim to extract EEG signal features of pain.

NUMED Project-Team (section vide)

PARIETAL Project-Team

4. Application Domains

4.1. Human neuroimaging data and their use

Human neuroimaging consists in acquiring non-invasively image data from normal and diseased human populations. Magnetic Resonance Imaging (MRI) can be used to acquire information on brain structure and function at high spatial resolution.

- T1-weighted MRI is used to obtain a segmentation of the brain into different different tissues, such as gray matter, white matter, deep nuclei, cerebro-spinal fluid, at the millimeter or sub-millimeter resolution. This can then be used to derive geometric and anatomical information on the brain, e.g. cortical thickness.
- Diffusion-weighted MRI measures the local diffusion of water molecules in the brain at the resolution of 1 to 2mm, in a set of directions (60 typically). Local anisotropy, observed in white matter, yields a local model of fiber orientation that can be integrated into a geometric model of fiber tracts along which water diffusion occurs, and thus provides information on the connectivity structure of the brain.
- Functional MRI measures the blood-oxygen-level-dependent (BOLD) contrast that reflects neural activity in the brain, at a spatial resolution of 1.5 to 3mm, and a temporal resolution of about 2s. This yields a spatially resolved image of brain functional networks that can be modulated either by specific cognitive tasks or exhibit spontaneous co-activations.
- Electro- and Magneto-encephalography (MEEG) are two additional modalities that complement functional MRI, as they directly measure the electric and magnetic signals elicited by neural activity, at the millisecond scale. These modalities rely on surface measurements and do not localize brain activity very accurately in the spatial domain.

4.2. High-field MRI

High field MRI as performed at NeuroSpin (7T on humans, 11.7T in 2017, 17.6T on rats) brings an improvement over traditional MRI acquisitions at 1.5T or 3T, related to to a higher signal-to-noise ratio in the data. Depending on the data and applicative context, this gain in SNR can be traded against spatial resolution improvements, thus helping in getting more detailed views of brain structure and function. This comes at the risk of higher susceptibility distortions of the MRI scans and signal inhomogeneities, that need to be corrected for. Improvements at the acquisition level may come from the use of new coils (such as the 32 channels coil on the 7T at NeuroSpin), as well as the use of multi-band sequences [62].

4.3. Technical challenges for the analysis of neuroimaging data

The first limitation of Neuroimaging-based brain analysis is the limited Signal-to-Noise Ratio of the data. A particularly striking case if functional MRI, where only a fraction of the data is actually understood, and from which it is impossible to observe by eye the effect of neural activation on the raw data. Moreover, far from traditional i.i.d. Gaussian models, the noise in MRI typically exhibits local and long-distance correlations (e.g. motion-related signal) and has potentially large amplitude, which can make it hard to distinguish from true signal on a purely statistical basis. A related difficulty is the *lack of salient structure* in the data: it is hard to infer meaningful patterns (either through segmentation or factorization procedures) based on the data only. A typical case is the inference of brain networks from resting-state functional connectivity data.

Regarding statistical methodology, neuroimaging problems also suffer from the relative paucity of the data, i.e. the relatively small number of images available to learn brain features or models, e.g. with respect to the size of the images or the number of potential structures of interest. This leads to several kinds of difficulties, known either as *multiple comparison problems* or *curse of dimensionality*. One possibility to overcome this challenge is to increase the amount of data by using images from multiple acquisition centers, at the risk of introducing scanner-related variability, thus challenging the homogeneity of the data. This becomes an important concern with the advent of cross-modal neuroimaging-genetics studies.

PLEIADE Team

4. Application Domains

4.1. Genome and transcriptome annotation, to model function

Sequencing genomes and transcriptomes provides a picture of how a biological system can function, or does function under a given physiological condition. Simultaneous sequencing of a group of related organisms is now a routine procedure in biological laboratories for studying a behavior of interest, and provides a marvelous opportunity for building a comprehensive knowledge base of the relations between genomes. Key elements in mining these relations are: classifying the genes in related organisms and the reactions in their metabolic networks, recognizing the patterns that describe shared features, and highlighting specific differences.

PLEIADE will develops applications in comparative genomics of related organisms, using new mathematical tools for representing compactly, at different scales of difference, comparisons between related genomes. New methods based on computational geometry refine these comparisons. Compact representations can be stored, exchanged, and combined. They will form the basis of new simultaneous genome annotation methods, linked directly to abductive inference methods for building functional models of the organisms and their communities.

Our ambition in biotechnology is to permit the design of synthetic or genetically selected organisms at an abstract level, and guide the modification or assembly of a new genome. Our effort is focused on two main applications: genetic engineering and synthetic biology of oil-producing organisms (biofuels in CAER, palm oils), and improving and selecting starter microorganisms used in winemaking (collaboration with the ISVV and the BioLaffort company).

4.2. Molecular based systematics and taxonomy

Defining and recognizing myriads of species in biosphere has taken phenomenal energy over the past centuries and remains a major goal of Natural History. It is an iconic paradigm in pattern recognition (clustering has coevolved with numerical taxonomy many decades ago). Developments in evolution and molecular biology, as well as in data analysis, have over the past decades enabled a profound revolution, where species can be delimited and recognized by data analysis of sequences. We aim at proposing new tools, in the framework of E-science, which make possible (i) better exploration of the diversity in a given clade, and (ii) assignment of a place in these patterns for new, unknown organisms, using information provided by sets of sequences. This will require investment in data analysis, machine learning, and pattern recognition to deal with the volumes of data and their complexity.

One example of this project is about the diversity of trees in Amazonian forest, in collaboration with botanists in French Guiana. Protists (unicellular Eukaryots) are by far more diverse than plants, and far less known. Molecular exploration of Eukaryotes diversity is nowadays a standard in biodiversity studies. Data are available, through metagenomics, as an avalanche and make molecular diversity enter the domain of Big Data. Hence, an effort will be invested, in collaboration with other Inria teams (GenScale, HiePACS) for porting to HPC algorithms of pattern recognition and machine learning, or distance geometry, for these tools to be available as well in metagenomics. This will be developed first on diatoms (unicellular algae) in collaboration with INRA team at Thonon and University of Uppsala), on pathogens of tomato and grapewine, within an existing network, and on bacterial communities, in collaboration with University of Pau. For the latter, the studies will extend to correlations between molecular diversity and sets of traits and functions in the ecosystem.

4.3. Community ecology and population genetics

Community assembly models how species can assemble or diassemble to build stable or metastable communities. It has grown out of inventories of countable organisms. Using *metagenomics* one can produce molecular based inventories at rates never reached before. Most communities can be understood as pathways of carbon exchange, mostly in the form of sugar, between species. Even a plant cannot exist without carbon exchange with its rhizosphere. Two main routes for carbon exchange have been recognized: predation and parasitism. In predation, interactions—even if sometimes dramatic—may be loose and infrequent, whereas parasitism requires what Claude Combes has called intimate and sustainable interactions [17]. About one decade ago, some works [21] have proposed a comprehensive framework to link the studies of biodiversity with community assembly. This is still incipient research, connecting community ecology and biogeography.

We aim at developping graph-based models of co-occurence between species from NGS inventories in metagenomics, i.e. recognition of patterns in community assembly, and as a further layer to study links, if any, between diversity at different scales and community assemblies, starting from current, but oversimplified theories, where species assemble from a regional pool either randomly, as in neutral models, or by environmental filtering, as in niche modeling. We propose to study community assembly as a multiscale process between nested pools, both in tree communities in Amazonia, and diatom communities in freshwaters. This will be a step towards community genomics, which adds an ecological flavour to metagenomics.

Convergence between the processes that shape genetic diversity and community diversity—drift, selection, mutation/speciation and migration—has been noted for decades and is now a paradigm, establishing a continuous scale between levels of diversity patterns, beyond classical approaches based on iconic levels like species and populations. We will aim at deciphering diversity pattern along these gradients, connecting population and community genetics. Therefore, some key points must be adressed on reliability of tools.

Next-generation sequencing technologies are now an essential tool in population and community genomics, either for making evolutionary inferences or for developing SNPs for population genotyping analyses. Two problems are highlighted in the literature related to the use of those technologies for population genomics: variable sequence coverage and higher sequencing error in comparison to the Sanger sequencing technology. Methods are developed to develop unbiased estimates of key parameters, especially integrating sequencing errors [20]. An additional problem can be created when sequences are mapped on a reference sequence, either the sequenced species or an heterologous one, since paralogous genes are then considered to be the same physical position, creating a false signal of diversity [18]. Several approaches were proposed to correct for paralogy, either by working directly on the sequences issued from mapped reads [18] or by filtering detected SNPs. Finally, an increasingly popular method (RADseq) is used to develop SNP markers, but it was shown that using RADseq data to estimate diversity directly biases estimates [12]. Workflows to implement statistical methods that correct for diversity biases estimates now need an implementation for biologists.

POPIX Team

4. Application Domains

4.1. Pharmacometrics

Participants: Marc Lavielle, Raphael Kuate.

POPIX is directly implicated in the domain of pharmacology. Historically, Marc Lavielle was the driving force behind the pharmacological modeling software MONOLIX, now an industry standard. Lixoft, an Inria start-up, now develops and supports MONOLIX and the commercial side of things. POPIX collaborates closely with Lixoft to transfer research results into software improvements and the development of new user tools in MONOLIX.

POPIX is also majorally implicated in the 5-year DDMoRe (Drug and Disease Model Resources) European project financed by the IMI (Innovative Medicines Initiative), a public-private partnership. In particular, POPIX has the task of developing new tools and methods for this project regrouping researchers in pharmacometrics, biostatistics and biology from both the public and private sectors. Specific tools and methods being developed by POPIX include:

- a clinical trial simulator
- protocol optimization tools
- diagnostic tools
- model selection tools
- data exploration tools
- estimation techniques for complex models (eg, stochastic differential equations, partial differential equations)

REO Project-Team

4. Application Domains

4.1. Blood flows

Cardiovascular diseases like atherosclerosis or aneurysms are a major cause of mortality. It is generally admitted that a better knowledge of local flow patterns could improve the treatment of these pathologies (although many other biophysical phenomena obviously take place in the development of such diseases). In particular, it has been known for years that the association of low wall shear stress and high oscillatory shear index give relevant indications to localize possible zones of atherosclerosis. It is also known that medical devices (graft or stent) perturb blood flows and may create local stresses favorable with atherogenesis. Numerical simulations of blood flows can give access to this local quantities and may therefore help to design new medical devices with less negative impacts. In the case of aneurysms, numerical simulations may help to predict possible zones of rupture and could therefore give a guide for treatment planning.

In clinical routine, many indices are used for diagnosis. For example, the size of a stenosis is estimated by a few measures of flow rate around the stenosis and by application of simple fluid mechanics rules. In some situations, for example in the case a sub-valvular stenosis, it is known that such indices often give false estimations. Numerical simulations may give indications to define new indices, simple enough to be used in clinical exams, but more precise than those currently used.

It is well-known that the arterial circulation and the heart (or more specifically the left ventricle) are strongly coupled. Modifications of arterial walls or blood flows may indeed affect the mechanical properties of the left ventricle. Numerical simulations of the arterial tree coupled to the heart model could shed light on this complex relationship.

One of the goals of the REO team is to provide various models and simulation tools of the cardiovascular system. The scaling of these models will be adapted to the application in mind: low resolution for modeling the global circulation, high resolution for modeling a small portion of vessel.

4.2. Respiratory tracts

Breathing, or "external" respiration ("internal" respiration corresponds to cellular respiration) involves gas transport though the respiratory tract with its visible ends, nose and mouth. Air streams then from the pharynx down to the trachea. Food and drink entry into the trachea is usually prevented by the larynx structure (epiglottis). The trachea extends from the neck into the thorax, where it divides into right and left main bronchi, which enter the corresponding lungs (the left being smaller to accommodate the heart). Inhaled air is then convected in the bronchus tree which ends in alveoli, where gaseous exchange occurs. Surfactant reduces the surface tension on the alveolus wall, allowing them to expand. Gaseous exchange relies on simple diffusion on a large surface area over a short path between the alveolus and the blood capillary under concentration gradients between alveolar air and blood. The lungs are divided into lobes (three on the right, two on the left) supplied by lobar bronchi. Each lobe of the lung is further divided into segments (ten segments of the right lung and eight of the left). Inhaled air contains dust and debris, which must be filtered, if possible, before they reach the alveoli. The tracheobronchial tree is lined by a layer of sticky mucus, secreted by the epithelium. Particles which hit the side wall of the tract are trapped in this mucus. Cilia on the epithelial cells move the mucous continually towards the nose and mouth.

Each lung is enclosed in a space bounded below by the diaphragm and laterally by the chest wall and the mediastinum. The air movement is achieved by alternately increasing and decreasing the chest pressure (and volume). When the airspace transmural pressure rises, air is sucked in. When it decreases, airspaces collapse and air is expelled. Each lung is surrounded by a pleural cavity, except at its hilum where the inner pleura give birth to the outer pleura. The pleural layers slide over each other. The tidal volume is nearly equal to $500 \, ml$.

The lungs may fail to maintain an adequate supply of air. In premature infants surfactant is not yet active. Accidental inhalation of liquid or solid and airway infection may occur. Chronic obstructive lung diseases and lung cancers are frequent pathologies and among the three first death causes in France.

One of the goals of REO team in the ventilation field is to visualize the airways (virtual endoscopy) and simulate flow in image-based 3D models of the upper airways (nose, pharynx, larynx) and the first generations of the tracheobronchial tree (trachea is generation 0), whereas simple models of the small bronchi and alveoli are used (reduced-basis element method, fractal homogenization, multiphysics homogenization, lumped parameter models), in order to provide the flow distribution within the lung segments.

4.3. Cardiac electrophysiology

The purpose is to simulate the propagation of the action potential in the heart. A lot of works has already been devoted to this topic in the literature (see *e.g.* [67], [71], [70] and the references therein), nevertheless there are only very few studies showing realistic electrocardiograms obtained from partial differential equations models. Our goal is to find a compromise between two opposite requirements: on the one hand, we want to use predictive models, and therefore models based on physiology, on the other hand, we want to use models simple enough to be parametrized (in view of patient-specific simulations). One of the goal is to use our ECG simulator to address the inverse problem of electrocardiology. In collaboration with the Macs/M3disim project-team, we are interested in the electromechanical coupling in the myocardium. We are also interested in various clinical and industrial issues related to cardiac electrophysiology, in particular the simulation of experimental measurement of the field potential of cardiac stem cells in multi-electrode arrays.

SAGE Project-Team

4. Application Domains

4.1. Geophysics

The team has chosen a particular domain of application, which is geophysics. In this domain, many problems require solving large scale systems of equations, arising from the discretization of coupled models. Emphasis is put on hydrogeology, but the team also investigates geodesy, heat and mass transfer in soil, and granular materials. One of the objectives is to use high performance computing in order to tackle 3D large scale computational domains with complex physical models.

4.2. Hydrogeology

This is joint work with Geosciences Rennes at OSUR, Pprime at University of Poitiers and CDCSP at University of Lyon. It is also done in the context of the group Momas and Andra grants.

Many environmental studies rely on modelling geo-chemical and hydrodynamic processes. Some issues concern water resources, aquifer contamination, underground waste disposal, clean-up of former waste deposits, acid mine drainage remediation. Other issues, also related to energy, concern geothermy, unconventional gas, enhanced oil recovery, underground storage of CO2, underground storage of nuclear waste.

Simulation of contaminant transport in groundwater is a highly complex problem, governed by coupled linear or nonlinear PDAEs. Moreover, due to the lack of experimental data, stochastic models are used for dealing with heterogeneity. The main objective of the team is to design and to implement efficient and robust numerical models, including Uncertainty Quantification methods.

Recent research showed that rock solid masses are in general fractured and that fluids can percolate through networks of inter-connected fractures. Fractured media are by nature very heterogeneous and multi-scale, so that homogenisation approaches are not relevant. The team develops a numerical model for fluid flow and contaminant transport in three-dimensional porous fractured media.

An important output is the parallel scientific platform H2OLab, running on clusters, grids and machines available in supercomputing centers.

SERENA Team

4. Application Domains

4.1. Environmental problems

The applications of our theoretical results to current challenging environmental problems are pursued with numerous academic collaborators and with industrial partners such as ANDRA, IFP Energies Nouvelles, CEA, and EDF. Our traditional interest goes towards porous media for multiphase flows and transport of contaminants in the subsurface, fractures, fracture networks, fractured porous media, subsurface depollution after chemical leakage, nuclear waste disposal in deep underground repositories, and geological sequestration of CO₂. Among our novel themes in the joint team, we will count energy production with in particular fluid mechanics problems arising in the operation of nuclear reactors and shock waves impinging on deformable or fragmentable structures; in these cases, complex Euler or Navier–Stokes flows appear, and the modeling of the interacting mechanical structure is crucial.

SERPICO Project-Team

4. Application Domains

4.1. Biological pilot models: Birbeck granule and Melanosome biogenesis

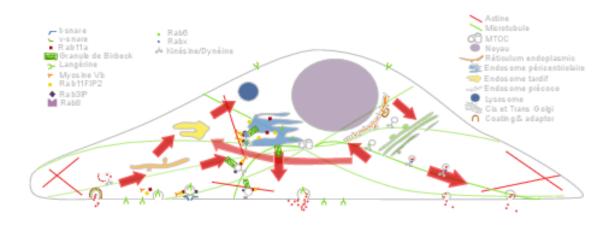


Figure 1. Cargo Langerin Trafficking controlled by Rab11A/Rab11FIP2/MyoVb platform.

In the past recent years, research carried at UMR 144 CNRS-Institut Curie ("Space Time imaging of Endomembranes and organelles Dynamics" team) contributed to a better understanding of the intracellular compartimentation of specialized model cells such as melanocytes and Langerhans cells, the components and structural events involved in the biogenesis of their specialized organelles: melanosomes and Birbeck granules, respectively. These studies have started to highlight: i/ multiple sorting and structural events involved in the biogenesis of these organelles; ii/ complexity of the endo-melanosomal network of these highly specialized cells; iii/ complex molecular architecture organizing and coordinating their dynamics; iv/ intracellular transport steps affected in genetic diseases, among which the Hermansky Pudlak syndrome (HPS) or involved in viral infection (HIV and Langerin in Langerhans cells).

In this context, the central aim of SERPICO is to understand how the different machineries of molecular components involved are interconnected and coordinated to generate such specialized structures. We need to address the following topics:

- developing new bioimaging approaches to observe and statistically analyze such coordinated dynamics in live material;
- 2. correlating this statistically relevant spatiotemporal organization of protein networks with the biological architectures and at the ultrastructural level;
- 3. modeling intracellular transport of those reference biological complex systems and proposing new experimental plans in an iterative and virtuous circle;
- 4. managing and analyzing the workflow of image data obtained along different multidimensional microscopy modalities.

These studies are essential to unravel the complexity of the endomembrane system and how different machineries evolve together (e.g. see Fig. 1). They help to control cell organization and function at different scales through an integrative workflow of methodological and technological developments.

At long term, these studies will shed light on the cellular and molecular mechanisms underlying antigen presentation, viral infection or defense mechanisms, skin pigmentation, the pathogenesis of hereditary genetic disorders (lysosomal diseases, immune disorders) and on the mechanisms underlying cell transformation. Our methodological goal is also to link dynamics information obtained through diffraction limited light microscopy, eventually at a time regime compatible with live cell imaging. The overview of ultrastructural organization will be achieved by complementary electron microscopical methods. Image visualization and quantitative analysis are of course important and essential issues in this context.

SISTM Project-Team

4. Application Domains

4.1. Systems Biology and Translational medicine

Biological and clinical researches have dramatically changed because of the technological advances, leading to the possibility of measuring much more biological quantities than previously. Clinical research studies can include now traditional measurements such as clinical status, but also thousands of cell populations, peptides, gene expressions for a given patient. This has facilitated the transfer of knowledge from basic to clinical science (from "bench side to bedside") and vice versa, a process often called "Translational medicine". However, the analysis of these large amounts of data needs specific methods, especially when one wants to have a global understanding of the information inherent to complex systems through an "integrative analysis". These systems like the immune system are complex because of many interactions within and between many levels (inside cells, between cells, in different tissues, in various species). This has led to a new field called "Systems biology" rapidly adapted to specific topics such as "Systems Immunology" [35], "Systems vaccinology" [32], "Systems medicine" [24]. From the statistician point of view, two main challenges appear: i) to deal with the massive amount of data ii) to find relevant models capturing observed behaviors.

4.2. The case of HIV immunology

The management of HIV infected patients and the control of the epidemics have been revolutionized by the availability of highly active antiretroviral therapies. Patients treated by these combinations of antiretrovirals have most often undetectable viral loads with an immune reconstitution leading to a survival which is nearly the same to uninfected individuals [28]. Hence, it has been demonstrated that early start of antiretroviral treatments may be good for individual patients as well as for the control of the HIV epidemics (by reducing the transmission from infected people) [23]. However, the implementation of such strategy is difficult especially in developing countries. Some HIV infected individuals do not tolerate antiretroviral regimen or did not reconstitute their immune system. Therefore, vaccine and other immune interventions are required. Many vaccine candidates as well as other immune interventions (IL7, IL15) are currently evaluated. The challenges here are multiple because the effects of these interventions on the immune system are not fully understood, there are no good surrogate markers although the number of measured markers has exponentially increased. Hence, HIV clinical epidemiology has also entered in the era of Big Data because of the very deep evaluation at individual level leading to a huge amount of complex data, repeated over time, even in clinical trials that includes a small number of subjects.

STEEP Project-Team (section vide)

TONUS Team

4. Application Domains

4.1. Controlled fusion and ITER

The search for alternative energy sources is a major issue for the future. Among others, controlled thermonuclear fusion in a hot hydrogen plasma is a promising possibility. The principle is to confine the plasma in a toroidal chamber, called a tokamak, and to attain the necessary temperatures to sustain nuclear fusion reactions. The International Thermonuclear Experimental Reactor (ITER) is a tokamak being constructed in Cadarache, France. This was the result of a joint decision by an international consortium made of the European Union, Canada, USA, Japan, Russia, South Korea, India and China. ITER is a huge project. As of today, the budget is estimated at 20 billion euros. The first plasma shot is planned for 2020 and the first deuterium-tritium operation for 2027.

Many technical and conceptual difficulties have to be overcome before the actual exploitation of fusion energy. Consequently, much research has been carried out around magnetically confined fusion. Among these studies, it is important to carry out computer simulations of the burning plasma. Thus, mathematicians and computer scientists are also needed in the design of ITER. The reliability and the precision of numerical simulations allow a better understanding of the physical phenomena and thus would lead to better designs. TONUS's main involvement is in such research.

The required temperatures to attain fusion are very high, of the order of a hundred million degrees. Thus it is imperative to prevent the plasma from touching the tokamak inner walls. This confinement is obtained thanks to intense magnetic fields. The magnetic field is created by poloidal coils, which generate the toroidal component of the field. The toroidal plasma current also induces a poloidal component of the magnetic field that twists the magnetic field lines. The twisting is very important for the stability of the plasma. The idea goes back to research by Tamm and Sakharov, two Russian physicists, in the 50's. Other devices are essential for the proper operation of the tokamak: divertor for collecting the escaping particles, microwave heating for reaching higher temperatures, fuel injector for sustaining the fusion reactions, toroidal coils for controlling instabilities, etc.

4.2. Other applications

The software and numerical methods that we develop can also be applied to other fields of physics or of engineering.

- For instance, we have a collaboration with the company AxesSim in Strasbourg for the development
 of efficient Discontinuous Galerkin (DG) solvers on hybrid computers. The applications is electromagnetic simulations for the conception of antenna, electronic devices or aircraft electromagnetic
 compatibility.
- The acoustic conception of large rooms requires huge numerical simulations. It is not always possible to solve the full wave equation and many reduced acoustic models have been developed. A popular model consists in considering "acoustic" particles moving at the speed of sound. The resulting Partial Differential Equation (PDE) is very similar to the Vlasov equation. The same modeling is used in radiation theory. We have started to work on the reduction of the acoustic particles model and realized that our reduction approach perfectly applies to this situation. A new PhD with CEREMA (Centre d'études et d'expertise sur les risques, l'environnement, la mobilité et l'aménagement) has started in October 2015 (thesis of Pierre Gerhard). The objective is to investigate the model reduction and to implement the resulting acoustic model in our DG solver.

VIRTUAL PLANTS Project-Team (section vide)

VISAGES Project-Team

4. Application Domains

4.1. Neuroimaging

One research objective in neuroimaging is the construction of anatomical and functional cerebral maps under normal and pathological conditions. Many researches are currently performed to find correlations between anatomical structures, essentially sulci and gyri, where neuronal activation takes place, and cerebral functions, as assessed by recordings obtained by the means of various neuroimaging modalities, such as PET (Positron Emission Tomography), fMRI (Functional Magnetic Resonance Imaging), EEG (Electro-EncephaloGraphy) and MEG (Magneto-EncephaloGraphy). Then, a central problem inherent to the formation of such maps is to put together recordings obtained from different modalities and from different subjects. This mapping can be greatly facilitated by the use of MR anatomical brain scans with high spatial resolution that allows a proper visualization of fine anatomical structures (sulci and gyri). Recent improvements in image processing techniques, such as segmentation, registration, delineation of the cortical ribbon, modeling of anatomical structures and multi-modality fusion, make possible this ambitious goal in neuroimaging. This problem is very rich in terms of applications since both clinical and neuroscience applications share similar problems. Since this domain is very generic by nature, our major contributions are directed towards clinical needs even though our work can address some specific aspects related to the neuroscience domain.

4.2. Multiple sclerosis

Over the past years, a discrepancy became apparent between clinical Multiple sclerosis (MS) classification describing on the one hand MS according to four different disease courses and, on the other hand, the description of two different disease stages (an early inflammatory and a subsequently neurodegenerative phase). It is to be expected that neuroimaging will play a critical role to define in vivo those four different MS lesion patterns. An in vivo distinction between the four MS lesion patterns, and also between early and late stages of MS will have an important impact in the future for a better understanding of the natural history of MS and even more for the appropriate selection and monitoring of drug treatment in MS patients. MRI has a low specificity for defining in more detail the pathological changes which could discriminate between the different lesion types. However, it has a high sensitivity to detect focal and also widespread, diffuse pathology of the normal appearing white and gray matter. Our major objective within this application domain is then to define new neuroimaging markers for tracking the evolution of the pathology from high dimensional data (e.g. nD+t MRI). In addition, in order to complement MR neuroimaging data, we ambition to perform also cell labeling neuroimaging (e.g. MRI or PET) and to compare MR and PET data using standard and experimental MR contrast agents and radiolabeled PET tracers for activated microglia (e.g. USPIO or PK 11195). The goal is to define and develop, for routine purposes, cell specific and also quantitative imaging markers for the improved in vivo characterization of MS pathology.

4.3. Modeling of anatomical and anatomo-functional neurological patterns

The major objective within this application domain is to build anatomical and functional brain atlases in the context of functional mapping and for the study of developmental, neurodegenerative or even psychiatric brain diseases (Multiple sclerosis, Epilepsy, Parkinson, Dysphasia, Depression or even Alzheimer). This is a very competitive research domain; our contribution is based on our previous works in this field, and by continuing our local and wider collaborations.

An additional objective within this application domain is to find new descriptors to study the brain anatomy and/or function (e.g. variation of brain perfusion, evolution in shape and size of an anatomical structure in relation with pathology or functional patterns, computation of asymmetries ...). This is also a very critical research domain, especially for many developmental or neurodegenerative brain diseases.

ALPINES Project-Team

4. Application Domains

4.1. Compositional multiphase Darcy flow in heterogeneous porous media

We study the simulation of compositional multiphase flow in porous media with different types of applications, and we focus in particular on reservoir/bassin modeling, and geological CO2 underground storage. All these simulations are linearized using Newton approach, and at each time step and each Newton step, a linear system needs to be solved, which is the most expensive part of the simulation. This application leads to some of the difficult problems to be solved by iterative methods. This is because the linear systems arising in multiphase porous media flow simulations cumulate many difficulties. These systems are non-symmetric, involve several unknowns of different nature per grid cell, display strong or very strong heterogeneities and anisotropies, and change during the simulation. Many researchers focus on these simulations, and many innovative techniques for solving linear systems have been introduced while studying these simulations, as for example the nested factorization [Appleyard and Cheshire, 1983, SPE Symposium on Reservoir Simulation].

4.2. Inverse problems

The research of F. Nataf on inverse problems is rather new since this activity was started from scratch in 2007. Since then, several papers were published in international journals and conference proceedings. All our numerical simulations were performed in FreeFem++.

We focus on methods related to time reversal techniques. Since the seminal paper by [M. Fink et al., Imaging through inhomogeneous media using time reversal mirrors. Ultrasonic Imaging, 13(2):199, 1991.], time reversal is a subject of very active research. The main idea is to take advantage of the reversibility of wave propagation phenomena such as it occurs in acoustics, elasticity or electromagnetism in a non-dissipative unknown medium to back-propagate signals to the sources that emitted them. Number of industrial applications have already been developped: touchscreen, medical imaging, non-destructive testing and underwater communications. The principle is to back-propagate signals to the sources that emitted them. The initial experiment, was to refocus, very precisely, a recorded signal after passing through a barrier consisting of randomly distributed metal rods. In [de Rosny and Fink. Overcoming the difraction limit in wave physics using a time-reversal mirror and a novel acoustic sink. Phys. Rev. Lett., 89 (12), 2002], the source that created the signal is time reversed in order to have a perfect time reversal experiment. Since then, numerous applications of this physical principle have been designed, see [Fink, Renversement du temps, ondes et innovation. Ed. Fayard, 2009] or for numerical experiments [Larmat et al., Time-reversal imaging of seismic sources and application to the great sumatra earthquake. Geophys. Res. Lett., 33, 2006] and references therein.

4.3. Numerical methods for wave propagation in multi-scale media

We are interested in the development of fast numerical methods for the simulation of electromagnetic waves in multi-scale situations where the geometry of the medium of propagation may be described through caracteristic lengths that are, in some places, much smaller than the average wavelength. In this context, we propose to develop numerical algorithms that rely on simplified models obtained by means of asymptotic analysis applied to the problem under consideration.

Here we focus on situations involving boundary layers and *localized* singular perturbation problems where wave propagation takes place in media whose geometry or material caracteristics are submitted to a small scale perturbation localized around a point, or a surface, or a line, but not distributed over a volumic sub-region of the propagation medium. Although a huge literature is already available for the study of localized singular perturbations and boundary layer pheneomena, very few works have proposed efficient numerical methods that rely on asymptotic modeling. This is due to their natural functional framework that naturally involves singular functions, which are difficult handle numerically. The aim of this part of our reasearch is to develop and analyze numerical methods for singular perturbation methods that are prone to high order numerical approximation, and robust with respect to the small parameter caracterizing the singular perturbation.

4.4. Data analysis in astrophysics

We focus on computationally intensive numerical algorithms arising in the data analysis of current and forthcoming Cosmic Microwave Background (CMB) experiments in astrophysics. This application is studied in collaboration with researchers from University Paris Diderot, and the objective is to make available the algorithms to the astrophysics community, so that they can be used in large experiments.

In CMB data analysis, astrophysicists produce and analyze multi-frequency 2D images of the universe when it was 5% of its current age. The new generation of the CMB experiments observes the sky with thousands of detectors over many years, producing overwhelmingly large and complex data sets, which nearly double every year therefore following Moore's Law. Planck (http://planck.esa.int/) is a keystone satellite mission which has been developed under auspices of the European Space Agency (ESA). Planck has been surveying the sky since 2010, produces terabytes of data and requires 100 Petaflops per image analysis of the universe. It is predicted that future experiments will collect half petabyte of data, and will require 100 Exaflops per analysis as early as in 2020. This shows that data analysis in this area, as many other applications, will keep pushing the limit of available supercomputing power for the years to come.

ASAP Project-Team (section vide)

ASCOLA Project-Team

4. Application Domains

4.1. Enterprise Information Systems and Services

Large IT infrastructures typically evolve by adding new third-party or internally-developed components, but also frequently by integrating already existing information systems. Integration frequently requires the addition of glue code that mediates between different software components and infrastructures but may also consist in more invasive modifications to implementations, in particular to implement crosscutting functionalities. In more abstract terms, enterprise information systems are subject to structuring problems involving horizontal composition (composition of top-level functionalities) as well as vertical composition (reuse and sharing of implementations among several top-level functionalities). Moreover, information systems have to be more and more dynamic.

Service-Oriented Computing (SOC) that is frequently used for solving some of the integration problems discussed above. Indeed, service-oriented computing has two main advantages:

- Loose-coupling: services are autonomous: they do not require other services to be executed;
- Ease of integration: Services communicate over standard protocols.

Our current work is based on the following observation: similar to other compositional structuring mechanisms, SOAs are subject to the problem of crosscutting functionalities, that is, functionalities that are scattered and tangled over large parts of the architecture and the underlying implementation. Security functionalities, such as access control and monitoring for intrusion detection, are a prime example of such a functionality in that it is not possible to modularize security issues in a well-separated module. Aspect-Oriented Software Development is precisely an application-structuring method that addresses in a systemic way the problem of the lack of modularization facilities for crosscutting functionalities.

We are considering solutions to secure SOAs by providing an aspect-oriented structuring and programming model that allows security functionalities to be modularized. Two levels of research have been identified:

- Service level: as services can be composed to build processes, aspect weaving will deal with the orchestration and the choreography of services.
- Implementation level: as services are abstractly specified, aspect weaving will require to extend service interfaces in order to describe the effects of the executed services on the sensitive resources they control.

In 2015, we have published results on constructive mechanisms for security and accountability properties in service-based systems as well as results on service provisioning problems, in particular, service interoperability and mediation, see Sec. 6.3. Furthermore, we take part in the European project A4Cloud on accountability challenges, that is, the responsible stewardship of third-party data and computations, see Sec. 8.3.

4.2. Capacity Planning in Cluster, Grid and Cloud Computing

Cluster, Grid and more recently Cloud computing platforms aim at delivering large capacities of computing power. These capacities can be used to improve performance (for scientific applications) or availability (e.g., for Internet services hosted by datacenters). These distributed infrastructures consist of a group of coupled computers that work together and may be spread across a LAN (cluster), across a WAN (Grid), and across the Internet (Clouds). Due to their large scale, these architectures require permanent adaptation, from the application to the system level and call for automation of the corresponding adaptation processes. We focus on self-configuration and self-optimization functionalities across the whole software stack: from the lower levels (systems mechanisms such as distributed file systems for instance) to the higher ones (i.e. the applications themselves such as J2EE clustered servers or scientific grid applications).

In 2015, we have proposed VMPlaces, a dedicated framework to evaluate and compare VM placement algorithms. Globally the framework is composed of two major components: the injector and the VM placement algorithm. The injector constitutes the generic part of the framework (i.e. the one you can directly use) while the VM placement algorithm is the component a user wants to study (or compare with other existing algorithms), see Sec. 6.4.

In the energy field, we have designed a set of techniques, named Optiplace, for cloud management with flexible power models through constraint programming. OptiPlace supports external models, named views. Specifically, we have developed a power view, based on generic server models, to define and reduce the power consumption of a datacenter's physical servers. We have shown that OptiPlace behaves at least as good as our previous system, Entropy, requiring as low as half the time to find a solution for the constrained-based placement of tasks for large datacenters.

4.3. Pervasive Systems

Pervasive systems are another class of systems raising interesting challenges in terms of software structuring. Such systems are highly concurrent and distributed. Moreover, they assume a high-level of mobility and context-aware interactions between numerous and heterogeneous devices (laptops, PDAs, smartphones, cameras, electronic appliances...). Programming such systems requires proper support for handling various interfering concerns like software customization and evolution, security, privacy, context-awareness... Additionally, service composition occurs spontaneously at runtime.

Like Pervasive systems, Internet of thing is a major theme of these last ten years. Many research works has been led on the whole chain, from communicating sensors to big data management, through communication middlewares. Few of these works have addressed the problem of gathered data access.

The more a sensor networks senses various data, the more the users panel is heterogeneous. Such an heterogeneity leads to a major problem about data modeling: for each user, to aim at precisely addressing his needs and his needs only; ie to avoid a data representation which would overwhelm the user with all the data sensed from the network, regardless if he needs it or not. To leverage this issue, we propose in [24], [35] a multitree modeling for sensor networks which addresses each of these specific usages. With this modeling comes a domain specific language (DSL) which allows users to manipulate, parse and aggregate information from the sensors.

In 2014, we have extended the language EScala, which integrates reactive programming through events with aspect-oriented and object-oriented mechanisms, see Sec. 6.3.

ATLANMODELS Team

4. Application Domains

4.1. Application Domain

By definition, MDE can be applied to any software domain. Core MDE techniques developed by the team have been successfully applied to a large variety of industrial domains from information systems to embedded systems. MDE is not even restricted to software engineering, but also applies to data engineering [45] and to system engineering [37]. There are a lot of problems in these application domains that may be addressed by means of modeling and model transformation techniques.

As a result, AtlanMod has collaborated with a great variety of different companies ranging from the Automotive to the Insurances domains and from SMEs to large enterprises through the projects described later on in this same report. AtlanMod hopes to continue this trend in the future.

AVALON Project-Team

4. Application Domains

4.1. Overview

The Avalon team targets applications with large computing and/or data storage needs, which are still difficult to program, maintain, and deploy. Those applications can be parallel and/or distributed applications, such as large scale simulation applications or code coupling applications. Applications can also be workflow-based as commonly found in distributed systems such as grids or clouds.

The team aims at not being restricted to a particular application field, thus avoiding any spotlight. The team targets different HPC and distributed application fields, which bring use cases with different issues. This will be eased by our various collaborations: the team participates to the INRIA-Illinois Joint Laboratory for Petascale Computing, the Physics, Radiobiology, Medical Imaging, and Simulation French laboratory of excellence, the E-Biothon project, the INRIA large scale initiative Computer and Computational Sciences at Exascale (C2S@Exa), and to BioSyL, a federative research structure about Systems Biology of the University of Lyon. Moreover, the team members have a long tradition of cooperation with application developers such as CERFACS and EDF R&D. Last but not least, the team has a privileged connection with CC IN2P3 that opens up collaborations, in particular in the astrophysics field.

In the following, some examples of representative applications we are targeting are presented. In addition to highlighting some application needs, they also constitute some of the use cases we will use to valide our theoretical results.

4.2. Climatology

The world's climate is currently changing due to the increase of the greenhouse gases in the atmosphere. Climate fluctuations are forecasted for the years to come. For a proper study of the incoming changes, numerical simulations are needed, using general circulation models of a climate system. Simulations can be of different types: HPC applications (*e.g.*, the NEMO framework [69] for ocean modelization), code-coupling applications (*e.g.*, the OASIS coupler [75] for global climate modeling), or workflows (long term global climate modeling).

As for most applications the team is targeting, the challenge is to thoroughly analyze climate-forecasting applications to model their needs in terms of programing model, execution model, energy comsunption, data access pattern, and computing needs. Once a proper model of an application has been set up, appropriate scheduling heuristics could be designed, tested, and compared. The team has a long tradition of working with CERFACS on this topic, for example in the LEGO (2006-09) and SPADES (2009-12) French ANR projects.

4.3. Astrophysics

Astrophysics is a major field to produce large volume of data. For instance, the Large Synoptic Survey Telescope (http://www.lsst.org/lsst/) will produce 15 TB of data every night, with the goals of discovering thousands of exoplanets and of uncovering the nature of dark matter and dark energy in the universe. The Square Kilometer Array (http://www.skatelescope.org/) produces 9 Tbits/s of raw data. One of the scientific projects related to this instrument called Evolutionary Map of the Universe is working on more than 100 TB of images. The Euclid Imaging Consortium will generate 1 PB data per year.

Avalon collaborates with the *Institut de Physique Nucléaire de Lyon* (IPNL) laboratory on large scale numerical simulations in astronomy and astrophysics. Contributions of the Avalon members have been related to algorithmic skeletons to demonstrate large scale connectivity, the development of procedures for the generation of realistic mock catalogs, and the development of a web interface to launch large cosmological simulations on GRID'5000.

This collaboration, that continues around the topics addressed by the CLUES project (http://www.clues-project.org), has been extended thanks to the tight links with the CC-IN2P3. Major astrophysics projects execute part of their computing, and store part of their data on the resources provided by the CC-IN2P3. Among them, we can mention SNFactory, Euclid, or LSST. These applications constitute typical use cases for the research developed in the Avalon team: they are generally structured as workflows and a huge amount of data (from TB to PB) is involved.

4.4. Bioinformatics

Large-scale data management is certainly one of the most important applications of distributed systems in the future. Bioinformatics is a field producing such kinds of applications. For example, DNA sequencing applications make use of MapReduce skeletons.

The Avalon team is a member of BioSyL (http://www.biosyl.org), a Federative Research Structure attached to University of Lyon. It gathers about 50 local research teams working on systems biology. Moreover, the team cooperates with the French Institute of Biology and Chemistry of Proteins (IBCP http://www.ibcp.fr) in particular through the ANR MapReduce project where the team focuses on a bio-chemistry application dealing with protein structure analysis. These collaborations bring scientific applications that are both dynamic and data-intensive.

CIDRE Project-Team

4. Application Domains

4.1. Application Domains

With the infiltration of computers and software in almost all aspects of our modern life, security can nowadays be seen as an absolutely general concern. As such, the results of the research targeted by CIDRE apply to a wide range of domains. It is clear that critical systems, in which security (and safety) is a major concern can benefit from ideas such as dynamic security policy monitoring. On the other hand, systems used by the general public (basically, the internet and services such as web or cloud services, social networks, location-based services, etc.) can also benefit from results obtained by CIDRE, in particular to solve some of the privacy issues raised by these systems that manipulate huge amount of personal data. In addition, systems are getting more and more complex, decentralized, distributed, or spontaneous. Cloud computing, in particular, brings many challenges that could benefit from ideas, approaches and solutions studied by CIDRE in the context of distributed systems.

Industrial Control Systems and in particular Supervisory Control and Data Acquisition are also new application domains for intrusion detection. The Stuxnet attack has emphasized the vulnerability of such critical systems which are not totally isolated anymore. Securing ICS is challenging since modifications of the systems, for example to patch them, are often not possible. High availability requirements also often conflict with preventive approaches. In this case, security monitoring is appealing to protect such systems against malicious activities. Intrusion detection in ICS is not fundamentally different from traditional approaches. However, new hypotheses and constraints need to be taken into account, which also bring interesting new research challenges.

COAST

COAST Project-Team (section vide)

COATI Project-Team

4. Application Domains

4.1. Telecommunication Networks

COATI is mostly interested in telecommunications networks. Within this domain, we consider applications that follow the needs and interests of our industrial partners, in particular Orange Labs or Alcatel-Lucent Bell-Labs, but also SME like 3-Roam.

We focus on the design and management of heterogeneous networks. The project has kept working on the design of backbone networks (optical networks, radio networks, IP networks). We also study routing algorithms such as dynamic and compact routing schemes, as we did in the context of the FP7 EULER led by Alcatel-Lucent Bell-Labs (Belgium), and the evolution of the routing in case of any kind of topological modifications (maintenance operations, failures, capacity variations, etc.).

4.2. Other Domains

Our combinatorial tools may be well applied to solve many other problems in various areas (transport, biology, resource allocation, chemistry, smart-grids, speleology, etc.) and we intend to collaborate with experts of these other domains.

For instance, we have recently started a collaboration in Structural Biology with EPI ABS (Algorithms Biology Structure) from Sophia Antipolis (described in Section 7.2). Furthermore, we are working on robot moving problems coming from Artificial Intelligence/Robotic in collaboration with Japan Advanced Institute of Science and Technology. In the area of transportation networks, we have started a collaboration with Amadeus on complex trip planning, and a collaboration with SME Instant-System on dynamic car-pooling combined with multi-modal transportation systems. Last, we have started a collaboration with GREDEG (Groupe de Recherche en Droit, Economie et Gestion, Univ. Nice Sophia Antipolis) on the analysis and the modeling of systemic risks in networks of financial institutions.

CTRL-A Team

4. Application Domains

4.1. Distributed systems and High-Performance Computing

Distributed systems have grown to levels of scale and complexity where it is difficult to master their administration and resources management, in dynamic ans open environments. One of the growing concerns is that the energy consumption has reached levels where it can not be considered negligible anymore, ecologically or economically. Data centers or high performance computing grids need to be controlled in order to combine minimized power needs with sustained performance and quality of service. As mentioned above, this motivates the automation of their management, and is the major topic of, amongst others, our ANR project Ctrl-Green.

Another challenge in distributed systems is in the fast growing amounts of data to process and store. Currently one of the most common ways of dealing with these challenges is the parallel programming paradigm MapReduce which is slowly becoming the de facto tool for Big Data analytics. While its use is already widespread in the industry, ensuring performance constraints while also minimizing costs provides considerable challenges. Current approaches to ensure performance in cloud systems can be separated into three categories: static, reactive, predictive and hybrid approaches. In the industry, static deployments are the standard and usually tuned based on the application peak demand and are generally over-provisioned. Reactive approaches are usually based on reacting to an input metric such as the current CPU utilisation, request rate, response time by adding and removing servers as necessary. Some public cloud providers offer reactive techniques such as the Amazon Auto Scaler. They provide the basic mechanisms for reactive controllers, but it is up to the user to define the static scaling thresholds which is difficult and not optimal. To deal with this issue, we propose a control theoretical approach, based on techniques that have already proved their usefulness for the control community.

In the domain of parallel systems and High Performance Computing, systems are traditionally less open and more controlled by administrators, but this trend is changing, as they are facing the same challenges in energy consumption, needs for adaptivity in reaction to changing workloads, and security issues in computation outsourcing. Topics of interest for us in this domain concern problem in dynamical management of memory and communications features, which we are exploring in the HPES project of the Labex Persybal-lab (see 9.1).

4.2. Reconfigurable architectures in embedded systems

Dynamically reconfigurable hardware has been identified as a promising solution for the design of energy efficient embedded systems. A common argument in favor of this kind of architecture is the specialization of processing elements, that can be adapted to application functions in order to minimize the delay, the control cost and to improve data locality. Another key benefit is the hardware reuse to minimise the area, and therefore the static power and cost. Further advantages such as hardware updates in long-life products and self-healing capabilities are also often mentioned. In presence of context changes (e.g. environment or application functionality), self-adaptive technique can be applied as a solution to fully benefit from the runtime reconfigurability of a system.

Dynamic Partial Reconfiguration (DPR) of FPGA is another accessible solution to implement and experiment reconfigurable hardware. It has been widely explored and detailed in literature. However, it appears that such solutions are not extensively exploited in practice for two main reasons: i) the design effort is extremely high and strongly depends on the available chip and tool versions; and ii) the simulation process, which is already complex for non-reconfigurable systems, is prohibitively large for reconfigurable architectures. As a result, new adequate methods are required to fully exploit the potential of dynamically reconfigurable and self-adaptive architectures. We are working in this topic, especially on the reconfiguration control aspect, in cooperation with teams specialized in reconfigurable architectures such as the former DaRT team at Inria Lille, and LabSticc in Lorient, as in the recently ended ANR project Famous.

A new ANR project in this application domain, starting end of 2015, is called HPeC, in cooperation with amongst others LabSticc in Lorient and Clermont-Ferrand U., will consider embedded video processing on drones (see 9.2.1).

4.3. Smart environments and Internet of Things

Another application domain for autonomic systems design and control is the Internet of Things, and especially the design of smart environments, at the level of homes, buildings, or cities. These domains are often considered at the level of sensors networks, with a strong emphasis on the acquisition of data in massive scales. The infrastructures are sometimes also equipped with actuators, with a wide range of applications, for example concerning lighting or heating, or access and security aspects. We are interested in closing the control loop in such environments, which is less often studied. In particular, rule-based languages are often used to define the automated systems, and we want to contribute to the safe design of such controllers with guarantees on their behaviors. We are working in this topic in cooperation with teams specialized in infrastructures for smart environments at CEA LETI/DACLE and Orange labs (see 8.1, 8.2).

DANTE Project-Team

4. Application Domains

4.1. Life Science & Health

In parallel to the advances in modern medicine, health sciences and public health policy, epidemic models aided by computer simulations and information technologies offer an increasingly important tool for the understanding of transmission dynamics and of epidemic patterns. The increased computational power and use of Information and Communication Technologies make feasible sophisticated modeling approaches augmented by detailed in vivo data sets, and allow to study a variety of possible scenarios and control strategies, helping and supporting the decision process at the scientific, medical and public health level. The research conducted in the DANTE project finds direct applications in the domain of LSH since modeling approaches crucially depend on our ability to describe the interactions of individuals in the population. In the MOSAR/iBird project we are collaborating with the team of Pr. Didier Guillemot (Inserm/Institut. Pasteur/Université de Versailles). Within the TUBEXPO and ARIBO projects, we are collaborating with Pr. Jean-Christopge Lucet (Professeur des université Paris VII, Praticien hospitalier APHP).

4.2. Network Science / Complex networks

In the last ten years the science of complex networks has been assigned an increasingly relevant role in defining a conceptual framework for the analysis of complex systems. Network science is concerned with graphs that map entities and their interactions to nodes and links. For a long time, this mathematical abstraction has contributed to the understanding of real-world systems in physics, computer science, biology, chemistry, social sciences, and economics. Recently, however, enormous amounts of detailed data, electronically collected and meticulously catalogued, have finally become available for scientific analysis and study. This has led to the discovery that most networks describing real world systems show the presence of complex properties and heterogeneities, which cannot be neglected in their topological and dynamical description. This has called forth a major effort in developing the methodology to characterize the topology and temporal behavior of complex networks, to describe the observed structural and temporal heterogeneities, to detect and measure emerging community structure, to see how the functionality of networks determines their evolving structure, and to determine what kinds of correlations play a role in their dynamics. All these efforts have brought us to a point where the science of complex networks has become advanced enough to help us to disclose the deeper roles of complexity and gain understanding about the behavior of very complicated systems.

In this endeavor the DANTE project targets the study of dynamically evolving networks, concentrating on questions about the evolving structure and dynamical processes taking place on them. During the last year we developed developed several projects along these lines concerning three major datasets:

- Mobile telephony data: In projects with academic partners and Grandata we performed projects based on two large independent datasets collecting the telephone call and SMS event records for million of anonymized individuals. The datasets record the time and duration of mobile phone interactions and some coarse grained location and demographic data for some users. In addition one of the dataset is coupled with anonymised bank credit information allowing us to study directly the socioeconomic structure of a society and how it determines the communication dynamics and structure of individuals.
- Skype data: Together with Skype Labs/STACC and other academic groups we were leading projects
 in the subject of social spreading phenomena. These projects were based on observations taken
 from a temporally detailed description of the evolving social network of (anonymized) Skype users
 registered between 2003 and 2011. This data contains dates of registration and link creation together
 with gradual information about their location and service usage dynamics.

Twitter data: In collaboration with ICAR-ENS Lyon we collected a large dataset about the microblogs and communications of millions of Twitter users in the French Twitter space. This data allows us to follow the spreading of fads/opinions/hashtags/ideas and more importantly linguistic features in online communities. The aim of this collaboration is to set the ground for a quantitative framework studying the evolution of linguistic features and dialects in an social-communication space mediated by online social interactions.

DIANA Project-Team (section vide)

DIONYSOS Project-Team (section vide)

DIVERSE Project-Team

4. Application Domains

4.1. From Embedded Systems to Service Oriented Architectures

From small embedded systems such as home automation products or automotive systems to medium sized systems such as medical equipment, office equipment, household appliances, smart phones; up to large Service Oriented Architectures (SOA), building a new application from scratch is no longer possible. Such applications reside in (group of) machines that are expected to run continuously for years without unrecoverable errors. Special care has then to be taken to design and validate embedded software, making the appropriate trade-off between various extra-functional properties such as reliability, timeliness, safety and security but also development and production cost, including resource usage of processor, memory, bandwidth, power, etc.

Leveraging ongoing advances in hardware, embedded software is playing an evermore crucial role in our society, bound to increase even more when embedded systems get interconnected to deliver ubiquitous SOA. For this reason, embedded software has been growing in size and complexity at an exponential rate for the past 20 years, pleading for a component based approach to embedded software development. There is a real need for flexible solutions allowing to deal at the same time with a wide range of needs (product lines modeling and methodologies for managing them), while preserving quality and reducing the time to market (such as derivation and validation tools).

We believe that building flexible, reliable and efficient embedded software will be achieved by reducing the gap between executable programs, their models, and the platform on which they execute, and by developing new composition mechanisms as well as transformation techniques with a sound formal basis for mapping between the different levels.

Reliability is an essential requirement in a context where a huge number of softwares (and sometimes several versions of the same program) may coexist in a large system. On one hand, software should be able to evolve very fast, as new features or services are frequently added to existing ones, but on the other hand, the occurrence of a fault in a system can be very costly, and time consuming. While we think that formal methods may help solving this kind of problems, we develop approaches where they are kept "behind the scene" in a global process taking into account constraints and objectives coming from user requirements.

Software testing is another aspect of reliable development. Testing activities mostly consist in trying to exhibit cases where a system implementation does not conform to its specifications. Whatever the efforts spent for development, this phase is of real importance to raise the confidence level in the fact that a system behaves properly in a complex environment. We also put a particular emphasis on on-line approaches, in which test and observation are dynamically computed during execution.

DYOGENE Project-Team

4. Application Domains

4.1. Wireless Networks

Wireless networks can be efficiently modelled as dynamic stochastic geometric networks. Their analysis requires taking into account, in addition to their geometric structure, the specific nature of radio channels and their statistical properties which are often unknown a priori, as well as the interaction through interference of the various individual point-to-point links. Established results contribute in particular to the development of network dimensioning methods and some of them are currently used in Orange internal tools for network capacity calculations.

4.2. Embedded Networks

Critical real-time embedded systems (cars, aircrafts, spacecrafts) are nowadays made up of multiple computers communicating with each other. The real-time constraints typically associated with operating systems now extend to the networks of communication between sensors/actuators and computers, and between the computers themselves. Once a media is shared, the time between sending and receiving a message depends not only on technological constraints, but also, and mainly from the interactions between the different streams of data sharing the media. It is therefore necessary to have techniques to guarantee maximum network delays, in addition to local scheduling constraints, to ensure a correct global real-time behaviour to distributed applications/functions.

Moreover, pessimistic estimate may lead to an overdimensioning of the network, which involves extra weight and power consumption. In addition, these techniques must be scalable. In a modern aircraft, thousands of data streams share the network backbone. Therefore algorithm complexity should be at most polynomial.

4.3. Distributed Content Delivery Networks

A content distribution network (CDN) is a globally distributed network of proxy servers deployed in multiple data centers. The goal of a CDN is to serve content to end-users with high availability and high performance. CDNs serve a large fraction of the Internet content today, including web objects (text, graphics and scripts), downloadable objects (media files, software, documents), applications (e-commerce, portals), live streaming media, on-demand streaming media, and social networks. In [32], we address the problem of content replication in large distributed content delivery networks.

4.4. Probabilistic Algorithms for Renewable Integration in Smart grid

This reserach is developed by the Associate Team PARIS; http://www.di.ens.fr/~busic/PARIS/.

Challenges to Renewable Integration. With greater penetration of renewables, there is a need for tremendous shock absorbers to smooth the volatility of renewable power. An example is the balancing reserves obtained today from fossil-fuel generators, that ramp up and down their power output in response to a command signal from a grid balancing authority - an example of an ancillary service. In the absence of large, expensive batteries, we may have to increase our inventory of responsive fossil-fuel generators, negating the environmental benefits of renewable energy.

The goal of our research is to demonstrate that we do not need to rely entirely on expensive batteries or fast-responding fossil fuel generators to track regulation signals or balancing reserves. There is enormous flexibility in the power consumption of the majority of electric loads. This flexibility can be exploited to create "virtual batteries". The best example of this is the heating, ventilation, and air conditioning (HVAC) system of a building: There is no perceptible change to the indoor climate if the airflow rate is increased by 10% for 20 minutes, and decreased by 10% for the next 20 minutes. Power consumption deviations follow the airflow deviations closely, but indoor temperature will be essentially constant.

A starting point in our research is the fact that many of the ancillary services needed today are defined by a power deviation reference signal that has zero mean. Examples are PJM's RegD signal, or BPA's balancing reserves ⁰. We have demonstrated that loads can be classified based on the frequency bandwidth of ancillary service that they can offer. If demand response from loads respects these frequency limitations, it is possible to obtain highly reliable ancillary service to the grid, while maintaining strict bounds on the quality of service (QoS) delivered by each load [22].

Control Design with Local Intelligence at the Loads. An emphasis of our research is the creation of Smart Communities to complement a Smart Grid: intelligence is created at each load in the community. For example, a water heater may be equipped with a simple device that measures the grid frequency – a measure of power mismatch that is regulated to stabilize the power grid. Larger loads may receive a signal from a balancing authority.

A challenge in residential communities is that many loads are either on or off. How can an on/off load track the continuously varying regulation signal broadcast by a grid operator? The answer proposed in our recent work is based on probabilistic algorithms: A single load cannot track a regulation signal such as the balancing reserves. A collection of loads can, provided they are equipped with local control. The value of probabilistic algorithms is that a) they can be designed with minimal communication, b) they avoid synchronization of load responses, and c) it is shown in our recent work that they can be designed to simplify control at the grid level (see the survey [22] and [19], [29]). Other researchers have introduced randomization (see in particular the thesis of J. Mathieu [58]), but without the use of "local intelligence" (distributed control).

4.5. Algorithms for finding communities

In the study of complex networks, a network is said to have community structure if the nodes of the network can be easily grouped into (potentially overlapping) sets of nodes such that each set of nodes is densely connected internally. Community structures are quite common in real networks. Social networks include community groups (the origin of the term, in fact) based on common location, interests, occupation, etc. Metabolic networks have communities based on functional groupings. Citation networks form communities by research topic. Being able to identify these sub-structures within a network can provide insight into how network function and topology affect each other. We propose several algorithms for this problem and extensions [45], [35], [26], [36]

⁰BPA balancing authority. Online, http://tinyurl.com/BPAgenloadhttp://tinyurl.com/BPAbalancing.

EVA Team

4. Application Domains

4.1. Generalities

Wireless networks have become ubiquitous and are an integral part of our daily lives. These networks are present in many application domains; the most important are detailed in this section.

4.2. Industrial process automation

Networks in industrial process automation typically perform **monitoring and control** tasks. Wired industrial communication networks, such as HART ⁰, have been around for decades and, being wired, are highly reliable. Network administrators tempted to "go wireless" expect the same reliability. Reliable process automation networks – especially when used for control – often impose stringent latency requirements. Deterministic wireless networks can be used in critical systems such as control loops, however, the unreliable nature of the wireless medium, coupled with their large scale and "ad-hoc" nature raise some of the most important challenges for low-power wireless research over the next 5-10 years.

Through the involvement of team members in standardization activities, the protocols and techniques will be proposed for the standardization process with a view to becoming the *de-facto* standard for wireless industrial process automation. Besides producing top level research publications and standardization activities, EVA intends this activity to foster further collaborations with industrial partners.

4.3. Environmental Monitoring

Today, outdoor WSNs are used to monitor vast rural or semi-rural areas and may be used to detect fires. Another example is detecting fires in outdoor fuel depots, where the delivery of alarm messages to a monitoring station in an upper-bounded time is of prime importance. Other applications consist in monitoring the snow melting process in mountains, tracking the quality of water in cities, registering the height of water in pipes to foresee flooding, etc. These applications lead to a vast number of technical issues: deployment strategies to ensure suitable coverage and good network connectivity, energy efficiency, reliability and latency, etc.

We will work on such applications in an associate team "REALMS" comprising members from EVA, the university of Berkeley and the university of Michigan.

4.4. The Internet of Things

The general agreement is that the Internet of Things (IoT) is composed of small, often battery-powered objects which measure and interact with the physical world, and encompasses smart home applications, wearables, smart city and smart plant applications.

The Internet of Things (IoT) has received continuous attention since 2013, and has been a marketing tool for industry giants such as IBM and Cisco, and the focal point of major events such the Consumer Electronics Show and the IETF. The danger of such exposure is that any under-performance may ultimately disappoint early adopters.

It is absolutely essential to (1) clearly understand the limits and capabilities of the IoT, and (2) develop technologies which enable user expectation to be met.

With the general public becoming increasingly familiar with the term "Internet of Things", its definition is broadening to include all devices which can be interacted with from a network, and which do not fall under the generic term of "computer".

⁰Highway Addressable Remote Transducer, http://en.hartcomm.org/.

The EVA team is dedicated to understanding and contributing to the IoT. In particular, the team will maintain a good understanding of the different technologies at play (Bluetooth, IEEE 802.15.4, WiFi, cellular), and their trade-offs. Through scientific publications and other contributions, EVA will help establish which technology best fits which application.

4.5. Military, Energy and Aerospace

Through the HIPERCOM project, EVA has developed cutting-edge expertise in using wireless networks for military, energy and aerospace applications. Wireless networks are a key enabling technology in the application domains, as they allow physical processes to be instrumented (e.g. the structural health of an airplane) at a granularity not achievable by its wired counterpart. Using wireless technology in these domains does however raise many technical challenges, including end-to-end latency, energy-efficiency, reliability and Quality of Service (QoS). Mobility is often an additional constraint in energy and military applications. Achieving scalability is of paramount importance for tactical military networks, and, albeit to a lesser degree, for power plants. EVA will work in this domain.

4.6. Smart Cities

It has been estimated that by 2030, 60% of the world's population will live in cities. On the one hand, smart cities aim at making everyday life more attractive and pleasant for citizens; on the other hand, they facilitate how those citizens can participate in the life of the city.

Smart cities share the constraint of mobility (both pedestrian and vehicular) with tactical military networks. Vehicular Ad-hoc NETworks (VANETs) will play an important role in the development of smarter cities.

The coexistence of different networks operating in the same radio spectrum can cause interference that should be avoided. Cognitive radio provides secondary users with the frequency channels that are temporarily unused (or unassigned) by primary users. Such opportunistic behavior can also be applied to urban wireless sensor networks. Smart cities raise the problem of transmitting, gathering, processing and storing big data. Another issue is to provide the right information at the place where it is most needed.

4.7. Emergency Applications

In an "emergency" application, heterogeneous nodes of a wireless network cooperate to recover from a disruptive event in a timely fashion, thereby possibly saving human lives. These wireless networks can be rapidly deployed and are useful to assess damage and take initial decisions. Their primary goal is to maintain connectivity with the humans or mobile robots (possibly in a hostile environment) in charge of network deployment. The deployment should ensure the coverage of particular points or areas of interest. The wireless network has to cope with pedestrian mobility and robot/vehicle mobility. The environment, initially unknown, is progressively discovered and may contain numerous obstacles that should be avoided. The nodes of the wireless network are usually battery-powered. Since they are placed by a robot or a human, their weight is very limited. The protocols supported by these nodes should be energy-efficient to maximize network lifetime. In such a challenging environment, sensor nodes should be replaced before their batteries are depleted. It is therefore important to be able to accurately determine the battery lifetime of these nodes, enabling predictive maintenance.

FOCUS Project-Team

4. Application Domains

4.1. Ubiquitous Systems

The main application domain for Focus are ubiquitous systems, broadly systems whose distinctive features are: mobility, high dynamicity, heterogeneity, variable availability (the availability of services offered by the constituent parts of a system may fluctuate, and similarly the guarantees offered by single components may not be the same all the time), open-endedness, complexity (the systems are made by a large number of components, with sophisticated architectural structures). In Focus we are particularly interested in the following aspects.

- Linguistic primitives for programming dialogues among components.
- Contracts expressing the functionalities offered by components.
- Adaptability and evolvability of the behaviour of components.
- Verification of properties of component systems.
- Bounds on component *resource consumption* (e.g., time and space consumed).

4.2. Service Oriented Computing and Cloud Computing

Today the component-based methodology often refers to Service Oriented Computing. This is a specialized form of component-based approach. According to W3C, a service-oriented architecture is "a set of components which can be invoked, and whose interface descriptions can be published and discovered". In the early days of Service Oriented Computing, the term services was strictly related to that of Web Services. Nowadays, it has a much broader meaning as exemplified by the XaaS (everything as a service) paradigm: based on modern virtualization technologies, Cloud computing offers the possibility to build sophisticated service systems on virtualized infrastructures accessible from everywhere and from any kind of computing device. Such infrastructures are usually examples of sophisticated service oriented architectures that, differently from traditional service systems, should also be capable to elastically adapt on demand to the user requests.

FUN Project-Team

4. Application Domains

4.1. Application Domains

The set of applications enabled through FUN and IoT is very large and can apply in every application area. We can thus not be exhaustive but among the most spread applications, we can name every area, event or animal monitoring, understanding and protection. To illustrate this, we may refer to the use cases addressed by our PREDNET project which goals is to equip rhinoceros with smart communicating devices to fight against poaching.

Other field of application is exploration of hostile and/or unknown environment by a fleet of self-organizing robots that cooperate with RFID and sensors to ensure a continue monitoring afterwards.

Also, IoT and FUN ca play a key role in logistics and traceability by relying on the use of sensors or RFID technologies as implemented in our TRACAVERRE project or our collaboration with the start up TRAXENS.

Finally, IoT and FUN leverage a lot of applications in Smart City concept, ranging from parking aid to a better energy consumption going through air quality monitoring, traffic fluidizing etc. (See our CityLab Inria and VITAL projects).

GANG Project-Team

4. Application Domains

4.1. Application Domains

Application domains include evaluating Internet performances, the design of new peer-to-peer applications, enabling large scale ad hoc networks and mapping the web.

- The application of measuring and modeling Internet metrics such as latencies and bandwidth is to provide tools for optimizing Internet applications. This concerns especially large scale applications such as web site mirroring and peer-to-peer applications.
- Peer-to-peer protocols are based on a all equal paradigm that allows to design highly reliable and scalable applications. Besides the file sharing application, peer-to-peer solutions could take over in web content dissemination resistant to high demand bursts or in mobility management. Envisioned peer-to-peer applications include video on demand, streaming, exchange of classified ads,...
- Wifi networks have entered our every day life. However, enabling them at large scale is still a challenge. Algorithmic breakthrough in large ad hoc networks would allow to use them in fast and economic deployment of new radio communication systems.
- The main application of the web graph structure consists in ranking pages. Enabling site level indexing and ranking is a possible application of such studies.

HIEPACS Project-Team

4. Application Domains

4.1. Material physics

Participants: Pierre Blanchard, Olivier Coulaud, Arnaud Etcheverry.

Due to the increase of available computer power, new applications in nano science and physics appear such as study of properties of new materials (photovoltaic materials, bio- and environmental sensors, ...), failure in materials, nano-indentation. Chemists, physicists now commonly perform simulations in these fields. These computations simulate systems up to billion of atoms in materials, for large time scales up to several nanoseconds. The larger the simulation, the smaller the computational cost of the potential driving the phenomena, resulting in low precision results. So, if we need to increase the precision, there are two ways to decrease the computational cost. In the first approach, we improve algorithms and their parallelization and in the second way, we will consider a multiscale approach.

A domain of interest is the material aging for the nuclear industry. The materials are exposed to complex conditions due to the combination of thermo-mechanical loading, the effects of irradiation and the harsh operating environment. This operating regime makes experimentation extremely difficult and we must rely on multi-physics and multi-scale modeling for our understanding of how these materials behave in service. This fundamental understanding helps not only to ensure the longevity of existing nuclear reactors, but also to guide the development of new materials for 4th generation reactor programs and dedicated fusion reactors. For the study of crystalline materials, an important tool is dislocation dynamics (DD) modeling. This multiscale simulation method predicts the plastic response of a material from the underlying physics of dislocation motion. DD serves as a crucial link between the scale of molecular dynamics and macroscopic methods based on finite elements; it can be used to accurately describe the interactions of a small handful of dislocations, or equally well to investigate the global behavior of a massive collection of interacting defects.

To explore i.e. to simulate these new areas, we need to develop and/or to improve significantly models, schemes and solvers used in the classical codes. In the project, we want to accelerate algorithms arising in those fields. We will focus on the following topics (in particular in the currently under definition OPTIDIS project in collaboration with CEA Saclay, CEA Ile-de-france and SIMaP Laboratory in Grenoble) in connection with research described at Sections 3.4 and 3.5.

- The interaction between dislocations is long ranged (O(1/r)) and anisotropic, leading to severe computational challenges for large-scale simulations. In dislocation codes, the computation of interaction forces between dislocations is still the most CPU time consuming and has to be improved to obtain faster and more accurate simulations.
- In such simulations, the number of dislocations grows while the phenomenon occurs and these
 dislocations are not uniformly distributed in the domain. This means that strategies to dynamically
 construct a good load balancing are crucial to acheive high performance.
- From a physical and a simulation point of view, it will be interesting to couple a molecular dynamics
 model (atomistic model) with a dislocation one (mesoscale model). In such three-dimensional
 coupling, the main difficulties are firstly to find and characterize a dislocation in the atomistic region,
 secondly to understand how we can transmit with consistency the information between the two micro
 and meso scales.

4.2. Co-design for scalable numerical algorithms in scientific applications

Participants: Pierre Brenner, Jean-Marie Couteyen, Mathieu Faverge, Xavier Lacoste, Guillaume Latu, Salli Moustafa, Pierre Ramet, Fabien Rozar, Jean Roman.

The research activities concerning the ITER challenge are involved in the Inria Project Lab (IPL) C2S @ EXA.

4.2.1. MHD instabilities edge localized modes

The numerical simulations tools designed for ITER challenges aim at making a significant progress in understanding active control methods of plasma edge MHD instabilities Edge Localized Modes (ELMs) which represent particular danger with respect to heat and particle loads for Plasma Facing Components (PFC) in ITER. Project is focused in particular on the numerical modeling study of such ELM control methods as Resonant Magnetic Perturbations (RMPs) and pellet ELM pacing both foreseen in ITER. The goals of the project are to improve understanding the related physics and propose possible new strategies to improve effectiveness of ELM control techniques. The tool for the nonlinear MHD modeling (code JOREK) will be largely developed within the present project to include corresponding new physical models in conjunction with new developments in mathematics and computer science strategy in order to progress in urgently needed solutions for ITER.

The fully implicit time evolution scheme in the JOREK code leads to large sparse linear systems that have to be solved at every time step. The MHD model leads to very badly conditioned matrices. In principle the PaStiX library can solve these large sparse problems using a direct method. However, for large 3D problems the CPU time for the direct solver becomes too large. Iterative solution methods require a preconditioner adapted to the problem. Many of the commonly used preconditioners have been tested but no satisfactory solution has been found. The research activities presented in Section 3.3 will contribute to design new solution techniques best suited for this context.

4.2.2. Turbulence of plasma particules inside a tokamak

In the context of the ITER challenge, the GYSELA project aims at simulating the turbulence of plasma particules inside a tokamak. Thanks to a better comprehension of this phenomenon, it would be possible to design a new kind of source of energy based of nuclear fusion. Currently, GYSELA is parallalized in a MPI/OpenMP way and can exploit the power of the current greatest supercomputers. To simulate faithfully the plasma physic, GYSELA handles a huge amount of data. In fact, the memory consumption is a bottleneck on very large simulations (449 K cores). In this context, mastering the memory consumption of the code becomes critical to consolidate its scalability and to enable the implementation of new numerical and physical features to fully benefit from the extreme scale architectures.

The scientific objectives of these research activities are first the design of advanced generic tools to manage and to better predict and limit the memory consumption peak in order to reduce the memory footprint of GYSELA, and second to design a set of tools that analyses the performance and the topology of the targeted architecture to optimize the deployment of Gysela runs. This will allow the design of new advanced numerical methods (for the gyroaverage operator, for the source and collision operators) and efficient scalable parallel algorithms in order to be able to deal with new physics in GYSELA. In particular the objective is to tackle kinetic electron configurations for more realistic simulations.

4.2.3. SN Cartesian solver for nuclear core simulation

As part of its activity, EDF R&D is developing a new nuclear core simulation code named COCAGNE that relies on a Simplified PN (SPN) method to compute the neutron flux inside the core for eigenvalue calculations. In order to assess the accuracy of SPN results, a 3D Cartesian model of PWR nuclear cores has been designed and a reference neutron flux inside this core has been computed with a Monte Carlo transport code from Oak Ridge National Lab. This kind of 3D whole core probabilistic evaluation of the flux is computationally very demanding. An efficient deterministic approach is therefore required to reduce the computation effort dedicated to reference simulations.

In this collaboration, we work on the parallelization (for shared and distributed memories) of the DOMINO code, a parallel 3D Cartesian SN solver specialized for PWR core reactivity computations which is fully integrated in the COCAGNE system.

4.2.4. 3D aerodynamics for unsteady problems with moving bodies

Aribus Defence and Space has developped for 20 years the FLUSEPA code which focuses on unsteady phenomenon with changing topology like stage separation or rocket launch. The code is based on a finite volume formulation with temporal adaptive time integration and supports bodies in relative motion. The temporal adaptive integration classifies cells in several temporal levels, zero being the level with the slowest cells and each level being twice as fast as the previous one. This repartition can evolve during the computation, leading to load-balancing issues in a parallel computation context. Bodies in relative motion are managed through a CHIMERA-like technique which allows building a composite mesh by merging multiple meshes. The meshes with the highest priorities recover the least ones, and at the boundaries of the covered mesh, an intersection is computed. Unlike classical CHIMERA technique, no interpolation is performed, allowing a conservative flow integration.

The main objective of this research is to design a new scalable version of FLUSEPA from a task-based parallelization over a runtime system in order to run efficiently on modern multicore parallel architectures very large 3D simulations (for example ARIANE 5 and 6 booster separation).

INDES Project-Team

4. Application Domains

4.1. Web programming

Along with games, multimedia applications, electronic commerce, and email, the web has popularized computers for daily life. The revolution is engaged and we may be at the dawn of a new era of computing where the web is a central element. The web constitutes an infrastructure more versatile, polymorphic, and open, in other words, more powerful, than any dedicated network previously invented. For this very reason, it is likely that most of the computer programs we will write in the future, for professional purposes as well as for our own needs, will extensively rely on the web. In addition to allowing reactive and graphically pleasing interfaces, web applications are de facto distributed. Implementing an application with a web interface makes it instantly open to the world and accessible from much more than one computer. The web also partially solves the problem of platform compatibility because it physically separates the rendering engine from the computation engine. Therefore, the client does not have to make assumptions on the server hardware configuration, and vice versa. Lastly, HTML is highly durable. While traditional graphical toolkits evolve continuously, making existing interfaces obsolete and breaking backward compatibility, modern web browsers that render on the edge web pages are still able to correctly display the web pages of the early 1990?s. For these reasons, the web is arguably ready to escape the beaten track of n-tier applications, CGI scripting and interaction based on HTML forms. However, we think that it still lacks programming abstractions that minimize the overwhelming amount of technologies that need to be mastered when web programming is involved. Our experience on reactive and functional programming is used for bridging this gap.

4.2. Multimedia

Electronic equipments are less and less expensive and more and more widely spread out. Nowadays, in industrial countries, computers are almost as popular as TV sets. Today, almost everybody owns a mobile phone. Many are equipped with a GPS or a PDA. Modem, routers, NASes and other network appliances are also commonly used, although they are sometimes sealed under proprietary packaging such as the Livebox or the Freebox. Most of us evolve in an electronic environment which is rich but which is also populated with mostly isolated devices. The first multimedia applications on the web have appeared with the Web 2.0. The most famous ones are Flickr, YouTube, or Deezer. All these applications rely on the same principle: they allow roaming users to access the various multimedia resources available all over the Internet via their web browser. The convergence between our new electronic environment and the multimedia facilities offered by the web will allow engineers to create new applications. However, since these applications are complex to implement this will not happen until appropriate languages and tools are available. In the Indes team, we develop compilers, systems, and libraries that address this problem.

4.3. Robotics

The web is the de facto standard of communication for heterogeneous devices. The number of devices able to access the web is permanently increasing. Nowadays, even our mobile phones can access the web. Tomorrow it could even be the turn of our wristwatches! The web hence constitutes a compelling architecture for developing applications relying on the ambient computing facilities. However, since current programming languages do not allow us to develop easily these applications, ambient computing is currently based on ad-hoc solutions. Programming ambient computing via the web is still to be explored. The tools developed in the Indes team allow us to build prototypes of a robot as a web entity, and the use of remote web services to manage, monitor or extend the features of the robot. Among the direct benefits of relying on a web framework for robotics are the ability to use any web enabled device such as a smartphone or tablet to drive the robot.

INFINE Team (section vide)

KERDATA Project-Team

4. Application Domains

4.1. Joint genetic and neuroimaging data analysis on Azure clouds

Joint acquisition of neuroimaging and genetic data on large cohorts of subjects is a new approach used to assess and understand the variability that exists between individuals. Both neuroimaging- and genetic-domain observations include a huge amount of variables (of the order of millions). Performing rigorous statistical analyses on such amounts of data is a major computational challenge that cannot be addressed with conventional computational techniques only. On the one hand, sophisticated regression techniques need to be used in order to perform significant analysis on these large datasets; on the other hand, the cost entailed by parameter optimization and statistical validation procedures (e.g. permutation tests) is very high.

To address the above challenges, the A-Brain (AzureBrain) Project was carried out within the Microsoft Research-Inria Joint Research Center. It was co-led by the KerData (Rennes) and Parietal (Saclay) Inria teams. They jointly address this computational problem using cloud related techniques on the Microsoft Azure cloud infrastructure. The two teams brought together their complementary expertise: KerData in the area of scalable cloud data management, and Parietal in the field of neuroimaging and genetics data analysis.

This application scenario is a typical multi-disciplinary Data Science project which serves as background for several on-going research activities, beyond the end of the A-Brain project.

4.2. Structural protein analysis on Nimbus and IBM clouds

In the framework of the MapReduce ANR project led by KerData (2010-2014), we have focused on the FastA bioinformatics application used for massive protein sequence similarity searching. This is a typical data-intensive application that can leverage the Map-Reduce model for a scalable execution on large-scale distributed platforms. FastA remains an interesting use case that we are considering beyond the end of the MapReduce project, for benchmarking our research results in the the area of optimized MapReduce processing.

4.3. I/O intensive climate simulations for the Blue Waters post-petascale machine

A major research topic in the context of HPC simulations running on post-petascale supercomputers is to explore how to record and visualize data during the simulation efficiently without impacting the performance of the computation generating that data. Conventional practice consists in storing data on disk, moving them off-site, reading them into a workflow, and analyzing them. This approach becomes increasingly harder to use because of the large data volumes generated at fast rates, in contrast to limited back-end performance. Scalable approaches to deal with these I/O limitations are thus of utmost importance. This is one of the main challenges explicitly stated in the roadmap of the Blue Waters Project, which aims to build one of the most powerful supercomputers in the world.

In this context, the KerData project-team is exploring innovative ways to remove the limitations mentioned above through collaborative work in the framework of the Joint Inria-Illinois-ANL-BSC-JSC-RIKEN/AICS Laboratory for Extreme-Scale Computing (JLESC, formerly called JLPC), whose research activity focuses on the Blue Waters project. An example is the atmospheric simulation code CM1 (Cloud Model 1), one of the target applications of the Blue Waters machine. State-of-the-art I/O approaches, which typically consist in periodically writing a very large number of small files are inefficient: they cause bursts of I/O in the parallel file system, leading to poor performance and extreme variability (*jitter*). The challenge here is to investigate how to make an efficient use of the underlying file system, by avoiding synchronization and contention as much as possible. In collaboration with the JLESC, we are addressing these challenges through the Damaris approach.

MADYNES Project-Team

4. Application Domains

4.1. Mobile, ad-hoc and constrained networks

The results coming out from MADYNES can be applied to any dynamic infrastructure that contributes to the delivery of value added services. While this is a potentially huge application domain, we focus on the following environments at the network level:

- 1. multicast services,
- 2. ad-hoc networks.
- 3. mobile devices and IPv6 networks,
- 4. voice over IP infrastructure.

All these selected application areas exhibit different dynamicity features. In the context of multicast services, we focus on distribution, monitoring and accounting of key distribution protocols. On *ad-hoc* and dynamic networks we are investigating the provisioning, monitoring, configuration and performance management issues.

Concerning mobile devices, we are interested in their configuration, provisioning and monitoring. IPv6 work goes on in Information Models and on self-configuration of the agents.

4.2. Dynamic services infrastructures

At the service level, dynamics is also increasing very fast. We apply the results of our work on autonomous management on infrastructures which support dynamic composition and for which self-instrumentation and management automation is required.

The target service environments are:

- sensor networks,
- peer-to-peer infrastructures,
- information centric networks,
- ambiant environments.

MAESTRO Project-Team

4. Application Domains

4.1. Main Application Domains

MAESTRO's main application area is networking, to which we apply modeling, performance evaluation, optimization and control. Our primary focus is on protocols and network architectures, and recent evolutions include the study of the Web and social networks, as well as models for Green IT.

- Wireless (cellular, ad hoc, sensor) networks: WLAN, WiMAX, UMTS, LTE, HSPA, delay tolerant networks (DTN), power control, medium access control, transmission rate control, redundancy in source coding, mobility models, coverage, routing, green base stations,
- Internet applications: social networks, content distribution systems, peer-to-peer systems, overlay networks, multimedia traffic, video-on-demand, multicast;
- Information-Centric Networking (ICN) architectures: Content-Centric Network (CCN, also called Content-Oriented Networks);
- Internet infrastructure: TCP, high speed congestion control, voice over IP, service differentiation, quality of service, web caches, proxy caches.

MESCAL Project-Team

4. Application Domains

4.1. Cloud, Grid, Multi-core and Desktop Computing

Participants: Arnaud Legrand, Olivier Richard, Jean-Marc Vincent.

Software tools were developed to carry experiments on clouds and grids (Kameleon and Expo). Other tools (Pajé, Viva, Framesoc and Ocelotl) have been designed to monitor, trace and analyse applications running on multi-core and grid computers Such traces have also been used in SIMGRID to simulate volunteer computing systems at unprecedented scale.

4.2. Wireless Networks

Participants: Bruno Gaujal, Panayotis Mertikopoulos.

MESCAL is involved in the common laboratory between Inria and Alcatel-Lucent. Bruno Gaujal is leading the Selfnets research action. This action was started in 2008 and was renewed for four more years (from 2012 to 2016). In our collaboration with Alcatel we use game theory techniques as well as evolutionary algorithms to compute optimal configurations in wireless networks (typically 3G or LTE networks) in a distributed manner. We have also been working on optimal spectrum management of MIMO systems, routing in ad-hoc works and power allocation in future 5G networks.

4.3. On-demand Geographical Maps

Participant: Jean-Marc Vincent.

This joint work involves the UMR 8504 Géographie-Cité, LIG, UMS RIATE and the Maisons de l'Homme et de la Société.

Improvements in the Web developments have opened new perspectives in interactive cartography. Nevertheless existing architectures have some problems to perform spatial analysis methods that require complex calculus over large data sets. Such a situation involves some limitations in the query capabilities and analysis methods proposed to users. The HyperCarte consortium with LIG, Géographie-cité and UMR RIATE proposes innovative solutions to these problems. Our approach deals with various areas such as spatio-temporal modeling, parallel computing and cartographic visualization that are related to spatial organizations of social phenomena.

4.4. Energy and Transportation

Participant: Nicolas Gast.

This work is mainly done within the Quanticol European project.

Smart urban transport systems and smart grids are two examples of collective adaptive systems. They consist of a large number of heterogeneous entities with decentralised control and varying degrees of complex autonomous behaviour. Within the QUANTICOL project, we develop an analysis tools to help to reason about such systems. Our work relies on tools from fluid and mean-field approximation to build decentralized algorithms that solve complex optimization problems. We focus on two problems: decentralized control of electric grids and capacity planning in vehicle-sharing systems to improve load balancing.

MIMOVE Team

4. Application Domains

4.1. Mobile urban systems for smarter cities

With the massive scale adoption of mobile devices and further expected significant growth in relation with the Internet of Things, mobile computing is impacting most -if not all- the ICT application domains. However, given the importance of conducting empirical studies to assess and nurture our research, we focus on one application area that is the one of "smart cities". The smart city vision anticipates that the whole urban space, including buildings, power lines, gas lines, roadways, transport networks, and cell phones, can all be wired together and monitored. Detailed information about the functioning of the city then becomes available to both city dwellers and businesses, thus enabling better understanding and consequently management of the city's infrastructure and resources. This raises the prospect that cities will become more sustainable environments, ultimately enhancing the citizens' well being. There is the further promise of enabling radically new ways of living in, regulating, operating and managing cities, through the increasing active involvement of citizens by ways of crowd-sourcing/sensing and social networking.

Still, the vision of what smart cities should be about is evolving at a fast pace in close concert with the latest technology trends. It is notably worth highlighting how mobile and social network use have reignited citizen engagement, thereby opening new perspectives for smart cities beyond data analytics that have been initially one of the core foci for smart cities technologies. Similarly, open data programs foster the engagement of citizens in the city operation and overall contribute to make our cities more sustainable. The unprecedented democratization of urban data fueled by open data channels, social networks and crowd sourcing enables not only the monitoring of the activities of the city but also the assessment of their nuisances based on their impact on the citizens, thereby prompting social and political actions. However, the comprehensive integration of urban data sources for the sake of sustainability remains largely unexplored. This is an application domain that we intend to focus on, further leveraging our research on emergent mobile distributed systems, large-scale mobile sensing & actuation, and mobile social crowd-sensing.

In a first step, we concentrate on the following specialized applications, which we investigate in close collaboration with other researchers, in particular as part of the dedicated Inria Project Lab CityLab@Inria:

- **Democratization of urban data for healthy cities.** The objective here is to integrate the various urban data sources, especially by way of crowd-Xing, to better understand city nuisances from raw pollution sensing (e.g., sensing noise) to the sensing of its impact on citizens (e.g., how people react to urban noise and how this affects their health).
- Socially-aware urban mobility. Mobility within mega-cities is known as one of the major challenges to face urgently due to the fact that today's mobility patterns do not scale and to the negative effect on the environment and health. It is our belief that mobile social and physical sensing may significantly help in promoting the use of public transport, which we have started to investigate through empirical study based on the development and release of dedicated apps.
- Social applications. Mobile applications are being considered by sociologists as a major vehicle to actively involve citizens and thereby prompt them to become activists. This is especially studied with the Social Apps Lab at UC Berkeley. Our objective is to study such a vehicle from the ICT perspective and in particular elicit relevant middleware solutions to ease the development and development of such "civic apps".

Acknowledging the need for collaborative research in the application domain of smart cities, MiMove is heavily involved and actually leading CityLab@Inria ⁰. CityLab is focused on the study of ICT solutions promoting social sustainability in smart cities, and involves the following Inria project-teams in addition to MiMove: CLIME, DICE, FUN, MYRIADS, SMIS, URBANET and WILLOW. CityLab further involves strong collaboration with California universities affiliated with CITRIS (Center for Information Technology Research in the Interest of Society) and especially UC Berkeley, in relation with the *Inria@SiliconValley* program. We note that Valérie Issarny acts as scientific manager of Inria@SiliconValley and is currently visiting scholar at CITRIS at UC Berkeley. In this context, MiMove researchers are working closely with colleagues of UC Berkeley, including researchers from various disciplines interested in smart cities (most notably sociologists).

⁰https://citylab.inria.fr

MOAIS Project-Team (section vide)

MUSE Team

4. Application Domains

4.1. Home Network Diagnosis

With the availability of cheap broadband connectivity, Internet access from the home has become a ubiquity. Modern households host a multitude of networked devices, ranging from personal devices such as laptops and smartphones to printers and media centers. These devices connect among themselves and to the Internet via a local-area network—a *home network*— that has become an important part of the "Internet experience". In fact, ample anecdotal evidence suggests that the home network can cause a wide array of connectivity impediments, but their nature, prevalence, and significance remain largely unstudied.

Our long-term goal is to assist users with concrete indicators of the causes of potential problems and—ideally—ways to fix them. We intend to develop a set of easy-to-use home network diagnosis tools that can reliably identify performance and functionality shortcomings rooted in the home. The development of home network diagnosis tools brings a number of challenges. First, home networks are heterogenous. The set of devices, configurations, and applications in home networks vary significantly from one home to another. We must develop sophisticated techniques that can learn and adapt to any home network as well as to the level of expertise of the user. Second, there are numerous ways in which applications can fail or experience poor performance in home networks. Often there are a number of explanations for a given symptom. We must devise techniques that can identify the most likely cause(s) for a given problem from a set of possible causes. Third, even if we can identify the cause of the problem, we must then be able to identify a solution. It is important that the output of the diagnosis tools we build is "actionable". Users should understand the output and know what to do.

We are conceiving methods for two application scenarios: (i) when the end user in the home deploys our diagnostic tools either on the home gateway (the gateway often combines a DSL/cable modem and an access point; it connects the home network to the ISP) or on devices connected to the home network and (ii) when ISPs collect measurements from homes of subscribers and then correlate these measurements to help identify problems.

Assisting end users. We are developing algorithms to determine whether network performance problems lie inside or outside the home network. Given that the home gateway connects the home with the rest of the Internet, we are designing an algorithm (called HoA) that analyzes traffic that traverses the gateway to distinguish access link and home network bottlenecks. A measurement vantage point on the gateway is key for determining if the performance bottleneck lies within the home network or the access ISP, but we also need to deploy diagnosis tools in end-devices. First, some users may not want (or not know how) to deploy a new home gateway in their homes. Second, some problems will be hard to diagnose with only the vantage point of the gateway (for example, when a device cannot send traffic or when the wireless is poor in certain locations of a home). We can obtain more complete visibility by leveraging multiple measurement nodes around the home, potentially including the home gateway, all participating jointly in the measurement task. We have an ongoing project to realize a home network analyzer as a web-based measurement application built on top of our team's recently developed browser-based measurement platform, Fathom. To integrate the home gateway in the analyzer, we plan to engage the BISmark Project. BISmark already provides a web server as well as extensive configurability, allowing us to experiment freely with both passive as well as active measurements. We must develop a home network analyzer that can first discover the set of devices connected to the home network that can collaborate on the diagnosis task. We will then develop tomography algorithms to infer where performance problems lie given measurements taken from the set of available vantage points.

Assisting Internet Service Providers (ISPs). Our discussions with several large access ISPs reveal that service calls are costly, ranging from \$9–25 per call, and as many as 75% of service calls from customers are usually caused by problems that have nothing to do with the ISP. Therefore, ISPs are eager to deploy techniques to assist in home network diagnosis. In many countries ISPs control the home gateway and set-top-boxes in the home. We plan to develop more efficient mechanisms for home users to report trouble to their home ISP and consequently reduce the cost of service calls. This project is in collaboration with Technicolor and Portugal Telecom. Technicolor is a large manufacturer of home gateways and set-top-boxes. Portugal Telecom is the largest broadband access provider in Portugal. Technicolor already collects data from 200 homes in Portugal. We are working with the data collected in this deployment together with controlled experiments to develop methods to diagnose problems in the home wireless.

4.2. Quality of Experience

Understanding how users react to different levels of network performance presents two main challenges:

- 1. User perception is subjective and contextual. Different users may have different tolerance levels to network performance and the same user may have different expectations under different circumstances. Take for example the round-trip time (RTT), a typical network performance metric. If RTTs are larger than usual, a user who is doing remote login may feel that the connection is unusable, whereas another who is watching YouTube may notice no problem (because YouTube has a playout buffer to mask some network delay). Take another example of a user downloading her email. This user may tolerate some delay when she is leisurely checking her email at home, but she may become extremely frustrated with the same delay if she is in an airplane and needs to download her email just before takeoff.
- 2. It is challenging to "measure" users. We must develop methods to measure the user perception of network performance as users perform their routine online tasks. It is hence important that these methods are not too intrusive. Otherwise, users are unlikely to participate in the experiment. In addition, we must capture user perception at different levels of performance and in a variety of scenarios.

We will develop tools that run on end systems to collect network performance data annotated with the user perception. These tools will adopt a hybrid measurement methodology that combines network measurement techniques to infer application performance with techniques from HCI to measure user perception. We will later use the resulting datasets to build models of user perception of network performance based only on data that we can obtain automatically from the user device or from user's traffic observed in the network. Models of user perception of network performance can be used to detect when performance is poor to trigger diagnosis or to adapt network/application performance to better serve users.

4.3. Crowd-sourced content recommendation

The Internet today serves as a large content distribution platform (online content varies from traditional news, TV series, and movies to specialized blogs and family pictures shared over social networks) as well as a platform for users to exchange opinions about practically everything (from movies to services and restaurants). The amount of information available online today overwhelms most users and selecting which content to watch or what do has become a challenge. We are applying passive measurement methods and content summarisation techniques to help users to identify relevant content in two scenarios. First, we are developing a system called WeBrowse that passively observes network traffic to extract user clicks (i.e., the URLs users visit). A user click is a good measure of interest, as users often have an idea of the type of content they are about to access (e.g., because they saw a preview or because a friend recommended it). Intuitively, the more users click on a URL, the higher the interest in the content on the corresponding page. WeBrowse then promotes "hottest" and most popular content to users of a network. We have a deployment of WeBrowse in a campus network. Second, we are working on techniques to summarise user feedback (for example, movie or restaurant reviews) with semi-structured feedback. Today reviews are either free-form text or star rating. Star rating is too coarse to capture the nuances of why a user likes or dislikes something, whereas free text is hard for users to parse and

extract a clear opinion. We are instead working with semi-structured reviewing where users enter *tags* (a short sequence of words describing the user experience). We are working with Technicolor on the summarisation of movie reviews and on building a mobile app (called TagIt) where users can review movies directly with tags.

MYRIADS Project-Team

4. Application Domains

4.1. Application Domains

The Myriads team investigates the design and implementation of system services. Thus its research activities address a broad range of application domains. We validate our research results with selected use cases in the following application domains:

- Web services, Service oriented applications,
- Business applications,
- Bio-informatics applications,
- Computational science applications,
- Numerical simulations,
- Energy and sustainable development,
- Smart cities.

PHOENIX Project-Team

4. Application Domains

4.1. Introduction

Building on our previous work, we are studying software development in the context of communication services, in their most general forms. That is, going beyond human-to-human interactions, and covering human-to-machine and machine-to-machine interactions. Software systems revolving around such forms of communications can be found in a number of areas, including telephony, pervasive computing, and assisted living; we view these software systems as coordinating the communication between networked entities, regardless of their nature: human, hardware or software. In this context, our three main application domains are pervasive computing, internet of things and assistive computing.

4.2. Pervasive Computing

Pervasive computing systems are being deployed in a rapidly increasing number of areas, including building automation and supply chain management. Regardless of their target area, pervasive computing systems have a typical architectural pattern. They aggregate data from a variety of distributed sources, whether sensing devices or software components, analyze a context to make decisions, and carry out decisions by invoking a range of actuators. Because pervasive computing systems are standing at the crossroads of several domains (e.g., distributed systems, multimedia, and embedded systems), they raise a number of challenges in software development:

- Heterogeneity. Pervasive computing systems are made of off-the-shelf entities, that is, hardware and software building blocks. These entities run on specific platforms, feature various interaction models, and provide non-standard interfaces. This heterogeneity tends to percolate in the application code, preventing its portability and reusability, and cluttering it with low-level details.
- Lack of structuring. Pervasive computing systems coordinate numerous, interrelated components. A lack of global structuring makes the development and evolution of such systems error-prone: component interactions may be invalid or missing.
- Combination of technologies. Pervasive computing systems involve a variety of technological issues, including device intricacies, complex APIs of distributed systems technologies and middleware-specific features. Coping with this range of issues results in code bloated with special cases to glue technologies together.
- *Dynamicity.* In a pervasive computing system, devices may either become available as they get deployed, or unavailable due to malfunction or network failure. Dealing with these issues explicitly in the implementation can quickly make the code cumbersome.
- Testing. Pervasive computing systems are complicated to test. Doing so requires equipments to be acquired, tested, configured and deployed. Furthermore, some scenarios cannot be tested because of the nature of the situations involved (e.g., fire and smoke). As a result, the programmer must resort to writing specific code to achieve ad hoc testing.

4.3. Internet of Things

The Internet of Things (IoT) has become a reality with the emergence of Smart Cities, populated with large amounts of smart objects which are used to deliver a range of citizen services (e.g., security, well being, etc.) The IoT paradigm relies on the pervasive presence of smart objects or "things", which raises a number of new challenges in the software engineering domain.

We introduce a *design-driven development approach* that is dedicated to the domain of orchestration of masses of sensors. The developer declares what an application does using a domain-specific language (DSL), named DiaSwarm. Our compiler processes domain-specific declarations to generate a customized programming framework that guides and supports the programming phase.

DiaSwarm addresses the main phases of an application orchestrating masses of sensors.

Service discovery. Standard service discovery at the individual object level does not address the needs of applications orchestrating large numbers of smart objects. Instead, a high-level approach which provides constructs to specifying subsets of interest is needed. Our approach allows developers to introduce application-specific concepts (e.g., regrouping parking spaces into lots or districts) at the design time and then these can be used to express discovery operations. Following our design-driven development approach, these concepts are used to generate code to support and guide the programming phase.

Data gathering. Applications need to acquire data from a large number of objects through a variety of delivery models. For instance, air pollution sensors across a city may only push data to the relevant applications when pollution levels exceed tolerated levels. Tracking sensors, however, might determine the location of vehicles and send the acquired measurements to applications periodically (e.g., 10 min. intervals). Data delivery models need to be introduced at design time since they have a direct impact on the application's program structure. In doing so, the delivery models used by an application can be checked against sensor features early in the development process.

Data processing. Data that is generated from hundreds of thousands of objects and accumulated over a period of time calls for efficient processing strategies to ensure the required performance is attained. Our approach allows for an efficient implementation of the data processing stage by providing the developer with a framework based on the MapReduce [34] programming model which is intended for the processing of large data sets.

4.4. Assistive Computing

Cognitive impairments (memory, attention, time and space orientation, *etc.*) affect a large part of the population, including older adults, patients with brain injuries (traumatic brain injury, stroke, etc.), and people exhibiting cognitive incapacities, such as Down syndrome.

The emerging industry of assistive technologies provide hardware devices dedicated to specific tasks, such as a telephone set with a keyboard picturing relatives (http://www.doro.fr), or a device for audio and video communication over the web (http://www.technosens.fr). These assistive technologies apply a traditional approach to personal assistance by providing an equipment dedicated to a single task (or a limited set of tasks), without leveraging surrounding devices. This traditional approach has fundamental limitations that must be overcome to significantly improve assistive technologies:

- They are not adaptable to one's needs. They are generally dedicated to a task and have very limited functionalities: no networking, limited computing capabilities, a limited screen and rudimentary interaction modalities. This lack of functionality may cause a proliferation of devices, complicating the end-user life. Moreover, they are rarely designed to adapt to the cognitive changes of the user. When the requirements evolve, the person must acquire a new device.
- They are often proprietary, limiting innovation. As a result, they cannot cope with the evolution of users' needs.
- They have limited or no interoperability. As a result, they cannot rely on other devices and software services to offer richer applications.

To break this model, we propose to offer an assistive platform that is open-ended in terms of applications and entities. (1) An online catalog of available applications enables every user and caregiver to define personalized assistance in the form of an evolving and adapted set of applications; this catalog provides a community of developers with a mechanism to publish applications for specific daily-activity needs. (2) New types of entities (whether hardware or software) can be added to a platform description to enhance its functionalities and extend the scope of future applications.

RAP Project-Team (section vide)

REGAL Project-Team (section vide)

RMOD Project-Team

4. Application Domains

4.1. Programming Languages and Tools

Many of the results of RMoD are improving programming languages or development tools for such languages. As such the application domain of these results is as varied as the use of programming languages in general. Pharo, the language that RMoD develops, is used for a very broad range of applications. From pure research experiments to real world industrial use (the Pharo Consortium has around 20 company members) http://consortium.pharo.org Examples are web applications, server backends for mobile applications or even graphical tools and embedded applications.

4.2. Software Reengineering

Moose is a language-independent environment for reverse- and re-engineering complex software systems. Moose provides a set of services including a common meta-model, metrics evaluation and visualization. As such Moose is used for analysing software systems to support understanding and continuous development as well as software quality analysis.

ROMA Project-Team

4. Application Domains

4.1. Applications of sparse direct solvers

Sparse direct (multifrontal) solvers have a wide range of applications as they are used at the heart of many numerical methods in computational science: whether a model uses finite elements or finite differences, or requires the optimization of a complex linear or nonlinear function, one often ends up solving a linear system of equations involving sparse matrices. There are therefore a number of application fields, among which some of the ones cited by the users of our sparse direct solver MUMPS (see Section 6.1) are: structural mechanics, biomechanics, medical image processing, tomography, geophysics, electromagnetism, fluid dynamics, econometric models, oil reservoir simulation, magneto-hydro-dynamics, chemistry, acoustics, glaciology, astrophysics, circuit simulation, and work on hybrid direct-iterative methods.

SCALE Team

4. Application Domains

4.1. Simulation

4.1.1. Discrete-event simulation

Simulation is an example of an application with ever increasing computation needs that would benefit from the SCALE research results. In emergency planning and response, for example, users need to access the power of large scale distributed computing facilities to run faster than real-time simulations of the situations they face on the field; Such a computation can mix heterogeneous distributing computing platforms (PDA and laptops on the field, Cloud and HPC in background) and use a number of external services (eg. weather forecast).

Simulations made of multi-party contributed software models also demonstrate the need for a unifying and user-friendly programming model. Indeed, since the early 70's, the simulation field have been the subject of many efforts in order to abstract the computation models from their actual application domain. DEVS (Discrete Event Systems specification), is an example of such a popular formalism in the simulation community that breaks-down the representation of a simulation model into hierarchical components.

Our objective is to focus on the operational support of execution for such simulation models. For example, considering that the model of a single node of a Peer-to-peer network requires several (and possibly many) DEVS components, it is easy to see that running simulations of a realistic large-scale peer-to-peer network rapidly ends-up involving millions of DEVS components. In addition to the problems posed by the execution of a distributed simulation application made of millions of components, such a use-case is also challenging in terms of analytics, because when millions of components are instrumented to collect observations, it becomes a typical instance of a big-data analytics problem.

4.1.2. Stochastic simulation platform

Understanding how complex objects, as found in finance/insurance (option contracts), biology (proteins structure), etc. evolve is often investigated by stochastic simulations (e.g. Monte-Carlo based). These can be very computational intensive and the associated communities are always seeking adequate parallel computing infrastructures and simulation software. Being able to harness all the available computing power, while ensuring the simulation is at first performant but also robust, capable to self-adapt, e.g. to failures, is a real opportunity for research and validation of our approach. Many other simulation applications could also benefit from our models and techniques, and we may in the future set up specific collaborations, e.g. in biocomputing, data-center activity management, or other engineering domains. We have recently solved pricing of high-performance demanding financial products on heterogeneous GPUs and multicore CPUs clusters, mixing use of active objects and OpenCL codes. This kind of application could continue to serve as a benchmark for our multi-level programming model.

4.2. Big data

4.2.1. Big data analytics

The amount of data digitally produced is increasing at an exponential rate. Having a dedicated programming model and runtime, such as Hadoop-MapReduce, has proved very useful to build efficient big data mining and analysis applications albeit for very static environments. However, if we consider that not only the environment is dynamic (node sharing, failures...) but so are the data (variation in popularity, arrival rate...), it becomes a much more complex problem. This domain is thus a very good candidate as an application field for our work.

More precisely, we plan to contribute at the deployment level, runtime level, and at the analytics programming model for the end-user level. We already worked on close topics with the distributed P2P storage and publish/subscribe system for Semantic Web data (named *EventCloud*). However, expressing a particular interest about data through simple or even more complex subscriptions (CEP) is only a first step in data analytics. Going further requires the full expressivity of a programming language to express how to mine into the real-time data streams, aggregate intermediate analytics results, combine with past data when relevant, etc. We intend to enlarge this effort about extracting meaningful information by also creating tighter collaborations with groups specialized in data mining algorithms (e.g. the Mind team at I3S).

We think that the approach advocated in SCALE is particularly adapted to the programming and support of analytics. Indeed, the mix of computational aspects and of large amount of data make the computation of analytics the perfect target for our programming paradigms. We aim at illustrating the effectiveness of our approach by experimenting on different computations of analytics, but we will put a particular focus on the case of data streams, where the analysis is made of chains (even cyclic graphs) of parallel and distributed operators. These operators can naturally be expressed as coarse grained composition of fine grained parallel entities, both granularity levels featuring autonomic adaptation. Also, the underlying execution platform that supports this execution also has to feature autonomic adaptation in order to deal with an unstable and heterogeneous execution environment. Here autonomic adaptation is also crucial because the programmer of analytics is not expected to be an expert in distributed systems.

Overall, this second application domain target should illustrate the effectiveness of our runtime platform and of our methodology for dynamic and autonomic adaptation.

SOCRATE Project-Team (section vide)

SPIRALS Project-Team

4. Application Domains

4.1. Introduction

Although our research is general enough to be applied to many application domains, we currently focus on applications and distributed services for the retail industry and for the digital home. These two application domains are supported by a strong expertise in mobile computing and in cloud computing that are the two main target environments on which our research prototypes are build, for which we are recognized, and for which we have already established strong collaborations with the industrial ecosystem.

4.2. Distributed software services for the retail industry

This application domain is developed in relation with the PICOM (*Pôle de compétivité Industries du Commerce*) cluster. We have established strong collaborations with local companies in the context of former funded projects, such as Cappucino and Macchiato, which focused on the development of a new generation of mobile computing platforms for e-commerce. We are also involved in the Datalyse and OCCIware funded projects that define cloud computing environments with applications for the retail industry. Finally, our activities in terms of crowd-sensing and data gathering on mobile devices with the APISENSE[®] platform share also applications for the retail industry.

4.3. Distributed software services for the digital home

We are developing new middleware solutions for the digital home, in particular through our long standing collaboration with Orange Labs. We are especially interested in developing energy management and saving solutions with the POWERAPI software library for distributed environments such the ones that equip digital homes. We are also working to bridge the gap between distributed services hosted on home gateways and distributed services hosted on the cloud to be able to smoothly transition between both environments. This work is especially conducted with the SALOON platform.

STORM Team

4. Application Domains

4.1. Supporting Numeric Libraries and Scientific Simulation Applications

The application of our work covers linear algebra, solvers, fast-multipole methods, in collaboration with other Inria teams and with industry. This allows the scientific development of new techniques adapted to these applications, and opens its use in a large variety of physic simulations in high performance computing.

In terms of direct application, the software developped in the team have allowed applications in various physics fields, ranging from sismic, mechanic of fluids, molecular dynamics, high energy physics or material simulations. Similarly, the domains of image processing and signal processing can take advantage of the expertise and software of the team.

TACOMA Team

4. Application Domains

4.1. Pervasive applications in Smart Home

A smart home is a residence equipped with information-and-communication-technology (ICT) devices conceived to collaborate in order to anticipate and respond to the needs of the occupants, working to promote their comfort, convenience, security and entertainment while preserving their natural interaction with the environment.

The idea of using the Ubiquitous Computing paradigm in the smart home domain is not new. However, the state-of-the-art solutions only partially adhere to its principles. Often the adopted approach consists in a heavy deployment of sensor nodes, which continuously send a lot of data to a central elaboration unit, in charge of the difficult task of extrapolating meaningful information using complex techniques. This is a *logical approach*. TACOMA proposed instead the adoption of a *physical approach*, in which the information is spread in the environment, carried by the entities themselves, and the elaboration is directly executed by these entities "inside" the physical space. This allows performing meaningful exchanges of data that will thereafter need a less complicate processing compared to the current solutions. The result is a smart home that can, in an easier and better way, integrate the context in its functioning and thus seamlessly deliver more useful and effective user services. Our contribution aims at implementing the physical approach in a domestic environment, showing a solution for improving both comfort and energy savings.

4.2. Metamorphic House

The motivation for metamorphic houses is that many countries, including France, are going through sociodemographic evolutions, like growth of life expectancy and consequent increase in the number of elderly people, urbanization and resource scarcity. Households experience financial restrictions, while housing costs increase with the raise of real estate and energy prices [4].

Important questions arise concerning the future of housing policies and ways of living. We observe novel initiatives like participative housing and developing behaviors, including house-sharing, teleworking and longer stay of children in parents' homes.

To tackle the challenges raised by these emerging phenomena, future homes will have to be modular, upgradeable, comfortable, sparing of resources. They should be integrated in the urban context and exchange information with other homes, contribute to reducing the distances to be covered daily and respect the characteristics of the territory where they are located.

To reach these goals, metamorphic domestic environments will modify their shape and behavior to support activities and changes in life cycle of occupants, increase comfort and optimize the use of resources. Thanks to Information and Communication Technologies (ICT) and adaptive building elements, the same physical spaces will be transformed for different uses, giving inhabitants the illusion of living in bigger, more adapted and more comfortable places.

4.3. Pervasive applications in uncontrolled environnements

Some limitations of existing RFID technology become challenging: unlike standard RFID application scenarios, pervasive computing often involves uncontrolled environment for RFID, where tags and reader have to operate in much more difficult situations that those usually encountered or expected for classical RFID systems.

RFID technology is to avoid missing tags when reading multiple objects, as reading reliability is affected by various effects such shadowing or wave power absorption by some materials. The usual applications of RFID operate in a controlled environment in order to reduce the risk of missing tags while scanning objects.

In pervasive computing applications, a controlled reading environment is extremely difficult to achieve, as one of the principle is to enhance existing processes "in situ", unlike the controlled conditions that can be found in industrial processes. Consider for example a logistic application, where RFID tags could be used on items inside a package in order to check for its integrity along the shipping process. Tags would likely be placed randomly on items inside the package, and reading conditions would be variable depending on where the package is checked.

RFID operation in uncontrolled environments is challenging because RFID performance is affected by multiple parameters, in particular:

- Objects materials (on which tags are attached to),
- Materials in the surrounding environment,
- RFID frequency spectrum,
- Antenna nature and placement with respect to the tags.

In controlled environment, the difficulty to read tags can be limited by using the appropriate parameters to maximize the RFID performance for the application. But in many cases, it is needed to read large number of objects of various nature, arranged randomly in a given area or container. **Most pervasive computing applications fall in this context**.

TADAAM Team

4. Application Domains

4.1. Mesh-based applications

TADAAM targets scientific simulation applications on large-scale systems, as these applications present huge challenges in terms of performance, locality, scalability, parallelism and data management. Many of these HPC applications use meshes as the basic model for their computation. For instance, PDE-based simulations using finite differences, finite volumes, or finite elements methods operate on meshes that describe the geometry and the physical properties of the simulated objects. This is the case for at least two thirds of the applications selected in the 9th PRACE. call ⁰, which concern quantum mechanics, fluid mechanics, climate, material physic, electromagnetism, etc.

Mesh-based applications not only represent the majority of HPC applications running on existing supercomputing systems, yet also feature properties that should be taken into account to achieve scalability and performance on future large-scale systems. These properties are the following:

Size Datasets are large: some meshes comprise hundreds of millions of elements, or even billions.

Dynamicity In many simulations, meshes are refined or coarsened at each time step, so as to account for the evolution of the physical simulation (moving parts, shockwaves, structural changes in the model resulting from collisions between mesh parts, etc.).

Structure Many meshes are unstructured, and require advanced data structures so as to manage irregularity in data storage.

Topology Due to their rooting in the physical world, meshes exhibit interesting topological properties (low dimensionality embedding, small maximum degree, large diameter, etc.). It is very important to take advantage of these properties when laying out mesh data on systems where communication locality matters.

All these features make mesh-based applications a very interesting and challenging use-case for the research we want to carry out in this project. Moreover, we believe that our proposed approach and solutions will contribute to enhance these applications and allow them to achieve the best possible usage of the available resources of future high-end systems.

⁰http://www.prace-ri.eu/prace-9th-regular-call/

URBANET Team

4. Application Domains

4.1. Smart urban infrastructure

Unlike the communication infrastructure that went through a continuous development in the last decades, the distribution networks in our cities including water, gas and electricity are still based on 19th century infrastructure. With the introduction of new methods for producing renewable but unpredictable energy and with the increased attention towards environmental problems, modernizing distribution networks became one of the major concerns in the urban world. An essential component of these enhanced systems is their integration with information and communications technology, the result being a smart distribution infrastructure, with improved efficiency and reliability. This evolution is mainly based on the increased deployment of automatic equipment and the use of machine-to-machine and sensor-to-actuator communications that would allow taking into account the behavior and necessities of both consumers and suppliers

Another fundamental urban infrastructure is the transportation system. The progress made in the transportation industry over the last century has been an essential factor in the development of today's urban society, while also triggering the birth and growth of other economic branches. However, the current transportation system has serious difficulties coping with the continuous growth in the number of vehicles, especially in an urban environment. As a major increase in the capacity of a city road infrastructure, already in place for tens or even hundreds of years, would imply dissuasive costs, the more realistic approach is to optimize the use of the existing transportation system. As in the case of distribution networks, the intelligence of the system can be achieved through the integration of information and communication capabilities. However, for smart transportation the challenges are somehow different, because the intelligence is no longer limited to the infrastructure, but propagates to vehicles themselves. Moreover, the degree of automation is reduced in transportation systems, as most actions resulting in reduced road congestion, higher reliability or improved safety must come from the human driver (at least in the foreseeable future)

Finally, smart spaces are becoming an essential component of our cities. The classical architecture tools used to design and shape the urban environment are more and more challenged by the idea of automatically modifying private and public spaces in order to adapt to the requirements and preferences of their users. Among the objectives of this new urban planning current, we can find the transformation of the home in a proactive health care center, fast reconfigurable and customizable workplaces, or the addition of digital content in the public spaces in order to reshape the urban scene. Bringing these changing places in our daily lives is conditioned by a major shift in the construction industry, but it also involves important advancements in digital infrastructure, sensing, and communications

4.2. Urban participatory sensing

Urban sensing can be seen as the same evolution of the environment digitalization as social networking has been for information flows. Indeed, besides dedicated and deployed sensors and actuators, still required for specific sensing operations such as the real-time monitoring of pollution levels, there is a wide range of relevant urban data that can be collected without the need for new communication infrastructures, leveraging instead on the pervasiveness of smart mobile terminals. With more than 80% of the population owning a mobile phone, the mobile market has a deeper penetration than electricity or safe drinking water. Originally designed for voice transmitted over cellular networks, mobile phones are today complete computing, communication and sensing devices, offering in a handheld device multiple sensors and communication technologies.

Mobile devices such as smartphones or tablets are indeed able to gather a wealth of informations through embedded cameras, GPS receivers, accelerometers, and cellular, WiFi and bluetooth radio interfaces. When collected by a single device, such data may have small value per-se, however its fusion over large scales could prove critical for urban sensing to become an economically viable mainstream paradigm.

This is even more true when less traditional mobile terminals are taken into account: privately-owned cars, public transport means, commercial fleets, and even city bikes are starting to feature communication capabilities and the Floating Car Data (FCD) they generate can bring a dramatic contribution to the cause of urban sensing. Indeed, other than enlarging the sensing scope even further, e.g., through Electronic Control Units (ECUs), these mobile terminals are not burdened by strong energy constraints and can thus significantly increase the granularity of data collection. This data can be used by authorities to improve public services, or by citizens who can integrate it in their choices. However, in order to kindle this hidden information, important problems related to data gathering, aggregation, communication, data mining, or even energy efficiency need to be solved.

4.3. Human-centric networks

Combining location awareness and data recovered from multiple sources like social networks or sensing devices can surface previously unknown characteristics of the urban environment, and enable important new services. As a few examples, one could think of informing citizens about often disobeyed (and thus risky) traffic signs, polluted neighborhoods, or queue waiting times at current exhibitions in the urban area.

Beyond letting their own devices or vehicles autonomously harvest data from the environment through embedded or onboard sensors, mobile users can actively take part in the participatory sensing process because they can, in return, benefit from citizen-centric services which aim at improving their experience of the urban life. Crowdsourcing applications have the potential to turn citizens into both sources of information and interactive actors of the city. It is not a surprise that emerging services built on live mobile user feedback are rapidly meeting a large success. In particular, improving everyone's mobility is probably one of the main services that a smart city shall offer to its inhabitants and visitors. This implies providing, through network broadcast data or urban smart-furniture, an accurate and user-tailored information on where people should head in order to find what they are looking for (from a specific kind of shop to a free parking slot), on their current travel time estimates, on the availability of better alternate means of transport to destination. Depending on the context, such information may need to be provided under hard real-time constraints, e.g., in presence of road accidents, unauthorized public manifestations, or delayed public transport schedules.

In some cases, information can also be provided to mobile users so as to bias or even enforce their mobility: drivers can be alerted of the arrival of an emergency vehicle so that they leave the leftmost lane available, or participants leaving vast public events can be directed out of the event venue through diverse routes displayed on their smartphones so as to dynamically balance the pedestrian flows and reduce their waiting times.

WHISPER Project-Team

4. Application Domains

4.1. Linux

Linux is an open-source operating system that is used in settings ranging from embedded systems to supercomputers. The most recent release of the Linux kernel, v3.17, comprises over 12 million lines of code, and supports 29 different families of CPU architectures, 73 file systems, and thousands of device drivers. Linux is also in a rapid stage of development, with new versions being released roughly every 2.5 months. Recent versions have each incorporated around 13,500 commits, from around 1500 developers. These developers have a wide range of expertise, with some providing hundreds of patches per release, while others have contributed only one. Overall, the Linux kernel is critical software, but software in which the quality of the developed source code is highly variable. These features, combined with the fact that the Linux community is open to contributions and to the use of tools, make the Linux kernel an attractive target for software researchers. Tools that result from research can be directly integrated into the development of real software, where it can have a high, visible impact.

Starting from the work of Engler et al. [34], numerous research tools have been applied to the Linux kernel, typically for finding bugs [33], [51], [60], [68] or for computing software metrics [39], [75]. In our work, we have studied generic C bugs in Linux code [9], bugs in function protocol usage [45], [46], issues related to the processing of bug reports [63] and crash dumps [38], and the problem of backporting [15], illustrating the variety of issues that can be explored on this code base. Unique among research groups working in this area, we have furthermore developed numerous contacts in the Linux developer community. These contacts provide insights into the problems actually faced by developers and serve as a means of validating the practical relevance of our work. Section 6.1.2 presents our dissemination efforts to the Linux community.

4.2. Device Drivers

Device drivers are essential to modern computing, to provide applications with access, via the operating system, to physical devices such as keyboards, disks, networks, and cameras. Development of new computing paradigms, such as the internet of things, is hampered because device driver development is challenging and error-prone, requiring a high level of expertise in both the targeted OS and the specific device. Furthermore, implementing just one driver is often not sufficient; today's computing landscape is characterized by a number of OSes, *e.g.*, Linux, Windows, MacOS, BSD and many real time OSes, and each is found in a wide range of variants and versions. All of these factors make the development, porting, backporting, and maintenance of device drivers a critical problem for device manufacturers, industry that requires specific devices, and even for ordinary users.

The last fifteen years have seen a number of approaches directed towards easing device driver development. Réveillère, who was supervised by G. Muller, proposes Devil [7], a domain-specific language for describing the low-level interface of a device. Chipounov *et al.* propose RevNic, [28] a template-based approach for porting device drivers from one OS to another. Ryzhyk *et al.* propose Termite, [61], [62] an approach for synthesizing device driver code from a specification of an OS and a device. Currently, these approaches have been successfully applied to only a small number of toy drivers. Indeed, Kadav and Swift [40] observe that these approaches make assumptions that are not satisfied by many drivers; for example, the assumption that a driver involves little computation other than the direct interaction between the OS and the device. At the same time, a number of tools have been developed for finding bugs in driver code. These tools include SDV [19], Coverity [34], CP-Miner, [50] PR-Miner [51], and Coccinelle [8]. These approaches, however, focus on analyzing existing code, and do not provide guidelines on structuring drivers.

In summary, there is still a need for a methodology that first helps the developer understand the software architecture of drivers for commonly used operating systems, and then provides guidelines and tools for the maintenance and the development of new drivers. Section 3.2 describes this research direction.

ALICE Project-Team

4. Application Domains

4.1. Geometric Tools for Simulating Physics with a Computer

Numerical simulation is the main targeted application domain for the geometry processing tools that we develop. Our mesh generation tools are tested and evaluated in the frame of our cooperation with the Gocad consortium, with applications in oil exploration and geomechanics, through co-advised Ph.D. thesis (Arnaud Botella, Julien Renaudeau). We think that the hex-dominant meshes that we generate have geometrical properties that make them suitable for some finite element analyses. We work on evaluating and measuring their impact with simple problems (heat equation, linear elasticity) and then practical applications (unfolding geological layer), with the Ph.D. thesis of Maxence Reberol.

In numerical simulation, developing discrete formulations that satisfy the conservation laws (conservation of mass, conservation of energy, conservation of momentum) is important to ensure that the numerical simulation faithfully reflects the behavior of the physics. There are interesting relations with optimal transport theory, as explained by Benamou and Brenier who developed a numerical algorithm for optimal transport that uses a fluid dynamics formulation [30]. Conversely, some dynamics can be approximated by a series of optimal transport problems, as in the Jordan-Kinderlehrer-Otto scheme [34] and in recent works by Mérigot. We started developing efficient geometric algorithms and optimisation methods that may serve as the basis for implementing these numerical methods in 3D. We started discussions / cooperation projects with Quentin Mérigot (MOKAPLAN project).

4.2. Fabrication

Our work around fabrication and additive manufacturing finds applications in different fields. Our algorithms for fast geometric computations on solids (boolean operations, morphological operations) are useful to model a variety of shapes, from mechanical engineering parts to prosthetics for medical applications.

Our by-example techniques allow for simpler modeling and processing of very intricate geometries and therefore also find applications in art and design, for unusual shapes that would be very difficult to obtain otherwise. Extensions of these techniques also find applications for reproducing naturally occurring microstructures from a scanned sampled.

ALPAGE Project-Team

4. Application Domains

4.1. Overview

NLP tools and methods have many possible domains of application. Some of then are already mature enough to be commercialized. They can be roughly classified in four groups:

- Human-computer interaction: mostly speech processing and text-to-speech, often in a dialogue context; today, commercial offers are limited to restricted domains (train tickets reservation...);
- Language writing aid: spelling, grammatical and stylistic correctors for text editors, controlled-language writing aids (e.g., for technical documents), memory-based translation aid, foreign language learning tools, as well as vocal dictation; related to this group lies the automatic correction of the output of OCR systems;
- Access to information: tools to enable a better access to information present in huge collections
 of texts (e.g., the Internet): automatic document classification, automatic document structuring,
 automatic summarizing, information acquisition and extraction, text mining, question-answering
 systems, as well as surface machine translation. Information access to speech archives through
 transcriptions is also an emerging field.
- Empirical linguistics: tools to explore language in an objective way (this is related, but not limited to corpus linguistics).

Alpage focuses on applications included in the three last points, such as information extraction and (linguistic and extra-linguistic) knowledge acquisition, text mining, spelling correction and empirical linguistics.

4.2. Information extraction and knowledge acquisition

Participants: Éric Villemonte de La Clergerie, Benoît Sagot.

The first domain of application for Alpage parsing systems is information extraction, and in particular knowledge acquisition, be it linguistic or not, and text mining.

Knowledge acquisition for a given restricted domain is something that has already been studied by some Alpage members for several years. Obviously, the progressive extension of Alpage parsing systems or even shallow processing chains to the semantic level increase the quality of the extracted information, as well as the scope of information that can be extracted. Such knowledge acquisition efforts bring solutions to current problems related to information access and take place into the emerging notion of *Semantic Web*. The transition from a web based on data (textual documents,...) to a web based on knowledge requires linguistic processing tools which are able to provide fine grained pieces of information, in particular by relying on high-quality deep parsing. For a given domain of knowledge (say, news wires or tourism), the extraction of a domain ontology that represents its key concepts and the relations between them is a crucial task, which has a lot in common with the extraction of linguistic information.

In the last years, such efforts have been targeted towards information extraction from news wires in collaboration with the Agence France-Presse (Rosa Stern was a CIFRE PhD student at Alpage and at AFP, and worked in 2013 within the ANR project EDyLex).

These applications in the domain of information extraction raise exciting challenges that require altogether ideas and tools coming from the domains of computational linguistics, machine learning and knowledge representation.

4.3. Processing answers to open-ended questions in surveys: vera

Participants: Benoît Sagot, Valérie Hanoka.

Verbatim Analysis is a startup co-created by Benoît Sagot from Alpage and Dimitri Tcherniak from Towers Watson, a world-wide leader in the domain of employee research (opinion mining among the employees of a company or organization). The aim of its first product, *vera*, is to provide an all-in-one environment for editing (i.e., normalizing the spelling and typography), understanding and classifying answers to open-ended questions, and relating them with closed-ended questions, so as to extract as much valuable information as possible from both types of questions. The editing part relies in part on SxPipe and Alexina morphological lexicons. Several other parts of *vera* have been co-developed by Verbatim Analysis and Inria.

4.4. Multilingual terminologies and lexical resources for companies

Participant: Éric Villemonte de La Clergerie.

Lingua et Machina is a small company now headed by François Brown de Colstoun, a former Inria researcher, that provides services for developing specialized multilingual terminologies for its clients. It develops the WEB framework Libellex for validating such terminologies. A formal collaboration with ALPAGE has been set up, with the recruitment of Mikaël Morardo in 2012 as an engineer, funded by Inria's DTI. He pursued his work on the extension of the web platform *Libellex* for the visualization and validation of new types of lexical resources. In particular, he has integrated a new interface for handling monolingual terminologies, lexical networks, and bilingual wordnet-like structures, including the WOLF.

4.5. Automatic and semi-automatic spelling correction in an industrial setting

Participants: Kata Gábor, Pierre Magistry, Benoît Sagot, Éric Villemonte de La Clergerie.

NLP tools and resources used for spelling correction, such as large n-gram collections, POS taggers and finite-state machinery are now mature and precise. In industrial setting such as post-processing after large-scale OCR, these tools and resources should enable spelling correction tools to work on a much larger scale and with a much better precision than what can be found in different contexts with different constraints (e.g., in text editors). Moreover, such industrial contexts allow for a non-costly manual intervention, in case one is able to identify the most uncertain corrections. Alpage is working within the "Investissements d'avenir" project PACTE, headed by Numen, a company specialized in text digitalization, and three other partners. Kata Gábor and Pierre Magistry have worked as PACTE-funded post-docs until the end of the project in March 2015.

4.6. Empirical linguistics

Participants: Benoît Crabbé, Benoît Sagot, Alexandra Simonenko, Sarah Beniamine.

Alpage is a team that dedicates efforts in producing ressources and algorithms for processing large amounts of textual materials. These ressources can be applied not only for purely NLP purposes but also for linguistic purposes. Indeed, the specific needs of NLP applications led to the development of electronic linguistic resources (in particular lexica, annotated corpora, and treebanks) that are sufficiently large for carrying statistical analysis on linguistic issues. In the last 10 years, pioneering work has started to use these new data sources to the study of English grammar, leading to important new results in such areas as the study of syntactic preferences [51], [112], the existence of graded grammaticality judgments [72].

The reasons for getting interested for statistical modelling of language can be traced back by looking at the recent history of grammatical works in linguistics. In the 1980s and 1990s, theoretical grammarians have been mostly concerned with improving the conceptual underpinnings of their respective subfields, in particular through the construction and refinement of formal models. In syntax, the relative consensus on a generative-transformational approach [57] gave way on the one hand to more abstract characterizations of the language faculty [57], and on the other hand to the construction of detailed, formally explicit, and often implemented, alternative formulation of the generative approach [50], [83]. For French several grammars have been implemented in this trend, such as the tree adjoining grammars of [54], [61] among others. This general movement led to much improved descriptions and understanding of the conceptual underpinnings of both linguistic competence and language use. It was in large part catalyzed by a convergence of interests of logical, linguistic and computational approaches to grammatical phenomena.

However, starting in the 1990s, a growing portion of the community started being frustrated by the paucity and unreliability of the empirical evidence underlying their research. In syntax, data was generally collected impressionistically, either as ad-hoc small samples of language use, or as ill-understood and little-controlled grammaticality judgements [98]. This shift towards quantitative methods is also a shift towards new scientific questions and new scientific fields. Using richly annotated data and statistical modelling, we address questions that could not be addressed by previous methodology in linguistics.

In this line, at Alpage we have started investigating the question of choice in French syntax with a statistical modelling methodology. In the perspective of better understanding which factors influence the relative ordering of post verbal complements across languages and through language evolution.

On the other hand we are also collaborating with the Laboratoire de Sciences Cognitives de Paris (LSCP/ENS) where we explore the design of algorithms towards the statistical modelling of language acquisition (phonological acquisition). This has been supported in the past years by one PhD project, whose defense has now taken place.

In parallel, quantitative methods are applied to computational morphology, in particlar in relation with Sarah Beniamine's PhD supervised by Olivier Bonami (LLF, CNRS, U. Paris Diderot and U. Paris Sorbonne) [31], [20], [32]. Collaborative work in this area is also conducted in collaboration with descriptive linguists from CRLAO (CNRS and Inalco; Guillaume Jacques) and HTL (CNRS, U. Paris Diderot and U. Sorbonne Nouvelle; Aimée Lahaussois) and formal linguists from DDL (CNRS and Université Lyon 2; Géraldine Walther).

AVIZ Project-Team

4. Application Domains

4.1. Application Domains

Research in visual analytics can profit from the challenges and requirements of real-world datasets. Aviz develops active collaboration with users from a range of application domains, making sure it can support their specific needs. By studying similar problems in different domains, we can begin to generalize our results and have confidence that our solutions will work for a variety of applications.

We apply our techniques to important medical applications domains such as bioinformatics and brain studies. In particular, we are interested in helping neuroscientists make sense of evolving functional networks, in the form of weighted and/or dynamic graphs.

Other application domains include:

- Digital Humanities in general, with the Cendari European project with historians from most European countries, the project "Interactive Network Visualization" with Microsoft Research-Inria Joint Centre on Graph Visualization, and with our work on Word-Scale Visualizations;
- Many traditional scientific research fields such as astronomy, fluid dynamics, structural biology, and neurosciences;
- Scientific illustration that can benefit from illustrative visualization techniques for scientific data;
- Personal visualization and visual analytics in which we develop solutions for the general audience.

AYIN Team

4. Application Domains

4.1. Remote sensing

With the development and launch of new instruments (for instance, GeoEye, Ikonos, Pleiades, COSMO-SkyMed, TerraSAR-X, and future missions EnMAP, PRISMA, HYPXIM, ...) capturing Earth images at very high spatial, spectral, and temporal resolutions, numerous new applications arise, such as precision agriculture, natural disaster management, monitoring of urban environments, and mineralogy. We will apply our new methodologies to the analysis of SAR, multi- and hyper-spectral remote sensing images and temporal sequences. In particular, we will address image segmentation and classification, change detection, the extraction of structures, and object tracking.

4.2. Skin care

The most recent sensors used in dermatology and cosmetology produce images with very high spatial, spectral, and temporal resolutions. As with remote sensing, numerous applications then arise that can make use of the new information. In the application to dermatology, we are particularly interested in hyperpigmentation detection and the evaluation of the severity of various disorders (for instance, for melasma, vitiligo, acne, melanoma, etc.). In the application to cosmetology, our main goals are the analysis, modeling, and characterization of the condition of human skin, especially as applied to the evaluation of methods designed to influence that condition.

Chroma Team

4. Application Domains

4.1. Future cars and transportation systems

Thanks to the introduction of new sensor and ICT technologies in cars and in mass transportation systems, and also to the pressure of economical and security requirements of our modern society, this application domain is quickly changing. Various technologies are currently developed by both research and industrial laboratories. These technologies are progressively arriving at maturity, as it is witnessed by the results of large scale experiments and challenges such as the Google's car project and several future products announcements made by the car industry. Moreover, the legal issue starts to be addressed in USA (see for instance the recent laws in Nevada and in California authorizing autonomous vehicles on roads) and in several other countries (including France).

In this context, we are interested in the development of ADAS ⁰ systems aimed at improving comfort and safety of the cars users (e.g., ACC, emergency braking, danger warnings), and of Fully Autonomous Driving functions for controlling the displacements of private or public vehicles in some particular driving situations and/or in some equipped areas (e.g., automated car parks or captive fleets in downtown centers or private sites).

Over the last 8 years we have collaborated with Toyota and with Renault-Nissan on these applications (bilateral contracts, PhD Theses, shared patents). We are also strongly involved (since 3 years) in the innovation project Perfect of the IRT Nanoelec (transportation domain). Recently, we have been awarded an important European ECSEL project ⁰ involving major European automotive constructors and car suppliers. In this project, Chroma is focusing on the embedded perception component (models and algorithms, including the certification issue), in collaboration with Renault, Valeo and Thales and also with the Inria exploratory team ESTASYS (Rennes). Chroma is also involved in the new ANR project "Valet" (2015-2018) coordinated by the Inria Team RITS (Rocquencourt), dealing with automatic redistribution of car-sharing vehicles and parking valet; Chroma is involved in the pedestrian-vehicle interaction for a safe navigation.

In this context, Chroma has two experimental vehicles equipped with various sensors (a Toyota Lexus and a Renault Zoe, which are maintained by the SED and that allow the team to perform experiments in realistic traffic conditions (Urban, road and highway environments).

4.2. Services, intervention, and human assistance robotics

Service robotics is an application domain currently rapidly emerging, and more and more industrial companies (e.g., IS-Robotics, Samsung, LG) are now commercializing service and intervention robotics products such as vacuum cleaner robots, drones for civil or military applications, and entertainment robots. One of the main challenges is to propose robots which are sufficiently robust and autonomous, easily usable by non-specialists, and marked at a reasonable cost. We are involved in developing observation and surveillance systems, by using ground robots (Turtlebot2 robots) or aerial ones (ANR VIMAD ⁰).

A more recent challenge for the coming decade is to develop robotized systems for assisting elderly and/or disabled people. In the continuity of our work in the IPL PAL ⁰, we aim to propose smart technologies to assist electric wheelchair users in their displacements. We address the problem of assisting the user for joining a group of people and navigating in crowded environments, in cooperation with Inria Lagadic team.

Another emerging application to assist people is telepresence robot. We are involved in a project aiming to improve the driving by providing a social and autonomous navigation to the robot, in cooperation with Awabot and Hoomano startups.

⁰Advanced Driver Assistance Systems

⁰ENABLE-S3: European Initiative to Enable Validation for Highly Automated Safe and Secure Systems.

⁰Navigation autonome des drones aériens avec la fusion des données visuelles et inertielles, lead by A. Martinelli, Chroma.

⁰Personnaly assisted Living

We are also investigating service robotics in outdoor environment. In particular, since two years, we work with the ToutiTerre startup to develop navigation models and sensors to allow agricultural pick-up to be autonomously moved in rows of a field.

DAHU Project-Team

4. Application Domains

4.1. Application Domains

Databases are pervasive across many application fields. Indeed, most human activities today require some form of data management. In particular, all applications involving the processing of large amounts of data require the use of a database. Increasingly complex Web applications and services also rely on DBMS, and their correctness and robustness is crucial.

We believe that the automated solutions that Dahu aims to develop for verifying such systems will be useful in this context.

DEFROST Team

4. Application Domains

4.1. Surgery

Surgical procedures are often carried out using instruments made from stiff materials that interact with delicate biological tissues such as internal organs, blood vessel walls and small cavities. This is one of the source of danger for many surgical procedures. Soft-robotics open up new perspectives in minimally invasive approaches. Thanks to the highly deformability of their structure, similar to organic materials, and their motion, created by deformation in the same way as the muscles in living animals, they offer many advantage for surgical applications. Recent work anticipates that their compliant nature and their large number of degrees of freedom will provide key surgical positive outcomes:

- Improving the capacity of access with security to the fragile parts of the anatomy by applying less pressure to the anatomical walls
- Easy maneuvering through soft and confined spaces allowing new Minimally Invasive Surgery approaches.

These positive outcomes are expected given the properties of soft-robot. In a recent state-of-the art reports on soft robotics, surgery in the list of *killer applications* of soft-robotics. However, the lack of existing methodology for modeling and control remains an obstacle to be proved by a practical implementation. Given our background on surgical simulations: soft tissue and tool/tissues contact models we are particularly well positioned to address the challenge of using soft-robots in surgery.

4.2. Industry

Robotics in the manufacturing industry is already highly diffused and is one of the ways put forward to maintain the level of competitiveness of companies based in France and to avoid relocation in cheap labor countries. Yet, in France, it is considered that the level of robotization is insufficient compared to Germany for instance. One of the challenge is the high investment cost for buying robotic arms. In the recent years, it has led the development of « generic » and « flexible » (but rigid) robotic solution that can be produced in series. But their applicability to specific tasks is still challenging or too costly. The manufacturing of deformable robots could be very low compared to classical rigid robotics. Moreover, with the development of 3D printing, we can imagine the development of a complete opposite strategy: a « task-specific » design of robots. Given a task that need to be performed by a deformable robot: we would optimize the shape of its structure to create the set of desired motion (see in Challenge2: Exploring interactive and semi-automatic optimisation methods for design). An other remarkable property of soft-robots is their adaptability to fragile or tortuous environment. For some particular industry, this could also be an advantage compared to existing rigid solutions.

4.3. Personal and service robotics

The personal and service robotics are considered as an important challenge for industry in the coming years. The potential applications are numerous and particularly include the challenge of finding robotic solutions for active and healthy ageing at home. We plan to develop functional orthosis for which it is better not to have a rigid exoskeleton that are particularly not comfortable. These orthosis will be ideally personalised for each patient and built using rapid prototyping. Again the low manufacturing price and the robustness of deformable robots could be key advantages for this particular market. On this topic, the place of our team will be to provide algorithms for controlling the robots. We need to find some partners to build these wearable robots. Our team will also propose innovative technology for robotic games: we are currently working on a new technique of control for deformable puppets. If the project succeeds, a user will be able to build his/her own puppet with a 3D printer and control it with a Kinect. Finally, an other direction for the transfer of our research towards

society is art: soft-robotics seems a source of inspiration for artists. This year, we have been collaborating with the art school Le Fresnoy based at Tourcoing (near our Lab) and the result had a good impact for the visibility of our team. We may also collaborate in the close future with IRCAM in the context of the transversal project Inria-ART led by Arshia Cont and Laurent Grisoni.

DREAM Project-Team

4. Application Domains

4.1. Introduction

The Dream project-team research applications have been oriented towards surveillance, monitoring and decision support. Our domains of application are:

- Agriculture and environment
- Health
- Exploitation of execution traces in an industrial setting

4.2. Environmental decision making

Keywords: environment, decision methods

The need for decision support systems in the environmental domain is now well-recognized. It is especially true in the domain of water quality. The challenge is to preserve the water quality from pollutants as nitrates and herbicides, when these pollutants are massively used by farmers to weed their agricultural plots and improve the quality and increase the quantity of their crops. The difficulty is then to find solutions which satisfy contradictory interests and to get a better knowledge on pollutant transfer.

In this context, we are cooperating with INRA (Institut National de Recherche Agronomique) and developing decision support systems to help regional managers in preserving the river water quality. This work began in ANR projects like APPEAU and ACASSYA or the PSDR GO CLIMASTER project (Changement climatique, systèmes agricoles, ressources naturelles et développement territorial).

The approach we advocate is to rely on a qualitative modeling, in order to model biophysical processes in an explicative and understandable way. The SACADEAU model associates a qualitative biophysical model, able to simulate the biophysical process, and a management model, able to simulate farmers' decisions. One of our main contributions is the use of qualitative spatial modeling, based on runoff trees, to simulate the pollutant transfer through agricultural catchments.

The second issue is the use of learning/data mining techniques to discover, from model simulation results, the discriminant variables and automatically acquire rules relating these variables. One of the main challenges is that we face spatiotemporal data. The learned rules are then analyzed automatically in order to recommend actions to improve a current "unsatisfactory" situation.

Our main partners are the SAS INRA research group, located in Rennes and the BIA INRA and AGIR INRA research groups in Toulouse.

Ecosystem Management

The objective of ecosystem management is to ensure sustainable ecosystems even when submitted to various stressors such as natural disturbances or human pressures. Several studies have already demonstrated the interest of qualitative modelling for ecosystems [56]. In our case, we propose to couple a qualitative modelling with model-checking tools to explore marine ecosystems (as explained section 3.2). We applied our approach on a small-scale subsistence fishery in a coral reef lagoon (Uvea, New Caledonia). A well described foodweb model provides us with useful input data for steady-state biomass data and estimates of production and consumption. A timed automata model was developed using EcoMata to investigate the direct and indirect effects of various fishing strategies on a subset of the trophic network.

This work has been realized in collaboration with ecologists: Yves-Marie Bozec (today in position in Marine Spatial Ecology, University of Queensland, Australia) and Guy Fontenelle (Professeur at Agrocampus Ouest).

A second application has been studied in the dairy management area. Over an hydrid modelling on the grazing activities, four methods to generate the best grazing management activity has been proposed. The expert partners are researchers from the SAS INRA research group, located in Rennes.

4.3. Health

Keywords: health-care, patient monitoring, medicament usage, pharmaco-immunology, health-care pathways, wireless sensors

Clinical monitoring, electronic patient records and computer supported disease management produce more and larger volumes of clinical data. This data is a strategic resource for healthcare institutions. Data mining brings the facility to discover patterns and correlation hidden within the data repository and assists professionals to uncover these patterns and to exploit them to improve medical care.

We are working on two aspects of health-care:

- exploitation of data from the french care insurance (Assurance Maladie) that contains records of drug reimbursements for pharmaco-immunology purposes. Our goal is to reconstruct and mine patients' healthcare pathways in order to detect regularities and anomalies in the way patients take medicaments and alert medical authorities in case some problems are detected, such as non expected negative consequences of medicament intake. We are working in the framework of a project funded by the National Medicament Security Agency (ANSM Agence Nationale de la Sécurité du Médicament) for building a platfom enabling focused studies on specific medicaments as well as discovering potential problems with medicament usage. This means selecting from billions of patients records, patients sharing similar medical contexts and showing different consequences of medicament intake,
- veterinary monitoring of feedlot cattle in big farms from sensors recording behavioral and physiological data. As farms are becoming bigger and bigger, detecting ill animals by visual appraisal is becoming more and more difficult. With the advent of cheap wireless sensors, animals (i.e. cows or steers) may be monitored in quasi real time for detecting relevant changes in their behavior that could be related to specific diseases. We are exploring diverse methods for detecting changes on multivariate data, such as cusum charts, specific sequential patterns or distribution of frequent patterns. We are specifically working with veterinaries from the university of Calgary (Canada) for monitoring feedlot cattle in farms growing up to 50.000 animals.

4.4. Exploitation of execution traces

Keywords: log analysis, data mining, embedded systems

We have an ongoing collaborations with STMicroelectronics, which is one of the world top-5 electronic chip makers. Nowadays, set-top boxes, smartphones or onboard car computers are powered by highly integrated chips called System-on-Chip (SoC). Such chips contain on a single die processing units, memories, IO units and specialized accelerators (such as audio and video encoding/decoding). Programming SoC is a hard task due to their inherent parallelism, leading to subtle bugs when several components do not deliver their results within a given time frame. Existing debuggers and profilers are ill-adapted in this case because of their high intrusivity that modifies the timings. Hence the most used technique is to capture a trace of the execution and analyze it post-mortem. While Alexandre Termier was in Grenoble he initiated several works for analyzing such traces with data mining techniques [71], [65], which he is now pursuing with his colleagues of the Dream project-team [24].

EX-SITU Team

4. Application Domains

4.1. Creative industries

We work closely with creative professionals in the arts and in design, including music composers, musicians, and sound engineers; painters and illustrators; dancers and choreographers; theater groups; graphic and industrial designers; and architects.

4.2. Scientific research

We work with creative professionals in the sciences and engineering, including neuroscientists and doctors; programmers and statisticians; chemists and astrophysicists; and researchers in fluid mechanics.

EXMO Project-Team

4. Application Domains

4.1. Semantic web technologies

The main application context motivating our work is the "semantic web" infrastructure.

Internet technologies support organisations and people in accessing and sharing knowledge, often difficult to access in a documentary form. However, these technologies quickly reach their limits: web site organisation is expensive and full-text search inefficient. Content-based information search is becoming a necessity. Content representation enables computers to manipulate knowledge on a more formal ground and to carry out similarity or generality search. Knowledge representation formalisms are good candidates for expressing content.

The vision of a "semantic web" [21] complements the web, with formal knowledge representation spanning across sites. Taking advantage of this semantic web requires the manipulation of various knowledge representation formats. EXMO concerns are thus central to the semantic web implementation. Our work aims at enhancing content understanding, including the intelligibility of communicated knowledge and formal knowledge transformations.

In addition, EXMO considers more specific uses of semantic web technologies in wider context (typically in the smart city context, §9.2.1.1).

FLOWERS Project-Team

4. Application Domains

4.1. Application Domains

Cognitive Sciences The computational modelling of life-long learning and development mechanisms achieved in the team centrally targets to contribute to our understanding of the processes of sensorimotor, cognitive and social development in humans. In particular, it provides a methodological basis to analyze the dynamics of the interaction across learning and inference processes, embodiment and the social environment, allowing to formalize precise hypotheses and later on test them in experimental paradigms with animals and humans. A paradigmatic example of this activity is the Neurocuriosity project achieved in collaboration with the cognitive neuroscience lab of Jacqueline Gottlieb, where theoretical models of the mechanisms of information seeking, active learning and spontaneous exploration have been developed in coordination with experimental evidence and investigation, see https://flowers.inria.fr/curiosity-information-seeking-and-attention-in-human-adults-models-and-experiments/.

Personal robotics Many indicators show that the arrival of personal robots in homes and everyday life will be a major fact of the 21st century. These robots will range from purely entertainment or educative applications to social companions that many argue will be of crucial help in our aging society. For example, UNECE evaluates that the industry of entertainment, personal and service robotics will grow from 5.4Bnto17.1Bn over 2008-2010. Yet, to realize this vision, important obstacles need to be overcome: these robots will have to evolve in unpredictable homes and learn new skills while interacting with non-engineer humans after they left factories, which is out of reach of current technology. In this context, the refoundation of intelligent systems that developmental robotics is exploring opens potentially novel horizons to solve these problems.

Human-Robot Collaboration. Robots play a vital role for industry and ensure the efficient and competitive production of a wide range of goods. They replace humans in many tasks which otherwise would be too difficult, too dangerous, or too expensive to perform. However, the new needs and desires of the society call for manufacturing system centered around personalized products and small series productions. Human-robot collaboration could widen the use of robot in this new situations if robots become cheaper, easier to program and safe to interact with. The most relevant systems for such applications would follow an expert worker and works with (some) autonomy, but being always under supervision of the human and acts based on its task models. Video games. In conjunction with entertainment robotics, a new kind of video games are developing in which the player must either take care of a digital creature (e.g. Neopets), or tame it (e.g. Nintendogs), or raise/accompany them (e.g. Sims). The challenges entailed by programming these creatures share many features with programming personal/entertainment robots. Hence, the video game industry is also a natural field of application for FLOWERS.

Environment perception in intelligent vehicles. When working in simulated traffic environments, elements of FLOWERS research can be applied to the autonomous acquisition of increasingly abstract representations of both traffic objects and traffic scenes. In particular, the object classes of vehicles and pedestrians are if interest when considering detection tasks in safety systems, as well as scene categories ("scene context") that have a strong impact on the occurrence of these object classes. As already indicated by several investigations in the field, results from present-day simulation technology can be transferred to the real world with little impact on performance. Therefore, applications of FLOWERS research that is suitably verified by real-world benchmarks has direct applicability in safety-system products for intelligent vehicles.

Automated Tutoring Systems. Optimal teaching and efficient teaching/learning environments can be applied to aid teaching in schools aiming both at increase the achievement levels and the reduce time needed. From a practical perspective, improved models could be saving millions of hours of students' time (and effort) in learning. These models should also predict the achievement levels of students in order to influence teaching practices.

GRAPHDECO Project-Team

4. Application Domains

4.1. Application Domains

Our research on design and computer graphics with heterogeneous data has the potential to change many different application domains. Such applications include:

Product design will be significantly accelerated and facilitated. Our interviews with car designers illustrate how the separate working practices of 2D illustrators, 3D modelers and artists who create physical prototypes results in a slow and complex process with frequent misunderstandings and corrective iterations between different people and different media. This could significantly accelerate the design process (from months to weeks), result in much better communication between the different experts, or even create new types of experts who cross boundaries of disciplines today.

Mass customization will allow end customers to participate in the design of a product before buying it. In this context of "cloud-based design", users of an e-commerce website will be provided with controls on the main variations of a product created by a professional designer. Intuitive modeling tools will also allow users to personalize the shape and appearance of the object while remaining within the bounds of the pre-defined design space.

Digital instructions for creating and repairing objects, in collaboration with other groups working in 3D fabrication could have significant impact in sustainable development and allow anyone to be a creator of things, not just consumers, the motto of the *makers* movement.

Gaming experience individualization is an important emerging trend; using our results players will also be able to integrate personal objects or environments (e.g., their homes, neighborhoods) into any realistic 3D game. The success of creative games where the player constructs their world illustrates the potential of such solutions. This approach also applies to serious gaming, with applications in medicine, education/learning, training etc. Such interactive experiences with high-quality images of heterogeneous 3D content will be also applicable to archeology (e.g., realistic presentation of different reconstruction hypotheses), urban planning and renovation where new elements can be realistically used with captured imagery. Other applications could include *enhanced personal photography/videography*, or interactive experiences to enhance news reports.

Virtual training, which today is restricted to pre-defined virtual environment(s) that are expensive and hard to create; with our solutions we open the possibility to seamlessly and realistically use on-site data together with the actual virtual training environment. As an example, virtual reality has been used for training locomotive drivers for manual intervention on railway tracks; the environment used is a simplistic synthetic scene. With our results, any *real* site can be captured, and the synthetic elements for the interventions rendered with high levels of realism, thus greatly enhancing the quality of the training experience.

Other applications may include scientific domains which use photogrammetric data (captured with various 3D scanners), such as geophysics and seismology. Note however that our goal is not to produce 3D data suitable for numerical simulations; our approaches can help however in combining captured data with presentations and visualization of scientific information (involving a collaboration with other groups with experts in Visualization.)

GRAPHIK Project-Team

4. Application Domains

4.1. Agronomy

Agronomy is a strong expertise domain in the area of Montpellier. Some INRA researchers (computer scientists) are members of GraphIK, and more generally we closely collaborate with the Montpellier research laboratory IATE, a join unit of INRA and other organisms. A major issue for INRA is modeling agrifood chains (i.e., the chain of all processes leading from the plants to the final products, including waste treatment). This modeling has several objectives. It provides better understanding of the processes from begin to end, which aids in decision making, with the aim of improving the quality of the products and decreasing the environmental impact. It also facilitates knowledge sharing between researchers, as well as the capitalization of expert knowledge and "know how". This last point is particularly important in areas strongly related to a "terroir" (like in cheese or wine making), where knowledge and "know how" are transmitted by experience, with the risk of non-sustainability of the specific skills. For all these reasons, INRA became very interested in developing knowledge engineering methods.

An agrifood chain analysis is a highly complex procedure since it relies on numerous criteria of various types: environmental, economical, functional, sanitary, etc. Quality objectives imply different stakeholders, technicians, managers, professional organizations, end-users, public organizations, etc. Since the goals of the implied stakeholders may be divergent, decision making raises arbitration issues. In this context, our first investigations led to identify decision support based on argumentation frameworks as a promising topic, as well as the representation and processing of preferences. For the capitalization of expert knowledge and "know how", that often require to handle exceptions, we began to investigate forms of non-monotonic negation.

4.2. Semantic metadata

Semantic metadata (i.e., metadata expressed in terms of a formal ontology) are at the core of the applications we have been working on for several years, with our main partners INA (French Institute for Audiovisual, http://www.ina.fr/) and ABES (French Agency for Academic Libraries, http://www.abes.fr/). Our focus evolved from building semantic annotations and exploiting them to retrieve data, to interlinking problems between individual references in annotations of documents. More specifically, the linkage problem at the core of our current project Qualinca (in Section 9.1) consists in identifying an authority (i.e., an element of a referential described by metadata) to be linked with a reference in a bibliographic notice (i.e., metadata describing a document). This problem is an instance of the intensively studied entity resolution problem. In the Semantic Web, it can be recast as the computation of OWL:sameAs links between two metadata bases, clearly a fundamental problem for the Linked Open Data. We use a knowledge-based approach to solve this problem.

HEPHAISTOS Project-Team

4. Application Domains

4.1. Application Domains

While the methods developed in the project can be used for a very broad set of application domains (for example we have an activity in CO2 emission allowances [16]), it is clear that the size of the project does not allow us to address all of them. Hence we have decided to focus our applicative activities on *mechanism theory*, where we focus on *modeling*, *optimal design* and *analysis* of mechanisms. Along the same line our focus is *robotics* and especially *service robotics* which includes rescue robotics, rehabilitation and assistive robots for elderly and handicapped people. Although these topics were new for us when initiating the project we have spent two years determining priorities and guidelines by conducting about 200 interviews with field experts (end-users, praticians, family and caregivers, institutes), establishing strong collaboration with them (e.g. with the CHU of Nice-Cimiez) and putting together an appropriate experimental setup for testing our solutions. A direct consequence of setting up this research framework is a reduction in our publication and contract activities. But this may be considered as an investment as assistance robotics is a long term goal. It must be reminded that we are able to manage a large variety of problems in totally different domains only because interval analysis, game theory and symbolic tools provides us the methodological tools that allow us to address completely a given problem from the formulation and analysis up to the very final step of providing numerical solutions.

HYBRID Project-Team

4. Application Domains

4.1. Overview

The research program of Hybrid team aims at next generations of virtual reality and 3D user interfaces which could possibly address both the "body" and "mind" of the user. Novel interaction schemes are designed, for one or multiple users. We target better integrated systems and more compelling user experiences.

The applications of our research program correspond to the applications of virtual reality technologies which could benefit from the addition of novel body-based or mind-based interaction capabilities:

- **Industry**: with training systems, virtual prototyping, or scientific visualization;
- Medicine: with rehabilitation and reeducation systems, or surgical training simulators;
- Entertainment: with 3D web navigations, video games, or attractions in theme parks,
- Construction: with virtual mock-ups design and review, or historical/architectural visits.

ILDA Team

4. Application Domains

4.1. Mission-critical systems

Mission-critical contexts of use include emergency response & management, and critical infrastructure operations, such as public transportation systems, communications and power distribution networks, or the operations of large scientific instruments such as particle accelerators and astronomical observatories. Central to these contexts of work is the notion of situation awareness [21], i.e., how workers perceive and understand elements of the environment with respect to time and space, such as maps and geolocated data feeds from the field, and how they form mental models that help them predict future states of those elements. One of the main challenges is how to best assist subject-matter experts in constructing correct mental models and making informed decisions, often under time pressure. This can be achieved by providing them with, or helping them efficiently identify and correlate, relevant and timely information extracted from large amounts of raw data, taking into account the often cooperative nature of their work and the need for task coordination. With this application area, our goal is to investigate novel ways of interacting with computing systems that improve collaborative data analysis capabilities and decision support assistance in a mission-critical, often time-constrained, work context.

4.2. Exploratory analysis of scientific data

Many scientific disciplines are increasingly data-driven, including astronomy, molecular biology, particle physics, or neuroanatomy. While making the right decision under time pressure is often less of critical issue when analyzing scientific data, at least not on the same temporal scale as truly time-critical systems, scientists are still faced with large-to-huge amounts of data. No matter their origin (experiments, remote observations, large-scale simulations), these data are difficult to understand and analyze in depth because of their sheer size and complexity. Challenges include how to help scientists freely-yet-efficiently explore their data, keep a trace of the multiple data processing paths they considered to verify their hypotheses and make it easy to backtrack, and how to relate observations made on different parts of the data and insights gained at different moments during the exploration process. With this application area, our goal is to investigate how data-centric interactive systems can improve collaborative scientific data exploration, where users' goals are more openended, and where roles, collaboration and coordination patterns [40] differ from those observed in mission-critical contexts of work.

IMAGINE Project-Team (section vide)

LAGADIC Project-Team

4. Application Domains

4.1. Application Domains

The natural applications of our research are obviously in robotics. In fact, researches undertaken in the Lagadic group can apply to all the fields of robotics implying a vision sensor. They are indeed conceived to be independent of the system considered (and the robot and the vision sensor can even be virtual for some applications).

Currently, we are mostly interested in using visual servoing for aerial and space application, micromanipulation, autonomous vehicle navigation in large urban environments or for disabled or elderly people.

We also address the field of medical robotics. The applications we consider turn around new functionalities of assistance to the clinician during a medical examination: visual servoing on echographic images, needle insertion, compensation of organ motion, etc.

Robotics is not the only possible application field to our researches. In the past, we were interested in applying visual servoing in computer animation, either for controlling the motions of virtual humanoids according to their pseudo-perception, or for controlling the point of view of visual restitution of an animation. In both cases, potential applications are in the field of virtual reality, for example for the design of video games, or virtual cinematography.

Applications also exist in computer vision and augmented reality. It is then a question of carrying out a virtual visual servoing for the 3D localization of a tool with respect to the vision sensor, or for the estimation of its 3D motion. This field of application is very promising, because it is in full rise for the realization of special effects in the multi-media field or for the design and the inspection of objects manufactured in the industrial world.

LARSEN Team

4. Application Domains

4.1. Personal Assistance

During the last fifty years, the many progresses of medicine as well as the improvement of the quality of life have resulted in a longer life expectancy in the industrial societies. The increase of the number of elderly people is a matter of public health because although elderly people can age in good health, old age also causes embrittlement in particular on the physical plan which can result in a loss of autonomy. That will force to rethink the current model regarding the care of elderly people. Of Capacity limits in specialized institutes, along with the preference of elderly people to stay at home as long as possible, explain a growing need for specific services at home.

Ambient intelligence technologies and robotics could participate to this societal challenge. The spectrum of possible actions in the field of elderly assistance is very large. We will focus on activity monitoring services, mobility or daily activity aids, medical rehabilitation, and social interactions. This will be based on the experimental infrastructure we have build in Nancy (Smart apartment) as well as the deep collaboration we have with OHS. ⁰

4.2. Civil Robotics

Many applications for robotics technology exist within the services provided by national and local government. Typical applications include civil infrastructure services ⁰ such as: urban maintenance and cleaning; civil security services; emergency services involved in disaster management including search and rescue; environmental services such as surveillance of rivers, air quality, and pollution. These tasks may be carried out by a wide variety of robot and operating modality ranging from single robots or small fleets of homogeneous or heterogeneous robots. Often robot teams will need to cooperate to span a large workspace, for example in urban rubbish collection, and operate in potentially hostile environments, for example in disaster management. These systems are also likely to have extensive interaction with people and their environments.

The skills required for civil robots match those developed in the LARSEN project: operating for a long time in potentially hostile environment, potentially with small fleets of robots, and potentially in interaction with people.

⁰See the Robotics 2020 Multi-Annual Roadmap [50], section 2.7.

OHS (Office d'Hygiène Sociale) is an association managing several rehabilitation or retirement home structures.

⁰See the Robotics 2020 Multi-Annual Roadmap [50], section 2.5.

LEAR Project-Team

4. Application Domains

4.1. Application Domains

A solution to the general problem of visual recognition and scene understanding will enable a wide variety of applications in areas including human-computer interaction, retrieval and data mining, medical and scientific image analysis, manufacturing, transportation, personal and industrial robotics, and surveillance and security. With the ever expanding array of image and video sources, visual recognition technology is likely to become an integral part of many information systems. A complete solution to the recognition problem is unlikely in the near future, but partial solutions in these areas enable many applications. LEAR's research focuses on developing basic methods and general purpose solutions rather than on a specific application area. Nevertheless, we have applied our methods in several different contexts.

Semantic-level image and video access. This is an area with considerable potential for future expansion owing to the huge amount of visual data that is archived. Besides the many commercial image and video archives, it has been estimated that as much as 96% of the new data generated by humanity is in the form of personal videos and images ⁰, and there are also applications centering on on-line treatment of images from camera equipped mobile devices (e.g. navigation aids, recognizing and answering queries about a product seen in a store). Technologies such as MPEG-7 provide a framework for this, but they will not become generally useful until the required mark-up can be supplied automatically. The base technology that needs to be developed is efficient, reliable recognition and hyperlinking of semantic-level domain categories (people, particular individuals, scene type, generic classes such as vehicles or types of animals, actions such as football goals, etc).

Visual (example based) search. The essential requirement here is robust correspondence between observed images and reference ones, despite large differences in viewpoint or malicious attacks of the images. The reference database is typically large, requiring efficient indexing of visual appearance. Visual search is a key component of many applications. One application is navigation through image and video datasets, which is essential due to the growing number of digital capture devices used by industry and individuals. Another application that currently receives significant attention is copyright protection. Indeed, many images and videos covered by copyright are illegally copied on the Internet, in particular on peer-to-peer networks or on the so-called user-generated content sites such as Flickr, YouTube or DailyMotion. Another type of application is the detection of specific content from images and videos, which can, for example, be used for finding product related information given an image of the product.

Automated object detection. Many applications require the reliable detection and localization of one or a few object classes. Examples are pedestrian detection for automatic vehicle control, airplane detection for military applications and car detection for traffic control. Object detection has often to be performed in less common imaging modalities such as infrared and under significant processing constraints. The main challenges are the relatively poor image resolution, the small size of the object regions and the changeable appearance of the objects.

⁰http://www.sims.berkeley.edu/research/projects/how-much-info/summary.html

LINKMEDIA Project-Team

4. Application Domains

4.1. Asset management in the entertainement business

Regardless of the ingestion and storage issues, media asset management—archiving, describing and retrieving multimedia content—has turned into a key factor and a huge business for content and service providers. Most content providers, with television channels at the forefront, rely on multimedia asset management systems to annotate, describe, archive and search for content. So do archivists such as the Institut National de l'Audiovisuel, the Nederlands Instituut voor Beeld en Geluid or the British Broadcast Corporation, as well as media monitoring companies, such as Yacast in France. Protecting copyrighted content is another aspect of media asset management.

4.2. Multimedia Internet

One of the most visible application domains of linked multimedia content is that of multimedia portals on the Internet. Search engines now offer many features for image and video search. Video sharing sites also feature search engines as well as recommendation capabilities. All news sites provide multimedia content with links between related items. News sites also implement content aggregation, enriching proprietary content with user-generated content and reactions from social networks. Most public search engines and Internet service providers offer news aggregation portals.

4.3. Multiscreen TV

The convergence between television and the Internet has accelerated significantly over the past few years, with the democratization of TV on-demand and replay services and the emergence of social TV services and multiscreen applications. These evolutions and the ever growing number of innovative applications incurred offer a unique playground for multimedia technologies. Recommendation plays a major role in connected TV. Enriching multimedia content, with explicit links targeting either multimedia material or knowledge databases, appears as a key feature in this context, at the core of rich TV and second screen applications.

4.4. E-learning

On-line courses are rapidly gaining interest with the recent movement for massive open on-line courses (MOOCs). Such courses usually aggregate multimedia material, such as a video of the course with handouts and potentially text books, exercises and other related resources. This setting is very similar to that of the media aggregation sites though in a different domain. Automatically analyzing and describing video and textual content, synchronizing all material available across modalities, creating and characterizing links between related material or between different courses are all necessary features for on-line courses authoring.

LINKS Team

4. Application Domains

4.1. Linked Data Integration

There are many contexts in which integrating linked data is interesting. We advocate here one possible scenario, namely that of integrating business linked data to feed what is called Business Intelligence. The latter consists of a set of theories and methodologies that transform raw data into meaningful and useful information for business purposes (from Wikipedia). In the past decade, most of the enterprise data was proprietary, thus residing within the enterprise repository, along with the knowledge derived from that data. Today's' enterprises and businessmen need to face the problem of information explosion, due to the Internet's ability to rapidly convey large amounts of information throughout the world via end-user applications and tools. Although linked data collections exist by bridging the gap between enterprise data and external resources, they are not sufficient to support the various tasks of Business Intelligence. To make a concrete example, concepts in an enterprise repository need to be matched with concepts in Wikipedia and this can be done via pointers or equalities. However, more complex logical statements (i.e. mappings) need to be conceived to map a portion of a local database to a portion of an RDF graph, such as a subgraph in Wikipedia or in a social network, e.g. LinkedIn. Such mappings would then enrich the amount of knowledge shared within the enterprise and let more complex queries be evaluated. As an example, businessmen with the aid of business intelligence tools need to make complex sentimental analysis on the potential clients and for such a reason, such tools must be able to pose complex queries, that exploit the previous logical mappings to guide their analysis. Moreover, the external resources may be rapidly evolving thus leading to revisit the current state of business intelligence within the enterprise.

4.2. Data Cleaning

The second example of application of our proposal concerns scientists who want to quickly inspect relevant literature and datasets. In such a case, local knowledge that comes from a local repository of publications belonging to a research institute (e.g. HAL) need to be integrated with other Web-based repositories, such as DBLP, Google Scholar, ResearchGate and even Wikipedia. Indeed, the local repository may be incomplete or contain semantic ambiguities, such as mistaken or missing conference venues, mistaken long names for the publication venues and journals, missing explanation of research keywords, and opaque keywords. We envision a publication management system that exploits both links between database elements, namely pointers to external resources and logical links. The latter can be complex relationships between local portions of data and remote resources, encoded as schema mappings. There are different tasks that such a scenario could entail such as (i) cleaning the errors with links to correct data e.g. via mappings from HAL to DBLP for the publications errors, and via mappings from HAL to Wikipedia for opaque keywords, (ii) thoroughly enrich the list of publications of a given research institute, and (iii) support complex queries on the corrected data combined with logical mappings.

4.3. Real Time Complex Event Processing

Complex event processing serves for monitoring nested word streams in real time. Complex event streams are gaining popularity with social networks such as with Facebook and Twitter, and thus should be supported by distributed databases on the Web. Since this is not yet the case, there remains much space for future industrial transfer related to Links' second axis on dynamic linked data.

MAGNET Team

4. Application Domains

4.1. Overview

The real-world problems we target include browsing, monitoring and mining in information networks. The discovered structures would also be beneficial to predicting links between users and texts which is at the core of recommender systems. More generally, all the learning tasks considered in the project such as node clustering, node and link classification and link prediction are likely to yield important improvements in these applications. Application domains cover natural language processing, social networks for cultural data and e-commerce, and biomedical informatics.

MAGRIT Project-Team

4. Application Domains

4.1. Augmented reality

We have a significant experience in AR that allowed good progress in building usable, reliable and robust AR systems. Our contributions cover the entire process of AR: matching, pose initialization, 3D tracking, in-situ modeling, handling interaction between real and virtual objects...

4.2. Medical imaging

For 15 years, we have been working in close collaboration with the University Hospital of Nancy and GE Healthcare in interventional neuroradiology. Our common aim is to develop a multimodality framework to help therapeutic decisions and interventional gestures. Contributions of the team focus on the development of AR tools for neuro-navigation as well as the development of simulation tools of the interventional act for training or planning. Laparoscopic surgery is another field of interest with the development of methods for tracking deformable organs based on bio-mechanical models. Some of these projects are developed in collaboration with the team MIMESIS.

4.3. Applied mechanics

In experimental solid mechanics, an important problem is to characterize properties of specimen materials subject to mechanical constraints, which makes it necessary to measure tiny strains. Contactless measurement techniques have emerged in the last few years and are spreading quickly. They are mainly based on images of the surface of the specimen on which a regular grid or a random speckle has been deposited. We are engaged since June 2012 in a transdisciplinary collaboration with Institut Pascal (Clermont-Ferrand Université). The aim is to characterize the metrological performances of these techniques limited by, e.g., the sensor noise, and to improve them by several dedicated image processing tools.

MANAO Project-Team

4. Application Domains

4.1. Physical Systems

Given our close relationships with researchers in optics, one novelty of our approach is to extend the range of possible observers to physical sensors in order to work on domains such as simulation, mixed reality, and testing. Capturing, processing, and visualizing complex data is now more and more accessible to everyone, leading to the possible convergence of real and virtual worlds through visual signals. This signal is traditionally captured by cameras. It is now possible to augment them by projecting (e.g., the infrared laser of Microsoft Kinect) and capturing (e.g., GPS localization) other signals that are outside the visible range. This supplemental information replaces values traditionally extracted from standard images and thus lowers down requirements in computational power. Since the captured images are the result of the interactions between light, shape, and matter, the approaches and the improved knowledge from *MANAO* help in designing interactive acquisition and rendering technologies that are required to merge the real and the virtual worlds. With the resulting unified systems (optical and digital), transfer of pertinent information is favored and inefficient conversion is likely avoided, leading to new uses in interactive computer graphics applications, like augmented reality, displays and computational photography.

4.2. Interactive Visualization and Modeling

This direction includes domains such as **scientific illustration and visualization**, **artistic or plausible rendering**, and **3D modeling**. In all these cases, the observer, a human, takes part in the process, justifying once more our focus on real-time methods. When targeting average users, characteristics as well as limitations of the human visual system should be taken into account: in particular, it is known that some configurations of light, shape, and matter have masking and facilitation effects on visual perception. For specialized applications (such as archeology), the expertise of the final user and the constraints for 3D user interfaces lead to new uses and dedicated solutions for models and algorithms.

MAVERICK Project-Team (section vide)

MIMETIC Project-Team

4. Application Domains

4.1. Autonomous Characters

Autonomous characters are becoming more and more popular has they are used in an increasing number of application domains. In the field of special effects, virtual characters are used to replace secondary actors and generate highly populated scenes that would be hard and costly to produce with real actors. In video games and virtual storytelling, autonomous characters play the role of actors that are driven by a scenario. Their autonomy allows them to react to unpredictable user interactions and adapt their behavior accordingly. In the field of simulation, autonomous characters are used to simulate the behavior of humans in different kind of situations. They enable to study new situations and their possible outcomes.

One of the main challenges in the field of autonomous characters is to provide a unified architecture for the modeling of their behavior. This architecture includes perception, action and decisional parts. This decisional part needs to mix different kinds of models, acting at different time scale and working with different nature of data, ranging from numerical (motion control, reactive behaviors) to symbolic (goal oriented behaviors, reasoning about actions and changes).

In the MimeTIC team, we focus on autonomous virtual humans. Our problem is not to reproduce the human intelligence but to propose an architecture making it possible to model credible behaviors of anthropomorphic virtual actors evolving/moving in real time in virtual worlds. The latter can represent particular situations studied by psychologists of the behavior or to correspond to an imaginary universe described by a scenario writer. The proposed architecture should mimic all the human intellectual and physical functions.

4.2. Biomechanics and Motion Analysis

Biomechanics is obviously a very large domain. This large set can be divided regarding to the scale at which the analysis is performed going from microscopic evaluation of biological tissues' mechanical properties to macroscopic analysis and modeling of whole body motion. Our topics in the domain of biomechanics mainly lie within this last scope.

The first goal of such kind of research projects is a better understanding of human motion. The MimeTic team addresses three different situations: everyday motions of a lambda subject, locomotion of pathological subjects and sports gesture.

In the first set, Mimetic is interested in studying how subjects maintain their balance in highly dynamic conditions. Until now, balance have nearly always been considered in static or quasi-static conditions. The knowledge of much more dynamic cases still has to be improved. Our approach has demonstrated that first of all, the question of the parameter that will allow to do this is still open. We have also taken interest into collision avoidance between two pedestrian. This topic includes the research of the parameters that are interactively controlled and the study of each one's role within this interaction.

When patients, in particular those suffering from central nervous system affection, cannot have an efficient walking it becomes very useful for practicians to benefit from an objective evaluation of their capacities. To propose such help to patients following, we have developed two complementary indices, one based on kinematics and the other one on muscles activations. One major point of our research is that such indices are usually only developed for children whereas adults with these affections are much more numerous.

Finally, in sports, where gesture can be considered, in some way, as abnormal, the goal is more precisely to understand the determinants of performance. This could then be used to improve training programs or devices. Two different sports have been studied: the tennis serve, where the goal was to understand the contribution of each segments of the body in ball's speed and the influence of the mechanical characteristics of the fin in fin swimming.

After having improved the knowledge of these different gestures a second goal is then to propose modeling solutions that can be used in VR environments for other research topics within MimeTic. This has been the case, for exemple, for the colision avoidance.

4.3. Crowds

Crowd simulation is a very active and concurrent domain. Various disciplines are interested in crowds modeling and simulation: Mathematics, Cognitive Sciences, Physics, Computer Graphics, etc. The reason for this large interest is that crowd simulation raise fascinating challenges.

At first, crowd can be first seen as a complex system: numerous local interactions occur between its elements and results into macroscopic emergent phenomena. Interactions are of various nature and are undergoing various factors as well. Physical factors are crucial as a crowd gathers by definition numerous moving people with a certain level of density. But sociological, cultural and psychological factors are important as well, since crowd behavior is deeply changed from country to country, or depending on the considered situations. On the computational point of view, crowd push traditional simulation algorithms to their limit. An element of a crowd is subject to interact with any other element belonging the same crowd, a naive simulation algorithm has a quadratic complexity. Specific strategies are set to face such a difficulty: level-of-detail techniques enable scaling large crowd simulation and reach real-time solutions.

MimeTIC is an international key contributor in the domain of crowd simulation. Our approach is specific and based on three axis. First, our modeling approach is founded on human movement science: we conducted challenging experiment on the motion of groups. Second: we developed high-performance solutions for crowd simulation. Third, we develop solutions for realistic navigation in virtual world to enable interaction with crowds in Virtual Reality.

4.4. Motion Sensing

Recording human activity is a key point of many applications and fundamental works. Numerous sensors and systems have been proposed to measure positions, angles or accelerations of the user's body parts. Whatever the system is, one of the main problem is to be able to automatically recognize and analyze the user's performance according to poor and noisy signals. Human activity and motion are subject to variability: intra-variability due to space and time variations of a given motion, but also inter-variability due to different styles and anthropometric dimensions. MimeTIC has addressed the above problems in two main directions.

Firstly, we have studied how to recognize and quantify motions performed by a user when using accurate systems such as Vicon (product of Oxford Metrics) or Optitrack (product of Natural Point) motion capture systems. These systems provide large vectors of accurate information. Due to the size of the state vector (all the degrees of freedom) the challenge is to find the compact information (named features) that enables the automatic system to recognize the performance of the user. Whatever the method is used, finding these relevant features that are not sensitive to intra-individual and inter-individual variability is a challenge. Some researchers have proposed to manually edit these features (such as a Boolean value stating if the arm is moving forward or backward) so that the expertise of the designer is directly linked with the success ratio. Many proposals for generic features have been proposed, such as using Laban notation which was introduced to encode dancing motions. Other approaches tend to use machine learning to automatically extract these features. However most of the proposed approaches were used to seek a database for motions which properties correspond to the features of the user's performance (named motion retrieval approaches). This does not ensure the retrieval of the exact performance of the user but a set of motions with similar properties.

Secondly, we wish to find alternatives to the above approach which is based on analyzing accurate and complete knowledge on joint angles and positions. Hence new sensors, such as depth-cameras (Kinect, product of Microsoft) provide us with very noisy joint information but also with the surface of the user. Classical approaches would try to fit a skeleton into the surface in order to compute joint angles which, again, lead to large state vectors. An alternative would be to extract relevant information directly from the raw data, such as the surface provided by depth cameras. The key problem is that the nature of these data may be very different

from classical representation of human performance. In MimeTIC, we try to address this problem in specific application domains that require picking specific information, such as gait asymmetry or regularity for clinical analysis of human walking.

4.5. VR and Sports

Sport is characterized by complex displacements and motions. These motions are dependent on visual information that the athlete can pick up in his environment, including the opponent's actions. The perception is thus fundamental to the performance. Indeed, a sportive action, as unique, complex and often limited in time, requires a selective gathering of information. This perception is often seen as a prerogative for action, it then takes the role of a passive collector of information. However, as mentioned by Gibson in 1979, the perception-action relationship should not be considered sequential but rather as a coupling: we perceive to act but we must act to perceive. There would thus be laws of coupling between the informational variables available in the environment and the motor responses of a subject. In other words, athletes have the ability to directly perceive the opportunities of action directly from the environment. Whichever school of thought considered, VR offers new perspectives to address these concepts by complementary using real time motion capture of the immersed athlete.

In addition to better understanding sports and interaction between athletes, VR can also be used as a training environment as it can provide complementary tools to coaches. It is indeed possible to add visual or auditory information to better train an athlete. The knowledge found in perceptual experiments can be for example used to highlight the body parts that are important to look at to correctly anticipate the opponent's action.

4.6. Interactive Digital Storytelling

Interactive digital storytelling, including novel forms of edutainment and serious games, provides access to social and human themes through stories which can take various forms and contains opportunities for massively enhancing the possibilities of interactive entertainment, computer games and digital applications. It provides chances for redefining the experience of narrative through interactive simulations of computergenerated story worlds and opens many challenging questions at the overlap between computational narratives, autonomous behaviours, interactive control, content generation and authoring tools.

Of particular interest for the Mimetic research team, virtual storytelling triggers challenging opportunities in providing effective models for enforcing autonomous behaviours for characters in complex 3D environments. Offering both low-level capacities to characters such as perceiving the environments, interacting with the environment and reacting to changes in the topology, on which to build higher-levels such as modelling abstract representations for efficient reasonning, planning paths and activities, modelling cognitive states and behaviours requires the provision of expressive, multi-level and efficient computational models. Furthermore virtual storytelling requires the seamless control of the balance between the autonomy of characters and the unfolding of the story through the narrative discourse. Virtual storytelling also raises challenging questions on the conveyance of a narrative through interactive or automated control of the cinematography (how to stage the characters, the lights and the cameras). For example, estimating visibility of key subjects, or performing motion planning for cameras and lights are central issues for which have not received satisfactory answers in the litterature.

4.7. VR and Ergonomics

The design of workstations nowadays tends to include assessment steps in a Virtual Environment (VE) to evaluate ergonomic features. This approach is more cost-effective and convenient since working directly on the Digital Mock-Up (DMU) in a VE is preferable to constructing a real physical mock-up in a Real Environment (RE). This is substantiated by the fact that a Virtual Reality (VR) set-up can be easily modified, enabling quick adjustments of the workstation design. Indeed, the aim of integrating ergonomics evaluation tools in VE is to facilitate the design process, enhance the design efficiency, and reduce the costs.

The development of such platforms ask for several improvements in the field of motion analysis and VR: the interactions have to be as fidelistic as possible to properly mimic the motions performed in real environments, the fidelity of the simulator need also to be correctly evaluated, and motion analysis tools have to be able to provide in real-time biomechanics quantities usable by ergonomists to analyse and improve the working conditions.

MINT Project-Team (section vide)

Mjolnir Team

4. Application Domains

4.1. Application Domains

Mjolnir works on fundamental aspects of Human-Computer Interaction that can be applied to diverse application domains. Our 2015 research concerned desktop, touch-based and mobile interfaces with notable applications to 3D animation, 2D illustration, clinical diagnosis and TV viewing experience.

MORPHEO Project-Team

4. Application Domains

4.1. 4D modeling

Modeling shapes that evolve over time, analyzing and interpreting their motion has been a subject of increasing interest of many research communities including the computer vision, the computer graphics and the medical imaging communities. Recent evolutions in acquisition technologies including 3D depth cameras (Time-of-Flight and Kinect), multi-camera systems, marker based motion capture systems, ultrasound and CT scans have made those communities consider capturing the real scene and their dynamics, create 4D spatio-temporal models, analyze and interpret them. A number of applications including dense motion capture, dynamic shape modeling and animation, temporally consistent 3D reconstruction, motion analyzes and interpretation have therefore emerged.

4.2. Shape Analysis

Most existing shape analysis tools are local, in the sense that they give local insight about an object's geometry or purpose. The use of both geometry and motion cues makes it possible to recover more global information, in order to get extensive knowledge about a shape. For instance, motion can help to decompose a 3D model of a character into semantically significant parts, such as legs, arms, torso and head. Possible applications of such high-level shape understanding include accurate feature computation, comparison between models to detect defects or medical pathologies, and the design of new biometric models or new anthropometric datasets.

4.3. Human Motion Analysis

The recovery of dense motion information enables the combined analyses of shapes and their motions. Typical examples include the estimation of mean shapes given a set of 3D models or the identification of abnormal deformations of a shape given its typical evolutions. The interest arises in several application domains where temporal surface deformations need to be captured and analysed. It includes human body analyses for which potential applications are anyway numerous and important, from the identification of pathologies to the design of new prostheses.

4.4. Interaction

The ability to build models of humans in real time allows to develop interactive applications where users interact with virtual worlds. The recent Kinect proposed by Microsoft illustrates this principle with game applications using human inputs perceived with a depth camera. Other examples include gesture interfaces using visual inputs. A challenging issue in this domain is the ability to capture complex scenes in natural environments. Multi-modal visual perception, e.g. depth and color cameras, is one objective in that respect.

MULTISPEECH Project-Team

4. Application Domains

4.1. Introduction

Approaches and models developed in the MULTISPEECH project are intended to be used for facilitating oral communication in various situations through enhancements of the communication channels, either directly via automatic speech recognition or speech production technologies, or indirectly, thanks to computer assisted language learning. Applications also include the usage of speech technologies for helping people in handicapped situations or for improving their autonomy. Foreseen application domains are related to computer assisted learning, health and autonomy (more precisely aided communication and monitoring), annotation and processing of spoken documents, and multimodal computer interaction.

4.2. Computer Assisted Learning

Although speaking seems quite natural, learning foreign languages, or learning the mother tongue for people with language deficiencies, represents critical cognitive stages. Hence, many scientific activities have been devoted to these issues either from a production or a perception point of view. The general guiding principle with respect to computer assisted mother or foreign language learning is to combine modalities or to augment speech to make learning easier. Based upon a comparison of the learner's production to a reference, automatic diagnoses of the learner's production can be considered, as well as perceptual feedback relying on an automatic transformation of the learner's voice. The diagnosis step strongly relies on the studies on categorization of sounds and prosody in the mother tongue and in the second language. Furthermore, reliable diagnosis on each individual utterance is still a challenge, and elaboration of advanced automatic feedback requires a temporally accurate segmentation of speech utterances into phones and this explains why accurate segmentation of native and non-native speech is an important topic in the field of acoustic speech modeling.

4.3. Aided Communication and Monitoring

Speech technologies provide ways of helping people in handicapped situations or of improving their autonomy. An application is related to the tuning of speech recognition technology for providing a means of communication between a speaking person and a hard-of-hearing or a deaf person, through an adequate display of the recognized words and syllables, which takes also into account the reliability of the recognized items.

Another application aims at improving pathological voices. In this context, the goal is typically to transform the pathological voice signal in order to make it more intelligible. Ongoing work deals with esophageal voices, i.e., substituted voice learned by a laryngectomized patient who has lost his/her vocal cords after surgery. Voice conversion techniques will be studied further to enhance such voice signals, in order to produce clean and intelligible speech signals in replacement of the pathological voice.

A third application aims at improving the autonomy of elderly or disabled people, and fit with smartrooms. In a first step, source separation techniques could be tuned and should help for locating and monitoring people through the detection of sound events inside apartments. In a longer perspective, adapting speech recognition technologies to the voice of elder people should also be useful for such applications, but this requires the recording of adequate databases. Sound monitoring in other application fields (security, environmental monitoring) could also be envisaged.

4.4. Annotation and Processing of Spoken Documents and Audio Archives

A first type of annotation consists in transcribing a spoken document in order to get the corresponding sequences of words, with possibly some complementary information, such as the structure (punctuation) or the modality (affirmation/question) of the utterances to make the reading and understanding easier. Typical applications of the automatic transcription of radio or TV shows, or of any other spoken document, include making possible their access by deaf people, as well as by text-based indexing tools.

A second type of annotation is related to speech-text alignment, which aims at determining the starting and ending times of the words, and possibly of the sounds (phonemes). This is of interest in several cases as for example, for annotating speech corpora for linguistic studies, and for synchronizing lip movements with speech sounds, for example for avatar-based communications. Although good results are currently achieved on clean data, automatic speech-text alignment needs to be improved for properly processing noisy spontaneous speech data and needs to be extended to handle overlapping speech.

Large audio archives are important for some communities of users, e.g., linguists, ethnologists or researchers in digital humanities in general. In France, a notorious example is the "Archives du CNRS — Musée de l'homme", gathering about 50,000 recordings dating back to the early 1900s. When dealing with very old recordings, the practitioner is often faced with the problem of noise. This stems out of the fact that a lot of interesting material from a scientific point of view is very old or has been recorded in very adverse noisy conditions, so that the resulting audio is poor. The work on source separation can lead to the design of semi automatic denoising and enhancement features, that would allow these researchers to significantly enhance their investigation capabilities, even without expert knowledge in sound engineering.

Finally, there is also a need for speech signal processing techniques in the field of multimedia content creation and rendering. Relevant techniques include speech and music separation, speech equalization, prosody modification, and speaker conversion.

4.5. Multimodal Computer Interactions

Speech synthesis has tremendous applications in facilitating communication in a human-machine interaction context to make machines more accessible. For example, it started to be widely common to use acoustic speech synthesis in smartphones to make possible the uttering of all the information. This is valuable in particular in the case of handicap, as for blind people. Audiovisual speech synthesis, when used in an application such as a talking head, i.e., virtual 3D animated face synchronized with acoustic speech, is beneficial in particular for hard-of-hearing individuals. This requires an audiovisual synthesis that is intelligible, both acoustically and visually. A talking head could be an intermediate between two persons communicating remotely when their video information is not available, and can also be used in language learning applications as vocabulary tutoring or pronunciation training tool. Expressive acoustic synthesis is of interest for the reading of story, such as audiobook, to facilitate the access to literature (for instance for blind people or illiterate people).

OAK Project-Team

4. Application Domains

4.1. Social Networks

We develop models and algorithms for efficiently exploiting, enhancing, and querying social network data, in particular based on structured content, semantic annotations, and user interaction networks. We pursue this research with many industrial partners within the ALICIA project (Section 8.1.1) as well as in the Structured, Social, and Semantic Search project (Section 8.1.2).

4.2. Computational Journalism

Modern journalism increasingly relies on content management technologies in order to represent, store, and query source data and media objects themselves. Writing news articles increasingly requires consulting several sources, interpreting their findings in context, and crossing links between related sources of information. OAKresearch results directly applicable to this area provide techniques and tools for rich Web content warehouse management. This work will be funded by the ANR ContentCheck project, and a Google Award on Even Thread Extraction. We work in collaboration with Le Monde's "Les Décodeurs" team to investigate these topics.

4.3. Open Data Intelligence

The Web is a vast source of information, to which more is added every day either in unstructured form (Web pages) or, increasingly, as partially structured sources of information, in particular as Open Data sets, which can be seen as connected graphs of data, most frequently described in the RDF data format recommended by the W3C. Further, RDF data is also the most appropriate format for representing structured information extracted automatically from Web pages, such as the DBPedia database extracted from Wikipedia or Google's InfoBoxes. We work on this topic within the 4-year project ODIN started in 2014.

4.4. Hybrid Data Warehousing

Increasingly many modern applications need to exploit data from a variety of formats, including relations, text, trees, graphs etc. The recent development of data management systems aimed at "Big Data", including NoSQL platforms, large-scale distributed systems etc. provides enteprise architects with many systems to chose from. This makes it hard to decide which part of the application data to handle in which system, especially given that each system is best at handling a specific kind of data and a certain class of operations. OAKinvestigates principled techniques for distributing an application's data sources across a variety of systems and data models, based on materialized views. We test our ideas in this area within the Datalyse project.

ORPAILLEUR Project-Team

4. Application Domains

4.1. Biology and Chemistry

Participants: Mehwish Alam, Aleksey Buzmakov, Adrien Coulet, Nicolas Jay, Amedeo Napoli, Mohsen Sayed, Malika Smaïl-Tabbone, Yannick Toussaint.

Keywords: knowledge discovery in life sciences, bioinformatics, biology, chemistry, genomics

One major application domain which is currently investigated by the Orpailleur team is related to life sciences, with particular emphasis on biology, medicine, and chemistry. The understanding of biological systems provides complex problems for computer scientists, and the developed solutions bring new research ideas or possibilities for biologists and for computer scientists as well. Accordingly, the Orpailleur team includes biologists, chemists, and a physician, making Orpailleur a very original EPI at Inria. Indeed, the interactions between researchers in biology and researchers in computer science improve not only knowledge about systems in biology, chemistry, and medicine, but knowledge about computer science as well.

Knowledge discovery is gaining more and more interest and importance in life sciences for mining either homogeneous databases such as protein sequences and structures, or heterogeneous databases for discovering interactions between genes and environment, or between genetic and phenotypic data, especially for public health and pharmacogenomics domains. The latter case appears to be one main challenge in knowledge discovery in biology and involves knowledge discovery from complex data depending on domain knowledge.

On the same line as biological data, chemical data are presenting important challenges w.r.t. knowledge discovery, for example for mining collections of molecular structures and collections of chemical reactions in organic chemistry. The mining of such collections is an important task for various reasons among which the challenge of graph mining and the industrial needs (especially in drug design, pharmacology and toxicology). Molecules and chemical reactions are complex data that can be modeled as undirected labeled graphs. One objective for guiding computer-based synthesis in organic chemistry is to discover general synthesis methods (i.e. kinds of "meta-reactions") from currently available chemical reaction databases for designing generic and reusable synthesis plans.

Graph mining methods may play an important role in this framework and Formal Concept Analysis can also be used in an efficient and well-founded way [34]. Combining supervised methods—with a training set where objects are tagged—and unsupervised methods, "jumping emerging patterns" can be detected that characterize classes of interest, e.g. toxic molecules or inhibitors. Then, a hybrid classification method based on FCA can be used for building a concept lattice where some of the concepts can be used as reference classes for classifying unknown objects, for recognition and prediction tasks. Graph mining in the framework of FCA is a very important task on which we are actively working, whose results can be transferred to text mining as well.

4.2. Medicine

Participants: Aleksey Buzmakov, Adrien Coulet, Nicolas Jay, Jean Lieber, Amedeo Napoli, Matthieu Osmuk, Chedy Raïssi, Yannick Toussaint, Mickaël Zehren.

Keywords: knowledge representation, description logics, classification-based reasoning, case-based reasoning, semantic web, formal concept analysis, sequence mining, text mining

We are working on several applications in medicine, mainly in knowledge management and analysis of patient trajectories as sequences. In the first case, the Kasimir research project is about decision support and knowledge management for the treatment of cancer. This is a multidisciplinary research project in which researchers in computer science (Orpailleur) and experts in oncology are participating. For a given cancer localization, a treatment is based on a protocol, which is applied in 70% of the cases and provides a treatment. The 30% remaining cases are "out of the protocol", e.g. contraindication, treatment impossibility, etc. and the protocol should be adapted, based on discussions among specialists. This adaptation process is modeled in Kasimir thanks to CBR, where the semantic Web technologies are used and adapted in the Kasimir project for several years.

Another work is in concern with the analysis of patient trajectories, i.e. the "path" of a patient during illness (chronic illnesses and cancer), considered as sequences. It is important to understand these sequence data and temporal data mining methods are good candidate tools for that. However, these methods should be adapted for addressing the complex nature of medical events. Thus, there is an ongoing work on the analysis of trajectories with different levels of granularity and w.r.t. external domain ontologies. In addition, it is also important to be able to compare and classify trajectories according to their content. This is why there is also a work on the definition of a similarity measure able to take into account the complex nature of trajectories and that can be efficiently implemented for allowing quick and reliable classifications.

4.3. Cooking

Participants: Emmanuelle Gaillard, Jean Lieber, Emmanuel Nauer.

Keywords: cooking, knowledge representation, knowledge discovery, case-based reasoning, semantic wiki

The origin of the Taaable project is the Computer Cooking Contest (CCC). A contestant to CCC is a system that answers queries about recipes, using a recipe base; if no recipe exactly matches the query, then the system adapts another recipe. Taaable is a case-based reasoning system based on various technologies from semantic web, knowledge discovery, knowledge representation and reasoning. From a research viewpoint the system enables to test scientific results and to study the complementarity of various research trends in an application domain which is simple to understand and which raises complex issues at the same time.

4.4. Agronomy

Participants: Sébastien Da Silva, Florence Le Ber [contact person], Jean-François Mari.

Keywords: simulation, Markov model, Formal Concept Analysis, graph

Sébastien da Silva has defended his PhD thesis [87] in September 2014. This research was conducted in the framework of an Inria-INRA collaboration, taking place in the INRA research network PAYOTE about landscape modeling. The thesis, supervised both by Claire Lavigne (DR in ecology, INRA Avignon) and Florence Le Ber, was concerned with the characterization and the simulation of hedgerows structures in agricultural landscapes, based on Hilbert-Peano curves and Markov models [88].

An on-going research work about the representation of peasant knowledge is involved within a collaboration with IRD in Madagascar [94]. Sketches drawn by peasants were transformed into graphs and compared thanks to Formal Concept Analysis.

4.5. Digital Humanities

Participant: Jean Lieber.

Keywords: digital humanities, semantic web, SPARQL, approximate search, case-based reasoning

Recent contacts with the digital humanity community have occurred, in particular, with a group of researchers in the domain of the history and philosophy of science and technologies (located in Brest, Montpellier and Nancy) willing to benefit from semantic Web technologies in order to provide better accesses to their corpora. A first paper based on this starting collaboration has been published [51], in which we proposed an approach to exact and approximate search in RDFS-annotated corpora based on the SPARQL technology and on case-based reasoning principles.

PANAMA Project-Team

4. Application Domains

4.1. Acoustic scene capture

Acoustic fields carry much information about audio sources (musical instruments, speakers, etc.) and their environment (e.g., church acoustics differ much from office room acoustics). A particular challenge is to capture as much information from a complete 3D+t acoustic field associated with an audio scene, using as few sensors as possible. The feasibility of compressive sensing to address this challenge was shown in certain scenarii, and the actual implementation of this framework will potentially impact practical scenarii such as remote surveillance to detect abnormal events, e.g. for health care of the elderly or public transport surveillance.

4.2. Audio signal separation in reverberant environments

Audio signal separation consists in extracting the individual sound of different instruments or speakers that were mixed on a recording. It is now successfully addressed in the academic setting of linear instantaneous mixtures. Yet, real-life recordings, generally associated to reverberant environments, remain an unsolved difficult challenge, especially with many sources and few audio channels. Much of the difficulty comes from the estimation of the unknown room impulse response associated to a matrix of mixing filters, which can be expressed as a dictionary-learning problem. Solutions to this problem have the potential to impact, for example, the music and game industry, through the development of new digital re-mastering techniques and virtual reality tools, but also surveillance and monitoring applications, where localizing audio sources is important.

4.3. Multimedia indexing

Audiovisual and multimedia content generate large data streams (audio, video, associated data such as text, etc.). Manipulating large databases of such content requires efficient techniques to: segment the streams into coherent sequences; label them according to words, language, speaker identity, and more generally to the type of content; index them for easy querying and retrieval, etc. As the next generation of online search engines will need to offer content-based means of searching, the need to drastically reduce the computational burden of these tasks is becoming all the more important as we can envision the end of the era of wasteful datacenters that can increase forever their energy consumption. Most of today's techniques to deal with such large audio streams involve extracting features such as Mel Frequency Cepstral Coefficients (MFCC) and learning high-dimensional statistical models such as Gaussian Mixture Models, with several thousand parameters. The exploration of a compressive learning framework is expected to contribute to new techniques to efficiently process such streams and perform segmentation, classification, etc., in the compressed domain. A particular challenge is to understand how this paradigm can help exploiting truly multimedia features, which combine information from different associated streams such as audio and video, for joint audiovisual processing.

4.4. Brain source imaging

Epilepsies constitute a common neurological disorder that affects about 1% of the world population. As the epileptic seizure is a dynamic phenomenon, imaging techniques showing static images of the brain (MRI, PET scan) are frequently not the best tools to identify the brain area of interest. Electroencephalography (EEG) is the technique most indicated to capture transient events directly related to the underlying epileptic pathology (like interictal spikes, in particular). EEG convey essential information regarding brain (patho-)physiological activity. In addition, recording techniques of surface signals have the major advantage of being noninvasive. For this reason, an increased use in the context of epilepsy surgery is most wanted. However, to

reach this objective, we have to solve an electromagnetic inverse problem, that is to say to estimate the current generators underlying noisy EEG data. Theoretically, a specific electromagnetic field pattern may be generated by an infinite number of current distributions. The considered inverse problem, called "brain source imaging problem", is then said to be ill-posed.

PERCEPTION Project-Team (section vide)

POTIOC Project-Team

4. Application Domains

4.1. Popularization of science, education, art, entertainment

Our project aims at providing rich interaction experiences between users and the digital world, in particular for non-expert users. The final goal is to stimulate understanding, learning, communication and creation. Our scope of applications encompasses

- popularization of science
- education
- art
- entertainment

See "Objective 3: Exploring new applications and usages" (3.4) for a detailed description.

PRIMA Project-Team (section vide)

RITS Project-Team

4. Application Domains

4.1. Introduction

While the preceding section focused on methodology, in connection with automated guided vehicles, it should be stressed that the evolution of the problems which we deal with, remains often guided by the technological developments. We enumerate three fields of application, whose relative importance varies with time and which have strong mutual dependencies: driving assistance, cars available in self-service mode and fully automated vehicles (cybercars).

4.2. Driving assistance

Several techniques will soon help drivers. One of the first immediate goal is to improve security by alerting the driver when some potentially dangerous or dangerous situations arise, i.e. collision warning systems or lane tracking could help a bus driver and surrounding vehicle drivers to more efficiently operate their vehicles. Human factors issues could be addressed to control the driver workload based on additional information processing requirements. Another issue is to optimize individual journeys. This means developing software for calculating optimal (for the user or for the community) paths. Nowadays, path planning software is based on a static view of the traffic: efforts have to be done to take the dynamic component in account.

4.3. New transportation systems

The problems related to the abusive use of the individual car in large cities led the populations and the political leaders to support the development of public transport. A demand exists for a transport of people and goods which associates quality of service, environmental protection and access to the greatest number. Thus the tram and the light subways of VAL type recently introduced into several cities in France conquered the populations, in spite of high financial costs. However, these means of mass transportation are only possible on lines on which there is a keen demand. As soon as one moves away from these "lines of desire" or when one deviates from the rush hours, these modes become expensive and offer can thus only be limited in space and time. To give a more flexible offer, it is necessary to plan more individual modes which approach the car as we know it. However, if one wants to enjoy the benefits of the individual car without suffering from their disadvantages, it is necessary to try to match several criteria: availability anywhere and anytime to all, lower air and soils pollution as well as sound levels, reduced ground space occupation, security, low cost. Electric or gas vehicles available in self-service, as in the Praxitèle system, bring a first response to these criteria. To be able to still better meet the needs, it is however necessary to re-examine the design of the vehicles on the following points:

- ease empty car moves to better distribute them;
- better use of information systems inboard and on ground;
- better integrate this system in the global transportation system.

These systems are now operating (i.e. in La Rochelle). The challenge is to bring them to an industrial phase by transferring technologies to these still experimental projects.

4.4. Automated vehicles

The long term effort of the project is to put automatically guided vehicles (cybercars) on the road. It seems too early to mix cybercars and traditional vehicles, but data processing and automation now make it possible to consider in the relatively short term the development of such vehicles and the adapted infrastructures. RITS aims at using these technologies on experimental platforms (vehicles and infrastructures) to accelerate the technology transfer and to innovate in this field. Other application can be precision docking systems that will allow buses to be automatically maneuvered into a loading zone or maintenance area, allowing easier access for passengers, or more efficient maintenance operations. Transit operating costs will also be reduced through decreased maintenance costs and less damage to the braking and steering systems. Regarding technical topics, several aspects of Cybercars have been developed at RITS this year. First, we have stabilized a generic Cycab architecture involving Inria SynDEx tool and CAN communications. The critical part of the vehicle is using a real-time SynDEx application controlling the actuators via two Motorola's MPC555. Today, we have decided to migrate to the new dsPIC architecture for more efficiency and ease of use. This application has a second feature, it can receive commands from an external source (Asynchronously to this time) on a second CAN bus. This external source can be a PC or a dedicated CPU, we call it high level. To work on the high level, in the past years we have been developing a R&D framework called (Taxi) which used to take control of the vehicle (Cycab and Yamaha) and process data such as gyro, GPS, cameras, wireless communications and so on. Today, in order to rely on a professional and maintained solution, we have chosen to migrate to the RTMaps SDK development platform. Today, all our developments and demonstrations are using this efficient prototyping platform. Thanks to RTMaps we have been able to do all the demonstrations on our cybercars: cycabs, Yamaha AGV and new Cybus platforms. These demonstrations include: reliable SLAMMOT algorithm using 2 to 4 laser sensors simultaneously, automatic line/road following techniques, PDA remote control, multi sensors data fusion, collaborative perception via ad-hoc network. The second main topic is inter-vehicle communications using ad-hoc networks. We have worked with the EVA team for setting and tuning OLSR, a dynamic routing protocol for vehicles communications. Our goal is to develop a vehicle dedicated communication software suite, running on a specialized hardware. It can be linked also with the Taxi Framework for getting data such GPS information's to help the routing algorithm.

SEMAGRAMME Project-Team

4. Application Domains

4.1. Introduction

Our applicative domains concern natural language processing applications that rely on a deep semantic analysis. For instance, one may cite the following ones:

- textual entailment and inference,
- dialog systems,
- semantic-oriented query systems,
- content analysis of unstructured documents,
- text transformation and automatic summarization,
- (semi) automatic knowledge acquisition.

However, if the need for semantics seems to be ubiquitous, there is a challenge in finding applications for which a deep semantic analysis results in a real improvement over non semantic-based techniques.

4.2. Text Transformation

Text transformation is an application domain featuring two important sub-fields of computational linguistics:

- parsing, from surface form to abstract representation,
- generation, from abstract representation to surface form.

Text simplification or automatic summarization belong to that domain.

We aim at using the framework of Abstract Categorial Grammars we develop to this end. It is indeed a reversible framework that allows both parsing and generation. Its underlying mathematical structure of λ -calculus makes it fit with our type-theoretic approach to discourse dynamics modeling. The ANR project Polymnie (see section 7.2.1.1) is especially dedicated to this aim.

SIROCCO Project-Team

4. Application Domains

4.1. Introduction

The application domains addressed by the project are:

- Compression with advanced functionalities of various image modalities (including multi-view, medical images or satellite images);
- Networked multimedia applications via their various needs in terms of image and 2D and 3D video compression, or in terms of network adaptation (e.g., resilience to channel noise);
- Content editing and post-production.

4.2. Compression with advanced functionalities

Compression of images and of 2D video (including High Definition and Ultra High Definition) remains a widely-sought capability for a large number of applications. This is particularly true for mobile applications, as the need for wireless transmission capacity will significantly increase during the years to come. Hence, efficient compression tools are required to satisfy the trend towards mobile access to larger image resolutions and higher quality. A new impulse to research in video compression is also brought by the emergence of new formats beyond High Definition TV (HDTV) towards high dynamic range (higher bit depth, extended colorimetric space), super-resolution, formats for immersive displays allowing panoramic viewing and 3DTV.

Different video data formats and technologies are envisaged for interactive and immersive 3D video applications using omni-directional videos, stereoscopic or multi-view videos. The "omni-directional video" set-up refers to 360-degree view from one single viewpoint or spherical video. Stereoscopic video is composed of two-view videos, the right and left images of the scene which, when combined, can recreate the depth aspect of the scene. A multi-view video refers to multiple video sequences captured by multiple video cameras and possibly by depth cameras. Associated with a view synthesis method, a multi-view video allows the generation of virtual views of the scene from any viewpoint. This property can be used in a large diversity of applications, including Three-Dimensional TV (3DTV), and Free Viewpoint Video (FTV). The notion of "free viewpoint video" refers to the possibility for the user to choose an arbitrary viewpoint and/or view direction within a visual scene, creating an immersive environment. Multi-view video generates a huge amount of redundant data which need to be compressed for storage and transmission. In parallel, the advent of a variety of heterogeneous delivery infrastructures has given momentum to extensive work on optimizing the end-to-end delivery QoS (Quality of Service). This encompasses compression capability but also capability for adapting the compressed streams to varying network conditions. The scalability of the video content compressed representation and its robustness to transmission impairments are thus important features for seamless adaptation to varying network conditions and to terminal capabilities.

4.3. Networked visual applications

3D and Free Viewpoint TV: The emergence of multi-view auto-stereoscopic displays has spurred a recent interest for broadcast or Internet delivery of 3D video to the home. Multiview video, with the help of depth information on the scene, allows scene rendering on immersive stereo or auto-stereoscopic displays for 3DTV applications. It also allows visualizing the scene from any viewpoint, for scene navigation and free-viewpoint TV (FTV) applications. However, the large volumes of data associated to multi-view video plus depth content raise new challenges in terms of compression and communication.

Internet and mobile video: Broadband fixed (ADSL, ADSL2+) and mobile access networks with different radio access technologies (RAT) (e.g. 3G/4G, GERAN, UTRAN, DVB-H), have enabled not only IPTV and Internet TV but also the emergence of mobile TV and mobile devices with internet capability. A major challenge for next internet TV or internet video remains to be able to deliver the increasing variety of media (including more and more bandwidth demanding media) with a sufficient end-to-end QoS (Quality of Service) and QoE (Quality of Experience).

Mobile video retrieval: The Internet has changed the ways of interacting with content. The user is shifting its media consumption from a passive to a more interactive mode, from linear broadcast (TV) to on demand content (YouTubes, iTunes, VoD), and to user-generated, searching for relevant, personalized content. New mobility and ubiquitous usage has also emerged. The increased power of mobile devices is making content search and retrieval applications using mobile phones possible. Quick access to content in mobile environments with restricted bandwidth resources will benefit from rate-efficient feature extraction and description.

Wireless multi-camera vision systems: Our activities on scene modelling, on rate-efficient feature description, distributed coding and compressed sensing should also lead to algorithmic building blocks relevant for wireless multi-camera vision systems, for applications such as visual surveillance and security.

4.4. Medical Imaging (CT, MRI, Virtual Microscopy)

The use of medical imaging has greatly increased in recent years, especially with magnetic resonance images (MRI) and computed tomography (CT). In the medical sector, lossless compression schemes are in general used to avoid any signal degradation which could mask a pathology and hence disturb the medical diagnosis. Nevertheless, some discussions are on-going to use near-lossless coding of regions-of-interest (ROI) in medical images. The detection and segmentation of region-of interest (ROIs) can be guided by a precise knowledge of the medical imaging modalities and by the diagnosis and expertise of practitioners. It seems also to be promising to explore new representation and coding approaches for 3D biological tissue imaging captured by 3D virtual microscopy. These fields of interest and scientific application domains commonly generate terabytes of data. Lossless schemes but also lossy approaches have to be explored and optimized, and interactive tools supporting scalable and interactive access to large-sized images such as these virtual microscopy slides need to be developed.

4.5. Editing and post-production

Video editing and post-production are critical aspects in the audio-visual production process. The increased number of ways of "consuming" video content also highlight the need for content repurposing as well as for higher interaction and editing capabilities. Content captured at very high resolutions may need to be repurposed in order to be adapted to the requirements of actual users, to the transmission channel or to the terminal. Content repurposing encompasses format conversion (retargeting), content summarization, and content editing. This processing requires powerful methods for extracting condensed video representations as well as powerful inpainting techniques. By providing advanced models, advanced video processing and image analysis tools, more visual effects, with more realism become possible. Other applications such as video annotation/retrieval, video restoration/stabilization, augmented reality, can also benefit from the proposed research.

SMIS Project-Team

4. Application Domains

4.1. Application Domains

Our work addresses varied application domains. Typically, data management techniques on chip are required each time data-driven applications have to be embedded in ultra-light computing devices. This situation occurs for example in healthcare applications where medical folders are embedded into smart tokens (e.g., smart cards, secured USB keys), in telephony applications where personal data (address book, agenda, etc.) is embedded into cellular phones, in sensor networks where sensors log row measurements and perform local computation on them, in smart-home applications where a collection of smart appliances gather information about the occupants to provide them a personalized service, and more generally in most applications related to ambient intelligence.

Safeguarding data confidentiality has become a primary concern for citizens, administrations and companies, broadening the application domains of our work on access control policies definition and enforcement. The threat on data confidentiality is manifold: external and internal attacks on the data at rest, on the data on transit, on the data hosted in untrusted environments (e.g., Database Service Providers, Web-hosting companies) and subject to illegal usage, insidious gathering of personal data in an ambient intelligence surrounding. Hence, new access control models and security mechanisms are required to accurately declare and safely control who is granted access to which data and for which purpose.

While the application domain mentioned above is rather large, two applications are today more specifically targeted by the SMIS team. The first one deals with privacy preservation in EHR (Electronic Health Record) systems and PCEHR (Personally Controlled EHR). We are developing technologies tackling this issue and experiment them in the field. The second application area deals with privacy preservation in the context of personal Cloud, that is personal data hosted in dedicated servers staying under the holder's control (e.g., in a personal internet box or in a home automation box).

STARS Project-Team

4. Application Domains

4.1. Introduction

While in our research the focus is to develop techniques, models and platforms that are generic and reusable, we also make effort in the development of real applications. The motivation is twofold. The first is to validate the new ideas and approaches we introduce. The second is to demonstrate how to build working systems for real applications of various domains based on the techniques and tools developed. Indeed, Stars focuses on two main domains: video analytic and healthcare monitoring.

4.2. Video Analytics

Our experience in video analytic [6], [1], [8] (also referred to as visual surveillance) is a strong basis which ensures both a precise view of the research topics to develop and a network of industrial partners ranging from end-users, integrators and software editors to provide data, objectives, evaluation and funding.

For instance, the Keeneo start-up was created in July 2005 for the industrialization and exploitation of Orion and Pulsar results in video analytic (VSIP library, which was a previous version of SUP). Keeneo has been bought by Digital Barriers in August 2011 and is now independent from Inria. However, Stars continues to maintain a close cooperation with Keeneo for impact analysis of SUP and for exploitation of new results.

Moreover new challenges are arising from the visual surveillance community. For instance, people detection and tracking in a crowded environment are still open issues despite the high competition on these topics. Also detecting abnormal activities may require to discover rare events from very large video data bases often characterized by noise or incomplete data.

4.3. Healthcare Monitoring

Since 2011, we have initiated a strategic partnership (called CobTek) with Nice hospital [56], [82] (CHU Nice, Prof P. Robert) to start ambitious research activities dedicated to healthcare monitoring and to assistive technologies. These new studies address the analysis of more complex spatio-temporal activities (e.g. complex interactions, long term activities).

4.3.1. Research

To achieve this objective, several topics need to be tackled. These topics can be summarized within two points: finer activity description and longitudinal experimentation. Finer activity description is needed for instance, to discriminate the activities (e.g. sitting, walking, eating) of Alzheimer patients from the ones of healthy older people. It is essential to be able to pre-diagnose dementia and to provide a better and more specialized care. Longer analysis is required when people monitoring aims at measuring the evolution of patient behavioral disorders. Setting up such long experimentation with dementia people has never been tried before but is necessary to have real-world validation. This is one of the challenge of the European FP7 project Dem@Care where several patient homes should be monitored over several months.

For this domain, a goal for Stars is to allow people with dementia to continue living in a self-sufficient manner in their own homes or residential centers, away from a hospital, as well as to allow clinicians and caregivers remotely provide effective care and management. For all this to become possible, comprehensive monitoring of the daily life of the person with dementia is deemed necessary, since caregivers and clinicians will need a comprehensive view of the person's daily activities, behavioral patterns, lifestyle, as well as changes in them, indicating the progression of their condition.

4.3.2. Ethical and Acceptability Issues

The development and ultimate use of novel assistive technologies by a vulnerable user group such as individuals with dementia, and the assessment methodologies planned by Stars are not free of ethical, or even legal concerns, even if many studies have shown how these Information and Communication Technologies (ICT) can be useful and well accepted by older people with or without impairments. Thus one goal of Stars team is to design the right technologies that can provide the appropriate information to the medical carers while preserving people privacy. Moreover, Stars will pay particular attention to ethical, acceptability, legal and privacy concerns that may arise, addressing them in a professional way following the corresponding established EU and national laws and regulations, especially when outside France. Now, Stars can benefit from the support of the COERLE (Comité Opérationnel d'Evaluation des Risques Légaux et Ethiques) to help it to respect ethical policies in its applications.

As presented in 3.1, Stars aims at designing cognitive vision systems with perceptual capabilities to monitor efficiently people activities. As a matter of fact, vision sensors can be seen as intrusive ones, even if no images are acquired or transmitted (only meta-data describing activities need to be collected). Therefore new communication paradigms and other sensors (e.g. accelerometers, RFID, and new sensors to come in the future) are also envisaged to provide the most appropriate services to the observed people, while preserving their privacy. To better understand ethical issues, Stars members are already involved in several ethical organizations. For instance, F. Brémond has been a member of the ODEGAM - "Commission Ethique et Droit" (a local association in Nice area for ethical issues related to older people) from 2010 to 2011 and a member of the French scientific council for the national seminar on "La maladie d'Alzheimer et les nouvelles technologies - Enjeux éthiques et questions de société" in 2011. This council has in particular proposed a chart and guidelines for conducting researches with dementia patients.

For addressing the acceptability issues, focus groups and HMI (Human Machine Interaction) experts, will be consulted on the most adequate range of mechanisms to interact and display information to older people.

TITANE Project-Team

4. Application Domains

4.1. Application Domains

In addition to tackling enduring scientific challenges, our research on geometric modeling and processing is motivated by applications to computational engineering, reverse engineering, digital mapping and urban planning. The main deliverables of our research are algorithms with theoretical foundations. Ultimately we wish to contribute making geometry modeling and processing routine for practitioners who deal with real-world data. Our contributions may also be used as a sound basis for future software and technology developments.

Our first objective for technology transfer is to consolidate the components of our research experiments in the form of new software components for the CGAL (Computational Geometry Algorithms Library) library. Through CGAL we wish to contribute to the "standard geometric toolbox", so as to provide a generic answer to application needs instead of fragmenting our contributions. We already cooperate with the Inria spin-off company Geometry Factory, which commercializes CGAL, maintains it and provide technical support. Our second objective is to increase the research momentum of companies through advising Cifre Ph.D. theses and postdoctoral fellows on topics that match our research program.

TYREX Project-Team

4. Application Domains

4.1. Web Programming Technologies

Despite the major social and economic impacts of the web revolution, current web programming methods and content representation are lagging behind and remain severely limited and in many respects archaic. Dangerously, designing web applications even becomes increasingly complex as it relies more and more on a jungle of programming languages, tools and data formats, each targeted toward a different application layer (presentation, application and storage). This often yields complex and opaque applications organized in silos, which are costly, inefficient, hard to maintain and evolve, and vulnerable to errors and security holes. In addition, the communication aspects are often handled independently via remote service invocations and represent another source of complexity and vulnerability. We believe that we reached a level where there is an urgent need and a growing demand for alternative programming frameworks that capture the essence of web applications: advanced content, data and communication. Therefore, successful candidate frameworks must capture rich document formats, data models and communication patterns. A crucial aspect is to offer correction guarantees and flexibility in the application architecture. For instance, applications need to be checked, optimized and managed as a whole while leveraging on the consistency of their individual components and data fragments. For all these reasons, we believe that a new generation of tools must be created and developed in order to overcome the aforementioned limitations of current web technologies.

4.2. Multimedia and Augmented Environments

The term Augmented Environments refers collectively to ubiquitous computing, context-aware computing, and intelligent environments. The goal of our research on these environments is to introduce personal Augmented Reality (AR) devices, taking advantage of their embedded sensors. We believe that personal AR devices such as mobile phones or tablets will play a central role in augmented environments. These environments offer the possibility of using ubiquitous computation, communication, and sensing to enable the presentation of contextsensitive information and services to the user. AR applications often rely on 3D content and employ specialized hardware and computer vision techniques for both tracking and scene reconstruction and exploration. Our approach tries to seek a balance between these traditional AR contexts and what has come to be known as mobile AR browsing. It first acknowledges that mobile augmented environment browsing does not require that 3D content be the primary means of authoring. It provides instead a method for HTML5 and audio content to be authored, positioned in the surrounding environments and manipulated as freely as in modern web browsers. The applications we develop to guide and validate our concepts are pedestrian navigation techniques and applications for cultural heritage visits. Features found in augmented environments are demanding for the other activities in the team. They require all kinds of multimedia information, that they have to combine. This information has to be processed efficiently and safely, often in real time, and it also, for a significant part, has to be created by human users.

WILLOW Project-Team

4. Application Domains

4.1. Introduction

We believe that foundational modeling work should be grounded in applications. This includes (but is not restricted to) the following high-impact domains.

4.2. Quantitative image analysis in science and humanities

We plan to apply our 3D object and scene modeling and analysis technology to image-based modeling of human skeletons and artifacts in anthropology, and large-scale site indexing, modeling, and retrieval in archaeology and cultural heritage preservation. Most existing work in this domain concentrates on image-based rendering—that is, the synthesis of good-looking pictures of artifacts and digs. We plan to focus instead on quantitative applications. We are engaged in a project involving the archaeology laboratory at ENS and focusing on image-based artifact modeling and decorative pattern retrieval in Pompeii. Application of our 3D reconstruction technology is now being explored in the field of cultural heritage and archeology by the start-up Iconem, founded by Y. Ubelmann, a Willow collaborator.

4.3. Video Annotation, Interpretation, and Retrieval

Both specific and category-level object and scene recognition can be used to annotate, augment, index, and retrieve video segments in the audiovisual domain. The Video Google system developed by Sivic and Zisserman (2005) for retrieving shots containing specific objects is an early success in that area. A sample application, suggested by discussions with Institut National de l'Audiovisuel (INA) staff, is to match set photographs with actual shots in film and video archives, despite the fact that detailed timetables and/or annotations are typically not available for either medium. Automatically annotating the shots is of course also relevant for archives that may record hundreds of thousands of hours of video. Some of these applications will be pursued in our MSR-Inria project.

WIMMICS Project-Team

4. Application Domains

4.1. Social Semantic Web

A number of evolutions have changed the face of information systems in the past decade but the advent of the Web is unquestionably a major one and it is here to stay. From an initial wide-spread perception of a public documentary system, the Web as an object turned into a social virtual space and, as a technology, grew as an application design paradigm (services, data formats, query languages, scripting, interfaces, reasoning, etc.). The universal deployment and support of its standards led the Web to take over nearly all of our information systems. As the Web continues to evolve, our information systems are evolving with it.

Today in organizations, not only almost every internal information system is a Web application, but these applications also more and more often interact with external Web applications. The complexity and coupling of these Web-based information systems call for specification methods and engineering tools. From capturing the needs of users to deploying a usable solution, there are many steps involving computer science specialists and non-specialists.

We defend the idea of relying on Semantic Web formalisms to capture and reason on the models of these information systems supporting the design, evolution, interoperability and reuse of the models and their data as well as the workflows and the processing.

4.2. Linked Data on the Web and on Intranets

With billions of triples online (see Linked Open Data initiative), the Semantic Web is providing and linking open data at a growing pace and publishing and interlinking the semantics of their schemas. Information systems can now tap into and contribute to this Web of data, pulling and integrating data on demand. Many organisations also started to use this approach on their intranets leading to what is called linked enterprise data.

A first application domain for us is the publication and linking of data and their schemas through Web architectures. Our results provide software platforms to publish and query data and their schemas, to enrich these data in particular by reasoning on their schemas, to control their access and licenses, to assist the workflows that exploit them, to support the use of distributed datasets, to assist the browsing and visualization of data, etc.

Examples of collaboration and applied projects include: SMILK Joint Laboratory, Corese/KGRAM, DBpedia.fr.

4.3. Assisting Web-based Epistemic Communities

In parallel to linked open data on the Web, social Web applications also spread virally (e.g. Facebook growing toward 1.5 billion users) first giving the Web back its status of a social read-write media and then putting it back on track to its full potential of a virtual place where to act, react and interact. In addition, many organizations are now considering deploying social Web applications internally to foster community building, expert cartography, business intelligence, technological watch and knowledge sharing in general.

By reasoning on the Linked Data and the semantics of the schemas used to represent social structures and Web resources, we provide applications supporting communities of practice and interest and fostering their interactions in many different contexts (e-learning, business intelligence, technical watch, etc.).

We use typed graphs to capture and mix: social networks with the kinds of relationships and the descriptions of the persons; compositions of Web services with types of inputs and outputs; links between documents with their genre and topics; hierarchies of classes, thesauri, ontologies and folksonomies; recorded traces and suggested navigation courses; submitted queries and detected frequent patterns; timelines and workflows; etc.

Our results assist epistemic communities in their daily activities such as biologists exchanging results, business intelligence and technological watch networks informing companies, engineers interacting on a project, conference attendees, students following the same course, tourists visiting a region, mobile experts on the field, etc. Example of collaboration and applied projects: OCKTOPUS, Vigiglobe, Educlever, Gayatech.

ZENITH Project-Team

4. Application Domains

4.1. Data-intensive Scientific Applications

The application domains covered by Zenith are very wide and diverse, as they concern data-intensive scientific applications, i.e., most scientific applications. Since the interaction with scientists is crucial to identify and tackle data management problems, we are dealing primarily with application domains for which Montpellier has an excellent track record, i.e., agronomy, environmental science, life science, with scientific partners like INRA, IRD, CIRAD and IRSTEA. However, we are also addressing other scientific domains (e.g. astronomy, oil extraction) through our international collaborations (e.g. in Brazil).

Let us briefly illustrate some representative examples of scientific applications on which we have been working on.

- Management of astronomical catalogs. An example of data-intensive scientific applications is the management of astronomical catalogs generated by the Dark Energy Survey (DES) project on which we are collaborating with researchers from Brazil. In this project, huge tables with billions of tuples and hundreds of attributes (corresponding to dimensions, mainly double precision real numbers) store the collected sky data. Data are appended to the catalog database as new observations are performed and the resulting database size is estimated to reach 100TB very soon. Scientists around the globe can query the database with queries that may contain a considerable number of attributes. The volume of data that this application holds poses important challenges for data management. In particular, efficient solutions are needed to partition and distribute the data in several servers. An efficient partitioning scheme should try to minimize the number of fragments accessed in the execution of a query, thus reducing the overhead associated to handle the distributed execution.
- Personal health data analysis and privacy The "Quantified Self" movement has gained a large popularity these past few years. Today, it is possible to acquire data on many domains related to personal data. For instance, one can collect data on her daily activities, habits or health. It is also possible to measure performances in sports. This can be done thanks to sensors, communicating devices or even connected glasses (as currently being developed by companies such as Google, for instance). Obviously, such data, once acquired, can lead to valuable knowledge for these domains. For people having a specific disease, it might be important to know if they belong to a specific category that needs particular care. For an individual, it can be interesting to find a category that corresponds to her performances in a specific sport and then adapt her training with an adequate program. Meanwhile, for privacy reasons, people will be reluctant to share their personal data and make them public. Therefore, it is important to provide them solutions that can extract such knowledge from everybody's data, while guaranteeing that their private data won't be disclosed to anyone.
- Botanical data sharing. Botanical data is highly decentralized and heterogeneous. Each actor has its own expertise domain, hosts its own data, and describes them in a specific format. Furthermore, botanical data is complex. A single plant's observation might include many structured and unstructured tags, several images of different organs, some empirical measurements and a few other contextual data (time, location, author, etc.). A noticeable consequence is that simply identifying plant species is often a very difficult task; even for the botanists themselves (the so-called taxonomic gap). Botanical data sharing should thus speed up the integration of raw observation data, while providing users an easy and efficient access to integrated data. This requires to deal with social-based data integration and sharing, massive data analysis and scalable content-based information retrieval. We address this application in the context of the French initiative Pl@ntNet, with CIRAD and IRD.
- Biology data integration and analysis.

Biology and its applications, from medicine to agronomy and ecology, are now producing massive data, which is revolutionizing the way life scientists work. For instance, using plant phenotyping platforms such as PhenoDyn, PhenoPsis and PhenoArch at INRA Montpellier, quantitative genetic methods allow to identify genes involved in phenotypic variation in response to environmental conditions. These methods produce large amounts of data at different time intervals (minutes to days), at different sites and at different scales ranging from small tissue samples until the entire plant. Analyzing such big data creates new challenges for data management and data integration.

These application examples illustrate the diversity of requirements and issues which we are addressing with our scientific application partners. To further validate our solutions and extend the scope of our results, we also want to foster industrial collaborations, even in non scientific applications, provided that they exhibit similar challenges.