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AIRSEA Project-Team

3. Research Program

3.1. Introduction

Recent events have raised questions regarding the social and economic implications of anthropic alterations
of the Earth system, i.e. climate change and the associated risks of increasing extreme events. Ocean and
atmosphere, coupled with other components (continent and ice) are the building blocks of the Earth system.
A better understanding of the ocean atmosphere system is a key ingredient for improving prediction of such
events. Numerical models are essential tools to understand processes, and simulate and forecast events at
various space and time scales. Geophysical flows generally have a number of characteristics that make it
difficult to model them. This justifies the development of specifically adapted mathematical methods:

e Geophysical flows are strongly non-linear. Therefore, they exhibit interactions between different
scales, and unresolved small scales (smaller than mesh size) of the flows have to be parameterized
in the equations.

e Geophysical fluids are non closed systems. They are open-ended in their scope for including and
dynamically coupling different physical processes (e.g., atmosphere, ocean, continental water, etc).
Coupling algorithms are thus of primary importance to account for potentially significant feedback.

e Numerical models contain parameters which cannot be estimated accurately either because they are
difficult to measure or because they represent some poorly known subgrid phenomena. There is
thus a need for dealing with uncertainties. This is further complicated by the turbulent nature of
geophysical fluids.

e The computational cost of geophysical flow simulations is huge, thus requiring the use of reduced
models, multiscale methods and the design of algorithms ready for high performance computing
platforms.

Our scientific objectives are divided into four major points. The first objective focuses on developing advanced
mathematical methods for both the ocean and atmosphere, and the coupling of these two components. The
second objective is to investigate the derivation and use of model reduction to face problems associated with
the numerical cost of our applications. The third objective is directed toward the management of uncertainty
in numerical simulations. The last objective deals with efficient numerical algorithms for new computing
platforms. As mentioned above, the targeted applications cover oceanic and atmospheric modeling and related
extreme events using a hierarchy of models of increasing complexity.

3.2. Modeling for oceanic and atmospheric flows

Current numerical oceanic and atmospheric models suffer from a number of well-identified problems. These
problems are mainly related to lack of horizontal and vertical resolution, thus requiring the parameterization
of unresolved (subgrid scale) processes and control of discretization errors in order to fulfill criteria related to
the particular underlying physics of rotating and strongly stratified flows. Oceanic and atmospheric coupled
models are increasingly used in a wide range of applications from global to regional scales. Assessment of the
reliability of those coupled models is an emerging topic as the spread among the solutions of existing models
(e.g., for climate change predictions) has not been reduced with the new generation models when compared to
the older ones.

Advanced methods for modeling 3D rotating and stratified flows The continuous increase of computational
power and the resulting finer grid resolutions have triggered a recent regain of interest in numerical methods
and their relation to physical processes. Going beyond present knowledge requires a better understanding
of numerical dispersion/dissipation ranges and their connection to model fine scales. Removing the leading
order truncation error of numerical schemes is thus an active topic of research and each mathematical tool
has to adapt to the characteristics of three dimensional stratified and rotating flows. Studying the link between
discretization errors and subgrid scale parameterizations is also arguably one of the main challenges.


http://www.inria.fr/equipes/airsea
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Complexity of the geometry, boundary layers, strong stratification and lack of resolution are the main sources
of discretization errors in the numerical simulation of geophysical flows. This emphasizes the importance of
the definition of the computational grids (and coordinate systems) both in horizontal and vertical directions,
and the necessity of truly multi resolution approaches. At the same time, the role of the small scale dynamics
on large scale circulation has to be taken into account. Such parameterizations may be of deterministic as well
as stochastic nature and both approaches are taken by the AIRSEA team. The design of numerical schemes
consistent with the parameterizations is also arguably one of the main challenges for the coming years. This
work is complementary and linked to that on parameters estimation described in 3.4 .

Ocean Atmosphere interactions and formulation of coupled models State-of-the-art climate models (CMs)
are complex systems under continuous development. A fundamental aspect of climate modeling is the
representation of air-sea interactions. This covers a large range of issues: parameterizations of atmospheric
and oceanic boundary layers, estimation of air-sea fluxes, time-space numerical schemes, non conforming
grids, coupling algorithms ...Many developments related to these different aspects were performed over the
last 10-15 years, but were in general conducted independently of each other.

The aim of our work is to revisit and enrich several aspects of the representation of air-sea interactions in CMs,
paying special attention to their overall consistency with appropriate mathematical tools. We intend to work
consistently on the physics and numerics. Using the theoretical framework of global-in-time Schwarz methods,
our aim is to analyze the mathematical formulation of the parameterizations in a coupling perspective. From
this study, we expect improved predictability in coupled models (this aspect will be studied using techniques
described in 3.4 ). Complementary work on space-time nonconformities and acceleration of convergence of
Schwarz-like iterative methods (see 7.1.2 ) are also conducted.

3.3. Model reduction / multiscale algorithms

The high computational cost of the applications is a common and major concern to have in mind when
deriving new methodological approaches. This cost increases dramatically with the use of sensitivity analysis
or parameter estimation methods, and more generally with methods that require a potentially large number of
model integrations.

A dimension reduction, using either stochastic or deterministic methods, is a way to reduce significantly the
number of degrees of freedom, and therefore the calculation time, of a numerical model.

Model reduction Reduction methods can be deterministic (proper orthogonal decomposition, other reduced
bases) or stochastic (polynomial chaos, Gaussian processes, kriging), and both fields of research are very
active. Choosing one method over another strongly depends on the targeted application, which can be as
varied as real-time computation, sensitivity analysis (see e.g., section 7.3.1 ) or optimisation for parameter
estimation (see below).

Our goals are multiple, but they share a common need for certified error bounds on the output. Our team has a
4-year history of working on certified reduction methods and has a unique positioning at the interface between
deterministic and stochastic approaches. Thus, it seems interesting to conduct a thorough comparison of the
two alternatives in the context of sensitivity analysis. Efforts will also be directed toward the development
of efficient greedy algorithms for the reduction, and the derivation of goal-oriented sharp error bounds for
non linear models and/or non linear outputs of interest. This will be complementary to our work on the
deterministic reduction of parametrized viscous Burgers and Shallow Water equations where the objective
is to obtain sharp error bounds to provide confidence intervals for the estimation of sensitivity indices.

Reduced models for coupling applications Global and regional high-resolution oceanic models are either
coupled to an atmospheric model or forced at the air-sea interface by fluxes computed empirically preventing
proper physical feedback between the two media. Thanks to high-resolution observational studies, the
existence of air-sea interactions at oceanic mesoscales (i.e., at O(1km) scales) have been unambiguously
shown. Those interactions can be represented in coupled models only if the oceanic and atmospheric models
are run on the same high-resolution computational grid, and are absent in a forced mode. Fully coupled models
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at high-resolution are seldom used because of their prohibitive computational cost. The derivation of a reduced
model as an alternative between a forced mode and the use of a full atmospheric model is an open problem.

Multiphysics coupling often requires iterative methods to obtain a mathematically correct numerical solution.
To mitigate the cost of the iterations, we will investigate the possibility of using reduced-order models for the
iterative process. We will consider different ways of deriving a reduced model: coarsening of the resolution,
degradation of the physics and/or numerical schemes, or simplification of the governing equations. At a
mathematical level, we will strive to study the well-posedness and the convergence properties when reduced
models are used. Indeed, running an atmospheric model at the same resolution as the ocean model is generally
too expensive to be manageable, even for moderate resolution applications. To account for important fine-
scale interactions in the computation of the air-sea boundary condition, the objective is to derive a simplified
boundary layer model that is able to represent important 3D turbulent features in the marine atmospheric
boundary layer.

Reduced models for multiscale optimization The field of multigrid methods for optimisation has known
a tremendous development over the past few decades. However, it has not been applied to oceanic and
atmospheric problems apart from some crude (non-converging) approximations or applications to simplified
and low dimensional models. This is mainly due to the high complexity of such models and to the difficulty in
handling several grids at the same time. Moreover, due to complex boundaries and physical phenomena, the
grid interactions and transfer operators are not trivial to define.

Multigrid solvers (or multigrid preconditioners) are efficient methods for the solution of variational data
assimilation problems. We would like to take advantage of these methods to tackle the optimization problem
in high dimensional space. High dimensional control space is obtained when dealing with parameter fields
estimation, or with control of the full 4D (space time) trajectory. It is important since it enables us to take into
account model errors. In that case, multigrid methods can be used to solve the large scales of the problem at a
lower cost, this being potentially coupled with a scale decomposition of the variables themselves.

3.4. Dealing with uncertainties

There are many sources of uncertainties in numerical models. They are due to imperfect external forcing,
poorly known parameters, missing physics and discretization errors. Studying these uncertainties and their
impact on the simulations is a challenge, mostly because of the high dimensionality and non-linear nature of
the systems. To deal with these uncertainties we work on three axes of research, which are linked: sensitivity
analysis, parameter estimation and risk assessment. They are based on either stochastic or deterministic
methods.

Sensitivity analysis Sensitivity analysis (SA), which links uncertainty in the model inputs to uncertainty
in the model outputs, is a powerful tool for model design and validation. First, it can be a pre-stage for
parameter estimation (see 3.4 ), allowing for the selection of the more significant parameters. Second, SA
permits understanding and quantifying (possibly non-linear) interactions induced by the different processes
defining e.g., realistic ocean atmosphere models. Finally SA allows for validation of models, checking that
the estimated sensitivities are consistent with what is expected by the theory. On ocean, atmosphere and
coupled systems, only first order deterministic SA are performed, neglecting the initialization process (data
assimilation). AIRSEA members and collaborators proposed to use second order information to provide
consistent sensitivity measures, but so far it has only been applied to simple academic systems. Metamodels
are now commonly used, due to the cost induced by each evaluation of complex numerical models: mostly
Gaussian processes, whose probabilistic framework allows for the development of specific adaptive designs,
and polynomial chaos not only in the context of intrusive Galerkin approaches but also in a black-box
approach. Until recently, global SA was based primarily on a set of engineering practices. New mathematical
and methodological developments have led to the numerical computation of Sobol’ indices, with confidence
intervals assessing for both metamodel and estimation errors. Approaches have also been extended to the case
of dependent entries, functional inputs and/or output and stochastic numerical codes. Other types of indices
and generalizations of Sobol” indices have also been introduced.


http://raweb.inria.fr/rapportsactivite/RA{$year}/airsea/uid12.html
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Concerning the stochastic approach to SA we plan to work with parameters that show spatio-temporal
dependencies and to continue toward more realistic applications where the input space is of huge dimension
with highly correlated components. Sensitivity analysis for dependent inputs also introduces new challenges.
In our applicative context, it would seem prudent to carefully learn the spatio-temporal dependences before
running a global SA. In the deterministic framework we focus on second order approaches where the sought
sensitivities are related to the optimality system rather than to the model; i.e., we consider the whole forecasting
system (model plus initialization through data assimilation).

All these methods allow for computing sensitivities and more importantly a posteriori error statistics.

Parameter estimation Advanced parameter estimation methods are barely used in ocean, atmosphere and
coupled systems, mostly due to a difficulty of deriving adequate response functions, a lack of knowledge
of these methods in the ocean-atmosphere community, and also to the huge associated computing costs. In
the presence of strong uncertainties on the model but also on parameter values, simulation and inference are
closely associated. Filtering for data assimilation and Approximate Bayesian Computation (ABC) are two
examples of such association.

Stochastic approach can be compared with the deterministic approach, which allows to determine the
sensitivity of the flow to parameters and optimize their values relying on data assimilation. This approach is
already shown to be capable of selecting a reduced space of the most influent parameters in the local parameter
space and to adapt their values in view of correcting errors committed by the numerical approximation. This
approach assumes the use of automatic differentiation of the source code with respect to the model parameters,
and optimization of the obtained raw code.

AIRSEA assembles all the required expertise to tackle these difficulties. As mentioned previously, the choice
of parameterization schemes and their tuning has a significant impact on the result of model simulations. Our
research will focus on parameter estimation for parameterized Partial Differential Equations (PDEs) and also
for parameterized Stochastic Differential Equations (SDEs). Deterministic approaches are based on optimal
control methods and are local in the parameter space (i.e., the result depends on the starting point of the
estimation) but thanks to adjoint methods they can cope with a large number of unknowns that can also vary
in space and time. Multiscale optimization techniques as described in 7.2.1 will be one of the tools used. This
in turn can be used either to propose a better (and smaller) parameter set or as a criterion for discriminating
parameterization schemes. Statistical methods are global in the parameter state but may suffer from the curse
of dimensionality. However, the notion of parameter can also be extended to functional parameters. We may
consider as parameter a functional entity such as a boundary condition on time, or a probability density
function in a stationary regime. For these purposes, non-parametric estimation will also be considered as
an alternative.

Risk assessment Risk assessment in the multivariate setting suffers from a lack of consensus on the choice
of indicators. Moreover, once the indicators are designed, it still remains to develop estimation procedures,
efficient even for high risk levels. Recent developments for the assessment of financial risk have to be
considered with caution as methods may differ pertaining to general financial decisions or environmental
risk assessment. Modeling and quantifying uncertainties related to extreme events is of central interest in
environmental sciences. In relation to our scientific targets, risk assessment is very important in several areas:
hydrological extreme events, cyclone intensity, storm surges...Environmental risks most of the time involve
several aspects which are often correlated. Moreover, even in the ideal case where the focus is on a single
risk source, we have to face the temporal and spatial nature of environmental extreme events. The study of
extremes within a spatio-temporal framework remains an emerging field where the development of adapted
statistical methods could lead to major progress in terms of geophysical understanding and risk assessment
thus coupling data and model information for risk assessment.

Based on the above considerations we aim to answer the following scientific questions: how to measure risk in
a multivariate/spatial framework? How to estimate risk in a non stationary context? How to reduce dimension
(see 3.3) for a better estimation of spatial risk?


http://raweb.inria.fr/rapportsactivite/RA{$year}/airsea/uid52.html
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Extreme events are rare, which means there is little data available to make inferences of risk measures. Risk
assessment based on observation therefore relies on multivariate extreme value theory. Interacting particle
systems for the analysis of rare events is commonly used in the community of computer experiments. An open
question is the pertinence of such tools for the evaluation of environmental risk.

Most numerical models are unable to accurately reproduce extreme events. There is therefore a real need to
develop efficient assimilation methods for the coupling of numerical models and extreme data.

3.5. High performance computing

Methods for sensitivity analysis, parameter estimation and risk assessment are extremely costly due to the
necessary number of model evaluations. This number of simulations require considerable computational
resources, depends on the complexity of the application, the number of input variables and desired quality of
approximations. To this aim, the AIRSEA team is an intensive user of HPC computing platforms, particularly
grid computing platforms. The associated grid deployment has to take into account the scheduling of a huge
number of computational requests and the links with data-management between these requests, all of these as
automatically as possible. In addition, there is an increasing need to propose efficient numerical algorithms
specifically designed for new (or future) computing architectures and this is part of our scientific objectives.
According to the computational cost of our applications, the evolution of high performance computing
platforms has to be taken into account for several reasons. While our applications are able to exploit space
parallelism to its full extent (oceanic and atmospheric models are traditionally based on a spatial domain
decomposition method), the spatial discretization step size limits the efficiency of traditional parallel methods.
Thus the inherent parallelism is modest, particularly for the case of relative coarse resolution but with very
long integration time (e.g., climate modeling). Paths toward new programming paradigms are thus needed. As
a step in that direction, we plan to focus our research on parallel in time methods.

New numerical algorithms for high performance computing Parallel in time methods can be classified
into three main groups. In the first group, we find methods using parallelism across the method, such as
parallel integrators for ordinary differential equations. The second group considers parallelism across the
problem. Falling into this category are methods such as waveform relaxation where the space-time system
is decomposed into a set of subsystems which can then be solved independently using some form of relaxation
techniques or multigrid reduction in time. The third group of methods focuses on parallelism across the steps.
One of the best known algorithms in this family is parareal. Other methods combining the strengths of those
listed above (e.g., PFASST) are currently under investigation in the community.

Parallel in time methods are iterative methods that may require a large number of iteration before convergence.
Our first focus will be on the convergence analysis of parallel in time (Parareal / Schwarz) methods for the
equation systems of oceanic and atmospheric models. Our second objective will be on the construction of fast
(approximate) integrators for these systems. This part is naturally linked to the model reduction methods of
section (7.2.2 ). Fast approximate integrators are required both in the Schwarz algorithm (where a first guess
of the boundary conditions is required) and in the Parareal algorithm (where the fast integrator is used to
connect the different time windows). Our main application of these methods will be on climate (i.e., very long
time) simulations. Our second application of parallel in time methods will be in the context of optimization
methods. In fact, one of the major drawbacks of the optimal control techniques used in 3.4 is a lack of
intrinsic parallelism in comparison with ensemble methods. Here, parallel in time methods also offer ways to
better efficiency. The mathematical key point is centered on how to efficiently couple two iterative methods
(i.e., parallel in time and optimization methods).
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ARIC Project-Team

3. Research Program

3.1. Efficient approximation methods

3.1.1.

Computer algebra generation of certified approximations

We plan to focus on the generation of certified and efficient approximations for solutions of linear differential
equations. These functions cover many classical mathematical functions and many more can be built by
combining them. One classical target area is the numerical evaluation of elementary or special functions. This
is currently performed by code specifically handcrafted for each function. The computation of approximations
and the error analysis are major steps of this process that we want to automate, in order to reduce the probability
of errors, to allow one to implement “rare functions”, to quickly adapt a function library to a new context: new
processor, new requirements — either in terms of speed or accuracy.

In order to significantly extend the current range of functions under consideration, several methods originating
from approximation theory have to be considered (divergent asymptotic expansions; Chebyshev or generalized
Fourier expansions; Padé approximants; fixed point iterations for integral operators). We have done prelimi-
nary work on some of them. Our plan is to revisit them all from the points of view of effectivity, computational
complexity (exploiting linear differential equations to obtain efficient algorithms), as well as in their ability to
produce provable error bounds. This work is to constitute a major progress towards the automatic generation
of code for moderate or arbitrary precision evaluation with good efficiency. Other useful, if not critical, ap-
plications are certified quadrature, the determination of certified trajectories of spatial objects and many more
important questions in optimal control theory.

3.1.2. Digital Signal Processing

3.1.3.

As computer arithmeticians, a wide and important target for us is the design of efficient and certified linear
filters in digital signal processing (DSP). Actually, following the advent of MATLAB as the major tool for
filter design, the DSP experts now systematically delegate to MATLAB all the part of the design related to
numerical issues. And yet, various key MATLAB routines are neither optimized, nor certified. Therefore, there
is a lot of room for enhancing numerous DSP numerical implementations and there exist several promising
approaches to do so.

The main challenge that we want to address over the next period is the development and the implementation
of optimal methods for rounding the coefficients involved in the design of the filter. If done in a naive way,
this rounding may lead to a significant loss of performance. We will study in particular FIR and IIR filters.

Table Maker’s Dilemma (TMD)

There is a clear demand for hardest-to-round cases, and several computer manufacturers recently contacted
us to obtain new cases. These hardest-to-round cases are a precious help for building libraries of correctly
rounded mathematical functions. The current code, based on Lefevre’s algorithm, will be rewritten and formal
proofs will be done.

We plan to use uniform polynomial approximation and diophantine techniques in order to tackle the case of
the IEEE quad precision, and analytic number theory techniques (exponential sums estimates) for counting
the hardest-to-round cases.
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3.2. Lattices: algorithms and cryptology

Lattice-based cryptography (LBC) is an utterly promising, attractive (and competitive) research ground in
cryptography, thanks to a combination of unmatched properties:

e Improved performance. LBC primitives have low asymptotic costs, but remain cumbersome in
practice (e.g., for parameters achieving security against computations of up to 2100 bit operations).
To address this limitation, a whole branch of LBC has evolved where security relies on the
restriction of lattice problems to a family of more structured lattices called ideal lattices. Primitives
based on such lattices can have quasi-optimal costs (i.e., quasi-constant amortized complexities),
outperforming all contemporary primitives. This asymptotic performance sometimes translates into
practice, as exemplified by NTRUEncrypt.

e Improved security. First, lattice problems seem to remain hard even for quantum computers.
Moreover, the security of most of LBC holds under the assumption that standard lattice problems
are hard in the worst case. Oppositely, contemporary cryptography assumes that specific problems
are hard with high probability, for some precise input distributions. Many of these problems were
artificially introduced for serving as a security foundation of new primitives.

o Improved flexibility. The master primitives (encryption, signature) can all be realized based on
worst-case (ideal) lattice assumptions. More evolved primitives such as ID-based encryption (where
the public key of a recipient can be publicly derived from its identity) and group signatures, that
were the playing-ground of pairing-based cryptography (a subfield of elliptic curve cryptography),
can also be realized in the LBC framework, although less efficiently and with restricted security
properties. More intriguingly, lattices have enabled long-wished-for primitives. The most notable
example is homomorphic encryption, enabling computations on encrypted data. It is the appropriate
tool to securely outsource computations, and will help overcome the privacy concerns that are
slowing down the rise of the cloud.

‘We work on three directions, detailed now.

3.2.1. Lattice algorithms

All known lattice reduction algorithms follow the same design principle: perform a sequence of small
elementary steps transforming a current basis of the input lattice, where these steps are driven by the Gram-
Schmidt orthogonalisation of the current basis.

In the short term, we will fully exploit this paradigm, and hopefully lower the cost of reduction algorithms
with respect to the lattice dimension. We aim at asymptotically fast algorithms with complexity bounds closer
to those of basic and normal form problems (matrix multiplication, Hermite normal form). In the same vein,
we plan to investigate the parallelism potential of these algorithms.

Our long term goal is to go beyond the current design paradigm, to reach better trade-offs between run-time
and shortness of the output bases. To reach this objective, we first plan to strengthen our understanding of the
interplay between lattice reduction and numerical linear algebra (how far can we push the idea of working
on approximations of a basis?), to assess the necessity of using the Gram-Schmidt orthogonalisation (e.g.,
to obtain a weakening of LLL-reduction that would work up to some stage, and save computations), and
to determine whether working on generating sets can lead to more efficient algorithms than manipulating
bases. We will also study algorithms for finding shortest non-zero vectors in lattices, and in particular look for
quantum accelerations.

We will implement and distribute all algorithmic improvements, e.g., within the fplll library. We are interested
in high performance lattice reduction computations (see application domains below), in particular in connec-
tion with/continuation of the HPAC ANR project (algebraic computing and high performance consortium).

3.2.2. Lattice-based cryptography
Our long term goal is to demonstrate the superiority of lattice-based cryptography over contemporary public-

key cryptographic approaches. For this, we will 1- Strengthen its security foundations, 2- Drastically improve
the performance of its primitives, and 3- Show that lattices allow to devise advanced and elaborate primitives.
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The practical security foundations will be strengthened by the improved understanding of the limits of lattice
reduction algorithms (see above). On the theoretical side, we plan to attack two major open problems: Are
ideal lattices (lattices corresponding to ideals in rings of integers of number fields) computationally as hard to
handle as arbitrary lattices? What is the quantum hardness of lattice problems?

Lattice-based primitives involve two types of operations: sampling from discrete Gaussian distributions (with
lattice supports), and arithmetic in polynomial rings such as (Z/qZ)[x]/(z™ + 1) with n a power of 2. When
such polynomials are used (which is the case in all primitives that have the potential to be practical), then
the underlying algorithmic problem that is assumed hard involves ideal lattices. This is why it is crucial to
precisely understand the hardness of lattice problems for this family. We will work on improving both types of
operations, both in software and in hardware, concentrating on values of q and n providing security. As these
problems are very arithmetic in nature, this will naturally be a source of collaboration with the other themes
of the AriC team.

Our main objective in terms of cryptographic functionality will be to determine the extent to which lattices
can help securing cloud services. For example, is there a way for users to delegate computations on their
outsourced dataset while minimizing what the server eventually learns about their data? Can servers compute
on encrypted data in an efficiently verifiable manner? Can users retrieve their files and query remote databases
anonymously provided they hold appropriate credentials? Lattice-based cryptography is the only approach so
far that has allowed to make progress into those directions. We will investigate the practicality of the current
constructions, the extension of their properties, and the design of more powerful primitives, such as functional
encryption (allowing the recipient to learn only a function of the plaintext message). To achieve these goals,
we will in particular focus on cryptographic multilinear maps.

This research axis of AriC is gaining strength thanks to the recruitment of Benoit Libert. We will be particularly
interested in the practical and operational impacts, and for this reason we envision a collaboration with an
industrial partner.

3.2.3. Application domains

e Diophantine equations. Lattice reduction algorithms can be used to solve diophantine equations, and
in particular to find simultaneous rational approximations to real numbers. We plan to investigate the
interplay between this algorithmic task, the task of finding integer relations between real numbers,
and lattice reduction. A related question is to devise LLL-reduction algorithms that exploit specific
shapes of input bases. This will be done within the ANR DynA3S project.

e Communications. We will continue our collaboration with Cong Ling (Imperial College) on the
use of lattices in communications. We plan to work on the wiretap channel over a fading channel
(modeling cell phone communications in a fast moving environment). The current approaches rely
on ideal lattices, and we hope to be able to find new approaches thanks to our expertise on them
due to their use in lattice-based cryptography. We will also tackle the problem of sampling vectors
from Gaussian distributions with lattice support, for a very small standard deviation parameter. This
would significantly improve current schemes for communication schemes based on lattices, as well
as several cryptographic primitives.

e Cryptanalysis of variants of RSA. Lattices have been used extensively to break variants of the RSA
encryption scheme, via Coppersmith’s method to find small roots of polynomials. We plan to work
with Nadia Heninger (U. of Pennsylvania) on improving these attacks, to make them more practical.
This is an excellent test case for testing the practicality of LLL-type algorithm. Nadia Heninger has
a strong experience in large scale cryptanalysis based on Coppersmith’s method (http://smartfacts.
cr.yp.to/)

3.3. Algebraic computing and high performance kernels

The main theme here is the study of fundamental operations (“kernels”) on a hierarchy of symbolic or numeric
data types spanning integers, floating-point numbers, polynomials, power series, as well as matrices of all
these. Fundamental operations include basic arithmetic (e.g., how to multiply or how to invert) common to all
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such data, as well as more specific ones (change of representation/conversions, GCDs, determinants, etc.). For
such operations, which are ubiquitous and at the very core of computing (be it numerical, symbolic, or hybrid
numeric-symbolic), our goal is to ensure both high performance and reliability.

3.3.1. Algorithms

3.3.2.

On the symbolic side, we will focus on the design and complexity analysis of algorithms for matrices over
various domains (fields, polynomials, integers) and possibly with specific properties (structure). So far, our
algorithmic improvements for polynomial matrices and structured matrices have been obtained in a rather
independent way. Both types are well known to have much in common, but this is sometimes not reflected
by the complexities obtained, especially for applications in cryptology and coding theory. Our goal in this
area is thus to explore these connections further, to provide a more unified treatment, and eventually bridge
these complexity gaps, A first step towards this goal will be the design of enhanced algorithms for various
generalizations of Hermite-Padé approximation; in the context of list decoding, this should in particular make
it possible to match or even improve over the structured-matrix approach, which is so far the fastest known.

On the other hand we will focus on the design of algorithms for certified computing. We will study the
use of various representations, such as mid-rad for classical interval arithmetic, or affine arithmetic. We will
explore the impact of precision tuning in intermediate computations, possibly dynamically, on the accuracy
of the results (e.g. for iterative refinement and Newton iterations). We will continue to revisit and improve
the classical error bounds of numerical linear algebra in the light of the subtleties of IEEE floating-point
arithmetic.

Our goals in linear algebra and lattice basis reduction that have been detailed above in Section 3.2 will be
achieved in the light of a hybrid symbolic-numeric approach.

Computer arithmetic

Our work on certified computing and especially on the analysis of algorithms in floating-point arithmetic leads
us to manipulate floating-point data in their greatest generality, that is, as symbolic expressions in the base and
the precision. Our aim here is thus to develop theorems as well as efficient data structures and algorithms
for handling such quantities by computer rather than by hand as we do now. The main outcome would be a
“symbolic floating-point toolbox™ which provides a way to check automatically the certificates of optimality
we have obtained on the error bounds of various numerical algorithms.

We will also work on the interplay between floating-point and integer arithmetics. Currently, small numerical
kernels like an exponential or a 2 x 2 determinant are typically written using exclusively one of these two kinds
of arithmetic. However, modern processors now have hardware support for both floating-point and integer
arithmetics, often with vector (SIMD) extensions, and an important question is how to make the best use of all
such capabilities to optimize for both accuracy and efficiency.

A third direction will be to work on algorithms for performing correctly-rounded arithmetic operations in
medium precision as efficiently and reliably as possible. Indeed, many numerical problems require higher
precision than the conventional floating-point (single, double) formats. One solution is to use multiple
precision libraries, such as GNU MPFR, which allow the manipulation of very high precision numbers,
but their generality (they are able to handle numbers with millions of digits) is a quite heavy alternative
when high performance is needed. Our objective here is thus to design a multiple precision arithmetic library
that would allow to tackle problems where a precision of a few hundred bits is sufficient, but which have
strong performance requirements. Applications include the process of long-term iteration of chaotic dynamical
systems ranging from the classical Henon map to calculations of planetary orbits. The designed algorithms will
be formally proved.

Finally, our work on the IEEE 1788 standard leads naturally to the development of associated reference
libraries for interval arithmetic. A first direction will be to implement IEEE 1788 interval arithmetic within
MPFI, our library for interval arithmetic using the arbitrary precision floating-point arithmetic provided by
MPFR: indeed, MPFI has been originally developed with definitions and handling of exceptions which are not
compliant with IEEE 1788. Another one will be to provide efficient support for multiple-precision intervals,
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