

RESEARCH CENTER
Paris

FIELD

Activity Report 2017

Section Software

Edition: 2018-02-19

3 Algorithmics, Programming, Software and Architecture - Software and Platforms - Project-Team ANTIQUE

Algorithmics, Programming, Software and Architecture
1. ANTIQUE Project-Team
2. AOSTE2 Team
3. CASCADE Project-Team (section vide)
4. GALLIUM Project-Team
5. PARKAS Project-Team
6. PI.R2 Project-Team
7. POLSYS Project-Team
8. PROSECCO Project-Team
9. SECRET Project-Team
APPLIED MATHEMATICS, COMPUTATION AND SIMULATION
10. MATHERIALS Project-Team
11. MATHRISK Project-Team
12. MOKAPLAN Project-Team
13. QUANTIC Project-Team (section vide)
14. SIERRA Project-Team
DIGITAL HEALTH, BIOLOGY AND EARTH
15. ANGE Project-Team
16. ARAMIS Project-Team
17. MAMBA Project-Team
18. MYCENAE Project-Team
19. REO Project-Team
20. SERENA Project-Team
21. TAPDANCE Team
NETWORKS, SYSTEMS AND SERVICES, DISTRIBUTED COMPUTING
22. ALPINES Project-Team
23. DYOGENE Project-Team
24. EVA Project-Team
25. GANG Project-Team
26. MIMOVE Team
27. RAP2 Team (section vide)
28. REGAL Project-Team
29. WHISPER Project-Team
Perception, Cognition and Interaction
30. ALMANACH Team
31. COML Team
32. RITS Project-Team
33. Valda Team
34. WILLOW Project-Team

4 Algorithmics, Programming, Software and Architecture - Software and Platforms - Project-Team ANTIQUE

ANTIQUE Project-Team

6. New Software and Platforms

6.1. APRON

SCIENTIFIC DESCRIPTION: The APRON library is intended to be a common interface to various underlying libraries/abstract domains and to provide additional services that can be implemented independently from the underlying library/abstract domain, as shown by the poster on the right (presented at the SAS 2007 conference. You may also look at:

FUNCTIONAL DESCRIPTION: The Apron library is dedicated to the static analysis of the numerical variables of a program by abstract interpretation. Its goal is threefold: provide ready-to-use numerical abstractions under a common API for analysis implementers, encourage the research in numerical abstract domains by providing a platform for integration and comparison of domains, and provide a teaching and demonstration tool to disseminate knowledge on abstract interpretation.

- Participants: Antoine Miné and Bertrand Jeannet
- Contact: Antoine Miné
- URL: http://apron.cri.ensmp.fr/library/

6.2. Astrée

The AstréeA Static Analyzer of Asynchronous Software

KEYWORDS: Static analysis - Static program analysis - Program verification - Software Verification - Abstraction

SCIENTIFIC DESCRIPTION: Astrée analyzes structured C programs, with complex memory usages, but without dynamic memory allocation nor recursion. This encompasses many embedded programs as found in earth transportation, nuclear energy, medical instrumentation, and aerospace applications, in particular synchronous control/command. The whole analysis process is entirely automatic.

Astrée discovers all runtime errors including:

undefined behaviors in the terms of the ANSI C99 norm of the C language (such as division by 0 or out of bounds array indexing),

any violation of the implementation-specific behavior as defined in the relevant Application Binary Interface (such as the size of integers and arithmetic overflows),

any potentially harmful or incorrect use of C violating optional user-defined programming guidelines (such as no modular arithmetic for integers, even though this might be the hardware choice),

failure of user-defined assertions.

FUNCTIONAL DESCRIPTION: Astrée analyzes structured C programs, with complex memory usages, but without dynamic memory allocation nor recursion. This encompasses many embedded programs as found in earth transportation, nuclear energy, medical instrumentation, and aerospace applications, in particular synchronous control/command. The whole analysis process is entirely automatic.

Astrée discovers all runtime errors including: - undefined behaviors in the terms of the ANSI C99 norm of the C language (such as division by 0 or out of bounds array indexing), - any violation of the implementation-specific behavior as defined in the relevant Application Binary Interface (such as the size of integers and arithmetic overflows), - any potentially harmful or incorrect use of C violating optional user-defined programming guidelines (such as no modular arithmetic for integers, even though this might be the hardware choice), - failure of user-defined assertions.

Astrée is a static analyzer for sequential programs based on abstract interpretation. The Astrée static analyzer aims at proving the absence of runtime errors in programs written in the C programming language.

- Participants: Antoine Miné, Jérôme Feret, Laurent Mauborgne, Patrick Cousot, Radhia Cousot and Xavier Rival
- Partners: CNRS ENS Paris AbsInt Angewandte Informatik GmbH
- Contact: Patrick Cousot
- URL: http://www.astree.ens.fr/

6.3. AstréeA

The AstréeA Static Analyzer of Asynchronous Software

KEYWORDS: Static analysis - Static program analysis

SCIENTIFIC DESCRIPTION: AstréeA analyzes C programs composed of a fixed set of threads that communicate through a shared memory and synchronization primitives (mutexes, FIFOs, blackboards, etc.), but without recursion nor dynamic creation of memory, threads nor synchronization objects. AstréeA assumes a real-time scheduler, where thread scheduling strictly obeys the fixed priority of threads. Our model follows the AR-INC 653 OS specification used in embedded industrial aeronautic software. Additionally, AstréeA employs a weakly-consistent memory semantics to model memory accesses not protected by a mutex, in order to take into account soundly hardware and compiler-level program transformations (such as optimizations). AstréeA checks for the same run-time errors as Astrée , with the addition of data-races.

FUNCTIONAL DESCRIPTION: AstréeA is a static analyzer prototype for parallel software based on abstract interpretation. The AstréeA prototype is a fork of the Astrée static analyzer that adds support for analyzing parallel embedded C software.

- Participants: Antoine Miné, Jérôme Feret, Patrick Cousot, Radhia Cousot and Xavier Rival
- Partners: CNRS ENS Paris AbsInt Angewandte Informatik GmbH
- Contact: Patrick Cousot
- URL: http://www.astreea.ens.fr/

6.4. ClangML

KEYWORD: Compilation

FUNCTIONAL DESCRIPTION: ClangML is an OCaml binding with the Clang front-end of the LLVM compiler suite. Its goal is to provide an easy to use solution to parse a wide range of C programs, that can be called from static analysis tools implemented in OCaml, which allows to test them on existing programs written in C (or in other idioms derived from C) without having to redesign a front-end from scratch. ClangML features an interface to a large set of internal AST nodes of Clang , with an easy to use API. Currently, ClangML supports all C language AST nodes, as well as a large part of the C nodes related to C++ and Objective-C.

- Participants: Devin Mccoughlin, François Berenger and Pippijn Van Steenhoven
- Contact: Xavier Rival
- URL: https://github.com/Antique-team/clangml/tree/master/clang

6.5. FuncTion

SCIENTIFIC DESCRIPTION: FuncTion is based on an extension to liveness properties of the framework to analyze termination by abstract interpretation proposed by Patrick Cousot and Radhia Cousot. FuncTion infers ranking functions using piecewise-defined abstract domains. Several domains are available to partition the ranking function, including intervals, octagons, and polyhedra. Two domains are also available to represent the value of ranking functions: a domain of affine ranking functions, and a domain of ordinal-valued ranking functions (which allows handling programs with unbounded non-determinism).

6 Algorithmics, Programming, Software and Architecture - Software and Platforms - Project-Team ANTIQUE

FUNCTIONAL DESCRIPTION: Function is a research prototype static analyzer to analyze the termination and functional liveness properties of programs. It accepts programs in a small non-deterministic imperative language. It is also parameterized by a property: either termination, or a recurrence or a guarantee property (according to the classification by Manna and Pnueli of program properties). It then performs a backward static analysis that automatically infers sufficient conditions at the beginning of the program so that all executions satisfying the conditions also satisfy the property.

- Participants: Antoine Miné and Caterina Urban
- Contact: Caterina Urban
- URL: http://www.di.ens.fr/~urban/FuncTion.html

6.6. HOO

Heap Abstraction for Open Objects

FUNCTIONAL DESCRIPTION: JSAna with HOO is a static analyzer for JavaScript programs. The primary component, HOO, which is designed to be reusable by itself, is an abstract domain for a dynamic language heap. A dynamic language heap consists of open, extensible objects linked together by pointers. Uniquely, HOO abstracts these extensible objects, where attribute/field names of objects may be unknown. Additionally, it contains features to keeping precise track of attribute name/value relationships as well as calling unknown functions through desynchronized separation.

As a library, HOO is useful for any dynamic language static analysis. It is designed to allow abstractions for values to be easily swapped out for different abstractions, allowing it to be used for a wide-range of dynamic languages outside of JavaScript.

- Participant: Arlen Cox
- Contact: Arlen Cox

6.7. MemCAD

The MemCAD static analyzer

KEYWORDS: Static analysis - Abstraction

FUNCTIONAL DESCRIPTION: MemCAD is a static analyzer that focuses on memory abstraction. It takes as input C programs, and computes invariants on the data structures manipulated by the programs. It can also verify memory safety. It comprises several memory abstract domains, including a flat representation, and two graph abstractions with summaries based on inductive definitions of data-structures, such as lists and trees and several combination operators for memory abstract domains (hierarchical abstraction, reduced product). The purpose of this construction is to offer a great flexibility in the memory abstraction, so as to either make very efficient static analyses of relatively simple programs, or still quite efficient static analyses of very involved pieces of code. The implementation comes with over 30 000 lines of ML code, and relies on the ClangML front-end. The current implementation comes with over 300 small size test cases that are used as regression tests.

- Participants: Antoine Toubhans, François Berenger, Huisong Li and Xavier Rival
- Contact: Xavier Rival
- URL: http://www.di.ens.fr/~rival/memcad.html

6.8. OPENKAPPA

La platte-forme de modélisation OpenKappa KEYWORDS: Model reduction - Simulation - Static analysis - Modeling - Systems Biology 7 Algorithmics, Programming, Software and Architecture - Software and Platforms - Project-Team ANTIQUE

SCIENTIFIC DESCRIPTION: OpenKappa is a collection of tools to build, debug and run models of biological pathways. It contains a compiler for the Kappa Language, a static analyzer (for debugging models), a simulator, a compression tool for causal traces, and a model reduction tool.

- Participants: Jean Krivine, Jérôme Feret, Kim Quyen Ly, Pierre Boutillier, Russ Harmer, Vincent Danos and Walter Fontana
- Partners: ENS Lyon Université Paris-Diderot HARVARD Medical School
- Contact: Jérôme Feret
- URL: http://www.kappalanguage.org/

6.9. QUICr

FUNCTIONAL DESCRIPTION: QUICr is an OCaml library that implements a parametric abstract domain for sets. It is constructed as a functor that accepts any numeric abstract domain that can be adapted to the interface and produces an abstract domain for sets of numbers combined with numbers. It is relational, flexible, and tunable. It serves as a basis for future exploration of set abstraction.

- Participant: Arlen Cox
- Contact: Arlen Cox

6.10. LCertify

KEYWORD: Compilation

SCIENTIFIC DESCRIPTION: The compilation certification process is performed automatically, thanks to a prover designed specifically. The automatic proof is done at a level of abstraction which has been defined so that the result of the proof of equivalence is strong enough for the goals mentioned above and so that the proof obligations can be solved by efficient algorithms.

FUNCTIONAL DESCRIPTION: Abstract interpretation, Certified compilation, Static analysis, Translation validation, Verifier. The main goal of this software project is to make it possible to certify automatically the compilation of large safety critical software, by proving that the compiled code is correct with respect to the source code: When the proof succeeds, this guarantees semantic equivalence. Furthermore, this approach should allow to meet some domain specific software qualification criteria (such as those in DO-178 regulations for avionics software), since it allows proving that successive development levels are correct with respect to each other i.e., that they implement the same specification. Last, this technique also justifies the use of source level static analyses, even when an assembly level certification would be required, since it establishes separately that the source and the compiled code are equivalent.ntees that no compiler bug did cause incorrect code to be generated.

- Participant: Xavier Rival
- Partners: CNRS ENS Paris
- Contact: Xavier Rival
- URL: http://www.di.ens.fr/~rival/lcertify.html

6.11. Zarith

FUNCTIONAL DESCRIPTION: Zarith is a small (10K lines) OCaml library that implements arithmetic and logical operations over arbitrary-precision integers. It is based on the GNU MP library to efficiently implement arithmetic over big integers. Special care has been taken to ensure the efficiency of the library also for small integers: small integers are represented as Caml unboxed integers and use a specific C code path. Moreover, optimized assembly versions of small integer operations are provided for a few common architectures.

Zarith is currently used in the Astrée analyzer to enable the sound analysis of programs featuring 64-bit (or larger) integers. It is also used in the Frama-C analyzer platform developed at CEA LIST and Inria Saclay.

- Participants: Antoine Miné, Pascal Cuoq and Xavier Leroy
- Contact: Antoine Miné
- URL: http://forge.ocamlcore.org/projects/zarith

AOSTE2 Team

6. New Software and Platforms

6.1. SynDEx

KEYWORDS: Distributed - Optimization - Real time - Embedded systems - Scheduling analyses SCIENTIFIC DESCRIPTION: SynDEx is a system level CAD software implementing the AAA methodology for rapid prototyping and for optimizing distributed real-time embedded applications. It is developed in OCaML.

Architectures are represented as graphical block diagrams composed of programmable (processors) and non-programmable (ASIC, FPGA) computing components, interconnected by communication media (shared memories, links and busses for message passing). In order to deal with heterogeneous architectures it may feature several components of the same kind but with different characteristics.

Two types of non-functional properties can be specified for each task of the algorithm graph. First, a period that does not depend on the hardware architecture. Second, real-time features that depend on the different types of hardware components, ranging amongst execution and data transfer time, memory, etc.. Requirements are generally constraints on deadline equal to period, latency between any pair of tasks in the algorithm graph, dependence between tasks, etc.

Exploration of alternative allocations of the algorithm onto the architecture may be performed manually and/or automatically. The latter is achieved by performing real-time multiprocessor schedulability analyses and optimization heuristics based on the minimization of temporal or resource criteria. For example while satisfying deadline and latency constraints they can minimize the total execution time (makespan) of the application onto the given architecture, as well as the amount of memory. The results of each exploration is visualized as timing diagrams simulating the distributed real-time implementation.

Finally, real-time distributed embedded code can be automatically generated for dedicated distributed realtime executives, possibly calling services of resident real-time operating systems such as Linux/RTAI or Osek for instance. These executives are deadlock-free, based on off-line scheduling policies. Dedicated executives induce minimal overhead, and are built from processor-dependent executive kernels. To this date, executives kernels are provided for: TMS320C40, PIC18F2680, i80386, MC68332, MPC555, i80C196 and Unix/Linux workstations. Executive kernels for other processors can be achieved at reasonable cost following these examples as patterns.

FUNCTIONAL DESCRIPTION: Software for optimising the implementation of embedded distributed real-time applications and generating efficient and correct by construction code

NEWS OF THE YEAR: We improved the distribution and scheduling heuristics to take into account the needs of co-simulation.

- Participant: Yves Sorel
- Contact: Yves Sorel
- URL: http://www.syndex.org

6.2. EVT Kopernic

KEYWORDS: Embedded systems - Worst Case Execution Time - Real-time application - Statistics SCIENTIFIC DESCRIPTION: The EVT-Kopernic tool is an implementation of the Extreme Value Theory (EVT) for the problem of the statistical estimation of worst-case bounds for the execution time of a program on a processor. Our implementation uses the two versions of EVT - GEV and GPD - to propose two independent methods of estimation. Their results are compared and only results that are sufficiently close allow to validate an estimation. Our tool is proved predictable by its unique choice of block (GEV) and threshold (GPD) while proposant reproducible estimations.

8

FUNCTIONAL DESCRIPTION: EVT-Kopernic is tool proposing a statistical estimation for bounds on worstcase execution time of a program on a processor. The estimator takes into account dependences between execution times by learning from the history of execution, while dealing also with cases of small variability of the execution times.

NEWS OF THE YEAR: Any statistical estimator should come with an representative measurement protocole based on the processus of composition, proved correct. We propose the first such principle of composition while using a Bayesien modeling taking into account iteratively different measurement models. The composition model has been described in a patent submitted this year with a scientific publication under preparation.

- Participants: Adriana Gogonel and Liliana Cucu
- Contact: Adriana Gogonel
- URL: http://inria-rscript.serveftp.com/

6.3. LoPhT-manycore

Logical to Physical Time compiler for many cores

KEYWORDS: Real time - Compilation - Task scheduling - Automatic parallelization

SCIENTIFIC DESCRIPTION: Lopht is a system-level compiler for embedded systems, whose objective is to fully automate the implementation process for certain classes of embedded systems. Like in a classical compiler (e.g. gcc), its input is formed of two objects. The first is a program providing a platform-indepedent description of the functionality to implement and of the non-functional requirements it must satisfy (e.g. real-time, partitioning). This is provided under the form of a data-flow synchronous program annotated with non-functional requirements. The second is a description of the implementation platform, defining the topology of the platform, the capacity of its elements, and possibly platform-dependent requirements (e.g. allocation).

From these inputs, Lopht produces all the C code and configuration information needed to allow compilation and execution on the physical target platform. Implementations are correct by construction Resulting implementations are functionally correct and satisfy the non-functional requirements. Lopht-manycore is a version of Lopht targeting shared-memory many-core architectures.

The algorithmic core of Lopht-manycore is formed of timing analysis, allocation, scheduling, and code generation heuristics which rely on four fundamental choices. 1) A static (off-line) real-time scheduling approach where allocation and scheduling are represented using time tables (also known as scheduling or reservation tables). 2) Scalability, attained through the use of low-complexity heuristics for all synthesis and associated analysis steps. 3) Efficiency (of generated implementations) is attained through the use of precise representations of both functionality and the platform, which allow for fine-grain allocation of resources such as CPU, memory, and communication devices such as network-on-chip multiplexers. 4) Full automation, including that of the timing analysis phase.

The last point is characteristic to Lopht-manycore. Existing methods for schedulability analysis and real-time software synthesis assume the existence of a high-level timing characterization that hides much of the hardware complexity. For instance, a common hypothesis is that synchronization and interference costs are accounted for in the duration of computations. However, the high-level timing characterization is seldom (if ever) soundly derived from the properties of the platform and the program. In practice, large margins (e.g. 100%) with little formal justification are added to computation durations to account for hidden hardware complexity. Lopht-manycore overcomes this limitation. Starting from the worst-case execution time (WCET) estimations of computation operations and from a precise and safe timing model of the platform, it maintains a precise timing accounting throughout the mapping process. To do this, timing accounting must take into account all details of allocation, scheduling, and code generation, which in turn must satisfy specific hypotheses.

FUNCTIONAL DESCRIPTION: Accepted input languages for functional specifications include dialects of Lustre such as Heptagon and Scade v4. To ensure the respect of real-time requirements, Lopht-manycore pilots the use of the worst-case execution time (WCET) analysis tool (ait from AbsInt). By doing this, and by using a precise timing model for the platform, Lopht-manycore eliminates the need to adjust the WCET values through the addition of margins to the WCET values that are usually both large and without formal safety guarantees. The output of Lopht-manycore is formed of all the multi-threaded C code and configuration information needed to allow compilation, linking/loading, and real-time execution on the target platform. NEWS OF THE YEAR: In the framework of the ITEA3 ASSUME project we have extended the Lopht-manycore to allow multiple cores to access the same memory bank at the same time. To do this, the timing accounting of Lopht has been extended to take into account memory access interferences during the allocation and scheduling process. Lopht now also pilots the aiT static WCET analysis tool from AbsInt by generating the analysis is performed by aiT. As a result, we are now able to synthesize code for the computing clusters of the Kalray MPPA256 platform. Lopht-manycore is evaluated on avionics case studies in the perspective of increasing its technology readiness level for this application class.

- Participants: Dumitru Potop-Butucaru and Keryan Didier
- Contact: Dumitru Potop-Butucaru

11Algorithmics, Programming, Software and Architecture - Software and Platforms - Project-TeamCASCADE

CASCADE Project-Team (section vide)

GALLIUM Project-Team

6. New Software and Platforms

6.1. Compcert

The CompCert formally-verified C compiler

KEYWORDS: Compilers - Formal methods - Deductive program verification - C - Coq

FUNCTIONAL DESCRIPTION: CompCert is a compiler for the C programming language. Its intended use is the compilation of life-critical and mission-critical software written in C and meeting high levels of assurance. It accepts most of the ISO C 99 language, with some exceptions and a few extensions. It produces machine code for the ARM, PowerPC, RISC-V, and x86 architectures. What sets CompCert C apart from any other production compiler, is that it is formally verified to be exempt from miscompilation issues, using machine-assisted mathematical proofs (the Coq proof assistant). In other words, the executable code it produces is proved to behave exactly as specified by the semantics of the source C program. This level of confidence in the correctness of the compilation process is unprecedented and contributes to meeting the highest levels of software assurance. In particular, using the CompCert C compiler is a natural complement to applying formal verification techniques (static analysis, program proof, model checking) at the source code level: the correctness proof of CompCert C guarantees that all safety properties verified on the source code automatically hold as well for the generated executable.

RELEASE FUNCTIONAL DESCRIPTION: Novelties include a formally-verified type checker for CompCert C, a more careful modeling of pointer comparisons against the null pointer, algorithmic improvements in the handling of deeply nested struct and union types, much better ABI compatibility for passing composite values, support for GCC-style extended inline asm, and more complete generation of DWARF debugging information (contributed by AbsInt).

- Participants: Xavier Leroy, Sandrine Blazy, Jacques-Henri Jourdan, Sylvie Boldo and Guillaume Melquiond
- Partner: AbsInt Angewandte Informatik GmbH
- Contact: Xavier Leroy
- URL: http://compcert.inria.fr/

6.2. Diy

Do It Yourself

KEYWORD: Parallelism

FUNCTIONAL DESCRIPTION: The diy suite provides a set of tools for testing shared memory models: the litmus tool for running tests on hardware, various generators for producing tests from concise specifications, and herd, a memory model simulator. Tests are small programs written in x86, Power or ARM assembler that can thus be generated from concise specification, run on hardware, or simulated on top of memory models. Test results can be handled and compared using additional tools.

- Participants: Jade Alglave and Luc Maranget
- Partner: University College London UK
- Contact: Luc Maranget
- URL: http://diy.inria.fr/

6.3. Menhir

KEYWORDS: Compilation - Context-free grammars - Parsing

FUNCTIONAL DESCRIPTION: Menhir is a LR(1) parser generator for the OCaml programming language. That is, Menhir compiles LR(1) grammar specifications down to OCaml code. Menhir was designed and implemented by François Pottier and Yann Régis-Gianas.

- Contact: François Pottier
- Publications: A Simple, Possibly Correct LR Parser for C11 Reachability and Error Diagnosis in LR(1) Parsers

6.4. OCaml

KEYWORDS: Functional programming - Static typing - Compilation

FUNCTIONAL DESCRIPTION: The OCaml language is a functional programming language that combines safety with expressiveness through the use of a precise and flexible type system with automatic type inference. The OCaml system is a comprehensive implementation of this language, featuring two compilers (a bytecode compiler, for fast prototyping and interactive use, and a native-code compiler producing efficient machine code for x86, ARM, PowerPC and System Z), a debugger, a documentation generator, a compilation manager, a package manager, and many libraries contributed by the user community.

- Participants: Damien Doligez, Xavier Leroy, Fabrice Le Fessant, Luc Maranget, Gabriel Scherer, Alain Frisch, Jacques Garrigue, Marc Shinwell, Jeremy Yallop and Leo White
- Contact: Damien Doligez
- URL: https://ocaml.org/

6.5. PASL

KEYWORD: Parallel computing

FUNCTIONAL DESCRIPTION: PASL is a C++ library for writing parallel programs targeting the broadly available multicore computers. The library provides a high level interface and can still guarantee very good efficiency and performance, primarily due to its scheduling and automatic granularity control mechanisms.

- Participants: Arthur Charguéraud, Michael Rainey and Umut Acar
- Contact: Michael Rainey
- URL: http://deepsea.inria.fr/pasl/

6.6. ZENON

FUNCTIONAL DESCRIPTION: Zenon is an automatic theorem prover based on the tableaux method. Given a first-order statement as input, it outputs a fully formal proof in the form of a Coq proof script. It has special rules for efficient handling of equality and arbitrary transitive relations. Although still in the prototype stage, it already gives satisfying results on standard automatic-proving benchmarks.

Zenon is designed to be easy to interface with front-end tools (for example integration in an interactive proof assistant), and also to be retargeted to output scripts for different frameworks (for example, Isabelle and Dedukti).

- Author: Damien Doligez
- Contact: Damien Doligez
- URL: http://zenon-prover.org/

6.7. OPAM Builder

KEYWORDS: Ocaml - Continuous integration - Opam

14 Algorithmics, Programming, Software and Architecture - Software and Platforms - Project-Team GALLIUM

FUNCTIONAL DESCRIPTION: OPAM Builder checks in real-time the installability on a computer of all packages after any modification of the repository. To achieve this result, it uses smart mechanisms to compute incremental differencies between package updates, to be able to reuse cached compilations, and switch from a quadratic complexity to a linear complexity.

- Partner: OCamlPro
- Contact: Fabrice Le Fessant
- URL: http://github.com/OCamlPro/opam-builder

6.8. TLAPS

TLA+ proof system

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: TLAPS is a platform for developing and mechanically verifying proofs about TLA+ specifications. The TLA+ proof language is hierarchical and explicit, allowing a user to decompose the overall proof into proof steps that can be checked independently. TLAPS consists of a proof manager that interprets the proof language and generates a collection of proof obligations that are sent to backend verifiers. The current backends include the tableau-based prover Zenon for first-order logic, Isabelle/TLA+, an encoding of TLA+ set theory as an object logic in the logical framework Isabelle, an SMT backend designed for use with any SMT-lib compatible solver, and an interface to a decision procedure for propositional temporal logic. NEWS OF THE YEAR: In 2017, we have continued to work on a complete reimplementation of the proof manager. One objective is a cleaner interaction with the TLA⁺ front-ends, in particular SANY, the standard parser and semantic analyzer. The reimplementation is also necessary for extending the scope of the fragment of TLA⁺ that is handled by TLAPS, in particular full temporal logic and module instantiation.

- Participants: Damien Doligez, Stephan Merz and Martin Riener
- Contact: Stephan Merz
- URL: https://tla.msr-inria.inria.fr/tlaps/content/Home.html

6.9. CFML

Interactive program verification using characteristic formulae

KEYWORDS: Coq - Software Verification - Deductive program verification - Separation Logic

FUNCTIONAL DESCRIPTION: The CFML tool supports the verification of OCaml programs through interactive Coq proofs. CFML proofs establish the full functional correctness of the code with respect to a specification. They may also be used to formally establish bounds on the asymptotic complexity of the code. The tool is made of two parts: on the one hand, a characteristic formula generator implemented as an OCaml program that parses OCaml code and produces Coq formulae, and, on the other hand, a Coq library that provides notations and tactics for manipulating characteristic formulae interactively in Coq.

- Participants: Arthur Charguéraud, Armaël Guéneau and François Pottier
- Contact: Arthur Charguéraud
- URL: http://www.chargueraud.org/softs/cfml/

6.10. ldrgen

Liveness-driven random C code generator

KEYWORDS: Code generation - Randomized algorithms - Static program analysis

FUNCTIONAL DESCRIPTION: The ldrgen program is a generator of C code: On every call it generates a new random C function and prints it to the standard output. The generator is "liveness-driven", which means that it tries to avoid generating dead code: All the computations it generates are (in a certain, limited sense) actually used to compute the function's return value. This is achieved by generating the program backwards, in combination with a simultaneous liveness analysis that guides the random generator's choices.

- Participant: Gergö Barany
- Contact: Gergö Barany
- Publication: Liveness-Driven Random Program Generation
- URL: https://github.com/gergo-/ldrgen

PARKAS Project-Team

5. New Software and Platforms

5.1. Cmmtest

FUNCTIONAL DESCRIPTION: Cmmtest is a tool for hunting concurrency compiler bugs. The Cmmtest tool performs random testing of C and C++ compilers against the C11/C++11 memory model. A test case is any well-defined, sequential C program, for each test case, cmmtest:

compiles the program using the compiler and compiler optimisations that are being tested,

runs the compiled program in an instrumented execution environment that logs all memory accesses to global variables and synchronisations,

compares the recorded trace with a reference trace for the same program, checking if the recorded trace can be obtained from the reference trace by valid eliminations, reorderings and introductions.

Cmmtest identified several mistaken write introductions and other unexpected behaviours in the latest release of the gcc compiler. These have been promptly fixed by the gcc developers.

- Participants: Anirudh Kumar, Francesco Zappa Nardelli, Pankaj More, Pankaj Pawan, Pankaj Prateek Kewalramani and Robin Morisset
- Contact: Francesco Zappa Nardelli
- URL: http://www.di.ens.fr/~zappa/projects/cmmtest/

5.2. GCC

KEYWORDS: Compilation - Polyhedral compilation

FUNCTIONAL DESCRIPTION: The GNU Compiler Collection includes front ends for C, C++, Objective-C, Fortran, Java, Ada, and Go, as well as libraries for these languages (libstdc++, libgcj,...). GCC was originally written as the compiler for the GNU operating system. The GNU system was developed to be 100

- Participants: Albert Cohen, Feng Li, Nhat Minh Le, Riyadh Baghdadi and Tobias Grosser
- Contact: Albert Cohen
- URL: http://gcc.gnu.org/

5.3. Heptagon

KEYWORDS: Compilers - Synchronous Language - Controller synthesis

FUNCTIONAL DESCRIPTION: Heptagon is an experimental language for the implementation of embedded real-time reactive systems. It is developed inside the Synchronics large-scale initiative, in collaboration with Inria Rhones-Alpes. It is essentially a subset of Lucid Synchrone, without type inference, type polymorphism and higher-order. It is thus a Lustre-like language extended with hierchical automata in a form very close to SCADE 6. The intention for making this new language and compiler is to develop new aggressive optimization techniques for sequential C code and compilation methods for generating parallel code for different platforms. This explains much of the simplifications we have made in order to ease the development of compilation techniques.

The current version of the compiler includes the following features: - Inclusion of discrete controller synthesis within the compilation: the language is equipped with a behavioral contract mechanisms, where assumptions can be described, as well as an "enforce" property part. The semantics of this latter is that the property should be enforced by controlling the behaviour of the node equipped with the contract. This property will be enforced by an automatically built controller, which will act on free controllable variables given by the programmer. This extension has been named BZR in previous works. - Expression and compilation of array values with modular memory optimization. The language allows the expression and operations on arrays (access, modification, iterators). With the use of location annotations, the programmer can avoid unnecessary array copies.

- Participants: Adrien Guatto, Brice Gelineau, Cédric Pasteur, Eric Rutten, Gwenaël Delaval, Léonard Gérard and Marc Pouzet
- Partners: UGA ENS Paris Inria LIG
- Contact: Gwenaël Delaval
- URL: http://heptagon.gforge.inria.fr

5.4. isl

FUNCTIONAL DESCRIPTION: isl is a library for manipulating sets and relations of integer points bounded by linear constraints. Supported operations on sets include intersection, union, set difference, emptiness check, convex hull, (integer) affine hull, integer projection, transitive closure (and over-approximation), computing the lexicographic minimum using parametric integer programming. It includes an ILP solver based on generalized basis reduction, and a new polyhedral code generator. isl also supports affine transformations for polyhedral compilation, and increasingly abstract representations to model source and intermediate code in a polyhedral framework.

- Participants: Albert Cohen, Sven Verdoolaege and Tobias Grosser
- Contact: Sven Verdoolaege
- URL: http://freshmeat.net/projects/isl

5.5. Lem

lightweight executable mathematics

FUNCTIONAL DESCRIPTION: Lem is a lightweight tool for writing, managing, and publishing large scale semantic definitions. It is also intended as an intermediate language for generating definitions from domain-specific tools, and for porting definitions between interactive theorem proving systems (such as Coq, HOL4, and Isabelle). As such it is a complementary tool to Ott. Lem resembles a pure subset of Objective Caml, supporting typical functional programming constructs, including top-level parametric polymorphism, datatypes, records, higher-order functions, and pattern matching. It also supports common logical mechanisms including list and set comprehensions, universal and existential quantifiers, and inductively defined relations. From this, Lem generates OCaml, HOL4, Coq, and Isabelle code.

- Participants: Francesco Zappa Nardelli, Peter Sewell and Scott Owens
- Contact: Francesco Zappa Nardelli
- URL: http://www.cl.cam.ac.uk/~pes20/lem/

5.6. Lucid Synchrone

FUNCTIONAL DESCRIPTION: Lucid Synchrone is a language for the implementation of reactive systems. It is based on the synchronous model of time as provided by Lustre combined with features from ML languages. It provides powerful extensions such as type and clock inference, type-based causality and initialization analysis and allows to arbitrarily mix data-flow systems and hierarchical automata or flows and valued signals.

RELEASE FUNCTIONAL DESCRIPTION: The language is still used for teaching and in our research but we do not develop it anymore. Nonetheless, we have integrated several features from Lucid Synchrone in new research prototypes described below. The Heptagon language and compiler are a direct descendent of it. The new language Zélus for hybrid systems modeling borrows many features originally introduced in Lucid Synchrone.

- Contact: Marc Pouzet
- URL: http://www.di.ens.fr/~pouzet/lucid-synchrone/

5.7. Lucy-n

Lucy-n: an n-synchronous data-flow programming language

FUNCTIONAL DESCRIPTION: Lucy-n is a language to program in the n-synchronous model. The language is similar to Lustre with a buffer construct. The Lucy-n compiler ensures that programs can be executed in bounded memory and automatically computes buffer sizes. Hence this language allows to program Kahn networks, the compiler being able to statically compute bounds for all FIFOs in the program.

- Participants: Adrien Guatto, Albert Cohen, Louis Mandel and Marc Pouzet
- Contact: Albert Cohen
- URL: https://www.lri.fr/~mandel/lucy-n/

5.8. Ott

FUNCTIONAL DESCRIPTION: Ott is a tool for writing definitions of programming languages and calculi. It takes as input a definition of a language syntax and semantics, in a concise and readable ASCII notation that is close to what one would write in informal mathematics. It generates output:

a LaTeX source file that defines commands to build a typeset version of the definition,

a Coq version of the definition,

an Isabelle version of the definition, and

a HOL version of the definition.

Additionally, it can be run as a filter, taking a LaTeX/Coq/Isabelle/HOL source file with embedded (symbolic) terms of the defined language, parsing them and replacing them by typeset terms.

The main goal of the Ott tool is to support work on large programming language definitions, where the scale makes it hard to keep a definition internally consistent, and to keep a tight correspondence between a definition and implementations. We also wish to ease rapid prototyping work with smaller calculi, and to make it easier to exchange definitions and definition fragments between groups. The theorem-prover backends should enable a smooth transition between use of informal and formal mathematics.

- Participants: Francesco Zappa Nardelli, Peter Sewell and Scott Owens
- Contact: Francesco Zappa Nardelli
- URL: http://www.cl.cam.ac.uk/~pes20/ott/

5.9. PPCG

FUNCTIONAL DESCRIPTION: PPCG is our source-to-source research tool for automatic parallelization in the polyhedral model. It serves as a test bed for many compilation algorithms and heuristics published by our group, and is currently the best automatic parallelizer for CUDA and OpenCL (on the Polybench suite).

- Participants: Albert Cohen, Riyadh Baghdadi, Sven Verdoolaege and Tobias Grosser
- Contact: Sven Verdoolaege
- URL: http://freshmeat.net/projects/ppcg

5.10. ReactiveML

FUNCTIONAL DESCRIPTION: ReactiveML is a programming language dedicated to the implementation of interactive systems as found in graphical user interfaces, video games or simulation problems. ReactiveML is based on the synchronous reactive model due to Boussinot, embedded in an ML language (OCaml).

The Synchronous reactive model provides synchronous parallel composition and dynamic features like the dynamic creation of processes. In ReactiveML, the reactive model is integrated at the language level (not as a library) which leads to a safer and a more natural programming paradigm.

- Participants: Cédric Pasteur, Guillaume Baudart and Louis Mandel
- Contact: Guillaume Baudart

5.11. SundialsML

Sundials/ML

KEYWORDS: Simulation - Mathematics - Numerical simulations

SCIENTIFIC DESCRIPTION: Sundials/ML is a comprehensive OCaml interface to the Sundials suite of numerical solvers (CVODE, CVODES, IDA, IDAS, KINSOL). Its structure mostly follows that of the Sundials library, both for ease of reading the existing documentation and for adapting existing source code, but several changes have been made for programming convenience and to increase safety, namely:

solver sessions are mostly configured via algebraic data types rather than multiple function calls,

errors are signalled by exceptions not return codes (also from user-supplied callback routines),

user data is shared between callback routines via closures (partial applications of functions),

vectors are checked for compatibility (using a combination of static and dynamic checks), and

explicit free commands are not necessary since OCaml is a garbage-collected language.

FUNCTIONAL DESCRIPTION: Sundials/ML is a comprehensive OCaml interface to the Sundials suite of numerical solvers (CVODE, CVODES, IDA, IDAS, KINSOL, ARKODE).

- Participants: Jun Inoue, Marc Pouzet and Timothy Bourke
- Partner: UPMC
- Contact: Marc Pouzet
- URL: http://inria-parkas.github.io/sundialsml/

5.12. Zelus

SCIENTIFIC DESCRIPTION: The Zélus implementation has two main parts: a compiler that transforms Zélus programs into OCaml programs and a runtime library that orchestrates compiled programs and numeric solvers. The runtime can use the Sundials numeric solver, or custom implementations of well-known algorithms for numerically approximating continuous dynamics.

FUNCTIONAL DESCRIPTION: Zélus is a new programming language for hybrid system modeling. It is based on a synchronous language but extends it with Ordinary Differential Equations (ODEs) to model continuoustime behaviors. It allows for combining arbitrarily data-flow equations, hierarchical automata and ODEs. The language keeps all the fundamental features of synchronous languages: the compiler statically ensure the absence of deadlocks and critical races, it is able to generate statically scheduled code running in bounded time and space and a type-system is used to distinguish discrete and logical-time signals from continuoustime ones. The ability to combines those features with ODEs made the language usable both for programming discrete controllers and their physical environment.

- Participants: Marc Pouzet and Timothy Bourke
- Contact: Marc Pouzet

PI.R2 Project-Team

5. New Software and Platforms

5.1. Coq

The Coq Proof Assistant

KEYWORDS: Proof - Certification - Formalisation

SCIENTIFIC DESCRIPTION: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive Constructions, extended with universe polymorphism. This type theory features inductive and co-inductive families, an impredicative sort and a hierarchy of predicative universes, making it a very expressive logic. The calculus allows to formalize both general mathematics and computer programs, ranging from theories of finite structures to abstract algebra and categories to programming language metatheory and compiler verification. Coq is organised as a (relatively small) kernel including efficient conversion tests on which are built a set of higher-level layers: a powerful proof engine and unification algorithm, various tactics/decision procedures, a transactional document model and, at the very top an IDE.

FUNCTIONAL DESCRIPTION: Coq provides both a dependently-typed functional programming language and a logical formalism, which, altogether, support the formalisation of mathematical theories and the specification and certification of properties of programs. Coq also provides a large and extensible set of automatic or semi-automatic proof methods. Coq's programs are extractible to OCaml, Haskell, Scheme, ...

RELEASE FUNCTIONAL DESCRIPTION: Version 8.7 features a large amount of work on cleaning and speeding up the code base, notably the work of Pierre-Marie Pédrot on making the tactic-level system insensitive to existential variable expansion, providing a safer API to plugin writers and making the code more robust.

New tactics: Variants of tactics supporting existential variables "eassert", "eenough", etc. by Hugo Herbelin. Tactics "extensionality in H" and "inversion_sigma" by Jason Gross, "specialize with" accepting partial bindings by Pierre Courtieu.

Cumulative Polymorphic Inductive Types, allowing cumulativity of universes to go through applied inductive types, by Amin Timany and Matthieu Sozeau.

The SSReflect plugin by Georges Gonthier, Assia Mahboubi and Enrico Tassi was integrated (with its documentation in the reference manual) by Maxime Dénès, Assia Mahboubi and Enrico Tassi.

The "coq_makefile" tool was completely redesigned to improve its maintainability and the extensibility of generated Makefiles, and to make "_CoqProject" files more palatable to IDEs by Enrico Tassi.

A lot of other changes are described in the CHANGES file.

NEWS OF THE YEAR: Version 8.7 was released in October 2017 and version 8.7.1 in December 2017, development started in January 2017. This is the second release of Coq developed on a time-based development cycle. Its development spanned 9 months from the release of Coq 8.6 and was based on a public road-map. It attracted many external contributions. Code reviews and continuous integration testing were systematically used before integration of new features, with an important focus given to compatibility and performance issues.

The main scientific advance in this version is the integration of cumulative inductive types in the system. More practical advances in stability, performance, usability and expressivity of tactics were also implemented, resulting in a mostly backwards-compatible but appreciably faster and more robust release. Much work on plugin extensions to Coq by the same development team has also been going on in parallel, including work on JSCoq by Emilio JG Arias, Ltac 2 by P.M-Pédrot, which required synchronised changes of the main codebase. In 2017, the construction of the Coq Consortium by Yves Bertot and Maxime Dénès has greatly advanced and is now nearing its completion.

- Participants: Abhishek Anand, C. J. Bell, Yves Bertot, Frédéric Besson, Tej Chajed, Pierre Courtieu, Maxime Denes, Julien Forest, Emilio Jesús Gallego Arias, Gaëtan Gilbert, Benjamin Grégoire, Jason Gross, Hugo Herbelin, Ralf Jung, Matej Kosik, Sam Pablo Kuper, Xavier Leroy, Pierre Letouzey, Assia Mahboubi, Cyprien Mangin, Érik Martin-Dorel, Olivier Marty, Guillaume Melquiond, Pierre-Marie Pédrot, Benjamin C. Pierce, Lars Rasmusson, Yann Régis-Gianas, Lionel Rieg, Valentin Robert, Thomas Sibut-Pinote, Michael Soegtrop, Matthieu Sozeau, Arnaud Spiwack, Paul Steckler, George Stelle, Pierre-Yves Strub, Enrico Tassi, Hendrik Tews, Laurent Théry, Amin Timany, Vadim Zaliva and Théo Zimmermann
- Partners: CNRS Université Paris-Sud ENS Lyon Université Paris-Diderot
- Contact: Matthieu Sozeau
- Publication: The Coq Proof Assistant, version 8.7.1
- URL: http://coq.inria.fr/

5.2. Equations

KEYWORDS: Coq - Dependent Pattern-Matching - Proof assistant - Functional programming

SCIENTIFIC DESCRIPTION: Equations is a tool designed to help with the definition of programs in the setting of dependent type theory, as implemented in the Coq proof assistant. Equations provides a syntax for defining programs by dependent pattern-matching and well-founded recursion and compiles them down to the core type theory of Coq, using the primitive eliminators for inductive types, accessibility and equality. In addition to the definitions of programs, it also automatically derives useful reasoning principles in the form of propositional equations describing the functions, and an elimination principle for calls to this function. It realizes this using a purely definitional translation of high-level definitions to core terms, without changing the core calculus in any way, or using axioms.

FUNCTIONAL DESCRIPTION: Equations is a function definition plugin for Coq (supporting Coq 8.6 and 8.7), that allows the definition of functions by dependent pattern-matching and well-founded, mutual or nested structural recursion and compiles them into core terms. It automatically derives the clauses equations, the graph of the function and its associated elimination principle.

Equations is based on a simplification engine for the dependent equalities appearing in dependent eliminations that is also usable as a separate tactic, providing an axiom-free variant of dependent destruction. The main features of Equations include:

Dependent pattern-matching in the style of Agda/Epigram, with inaccessible patterns, with and where clauses. The use of the K axiom or a proof of K is configurable.

Support for well-founded recursion using by rec annotations, and automatic derivation of the subterm relation for inductive families.

Support for mutual and nested structural recursion using with and where auxilliary definitions, allowing to factor multiple uses of the same nested fixpoint definition. It proves the expected elimination principles for mutual and nested definitions.

Automatic generation of the defining equations as rewrite rules for every definition.

Automatic generation of the unfolding lemma for well-founded definitions (requiring only functional extensionality).

Automatic derivation of the graph of the function and its elimination principle. In case the automation fails to prove these principles, the user is asked to provide a proof.

A new dependent elimination tactic based on the same splitting tree compilation scheme that can advantageously replace dependent destruction and sometimes inversion as well. The as clause of dependent elimination allows to specify exactly the patterns and naming of new variables needed for an elimination.

A set of Derive commands for automatic derivation of constructions from an inductive type: its signature, no-confusion property, well-founded subterm relation and decidable equality proof, if applicable.

NEWS OF THE YEAR: Equations 1.0 was released in december this year, after 7 years of (non-continuous) development. It provides the first feature-full version of the software. It has been tried and tested on small to medium scale examples (available on the website). Equations was presented at the Type Theory Tools EUTypes meeting in January 2017 in Paris, and another demo/presentation will be given at PEPM 2018 in Los Angeles in January 2018.

- Participants: Matthieu Sozeau and Cyprien Mangin
- Contact: Matthieu Sozeau
- Publications: Equations reloaded Equations for Hereditary Substitution in Leivant's Predicative System F: A Case Study Equations: A Dependent Pattern-Matching Compiler
- URL: http://mattam82.github.io/Coq-Equations/

POLSYS Project-Team

5. New Software and Platforms

5.1. Epsilon

FUNCTIONAL DESCRIPTION: Epsilon is a library of functions implemented in Maple and Java for polynomial elimination and decomposition with (geometric) applications.

- Contact: Dongming Wang
- URL: http://wang.cc4cm.org/epsilon/index.html

5.2. FGb

KEYWORDS: Gröbner bases - Nonlinear system - Computer algebra

FUNCTIONAL DESCRIPTION: FGb is a powerful software for computing Gröbner bases. It includes the new generation of algorithms for computing Gröbner bases polynomial systems (mainly the F4, F5 and FGLM algorithms). It is implemented in C/C++ (approximately 250000 lines), standalone servers are available on demand. Since 2006, FGb is dynamically linked with Maple software (version 11 and higher) and is part of the official distribution of this software.

- Participant: Jean Charles Faugere
- Contact: Jean-Charles Faugère
- URL: http://www-polsys.lip6.fr/~jcf/FGb/index.html

5.3. FGb Light

FUNCTIONAL DESCRIPTION: Gröbner basis computation modulo p (p is a prime integer of 16 bits).

- Participant: Jean-Charles Faugère
- Contact: Jean-Charles Faugère
- URL: http://www-polsys.lip6.fr/~jcf/FGb/index.html

5.4. GBLA

FUNCTIONAL DESCRIPTION: GBLA is an open source C library for linear algebra specialized for eliminating matrices generated during Gröbner basis computations in algorithms like F4 or F5.

- Contact: Jean-Charles Faugère
- URL: http://www-polsys.lip6.fr/~jcf/GBLA/index.html

5.5. HFEBoost

FUNCTIONAL DESCRIPTION: Public-key cryptography system enabling an authentification of dematerialized data.

- Authors: Jean-Charles Faugère and Ludovic Perret
- Partner: UPMC
- Contact: Jean-Charles Faugère
- URL: http://www-polsys.lip6.fr/Links/hfeboost.html

5.6. RAGlib

Real Algebraic Geometry library

FUNCTIONAL DESCRIPTION: RAGLib is a powerful library, written in Maple, dedicated to solving over the reals polynomial systems. It is based on the FGb library for computing Grobner bases. It provides functionalities for deciding the emptiness and/or computing sample points to real solution sets of polynomial systems of equations and inequalities. This library provides implementations of the state-of-the-art algorithms with the currently best known asymptotic complexity for those problems.

- Contact: Mohab Safey El Din
- URL: http://www-polsys.lip6.fr/~safey/RAGLib/

5.7. SLV

FUNCTIONAL DESCRIPTION: SLV is a software package in C that provides routines for isolating (and subsequently refine) the real roots of univariate polynomials with integer or rational coefficients based on subdivision algorithms and on the continued fraction expansion of real numbers. Special attention is given so that the package can handle polynomials that have degree several thousands and size of coefficients hundrends of Megabytes. Currently the code consists of approx. 5000 lines.

- Contact: Elias Tsigaridas
- URL: http://www-polsys.lip6.fr/~elias/soft

5.8. SPECTRA

Semidefinite Programming solved Exactly with Computational Tools of Real Algebra

KEYWORD: Linear Matrix Inequalities

FUNCTIONAL DESCRIPTION: SPECTRA is a Maple library devoted to solving exactly Semi-Definite Programs. It can handle rank constraints on the solution. It is based on the FGb library for computing Gröbner bases and provides either certified numerical approximations of the solutions or exact representations thereof.

- Contact: Mohab Safey El Din
- URL: http://homepages.laas.fr/henrion/software/spectra/

24 Algorithmics, Programming, Software and Architecture - Software and Platforms - Project-Team PROSECCO

PROSECCO Project-Team

6. New Software and Platforms

6.1. Cryptosense Analyzer

SCIENTIFIC DESCRIPTION: Cryptosense Analyzer (formerly known as Tookan) is a security analysis tool for cryptographic devices such as smartcards, security tokens and Hardware Security Modules that support the most widely-used industry standard interface, RSA PKCS#11. Each device implements PKCS#11 in a slightly different way since the standard is quite open, but finding a subset of the standard that results in a secure device, i.e. one where cryptographic keys cannot be revealed in clear, is actually rather tricky. Cryptosense Analyzer analyses a device by first reverse engineering the exact implementation of PKCS#11 in use, then building a logical model of this implementation for a model checker, calling a model checker to search for attacks, and in the case where an attack is found, executing it directly on the device. It has been used to find at least a dozen previously unknown flaws in commercially available devices.

FUNCTIONAL DESCRIPTION: Cryptosense Analyzer (formerly known as Tookan) is a security analysis tool for cryptographic devices such as smartcards,

- Participants: Graham Steel and Romain Bardou
- Contact: Graham Steel
- URL: https://cryptosense.com/

6.2. CryptoVerif

Cryptographic protocol verifier in the computational model

KEYWORDS: Security - Verification - Cryptographic protocol

FUNCTIONAL DESCRIPTION: CryptoVerif is an automatic protocol prover sound in the computational model. In this model, messages are bitstrings and the adversary is a polynomial-time probabilistic Turing machine. CryptoVerif can prove secrecy and correspondences, which include in particular authentication. It provides a generic mechanism for specifying the security assumptions on cryptographic primitives, which can handle in particular symmetric encryption, message authentication codes, public-key encryption, signatures, hash functions, and Diffie-Hellman key agreements. It also provides an explicit formula that gives the probability of breaking the protocol as a function of the probability of breaking each primitives, this is the exact security framework.

NEWS OF THE YEAR: We made several case studies using CryptoVerif (Signal, TLS 1.3 Draft 18, ARINC 823 avionic protocol) and have made a few technical improvements.

- Participants: Bruno Blanchet and David Cadé
- Contact: Bruno Blanchet
- Publications: Proved Implementations of Cryptographic Protocols in the Computational Model -Proved Generation of Implementations from Computationally Secure Protocol Specifications - Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate - Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate - Symbolic and Computational Mechanized Verification of the ARINC823 Avionic Protocols - Automated Verification for Secure Messaging Protocols and Their Implementations: A Symbolic and Computational Approach
- URL: http://cryptoverif.inria.fr/

6.3. F*

FStar KEYWORDS: Programming language - Software Verification

25 Algorithmics, Programming, Software and Architecture - Software and Platforms - Project-Team PROSECCO

FUNCTIONAL DESCRIPTION: F* is a new higher order, effectful programming language (like ML) designed with program verification in mind. Its type system is based on a core that resembles System Fw (hence the name), but is extended with dependent types, refined monadic effects, refinement types, and higher kinds. Together, these features allow expressing precise and compact specifications for programs, including functional correctness properties. The F* type-checker aims to prove that programs meet their specifications using an automated theorem prover (usually Z3) behind the scenes to discharge proof obligations. Programs written in F* can be translated to OCaml, F#, or JavaScript for execution.

- Participants: Antoine Delignat-Lavaud, Catalin Hritcu, Cédric Fournet, Chantal Keller, Karthikeyan Bhargavan and Pierre-Yves Strub
- Contact: Catalin Hritcu
- URL: https://www.fstar-lang.org/

6.4. miTLS

KEYWORDS: Cryptographic protocol - Software Verification

FUNCTIONAL DESCRIPTION: miTLS is a verified reference implementation of the TLS protocol. Our code fully supports its wire formats, ciphersuites, sessions and connections, re-handshakes and resumptions, alerts and errors, and data fragmentation, as prescribed in the RFCs, it interoperates with mainstream web browsers and servers. At the same time, our code is carefully structured to enable its modular, automated verification, from its main API down to computational assumptions on its cryptographic algorithms.

- Participants: Alfredo Pironti, Antoine Delignat-Lavaud, Cédric Fournet, Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Pierre-Yves Strub and Santiago Zanella-Béguelin
- Contact: Karthikeyan Bhargavan
- URL: https://github.com/mitls/mitls-fstar

6.5. ProVerif

KEYWORDS: Security - Verification - Cryptographic protocol

FUNCTIONAL DESCRIPTION: ProVerif is an automatic security protocol verifier in the symbolic model (so called Dolev-Yao model). In this model, cryptographic primitives are considered as black boxes. This protocol verifier is based on an abstract representation of the protocol by Horn clauses. Its main features are:

It can verify various security properties (secrecy, authentication, process equivalences).

It can handle many different cryptographic primitives, specified as rewrite rules or as equations.

It can handle an unbounded number of sessions of the protocol (even in parallel) and an unbounded message space.

NEWS OF THE YEAR: Marc Sylvestre improved the display of attacks, in particular by showing the computations performed by the attacker to obtain the messages sent in the attack, and by explaining why the found trace breaks the considered security property. He also developed an interactive simulator that allows the user to run the protocol step by step. We also made several case studies using this tool (Signal, TLS 1.3 Draft 18, ARINC 823 avionic protocol).

- Participants: Bruno Blanchet, Marc Sylvestre and Vincent Cheval
- Contact: Bruno Blanchet
- Publications: Automated Reasoning for Equivalences in the Applied Pi Calculus with Barriers Automated reasoning for equivalences in the applied pi calculus with barriers Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif Automatic Verification of Security Protocols in the Symbolic Model: The Verifier ProVerif Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate Automated Verification for Secure Messaging Protocols and Their Implementations: A Symbolic and Computational Approach Symbolic and Computational Mechanized Verification of the ARINC823 Avionic Protocols Symbolic and Computational Mechanized Verification of the ARINC823 Avionic Protocols
- URL: http://proverif.inria.fr/

26 Algorithmics, Programming, Software and Architecture - Software and Platforms - Project-Team PROSECCO

6.6. HACL*

High Assurance Cryptography Library

KEYWORDS: Cryptography - Software Verification

FUNCTIONAL DESCRIPTION: HACL* is a formally verified cryptographic library in F*, developed by the Prosecco team at Inria Paris in collaboration with Microsoft Research, as part of Project Everest.

HACL stands for High-Assurance Cryptographic Library and its design is inspired by discussions at the HACS series of workshops. The goal of this library is to develop verified C reference implementations for popular cryptographic primitives and to verify them for memory safety, functional correctness, and secret independence.

- Contact: Karthikeyan Bhargavan
- URL: https://github.com/mitls/hacl-star

SECRET Project-Team

6. New Software and Platforms

6.1. CFS

FUNCTIONAL DESCRIPTION: Reference implementation of parallel CFS (reinforced version of the digital signature scheme CFS). Two variants are proposed, one with a « bit-packing » finite field arithmetic and an evolution with a « bit-slicing » finite-field arithmetic (collaboration with Peter Schwabe). For 80 bits of security the running time for producing one signature with the « bit-packing » variant is slightly above one second. This is high but was still the fastest so far. The evolution with the « bit-slicing » arithmetic produces the same signature in about 100 milliseconds.

- Participants: Grégory Landais and Nicolas Sendrier
- Contact: Nicolas Sendrier
- URL: https://gforge.inria.fr/projects/cfs-signature/

6.2. Collision Decoding

KEYWORDS: Algorithm - Binary linear code

FUNCTIONAL DESCRIPTION: Collision Decoding implements two variants of information set decoding : Stern-Dumer, and MMT. To our knowledge it is the best full-fledged open-source implementation of generic decoding of binary linear codes. It is the best generic attack against code-based cryptography.

- Participants: Grégory Landais and Nicolas Sendrier
- Contact: Nicolas Sendrier
- URL: https://gforge.inria.fr/projects/collision-dec/

6.3. ISDF

FUNCTIONAL DESCRIPTION: Implementation of the Stern-Dumer decoding algorithm, and of a varaint of the algorithm due to May, Meurer and Thomae.

- Participants: Grégory Landais and Nicolas Sendrier
- Contact: Anne Canteaut
- URL: https://gforge.inria.fr/projects/collision-dec/

MATHERIALS Project-Team

6. New Software and Platforms

6.1. simol

KEYWORDS: Molecular simulation - Quantum chemistry - Statistical physics - C++ - OpenMP FUNCTIONAL DESCRIPTION: Molecular simulation software written in C++

• Contact: Gabriel Stoltz

MATHRISK Project-Team

5. New Software and Platforms

5.1. PREMIA

KEYWORDS: Financial products - Computational finance - Option pricing

SCIENTIFIC DESCRIPTION: The Premia project keeps track of the most recent advances in the field of computational finance in a well-documented way. It focuses on the implementation of numerical analysis techniques for both probabilistic and deterministic numerical methods. An important feature of the platform Premia is the detailed documentation which provides extended references in option pricing.

Premia is thus a powerful tool to assist Research and Development professional teams in their day-to-day duty. It is also a useful support for academics who wish to perform tests on new algorithms or pricing methods without starting from scratch.

Besides being a single entry point for accessible overviews and basic implementations of various numerical methods, the aim of the Premia project is: 1 - to be a powerful testing platform for comparing different numerical methods between each other, 2 - to build a link between professional financial teams and academic researchers, 3 - to provide a useful teaching support for Master and PhD students in mathematical finance. FUNCTIONAL DESCRIPTION: Premia is a software designed for option pricing, hedging and financial model calibration.

- Participants: Agnes Sulem, Antonino Zanette, Aurélien Alfonsi, Benjamin Jourdain, Jacques Printems and Jérôme Lelong
- Partners: Inria Ecole des Ponts ParisTech Université Paris-Est
- Contact: Agnes Sulem
- URL: http://www.premia.fr

5.2. Platforms

5.2.1. Development of the quantitative platform Premia in 2017

- Premia 18 has been registered at the Agence pour la Protection des Programmes APP (IDDN.FR.001.190010.014.S.C.2001.000.31000)

- Premia 19 has been delivered to the Consortium Premia on March 16th. It contains the following new algorithms : Risk Management, Model Risk, Insurance

- XVA simulation on GPUs using Nested Monte Carlo. L. Abbas Turki
- Model-independent bounds for option prices a mass transport approach. M. Beiglböck, P. H. Labordère, F. Penkner

Finance Stochastics Volume 17, 2013.

- Model-Independent Pricing of Asian Options via Optimal Martingale. F Stebegg
- Pricing and Hedging GMWB in the Heston and in the Black-Scholes with Stochastic Interest Rate Models. L. Goudenege, A. Molent, A. Zanette

Equity Derivatives

- Quantization meets Fourier: a new technology for pricing options. G. Callegaro, L. Fiorin, M. Grasselli.
- Efficient unbiased simulation scheme for the SABR stochastic volatility model. B. Chen, C.W. Oosterlee J.A.M van der Weide.

International Journal of Theoretical and Applied Finance. Vol. 15, No. 2 (2012)

- An efficient Monte Carlo method for discrete variance contracts. N.Merener L.Vicchi *The Journal of Computational Finance. Vol. 16, Issue 4, 2013.*
- The evaluation of barrier option prices under stochastic volatility. C.Chiarella, B.Kang, G.H.Meyer *Computers and Mathematics with Applications 64, 2012.*
- Path-Dependent Volatility. J.Guyon *Risk Magazine, October 2014.*
- Cross-Dependent Volatility. J.Guyon *Risk Magazine, March 2016*
- Option pricing and implied volatilities in a 2-hypergeometric stochastic volatility model. N. Privault Q. She

Applied Mathematics Letters, 53, 2016

- Option price with stochastic volatility for both fast and slow mean-reverting regimes. Q. Zhang, J. Han, and M. Gao. *C. R. Math. Acad. Sci. Paris, 351(9-10), 2013.*
- Application of the improved fast Gauss transform to option pricing under jump-diffusion processes. T. Sakuma and Y. Yamada *The Journal of Computational Finance, Volume 18, Issue 2, 2014.*
- Features of the Russian derivatives market volatility index development taking into account possible price jumps. A. Grechko, O. Kudryavtsev *Theory of Probability and Its Applications-SIAM, 2017 61:3 (2017), to appear*
- On the application of spectral filters in a Fourier option pricing technique. C.W. Oosterlee M.J. Ruijter, M. Versteegh

The Journal of Computational Finance, Volume 19, Issue 1, 2015.

• Unbiased simulation of stochastic differential equations. P.H. Labordere X. Tan, N. Touzi

We have benefited from the help of the engineer Cedric Doucet, supervised by Jérôme Lelong, for designing non regression tests for Premia.

MOKAPLAN Project-Team

5. New Software and Platforms

5.1. ALG2

FUNCTIONAL DESCRIPTION: ALG2 for Monge Mean-Field Games, Monge problem and Variational problems under divergence constraint. A generalisation of the ALG2 algorithm has been implemented in FreeFem++.

- Contact: Jean-David Benamou
- URL: https://team.inria.fr/mokaplan/augmented-lagrangian-simulations/

5.2. Mokabajour

FUNCTIONAL DESCRIPTION: We design a software resolving the following inverse problem: define the shape of a mirror which reflects the light from a source to a defined target, distribution and support of densities being prescribed. Classical applications include the conception of solar oven, public lightning, car headlights... Mathematical modeling of this problem, related to the optimal transport theory, takes the form of a nonlinear Monge-Ampere type PDE. The numerical resolution of these models remained until recently a largely open problem. MOKABAJOUR project aims to develop, using algorithms invented especially at Inria and LJK, a reflector design software more efficient than geometrical methods used so far. The final step is to realize and physically test prototype reflectors.

- Participants: Boris Thibert, Jean-David Benamou and Quentin Mérigot
- Contact: Jean-David Benamou
- URL: https://project.inria.fr/mokabajour/

5.3. Platforms

5.3.1. MABV2

A 2D Julia implementation of the algorithm described in [25]. https://gforge.inria.fr/scm/browser. php?group_id=9995

QUANTIC Project-Team (section vide)

SIERRA Project-Team

5. New Software and Platforms

5.1. ProxASAGA

KEYWORD: Optimization

FUNCTIONAL DESCRIPTION: A C++/Python code implementing the methods in the paper "Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization", F. Pedregosa, R. Leblond and S. Lacoste-Julien, Advances in Neural Information Processing Systems (NIPS) 2017. Due to their simplicity and excellent performance, parallel asynchronous variants of stochastic gradient descent have become popular methods to solve a wide range of large-scale optimization problems on multi-core architectures. Yet, despite their practical success, support for nonsmooth objectives is still lacking, making them unsuitable for many problems of interest in machine learning, such as the Lasso, group Lasso or empirical risk minimization with convex constraints. In this work, we propose and analyze ProxASAGA, a fully asynchronous sparse method inspired by SAGA, a variance reduced incremental gradient algorithm. The proposed method is easy to implement and significantly outperforms the state of the art on several nonsmooth, large-scale problems. We prove that our method achieves a theoretical linear speedup with respect to the sequential version under assumptions on the sparsity of gradients and block-separability of the proximal term. Empirical benchmarks on a multi-core architecture illustrate practical speedups of up to 12x on a 20-core machine.

- Contact: Fabian Pedregosa
- URL: https://github.com/fabianp/ProxASAGA

5.2. object-states-action

KEYWORD: Computer vision

FUNCTIONAL DESCRIPTION: Code for the paper Joint Discovery of Object States and Manipulation Actions, ICCV 2017: Many human activities involve object manipulations aiming to modify the object state. Examples of common state changes include full/empty bottle, open/closed door, and attached/detached car wheel. In this work, we seek to automatically discover the states of objects and the associated manipulation actions. Given a set of videos for a particular task, we propose a joint model that learns to identify object states and to localize state-modifying actions. Our model is formulated as a discriminative clustering cost with constraints. We assume a consistent temporal order for the changes in object states and manipulation actions, and introduce new optimization techniques to learn model parameters without additional supervision. We demonstrate successful discovery of seven manipulations. We show that our joint formulation results in an improvement of object state discovery by action recognition and vice versa.

• Contact: Jean-Baptiste Alayrac

ANGE Project-Team

6. New Software and Platforms

6.1. Freshkiss

FREe Surface Hydrodynamics using KInetic SchemeS

KEYWORDS: Finite volume methods - Hydrostatic Navier-Stokes equations - Free surface flows FUNCTIONAL DESCRIPTION: Freshkiss3D is a numerical code solving the 3D hydrostatic and incompressible Navier-Stokes equations with variable density.

- Participants: Fabien Souille, Emmanuel Audusse, Jacques Sainte Marie and Marie-Odile Bristeau
- Partners: UPMC CEREMA
- Contact: Jacques Sainte Marie

6.2. TSUNAMATHS

KEYWORDS: Modeling - Tsunamis

FUNCTIONAL DESCRIPTION: Tsunamaths is an educational platform aiming at simulating historical tsunamis. Real data and mathematical explanations are provided to enable people to better understand the overall process of tsunamis.

- Participants: Emmanuel Audusse, Jacques Sainte Marie and Raouf Hamouda
- Contact: Jacques Sainte Marie
- URL: http://tsunamath.paris.inria.fr/

6.3. Verdandi

KEYWORDS: HPC - Model - Software Components - Partial differential equation

FUNCTIONAL DESCRIPTION: Verdandi is a free and open-source (LGPL) library for data assimilation. It includes various such methods for coupling one or several numerical models and observational data. Mainly targeted at large systems arising from the discretization of partial differential equations, the library is devised as generic, which allows for applications in a wide range of problems (biology and medicine, environment, image processing, etc.). Verdandi also includes tools to ease the application of data assimilation, in particular in the management of observations or for a priori uncertainty quantification. Implemented in C++, the library may be used with models implemented in Fortran, C, C++ or Python.

- Participants: Dominique Chapelle, Gautier Bureau, Nicolas Claude, Philippe Moireau and Vivien Mallet
- Contact: Vivien Mallet
- URL: http://verdandi.gforge.inria.fr/

6.4. Polyphemus

KEYWORD: Simulation

FUNCTIONAL DESCRIPTION: Polyphemus is a modeling system for air quality. As such, it is designed to yield up-to-date simulations in a reliable framework: data assimilation, ensemble forecast and daily forecasts. Its completeness makes it suitable for use in many applications: photochemistry, aerosols, radionuclides, etc. It is able to handle simulations from local to continental scales, with several physical models. It is divided into three main parts:

- libraries that gather data processing tools (SeldonData), physical parameterizations (AtmoData) and post-processing abilities (AtmoPy),
- programs for physical pre-processing and chemistry-transport models (Polair3D, Castor, two Gaussian models, a Lagrangian model),
- model drivers and observation modules for model coupling, ensemble forecasting and data assimilation.
- Participants: Sylvain Doré and Vivien Mallet
- Contact: Vivien Mallet
- URL: http://cerea.enpc.fr/polyphemus/

6.5. Urban noise analysis

KEYWORD: Environment perception

FUNCTIONAL DESCRIPTION: This software processes mobile observations collected by the application Ambiciti (previously known as SoundCity). It can merge simulated noise maps with the mobile observations.

- Authors: Raphaël Ventura, Vivien Mallet and Guillaume Cherel
- Contact: Vivien Mallet

ARAMIS Project-Team

6. New Software and Platforms

6.1. Brain Networks Toolbox

KEYWORDS: Neuroimaging - Medical imaging

FUNCTIONAL DESCRIPTION: Brain Networks Toolbox is an open-source package of documented routines implementing new graph algorithms for brain network analysis. It mainly contains Matlab code of new methods developed by the team and associated to publications (e.g., brain network thresholding, extraction of the information redundancy, node accessibility, etc). It requires, as input, adjacency matrices representing brain connectivity networks. Thus, it is independent on the specific approach used to construct brain networks and it can be used to extract network properties from any neuroimaging modality in healthy and diseased subjects.

- Participants: Fabrizio De Vico Fallani, Jeremy Guillon and Mario Chavez
- Contact: Fabrizio De Vico Fallani
- URL: https://github.com/brain-network/bnt

6.2. Deformetrica

KEYWORDS: Anatomy - Mesh - Automatic Learning - C++ - 3D modeling - Image analysis

SCIENTIFIC DESCRIPTION: Deformetrica is a software for the statistical analysis of 2D and 3D shape data. It essentially computes deformations of the 2D or 3D ambient space, which, in turn, warp any object embedded in this space, whether this object is a curve, a surface, a structured or unstructured set of points, or any combination of them.

Deformetrica comes with two applications:

registration, which computes the best possible deformation between two sets of objects, atlas construction, which computes an average object configuration from a collection of object sets, and the deformations from this average to each sample in the collection.

Deformetrica has very little requirements about the data it can deal with. In particular, it does not require point correspondence between objects!

FUNCTIONAL DESCRIPTION: Deformetrica is a software for the statistical analysis of 2D and 3D shape data. It essentially computes deformations of the 2D or 3D ambient space, which, in turn, warp any object embedded in this space, whether this object is a curve, a surface, a structured or unstructured set of points, or any combination of them.

Deformetrica comes with two applications:

- Registration, which computes the optimal deformation between two sets of objects,

- Atlas construction, which computes an average object configuration from a collection of object sets, and the deformations from this average to each sample in the collection.

Deformetrica has very little requirements about the data it can deal with. In particular, it does not require point correspondence between objects!

- Participants: Alexandre Routier, Ana Fouquier, Barbara Gris, Benjamin Charlier, Cédric Doucet, Joan Alexis Glaunès, Marcel Prastawa, Michael Bacci, Pietro Gori and Stanley Durrleman
- Partners: University of Utah Université de Montpellier 2 Université Paris-Descartes
- Contact: Stanley Durrleman
- URL: http://www.deformetrica.org/

6.3. Clinica

KEYWORDS: Neuroimaging - Brain MRI - MRI - Clinical analysis - Image analysis - Machine learning SCIENTIFIC DESCRIPTION: Clinica is a software platform for multimodal brain image analysis in clinical research studies. It makes it easy to apply advanced analysis tools to large scale clinical studies. For that purpose, it integrates a comprehensive set of processing tools for the main neuroimaging modalities: currently MRI (anatomical, functional, diffusion) and PET, in the future, EEG/MEG. For each modality, Clinica allows to easily extract various types of features (regional measures, parametric maps, surfaces, curves, networks). Such features are then subsequently used as input of machine learning, statistical modeling, morphometry or network analysis methods. Processing pipelines are based on combinations of freely available tools developed by the community. It provides an integrated data management specification to store raw and processing data. Clinica is written in Python. It uses the Nipype system for pipelining. It combines widely-used software for neuroimaging data analysis (SPM, Freesurfer, FSL, MRtrix...), morphometry (Deformetrica), machine learning (Scikit-learn) and the BIDS standard for data organization.

FUNCTIONAL DESCRIPTION: Clinica is a software platform for multimodal brain image analysis in clinical research studies. It makes it easy to apply advanced analysis tools to large scale clinical studies. For that purpose, it integrates a comprehensive set of processing tools for the main neuroimaging modalities: currently MRI (anatomical, functional, diffusion) and PET, in the future, EEG/MEG. For each modality, Clinica allows to easily extract various types of features (regional measures, parametric maps, surfaces, curves, networks). Such features are then subsequently used as input of machine learning, statistical modeling, morphometry or network analysis methods. Clinica also provides an integrated data management specification to store raw and processing data. Overall, Clinica helps to: i) apply advanced analysis tools to clinical research studies, ii) easily share data and results, iii) make research more reproducible.

- Participants: Junhao Wen, Jorge Samper Gonzalez, Alexandre Routier, Tristan Moreau, Arnaud Marcoux, Pascal Lu, Thomas Jacquemont, Jeremy Guillon, Olivier Colliot, Stanley Durrleman, Michael Bacci, Simona Bottani, Ninon Burgos, Sabrina Fontanella and Pietro Gori
- Partners: Institut du Cerveau et de la Moelle épinière (ICM) CNRS INSERM UPMC
- Contact: Olivier Colliot
- Publications: Amyloidosis and neurodegeneration result in distinct structural connectivity patterns in mild cognitive impairment Yet Another ADNI Machine Learning Paper? Paving The Way Towards Fully-reproducible Research on Classification of Alzheimer's Disease
- URL: http://www.clinica.run

6.4. Platforms

6.4.1. Platform Brain-computer interface

Our team has coordinated the implementation of the Brain-Computer Interface (BCI) platform at the Centre EEG/MEG of the neuroimaging core facility of the ICM. Several projects, including our NETBCI NSF/NIH/ANR funded project, and demos are currently being run by different researchers of the Institute. Such technological advance contributed to the scientific visibility of Inria and ICM with two TV reports (M6 and France 5).

MAMBA Project-Team

5. New Software and Platforms

5.1. TiQuant

Tissue Quantifier

KEYWORDS: Systems Biology - Bioinformatics - Biology - Physiology

FUNCTIONAL DESCRIPTION: Systems biology and medicine on histological scales require quantification of images from histological image modalities such as confocal laser scanning or bright field microscopy. The latter can be used to calibrate the initial state of a mathematical model, and to evaluate its explanatory value, which hitherto has been little recognized. We generated a software for image analysis of histological material and demonstrated its use in analysing liver confocal micrografts, called TiQuant (Tissue Quantifier). The software is part of an analysis chain detailing protocols of imaging, image processing and analysis in liver tissue, permitting 3D reconstructions of liver lobules down to a resolution of less than a micrometer.

- Author: Dirk Drasdo
- Contact: Dirk Drasdo

5.2. TiSim

Tissue Simulator

KEYWORDS: Systems Biology - Bioinformatics - Biology - Physiology

SCIENTIFIC DESCRIPTION: TiSim (Tissue Simulator) is a versatile and efficient simulation environment for tissue models. TiSim is a software for agent-based models of multicellular systems. It permits model development with center-based models and deformable cell models, it contains modules for monolayer and multicellular spheroid simulations as well as for simulations of liver lobules. Besides agent-based simulations, the flow of blood and the transport of molecules can be modelled in the extracellular space, intracellular processes such as signal transduction and metabolism can be simulated, for example over an interface permitting integration of SBML-formulated ODE models. TiSim is written in modern C++ , keeping central model constituents in modules to be able to reuse them as building blocks for new models. For user interaction, the GUI Framework Qt is used in combination with OpenGL for visualisation. The simulation code is in the process of being published. The modeling strategy and approaches slowly reach systems medicine and toxicology. The diffusion of software is a fundamental component as it provides the models that are complex and difficult to implement (implementing a liver lobule model from scratch takes about 2-2.5yrs) in form of a software to the developer and users who like to build upon them. This increases significantly the speed of implementing new models. Moreover, standardization is indispensible as it permits coupling different software tools that may have implemented models at different scales / levels.

FUNCTIONAL DESCRIPTION: TiSim is a software that permits agent-based simulations of multicellular systems. - center-based lattice-free agent-based model - modular - C++, Qt, OpenGL, GUI, batch mode - permits multiscale simulations by integration of molecular pathways (for signaling, metabolisms, drug) into each individual cell - applications so far: monolayer growth, multicellular spheroids - Boolean networks (development time = coding time (60 MMs) + model development time (264 MMs)) - in follow-up version 1: - liver lobule regeneration - SBML interface - in follow-up version 2: - deformable cell model (by triangulation of cell surface) - deformable rod models - extracellular matrix - vascular flow and transport TiSim can be directly fed by processed image data from TiQuant.

- Participants: Andreas Buttenschoen, Dirk Drasdo, Eugenio Lella, Géraldine Cellière, Johannes Neitsch, Margaretha Palm, Nick Jagiella, Noémie Boissier, Paul Van Liedekerke, Stefan Hoehme and Tim Johann
- Partner: IZBI, Université de Leipzig
- Contact: Dirk Drasdo

5.3. Platforms

TiQuant and TiSim The software for tissue image analysis (**Ti**ssue **Quant**ifier) and simulation (**Ti**ssue **Sim**ulator) has been enriched. In more details,

5.3.1. TiQuant

TiQuant [94], [91] is implemented in portable object-oriented JSO C++. The GUI is based on QT and supports real-time visualisation using OpenGL. TiQuant is embedded in the tissue modelling framework CellSys and thus is tightly linked with TiSim, a versatile and efficient simulation environment for tissue models. TiQuant provides an interface to VolView and further complements its functionality by linking to the open-source libraries ITK and VTK (itk/vtk.org). The image/volume processing chains currently implemented in TiQuant for example include techniques to segment conduit and cell segmentation from 3D confocal micrographs of liver tissue based on the Adaptive Otsu Thresholding method and a number of morphological operators. TiQuant was currently extended by a machine-learning component, largely replacing the manual image-processing pipeline.

5.3.2. TiSim

TiSim permits agent-based simulations of multicellular systems. It is modular, in object-oriented ISO C++, the GUI based on Qt and OpenGL, while also allowing for batch mode runs. The software permits multi-scale simulations by integration of molecular pathways (for signalling, metabolisms, drug) into each individual cell. Applications so far are monolayer growth, multicellular spheroids, liver regeneration, TRAIL-treatment simulations. It has an SBML interface. In a largely finished follow-up version it will integrate a deformable cell model by triangulation of cell surface, deformable rod models, extracellular matrix and vascular flow and transport. TiSim can be directly fed by structures synthesised from processed image data from TiQuant.

Impact: The tool is used by our collaborators in liver biology, medicine and toxicology. We recently trained a PhD student from P. Segers (Ghent Univ.) on TiQuant and from T. Hillen (Univ. Alberta, Ca) on TiSim and organised a workshop on benchmarking and comparing agent-based models and tools (workshop Leipzig, volet 5).

MYCENAE Project-Team

6. New Software and Platforms

6.1. DynPeak

KEYWORDS: Biology - Health - Physiology

SCIENTIFIC DESCRIPTION: DynPeak is an algorithm for pulse detection and frequency analysis in hormonal time series.

- Participants: Alexandre Vidal, Claire Médigue, Frédérique Clément, George Rosca, Qinghua Zhang and Serge Steer
- Partner: INRA
- Contact: Frédérique Clément
- URL: https://team.inria.fr/mycenae/en/software/

REO Project-Team

6. New Software and Platforms

6.1. FELiScE

Finite Elements for Life SCiences and Engineering problems

KEYWORDS: Finite element modelling - Cardiac Electrophysiology - Cardiovascular and respiratory systems FUNCTIONAL DESCRIPTION: FELISCE is a finite element code which the M3DISIM and REO project-teams have decided to jointly develop in order to build up on their respective experiences concerning finite element simulations. One specific objective of this code is to provide in a unified software environment all the state-of-the-art tools needed to perform simulations of the complex respiratory and cardiovascular models considered in the two teams – namely involving fluid and solid mechanics, electrophysiology, and the various associated coupling phenomena. FELISCE is written in C++, and may be later released as an opensource library. FELISCE was registered in July 2014 at the Agence pour la Protection des Programmes under the Inter Deposit Digital Number IDDN.FR.001.350015.000.S.P.2014.000.10000.

- Participants: Axel Fourmont, Benoit Fabreges, Damiano Lombardi, Dominique Chapelle, Faisal Amlani, Irène Vignon-Clementel, Jean-Frédéric Gerbeau, Marina Vidrascu, Matteo Aletti, Miguel Angel Fernandez Varela, Mikel Landajuela Larma, Philippe Moireau and Sébastien Gilles
- Contact: Jean-Frédéric Gerbeau
- URL: http://felisce.gforge.inria.fr

6.2. MODULEF

FUNCTIONAL DESCRIPTION: The numerical method to approximate the constitutive laws for rubber elasticity derived from polymer physics are implemented in the Inria software Modulef.

It is based on : - algorithms from stochastic geometry to generate suitable polymer networks, - Delaunay tessellation algorithms to deal with steric effects (courtesy of the Inria project-team GAMMA2), - the introduction of 1-dimensional finite elements for the polymer-chains in Modulef.

- Participants: Antoine Gloria and Marina Vidrascu
- Contact: Marina Vidrascu
- URL: https://www.rocq.inria.fr/modulef/

6.3. SHELDDON

SHELls and structural Dynamics with DOmain decomposition in Nonlinear analysis

FUNCTIONAL DESCRIPTION: SHELDDON is a finite element library based on the Modulef package which contains shell elements, nonlinear procedures and PVM subroutines used in domain decomposition or coupling methods, in particular fluid-structure interaction.

- Participants: Dominique Chapelle, Marina Vidrascu and Patrick Le Tallec
- Contact: Marina Vidrascu
- URL: https://gforge.inria.fr/projects/shelddon/

SERENA Project-Team

6. New Software and Platforms

6.1. GEOFRAC

GEOFRACFLOW

KEYWORDS: Hydrogeology - Numerical simulations - 3D

SCIENTIFIC DESCRIPTION: GEOFRACFLOW is a Matlab software for the simulation of steady state single phase flow in Discrete Fracture Networks (DFNs) using the Mixed Hybrid Finite Element (MHFEM) method for conforming and non conforming discretizations.

FUNCTIONAL DESCRIPTION: The software GEOFRACFLOW solves the problem of an incompressible fluid flowing through a network of fractures. The software is interfaced with different mesh generators, among which BLSURF from the GAMMA3 team. A mixed hybrid finite element method is implemented.

RELEASE FUNCTIONAL DESCRIPTION: The last version includes optimisations of the code, mainly with an efficient upload of the mesh data generated with BLSURF and vectorization of the operations.

- Participants: Géraldine Pichot, Jean-Raynald De Dreuzy and Jocelyne Erhel
- Contact: Géraldine Pichot
- Publication: A mixed hybrid Mortar method for solving flow in discrete fracture networks

6.2. Ref-indic

Refinement indicators

KEYWORD: Inverse problem

SCIENTIFIC DESCRIPTION: The refinement indicator algorithm is suited for the estimation of a distributed parameter occurring in a mathematical simulation model, typically a set of partial differential equations. When the numerical simulation model must be solved on a fine grid, the refinement indicator algorithm provides an adaptive parameterization of the sought parameter that avoids overparameterization difficulties. In each grid cell, the estimated parameter may be of dimension greater than one, i.e. the algorithm is able to estimate several scalar distributed parameters.

Ref-indic implements a generic version of the refinement indicator algorithm that can dock specific programs provided they conform to the generic algorithm API.

The API of Ref-indic requires four main functionalities (called tasks) for the user specific program, it must be able: * to initialize, i.e. to open all necessary data files, to perform all necessary preliminary computation, and to return an initial coarse parameterization (giving a zone number between 0 and the initial number of zones minus one for each cell of the fine grid), * to compute the gradient on the fine grid for a given fine parameterization, * to optimize the problem for a given coarse parameterization, * and to finalize, i.e. to store the resulting coarse parameterization.

Given any such user specific program, the inversion platform automatically provides a program that solves the corresponding user inverse problem using the refinement indicator algorithm.

FUNCTIONAL DESCRIPTION: Ref-indic is an adaptive parameterization platform using refinement indicators. Slogan is "invert details only where they are worth it". Ref-indic implements a generic version of the refinement indicator algorithm that can dock specific programs provided they conform to the generic algorithm API.

NEWS OF THE YEAR: In its current implementation, the inversion platform can only build coarse parameterizations for a distributed parameter defined on a fine rectangular grid. From version 1.5+pl0, the user has the possibility to specify masked cells in the fine rectangular grid that will be ignored by the algorithm (with the use of the specific zone number -1 in the initial coarse parameterization). This allows for the treatment of inverse problems defined on unstructured meshes. The handling of both-way interpolations must be taken care of by the gradient computation and optimization tasks. The masked cells must be the same for all components of the parameter.

- Contact: François Clément
- Publications: Image Segmentation with Multidimensional Refinement Indicators The Multi-Dimensional Refinement Indicators Algorithm for Optimal Parameterization
- URL: http://refinement.inria.fr/ref-indic/

6.3. Sklml

The OCaml parallel skeleton system

KEYWORDS: Parallel programming - Functional programming

SCIENTIFIC DESCRIPTION: Writing parallel programs is not easy, and debugging them is usually a nightmare. To cope with these difficulties, the skeleton programming approach uses a set of predefined patterns for parallel computations. The skeletons are higher order functional templates that describe the program underlying parallelism.

Sklml is a new framework for parallel programming that embeds an innovative compositional skeleton algebra into the OCaml language. Thanks to its skeleton algebra, Sklml provides two evaluation regimes to programs: a regular sequential evaluation (merely used for prototyping and debugging) and a parallel evaluation obtained via a recompilation of the same source program in parallel mode.

Sklml was specifically designed to prove that the sequential and parallel evaluation regimes coincide.

FUNCTIONAL DESCRIPTION: Sklml is a functional parallel skeleton compiler and programming system for OCaml programs. Slogan is "easy coarse grain parallelization".

NEWS OF THE YEAR: Caml preprocessors are no longer needed.

- Participants: François Clément and Pierre Weis
- Contact: François Clément
- URL: http://sklml.inria.fr

6.4. GENFIELD

KEYWORDS: Hydrogeology - Algorithm - Heterogeneity

FUNCTIONAL DESCRIPTION: GENFIELD allows the generation of gaussian correlated fields. It is based on the circulant embedding method. Parallelism is implemented using MPI communications. GENFIELD is used in hydrogeology to model natural fields, like hydraulic conductivity or porosity fields.

RELEASE FUNCTIONAL DESCRIPTION: The new version includes: - The use of the FFTW3-mpi library for discrete Fourier transform - Non regression tests (and continuous integration through gitlab.inria.fr) - Debugging of the parallel algorithm

- Participants: Géraldine Pichot, Simon Legrand, Grégoire Lecourt, Jean-Raynald De Dreuzy and Jocelyne Erhel
- Contact: Géraldine Pichot
- Publication: Algorithms for Gaussian random field generation
- URL: https://gitlab.inria.fr/slegrand/Genfield_dev

6.5. DiSk++

KEYWORDS: High order methods - Polyhedral meshes - C++

SCIENTIFIC DESCRIPTION: Discontinuous Skeletal methods approximate the solution of boundary-value problems by attaching discrete unknowns to mesh faces (hence the term skeletal) while allowing these discrete unknowns to be chosen independently on each mesh face (hence the term discontinuous). Cell-based unknowns, which can be eliminated locally by a Schur complement technique (also known as static condensation), are also used in the formulation. Salient examples of high-order Discontinuous Skeletal methods are Hybridizable Discontinuous Galerkin methods and the recently-devised Hybrid High-Order methods. Some major benefits of Discontinuous Skeletal methods are that their construction is dimension-independent and that they offer the possibility to use general meshes with polytopal cells and non-matching interfaces. The mathematical flexibility of Discontinuous Skeletal methods can be efficiently replicated in a numerical software: by using generic programming, the DiSk++ library offers an environment to allow a programmer to code mathematical problems in a way completely decoupled from the mesh dimension and the cell shape.

FUNCTIONAL DESCRIPTION: The software provides a numerical core to discretize partial differential equations arising from the engineering sciences (mechanical, thermal, diffusion). The discretization is based on the "Hybrid high-order" or "Discontinuous Skeletal" methods, which use as principal unknowns polynomials of arbitrary degree on each face of the mesh. An important feature of these methods is that they make it possible to treat general meshes composed of polyhedral cells. The DiSk ++ library, using generic programming techniques, makes it possible to write a code for a mathematical problem independently of the mesh. When a user writes the code for his problem using the basic operations offered by DiSk ++, that code can be executed without modifications on all types of mesh already supported by the library and those that will be added in the future.

- Author: Matteo Cicuttin
- Partner: CERMICS
- Contact: Matteo Cicuttin
- Publication: Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming
- URL: https://github.com/datafl4sh/diskpp

6.6. CELIA3D

KEYWORDS: Fluid mechanics - Multi-physics simulation

FUNCTIONAL DESCRIPTION: The CELIA3D code simulates the coupling between a compressible fluid flow and a deformable structure. The fluid is handled by a Finite Volume method on a structured Cartesian grid. The solid is handled by a Discrete Element method (Mka3d scheme). The solid overlaps the fluid grid and the coupling is carried out with immersed boundaries (cut cells) in a conservative way.

- Partners: Ecole des Ponts ParisTech CEA
- Contact: Laurent Monasse
- URL: http://cermics.enpc.fr/~monassel/CELIA3D/

6.7. Mka3d

KEYWORDS: Scientific computing - Elasticity - Elastodynamic equations

FUNCTIONAL DESCRIPTION: The Mka3d method simulates an elastic solid by discretizing the solid into rigid particles. An adequate choice of forces and torques between particles allows to recover the equations of elastodynamics.

- Partners: Ecole des Ponts ParisTech CEA
- Contact: Laurent Monasse
- URL: http://cermics.enpc.fr/~monassel/Mka3D/

TAPDANCE Team

5. New Software and Platforms

5.1. Sanakirja

KEYWORD: Databases

FUNCTIONAL DESCRIPTION: Sanakirja is a fully transactional (all operations are atomic) key-value dictionary stored in a file (usable a the low-level layer of a more full-featured database engine), with a zero-copy fork operation (fork is in time and space O(log n), where n is the number of keys in the file). This project is written in Rust.

- Contact: Pierre-Etienne Meunier
- URL: https://nest.pijul.com/pijul_org/sanakirja

5.2. Thrussh

KEYWORD: Security FUNCTIONAL DESCRIPTION: Purely asynchronous SSH library in Rust.

• Contact: Pierre-Etienne Meunier

5.3. Pijul

KEYWORDS: Data structures - Distributed systems

FUNCTIONAL DESCRIPTION: Patch-based distributed version control system using category theory. This solves a number of problems in other systems (such as Git), like:

- Scaling up to giant repositories (as used by Facebook, Google and Mozilla). - Being easy to understand and use, because based on a solid theory.

- Contact: Pierre-Etienne Meunier
- URL: https://pijul.org

5.4. SeqDesign

KEYWORDS: Chemistry - Molecular simulation

FUNCTIONAL DESCRIPTION: SeqDesign is a free energy calculation tool for DNA secondary structures. We use it to design sequences capable of self-assembling in a designed way.

• Contact: Pierre-Etienne Meunier

46 *Networks, Systems and Services, Distributed Computing - Software and Platforms - Project-Team ALPINES*

ALPINES Project-Team

6. New Software and Platforms

6.1. FreeFem++

SCIENTIFIC DESCRIPTION: FreeFem++ is a partial differential equation solver. It has its own language. freefem scripts can solve multiphysics non linear systems in 2D and 3D.

Problems involving PDE (2d, 3d) from several branches of physics such as fluid-structure interactions require interpolations of data on several meshes and their manipulation within one program. FreeFem++ includes a fast 2d^-tree-based interpolation algorithm and a language for the manipulation of data on multiple meshes (as a follow up of bamg (now a part of FreeFem++).

FreeFem++ is written in C++ and the FreeFem++ language is a C++ idiom. It runs on Macs, Windows, Unix machines. FreeFem++ replaces the older freefem and freefem+.

FUNCTIONAL DESCRIPTION: FreeFem++ is a PDE (partial differential equation) solver based on a flexible language that allows a large number of problems to be expressed (elasticity, fluids, etc) with different finite element approximations on different meshes.

- Partner: UPMC
- Contact: Frederic Hecht
- URL: http://www.freefem.org/ff++/

6.2. HPDDM

SCIENTIFIC DESCRIPTION: HPDDM is an efficient implementation of various domain decomposition methods (DDM) such as one- and two-level Restricted Additive Schwarz methods, the Finite Element Tearing and Interconnecting (FETI) method, and the Balancing Domain Decomposition (BDD) method. This code has been proven to be efficient for solving various elliptic problems such as scalar diffusion equations, the system of linear elasticity, but also frequency domain problems like the Helmholtz equation. A comparison with modern multigrid methods can be found in the thesis of Pierre Jolivet.

FUNCTIONAL DESCRIPTION: HPDDM is an efficient implementation of various domain decomposition methods (DDM) such as one- and two-level Restricted Additive Schwarz methods, the Finite Element Tearing and Interconnecting (FETI) method, and the Balancing Domain Decomposition (BDD) method.

- Participants: Frédéric Nataf and Pierre Jolivet
- Contact: Pierre Jolivet
- URL: https://github.com/hpddm

6.3. LORASC

LORASC preconditioner KEYWORD: Preconditioner

- Participants: Laura Grigori and Rémi Lacroix
- Contact: Laura Grigori

6.4. Platforms

6.4.1. HTOOL

KEYWORD: Hierarchical Matrices

47 Networks, Systems and Services, Distributed Computing - Software and Platforms - Project-Team ALPINES

FUNCTIONAL DESCRIPTION: HTOOL is a C++ header-only library implementing compression techniques (e.g. Adaptive Cross Approximation) using hierarchical matrices. The library uses MPI and OpenMP for parallelism, and is interfaced with HPDDM for the solution of linear systems.

- Partners: CNRS UPMC ANR NonlocalDD
- Contact: Pierre Marchand
- URL: https://github.com/PierreMarchand20/htool

6.4.2. BemTool

KEYWORD: Boundary Element Method

FUNCTIONAL DESCRIPTION: BemTool is a C++ header-only library implementing the boundary element method for the discretisation of the Laplace, Helmholtz and Maxwell equations, in 2D and 3D. Its main purpose is the assembly of classic boundary element matrices, which can be compressed and inverted through its interface with HTOOL.

- Partners: UPMC ANR NonlocalDD
- Contact: Xavier Claeys
- URL: https://github.com/xclaeys/BemTool

48 Networks, Systems and Services, Distributed Computing - Software and Platforms - Project-Team DYOGENE

DYOGENE Project-Team

6. New Software and Platforms

6.1. CloNES

CLOsed queueing Networks Exact Sampling FUNCTIONAL DESCRIPTION: Clones is a Matlab toolbox for exact sampling of closed queueing networks.

- Participant: Christelle Rovetta
- Contact: Christelle Rovetta
- URL: http://www.di.ens.fr/~rovetta/Clones/index.html

6.2. Platforms

6.2.1. CapRadio

Cellular network dimensioning toolbox *CapRadio* is being developed by Orange in a long-term collaboration between TREC/DYOGENE represented by B. Blaszczyszyn, and Orange Labs, represented by M. K. Karray. This year it has been enriched by the results of the contract titled "Scheduling effect on the distribution of QoS over cells in 4G wireless cellular networks"; cf 8.1.1.

EVA Project-Team

6. New Software and Platforms

6.1. OpenWSN

KEYWORDS: Internet of things - 6TiSCH - 6LoWPAN - CoAP

FUNCTIONAL DESCRIPTION: OpenWSN is an open-source implementation of a fully standards-based protocol stack for the Internet of Things. It has become the de-facto implementation of the IEEE802.15.4e TSCH standard, has a vibrant community of academic and industrial users, and is the reference implementation of the work we do in the IETF 6TiSCH standardization working group.

- Partner: University of California Berkeley
- Contact: Thomas Watteyne
- URL: http://www.openwsn.org/

6.2. 6TiSCH Simulator

High-level simulator of a 6TiSCH network

KEYWORDS: Network simulator - 6TiSCH

FUNCTIONAL DESCRIPTION: The simulator is written in Python. While it doesn't provide a cycle-accurate emulation, it does implement the functional behavior of a node running the full 6TiSCH protocol stack. This includes RPL, 6LoWPAN, CoAP and 6P. The implementation work tracks the progress of the standardization process at the IETF.

• Contact: Malisa Vucinic

6.3. Argus

KEYWORDS: Cloud - Low-Power WIreless - Sniffer FUNCTIONAL DESCRIPTION: There are three piece to the Argus:

The Argus Probe is the program which attaches to your low-power wireless sniffer and forwards its traffic to the Argus Broker.

The Argus Broker sits somewhere in the cloud. Based on MQTT, it connect Argus Probes with Argus Clients based on a pub-sub architecture.

Several Argus Clients can the started at the same time. It is a program which subscribes to the Argus Broker and displays the frames in Wireshark.

• Contact: Rémy Leone

6.4. SolSystem

Sensor Object Library System

KEYWORDS: Low-Power WIreless - Back-End System - SmartMesh IP

FUNCTIONAL DESCRIPTION: The source code is composed of the definition of the SOL structure (https://github.com/realms-team/sol), the code that runs on the manager (https://github.com/realms-team/solmanager, written in Python) and the code that runs on the server receiving the data (https://github.com/realms-team/solserver, written in Python)

- Contact: Keoma Brun-Laguna
- URL: http://www.solsystem.io/

6.5. 6TiSCH Wireshark Dissector

KEYWORDS: 6TiSCH - Wireshark

FUNCTIONAL DESCRIPTION: Implementation on the dissectors is done through an open-source repository, stable code is regularly contributed back to the main Wireshark code base.

• Contact: Jonathan Munoz

6.6. F-Interop

Remote Conformance and Interoperability Tests for the Internet of Thing KEYWORDS: Interoperability - Iot - Conformance testing - Standardization

- Partners: UPMC IMEC ETSI EANTC Mandat International Digital Catapult University of Luxembourg Device Gateway
- Contact: Rémy Leone

6.7. Mercator

KEYWORDS: Deployment - Low-Power WIreless - Testbeds - Connectivity FUNCTIONAL DESCRIPTION: The firmware is written as part of the OpenWSN project. Scripts and analysis tools are written in Python.

• Contact: Keoma Brun-Laguna

6.8. Platforms

6.8.1. SolSystem

In collaboration with University College London and IBM, we have designed a cloud-based low-power network management solution called SolSystem. It serves as a "control tower" for the networks we deploy, allowing us to manage both the network and data produced by those networks. It is architected following the micro-service principle, and we are in the process of switching all of our deployments to that interface. Fig. 1 gives an example of the visualization the SolSystem web interface gives us.

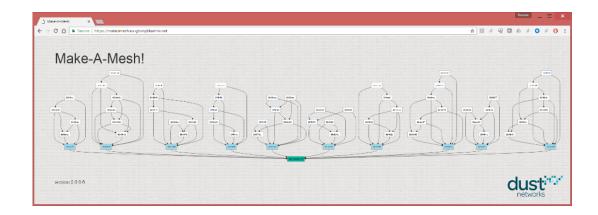


Figure 1. Topological view of the canopy network deployed across the Robert's building at University College London from February to April 2017, using SolSystem.

51 Networks, Systems and Services, Distributed Computing - Software and Platforms - Project-Team EVA

6.8.2. OpenMote B

In collaboration with OpenMote (http://www.openmote.com/), we have designed the OpenMote B platform. This board contains both a CC2538 IEEE802.15.4 radio, and an AT86RF215 IEEE802.15.4g radio, offering communication on both 2.4 GHz and sub-GHz frequency bands, 4 modulations schemes, and data rates from 50 kbps to 800 kbps. The first prototypes (shown in Fig. 2) started being tested in December 2017.

Figure 2. The OpenMote B. sub-GHz radio (and antenna connector) on top, 2.4 GHz radio on the bottom.

GANG Project-Team

5. New Software and Platforms

5.1. big-graph-tools

FUNCTIONAL DESCRIPTION: Gang is developping a software for big graph manipulation. A preliminary library offering diameter and skeleton computation is available at https://who.rocq.inria.fr/Laurent.Viennot/dev/big-graph-tools/. This library was used to compute the diameters of the worldwide road network (200M edges) and the largest strongly connected component of the Twitter follower-followee graph (23G edges).

- Contact: Laurent Viennot
- URL: https://who.rocq.inria.fr/Laurent.Viennot/dev/big-graph-tools/

5.2. GRPH

The high performance graph library for Java

KEYWORDS: Graph - Graph algorithmics - Java

FUNCTIONAL DESCRIPTION: Grph is an open-source Java library for the manipulation of graphs. Its design objectives are to make it portable, simple to use/extend, computationally/memory efficient, and, according to its initial motivation: useful in the context of graph experimentation and network simulation. Grph also has the particularity to come with tools like an evolutionary computation engine, a bridge to linear programming solvers, a framework for distributed computing, etc.

Grph offers a very general model of graphs. Unlike other graph libraries which impose the user to first decide if he wants to deal with directed, undirected, hyper (or not) graphs, the model offered by Grph is unified in a general class that supports mixed graphs made of undirected and directed simple and hyper edges. Grph achieves great efficiency through the use of multiple code optimization techniques such as multi-core parallelism, caching, adequate data structures, use of primitive objects, exploitation of low-level processor caches, on-the-fly compilation of specific C/C++ code, etc. Grph attempts to access the Internet in order to check if a new version is available and to report who is using it (login name and hostname). This has no impact whatsoever on performance and security.

- Participants: Aurélien Lancin, David Coudert, Issam Tahiri, Luc Hogie and Nathann Cohen
- Contact: Luc Hogie
- URL: http://www.i3s.unice.fr/~hogie/grph/

MIMOVE Team

6. New Software and Platforms

6.1. SoundCity - Ambiciti

KEYWORDS: Crowd-sensing - Mobile application

FUNCTIONAL DESCRIPTION: Is your exposure to noise too high on certain days? How is air pollution in your street? Will air quality improve in the next hours? Do you want to measure the noise pollution on the way between your home and your office? What pollution levels are considered harmful for your health? Ambiciti (previously SoundCity) provides answers to these questions and many others.

Noise pollution. Ambiciti (previously called SoundCity) measures the actual noise levels to which you are exposed. Ambiciti can monitor noise levels throughout the day and inform you about your instantaneous, hourly and daily exposures. If you want to contribute to the improvement of the noise map in your city, you can anonymously send your measurements.

Air pollution. Ambiciti computes the air quality index in your region or at the exact location where you stand. You can also access to forecasts and find information about the main pollutants. Depending on your location, you may have access to hourly air quality maps, at street resolution, in real time and for the next two days. Currently, only Paris (France) enjoys such fine maps, but other cities are on the way to be included.

Since 2017, the software is exclusively licensed to the Ambiciti start-up company.

- Authors: Fadwa Rebhi, Pierre-Guillaume Raverdy, Cong Kinh Nguyen, Rajiv Bhatia, Valérie Issarny and Vivien Mallet
- Partners: Ambientic The Civic Engine
- Contact: Valérie Issarny

6.2. SocialBus

Universal Social Network Bus

KEYWORDS: Middleware - Interoperability - Social networks - Software Oriented Service (SOA)

FUNCTIONAL DESCRIPTION: Online social network services (OSNSs) have become an integral part of our daily lives. At the same time, the aggressive market competition has led to the emergence of multiple competing siloed OSNSs that cannot interoperate. As a consequence, people face the burden of creating and managing multiple OSNS accounts and learning how to use them, to stay connected. The goal of the Universal Social Network Bus (USNB) is to relieve users from such a burden, letting them use their favorite applications to communicate.

Social Entities. Social entities can be humans or systems. They can create a profile in the USNB and link it with their OSNSs identities. Social entities can also choose the OSNS identity they want to use when contacted through the USNB or specify one or more OSNS identities for message reception concerning specific events or senders.

Personae. Personae are USNB entities interacting with users within concrete OSNSs or systems, achieving interoperability between heterogeneous OSNSs. New personae can be developed, registered in the USNB, discovered and used to include additional OSNSs.

Privacy & Security. The USNB is designed to be as less intrusive as possible. It does not ask users their credentials nor any kind of authorization concerning their OSNS accounts.

- Authors: Rafael Angarita Arocha, Nikolaos Georgantas and Valérie Issarny
- Contact: Valérie Issarny
- URL: https://gitlab.inria.fr/usnb/universal-social-network-bus

6.3. WeBrowse

KEYWORDS: Web Usage Mining - Content analysis - Recommendation systems

FUNCTIONAL DESCRIPTION: The amount of information available on the web today, and the fast rate with which new information appears, overwhelm most users. The goal of our research is to assist Web users in discovering content. One of the most powerful means today to help people discover new web content is sharing between members of online communities. In the case of communities of a place (e.g., people who live, study, or work together) people share common interests, but often fail to actively share content. To address this problem, we have developed WeBrowse, a passive crowdsourced content discovery system for communities of a place.

WeBrowse leverages the passive observation of web-clicks (i.e., the URLs users intentionally visit) as an indication of users' interest in a piece of content. Intuitively, the more users click on a URL, the higher the interest in the content on the corresponding page. Our approach is then to leverage the collective clicks in a community to automatically discover relevant content to promote to users of the community.

To implement passive crowdsourcing, one must be in a position to observe the aggregated web-clicks of the community. Luckily, in many communities of a place, users will connect to the Internet from the same network, such as, e.g., the campus/enterprise network or the network of a residential Internet Service Provider (ISP) in a neighborhood. WeBrowse (i) observes web packets flowing through a network link, (ii) passively extracts HTTP logs (i.e., streams recording the headers of HTTP requests), and (iii) detects and decides on-the-fly the set of URLs to show to users.

- Contact: Renata Cruz Teixeira
- URL: https://team.inria.fr/muse/webrowse-info-page/

6.4. TA

TA - Traffic Analysis

KEYWORDS: Quality of Experience - Network monitoring - Video analysis

FUNCTIONAL DESCRIPTION: System running at the home getaway that analyzes traffic generated by DASH on-demand and live video streams. The system tracks traffic patterns to infer key video QoE metrics such as average bitrate and re-buffering events. Moreover, the system exploits novel algorithms that use probing techniques, i.e. lightweight pings and traceroutes, to detect possible congestion location.

- Participants: Francesco Bronzino and Renata Cruz Teixeira
- Contact: Francesco Bronzino

6.5. HostView

KEYWORDS: Quality of Experience - Network monitoring

FUNCTIONAL DESCRIPTION: End-host performance monitoring and user feedback reporting.

- Participants: Anna-Kaisa Pietilainen, Francesco Bronzino, George Rosca and Renata Cruz Teixeira
- Contact: Renata Cruz Teixeira
- URL: https://github.com/inria-muse/hostview-win

6.6. VSB

eVolution Service Bus

KEYWORDS: Service and Thing choreographies - Middleware protocol interoperability - Enterprise service bus

FUNCTIONAL DESCRIPTION: VSB is a development and runtime environment dedicated to complex distributed applications of the Future Internet. Such applications are open, dynamic choreographies of extremely heterogeneous services and Things, including lightweight embedded systems (e.g., sensors, actuators and networks of them), mobile systems (e.g., smartphone applications), and resource-rich IT systems (e.g., systems hosted on enterprise servers and Cloud infrastructures). VSB's objective is to seamlessly interconnect, inside choreographies, services and Things that employ heterogeneous interaction protocols at the middleware level, e.g., SOAP Web services, REST Web services, Things using CoAP. This is based on runtime conversions between such protocols, with respect to their primitives and data type systems, while properly mapping between their semantics. This also includes mapping between the public interfaces of services/Things, regarding their operations and data, from the viewpoint of the middleware: the latter means that operations and data are converted based on their middleware-level semantics, while their business semantics remains transparent to the conversion. VSB follows the well-known Enterprise Service Bus (ESB) paradigm. We propose a generic interface description, which we call GIDL, for application components that employ VSB. Based on GIDL, we enable automated synthesis of binding components for connecting heterogeneous services and Things onto VSB.

- Participants: Georgios Bouloukakis, Nikolaos Georgantas and Patient Ntumba
- Contact: Nikolaos Georgantas
- URL: https://github.com/sidutta/vsb

RAP2 Team (section vide)

REGAL Project-Team

4. New Software and Platforms

4.1. Antidote

KEYWORDS: Distributed computing - Distributed Data Management - Cloud storage - Large scale FUNCTIONAL DESCRIPTION: Antidote is the flexible cloud database platform currently under development in the SyncFree and LightKone European projects. Antidote aims to be both a research platform for studying replication and consistency at the large scale, and an instrument for exploiting research results. The platform supports replication of CRDTs, in and between sharded (partitioned) data centres (DCs). The current stable version supports strong transactional consistency inside a DC, and causal transactional consistency between DCs. Ongoing research includes support for explicit consistency , for elastic version management, for adaptive replication, for partial replication, and for reconfigurable sharding.

- Participants: Marc Shapiro, Paolo Viotti, Alejandro Tomsic, Ilyas Toumlilt and Dimitrios Vasilas
- Partners: Université Catholique de Louvain (UCL), Louvain-la-Neuve,Belgium Universidade NOVA de Lisboa, Portugal Technische Universität Kaiserslautern (UniKL), Allemagne
- Contact: Marc Shapiro
- Publications: Bringing the cloud closer to users Write Fast, Read in the Past: Causal Consistency
 for Client-side Applications Extending Eventually Consistent Cloud Databases for Enforcing Numeric Invariants Designing a causally consistent protocol for geo-distributed partial replication

 Towards Fast Invariant Preservation in Geo-replicated Systems Putting Consistency back into
 Eventual Consistency The Case for Fast and Invariant-Preserving Geo-Replication Improving the
 scalability of geo-replication with reservations Conflict-free Replicated Data Types An encounter
 with Marc Shapiro and his SyncFree European project PhysiCS-NMSI: efficient consistent snap shots for scalable snapshot isolation Geo-Replication: Fast If Possible, Consistent If Necessary Cure: Strong semantics meets high availability and low latency Cure: Strong semantics meets high
 availability and low latency

4.2. CISE Tool

KEYWORDS: Distributed Applications - Program verification

FUNCTIONAL DESCRIPTION: Static analysis of the model of a distributed application, to prove (under the assumption of causal consistency) whether the invariants of the application are always satisfied, and to provide a counterexample if not.

- Participants: Sreeja Nair and Marc Shapiro
- Contact: Marc Shapiro
- Publications: Evaluation of the CEC (Correct Eventual Consistency) Tool The CISE Tool: Proving Weakly-Consistent Applications Correct The CISE Tool: Proving Weakly-Consistent Applications Correct CISE Safety Tool 'Cause I'm Strong Enough: Reasoning about Consistency Choices in Distributed Systems Putting Consistency back into Eventual Consistency

4.3. PUMA

Puma: pooling unused memory in virtual machines KEYWORDS: Virtualization - Operating system - Distributed systems - Linux kernel

58 Networks, Systems and Services, Distributed Computing - Software and Platforms - Project-Team REGAL

FUNCTIONAL DESCRIPTION: PUMA is a system that is based on a kernel-level remote caching mechanism that provides the ability to pool VMs memory at the scale of a data center. An important property while lending memory to another VM, is the ability to quickly retrieve memory in case of need. Our approach aims at lending memory only for clean cache pages: in case of need, the VM which lent the memory can retrieve it easily. We use the system page cache to store remote pages such that: (i) if local processes allocate memory the borrowed memory can be retrieved immediately, and (ii) if they need cache the remote pages have a lower priority than the local ones.

- Participants: Maxime Lorrillere, Julien Sopena and Pierre Sens
- Partner: LIP6
- Contact: Julien Sopena
- Publications: Conception et évaluation d'un système de cache réparti adapté aux environnements virtualisés Puma: pooling unused memory in virtual machines for I/O intensive applications
- URL: https://github.com/mlorrillere/puma

59 Networks, Systems and Services, Distributed Computing - Software and Platforms - Project-Team WHISPER

WHISPER Project-Team

6. New Software and Platforms

6.1. Coccinelle

KEYWORDS: Code quality - Evolution - Infrastructure software

FUNCTIONAL DESCRIPTION: Coccinelle is a tool for code search and transformation for C programs. It has been extensively used for bug finding and evolutions in Linux kernel code.

- Participants: Gilles Muller, Julia Lawall, Nicolas Palix, Rene Rydhof Hansen and Thierry Martinez
- Partners: LIP6 IRILL
- Contact: Julia Lawall
- URL: http://coccinelle.lip6.fr

6.2. Prequel

KEYWORDS: Code search - Git

SCIENTIFIC DESCRIPTION: The commit history of a code base such as the Linux kernel is a gold mine of information on how evolutions should be made, how bugs should be fixed, etc. Nevertheless, the high volume of commits available and the rudimentary filtering tools provided mean that it is often necessary to wade through a lot of irrelevant information before finding example commits that can help with a specific software development problem. To address this issue, we propose Prequel (Patch Query Language), which brings the descriptive power of code matching to the problem of querying a commit history.

FUNCTIONAL DESCRIPTION: Prequel is a tool for searching for complex patterns in the commits of software managed using git.

- Participants: Gilles Muller and Julia Lawall
- Partners: LIP6 IRILL
- Contact: Julia Lawall
- URL: http://prequel-pql.gforge.inria.fr/

ALMANACH Team

6. New Software and Platforms

6.1. Enqi

- Author: Benoît Sagot
- Contact: Benoît Sagot

6.2. SYNTAX

KEYWORD: Parsing

FUNCTIONAL DESCRIPTION: Syntax system includes various deterministic and non-deterministic CFG parser generators. It includes in particular an efficient implementation of the Earley algorithm, with many original optimizations, that is used in several of Alpage's NLP tools, including the pre-processing chain Sx Pipe and the LFG deep parser SxLfg. This implementation of the Earley algorithm has been recently extended to handle probabilistic CFG (PCFG), by taking into account probabilities both during parsing (beam) and after parsing (n-best computation).

- Participants: Benoît Sagot and Pierre Boullier
- Contact: Pierre Boullier
- URL: http://syntax.gforge.inria.fr/

6.3. FRMG

KEYWORDS: Parsing - French

FUNCTIONAL DESCRIPTION: FRMG is a large-coverage linguistic meta-grammar of French. It can be compiled (using MGCOMP) into a Tree Adjoining Grammar, which, in turn, can be compiled (using DyALog) into a parser for French.

- Participant: Éric Villemonte De La Clergerie
- Contact: Éric De La Clergerie
- URL: http://mgkit.gforge.inria.fr/

6.4. MElt

Maximum-Entropy lexicon-aware tagger

KEYWORD: Part-of-speech tagger

FUNCTIONAL DESCRIPTION: MElt is a freely available (LGPL) state-of-the-art sequence labeller that is meant to be trained on both an annotated corpus and an external lexicon. It was developed by Pascal Denis and Benoît Sagot within the Alpage team, a joint Inria and Université Paris-Diderot team in Paris, France. MElt allows for using multiclass Maximum-Entropy Markov models (MEMMs) or multiclass perceptrons (multitrons) as underlying statistical devices. Its output is in the Brown format (one sentence per line, each sentence being a space-separated sequence of annotated words in the word/tag format).

MElt has been trained on various annotated corpora, using Alexina lexicons as source of lexical information. As a result, models for French, English, Spanish and Italian are included in the MElt package.

MElt also includes a normalization wrapper aimed at helping processing noisy text, such as user-generated data retrieved on the web. This wrapper is only available for French and English. It was used for parsing web data for both English and French, respectively during the SANCL shared task (Google Web Bank) and for developing the French Social Media Bank (Facebook, twitter and blog data).

- Contact: Benoît Sagot
- URL: https://team.inria.fr/almanach/melt/

6.5. dyalog-sr

KEYWORDS: Parsing - Deep learning - Natural language processing

FUNCTIONAL DESCRIPTION: DyALog-SR is a transition-based dependency parser, built on top of DyALog system. Parsing relies on dynamic programming techniques to handle beams. Supervised learning exploit a perceptron and aggressive early updates. DyALog-SR can handle word lattice and produce dependency graphs (instead of basic trees). It was tested during several shared tasks (SPMRL'2013 and SEMEVAL'2014). It achieves very good accuracy on French TreeBank, alone or by coupling with FRMG parser. In 2017, DyALog-SR has been extended into DyALog-SRNN by adding deep neuronal layers implemented with the Dynet library. The new version has participated to the evaluation campaigns CONLL UD 2017 (on more than 50 languages) and EPE 2017.

• Contact: Éric De La Clergerie

6.6. Crapbank

French Social Media Bank

KEYWORDS: Treebank - User-generated content

FUNCTIONAL DESCRIPTION: The French Social Media Bank is a treebank of French sentences coming from various social media sources (Twitter(c), Facebook(c)) and web forums (JeuxVidéos.com(c), Doctissimo.fr(c)). It contains different kind of linguistic annotations: - part-of-speech tags - surface syntactic representations (phrase-based representations) as well as normalized form whenever necessary.

• Contact: Djamé Seddah

6.7. DyALog

KEYWORD: Logic programming

FUNCTIONAL DESCRIPTION: DyALog provides an environment to compile and execute grammars and logic programs. It is essentially based on the notion of tabulation, i.e. of sharing computations by tabulating traces of them. DyALog is mainly used to build parsers for Natural Language Processing (NLP). It may nevertheless be used as a replacement for traditional PROLOG systems in the context of highly ambiguous applications where sub-computations can be shared.

- Participant: Éric Villemonte De La Clergerie
- Contact: Éric Villemonte De La Clergerie
- URL: http://dyalog.gforge.inria.fr/

6.8. SxPipe

KEYWORD: Surface text processing

SCIENTIFIC DESCRIPTION: Developed for French and for other languages, Sx Pipe includes, among others, various named entities recognition modules in raw text, a sentence segmenter and tokenizer, a spelling corrector and compound words recognizer, and an original context-free patterns recognizer, used by several specialized grammars (numbers, impersonal constructions, quotations...). It can now be augmented with modules developed during the former ANR EDyLex project for analysing unknown words, this involves in particular (i) new tools for the automatic pre-classification of unknown words (acronyms, loan words...) (ii) new morphological analysis tools, most notably automatic tools for constructional morphology (both derivational and compositional), following the results of dedicated corpus-based studies. New local grammars for detecting new types of entities and improvement of existing ones, developed in the context of the PACTE project, will soon be integrated within the standard configuration.

FUNCTIONAL DESCRIPTION: SxPipe is a modular and customizable processing chain dedicated to applying to raw corpora a cascade of surface processing steps (tokenisation, wordform detection, non-deterministic spelling correction...). It is used as a preliminary step before ALMAnaCH's parsers (e.g., FRMG) and for surface processing (named entities recognition, text normalization, unknown word extraction and processing...).

- Participants: Benoît Sagot, Djamé Seddah and Éric Villemonte De La Clergerie
- Contact: Benoît Sagot
- URL: http://lingwb.gforge.inria.fr/

6.9. Mgwiki

KEYWORDS: Parsing - French

FUNCTIONAL DESCRIPTION: Mgwiki is a linguistic wiki that may used to discuss linguistic phenomena with the possibility to add annotated illustrative sentences. The work is essentially devoted to the construction of an instance for documenting and discussing FRMG, with the annotations of the sentences automatically provided by parsing them with FRMG. This instance also offers the possibility to parse small corpora with FRMG and an interface of visualization of the results. Large parsed corpora (like French Wikipedia or Wikisource) are also available. The parsed corpora can also be queried through the use of the DPath language.

- Participant: Éric Villemonte De La Clergerie
- Contact: Éric Villemonte De La Clergerie
- URL: http://alpage.inria.fr/frmgwiki/

6.10. WOLF

WOrdnet Libre du Français (Free French Wordnet)

KEYWORDS: WordNet - French - Semantic network - Lexical resource FUNCTIONAL DESCRIPTION: The WOLF (Wordnet Libre du Français, Free French Wordnet) is a free semantic lexical resource (wordnet) for French.

The WOLF has been built from the Princeton WordNet (PWN) and various multilingual resources.

- Contact: Benoît Sagot
- URL: http://alpage.inria.fr/~sagot/wolf-en.html

6.11. vera

KEYWORD: Text mining

FUNCTIONAL DESCRIPTION: Automatic analysis of answers to open-ended questions based on NLP and statistical analysis and visualisation techniques (vera is currently restricted to employee surveys).

- Participants: Benoît Sagot and Dimitri Tcherniak
- Partner: Verbatim Analysis
- Contact: Benoît Sagot

6.12. Alexina

Atelier pour les LEXiques INformatiques et leur Acquisition KEYWORD: Lexical resource

FUNCTIONAL DESCRIPTION: Alexina is ALMAnaCH's framework for the acquisition and modeling of morphological and syntactic lexical information. The first and most advanced lexical resource developed in this framework is the Lefff, a morphological and syntactic lexicon for French.

- Participant: Benoît Sagot
- Contact: Benoît Sagot
- URL: http://gforge.inria.fr/projects/alexina/

6.13. FQB

French QuestionBank

KEYWORD: Treebank

FUNCTIONAL DESCRIPTION: The French QuestionBanks is a corpus of around 2000 questions coming from various domains (TREC data set, French governmental organisation, NGOs, etc..) it contains different kind of annotations - morpho-syntactic ones (POS, lemmas) - surface syntaxe (phrase based and dependency structures) with long-distance dependency annotations.

The TREC part is aligned with the English QuestionBank (Judge et al, 2006).

• Contact: Djamé Seddah

6.14. Sequoia corpus

KEYWORD: Treebank

FUNCTIONAL DESCRIPTION: The Sequoia corpus contains French sentences, annotated with various linguistic information: - parts-of-speech - surface syntactic representations (both constituency trees and dependency trees) - deep syntactic representations (which are deep syntactic dependency graphs)

• Contact: Djamé Seddah

COML Team

6. New Software and Platforms

6.1. abkhazia

KEYWORDS: Speech recognition - Speech-text alignment

FUNCTIONAL DESCRIPTION: The Abkhazia sofware makes it easy to obtain simple baselines for supervised ASR (using Kaldi) and ABX tasks (using ABXpy) on the large corpora of speech recordings typically used in speech engineering, linguistics or cognitive science research.

- Contact: Emmanuel Dupoux
- URL: https://github.com/bootphon/abkhazia

6.2. TDE

Term Discovery Evaluation

KEYWORDS: NLP - Speech recognition - Speech

SCIENTIFIC DESCRIPTION: This toolbox allows the user to judge of the quality of a word discovery algorithm. It evaluates the algorithms on these criteria : - Boundary : efficiency of the algorithm to found the actual boundaries of the words - Group : efficiency of the algorithm to group similar words - Token/Type: efficiency of the algorithm to find all words from the corpus (types), and to find all occurences (token) of these words. - NED : Mean of the edit distance across all the word pairs found by the algorithm - Coverage : efficiency of the algorithm to find every discoverable phone in the corpus

FUNCTIONAL DESCRIPTION: Toolbox to evaluate algorithms that segment speech into words. It allows the user to evaluate the efficiency of algorithms to segment speech into words, and create clusters of similar words.

- Contact: Emmanuel Dupoux
- URL : https://github.com/bootphon/TDE

6.3. ABXpy

KEYWORDS: Evaluation - Speech recognition - Machine learning

FUNCTIONAL DESCRIPTION: The ABX package gives a performance score to speech recognition systems by measuring their capacity to discriminate linguistic contrasts (accents, phonemes, speakers, etc...)

- Contact: Emmanuel Dupoux
- URL : https://github.com/bootphon/ABXpy

6.4. h5features

KEYWORD: File format

FUNCTIONAL DESCRIPTION: The h5features python package provides easy to use and efficient storage of large features data on the HDF5 binary file format.

- Contact: Emmanuel Dupoux
- URL : https://github.com/bootphon/h5features

RITS Project-Team

5. New Software and Platforms

5.1. PML-SLAM

KEYWORD: Localization

SCIENTIFIC DESCRIPTION: Simultaneous Localization and Mapping method based on 2D laser data.

- Participants: Fawzi Nashashibi and Zayed Alsayed
- Contact: Fawzi Nashashibi

5.2. V2Provue

Vehicle-to-Pedestrian

FUNCTIONAL DESCRIPTION: It is a software developed for the Vehicle-to-Pedestrian (V2P) communications, risk calculation, and alarming pedestrians of collision risk. This software is made of an Android application dedicated to pedestrians and RtMaps modules for the vehicles.

On the pedestrian side, the application is relying on GPS data to localize the user and Wi-Fi communications are used to receive messages about close vehicles and send information about the pedestrian positioning. Besides, a service has been developed to evaluate the collision risk with the vehicles near the pedestrian and an HMI based on OpenStreetMap displays all the useful information such as pedestrian and vehicles localization and, collision risk.

On the vehicle side, RtMaps modules allowing V2X communications have been developed. These modules contain features such as TCP/UDP socket transmissions, broadcast, multicast, unicast communications, routing, forwarding algorithms, and application specific modules. In the V2ProVu software, a particular application module has been implemented to create data packets containing information about the vehicle state (position, speed, yaw rate,...) and the V2X communication stack is used to broadcast these packets towards pedestrians. Moreover, the V2proVu application can also receive data from pedestrians and create objects structures that can be shared with the vehicle perception tools.

• Contact: Fawzi Nashashibi

5.3. SimConVA

Connected Autonomous Vehicles Simulator

FUNCTIONAL DESCRIPTION: The software provides an interface between the network simulator ns-3 (https://www.nsnam.org/) and the modular prototyping framework RTMaps (https://intempora.com/).

This code allows to create an RTMaps component which activates and controls the ns-3 simulator. The component handles the sending and reception of data packets between ns-3 and RTMaps for each vehicle. It also handles the mobility of vehicles in ns-3 using their known position in RTMaps.

- Authors: Pierre Merdrignac, Oyunchimeg Shagdar and Jean-Marc Lasgouttes
- Contact: Jean-Marc Lasgouttes

Valda Team

5. New Software and Platforms

5.1. ProvSQL

KEYWORDS: Databases - Provenance - Probability

FUNCTIONAL DESCRIPTION: The goal of the ProvSQL project is to add support for (m-)semiring provenance and uncertainty management to PostgreSQL databases, in the form of a PostgreSQL extension/module/plugin. NEWS OF THE YEAR: ProvSQL becomes usable for a large range of queries. Support for semirings and m-semirings is present, support for probability computation has been added through a variety of techniques, including knowledge compilation, support for where-provenance is currently being implemented.

- Participants: Pierre Senellart and Yann Ramusat
- Contact: Pierre Senellart
- Publication: Provenance and Probabilities in Relational Databases: From Theory to Practice
- URL: https://github.com/PierreSenellart/provsql

5.2. Thymeflow

KEYWORD: Personal information

FUNCTIONAL DESCRIPTION: ThymeFlow allows in particular the development of plugins for both interacting with existing Web sources and presenting users with rich interfaces and query facilities over their personal information. A preliminary version of ThymeFlow tools has also been deployed on the Cozy Cloud personal cloud system. The model allows the open-source community to contribute individual plugins while we focus on providing users with useful ways to exploit their personal information.

NEWS OF THE YEAR: Minor maintenance.

- Participants: David Montoya, Pierre Senellart, Serge Abiteboul and Su Yang
- Partner: ENGIE
- Contact: Pierre Senellart
- Publication: Personal Knowledge Base Systems
- URL: https://github.com/thymeflow/thymeflow/

5.3. apxproof

KEYWORD: LaTeX

FUNCTIONAL DESCRIPTION: apxproof is a LaTeX package facilitating the typesetting of research articles with proofs in appendix, a common practice in database theory and theoretical computer science in general. The appendix material is written in the LaTeX code along with the main text which it naturally complements, and it is automatically deferred. The package can automatically send proofs to the appendix, can repeat in the appendix the theorem environments stated in the main text, can section the appendix automatically based on the sectioning of the main text, and supports a separate bibliography for the appendix material.

RELEASE FUNCTIONAL DESCRIPTION: Ability to specify a sectioning counter, Compilation fix of proofsketch in inline mode

NEWS OF THE YEAR: Overall software maintenance. Support for more document classes. Some new features.

- Participant: Pierre Senellart
- Contact: Pierre Senellart
- URL: https://github.com/PierreSenellart/apxproof

WILLOW Project-Team

6. New Software and Platforms

6.1. LOUPE

Learnable mOdUle for Pooling fEatures

KEYWORDS: Video analysis - Computer vision

FUNCTIONAL DESCRIPTION: LOUPE (Learnable mOdUle for Pooling fEatures) is a Tensorflow toolbox that implements several modules for pooling features such as NetVLAD, NetRVLAD, NetFV and Soft-DBoW. It also allows to use their Gated version. This toolbox was mainly use in the winning approach of the Youtube 8M Large Scale Video Understanding challenge

- Participants: Antoine Miech, Ivan Laptev and Josef Sivic
- Contact: Antoine Miech
- Publication: Learning from Video and Text via Large-Scale Discriminative Clustering
- URL: https://github.com/antoine77340/LOUPE

6.2. object-states-action

KEYWORD: Computer vision

FUNCTIONAL DESCRIPTION: Code for the paper Joint Discovery of Object States and Manipulation Actions, ICCV 2017: Many human activities involve object manipulations aiming to modify the object state. Examples of common state changes include full/empty bottle, open/closed door, and attached/detached car wheel. In this work, we seek to automatically discover the states of objects and the associated manipulation actions. Given a set of videos for a particular task, we propose a joint model that learns to identify object states and to localize state-modifying actions. Our model is formulated as a discriminative clustering cost with constraints. We assume a consistent temporal order for the changes in object states and manipulation actions, and introduce new optimization techniques to learn model parameters without additional supervision. We demonstrate successful discovery of seven manipulations. We show that our joint formulation results in an improvement of object state discovery by action recognition and vice versa.

- Participants: Jean-Baptiste Alayrac, Josef Sivic, Ivan Laptev and Simon Lacoste-Julien
- Contact: Jean-Baptiste Alayrac
- Publication: Joint Discovery of Object States and Manipulation Actions
- URL: https://github.com/jalayrac/object-states-action

6.3. SURREAL

Learning from Synthetic Humans

KEYWORDS: Synthetic human - Segmentation - Neural networks

FUNCTIONAL DESCRIPTION: The SURREAL dataset consisting of synthetic videos of humans, and models trained on this dataset are released in this package. The code for rendering synthetic images of people and for training models is also included in the release.

- Participants: Gül Varol Simsekli, Xavier Martin, Ivan Laptev and Cordelia Schmid
- Contact: Gül Varol Simsekli
- Publication: Learning from Synthetic Humans
- URL: http://www.di.ens.fr/willow/research/surreal/

6.4. UNREL

Weakly-supervised learning of visual relations KEYWORDS: Recognition - Computer vision

FUNCTIONAL DESCRIPTION: Open source release of the software package for the ICCV17 paper by Peyre et al. "Weakly-supervised learning of visual relations". The package provides a full implementation of the method (training and evaluation) and the release of the UnRel dataset. Links to all of these are available at the project page http://www.di.ens.fr/willow/research/unrel/

- Participants: Julia Peyre, Ivan Laptev, Cordelia Schmid and Josef Sivic
- Contact: Julia Peyre
- Publication: Weakly-supervised learning of visual relations
- URL: http://www.di.ens.fr/willow/research/unrel/

6.5. BIOGAN

GANs for Biological Image Synthesis

KEYWORDS: Computer vision - Biology

FUNCTIONAL DESCRIPTION: This software package implements the method in the ICCV 2017 paper by Osokin et al. "GANs for Biological Image Synthesis".

- Participants: Federico Vaggi, Anton Osokin and Anatole Chessel
- Contact: Anton Osokin
- Publication: GANs for Biological Image Synthesis

6.6. KernelImageRetrieval

Kernel square-loss exemplar machines for image retrieval

KEYWORD: Computer vision

FUNCTIONAL DESCRIPTION: This software package contains the code for the CVPR'17 paper by Rezende et al. "Kernel square-loss exemplar machines for image retrieval". It provides the implementation of all variants of the pipeline as well as the trained parameters for each of the tested base features.

- Participants: Jean Ponce, Francis Bach, Patrick Pérez and Rafael Sampaio De Rezende
- Contact: Rafael Sampaio De Rezende
- Publication: Kernel Square-Loss Exemplar Machines for Image Retrieval
- URL: https://github.com/rafarez/slem/

6.7. SCNet

SCNet: Learning semantic correspondence

KEYWORD: Computer vision

FUNCTIONAL DESCRIPTION: This software package implements the method for the ICCV'17 paper by Han et al. "SCNet: Learning Semantic Correspondence". The package provides the code, the training and testing subsets and the trainable architecture.

- Participants: Rafael Sampaio De Rezende, Bumsub Ham, Minsu Cho, Cordelia Schmid and Jean Ponce
- Contact: Rafael Sampaio De Rezende
- Publication: SCNet: Learning Semantic Correspondence
- URL: https://github.com/k-han/SCNet/

6.8. CNNGeometric

Convolutional neural network architecture for geometric matching KEYWORD: Computer vision

FUNCTIONAL DESCRIPTION: Open source release of the software package for the CVPR'17 paper by Rocco et al. "Convolutional neural network architecture for geometric matching". This release provides a full implementation of the method, including code for training models, and testing on standard datasets, as well as trained models.

- Participants: Ignacio Rocco Spremolla, Relja Arandjelovic and Josef Sivic
- Contact: Ignacio Rocco Spremolla
- Publication: Convolutional neural network architecture for geometric matching
- URL: http://www.di.ens.fr/willow/research/cnngeometric/

6.9. LSDClustering

Large-Scale Discriminative Clustering

KEYWORDS: Video analysis - Computer vision

FUNCTIONAL DESCRIPTION: This software package implements the method in the ICCV'17 paper by Miech et al. "Learning from Video and Text via Large-Scale Discriminative Clustering".

- Participants: Antoine Miech, Jean-Baptiste Alayrac, Piotr Bojanowski, Ivan Laptev and Josef Sivic
- Contact: Antoine Miech
- Publication: Learning from Video and Text via Large-Scale Discriminative Clustering
- URL: http://www.di.ens.fr/willow/research/learningvideotext/