
RESEARCH CENTER

FIELD
Algorithmics, Programming, Soft-
ware and Architecture

Activity Report 2018

Section Scientific Foundations

Edition: 2019-03-07

ALGORITHMICS, COMPUTER ALGEBRA AND CRYPTOLOGY

1. ARIC Project-Team . 5
2. AROMATH Project-Team .10
3. CARAMBA Project-Team . 12
4. CASCADE Project-Team . 15
5. DATASHAPE Project-Team .17
6. GAIA Team . 19
7. GAMBLE Project-Team . 24
8. GRACE Project-Team . 27
9. LFANT Project-Team . 30
10. OURAGAN Team . 33
11. POLSYS Project-Team . 36
12. SECRET Project-Team . 40
13. SPECFUN Project-Team .42

ARCHITECTURE, LANGUAGES AND COMPILATION

14. CAIRN Project-Team . 47
15. CAMUS Team .50
16. CASH Team .53
17. CORSE Project-Team . 63
18. PACAP Project-Team . 64

EMBEDDED AND REAL-TIME SYSTEMS

19. AOSTE2 Team . 72
20. HYCOMES Project-Team . 76
21. KAIROS Team . 80
22. PARKAS Project-Team .83
23. SPADES Project-Team . 86
24. TEA Project-Team . 88

PROOFS AND VERIFICATION

25. ANTIQUE Project-Team . 92
26. CELTIQUE Project-Team (section vide) .95
27. CONVECS Project-Team . 96
28. DEDUCTEAM Project-Team . 100
29. GALLINETTE Project-Team . 101
30. GALLIUM Project-Team . 110
31. MARELLE Project-Team .114
32. MEXICO Project-Team . 115
33. MOCQUA Team .120
34. PARSIFAL Project-Team . 122
35. PI.R2 Project-Team . 125
36. SUMO Project-Team .131
37. TOCCATA Project-Team . 133

4 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team ARIC

38. VERIDIS Project-Team . 143
SECURITY AND CONFIDENTIALITY

39. CIDRE Project-Team .145
40. COMETE Project-Team . 147
41. DATASPHERE Team . 149
42. PESTO Project-Team . 150
43. PRIVATICS Project-Team (section vide) . 152
44. PROSECCO Project-Team .153
45. TAMIS Project-Team . 157

5 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team ARIC

ARIC Project-Team

3. Research Program

3.1. Efficient approximation methods
3.1.1. Computer algebra generation of certified approximations

We plan to focus on the generation of certified and efficient approximations for solutions of linear differential
equations. These functions cover many classical mathematical functions and many more can be built by
combining them. One classical target area is the numerical evaluation of elementary or special functions. This
is currently performed by code specifically handcrafted for each function. The computation of approximations
and the error analysis are major steps of this process that we want to automate, in order to reduce the probability
of errors, to allow one to implement “rare functions”, to quickly adapt a function library to a new context: new
processor, new requirements – either in terms of speed or accuracy.

In order to significantly extend the current range of functions under consideration, several methods originating
from approximation theory have to be considered (divergent asymptotic expansions; Chebyshev or generalized
Fourier expansions; Padé approximants; fixed point iterations for integral operators). We have done prelimi-
nary work on some of them. Our plan is to revisit them all from the points of view of effectivity, computational
complexity (exploiting linear differential equations to obtain efficient algorithms), as well as in their ability to
produce provable error bounds. This work is to constitute a major progress towards the automatic generation
of code for moderate or arbitrary precision evaluation with good efficiency. Other useful, if not critical, ap-
plications are certified quadrature, the determination of certified trajectories of spatial objects and many more
important questions in optimal control theory.

3.1.2. Digital Signal Processing
As computer arithmeticians, a wide and important target for us is the design of efficient and certified linear
filters in digital signal processing (DSP). Actually, following the advent of MATLAB as the major tool for
filter design, the DSP experts now systematically delegate to MATLAB all the part of the design related to
numerical issues. And yet, various key MATLAB routines are neither optimized, nor certified. Therefore, there
is a lot of room for enhancing numerous DSP numerical implementations and there exist several promising
approaches to do so.

The main challenge that we want to address over the next period is the development and the implementation
of optimal methods for rounding the coefficients involved in the design of the filter. If done in a naive way,
this rounding may lead to a significant loss of performance. We will study in particular FIR and IIR filters.

3.1.3. Table Maker’s Dilemma (TMD)
Implementing “ultimately accurate” functions (i.e., rounded to nearest) requires either the knowledge of
hardest-to-round cases, or an as tight as possible lower bound on the distance between the image of a floating-
point number by the function and the middle of two consecutive floating-point numbers. Obtaining such results
is a challenge. Several computer manufacturers have contacted us to obtain new cases. One of our current
solutions for obtaining hardest-to-round cases is based on Lefèvre’s algorithm. We aim at rewriting the current
implementations of this algorithm, and giving formal proofs of their correction.

We plan to use uniform polynomial approximation and diophantine techniques in order to tackle the case of
the IEEE quad precision, and continue to use analytic number theory techniques (exponential sums estimates)
for counting the hardest-to-round cases.

http://www.inria.fr/equipes/aric

6 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team ARIC

3.2. Lattices: algorithms and cryptology
Lattice-based cryptography (LBC) is an utterly promising, attractive (and competitive) research ground in
cryptography, thanks to a combination of unmatched properties:
• Improved performance. LBC primitives have low asymptotic costs, but remain cumbersome in

practice (e.g., for parameters achieving security against computations of up to 2100 bit operations).
To address this limitation, a whole branch of LBC has evolved where security relies on the
restriction of lattice problems to a family of more structured lattices called ideal lattices. Primitives
based on such lattices can have quasi-optimal costs (i.e., quasi-constant amortized complexities),
outperforming all contemporary primitives. This asymptotic performance sometimes translates into
practice, as exemplified by NTRUEncrypt.

• Improved security. First, lattice problems seem to remain hard even for quantum computers.
Moreover, the security of most of LBC holds under the assumption that standard lattice problems
are hard in the worst case. Oppositely, contemporary cryptography assumes that specific problems
are hard with high probability, for some precise input distributions. Many of these problems were
artificially introduced for serving as a security foundation of new primitives.

• Improved flexibility. The master primitives (encryption, signature) can all be realized based on
worst-case (ideal) lattice assumptions. More evolved primitives such as ID-based encryption (where
the public key of a recipient can be publicly derived from its identity) and group signatures, that
were the playing-ground of pairing-based cryptography (a subfield of elliptic curve cryptography),
can also be realized in the LBC framework, although less efficiently and with restricted security
properties. More intriguingly, lattices have enabled long-wished-for primitives. The most notable
example is homomorphic encryption, enabling computations on encrypted data. It is the appropriate
tool to securely outsource computations, and will help overcome the privacy concerns that are
slowing down the rise of the cloud.

We work on three directions, detailed now.

3.2.1. Lattice algorithms
All known lattice reduction algorithms follow the same design principle: perform a sequence of small
elementary steps transforming a current basis of the input lattice, where these steps are driven by the Gram-
Schmidt orthogonalisation of the current basis.

In the short term, we will fully exploit this paradigm, and hopefully lower the cost of reduction algorithms
with respect to the lattice dimension. We aim at asymptotically fast algorithms with complexity bounds closer
to those of basic and normal form problems (matrix multiplication, Hermite normal form). In the same vein,
we plan to investigate the parallelism potential of these algorithms.

Our long term goal is to go beyond the current design paradigm, to reach better trade-offs between run-time
and shortness of the output bases. To reach this objective, we first plan to strengthen our understanding of the
interplay between lattice reduction and numerical linear algebra (how far can we push the idea of working
on approximations of a basis?), to assess the necessity of using the Gram-Schmidt orthogonalisation (e.g.,
to obtain a weakening of LLL-reduction that would work up to some stage, and save computations), and
to determine whether working on generating sets can lead to more efficient algorithms than manipulating
bases. We will also study algorithms for finding shortest non-zero vectors in lattices, and in particular look for
quantum accelerations.

We will implement and distribute all algorithmic improvements, e.g., within the fplll library. We are interested
in high performance lattice reduction computations (see application domains below), in particular in connec-
tion with/continuation of the HPAC ANR project (algebraic computing and high performance consortium).

3.2.2. Lattice-based cryptography
Our long term goal is to demonstrate the superiority of lattice-based cryptography over contemporary public-
key cryptographic approaches. For this, we will 1- Strengthen its security foundations, 2- Drastically improve
the performance of its primitives, and 3- Show that lattices allow to devise advanced and elaborate primitives.

7 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team ARIC

The practical security foundations will be strengthened by the improved understanding of the limits of lattice
reduction algorithms (see above). On the theoretical side, we plan to attack two major open problems: Are
ideal lattices (lattices corresponding to ideals in rings of integers of number fields) computationally as hard to
handle as arbitrary lattices? What is the quantum hardness of lattice problems?

Lattice-based primitives involve two types of operations: sampling from discrete Gaussian distributions (with
lattice supports), and arithmetic in polynomial rings such as (Z/qZ)[x]/(xn + 1) with n a power of 2. When
such polynomials are used (which is the case in all primitives that have the potential to be practical), then
the underlying algorithmic problem that is assumed hard involves ideal lattices. This is why it is crucial to
precisely understand the hardness of lattice problems for this family. We will work on improving both types of
operations, both in software and in hardware, concentrating on values of q and n providing security. As these
problems are very arithmetic in nature, this will naturally be a source of collaboration with the other themes
of the AriC team.

Our main objective in terms of cryptographic functionality will be to determine the extent to which lattices
can help securing cloud services. For example, is there a way for users to delegate computations on their
outsourced dataset while minimizing what the server eventually learns about their data? Can servers compute
on encrypted data in an efficiently verifiable manner? Can users retrieve their files and query remote databases
anonymously provided they hold appropriate credentials? Lattice-based cryptography is the only approach so
far that has allowed to make progress into those directions. We will investigate the practicality of the current
constructions, the extension of their properties, and the design of more powerful primitives, such as functional
encryption (allowing the recipient to learn only a function of the plaintext message). To achieve these goals,
we will in particular focus on cryptographic multilinear maps.

This research axis of AriC is gaining strength thanks to the recruitment of Benoit Libert. We will be particularly
interested in the practical and operational impacts, and for this reason we envision a collaboration with an
industrial partner.

3.2.3. Application domains
• Diophantine equations. Lattice reduction algorithms can be used to solve diophantine equations, and

in particular to find simultaneous rational approximations to real numbers. We plan to investigate the
interplay between this algorithmic task, the task of finding integer relations between real numbers,
and lattice reduction. A related question is to devise LLL-reduction algorithms that exploit specific
shapes of input bases.

• Communications. We will continue our collaboration with Cong Ling (Imperial College) on the
use of lattices in communications. We plan to work on the wiretap channel over a fading channel
(modeling cell phone communications in a fast moving environment). The current approaches rely
on ideal lattices, and we hope to be able to find new approaches thanks to our expertise on them
due to their use in lattice-based cryptography. We will also tackle the problem of sampling vectors
from Gaussian distributions with lattice support, for a very small standard deviation parameter. This
would significantly improve current schemes for communication schemes based on lattices, as well
as several cryptographic primitives.

• Cryptanalysis of variants of RSA. Lattices have been used extensively to break variants of the RSA
encryption scheme, via Coppersmith’s method to find small roots of polynomials. We plan to work
with Nadia Heninger (U. of Pennsylvania) on improving these attacks, to make them more practical.
This is an excellent test case for testing the practicality of LLL-type algorithm. Nadia Heninger has
a strong experience in large scale cryptanalysis based on Coppersmith’s method (http://smartfacts.
cr.yp.to/)

3.3. Algebraic computing and high performance kernels
The main theme here is the study of fundamental operations (“kernels”) on a hierarchy of symbolic or numeric
data types spanning integers, floating-point numbers, polynomials, power series, as well as matrices of all
these. Fundamental operations include basic arithmetic (e.g., how to multiply or how to invert) common to all

http://smartfacts.cr.yp.to/
http://smartfacts.cr.yp.to/

8 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team ARIC

such data, as well as more specific ones (change of representation/conversions, GCDs, determinants, etc.). For
such operations, which are ubiquitous and at the very core of computing (be it numerical, symbolic, or hybrid
numeric-symbolic), our goal is to ensure both high performance and reliability.

3.3.1. Algorithms
On the symbolic side, we will focus on the design and complexity analysis of algorithms for matrices over
various domains (fields, polynomials, integers) and possibly with specific properties (structure). So far, our
algorithmic improvements for polynomial matrices and structured matrices have been obtained in a rather
independent way. Both types are well known to have much in common, but this is sometimes not reflected
by the complexities obtained, especially for applications in cryptology and coding theory. Our goal in this
area is thus to explore these connections further, to provide a more unified treatment, and eventually bridge
these complexity gaps, A first step towards this goal will be the design of enhanced algorithms for various
generalizations of Hermite-Padé approximation; in the context of list decoding, this should in particular make
it possible to match or even improve over the structured-matrix approach, which is so far the fastest known.

On the other hand we will focus on the design of algorithms for certified computing. We will study the
use of various representations, such as mid-rad for classical interval arithmetic, or affine arithmetic. We will
explore the impact of precision tuning in intermediate computations, possibly dynamically, on the accuracy
of the results (e.g. for iterative refinement and Newton iterations). We will continue to revisit and improve
the classical error bounds of numerical linear algebra in the light of the subtleties of IEEE floating-point
arithmetic.

Our goals in linear algebra and lattice basis reduction that have been detailed above in Section 3.2 will be
achieved in the light of a hybrid symbolic-numeric approach.

3.3.2. Computer arithmetic
We aim at providing tight error bounds for basic “buiding blocks” of numerical computing. Examples are
complex arithmetic (in the continuity of what we have already done), Fourier transforms.

We will also work on the interplay between floating-point and integer arithmetics. Currently, small numerical
kernels like an exponential or a 2× 2 determinant are typically written using exclusively one of these two kinds
of arithmetic. However, modern processors now have hardware support for both floating-point and integer
arithmetics, often with vector (SIMD) extensions, and an important question is how to make the best use of all
such capabilities to optimize for both accuracy and efficiency.

A third direction will be to work on algorithms for performing correctly-rounded arithmetic operations in
medium precision as efficiently and reliably as possible. Indeed, many numerical problems require higher
precision than the conventional floating-point (single, double) formats. One solution is to use multiple
precision libraries, such as GNU MPFR, which allow the manipulation of very high precision numbers,
but their generality (they are able to handle numbers with millions of digits) is a quite heavy alternative
when high performance is needed. Our objective here is thus to design a multiple precision arithmetic library
that would allow to tackle problems where a precision of a few hundred bits is sufficient, but which have
strong performance requirements. Applications include the process of long-term iteration of chaotic dynamical
systems ranging from the classical Henon map to calculations of planetary orbits. The designed algorithms will
be formally proved.

Finally, our work on the IEEE 1788 standard leads naturally to the development of associated reference
libraries for interval arithmetic. A first direction will be to implement IEEE 1788 interval arithmetic within
MPFI, our library for interval arithmetic using the arbitrary precision floating-point arithmetic provided by
MPFR: indeed, MPFI has been originally developed with definitions and handling of exceptions which are not
compliant with IEEE 1788. Another one will be to provide efficient support for multiple-precision intervals,
in mid-rad representation and by developing MPFR-based code-generation tools aimed at handling families
of functions.

http://raweb.inria.fr/rapportsactivite/RA{$year}/aric/uid15.html

9 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team ARIC

3.3.3. High-performance algorithms and software
The algorithmic developments for medium precision floating-point arithmetic discussed above will lead to high
performance implementations on GPUs. As a follow-up of the HPAC project (which ended in December 2015)
we shall pursue the design and implementation of high performance linear algebra primitives and algorithms.

10 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team AROMATH

AROMATH Project-Team

3. Research Program

3.1. High order geometric modeling
The accurate description of shapes is a long standing problem in mathematics, with an important impact
in many domains, inducing strong interactions between geometry and computation. Developing precise
geometric modeling techniques is a critical issue in CAD-CAM. Constructing accurate models, that can be
exploited in geometric applications, from digital data produced by cameras, laser scanners, observations or
simulations is also a major issue in geometry processing. A main challenge is to construct models that can
capture the geometry of complex shapes, using few parameters while being precise.

Our first objective is to develop methods, which are able to describe accurately and in an efficient way, objects
or phenomena of geometric nature, using algebraic representations.

The approach followed in CAGD, to describe complex geometry is based on parametric representations called
NURBS (Non Uniform Rational B-Spline). The models are constructed by trimming and gluing together high
order patches of algebraic surfaces. These models are built from the so-called B-Spline functions that encode
a piecewise algebraic function with a prescribed regularity at the seams. Although these models have many
advantages and have become the standard for designing nowadays CAD models, they also have important
drawbacks. Among them, the difficulty to locally refine a NURBS surface and also the topological rigidity
of NURBS patches that imposes to use many such patches with trims for designing complex models, with
the consequence of the appearing of cracks at the seams. To overcome these difficulties, an active area of
research is to look for new blending functions for the representation of CAD models. Some examples are the
so-called T-Splines, LR-Spline blending functions, or hierarchical splines, that have been recently devised in
order to perform efficiently local refinement. An important problem is to analyze spline spaces associated
to general subdivisions, which is of particular interest in higher order Finite Element Methods. Another
challenge in geometric modeling is the efficient representation and/or reconstruction of complex objects, and
the description of computational domains in numerical simulation. To construct models that can represent
efficiently the geometry of complex shapes, we are interested in developing modeling methods, based on
alternative constructions such as skeleton-based representations. The change of representation, in particular
between parametric and implicit representations, is of particular interest in geometric computations and in its
applications in CAGD.

We also plan to investigate adaptive hierarchical techniques, which can locally improve the approximation of
a shape or a function. They shall be exploited to transform digital data produced by cameras, laser scanners,
observations or simulations into accurate and structured algebraic models.

The precise and efficient representation of shapes also leads to the problem of extracting and exploiting
characteristic properties of shapes such as symmetry, which is very frequent in geometry. Reflecting the
symmetry of the intended shape in the representation appears as a natural requirement for visual quality,
but also as a possible source of sparsity of the representation. Recognizing, encoding and exploiting symmetry
requires new paradigms of representation and further algebraic developments. Algebraic foundations for the
exploitation of symmetry in the context of non linear differential and polynomial equations are addressed.
The intent is to bring this expertise with symmetry to the geometric models and computations developed by
AROMATH.

3.2. Robust algebraic-geometric computation
In many problems, digital data are approximated and cannot just be used as if they were exact. In the context
of geometric modeling, polynomial equations appear naturally, as a way to describe constraints between the
unknown variables of a problem. An important challenge is to take into account the input error in order to

http://www.inria.fr/equipes/aromath

11 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team AROMATH

develop robust methods for solving these algebraic constraints. Robustness means that a small perturbation of
the input should produce a controlled variation of the output, that is forward stability, when the input-output
map is regular. In non-regular cases, robustness also means that the output is an exact solution, or the most
coherent solution, of a problem with input data in a given neighborhood, that is backward stability.

Our second long term objective is to develop methods to robustly and efficiently solve algebraic problems that
occur in geometric modeling.

Robustness is a major issue in geometric modeling and algebraic computation. Classical methods in computer
algebra, based on the paradigm of exact computation, cannot be applied directly in this context. They are
not designed for stability against input perturbations. New investigations are needed to develop methods,
which integrate this additional dimension of the problem. Several approaches are investigated to tackle these
difficulties.

One is based on linearization of algebraic problems based on “elimination of variables” or projection into a
space of smaller dimension. Resultant theory provides strong foundation for these methods, connecting the
geometric properties of the solutions with explicit linear algebra on polynomial vector spaces, for families
of polynomial systems (e.g., homogeneous, multi-homogeneous, sparse). Important progresses have been
made in the last two decades to extend this theory to new families of problems with specific geometric
properties. Additional advances have been achieved more recently to exploit the syzygies between the
input equations. This approach provides matrix based representations, which are particularly powerful for
approximate geometric computation on parametrized curves and surfaces. They are tuned to certain classes of
problems and an important issue is to detect and analyze degeneracies and to adapt them to these cases.

A more adaptive approach involves linear algebra computation in a hierarchy of polynomial vector spaces.
It produces a description of quotient algebra structures, from which the solutions of polynomial systems
can be recovered. This family of methods includes Gröbner Basis, which provides general tools for solving
polynomial equations. Border Basis is an alternative approach, offering numerically stable methods for solving
polynomial equations with approximate coefficients. An important issue is to understand and control the
numerical behavior of these methods as well as their complexity and to exploit the structure of the input
system.

In order to compute “only” the (real) solutions of a polynomial system in a given domain, duality techniques
can also be employed. They consist in analyzing and adding constraints on the space of linear forms which
vanish on the polynomial equations. Combined with semi-definite programming techniques, they provide
efficient methods to compute the real solutions of algebraic equations or to solve polynomial optimization
problems. The main issues are the completness of the approach, their scalability with the degree and dimension
and the certification of bounds.

Singular solutions of polynomial systems can be analyzed by computing differentials, which vanish at these
points. This leads to efficient deflation techniques, which transform a singular solution of a given problem into
a regular solution of the transformed problem. These local methods need to be combined with more global
root localisation methods.

Subdivision methods are another type of methods which are interesting for robust geometric computation.
They are based on exclusion tests which certify that no solution exists in a domain and inclusion tests, which
certify the uniqueness of a solution in a domain. They have shown their strength in addressing many algebraic
problems, such as isolating real roots of polynomial equations or computing the topology of algebraic curves
and surfaces. The main issues in these approaches is to deal with singularities and degenerate solutions.

12 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team CARAMBA

CARAMBA Project-Team

3. Research Program

3.1. The Extended Family of the Number Field Sieve
The Number Field Sieve (NFS) has been the leading algorithm for factoring integers for more than 20 years,
and its variants have been used to set records for discrete logarithms in finite fields. It is reasonable to
understand NFS as a framework that can be used to solve various sorts of problems. Factoring integers and
computing discrete logarithms are the most prominent for the cryptographic observer, but the same framework
can also be applied to the computation of class groups.

The state of the art with NFS is built from numerous improvements of its inner steps. In terms of algorithmic
improvements, the recent research activity on the NFS family has been rather intense. Several new algorithms
have been discovered during the 2014–2016 period, and their practical reach has been demonstrated by actual
experiments.

The algorithmic contributions of the CARAMBA members to NFS would hardly be possible without access to
a dependable software implementation. To this end, members of the CARAMBA team have been developing
the Cado-NFS software suite since 2007. Cado-NFS is now the most widely visible open source implementa-
tion of NFS, and is a crucial platform for developing prototype implementations for new ideas for the many
sub-algorithms of NFS. Cado-NFS is free software (LGPL) and follows an open development model, with
publicly accessible development repository and regular software releases. Competing free software imple-
mentations exist, such as msieve, developed by J. Papadopoulos. In Lausanne, T. Kleinjung develops his own
code base, which is unfortunately not public.

The work plan of CARAMBA on the topic of the Number Field Sieve algorithm and its cousins includes the
following aspects:

• Pursue the work on NFS, which entails in particular making it ready to tackle larger challenges.
Several of the important computational steps of NFS that are currently identified as stumbling
blocks will require algorithmic advances and implementation improvements. We will illustrate the
importance of this work by computational records.

• Work on the specific aspects of the computation of discrete logarithms in finite fields.

• As a side topic, the application of the broad methodology of NFS to the treatment of “ideal lattices”
and their use in cryptographic proposals based on Euclidean lattices is also relevant.

3.2. Algebraic Curves in Cryptology
The challenges associated with algebraic curves in cryptology are diverse, because of the variety of mathemat-
ical objects to be considered. These challenges are also connected to each other. On the cryptographic side,
efficiency matters. As of 2016, the most widely used set of elliptic curves, the so-called NIST curves, are in
the process of being replaced by a new set of candidate elliptic curves for future standardization. This is the
topic of RFC 7748 [30].

On the cryptanalytic side, the discrete logarithm problem on (Jacobians of) curves has resisted all attempts
for many years. Among the currently active topics, the decomposition algorithms raise interesting problems
related to polynomial system solving, as do attempts to solve the discrete logarithm problem on curves defined
over binary fields. In particular, while it is generally accepted that the so-called Koblitz curves (base field
extensions of curves defined over GF(2)) are likely to be a weak class among the various curve choices, no
concrete attack supports this claim fully.

http://www.inria.fr/equipes/caramba
http://raweb.inria.fr/rapportsactivite/RA{$year}/caramba/bibliography.html#caramba-2018-bid6

13 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team CARAMBA

The research objectives of CARAMBA on the topic of algebraic curves for cryptology are as follows:
• Work on the practical realization of some of the rich mathematical theory behind algebraic curves.

In particular, some of the fundamental mathematical objects have potentially important connections
to the broad topic of cryptology: Abel-Jacobi map, Theta functions, computation of isogenies,
computation of endomorphisms, complex multiplication.

• Improve the point counting algorithms so as to be able to tackle larger problems. This includes
significant work connected to polynomial systems.

• Seek improvements on the computation of discrete logarithms on curves, including by identifying
weak instances of this problem.

3.3. Symmetric Cryptography
Since the recruiting of Marine Minier in September 2016 as a Professor at Université of Lorraine, and of
Virginie Lallemand as a CNRS researcher in October 2018, a new research domain has emerged in the
CARAMBA team: symmetric key cryptology. The aim is to design and analyze symmetric key cryptographic
primitives focusing on the following particular aspects:
• the use of constraint programming for the cryptanalysis, especially of block ciphers and the AES

standard;
• the design of lightweight cryptographic primitives well-suited for constraint environment such as

micro-controllers, wireless sensors, etc.
• white-box cryptography and software obfuscation methods to protect services execution on dedi-

cated platforms.

3.4. Computer Arithmetic
Computer arithmetic is part of the common background of all team members, and is naturally ubiquitous in
the two previous application domains mentioned. However involved the mathematical objects considered may
be, dealing with them first requires to master more basic objects: integers, finite fields, polynomials, and real
and complex floating-point numbers. Libraries such as GNU MP, GNU MPFR, GNU MPC do an excellent job
for these, both for small and large sizes (we rarely, if ever, focus on small-precision floating-point data, which
explains our lack of mention of libraries relevant to it).

Most of our involvement in subjects related to computer arithmetic is to be understood in connection to our
applications to the Number Field Sieve and to abelian varieties. As such, much of the research work we
envision will appear as side-effects of developments in these contexts. On the topic of arithmetic work per se:
• We will seek algorithmic and practical improvements to the most basic algorithms. That includes for

example the study of advanced algorithms for integer multiplication, and their practical reach.
• We will continue to work on the arithmetic libraries in which we have crucial involvement, such as

GNU MPFR, GNU MPC, GF2X, MPFQ, and also GMP-ECM.

3.5. Polynomial Systems
Systems of polynomial equations have been part of the cryptographic landscape for quite some time, with
applications to the cryptanalysis of block and stream ciphers, as well as multivariate cryptographic primitives.

Polynomial systems arising from cryptology are usually not generic, in the sense that they have some distinct
structural properties, such as symmetries, or bi-linearity for example. During the last decades, several results
have shown that identifying and exploiting these structures can lead to dedicated Gröbner basis algorithms
that can achieve large speedups compared to generic implementations [22], [21].

Solving polynomial systems is well done by existing software, and duplicating this effort is not relevant.
However we develop test-bed open-source software for ideas relevant to the specific polynomial systems that
arise in the context of our applications. The TinyGB software is our platform to test new ideas.

http://raweb.inria.fr/rapportsactivite/RA{$year}/caramba/bibliography.html#caramba-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/caramba/bibliography.html#caramba-2018-bid12

14 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team CARAMBA

We aim to work on the topic of polynomial system solving in connection with our involvement in the
aforementioned topics.

• We have high expertise on Elliptic Curve Cryptography in general. On the narrower topic of the
Elliptic Curve Discrete Logarithm Problem on small characteristic finite fields, the highly structured
polynomial systems that are involved match well our expertise on the topic of polynomial systems.
Once a very hot topic in 2015, activity on this precise problem seems to have slowed down. Yet, the
conjunction of skills that we have may lead to results in this direction in the future.

• The recent hiring of Marine Minier is likely to lead the team to study particular polynomial systems
in contexts related to symmetric key cryptography.

• More centered on polynomial systems per se, we will mainly pursue the study of the specificities of
the polynomial systems that are strongly linked to our targeted applications, and for which we have
significant expertise [22], [21]. We also want to see these recent results provide practical benefits
compared to existing software, in particular for systems relevant for cryptanalysis.

http://raweb.inria.fr/rapportsactivite/RA{$year}/caramba/bibliography.html#caramba-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/caramba/bibliography.html#caramba-2018-bid12

15 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team CASCADE

CASCADE Project-Team

3. Research Program

3.1. Quantum-Safe Cryptography
The security of almost all public-key cryptographic protocols in use today relies on the presumed hardness
of problems from number theory such as factoring and computing discrete logarithms. This is problematic
because these problems have very similar underlying structure, and its unforeseen exploit can render all
currently used public-key cryptography insecure. This structure was in fact exploited by Shor to construct
efficient quantum algorithms that break all hardness assumptions from number theory that are currently in use.
And so naturally, an important area of research is to build provably secure protocols based on mathematical
problems that are unrelated to factoring and discrete log. One of the most promising directions in this line of
research is using lattice problems as a source of computational hardness, which also offer features that other
alternative public-key cryptosystems (such as MQ-based, code-based or hash-based schemes) cannot provide.

3.2. Advanced Encryption
Fully Homomorphic Encryption (FHE) has become a very active research area since 2009, when IBM
announced the discovery of a FHE scheme by Craig Gentry. FHE allows to perform any computation on
encrypted data, yielding the result encrypted under the same key. This enables outsourcing computation in the
Cloud, on encrypted data, so the Cloud provider does not learn any information. However, FHE does not allow
to share the result.

Functional encryption is another recent tool that allows an authority to deliver functional decryption keys, for
any function f of his choice, so that when applied to the encryption of a message m, the functional decryption
key yields f(m). Since m can be a large vector, f can be an aggregation or statistical function: on encrypted
data, one can get the result f(m) in clear.

While this functionality has initially been defined in theory, our team has been very active in designing concrete
instantiations for practical purposes.

3.3. Security amidst Concurrency on the Internet
Cryptographic protocols that are secure when executed in isolation can become completely insecure when
multiple such instances are executed concurrently (as is unavoidable on the Internet) or when used as a part of
a larger protocol. For instance, a man-in-the-middle attacker participating in two simultaneous executions of
a cryptographic protocol might use messages from one of the executions in order to compromise the security
of the second – Lowe’s attack on the Needham-Schroeder authentication protocol and Bleichenbacher’s attack
on SSL work this way. Our research addresses security amidst concurrent executions in secure computation
and key exchange protocols.

Secure computation allows several mutually distrustful parties to collaboratively compute a public function of
their inputs, while providing the same security guarantees as if a trusted party had performed the computation.
Potential applications for secure computation include anonymous voting, privacy-preserving auctions and
data-mining. Our recent contributions on this topic include

1. new protocols for secure computation in a model where each party interacts only once, with a single
centralized server; this model captures communication patterns that arise in many practical settings,
such as that of Internet users on a website, and

2. efficient constructions of universally composable commitments and oblivious transfer protocols,
which are the main building blocks for general secure computation.

http://www.inria.fr/equipes/cascade

16 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team CASCADE

In key exchange protocols, we are actively involved in designing new password-authenticated key exchange
protocols, as well as the analysis of the widely-used SSL/TLS protocols.

3.4. Electronic Currencies and the Blockchain
Electronic cash (e-cash) was first proposed in the 1980s but has never been deployed on a large scale. Other
means of digital payments are instead largely replacing physical cash, but they do not respect the citizens’
right to privacy, which includes their right of anonymous payments of moderate sums. Recently, so-called
decentralized currencies, such as Bitcoin, have become a third type of payments in addition to physical cash,
and card and other (non-anonymous) electronic payments. The continuous growth of popularity and usage of
this new kind of currencies, also called “cryptocurrencies”, have triggered a renewed interest in cryptographic
e-cash.

On the one hand, our group investigates “centralized” e-cash, in keeping with the current economic model
that has money be issued by (central) banks (while cryptocurrencies use money distribution as an incentive
for participation in the system, on which its stability hinges). Of particular interest among centralized e-cash
schemes is transferable e-cash, which allows users to transfer coins between each other without interacting
with a third party (or the blockchain). Existing efficient e-cash schemes are not transferable, as they require
coins to be deposited at the bank after having been used in a payment. Our goal is to propose efficient
transferable e-cash schemes.

Another direction concerns (decentralized) cryptocurrencies, whose adoption has grown tremendously over
the last few years. While in Bitcoin all transactions are publicly posted on the so-called “blockchain”, other
cryptocurrencies such as Zcash respect user privacy, whose security guarantees we have analyzed. Apart
from privacy, two pressing challenges for cryptocurrencies, and blockchains in general, are sustainability and
scalability. Regarding the former, we are addressing the electricity waste caused by the concept of “proof of
work” used by all major cryptocurrencies by proposing alternatives; for the latter, we are working on proposals
that avoid the need for all data having to be stored on the blockchain forever.

Blockchains have meanwhile found many other applications apart from electronic money. Together with
Microsoft Research, our group investigates decentralized means of authentication that uses cryptography to
guarantee privacy.

17 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team DATASHAPE

DATASHAPE Project-Team

3. Research Program

3.1. Algorithmic aspects of topological and geometric data analysis
TDA requires to construct and manipulate appropriate representations of complex and high dimensional
shapes. A major difficulty comes from the fact that the complexity of data structures and algorithms used
to approximate shapes rapidly grows as the dimensionality increases, which makes them intractable in high
dimensions. We focus our research on simplicial complexes which offer a convenient representation of general
shapes and generalize graphs and triangulations. Our work includes the study of simplicial complexes with
good approximation properties and the design of compact data structures to represent them.

In low dimensions, effective shape reconstruction techniques exist that can provide precise geometric approx-
imations very efficiently and under reasonable sampling conditions. Extending those techniques to higher
dimensions as is required in the context of TDA is problematic since almost all methods in low dimensions
rely on the computation of a subdivision of the ambient space. A direct extension of those methods would
immediately lead to algorithms whose complexities depend exponentially on the ambient dimension, which
is prohibitive in most applications. A first direction to by-pass the curse of dimensionality is to develop al-
gorithms whose complexities depend on the intrinsic dimension of the data (which most of the time is small
although unknown) rather than on the dimension of the ambient space. Another direction is to resort to cruder
approximations that only captures the homotopy type or the homology of the sampled shape. The recent the-
ory of persistent homology provides a powerful and robust tool to study the homology of sampled spaces in a
stable way.

3.2. Statistical aspects of topological and geometric data analysis
The wide variety of larger and larger available data - often corrupted by noise and outliers - requires to consider
the statistical properties of their topological and geometric features and to propose new relevant statistical
models for their study.

There exist various statistical and machine learning methods intending to uncover the geometric structure
of data. Beyond manifold learning and dimensionality reduction approaches that generally do not allow to
assert the relevance of the inferred topological and geometric features and are not well-suited for the analysis
of complex topological structures, set estimation methods intend to estimate, from random samples, a set
around which the data is concentrated. In these methods, that include support and manifold estimation,
principal curves/manifolds and their various generalizations to name a few, the estimation problems are usually
considered under losses, such as Hausdorff distance or symmetric difference, that are not sensitive to the
topology of the estimated sets, preventing these tools to directly infer topological or geometric information.

Regarding purely topological features, the statistical estimation of homology or homotopy type of compact
subsets of Euclidean spaces, has only been considered recently, most of the time under the quite restrictive
assumption that the data are randomly sampled from smooth manifolds.

In a more general setting, with the emergence of new geometric inference tools based on the study of distance
functions and algebraic topology tools such as persistent homology, computational topology has recently seen
an important development offering a new set of methods to infer relevant topological and geometric features
of data sampled in general metric spaces. The use of these tools remains widely heuristic and until recently
there were only a few preliminary results establishing connections between geometric inference, persistent
homology and statistics. However, this direction has attracted a lot of attention over the last three years. In
particular, stability properties and new representations of persistent homology information have led to very
promising results to which the DATASHAPE members have significantly contributed. These preliminary results
open many perspectives and research directions that need to be explored.

http://www.inria.fr/equipes/datashape

18 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team DATASHAPE

Our goal is to build on our first statistical results in TDA to develop the mathematical foundations of Statistical
Topological and Geometric Data Analysis. Combined with the other objectives, our ultimate goal is to provide
a well-founded and effective statistical toolbox for the understanding of topology and geometry of data.

3.3. Topological approach for multimodal data processing
Due to their geometric nature, multimodal data (images, video, 3D shapes, etc.) are of particular interest for
the techniques we develop. Our goal is to establish a rigorous framework in which data having different
representations can all be processed, mapped and exploited jointly. This requires adapting our tools and
sometimes developing entirely new or specialized approaches.

The choice of multimedia data is motivated primarily by the fact that the amount of such data is steadily
growing (with e.g. video streaming accounting for nearly two thirds of peak North-American Internet traffic,
and almost half a billion images being posted on social networks each day), while at the same time it poses
significant challenges in designing informative notions of (dis)-similarity as standard metrics (e.g. Euclidean
distances between points) are not relevant.

3.4. Experimental research and software development
We develop a high quality open source software platform called GUDHI which is becoming a reference in
geometric and topological data analysis in high dimensions. The goal is not to provide code tailored to the
numerous potential applications but rather to provide the central data structures and algorithms that underlie
applications in geometric and topological data analysis.

The development of the GUDHI platform also serves to benchmark and optimize new algorithmic solutions
resulting from our theoretical work. Such development necessitates a whole line of research on software
architecture and interface design, heuristics and fine-tuning optimization, robustness and arithmetic issues,
and visualization. We aim at providing a full programming environment following the same recipes that made
up the success story of the CGAL library, the reference library in computational geometry.

Some of the algorithms implemented on the platform will also be interfaced to other software platform, such
as the R software 0 for statistical computing, and languages such as Python in order to make them usable in
combination with other data analysis and machine learning tools. A first attempt in this direction has been
done with the creation of an R package called TDA in collaboration with the group of Larry Wasserman at
Carnegie Mellon University (Inria Associated team CATS) that already includes some functionalities of the
GUDHI library and implements some joint results between our team and the CMU team. A similar interface
with the Python language is also considered a priority. To go even further towards helping users, we will
provide utilities that perform the most common tasks without requiring any programming at all.

0https://www.r-project.org/

https://www.r-project.org/

19 Algorithmics, Computer Algebra and Cryptology - Research Program - Team GAIA

GAIA Team

3. Research Program

3.1. Effective algebra
To develop a computational study of problems coming from control theory, signal processing, and multi-
disciplinary domains, parts of algebraic theories must be studied within an effective approach: methods and
theoretical results must be made algorithmic based on computer algebra techniques appropriated for efficient
implementations in computer algebra systems.

3.1.1. Polydisc Nullstellensatz & effective version of a theorem of Deligne
The works on stability and stabilization problems of multidimensional systems, developed in the former
ANR MSDOS (2014–2018), have shown the importance for developing an effective version of the module
theory over the ring of rational functions without poles in the closed unit polydisc of Cn [90], [47]. The
stabilizability (resp. the existence of a doubly coprime factorization) of a multidimensional system is related
to a module-theoretical property (projectivity, resp. freeness) that has to be algorithmically verified prior to
compute stabilizing controllers (resp. the standard Youla-Kučera parametrization of all stabilizing controllers).
Based on the works [89], [90], in [47], we have recently proved that the stabilizability condition is related to
the development of an algorithmic proof of the so-called Polydisc Nullstellensatz [49], a natural extension of
Hilbert’s Nullstellensatz for the above-mentioned ring (see e.g. [40]). In addition, the existence of a doubly
coprime factorization is related to a theorem obtained by (the Fields medalist) Deligne with a non-constructive
proof [90]. This theorem can be seen as an extension of the famous Quillen-Suslin theorem (Serre’s conjecture)
[77]. Based on our experience of the first implementation of the Quillen-Suslin theorem in the computer
algebra system (Maple) [62], we aim to develop this effective framework as well as a dedicated Maple

package.

3.1.2. Effective version of Spencer’s theory of formal integrability of PD systems
A differential geometric counterpart of differential algebra and differential elimination theory [101], [76] is
the so-called Spencer’s theory of formal integrability and involutive PD systems [85], [104]. For linear PD
systems, this theory can be seen as an intrinsic approach to Janet or Gröbner bases for noncommutatibe
polynomial rings of PD operators. No complete algorithmic study of Spencer’s theory has been developed yet.
We aim to develop it as well as to implement it. The understanding of the connections between the different
differential elimination theories (Janet [102] or Gröbner bases [40], Thomas decomposition [102], differential
algebra [101], [76], Spencer’s theory [85], exterior differential systems [51], etc.) will also be investigated.
On a longer term, applications of Spencer’s theory to Lie pseudogroups and their applications in mathematical
physics (e.g. variational formulations based on Lie (pseudo)groups) [86] will be investigated and implemented.

3.1.3. Rings of integro-differential operators & integro-differential algebra
The main contribution of this axis is the development of effective elimination theories for both linear and
nonlinear systems of integro-differential equations.

3.1.3.1. Linear systems of integro-differential equations

The rings of integro-differential operators are more complex than the purely differential case [96], [97] due to
the existence of zero-divisors or the fact of having a coherent ring instead of a Noetherian ring [39]. We want to
develop an algorithmic study of these rings. Following the direction initiated in [95] for the computation of zero
divisors, we first want to develop algorithms for the computation of left/right kernels and left/right/generalized
inverses of matrices with entries in such rings, and to use them to develop a module-theoretic approach to linear
systems of integro-differential equations. Following [95], standard questions addressed within the computer
algebra community such as the computation of rational/exponential/hyperexponential/etc. solutions will also
be addressed. Moreover, famous Stafford’s results [105], algorithmically studied in [96], [97] for rings of PD

http://www.inria.fr/equipes/gaia
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid34
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid35
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid36
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid34
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid35
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid37
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid34
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid38
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid39
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid40
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid41
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid42
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid43
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid44
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid44
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid45
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid41
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid42

20 Algorithmics, Computer Algebra and Cryptology - Research Program - Team GAIA

operators, are known to still hold for rings of integro-differential operators [39]. Their algorithmic extensions
will be investigated and our corresponding implementation will be extended accordingly. Finally, following
[93], [95], an algorithmically study of rings of integro-differential-delay operators will be further developed as
well as their applications to the equivalence problem of differential constant/varying/distributed delay systems
(e.g. Artstein’s reduction, Fiagbedzi-Pearson’s transformation) and their applications to control theory.

3.1.3.2. Nonlinear systems of integro-differential equations

Integro-differential algebra is an extension of Ritt-Kolchin’s differential algebra [101], [76] that also includes
integral operators. This extension is now attracting more attention in mathematics, computer algebras, and
control theory. This new type of algebras will be algorithmically studied for integro-differential nonlinear
systems. To do that, concepts such as integro-differential ideals and varieties have to be introduced and studied
for developing an integro-differential elimination theory which extends the current differential elimination
theory [45], [46], [72]. A Maple prototype will first be developed and then a C library when experience will
be gained.

3.2. Computer algebra
We aim to further reinforce our expertise in the computer algebra aspects of functional systems and algebraic
curves by attacking remaining technical obstacles and by considering new classes of functional systems,
notably those coming from interesting applications in engineering sciences and particularly in control theory.

3.2.1. Efficient algorithms for the study of singularities of algebraic curve and its applications
On an algorithmic viewpoint, there are mainly four different approaches for the study of the singularities of
plane algebraic curves. Let us shortly list them:
• The well-known Newton-Puiseux algorithm, initiated by Cramer and Puiseux, which follows an idea

due to Newton. This approach has successively been improved in [61], [88], [9], [10].
• The Extended Hensel Construction, developed in [74] and recently improved in [82].
• The work [68] concentrates on the factorisation of polynomials defined over valued fields (the local

study of a plane algebraic curve enters in this approach).
• The work [33] introduces the concept of anapproximate root.

The first two methods are based on Puiseux series computations. They use techniques which are equivalent to
the standard blowing-up of a singularity of an algebraic curve, which has the drawback to be bottlenecks in
terms of complexity and practical efficiency. Nevertheless, the recent work [88] provides the best complexity
currently known. The last two methods study singularities without computing Puiseux series. They both use
the concept of an extended evaluation.

A recent very efficient algorithm for the factorisation of a univariate polynomial based on its Newton polygon
has recently been obtained in [52]. The key ingredient of this algorithm is to work on the given polynomial
and not after changes of variables as usually done in the literature.

To improve the complexity results of [68], [38], we want to combine the above different approaches using
approximate roots and a generalization of the results of [52] to the context of [68].

The method proposed above is important in practice since it is based on well-known and efficiently imple-
mented algorithms (mainly Newton iteration and gcd computations). Nevertheless, these algorithms involve
technical difficulties on the computer science side: the main one is the need to improve the accuracy of com-
putations due to truncations. These issues, including also run-time compilation, are well-studied in the BPAS

library 0 based on specific data structures to deal with power series computation (a power series is represented
by terms that have been computed and a program that enables to compute more terms when required).

Another part of the code development concerns issues on certified numerical computations for univariate
polynomials (with algebraic coefficients) that will be used for the development of certified symbolic-numeric
algorithms making effective the strategy proposed in [87].

0http://www.bpaslib.org/index.html

http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid43
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid46
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid44
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid17
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid47
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid48
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid49
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid50
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid51
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid52
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid53
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid54
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid48
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid55
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid53
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid56
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid55
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid53
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid57
http://www.bpaslib.org/index.html

21 Algorithmics, Computer Algebra and Cryptology - Research Program - Team GAIA

3.2.2. Differential algebra
A major bottleneck of computational differential algebra methods is the computation of greatest common
divisors of multivariate commutative polynomials. Any algorithmic progress in this direction would highly
improve the efficiency of differential algebra software such as, for instance, the C library BLAD [44]. Moreover,
numerous computer algebra problems and related implementations could also highly profit from any success
in this direction.

A major application of the effective differential algebra approach developed by GAIA’s members [45], [46] is
the possibility to reduce a nonlinear (implicit) differential system, particularly differential algebraic equations,
to so-called regular chains of differentiation index 0, i.e. to systems which do not need differentiation of
their equations to be rewritten as pure differential systems [69]. Based on our expertise on differential
techniques, we want to study the consistent initialization problem and develop numerical integrators for
nonlinear differential algebraic systems, and used them in the study of coupled algebraic and differential
systems, interconnected systems, or networks [69].

3.2.3. A Maple package and a C/C++ open source library for integro-differential algebra
A package dedicated to nonlinear integro-differential equations will be developed in a Maple prototype and
then in a standalone C/C++ open source library (as it was already done for the diffalg and Differen-

tialAlgebra packages). General purpose solvers such as Mapledsolve or pdesolve may call differential
elimination methods for computing essential singular solutions of differential equations, for computing sys-
tems of polynomial differential equations admitting a given function as a solution, etc. On the long run, one
may foresee enhanced general purpose solvers able to handle integro-differential equations processed through
integro-differential elimination methods. It will rely on a sub-package dedicated to the problem of effectively
handling integro-differential expressions.

These packages will rely on existing software such as BLAD, DifferentialAlgebra, and MABSys. It is worth
pointing out that proof-of-concept methods are already available. See [29] and [2]. The collaboration with
modelers will also enhance the software user-interface for a better usability.

The study of numerical integration of integro-differential equations (a necessary component of software
dedicated to the parameter estimation problem) will also be further studied following the direction initiated in
[29], leading to the Maple/C library BLINEIDE. This software has currently no widely available challenger.

The Maple prototype software dedicated to nonlinear integro-differential equations will also be implemented
in a standalone C/C++ open source library, leading to software easier to integrate in modeling platforms such
as OpenModelica. The GAIA team has quite some expertise in releasing software satisfying industrial
standards: its C open source BLAD libraries, dedicated to differential elimination, are currently integrated
in Maple and called through the Maple package DifferentialAlgebra. The Modelica programming
language, which emphasizes programming with equations and permits to call external code, can integrate
software dedicated to integro-differential equations developed in the GAIA team.

3.3. Applications to control theory and signal processing
3.3.1. Robust stability analysis and stabilization problems for functional systems

Our expertise in the computer algebra aspects to stability and stabilization problems for multidimensional
systems and for differential constant/distributed/varying delay systems [5], [6], [48], [47] will further be
developed.

3.3.1.1. Computation of Lyapunov functions for homogeneous dynamical systems

We shall investigate the possibility to develop a computer algebra package for the design of Lyapunov
functions for homogeneous dynamical systems based on an effective study of the differential algebra of
generalized forms, i.e. of Puiseux polynomials in signed powers [106], [107].

http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid58
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid59
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid59
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid60
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid61
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid60
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid62
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid63
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid64
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid35
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid65
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid66

22 Algorithmics, Computer Algebra and Cryptology - Research Program - Team GAIA

3.3.1.2. Robust stability analysis of differential time-delay systems

The symbolic-numeric study of the robust stability of a differential constant time-delay system with respect
to the delay h, via the variation of the zero locus of the associated quasipolynomial p(s, e−h s) [70] in the
stability (resp. unstability) region C− = {s ∈ C | R(s) < 0} (resp. C− = Cr C+) of C, initiated in [5], will
be further developed. This problem is another motivation for the development of a fast numerical algorithm
for the computation of Netwon-Puiseux series and its implementation in a C library. They will be used to study
how the different branches of a quasipolynomial at a critical pair (namely (hI, ωI) ∈ R>0 × R such that

p(i ωI, e
−i h ωI) = 0) vary in C− and in C+ with respect to h. See [5] and the references therein.

Moreover, in collaboration with Mouze (Centrale Lille, France), we want to develop an effective study of
the ring E = R(s)[e−h s] ∩ E, where E is the ring of entire functions. The ring E plays an important role
for differential time-delay systems [66], [78]. Effective computation of Smith normal forms for matrices with
entries in E and its implementation in a symbolic-numeric package will have many applications for synthesis
problems of differential time-delay systems.

3.3.1.3. Stabilization problems for functional systems

We want to use the results developed on the module-theoretic aspects of the ring of multivariate rational
functions without poles in the closed unit polydisc of Cn to effectively compute stabilizing controllers of
multidimensional systems, as well as the Youla-Kučera parametrization of all the stabilizing controllers [90].
This last parametrization can be used to transform standardH∞-optimal control problems, which are nonlinear
by nature, into affine, and thus convex optimal problems. See [37], [90] and the references therein. Applications
addressed in the former ANR MSDOS (2014–2018) will be developed in collaboration with Bachelier (U.
Poitiers). The algorithms obtained in this direction will be unified in a unique Maple package.

Finally, the noncommutative geometric approach to robust problems for infinite-dimensional linear systems
(e.g. differential time-delay or PD systems) [54], initiated in [92], will be further studied based on the
mathematical concepts and methods introduced by (the Fields medalist) Connes [53]. We particularly want
to investigate generalizations of Nyquist’s theorem to infinite-dimensional systems based on index theory
(pairing of K-theory and K-homology), model reduction based on Connes’ interpretation of infinitesimal
operators, robustness metrics particularly the ν-gap metric, etc. The quantized differential calculus [53], based
on Hankel operators, as well as the connections and curvatures on stabilizable systems will be further studied
[92]. We aim to exploit these noncommutative differential geometric structures on the systems to get new
inside in both the topology and geometry aspects of the H∞-control theory for infinite-dimensional systems
[54].

3.3.2. Parameter estimation for linear & nonlinear functional systems
3.3.2.1. Linear functional systems

Our expertise on algebraic parameter estimation problem, coming from the former NON-A project-team, will
be further developed. Following [65], this problem consists in estimating a set θ of parameters of a signal
x(θ, t)− which satisfies a certain dynamics − when the signal y(t) = x(θ, t) + γ(t) +$(t) is observed,
where γ denotes a structured perturbation and $ a noise. For instance, x can be a multi-sinusoidal waveform
signal and θ phases, frequencies, or amplitudes [13]. Based on a combination of algebraic analysis techniques
(rings of differential operators), differential elimination theory (computation of annihilators), and operational
calculus (Laplace transform, convolution), [65] shows how θ can sometimes be explicitly determined by means
of closed-form expressions using iterated integrals of y. These integrals usually help to filter the effect of the
noise $ on the estimation of the parameters θ.

A first aim in this direction is to develop to a greater extent our recent work [108] that shows how the
above approach can cover wider classes of signals such as holonomic signals (e.g. signals decomposed into
orthogonal polynomial bases, special functions, possibly wavelets).

http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid67
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid62
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid62
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid68
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid69
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid34
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid70
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid34
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid71
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid72
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid73
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid73
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid72
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid71
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid74
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid75
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid74
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid76

23 Algorithmics, Computer Algebra and Cryptology - Research Program - Team GAIA

Moreover, [94] explains how larger classes of structured perturbations γ can be considered when the approach
developed in [65], [108], based on computation of annihilators, is replaced by a new approach based on the
more general algebraic concept of syzygies [103]. This general approach to the algebraic parameter estimation
problem will be developed. Following the ideas of [94], an effective version of this general approach will also
be done based on differential elimination techniques, i.e. Gröbner basis techniques for rings of differential
operators. It will be implemented in a dedicated Maple package which will extend the current prototype NonA
package [94].

Furthermore, as an alternative to passing forth and backwards from the time domain to the operational
(Laplace/frequency) domain by means of Laplace transform and its inverse as done in the standard algebraic
parameter estimation method [65], [108], we aim to develop a direct time domain approach based on calculus
on rings of integro-differential operators as described by the following picture (L denotes the Laplace
transform):

temporal domain frequency domain L(z) = ẑ

z(t) = x(t, θ) + γ(t) =⇒ ẑ(s) = x̂(s, θ) + γ̂(s)

integro− diff . calculus ⇓ ⇓
closed-form expressions differential algebraic calculus

θ = g
(∫ i

z(t)
)

⇐= θ = f(s−i ẑ(s))

The direct computation will be handled by means of the effective methods of rings of integro-differential
operators described in the above sections.

3.3.2.2. Nonlinear functional systems

For nonlinear control systems, the approach to the parameter estimation problem, recently proposed in [3] and
based on the computation of integro-differential input-output equations, will be further developed based on
the integration of fractions [2]. Such a representation better suits a numerical estimation of the parameters as
shown in [3].

In [29], we have recently initiated an extension of the results developed in [3] to handle integro-differential
equations such as Volterra-Kostitzin’s equation. This general approach, based on an extension of the input-
output ideal method for ordinary differential equations to the integro-differential ones, will be further
developed based on the effective elimination theory for systems of integro-differential equations. An important
advantage of this approach is that not only it solves the identifiability theoretical question but it also prepares
a further parameter estimation step [57].

http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid77
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid74
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid76
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid30
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid77
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid77
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid74
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid76
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid78
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid61
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid78
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid60
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid78
http://raweb.inria.fr/rapportsactivite/RA{$year}/gaia/bibliography.html#gaia-2018-bid79

24 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team GAMBLE

GAMBLE Project-Team

3. Research Program

3.1. Non-linear computational geometry

Figure 1. Two views of the Whitney umbrella (on the left, the “stick” of the umbrella, i.e., the negative z-axis, is
missing). Right picture from [Wikipedia], left picture from [Lachaud et al.].

As mentioned above, curved objects are ubiquitous in real world problems and in computer science and,
despite this fact, there are very few problems on curved objects that admit robust and efficient algorithmic
solutions without first discretizing the curved objects into meshes. Meshing curved objects induces a loss
of accuracy which is sometimes not an issue but which can also be most problematic depending on the
application. In addition, discretization induces a combinatorial explosion which could cause a loss in efficiency
compared to a direct solution on the curved objects (as our work on quadrics has demonstrated with flying
colors [42], [43], [44], [46], [51]). But it is also crucial to know that even the process of computing meshes
that approximate curved objects is far from being resolved. As a matter of fact there is no algorithm capable
of computing in practice meshes with certified topology of even rather simple singular 3D surfaces, due to
the high constants in the theoretical complexity and the difficulty of handling degenerate cases. Even in 2D,
meshing an algebraic curve with the correct topology, that is in other words producing a correct drawing of the
curve (without knowing where the domain of interest is), is a very difficult problem on which we have recently
made important contributions [29], [30], [52].

It is thus to be understood that producing practical robust and efficient algorithmic solutions to geometric
problems on curved objects is a challenge on all and even the most basic problems. The basicness and
fundamentality of two problems we mentioned above on the intersection of 3D quadrics and on the drawing in
a topologically certified way of plane algebraic curves show rather well that the domain is still in its infancy.
And it should be stressed that these two sets of results were not anecdotical but flagship results produced
during the lifetime of the VEGAS team.

There are many problems in this theme that are expected to have high long-term impacts. Intersecting NURBS
(Non-uniform rational basis spline) in a certified way is an important problem in computer-aided design and
manufacturing. As hinted above, meshing objects in a certified way is important when topology matters. The
2D case, that is essentially drawing plane curves with the correct topology, is a fundamental problem with
far-reaching applications in research or R&D. Notice that on such elementary problems it is often difficult
to predict the reach of the applications; as an example, we were astonished by the scope of the applications

http://www.inria.fr/equipes/gamble
https://en.wikipedia.org/wiki/Whitney_umbrella
http://www.lama.univ-savoie.fr/~lachaud/Research/Digital-surfaces-and-singular-surfaces/body.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid8

25 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team GAMBLE

of our software on 3D quadric intersection 0 which was used by researchers in, for instance, photochemistry,
computer vision, statistics and mathematics.

3.2. Non-Euclidean computational geometry

Figure 2. Left: 3D mesh of a gyroid (triply periodic surface) [54]. Right: Simulation of a periodic Delaunay
triangulation of the hyperbolic plane [24].

Triangulations, in particular Delaunay triangulations, in the Euclidean spaceRd have been extensively studied
throughout the 20th century and they are still a very active research topic. Their mathematical properties are
now well understood, many algorithms to construct them have been proposed and analyzed (see the book of
Aurenhammer et al. [23]). Some members of GAMBLE have been contributing to these algorithmic advances
(see, e.g. [28], [62], [39], [27]); they have also contributed robust and efficient triangulation packages through
the state-of-the-art Computational Geometry Algorithms Library CGAL, 0 whose impact extends far beyond
computational geometry. Application fields include particle physics, fluid dynamics, shape matching, image
processing, geometry processing, computer graphics, computer vision, shape reconstruction, mesh generation,
virtual worlds, geophysics, and medical imaging. 0

It is fair to say that little has been done on non-Euclidean spaces, in spite of the large number of questions
raised by application domains. Needs for simulations or modeling in a variety of domains 0 ranging from the
infinitely small (nuclear matter, nano-structures, biological data) to the infinitely large (astrophysics) have led
us to consider 3D periodic Delaunay triangulations, which can be seen as Delaunay triangulations in the 3D
flat torus, quotient of R3 under the action of some group of translations [34]. This work has already yielded
a fruitful collaboration with astrophysicists [47], [63] and new collaborations with physicists are emerging.
To the best of our knowledge, our CGAL package [33] is the only publicly available software that computes
Delaunay triangulations of a 3D flat torus, in the special case where the domain is cubic. This case, although
restrictive is already useful. 0 We have also generalized this algorithm to the case of general d-dimensional
compact flat manifolds [35]. As far as non-compact manifolds are concerned, past approaches, limited to the
two-dimensional case, have stayed theoretical [53].

Interestingly, even for the simple case of triangulations on the sphere, the software packages that are currently
available are far from offering satisfactory solutions in terms of robustness and efficiency [32].

0QI: http://vegas.loria.fr/qi/.
0http://www.cgal.org/
0See http://www.cgal.org/projects.html for details.
0See http://www.loria.fr/~teillaud/PeriodicSpacesWorkshop/, http://www.lorentzcenter.nl/lc/web/2009/357/info.php3?wsid=357,

http://neg15.loria.fr/ and http://gerdschroeder-turk.org/2015/06/17/shape-up-2015-exercises-in-materials-geometry-and-topology/.
0See examples at http://www.cgal.org/projects.html

http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid17
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid18
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid19
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid20
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid21
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid22
http://vegas.loria.fr/qi/
http://www.cgal.org/
http://www.cgal.org/projects.html
http://www.loria.fr/~teillaud/PeriodicSpacesWorkshop/
http://www.lorentzcenter.nl/lc/web/2009/357/info.php3?wsid=357
http://neg15.loria.fr/
http://gerdschroeder-turk.org/2015/06/17/shape-up-2015-exercises-in-materials-geometry-and-topology/
http://www.cgal.org/projects.html

26 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team GAMBLE

Moreover, while our solution for computing triangulations in hyperbolic spaces can be considered as ultimate
[24], the case of hyperbolic manifolds has hardly been explored. Hyperbolic manifolds are quotients of a hy-
perbolic space by some group of hyperbolic isometries. Their triangulations can be seen as hyperbolic periodic
triangulations. Periodic hyperbolic triangulations and meshes appear for instance in geometric modeling [55],
neuromathematics [37], or physics [58]. Even the simplest possible case (a surface homeomorphic to the torus
with two handles) shows strong mathematical difficulties [25], [60].

3.3. Probability in computational geometry
In most computational geometry papers, algorithms are analyzed in the worst-case setting. This often yields
too pessimistic complexities that arise only in pathological situations that are unlikely to occur in practice.
On the other hand, probabilistic geometry provides analyses with great precision [56], [57], [31], but using
hypotheses with much more randomness than in most realistic situations. We are developing new algorithmic
designs improving state-of-the-art performance in random settings that are not overly simplified and that can
thus reflect many realistic situations.

Twelve years ago, smooth analysis was introduced by Spielman and Teng analyzing the simplex algorithm by
averaging on some noise on the data [61] (and they won the Gödel prize). In essence, this analysis smoothes
the complexity around worst-case situations, thus avoiding pathological scenarios but without considering
unrealistic randomness. In that sense, this method makes a bridge between full randomness and worst case
situations by tuning the noise intensity. The analysis of computational geometry algorithms within this
framework is still embryonic. To illustrate the difficulty of the problem, we started working in 2009 on the
smooth analysis of the size of the convex hull of a point set, arguably the simplest computational geometry data
structure; then, only one very rough result from 2004 existed [38] and we only obtained in 2015 breakthrough
results, but still not definitive [41], [40], [45].

Another example of problem of different flavor concerns Delaunay triangulations, which are rather ubiquitous
in computational geometry. When Delaunay triangulations are computed for reconstructing meshes from point
clouds coming from 3D scanners, the worst-case scenario is, again, too pessimistic and the full randomness
hypothesis is clearly not adapted. Some results exist for “good samplings of generic surfaces” [21] but the big
result that everybody wishes for is an analysis for random samples (without the extra assumptions hidden in
the “good” sampling) of possibly non-generic surfaces.

Trade-offs between full randomness and worst case may also appear in other forms such as dependent
distributions, or random distributions conditioned to be in some special configurations. Simulating these kinds
of geometric distributions is currently out of reach for more than a few hundred points [48] although it has
practical applications in physics or networks.

http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid23
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid24
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid25
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid26
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid27
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid28
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid29
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid30
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid31
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid32
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid33
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid34
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid35
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid36
http://raweb.inria.fr/rapportsactivite/RA{$year}/gamble/bibliography.html#gamble-2018-bid37

27 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team GRACE

GRACE Project-Team

3. Research Program

3.1. Algorithmic Number Theory
Algorithmic Number Theory is concerned with replacing special cases with general algorithms to solve
problems in number theory. In the Grace project, it appears in three main threads:

• fundamental algorithms for integers and polynomials (including primality and factorization);

• algorithms for finite fields (including discrete logarithms); and

• algorithms for algebraic curves.

Clearly, we use computer algebra in many ways. Research in cryptology has motivated a renewed interest in
Algorithmic Number Theory in recent decades—but the fundamental problems still exist per se. Indeed, while
algorithmic number theory application in cryptanalysis is epitomized by applying factorization to breaking
RSA public key, many other problems, are relevant to various area of computer science. Roughly speaking,
the problems of the cryptological world are of bounded size, whereas Algorithmic Number Theory is also
concerned with asymptotic results.

3.2. Arithmetic Geometry: Curves and their Jacobians
Theme: Arithmetic Geometry: Curves and their Jacobians Arithmetic Geometry is the meeting point of
algebraic geometry and number theory: that is, the study of geometric objects defined over arithmetic number
systems (such as the integers and finite fields). The fundamental objects for our applications in both coding
theory and cryptology are curves and their Jacobians over finite fields.

An algebraic plane curveX over a field K is defined by an equation

X : FX(x, y) = 0 where FX ∈ K[x, y].

(Not every curve is planar—we may have more variables, and more defining equations—but from an
algorithmic point of view, we can always reduce to the plane setting.) The genusgX of X is a non-negative
integer classifying the essential geometric complexity of X; it depends on the degree of FX and on the number
of singularities of X. The curve X is associated in a functorial way with an algebraic group JX, called the
Jacobian of X. The group JX has a geometric structure: its elements correspond to points on a gX-dimensional
projective algebraic group variety. Typically, we do not compute with the equations defining this projective
variety: there are too many of them, in too many variables, for this to be convenient. Instead, we use fast
algorithms based on the representation in terms of classes of formal sums of points on X.

The simplest curves with nontrivial Jacobians are curves of genus 1, known as elliptic curves; they are typically
defined by equations of the form y2 = x3 +Ax+B. Elliptic curves are particularly important given their
central role in public-key cryptography over the past two decades. Curves of higher genus are important in
both cryptography and coding theory.

3.3. Curve-Based cryptology
Theme: Curve-Based Cryptology

Jacobians of curves are excellent candidates for cryptographic groups when constructing efficient instances of
public-key cryptosystems. Diffie–Hellman key exchange is an instructive example.

http://www.inria.fr/equipes/grace

28 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team GRACE

Suppose Alice and Bob want to establish a secure communication channel. Essentially, this means establishing
a common secret key, which they will then use for encryption and decryption. Some decades ago, they would
have exchanged this key in person, or through some trusted intermediary; in the modern, networked world,
this is typically impossible, and in any case completely unscalable. Alice and Bob may be anonymous parties
who want to do e-business, for example, in which case they cannot securely meet, and they have no way to be
sure of each other’s identities. Diffie–Hellman key exchange solves this problem. First, Alice and Bob publicly
agree on a cryptographic group G with a generator P (of order N); then Alice secretly chooses an integer a
from [1..N], and sends aP to Bob. In the meantime, Bob secretly chooses an integer b from [1..N], and sends
bP to Alice. Alice then computes a(bP), while Bob computes b(aP); both have now computed abP , which
becomes their shared secret key. The security of this key depends on the difficulty of computing abP given P ,
aP , and bP ; this is the Computational Diffie–Hellman Problem (CDHP). In practice, the CDHP corresponds
to the Discrete Logarithm Problem (DLP), which is to determine a given P and aP .

This simple protocol has been in use, with only minor modifications, since the 1970s. The challenge is to create
examples of groups G with a relatively compact representation and an efficiently computable group law, and
such that the DLP inG is hard (ideally approaching the exponential difficulty of the DLP in an abstract group).
The Pohlig–Hellman reduction shows that the DLP in G is essentially only as hard as the DLP in its largest
prime-order subgroup. We therefore look for compact and efficient groups of prime order.

The classic example of a group suitable for the Diffie–Hellman protocol is the multiplicative group of a finite
field Fq . There are two problems that render its usage somewhat less than ideal. First, it has too much structure:
we have a subexponential Index Calculus attack on the DLP in this group, so while it is very hard, the DLP
falls a long way short of the exponential difficulty of the DLP in an abstract group. Second, there is only one
such group for each q: its subgroup treillis depends only on the factorization of q − 1, and requiring q − 1 to
have a large prime factor eliminates many convenient choices of q.

This is where Jacobians of algebraic curves come into their own. First, elliptic curves and Jacobians of genus 2
curves do not have a subexponential index calculus algorithm: in particular, from the point of view of the DLP,
a generic elliptic curve is currently as strong as a generic group of the same size. Second, they provide some
diversity: we have many degrees of freedom in choosing curves over a fixed Fq , with a consequent diversity
of possible cryptographic group orders. Furthermore, an attack which leaves one curve vulnerable may not
necessarily apply to other curves. Third, viewing a Jacobian as a geometric object rather than a pure group
allows us to take advantage of a number of special features of Jacobians. These features include efficiently
computable pairings, geometric transformations for optimised group laws, and the availability of efficiently
computable non-integer endomorphisms for accelerated encryption and decryption.

3.4. Algebraic Coding Theory
Theme: Coding theory

Coding Theory studies originated with the idea of using redundancy in messages to protect against noise and
errors. The last decade of the 20th century has seen the success of so-called iterative decoding methods, which
enable us to get very close to the Shannon capacity. The capacity of a given channel is the best achievable
transmission rate for reliable transmission. The consensus in the community is that this capacity is more easily
reached with these iterative and probabilistic methods than with algebraic codes (such as Reed–Solomon
codes).

However, algebraic coding is useful in settings other than the Shannon context. Indeed, the Shannon setting
is a random case setting, and promises only a vanishing error probability. In contrast, the algebraic Hamming
approach is a worst case approach: under combinatorial restrictions on the noise, the noise can be adversarial,
with strictly zero errors.

These considerations are renewed by the topic of list decoding after the breakthrough of Guruswami and
Sudan at the end of the nineties. List decoding relaxes the uniqueness requirement of decoding, allowing
a small list of candidates to be returned instead of a single codeword. List decoding can reach a capacity
close to the Shannon capacity, with zero failure, with small lists, in the adversarial case. The method of

29 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team GRACE

Guruswami and Sudan enabled list decoding of most of the main algebraic codes: Reed–Solomon codes and
Algebraic–Geometry (AG) codes and new related constructions “capacity-achieving list decodable codes”.
These results open the way to applications again adversarial channels, which correspond to worst case settings
in the classical computer science language.

Another avenue of our studies is AG codes over various geometric objects. Although Reed–Solomon codes
are the best possible codes for a given alphabet, they are very limited in their length, which cannot exceed
the size of the alphabet. AG codes circumvent this limitation, using the theory of algebraic curves over finite
fields to construct long codes over a fixed alphabet. The striking result of Tsfasman–Vladut–Zink showed
that codes better than random codes can be built this way, for medium to large alphabets. Disregarding the
asymptotic aspects and considering only finite length, AG codes can be used either for longer codes with
the same alphabet, or for codes with the same length with a smaller alphabet (and thus faster underlying
arithmetic).

From a broader point of view, wherever Reed–Solomon codes are used, we can substitute AG codes with some
benefits: either beating random constructions, or beating Reed–Solomon codes which are of bounded length
for a given alphabet.

Another area of Algebraic Coding Theory with which we are more recently concerned is the one of Locally
Decodable Codes. After having been first theoretically introduced, those codes now begin to find practical
applications, most notably in cloud-based remote storage systems.

30 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team LFANT

LFANT Project-Team

3. Research Program

3.1. Number fields, class groups and other invariants
Participants: Bill Allombert, Jared Guissmo Asuncion, Karim Belabas, Jean-Paul Cerri, Henri Cohen, Jean-
Marc Couveignes, Andreas Enge, Fredrik Johansson, Aurel Page.

Modern number theory has been introduced in the second half of the 19th century by Dedekind, Kummer,
Kronecker, Weber and others, motivated by Fermat’s conjecture: There is no non-trivial solution in integers
to the equation xn + yn = zn for n > 3. For recent textbooks, see [7]. Kummer’s idea for solving Fermat’s
problem was to rewrite the equation as (x+ y)(x+ ζy)(x+ ζ2y) · · · (x+ ζn−1y) = zn for a primitive n-th
root of unity ζ, which seems to imply that each factor on the left hand side is an n-th power, from which a
contradiction can be derived.

The solution requires to augment the integers by algebraic numbers, that are roots of polynomials in Z[X].
For instance, ζ is a root of Xn − 1, 3

√
2 is a root of X3 − 2 and

√
3
5 is a root of 25X2 − 3. A number field

consists of the rationals to which have been added finitely many algebraic numbers together with their sums,
differences, products and quotients. It turns out that actually one generator suffices, and any number field K
is isomorphic to Q[X]/(f(X)), where f(X) is the minimal polynomial of the generator. Of special interest
are algebraic integers, “numbers without denominators”, that are roots of a monic polynomial. For instance,
ζ and 3

√
2 are integers, while

√
3
5 is not. The ring of integers of K is denoted by OK ; it plays the same role in

K as Z in Q.

Unfortunately, elements in OK may factor in different ways, which invalidates Kummer’s argumentation.
Unique factorisation may be recovered by switching to ideals, subsets of OK that are closed under addition
and under multiplication by elements of OK . In Z, for instance, any ideal is principal, that is, generated by one
element, so that ideals and numbers are essentially the same. In particular, the unique factorisation of ideals
then implies the unique factorisation of numbers. In general, this is not the case, and the class groupClK of
ideals of OK modulo principal ideals and its class numberhK = |ClK |measure how far OK is from behaving
like Z.

Using ideals introduces the additional difficulty of having to deal with units , the invertible elements of OK :
Even when hK = 1, a factorisation of ideals does not immediately yield a factorisation of numbers, since ideal
generators are only defined up to units. For instance, the ideal factorisation (6) = (2) · (3) corresponds to the
two factorisations 6 = 2 · 3 and 6 = (−2) · (−3). While in Z, the only units are 1 and−1, the unit structure in
general is that of a finitely generated Z-module, whose generators are the fundamental units. The regulatorRK
measures the “size” of the fundamental units as the volume of an associated lattice.

One of the main concerns of algorithmic algebraic number theory is to explicitly compute these invariants
(ClK and hK , fundamental units and RK), as well as to provide the data allowing to efficiently compute with
numbers and ideals of OK ; see [38] for a recent account.

The analytic class number formula links the invariants hK andRK (unfortunately, only their product) to the ζ-
function of K, ζK(s) :=

∏
p prime ideal of OK

(1−N p−s)
−1, which is meaningful when R(s) > 1, but which

may be extended to arbitrary complex s 6= 1. Introducing characters on the class group yields a generalisation
of ζ- to L-functions. The generalised Riemann hypothesis (GRH), which remains unproved even over the
rationals, states that any such L-function does not vanish in the right half-plane R(s) > 1/2. The validity of
the GRH has a dramatic impact on the performance of number theoretic algorithms. For instance, under GRH,
the class group admits a system of generators of polynomial size; without GRH, only exponential bounds are
known. Consequently, an algorithm to compute ClK via generators and relations (currently the only viable
practical approach) either has to assume that GRH is true or immediately becomes exponential.

http://www.inria.fr/equipes/lfant
http://raweb.inria.fr/rapportsactivite/RA{$year}/lfant/bibliography.html#lfant-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/lfant/bibliography.html#lfant-2018-bid1

31 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team LFANT

When hK = 1 the number fieldK may be norm-Euclidean, endowing OK with a Euclidean division algorithm.
This question leads to the notions of the Euclidean minimum and spectrum of K, and another task in
algorithmic number theory is to compute explicitly this minimum and the upper part of this spectrum, yielding
for instance generalised Euclidean gcd algorithms.

3.2. Function fields, algebraic curves and cryptology
Participants: Karim Belabas, Guilhem Castagnos, Jean-Marc Couveignes, Andreas Enge, Damien Robert,
Emmanouil Tzortzakis, Jean Kieffer.

Algebraic curves over finite fields are used to build the currently most competitive public key cryptosystems.
Such a curve is given by a bivariate equation C(X,Y) = 0 with coefficients in a finite field Fq . The
main classes of curves that are interesting from a cryptographic perspective are elliptic curves of equation
C = Y 2 − (X3 + aX + b) and hyperelliptic curves of equation C = Y 2 − (X2g+1 + · · ·) with g > 2.

The cryptosystem is implemented in an associated finite abelian group, the JacobianJacC. Using the language
of function fields exhibits a close analogy to the number fields discussed in the previous section. Let Fq(X)
(the analogue of Q) be the rational function field with subring Fq[X] (which is principal just as Z). The
function field of C is KC = Fq(X)[Y]/(C); it contains the coordinate ringOC = Fq[X,Y]/(C). Definitions
and properties carry over from the number field case K/Q to the function field extension KC/Fq(X).
The Jacobian JacC is the divisor class group of KC, which is an extension of (and for the curves used in
cryptography usually equals) the ideal class group of OC.

The size of the Jacobian group, the main security parameter of the cryptosystem, is given by an L-
function. The GRH for function fields, which has been proved by Weil, yields the Hasse–Weil bound
(
√
q − 1)

2g 6 | JacC | 6 (
√
q + 1)

2g
, or | JacC | ≈qg , where the genusg is an invariant of the curve that cor-

relates with the degree of its equation. For instance, the genus of an elliptic curve is 1, that of a hyperelliptic
one is degX C−1

2 . An important algorithmic question is to compute the exact cardinality of the Jacobian.

The security of the cryptosystem requires more precisely that the discrete logarithm problem (DLP) be difficult
in the underlying group; that is, given elementsD1 andD2 = xD1 of JacC, it must be difficult to determine x.
Computing x corresponds in fact to computing JacC explicitly with an isomorphism to an abstract product of
finite cyclic groups; in this sense, the DLP amounts to computing the class group in the function field setting.

For any integer n, the Weil pairingen on C is a function that takes as input two elements of order n of JacC
and maps them into the multiplicative group of a finite field extension Fqk with k = k(n) depending on n. It
is bilinear in both its arguments, which allows to transport the DLP from a curve into a finite field, where it is
potentially easier to solve. The Tate-Lichtenbaum pairing, that is more difficult to define, but more efficient to
implement, has similar properties. From a constructive point of view, the last few years have seen a wealth of
cryptosystems with attractive novel properties relying on pairings.

For a random curve, the parameter k usually becomes so big that the result of a pairing cannot even be output
any more. One of the major algorithmic problems related to pairings is thus the construction of curves with a
given, smallish k.

3.3. Complex multiplication
Participants: Jared Guissmo Asuncion, Karim Belabas, Henri Cohen, Jean-Marc Couveignes, Andreas Enge,
Fredrik Johansson, Chloe Martindale, Damien Robert.

Complex multiplication provides a link between number fields and algebraic curves; for a concise introduction
in the elliptic curve case, see [41], for more background material, [40]. In fact, for most curves C over a finite
field, the endomorphism ring of JacC, which determines its L-function and thus its cardinality, is an order in
a special kind of number field K, called CM field. The CM field of an elliptic curve is an imaginary-quadratic
field Q(

√
D) with D < 0, that of a hyperelliptic curve of genus g is an imaginary-quadratic extension of a

totally real number field of degree g. Deuring’s lifting theorem ensures that C is the reduction modulo some
prime of a curve with the same endomorphism ring, but defined over the Hilbert class fieldHK of K.

http://raweb.inria.fr/rapportsactivite/RA{$year}/lfant/bibliography.html#lfant-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/lfant/bibliography.html#lfant-2018-bid3

32 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team LFANT

Algebraically, HK is defined as the maximal unramified abelian extension of K; the Galois group of HK/K
is then precisely the class group ClK . A number field extension H/K is called Galois if H ' K[X]/(f) and
H contains all complex roots of f . For instance, Q(

√
2) is Galois since it contains not only

√
2, but also the

second root −
√

2 of X2 − 2, whereas Q(3
√

2) is not Galois, since it does not contain the root e2πi/3 3
√

2 of
X3 − 2. The Galois groupGalH/K is the group of automorphisms of H that fix K; it permutes the roots of f .
Finally, an abelian extension is a Galois extension with abelian Galois group.

Analytically, in the elliptic case HK may be obtained by adjoining to K the singular valuej(τ) for a complex
valued, so-called modular function j in some τ ∈ OK ; the correspondence between GalH/K and ClK allows
to obtain the different roots of the minimal polynomial f of j(τ) and finally f itself. A similar, more involved
construction can be used for hyperelliptic curves. This direct application of complex multiplication yields
algebraic curves whose L-functions are known beforehand; in particular, it is the only possible way of
obtaining ordinary curves for pairing-based cryptosystems.

The same theory can be used to develop algorithms that, given an arbitrary curve over a finite field, compute
its L-function.

A generalisation is provided by ray class fields; these are still abelian, but allow for some well-controlled
ramification. The tools for explicitly constructing such class fields are similar to those used for Hilbert class
fields.

33 Algorithmics, Computer Algebra and Cryptology - Research Program - Team OURAGAN

OURAGAN Team

3. Research Program

3.1. Basic computable objects and algorithms
The development of basic computable objects is somehow on demand and depends on all the other directions.
However, some critical computations are already known to be bottlenecks and are sources of constant efforts.

Computations with algebraic numbers appear in almost all our activities: when working with number fields
in our work in algorithmic number theory as well as in all the computations that involve the use of
solutions of zero-dimensional systems of polynomial equations. Among the identified problems: finding good
representations for single number fields (optimizing the size and degree of the defining polynomials), finding
good representations for towers or products of number fields (typically working with a tower or finding a
unique good extension), efficiently computing in practice with number fields (using certified approximation
vs working with the formal description based on polynomial arithmetics). Strong efforts are currently done
in the understanding of the various strategies by means of tight theoretical complexity studies [43], [72],
[35] and many other efforts will be required to find the right representation for the right problem in practice.
For example, for isolating critical points of plane algebraic curves, it is still unclear (at least the theoretical
complexity cannot help) that an intermediate formal parameterization is more efficient than a triangular
decomposition of the system and it is still unclear that these intermediate computations could be dominated in
time by the certified final approximation of the roots.

3.2. Algorithmic Number Theory
Concerning algorithmic number theory, the main problems we will be considering in the coming years are the
following:

• Number fields. We will continue working on the problems of class groups and generators. In
particular, the existence and accessibility of good defining polynomials for a fixed number field
remain very largely open. The impact of better polynomials on the algorithmic performance is a
very important parameter, which makes this problem essential.

• Lattice reduction. Despite a great amount of work in the past 35 years on the LLL algorithm and its
successors, many open problems remain. We will continue the study of the use of interval arithmetic
in this field and the analysis of variants of LLL along the lines of the Potential-LLL which provides
improved reduction comparable to BKZ with a small block size but has better performance.

• Elliptic curves and Drinfeld modules. The study of elliptic curves is a very fruitful area of number
theory with many applications in crypto and algorithms. Drinfeld modules are “cousins” of elliptic
curves which have been less explored in the algorithm context. However, some recent advances
[44] have used them to provide some fast sophisticated factoring algorithms. As a consequence, it is
natural to include these objects in our research directions.

3.3. Topology in small dimension
3.3.1. Character varieties

The brute force approach to computable objects from topology of small dimension will not allow any
significant progress. As explained above, the systems that arise from these problems are simply outside the
range of doable computations. We still continue the work in this direction by a four-fold approach, with all
three directions deeply inter-related. First, we focus on a couple of especially meaningful (for the applications)
cases, in particular the 3-dimensional manifold called Whitehead link complement. At this point, we are
able to make steps in the computation and describe part of the solutions [48], [55]; we hope to be able

http://www.inria.fr/equipes/ouragan
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid40
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid41
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid42
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid43
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid27
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid44

34 Algorithmics, Computer Algebra and Cryptology - Research Program - Team OURAGAN

to complete the computation using every piece of information to simplify the system. Second, we continue
the theoretical work to understand more properties of these systems [46]. These properties may prove how
useful for the mathematical understanding is the resolution of such systems - or at least the extraction of
meaningful information. This approach is for example carried on by Falbel and his work on configuration of
flags [49], [51]. Third, we position ourselves as experts in the know-how of this kind of computations and
natural interlocutors for colleagues coming up with a question on such a computable object [53], [55]. This
also allows us to push forward the kind of computation we actually do and make progress in the direction of
the second point. We are credible interlocutors because our team has the blend of theoretical knowledge and
computational capabilities that grants effective resolutions of the problems we are presented. And last, we use
the knowledge already acquired to pursue our theoretical study of the CR-spherical geometry [42], [50], [47].

Another direction of work is the help to the community in experimental mathematics on new objects. It
involves downsizing the system we are looking at (for example by going back to systems coming from
hyperbolic geometry and not CR-spherical geometry) and get the most out of what we can compute, by
studying new objects. An example of this research direction is the work of Guilloux around the volume
function on deformation varieties. This is a real-analytic function defined on the varieties we specialized
in computing. Being able to do effective computations with this function led first to a conjecture [52]. Then,
theoretical discussions around this conjecture led to a paper on a new approach to the Mahler measure of some
2-variables polynomials [54]. In turn, this last paper gave a formula for the Mahler measure in terms of a
function akin to the volume function applied at points in an algebraic variety whose moduli of coordinates are
1. The OURAGAN team has the expertise to compute all the objects appearing in this formula, opening the
way to another area of application. This area is deeply linked with number theory as well as topology of small
dimension. It requires all the tools at disposition within OURAGAN.

3.3.2. Knot theory
We will carry on the exhaustive search for the lexicographic degrees for the rational knots. They correspond
to trigonal space curves: computations in the braid group B3, explicit parametrization of trigonal curves
corresponding to "dessins d’enfants", etc. The problem seems much more harder when looking for more
general knots.

On the other hand, a natural direction would be: given an explicit polynomial space curve, determine the
under/over nature of the crossings when projecting, draw it and determine the known knot 0 it is isotopic to.

3.3.3. Vizualisation and Computational Geometry
As mentioned above, the drawing of algebraic curves and surfaces is a critical action in OURAGAN since
it is a key ingredient in numerous developments. In some cases, one will need a fully certified study of the
variety for deciding existence of solutions (for example a region in a robot’s parameter’s space with solutions
to the DKP above or deciding if some variety crosses the unit polydisk for some stability problems in control-
theory), in some other cases just a partial but certified approximation of a surface (path planning in robotics,
evaluation of non algebraic functions over an algebraic variety for volumes of knot complements in the study
of character varieties).

On the one hand, we will contribute to general tools like ISOTOP 0 under the supervision of the GAMBLE
project-team and, on the other hand, we will propose ad-hoc solutions by gluing some of our basic tools
(problems of high degrees in robust control theory). The priority is to provide a first software that implements
methods that fit as most as possible the very last complexity results we got on several (theoretical) algorithms
for the computation of the topology of plane curves.

A particular effort will be devoted to the resolution of overconstraint bivariate systems which are useful for
the studies of singular points and to polynomials systems in 3 variables in the same spirit : avoid the use
of Gröbner basis and propose a new algorithm with a state-of-the-art complexity and with a good practical
behavior.

0for example the first rational knots are listed at https://team.inria.fr/ouragan/knots
0https://isotop.gamble.loria.fr

http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid45
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid46
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid47
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid48
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid44
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid49
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid50
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid51
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/ouragan/bibliography.html#ouragan-2018-bid52
https://team.inria.fr/ouragan/knots
https://isotop.gamble.loria.fr

35 Algorithmics, Computer Algebra and Cryptology - Research Program - Team OURAGAN

In parallel, one will have to carefully study the drawing of graphs of non algebraic functions over algebraic
complex surfaces for providing several tools which are useful for mathematicians working on topology in
small dimension (a well known example is the drawing of amoebia, a way of representing a complex curve on
a sheet of paper).

36 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team POLSYS

POLSYS Project-Team

3. Research Program
3.1. Introduction

Polynomial system solving is a fundamental problem in Computer Algebra with many applications in
cryptography, robotics, biology, error correcting codes, signal theory, ... Among all available methods for
solving polynomial systems, computation of Gröbner bases remains one of the most powerful and versatile
method since it can be applied in the continuous case (rational coefficients) as well as in the discrete case (finite
fields). Gröbner bases are also building blocks for higher level algorithms that compute real sample points in
the solution set of polynomial systems, decide connectivity queries and quantifier elimination over the reals.
The major challenge facing the designer or the user of such algorithms is the intrinsic exponential behaviour
of the complexity for computing Gröbner bases. The current proposal is an attempt to tackle these issues in
a number of different ways: improve the efficiency of the fundamental algorithms (even when the complexity
is exponential), develop high performance implementation exploiting parallel computers, and investigate new
classes of structured algebraic problems where the complexity drops to polynomial time.

3.2. Fundamental Algorithms and Structured Systems
Participants: Jérémy Berthomieu, Jean-Charles Faugère, Guénaël Renault, Mohab Safey El Din, Elias
Tsigaridas, Dongming Wang, Matías Bender, Thi Xuan Vu.

Efficient algorithms F4/F5
0 for computing the Gröbner basis of a polynomial system rely heavily on a

connection with linear algebra. Indeed, these algorithms reduce the Gröbner basis computation to a sequence
of Gaussian eliminations on several submatrices of the so-called Macaulay matrix in some degree. Thus, we
expect to improve the existing algorithms by
(i) developing dedicated linear algebra routines performing the Gaussian elimination steps: this is precisely
the objective 2 described below;
(ii) generating smaller or simpler matrices to which we will apply Gaussian elimination.
We describe here our goals for the latter problem. First, we focus on algorithms for computing a Gröbner basis
of general polynomial systems. Next, we present our goals on the development of dedicated algorithms for
computing Gröbner bases of structured polynomial systems which arise in various applications.

Algorithms for general systems. Several degrees of freedom are available to the designer of a Gröbner basis
algorithm to generate the matrices occurring during the computation. For instance, it would be desirable to
obtain matrices which would be almost triangular or very sparse. Such a goal can be achieved by considering
various interpretations of the F5 algorithm with respect to different monomial orderings. To address this
problem, the tight complexity results obtained for F5 will be used to help in the design of such a general
algorithm. To illustrate this point, consider the important problem of solving boolean polynomial systems; it
might be interesting to preserve the sparsity of the original equations and, at the same time, using the fact that
overdetermined systems are much easier to solve.

Algorithms dedicated to structured polynomial systems. A complementary approach is to exploit the struc-
ture of the input polynomials to design specific algorithms. Very often, problems coming from applications are
not random but are highly structured. The specific nature of these systems may vary a lot: some polynomial
systems can be sparse (when the number of terms in each equation is low), overdetermined (the number of the
equations is larger than the number of variables), invariants by the action of some finite groups, multi-linear
(each equation is linear w.r.t. to one block of variables) or more generally multihomogeneous. In each case,
the ultimate goal is to identify large classes of problems whose theoretical/practical complexity drops and to
propose in each case dedicated algorithms.

0J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In Proceedings of ISSAC ’02,
pages 75-83, New York, NY, USA, 2002. ACM.

http://www.inria.fr/equipes/polsys

37 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team POLSYS

3.3. Solving Systems over the Reals and Applications.
Participants: Mohab Safey El Din, Elias Tsigaridas, Daniel Lazard, Ivan Bannwarth, Thi Xuan Vu.

We shall develop algorithms for solving polynomial systems over complex/real numbers. Again, the goal is
to extend significantly the range of reachable applications using algebraic techniques based on Gröbner bases
and dedicated linear algebra routines. Targeted application domains are global optimization problems, stability
of dynamical systems (e.g. arising in biology or in control theory) and theorem proving in computational
geometry.

The following functionalities shall be requested by the end-users:
(i) deciding the emptiness of the real solution set of systems of polynomial equations and inequalities,
(ii) quantifier elimination over the reals or complex numbers,
(iii) answering connectivity queries for such real solution sets.
We will focus on these functionalities.

We will develop algorithms based on the so-called critical point method to tackle systems of equations
and inequalities (problem (i)) . These techniques are based on solving 0-dimensional polynomial systems
encoding "critical points" which are defined by the vanishing of minors of Jacobian matrices (with polynomial
entries). Since these systems are highly structured, the expected results of Objective 1 and 2 may allow
us to obtain dramatic improvements in the computation of Gröbner bases of such polynomial systems.
This will be the foundation of practically fast implementations (based on singly exponential algorithms)
outperforming the current ones based on the historical Cylindrical Algebraic Decomposition (CAD) algorithm
(whose complexity is doubly exponential in the number of variables). We will also develop algorithms and
implementations that allow us to analyze, at least locally, the topology of solution sets in some specific
situations. A long-term goal is obviously to obtain an analysis of the global topology.

3.4. Low level implementation and Dedicated Algebraic Computation and
Linear Algebra.
Participants: Jean-Charles Faugère, Elias Tsigaridas, Olive Chakraborty, Jocelyn Ryckeghem.

Here, the primary objective is to focus on dedicated algorithms and software for the linear algebra steps in
Gröbner bases computations and for problems arising in Number Theory. As explained above, linear algebra
is a key step in the process of computing efficiently Gröbner bases. It is then natural to develop specific linear
algebra algorithms and implementations to further strengthen the existing software. Conversely, Gröbner bases
computation is often a key ingredient in higher level algorithms from Algebraic Number Theory. In these
cases, the algebraic problems are very particular and specific. Hence dedicated Gröbner bases algorithms and
implementations would provide a better efficiency.
Dedicated linear algebra tools. The FGB library is an efficient one for Gröbner bases computations which
can be used, for instance, via MAPLE. However, the library is sequential. A goal of the project is to extend
its efficiency to new trend parallel architectures such as clusters of multi-processor systems in order to tackle
a broader class of problems for several applications. Consequently, our first aim is to provide a durable, long
term software solution, which will be the successor of the existing FGB library. To achieve this goal, we will
first develop a high performance linear algebra package (under the LGPL license). This could be organized in
the form of a collaborative project between the members of the team. The objective is not to develop a general
library similar to the LINBOX0 project but to propose a dedicated linear algebra package taking into account
the specific properties of the matrices generated by the Gröbner bases algorithms. Indeed these matrices are
sparse (the actual sparsity depends strongly on the application), almost block triangular and not necessarily
of full rank. Moreover, most of the pivots are known at the beginning of the computation. In practice, such
matrices are huge (more than 106 columns) but taking into account their shape may allow us to speed up the
computations by one or several orders of magnitude. A variant of a Gaussian elimination algorithm together
with a corresponding C implementation has been presented. The main peculiarity is the order in which the
operations are performed. This will be the kernel of the new linear algebra library that will be developed.

0http://www.linalg.org/

38 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team POLSYS

Fast linear algebra packages would also benefit to the transformation of a Gröbner basis of a zero–dimensional
ideal with respect to a given monomial ordering into a Gröbner basis with respect to another ordering. In the
generic case at least, the change of ordering is equivalent to the computation of the minimal polynomial of
a so-called multiplication matrix. By taking into account the sparsity of this matrix, the computation of the
Gröbner basis can be done more efficiently using a variant of the Wiedemann algorithm. Hence, our goal is
also to obtain a dedicated high performance library for transforming (i.e. change ordering) Gröbner bases.

Dedicated algebraic tools for Algebraic Number Theory. Recent results in Algebraic Number Theory tend
to show that the computation of Gröbner basis is a key step toward the resolution of difficult problems in
this domain 0. Using existing resolution methods is simply not enough to solve relevant problems. The main
algorithmic bottleneck to overcome is to adapt the Gröbner basis computation step to the specific problems.
Typically, problems coming from Algebraic Number Theory usually have a lot of symmetries or the input
systems are very structured. This is the case, in particular, for problems coming from the algorithmic theory of
Abelian varieties over finite fields 0 where the objects are represented by polynomial system and are endowed
with intrinsic group actions. The main goal here is to provide dedicated algebraic resolution algorithms and
implementations for solving such problems. We do not restrict our focus on problems in positive characteristic.
For instance, tower of algebraic fields can be viewed as triangular sets; more generally, related problems (e.g.
effective Galois theory) which can be represented by polynomial systems will receive our attention. This is
motivated by the fact that, for example, computing small integer solutions of Diophantine polynomial systems
in connection with Coppersmith’s method would also gain in efficiency by using a dedicated Gröbner bases
computations step.

3.5. Solving Systems in Finite Fields, Applications in Cryptology and
Algebraic Number Theory.
Participants: Jérémy Berthomieu, Jean-Charles Faugère, Ludovic Perret, Guénaël Renault, Olive
Chakraborty, Nagardjun Chinthamani, Solane El Hirch, Jocelyn Ryckeghem.

Here, we focus on solving polynomial systems over finite fields (i.e. the discrete case) and the corresponding
applications (Cryptology, Error Correcting Codes, ...). Obviously this objective can be seen as an application
of the results of the two previous objectives. However, we would like to emphasize that it is also the source
of new theoretical problems and practical challenges. We propose to develop a systematic use of structured
systems in algebraic cryptanalysis.
(i) So far, breaking a cryptosystem using algebraic techniques could be summarized as modeling the problem
by algebraic equations and then computing a, usually, time consuming Gröbner basis. A new trend in this field
is to require a theoretical complexity analysis. This is needed to explain the behavior of the attack but also to
help the designers of new cryptosystems to propose actual secure parameters.
(ii) To assess the security of several cryptosystems in symmetric cryptography (block ciphers, hash functions,
...), a major difficulty is the size of the systems involved for this type of attack. More specifically, the bottleneck
is the size of the linear algebra problems generated during a Gröbner basis computation.

We propose to develop a systematic use of structured systems in algebraic cryptanalysis.

0 P. Gaudry, Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem, Journal of
Symbolic Computation 44,12 (2009) pp. 1690-1702

0 e.g. point counting, discrete logarithm, isogeny.

39 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team POLSYS

The first objective is to build on the recent breakthrough in attacking McEliece’s cryptosystem: it is the
first structural weakness observed on one of the oldest public key cryptosystem. We plan to develop a well
founded framework for assessing the security of public key cryptosystems based on coding theory from the
algebraic cryptanalysis point of view. The answer to this issue is strongly related to the complexity of solving
bihomogeneous systems (of bidegree (1, d)). We also plan to use the recently gained understanding on the
complexity of structured systems in other areas of cryptography. For instance, the MinRank problem – which
can be modeled as an overdetermined system of bilinear equations – is at the heart of the structural attack
proposed by Kipnis and Shamir against HFE (one of the most well known multivariate public cryptosystem).
The same family of structured systems arises in the algebraic cryptanalysis of the Discrete Logarithmic
Problem (DLP) over curves (defined over some finite fields). More precisely, some bilinear systems appear
in the polynomial modeling the points decomposition problem. Moreover, in this context, a natural group
action can also be used during the resolution of the considered polynomial system.

Dedicated tools for linear algebra problems generated during the Gröbner basis computation will be used in
algebraic cryptanalysis. The promise of considerable algebraic computing power beyond the capability of any
standard computer algebra system will enable us to attack various cryptosystems or at least to propose accurate
secure parameters for several important cryptosystems. Dedicated linear tools are thus needed to tackle these
problems. From a theoretical perspective, we plan to further improve the theoretical complexity of the hybrid
method and to investigate the problem of solving polynomial systems with noise, i.e. some equations of the
system are incorrect. The hybrid method is a specific method for solving polynomial systems over finite fields.
The idea is to mix exhaustive search and Gröbner basis computation to take advantage of the over-determinacy
of the resulting systems.

Polynomial system with noise is currently emerging as a problem of major interest in cryptography. This
problem is a key to further develop new applications of algebraic techniques; typically in side-channel
and statistical attacks. We also emphasize that recently a connection has been established between several
classical lattice problems (such as the Shortest Vector Problem), polynomial system solving and polynomial
systems with noise. The main issue is that there is no sound algorithmic and theoretical framework for solving
polynomial systems with noise. The development of such framework is a long-term objective.

40 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team SECRET

SECRET Project-Team

3. Research Program

3.1. Scientific foundations
Our approach relies on a competence whose impact is much wider than cryptology. Our tools come from
information theory, discrete mathematics, probabilities, algorithmics, quantum physics... Most of our work
mixes fundamental aspects (study of mathematical objects) and practical aspects (cryptanalysis, design of
algorithms, implementations). Our research is mainly driven by the belief that discrete mathematics and
algorithmics of finite structures form the scientific core of (algorithmic) data protection.

3.2. Symmetric cryptology
Symmetric techniques are widely used because they are the only ones that can achieve some major features
such as high-speed or low-cost encryption, fast authentication, and efficient hashing. It is a very active
research area which is stimulated by a pressing industrial demand. The process which has led to the new
block cipher standard AES in 2001 was the outcome of a decade of research in symmetric cryptography,
where new attacks have been proposed, analyzed and then thwarted by some appropriate designs. However,
even if its security has not been challenged so far, it clearly appears that the AES cannot serve as a Swiss
knife in all environments. In particular an important challenge raised by several new applications is the
design of symmetric encryption schemes with some additional properties compared to the AES, either in
terms of implementation performance (low-cost hardware implementation, low latency, resistance against
side-channel attacks...) or in terms of functionalities (like authenticated encryption). The past decade has
then been characterized by a multiplicity of new proposals. This proliferation of symmetric primitives has
been amplified by several public competitions (eSTREAM, SHA-3, CAESAR...) which have encouraged
innovative constructions and promising but unconventional designs. We are then facing up to a very new
situation where implementers need to make informed choices among more than 40 lightweight block ciphers 0

or 57 new authenticated-encryption schemes 0. Evaluating the security of all these proposals has then become
a primordial task which requires the attention of the community.

In this context we believe that the cryptanalysis effort cannot scale up without an in-depth study of the
involved algorithms. Indeed most attacks are described as ad-hoc techniques dedicated to a particular cipher.
To determine whether they apply to some other primitives, it is then crucial to formalize them in a general
setting. Our approach relies on the idea that a unified description of generic attacks (in the sense that they
apply to a large class of primitives) is the only methodology for a precise evaluation of the resistance of
all these new proposals, and of their security margins. In particular, such a work prevents misleading analyses
based on wrong estimations of the complexity or on non-optimized algorithms. It also provides security criteria
which enable designers to guarantee that their primitive resists some families of attacks. The main challenge
is to provide a generic description which captures most possible optimizations of the attack.

3.3. Code-based cryptography
Public-key cryptography is one of the key tools for providing network security (SSL, e-commerce, e-
banking...). The security of nearly all public-key schemes used today relies on the presumed difficulty of two
problems, namely factorization of large integers or computing the discrete logarithm over various groups.
The hardness of those problems was questioned in 1994 0 when Shor showed that a quantum computer
could solve them efficiently. Though large enough quantum computers that would be able to threaten the

035 are described on https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers.
0see http://competitions.cr.yp.to/caesar-submissions.html
0P. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, FOCS 1994.

http://www.inria.fr/equipes/secret
https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers
http://competitions.cr.yp.to/caesar-submissions.html

41 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team SECRET

existing cryptosystems do not exist yet, the cryptographic research community has to get ready and has to
prepare alternatives. This line of work is usually referred to as post-quantum cryptography. This has become a
prominent research field. Most notably, an international call for post-quantum primitives 0 has been launched
by the NIST, with a submission deadline in November 2017.

The research of the project-team in this field is focused on the design and cryptanalysis of cryptosystems mak-
ing use of coding theory. Code-based cryptography is one the main techniques for post-quantum cryptography
(together with lattice-based, multivariate, or hash-based cryptography).

3.4. Quantum information
The field of quantum information and computation aims at exploiting the laws of quantum physics to
manipulate information in radically novel ways. There are two main applications:

• quantum computing, that offers the promise of solving some problems that seem to be intractable for
classical computers such as for instance factorization or solving the discrete logarithm problem;

• quantum cryptography, which provides new ways to exchange data in a provably secure fashion. For
instance it allows key distribution by using an authenticated channel and quantum communication
over an unreliable channel with unconditional security, in the sense that its security can be proven
rigorously by using only the laws of quantum physics, even with all-powerful adversaries.

Our team deals with quantum coding theoretic issues related to building a large quantum computer and
with quantum cryptography. The first part builds upon our expertise in classical coding theory whereas the
second axis focuses on obtaining security proofs for quantum protocols or on devising quantum cryptographic
protocols (and more generally quantum protocols related to cryptography). A close relationship with partners
working in the whole area of quantum information processing in the Parisian region has also been developed
through our participation to the Fédération de Recherche “PCQC” (Paris Centre for Quantum Computing).

0http://csrc.nist.gov/groups/ST/post-quantum-crypto/

http://csrc.nist.gov/groups/ST/post-quantum-crypto/

42 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team SPECFUN

SPECFUN Project-Team

3. Research Program

3.1. Studying special functions by computer algebra
Computer algebra manipulates symbolic representations of exact mathematical objects in a computer, in order
to perform computations and operations like simplifying expressions and solving equations for “closed-form
expressions”. The manipulations are often fundamentally of algebraic nature, even when the ultimate goal is
analytic. The issue of efficiency is a particular one in computer algebra, owing to the extreme swell of the
intermediate values during calculations.

Our view on the domain is that research on the algorithmic manipulation of special functions is anchored
between two paradigms:

• adopting linear differential equations as the right data structure for special functions,

• designing efficient algorithms in a complexity-driven way.

It aims at four kinds of algorithmic goals:

• algorithms combining functions,

• functional equations solving,

• multi-precision numerical evaluations,

• guessing heuristics.

This interacts with three domains of research:

• computer algebra, meant as the search for quasi-optimal algorithms for exact algebraic objects,

• symbolic analysis/algebraic analysis;

• experimental mathematics (combinatorics, mathematical physics, ...).

This view is made explicit in the present section.

3.1.1. Equations as a data structure
Numerous special functions satisfy linear differential and/or recurrence equations. Under a mild technical
condition, the existence of such equations induces a finiteness property that makes the main properties of the
functions decidable. We thus speak of D-finite functions. For example, 60 % of the chapters in the handbook
[11] describe D-finite functions. In addition, the class is closed under a rich set of algebraic operations. This
makes linear functional equations just the right data structure to encode and manipulate special functions. The
power of this representation was observed in the early 1990s [62], leading to the design of many algorithms in
computer algebra. Both on the theoretical and algorithmic sides, the study of D-finite functions shares much
with neighbouring mathematical domains: differential algebra, D-module theory, differential Galois theory, as
well as their counterparts for recurrence equations.

3.1.2. Algorithms combining functions
Differential/recurrence equations that define special functions can be recombined [62] to define: additions
and products of special functions; compositions of special functions; integrals and sums involving special
functions. Zeilberger’s fast algorithm for obtaining recurrences satisfied by parametrised binomial sums was
developed in the early 1990s already [63]. It is the basis of all modern definite summation and integration
algorithms. The theory was made fully rigorous and algorithmic in later works, mostly by a group in RISC
(Linz, Austria) and by members of the team [51], [59], [28], [26], [27], [46]. The past ÉPI Algorithms
contributed several implementations (gfun [54], Mgfun [28]).

http://www.inria.fr/equipes/specfun
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid21
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid21
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid22
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid23
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid24
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid25
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid26
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid27
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid28
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid29
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid25

43 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team SPECFUN

3.1.3. Solving functional equations
Encoding special functions as defining linear functional equations postpones some of the difficulty of the
problems to a delayed solving of equations. But at the same time, solving (for special classes of functions)
is a sub-task of many algorithms on special functions, especially so when solving in terms of polynomial or
rational functions. A lot of work has been done in this direction in the 1990s; more intensively since the 2000s,
solving differential and recurrence equations in terms of special functions has also been investigated.

3.1.4. Multi-precision numerical evaluation
A major conceptual and algorithmic difference exists for numerical calculations between data structures
that fit on a machine word and data structures of arbitrary length, that is, multi-precision arithmetic. When
multi-precision floating-point numbers became available, early works on the evaluation of special functions
were just promising that “most” digits in the output were correct, and performed by heuristically increasing
precision during intermediate calculations, without intended rigour. The original theory has evolved in a
twofold way since the 1990s: by making computable all constants hidden in asymptotic approximations, it
became possible to guarantee a prescribed absolute precision; by employing state-of-the-art algorithms on
polynomials, matrices, etc, it became possible to have evaluation algorithms in a time complexity that is linear
in the output size, with a constant that is not more than a few units. On the implementation side, several original
works exist, one of which (NumGfun [50]) is used in our DDMF.

3.1.5. Guessing heuristics
“Differential approximation”, or “Guessing”, is an operation to get an ODE likely to be satisfied by a given
approximate series expansion of an unknown function. This has been used at least since the 1970s and is a key
stone in spectacular applications in experimental mathematics [25]. All this is based on subtle algorithms for
Hermite–Padé approximants [15]. Moreover, guessing can at times be complemented by proven quantitative
results that turn the heuristics into an algorithm [23]. This is a promising algorithmic approach that deserves
more attention than it has received so far.

3.1.6. Complexity-driven design of algorithms
The main concern of computer algebra has long been to prove the feasibility of a given problem, that is, to
show the existence of an algorithmic solution for it. However, with the advent of faster and faster computers,
complexity results have ceased to be of theoretical interest only. Nowadays, a large track of works in computer
algebra is interested in developing fast algorithms, with time complexity as close as possible to linear in
their output size. After most of the more pervasive objects like integers, polynomials, and matrices have been
endowed with fast algorithms for the main operations on them [33], the community, including ourselves,
started to turn its attention to differential and recurrence objects in the 2000s. The subject is still not as
developed as in the commutative case, and a major challenge remains to understand the combinatorics behind
summation and integration. On the methodological side, several paradigms occur repeatedly in fast algorithms:
“divide and conquer” to balance calculations, “evaluation and interpolation” to avoid intermediate swell of
data, etc. [20].

3.2. Trusted computer-algebra calculations
3.2.1. Encyclopedias

Handbooks collecting mathematical properties aim at serving as reference, therefore trusted, documents. The
decision of several authors or maintainers of such knowledge bases to move from paper books [11], [13], [55]
to websites and wikis 0 allows for a more collaborative effort in proof reading. Another step toward further
confidence is to manage to generate the content of an encyclopedia by computer-algebra programs, as is the
case with the Wolfram Functions Site 0 or DDMF 0. Yet, due to the lingering doubts about computer-algebra

0for instance http://dlmf.nist.gov/ for special functions or http://oeis.org/ for integer sequences
0http://functions.wolfram.com/
0http://ddmf.msr-inria.inria.fr/1.9.1/ddmf

http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid30
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid19
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid31
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid32
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid33
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid34
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid35
http://dlmf.nist.gov/
http://oeis.org/
http://functions.wolfram.com/
http://ddmf.msr-inria.inria.fr/1.9.1/ddmf

44 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team SPECFUN

systems, some encyclopedias propose both cross-checking by different systems and handwritten companion
paper proofs of their content. As of today, there is no encyclopedia certified with formal proofs.

3.2.2. Computer algebra and symbolic logic
Several attempts have been made in order to extend existing computer-algebra systems with symbolic
manipulations of logical formulas. Yet, these works are more about extending the expressivity of computer-
algebra systems than about improving the standards of correctness and semantics of the systems. Conversely,
several projects have addressed the communication of a proof system with a computer-algebra system,
resulting in an increased automation available in the proof system, to the price of the uncertainty of the
computations performed by this oracle.

3.2.3. Certifying systems for computer algebra
More ambitious projects have tried to design a new computer-algebra system providing an environment where
the user could both program efficiently and elaborate formal and machine-checked proofs of correctness, by
calling a general-purpose proof assistant like the Coq system. This approach requires a huge manpower and a
daunting effort in order to re-implement a complete computer-algebra system, as well as the libraries of formal
mathematics required by such formal proofs.

3.2.4. Semantics for computer algebra
The move to machine-checked proofs of the mathematical correctness of the output of computer-algebra
implementations demands a prior clarification about the often implicit assumptions on which the presumably
correctly implemented algorithms rely. Interestingly, this preliminary work, which could be considered as
independent from a formal certification project, is seldom precise or even available in the literature.

3.2.5. Formal proofs for symbolic components of computer-algebra systems
A number of authors have investigated ways to organize the communication of a chosen computer-algebra
system with a chosen proof assistant in order to certify specific components of the computer-algebra systems,
experimenting various combinations of systems and various formats for mathematical exchanges. Another line
of research consists in the implementation and certification of computer-algebra algorithms inside the logic
[58], [38], [47] or as a proof-automation strategy. Normalization algorithms are of special interest when they
allow to check results possibly obtained by an external computer-algebra oracle [31]. A discussion about the
systematic separation of the search for a solution and the checking of the solution is already clearly outlined
in [44].

3.2.6. Formal proofs for numerical components of computer-algebra systems
Significant progress has been made in the certification of numerical applications by formal proofs. Libraries
formalizing and implementing floating-point arithmetic as well as large numbers and arbitrary-precision
arithmetic are available. These libraries are used to certify floating-point programs, implementations of
mathematical functions and for applications like hybrid systems.

3.3. Machine-checked proofs of formalized mathematics
To be checked by a machine, a proof needs to be expressed in a constrained, relatively simple formal language.
Proof assistants provide facilities to write proofs in such languages. But, as merely writing, even in a formal
language, does not constitute a formal proof just per se, proof assistants also provide a proof checker: a small
and well-understood piece of software in charge of verifying the correctness of arbitrarily large proofs. The
gap between the low-level formal language a machine can check and the sophistication of an average page of
mathematics is conspicuous and unavoidable. Proof assistants try to bridge this gap by offering facilities, like
notations or automation, to support convenient formalization methodologies. Indeed, many aspects, from the
logical foundation to the user interface, play an important role in the feasibility of formalized mathematics
inside a proof assistant.

http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid36
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid37
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid38
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid39

45 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team SPECFUN

3.3.1. Logical foundations and proof assistants
While many logical foundations for mathematics have been proposed, studied, and implemented, type theory
is the one that has been more successfully employed to formalize mathematics, to the notable exception of the
Mizar system [48], which is based on set theory. In particular, the calculus of construction (CoC) [29] and its
extension with inductive types (CIC) [30], have been studied for more than 20 years and been implemented
by several independent tools (like Lego, Matita, and Agda). Its reference implementation, Coq [56], has been
used for several large-scale formalizations projects (formal certification of a compiler back-end; four-color
theorem). Improving the type theory underlying the Coq system remains an active area of research. Other
systems based on different type theories do exist and, whilst being more oriented toward software verification,
have been also used to verify results of mainstream mathematics (prime-number theorem; Kepler conjecture).

3.3.2. Computations in formal proofs
The most distinguishing feature of CoC is that computation is promoted to the status of rigorous logical
argument. Moreover, in its extension CIC, we can recognize the key ingredients of a functional programming
language like inductive types, pattern matching, and recursive functions. Indeed, one can program effectively
inside tools based on CIC like Coq. This possibility has paved the way to many effective formalization
techniques that were essential to the most impressive formalizations made in CIC.

Another milestone in the promotion of the computations-as-proofs feature of Coq has been the integration of
compilation techniques in the system to speed up evaluation. Coq can now run realistic programs in the logic,
and hence easily incorporates calculations into proofs that demand heavy computational steps.

Because of their different choice for the underlying logic, other proof assistants have to simulate computations
outside the formal system, and indeed fewer attempts to formalize mathematical proofs involving heavy
calculations have been made in these tools. The only notable exception, which was finished in 2014, the
Kepler conjecture, required a significant work to optimize the rewriting engine that simulates evaluation in
Isabelle/HOL.

3.3.3. Large-scale computations for proofs inside the Coq system
Programs run and proved correct inside the logic are especially useful for the conception of automated decision
procedures. To this end, inductive types are used as an internal language for the description of mathematical
objects by their syntax, thus enabling programs to reason and compute by case analysis and recursion on
symbolic expressions.

The output of complex and optimized programs external to the proof assistant can also be stamped with a
formal proof of correctness when their result is easier to check than to find. In that case one can benefit from
their efficiency without compromising the level of confidence on their output at the price of writing and certify
a checker inside the logic. This approach, which has been successfully used in various contexts, is very relevant
to the present research project.

3.3.4. Relevant contributions from the Mathematical Component libraries
Representing abstract algebra in a proof assistant has been studied for long. The libraries developed by
the MathComp project for the proof of the Odd Order Theorem provide a rather comprehensive hierarchy
of structures; however, they originally feature a large number of instances of structures that they need to
organize. On the methodological side, this hierarchy is an incarnation of an original work [32] based on various
mechanisms, primarily type inference, typically employed in the area of programming languages. A large
amount of information that is implicit in handwritten proofs, and that must become explicit at formalization
time, can be systematically recovered following this methodology.

Small-scale reflection [35] is another methodology promoted by the MathComp project. Its ultimate goal is
to ease formal proofs by systematically dealing with as many bureaucratic steps as possible, by automated
computation. For instance, as opposed to the style advocated by Coq’s standard library, decidable predicates
are systematically represented using computable boolean functions: comparison on integers is expressed as

http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid40
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid41
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid42
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid43

46 Algorithmics, Computer Algebra and Cryptology - Research Program - Project-Team SPECFUN

program, and to state that a ≤ b one compares the output of this program run on a and b with true. In many
cases, for example when a and b are values, one can prove or disprove the inequality by pure computation.

The MathComp library was consistently designed after uniform principles of software engineering. These
principles range from simple ones, like naming conventions, to more advanced ones, like generic program-
ming, resulting in a robust and reusable collection of formal mathematical components. This large body of
formalized mathematics covers a broad panel of algebraic theories, including of course advanced topics of
finite group theory, but also linear algebra, commutative algebra, Galois theory, and representation theory. We
refer the interested reader to the online documentation of these libraries [57], which represent about 150,000
lines of code and include roughly 4,000 definitions and 13,000 theorems.

Topics not addressed by these libraries and that might be relevant to the present project include real analysis
and differential equations. The most advanced work of formalization on these domains is available in the HOL-
Light system [40], [41], [42], although some existing developments of interest [18], [49] are also available
for Coq. Another aspect of the MathComp libraries that needs improvement, owing to the size of the data
we manipulate, is the connection with efficient data structures and implementations, which only starts to be
explored.

3.3.5. User interaction with the proof assistant
The user of a proof assistant describes the proof he wants to formalize in the system using a textual language.
Depending on the peculiarities of the formal system and the applicative domain, different proof languages
have been developed. Some proof assistants promote the use of a declarative language, when the Coq and
Matita systems are more oriented toward a procedural style.

The development of the large, consistent body of MathComp libraries has prompted the need to design an
alternative and coherent language extension for the Coq proof assistant [37], [36], enforcing the robustness
of proof scripts to the numerous changes induced by code refactoring and enhancing the support for the
methodology of small-scale reflection.

The development of large libraries is quite a novelty for the Coq system. In particular any long-term
development process requires the iteration of many refactoring steps and very little support is provided by
most proof assistants, with the notable exception of Mizar [53]. For the Coq system, this is an active area of
research.

http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid44
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid45
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid46
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid47
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid48
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid49
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid50
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid51
http://raweb.inria.fr/rapportsactivite/RA{$year}/specfun/bibliography.html#specfun-2018-bid52

47 Architecture, Languages and Compilation - Research Program - Project-Team CAIRN

CAIRN Project-Team

3. Research Program

3.1. Panorama
The development of complex applications is traditionally split in three stages: a theoretical study of the
algorithms, an analysis of the target architecture and the implementation. When facing new emerging
applications such as high-performance, low-power and low-cost mobile communication systems or smart
sensor-based systems, it is mandatory to strengthen the design flow by a joint study of both algorithmic and
architectural issues.

Figure 1. CAIRN’s general design flow and related research themes

Figure 1 shows the global design flow we propose to develop. This flow is organized in levels which refer
to our three research themes: application optimization (new algorithms, fixed-point arithmetic, advanced
representations of numbers), architecture optimization (reconfigurable and specialized hardware, application-
specific processors, arithmetic operators and functions), and stepwise refinement and code generation (code
transformations, hardware synthesis, compilation).
In the rest of this part, we briefly describe the challenges concerning new reconfigurable platforms in Section
3.2 and the issues on compiler and synthesis tools related to these platforms in Section 3.3 .

http://www.inria.fr/equipes/cairn
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/uid6.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/uid7.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/uid8.html

48 Architecture, Languages and Compilation - Research Program - Project-Team CAIRN

3.2. Reconfigurable Architecture Design
Nowadays, FPGAs are not only suited for application specific algorithms, but also considered as fully-featured
computing platforms, thanks to their ability to accelerate massively parallelizable algorithms much faster than
their processor counterparts [78]. They also support to be dynamically reconfigured. At runtime, partially
reconfigurable regions of the logic fabric can be reconfigured to implement a different task, which allows
for a better resource usage and adaptation to the environment. Dynamically reconfigurable hardware can also
cope with hardware errors by relocating some of its functionalities to another, sane, part of the logic fabric. It
could also provide support for a multi-tasked computation flow where hardware tasks are loaded on-demand
at runtime. Nevertheless, current design flows of FPGA vendors are still limited by the use of one partial
bitstream for each reconfigurable region and for each design. These regions are defined at design time and it is
not possible to use only one bitstream for multiple reconfigurable regions nor multiple chips. The multiplicity
of such bitstreams leads to a significant increase in memory. Recent research has been conducted in the domain
of task relocation on a reconfigurable fabric. All of the related work was conducted on architectures from
commercial vendors (e.g., Xilinx, Altera) which share the same limitations: the inner details of the bitstream
are not publicly known, which limits applicability of the techniques. To circumvent this issue, most dynamic
reconfiguration techniques are either generating multiple bitstreams for each location [62] or implementing an
online filter to relocate the tasks [72]. Both of these techniques still suffer from memory footprint and from
the online complexity of task relocation.

Increasing the level and grain of reconfiguration is a solution to counterbalance the FPGA penalties. Coarse-
grained reconfigurable architectures (CGRA) provide operator-level configurable functional blocks and word-
level datapaths [79], [67], [77]. Compared to FPGA, they benefit from a massive reduction in configuration
memory and configuration delay, as well as for routing and placement complexity. This in turns results in an
improvement in the computation volume over energy cost ratio, although with a loss of flexibility compared
to bit-level operations. Such constraints have been taken into account in the design of DART[9], Adres [75] or
polymorphous computing fabrics[11]. These works have led to commercial products such as the PACT/XPP
[61] or Montium from Recore systems, without however a real commercial success yet. Emerging platforms
like Xilinx/Zynq or Intel/Altera are about to change the game.

In the context of emerging heterogenous multicore architecture, CAIRN advocates for associating general-
purpose processors (GPP), flexible network-on-chip and coarse-grain or fine-grain dynamically reconfigurable
accelerators. We leverage our skills on microarchitecture, reconfigurable computing, arithmetic, and low-
power design, to discover and design such architectures with a focus on: reduced energy per operation;
improved application performance through acceleration; hardware flexibility and self-adaptive behavior;
tolerance to faults, computing errors, and process variation; protections against side channel attacks; limited
silicon area overhead.

3.3. Compilation and Synthesis for Reconfigurable Platforms
In spite of their advantages, reconfigurable architectures, and more generally hardware accelerators, lack
efficient and standardized compilation and design tools. As of today, this still makes the technology impractical
for large-scale industrial use. Generating and optimizing the mapping from high-level specifications to
reconfigurable hardware platforms are therefore key research issues, which have received considerable interest
over the last years [65], [80], [76], [74], [73]. In the meantime, the complexity (and heterogeneity) of these
platforms has also been increasing quite significantly, with complex heterogeneous multi-cores architectures
becoming a de facto standard. As a consequence, the focus of designers is now geared toward optimizing
overall system-level performance and efficiency [71]. Here again, existing tools are not well suited, as they fail
at providing a unified programming view of the programmable and/or reconfigurable components implemented
on the platform.

http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid17
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid18
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid19
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid20
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid21

49 Architecture, Languages and Compilation - Research Program - Project-Team CAIRN

In this context, we have been pursuing our efforts to propose tools whose design principles are based on a tight
coupling between the compiler and the target hardware architectures. We build on the expertise of the team
members in High Level Synthesis (HLS) [5], ASIP optimizing compilers [12] and automatic parallelization
for massively parallel specialized circuits [2]. We first study how to increase the efficiency of standard
programmable processors by extending their instruction set to speed-up compute intensive kernels. Our focus
is on efficient and exact algorithms for the identification, selection and scheduling of such instructions [6]. We
address compilation challenges by borrowing techniques from high-level synthesis, optimizing compilers and
automatic parallelization, especially when dealing with nested loop kernels. In addition, and independently of
the scientific challenges mentioned above, proposing such flows also poses significant software engineering
issues. As a consequence, we also study how leading edge software engineering techniques (Model Driven
Engineering) can help the Computer Aided Design (CAD) and optimizing compiler communities prototyping
new research ideas [4].
Efficient implementation of multimedia and signal processing applications (in software for DSP cores or
as special-purpose hardware) often requires, for reasons related to cost, power consumption or silicon
area constraints, the use of fixed-point arithmetic, whereas the algorithms are usually specified in floating-
point arithmetic. Unfortunately, fixed-point conversion is very challenging and time-consuming, typically
demanding up to 50% of the total design or implementation time. Thus, tools are required to automate this
conversion. For hardware or software implementation, the aim is to optimize the fixed-point specification.
The implementation cost is minimized under a numerical accuracy or an application performance constraint.
For DSP-software implementation, methodologies have been proposed [7] to achieve fixed-point conversion.
For hardware implementation, the best results are obtained when the word-length optimization process is
coupled with the high-level synthesis [68]. Evaluating the effects of finite precision is one of the major and
often the most time consuming step while performing fixed-point refinement. Indeed, in the word-length
optimization process, the numerical accuracy is evaluated as soon as a new word-length is tested, thus, several
times per iteration of the optimization process. Classical approaches are based on fixed-point simulations [69].
Leading to long evaluation times, they can hardly be used to explore the design space. Therefore, our aim is to
propose closed-form expressions of errors due to fixed-point approximations that are used by a fast analytical
framework for accuracy evaluation [10].

http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid22
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid23
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid24
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid25
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid26
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid27
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid28
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid29
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/bibliography.html#cairn-2018-bid30

50 Architecture, Languages and Compilation - Research Program - Team CAMUS

CAMUS Team

3. Research Program

3.1. Research Directions
The various objectives we are expecting to reach are directly related to the search of adequacy between the
sofware and the new multicore processors evolution. They also correspond to the main research directions
suggested by Hall, Padua and Pingali in [27]. Performance, correctness and productivity must be the users’
perceived effects. They will be the consequences of research works dealing with the following issues:

• Issue 1: Static Parallelization and Optimization

• Issue 2: Profiling and Execution Behavior Modeling

• Issue 3: Dynamic Program Parallelization and Optimization, Virtual Machine

• Issue 4: Proof of Program Transformations for Multicores

Efficient and correct applications development for multicore processors needs stepping in every application
development phase, from the initial conception to the final run.

Upstream, all potential parallelism of the application has to be exhibited. Here static analysis and transfor-
mation approaches (issue 1) must be processed, resulting in a multi-parallel intermediate code advising the
running virtual machine about all the parallelism that can be taken advantage of. However the compiler does
not have much knowledge about the execution environment. It obviously knows the instruction set, it can be
aware of the number of available cores, but it does not know the actual available resources at any time during
the execution (memory, number of free cores, etc.).

That is the reason why a “virtual machine” mechanism will have to adapt the application to the resources
(issue 3). Moreover the compiler will be able to take advantage only of a part of the parallelism induced by
the application. Indeed some program information (variables values, accessed memory adresses, etc.) being
available only at runtime, another part of the available parallelism will have to be generated on-the-fly during
the execution, here also, thanks to a dynamic mechanism.

This on-the-fly parallelism extraction will be performed using speculative behavior models (issue 2), such
models allowing to generate speculative parallel code (issue 3). Between our behavior modeling objectives,
we can add the behavior monitoring, or profiling, of a program version. Indeed, the complexity of current and
future architectures avoids assuming an optimal behavior regarding a given program version. A monitoring
process will allow to select on-the-fly the best parallelization.

These different parallelizing steps are schematized on figure 1 .

Our project lies on the conception of a production chain for efficient execution of an application on a multicore
architecture. Each link of this chain has to be formally verified in order to ensure correctness as well as
efficiency. More precisely, it has to be ensured that the compiler produces a correct intermediate code, and
that the virtual machine actually performs the parallel execution semantically equivalent to the source code:
every transformation applied to the application, either statically by the compiler or dynamically by the virtual
machine, must preserve the initial semantics. They must be proved formally (issue 4).

In the following, those different issues are detailed while forming our global and long term vision of what has
to be done.

3.2. Static Parallelization and Optimization
Participants: Vincent Loechner, Philippe Clauss, Éric Violard, Cédric Bastoul, Arthur Charguéraud.

http://www.inria.fr/equipes/camus
http://raweb.inria.fr/rapportsactivite/RA{$year}/camus/bibliography.html#camus-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/camus/uid10.html

51 Architecture, Languages and Compilation - Research Program - Team CAMUS

Figure 1. Automatic parallelizing steps for multicore architectures

Static optimizations, from source code at compile time, benefit from two decades of research in automatic
parallelization: many works address the parallelization of loop nests accessing multi-dimensional arrays, and
these works are now mature enough to generate efficient parallel code [23]. Low-level optimizations, in the
assembly code generated by the compiler, have also been extensively dealt with for single-core and require
few adaptations to support multicore architectures. Concerning multicore specific parallelization, we propose
to explore two research directions to take full advantage of these architectures: adapting parallelization to
multicore architecture and expressing many potential parallelisms.

3.3. Profiling and Execution Behavior Modeling
Participants: Alain Ketterlin, Philippe Clauss, Salwa Kobeissi.

The increasing complexity of programs and hardware architectures makes it ever harder to characterize be-
forehand a given program’s run time behavior. The sophistication of current compilers and the variety of
transformations they are able to apply cannot hide their intrinsic limitations. As new abstractions like transac-
tional memories appear, the dynamic behavior of a program strongly conditions its observed performance. All
these reasons explain why empirical studies of sequential and parallel program executions have been consid-
ered increasingly relevant. Such studies aim at characterizing various facets of one or several program runs,
e.g., memory behavior, execution phases, etc. In some cases, such studies characterize more the compiler than
the program itself. These works are of tremendous importance to highlight all aspects that escape static analy-
sis, even though their results may have a narrow scope, due to the possible incompleteness of their input data
sets.

3.4. Dynamic Parallelization and Optimization, Virtual Machine
Participants: Philippe Clauss, Salwa Kobeissi, Jens Gustedt, Alain Ketterlin, Muthena Abdul Wahab, Mariem
Saied, Daniel Salas, Maxime Mogé.

This link in the programming chain has become essential with the advent of the new multicore architectures.
Still being considered as secondary with mono-core architectures, dynamic analysis and optimization are now
one of the keys for controlling the complexity of those new mechanisms. From now on, performed instructions
are not only dedicated to the application functionalities, but also to its control and its transformation, and so in
its own interest. Behaving like a computer virus, such a process should rather be qualified as a “vitamin”.
It perfectly knows the current characteristics of the execution environment and owns some qualitative
information thanks to a behavior modeling process (issue 2). It appends a significant part of optimizing ability
compared to a static compiler, while observing the evolution of the availability of live resources.

http://raweb.inria.fr/rapportsactivite/RA{$year}/camus/bibliography.html#camus-2018-bid1

52 Architecture, Languages and Compilation - Research Program - Team CAMUS

3.5. Proof of Program Transformations for Multicores
Participants: Éric Violard, Alain Ketterlin, Julien Narboux, Nicolas Magaud, Arthur Charguéraud.

Our main objective consists in certifying the critical modules of our optimization tools (the compiler and the
virtual machine). First we will prove the main loop transformation algorithms which constitute the core of our
system.

The optimization process can be separated into two stages: the transformations consisting in optimizing the
sequential code and in exhibiting parallelism, and those consisting in optimizing the parallel code itself. The
first category of optimizations can be proved within a sequential semantics. For the other optimizations, we
need to work within a concurrent semantics. We expect the first stage of optimizations to produce data-race
free code. For the second stage of optimizations, we will first assume that the input code is data-race free.
We will prove those transformations using Appel’s concurrent separation logic [28]. Proving transformations
involving program which are not data-race free will constitute a longer term research goal.

http://raweb.inria.fr/rapportsactivite/RA{$year}/camus/bibliography.html#camus-2018-bid2

53 Architecture, Languages and Compilation - Research Program - Team CASH

CASH Team

3. Research Program
3.1. Definition of dataflow representations of parallel programs

In the last decades, several frameworks have emerged to design efficient compiler algorithms. The efficiency
of all the optimizations performed in compilers strongly relies on effective static analyses and intermediate
representations. Dataflow models are a natural intermediate representation for hardware compilers (HLS) and
more generally for parallelizing compilers. Indeed, dataflow models capture task-level parallelism and can be
mapped naturally to parallel architectures. In a way, a dataflow model is a partition of the computation into
processes and a partition of the flow dependences into channels. This partitioning prepares resource allocation
(which processor/hardware to use) and medium-grain communications.

The main goal of the CASH team is to provide efficient analyses and the optimizing compilation frameworks
for dataflow programming models. The results of the team will rely on programming languages and represen-
tation of programs in which parallelism and dataflow play a crucial role. This first research direction aims at
defining these dataflow languages and intermediate representations, both from a practical perspective (syntax
or structure), and from a theoretical point of view (semantics). This first research direction thus defines the
models on which the other directions will rely. It is important to note that we do not restrict ourself to a strict
definition of dataflow languages and, more generally, we are interested in the parallel languages in which
dataflow synchronization plays a significant role.

Intermediate dataflow model. The intermediate dataflow model is a representation of the program that is
adapted for optimization and scheduling. It will be obtained from the analysis of a (parallel or sequential)
program and should at some point be used for compilation. The dataflow model must specify precisely
its semantics and parallelism granularity. It must also be analyzable with polyhedral techniques, where
powerful concepts exist to design compiler analysis, e.g., scheduling or resource allocation. Polyhedral Process
Networks [55] extended with a module system could be a good starting point. But then, how to fit non-
polyhedral parts of the program? A solution is to hide non-polyhedral parts into processes with a proper
polyhedral abstraction. This organization between polyhedral and non-polyhedral processes will be a key
aspect of our medium-grain dataflow model. The design of our intermediate dataflow model and the precise
definition of its semantics will constitute a reliable basis to formally define and ensure the correctness of
algorithms proposed by CASH: compilation, optimizations and analyses.

Dataflow programming languages. Dataflow paradigm has also been explored quite intensively in program-
ming languages. Indeed, there exists a large panel of dataflow languages, whose characteristics differ notably,
the major point of variability being the scheduling of agents and their communications. There is indeed a
continuum from the synchronous dataflow languages like Lustre [37] or Streamit [51], where the scheduling
is fully static, and general communicating networks like KPNs [39] or RVC-Cal [19] where a dedicated
runtime is responsible for scheduling tasks dynamically, when they can be executed. These languages share
some similarities with actor languages that go even further in the decoupling of processes by considering them
as independent reactive entities. Another objective of the CASH team is to study dataflow programming lan-
guages, their semantics, their expressiveness, and their compilation. The specificity of the CASH team will be
that these languages will be designed taking into consideration the compilation using polyhedral techniques.
In particular, we will explore which dataflow constructs are better adapted for our static analysis, compilation,
and scheduling techniques. In practice we want to propose high-level primitives to express data dependency,
this way the programmer will express parallelism in a dataflow way instead of the classical communication-
oriented dependencies. The higher-level more declarative point of view will make programming easier but also
give more optimization opportunities. These primitives will be inspired by the existing works in the polyhedral
model framework, as well as dataflow languages, but also in the actors and active object languages [26] that
nowadays introduce more and more dataflow primitives to enable data-driven interactions between agents,
particularly with futures [24], [31].

http://www.inria.fr/equipes/cash
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid8

54 Architecture, Languages and Compilation - Research Program - Team CASH

3.1.1. Expected Impact
Consequently, the impact of this research direction is both the usability of our representation for static analyses
and optimizations performed in Sections 3.2 and 3.3 , and the usability of its semantics to prove the correctness
of these analyses.

3.1.2. Scientific Program
3.1.2.1. Short-term and ongoing activities.

We obtained preliminary experimental [16], [17], [32] and theoretical [38] results, exploring several aspects
of dataflow models. The next step is to define accurately the intermediate dataflow model and to study existing
programming and execution models:
• Define our medium-grain dataflow model. So far, a modular Polyhedral Process Networks appears

as a natural candidate but it may need to be extended to be adapted to a wider range of applications.
Precise semantics will have to be defined for this model to ensure the articulation with the activities
discussed in Section 3.3 .

• Study precisely existing dataflow languages, their semantics, their programmability, and their
limitations.

3.1.2.2. Medium-term activities.

In a second step, we will extend the existing results to widen the expressiveness of our intermediate
representation and design new parallelism constructs. We will also work on the semantics of dataflow
languages:
• Propose new stream programming models and a clean semantics where all kinds of parallelisms are

expressed explicitly, and where all activities from code design to compilation and scheduling can be
clearly expressed.

• Identify a core language that is rich enough to be representative of the dataflow languages we are
interested in, but abstract and small enough to enable formal reasoning and proofs of correctness for
our analyses and optimizations.

3.1.2.3. Long-term activities.

In a longer-term vision, the work on semantics, while remaining driven by the applications, would lead to to
more mature results, for instance:
• Design more expressive dataflow languages and intermediate representations which would at the

same time be expressive enough to capture all the features we want for aggressive HPC optimiza-
tions, and sufficiently restrictive to be (at least partially) statically analyzable at a reasonable cost.

• Define a module system for our medium-grain dataflow language. A program will then be divided
into modules that can follow different compilation schemes and execution models but still commu-
nicate together. This will allow us to encapsulate a program that does not fit the polyhedral model
into a polyhedral one and vice versa. Also, this will allow a compositional analysis and compilation,
as opposed to global analysis which is limited in scalability.

3.2. Expressivity and Scalability of Static Analyses
The design and implementation of efficient compilers becomes more difficult each day, as they need to
bridge the gap between complex languages and complex architectures. Application developers use languages
that bring them close to the problem that they need to solve which explains the importance of high-level
programming languages. However, high-level programming languages tend to become more distant from the
hardware which they are meant to command.

In this research direction, we propose to design expressive and scalable static analyses for compilers. This
topic is closely linked to Sections 3.1 and 3.3 since the design of an efficient intermediate representation is
made while regarding the analyses it enables. The intermediate representation should be expressive enough to
embed maximal information; however if the representation is too complex the design of scalable analyses will
be harder.

http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid25.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid33.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid33.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid13.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid33.html

55 Architecture, Languages and Compilation - Research Program - Team CASH

The analyses we plan to design in this activity will of course be mainly driven by the HPC dataflow
optimizations we mentioned in the preceding sections; however we will also target other kinds of analyses
applicable to more general purpose programs. We will thus consider two main directions:

• Extend the applicability of the polyhedral model, in order to deal with HPC applications that do not
fit totally in this category. More specifically, we plan to work on more complex control and also on
complex data structures, like sparse matrices, which are heavily used in HPC.

• Design of specialized static analyses for memory diagnostic and optimization inside general purpose
compilers.

For both activities, we plan to cross fertilize ideas coming from the abstract interpretation community as well
as language design, dataflow semantics, and WCET estimation techniques.

Correct by construction analyses. The design of well-defined semantics for the chosen programming language
and intermediate representation will allow us to show the correctness of our analyses. The precise study of the
semantics of Section 3.1 will allow us to adapt the analysis to the characteristics of the language, and prove
that such an adaptation is well founded. This approach will be applicable both on the source language and on
the intermediate representation.

Such wellfoundedness criteria relatively to the language semantics will first be used to design our analyses, and
then to study which extensions of the languages can be envisioned and analyzed safely, and which extensions
(if any) are difficult to analyze and should be avoided. Here the correct identification of a core language
for our formal studies (see Section 3.1) will play a crucial role as the core language should feature all the
characteristics that might make the analysis difficult or incorrect.

Scalable abstract domains. We already have experience in designing low-cost semi relational abstract domains
for pointers [44], [42], as well as tailoring static analyses for specialized applications in compilation [30], [50],
Synchronous Dataflow scheduling [49], and extending the polyhedral model to irregular applications [15]. We
also have experience in the design of various static verification techniques adapted to different programming
paradigms.

3.2.1. Expected impact
The impact of this work is the significantly widened applicability of various tools/compilers related to
parallelization: allow optimizations for a larger class of programs, and allow low-cost analysis that scale to
very large programs.

We target both analysis for optimization and analysis to detect, or prove the absence of bugs.

3.2.2. Scientific Program
3.2.2.1. Short-term and ongoing activities.

Together with Paul Iannetta and Lionel Morel (INSA/CEA LETI), we are currently working on the semantic
rephrasing of the polyhedral model [34]. The objective is to clearly redefine the key notions of the polyhedral
model on general flowchart programs operating on arrays, lists and trees. We reformulate the algorithms that
are performed to compute dependencies in a more semantic fashion, i.e. considering the program semantics
instead of syntactical criteria. The next step is to express classical scheduling and code generation activities in
this framework, in order to overcome the classical syntactic restrictions of the polyhedral model.

3.2.2.2. Medium-term activities.

In medium term, we want to extend the polyhedral model for more general data-structures like lists and
sparse matrices. For that purpose, we need to find polyhedral (or other shapes) abstractions for non-array
data-structures; the main difficulty is to deal with non-linearity and/or partial information (namely, over-
approximations of the data layout, or over-approximation of the program behavior). This activity will rely
on a formalization of the optimization activities (dependency computation, scheduling, compilation) in a more
general Abstract-Interpretation based framework in order to make the approximations explicit.

http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid13.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid13.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid17
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid18
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid19

56 Architecture, Languages and Compilation - Research Program - Team CASH

At the same time, we plan to continue to work on scaling static analyses for general purpose programs, in the
spirit of Maroua Maalej’s PhD [41], whose contribution is a sequence of memory analyses inside production
compilers. We already began a collaboration with Sylvain Collange (PACAP team of IRISA Laboratory) on
the design of static analyses to optimize copies from the global memory of a GPU to the block kernels (to
increase locality). In particular, we have the objective to design specialized analyses but with an explicit
notion of cost/precision compromise, in the spirit of the paper [36] that tries to formalize the cost/precision
compromise of interprocedural analyses with respect to a “context sensitivity parameter”.

3.2.2.3. Long-term activities.

In a longer-term vision, the work on scalable static analyses, whether or not directed from the dataflow
activities, will be pursued in the direction of large general-purpose programs.

An ambitious challenge is to find a generic way of adapting existing (relational) abstract domains within the
Single Static Information [20] framework so as to improve their scalability. With this framework, we would
be able to design static analyses, in the spirit of the seminal paper [25] which gave a theoretical scheme for
classical abstract interpretation analyses.

We also plan to work on the interface between the analyses and their optimization clients inside production
compilers.

3.3. Compiling and Scheduling Dataflow Programs
In this part, we propose to design the compiler analyses and optimizations for the medium-grain dataflow
model defined in section 3.1 . We also propose to exploit these techniques to improve the compilation of
dataflow languages based on actors. Hence our activity is split into the following parts:

• Translating a sequential program into a medium-grain dataflow model. The programmer cannot
be expected to rewrite the legacy HPC code, which is usually relatively large. Hence, compiler
techniques must be invented to do the translation.

• Transforming and scheduling our medium-grain dataflow model to meet some classic optimization
criteria, such as throughput, local memory requirements, or I/O traffic.

• Combining agents and polyhedral kernels in dataflow languages. We propose to apply the techniques
above to optimize the processes in actor-based dataflow languages and combine them with the
parallelism existing in the languages.

We plan to rely extensively on the polyhedral model to define our compiler analysis. The polyhedral model
was originally designed to analyze imperative programs. Analysis (such as scheduling or buffer allocation)
must be redefined in light of dataflow semantics.

Translating a sequential program into a medium-grain dataflow model. The programs considered are compute-
intensive parts from HPC applications, typically big HPC kernels of several hundreds of lines of C code. In
particular, we expect to analyze the process code (actors) from the dataflow programs. On short ACL (Affine
Control Loop) programs, direct solutions exist [53] and rely directly on array dataflow analysis [29]. On bigger
ACL programs, this analysis no longer scales. We plan to address this issue by modularizing array dataflow
analysis. Indeed, by splitting the program into processes, the complexity is mechanically reduced. This is a
general observation, which was exploited in the past to compute schedules [28]. When the program is no longer
ACL, a clear distinction must be made between polyhedral parts and non polyhedral parts. Hence, our medium-
grain dataflow language must distinguish between polyhedral process networks, and non-polyhedral code
fragments. This structure raises new challenges: How to abstract away non-polyhedral parts while keeping the
polyhedrality of the dataflow program? Which trade-off(s) between precision and scalability are effective?

Medium-grain data transfers minimization. When the system consists of a single computing unit connected to
a slow memory, the roofline model [56] defines the optimal ratio of computation per data transfer (operational
intensity). The operational intensity is then translated to a partition of the computation (loop tiling) into reuse
units: inside a reuse unit, data are transfered locally; between reuse units, data are transfered through the slow
memory. On a fine-grain dataflow model, reuse units are exposed with loop tiling; this is the case for example

http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid20
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid21
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid22
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid23
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid13.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid24
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid25
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid26
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid27

57 Architecture, Languages and Compilation - Research Program - Team CASH

in Data-aware Process Network (DPN) [17]. The following questions are however still open: How does that
translate on medium-grain dataflow models? And fundamentally what does it mean to tile a dataflow model?

Combining agents and polyhedral kernels in dataflow languages. In addition to the approach developed above,
we propose to explore the compilation of dataflow programming languages. In fact, among the applications
targeted by the project, some of them are already thought or specified as dataflow actors (video compression,
machine-learning algorithms,...).

So far, parallelization techniques for such applications have focused on taking advantage of the decomposition
into agents, potentially duplicating some agents to have several instances that work on different data items in
parallel [35]. In the presence of big agents, the programmer is left with the splitting (or merging) of these
agents by-hand if she wants to further parallelize her program (or at least give this opportunity to the runtime,
which in general only sees agents as non-malleable entities). In the presence of arrays and loop-nests, or, more
generally, some kind of regularity in the agent’s code, however, we believe that the programmer would benefit
from automatic parallelization techniques such as those proposed in the previous paragraphs. To achieve the
goal of a totally integrated approach where programmers write the applications they have in mind (application
flow in agents where the agents’ code express potential parallelism), and then it is up to the system (compiler,
runtime) to propose adequate optimizations, we propose to build on solid formal definition of the language
semantics (thus the formal specification of parallelism occurring at the agent level) to provide hierarchical
solutions to the problem of compilation and scheduling of such applications.

3.3.1. Expected impact
In general, splitting a program into simpler processes simplifies the problem. This observation leads to the
following points:

• By abstracting away irregular parts in processes, we expect to structure the long-term problem
of handling irregular applications in the polyhedral model. The long-term impact is to widen the
applicability of the polyhedral model to irregular kernels.

• Splitting a program into processes reduces the problem size. Hence, it becomes possible to scale
traditionally expensive polyhedral analysis such as scheduling or tiling to quote a few.

As for the third research direction, the short term impact is the possibility to combine efficiently classical
dataflow programming with compiler polyhedral-based optimizations. We will first propose ad-hoc solutions
coming from our HPC application expertise, but supported by strong theoretical results that prove their
correctness and their applicability in practice. In the longer term, our work will allow specifying, designing,
analyzing, and compiling HPC dataflow applications in a unified way. We target semi-automatic approaches
where pertinent feedback is given to the developer during the development process.

3.3.2. Scientific Program
3.3.2.1. Short-term and ongoing activities.

We are currently working on the RTM (Reverse-Time Migration) kernel for oil and gas applications (≈ 500
lines of C code). This kernel is long enough to be a good starting point, and small enough to be handled by a
polyhedral splitting algorithm. We figured out the possible splittings so the polyhedral analysis can scale and
irregular parts can be hidden. In a first step, we plan to define splitting metrics and algorithms to optimize the
usual criteria: communication volume, latency and throughput.

Together with Lionel Morel (INSA/CEA LETI), we currently work on the evaluation of the practical advantage
of combining the dataflow paradigm with the polyhedral optimization framework. We empirically build a
proof-of-concept tooling approach, using existing tools on existing languages [33]. We combine dataflow
programming with polyhedral compilation in order to enhance program parallelization by leveraging both
inter-agent parallelism and intra-agent parallelism (i.e., regarding loop nests inside agents). We evaluate the
approach practically, on benchmarks coming from image transformation or neural networks, and the first
results demonstrate that there is indeed a room for further improvement.

http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid28
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid29

58 Architecture, Languages and Compilation - Research Program - Team CASH

3.3.2.2. Medium-term activities.

The results of the preceding paragraph are partial and have been obtained with a simple experimental approach
only using off-the-shelf tools. We are thus encouraged to pursue research on combining expertise from
dataflow programming languages and polyhedral compilation. Our long term objective is to go towards a
formal framework to express, compile, and run dataflow applications with intrinsic instruction or pipeline
parallelism.

We plan to investigate in the following directions:

• Investigate how polyhedral analysis extends on modular dataflow programs. For instance, how to
modularize polyhedral scheduling analysis on our dataflow programs?

• Develop a proof of concept and validate it on linear algebra kernels (SVD, Gram-Schmidt, etc.).

• Explore various areas of applications from classical dataflow examples, like radio and video
processing, to more recent applications in deep learning algorithmic. This will enable us to identify
some potential (intra and extra) agent optimization patterns that could be leveraged into new
language idioms.

3.3.2.3. Long-term activities.

Current work focus on purely polyhedral applications. Irregular parts are not handled. Also, a notion of tiling
is required so the communications of the dataflow program with the outside world can be tuned with respect
to the local memory size. Hence, we plan to investigate the following points:

• Assess simple polyhedral/non polyhedral partitioning: How non-polyhedral parts can be hidden in
processes/channels? How to abstract the dataflow dependencies between processes? What would be
the impact on analyses? We target programs with irregular control (e.g., while loop, early exits) and
regular data (arrays with affine accesses).

• Design tiling schemes for modular dataflow programs: What does it mean to tile a dataflow program?
Which compiler algorithms to use?

• Implement a mature compiler infrastructure from the front-end to code generation for a reasonable
subset of the representation.

3.4. HLS-specific Dataflow Optimizations
The compiler analyses proposed in section 3.3 do not target a specific platform. In this part, we propose to
leverage these analysis to develop source-level optimizations for high-level synthesis (HLS).

High-level synthesis consists in compiling a kernel written in a high-level language (typically in C) into
a circuit. As for any compiler, an HLS tool consists in a front-end which translates the input kernel
into an intermediate representation. This intermediate representation captures the control/flow dependences
between computation units, generally in a hierarchical fashion. Then, the back-end maps this intermediate
representation to a circuit (e.g. FPGA configuration). We believe that HLS tools must be thought as fine-grain
automatic parallelizers. In classic HLS tools, the parallelism is expressed and exploited at the back-end level
during the scheduling and the resource allocation of arithmetic operations. We believe that it would be far
more profitable to derive the parallelism at the front-end level.

Hence, CASH will focus on the front-end pass and the intermediate representation. Low-level back-end
techniques are not in the scope of CASH. Specifically, CASH will leverage the dataflow representation
developed in Section 3.1 and the compilation techniques developed in Section 3.3 to develop a relevant
intermediate representation for HLS and the corresponding front-end compilation algorithms.

http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid33.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid13.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid33.html

59 Architecture, Languages and Compilation - Research Program - Team CASH

Our results will be evaluated by using existing HLS tools (e.g., Intel HLS compiler, Xilinx Vivado HLS). We
will implement our compiler as a source-to-source transformation in front of HLS tools. With this approach,
HLS tools are considered as a “back-end black box”. The CASH scheme is thus: (i) front-end: produce the
CASH dataflow representation from the input C kernel. Then, (ii) turn this dataflow representation to a C
program with pragmas for an HLS tool. This step must convey the characteristics of the dataflow representation
found by step (i) (e.g. dataflow execution, fifo synchronisation, channel size). This source-to-source approach
will allow us to get a full source-to-FPGA flow demonstrating the benefits of our tools while relying on
existing tools for low-level optimizations. Step (i) will start from the DCC tool developed by Christophe Alias,
which already produces a dataflow intermediate representation: the Data-aware Process Networks (DPN) [17].
Hence, the very first step is then to chose an HLS tool and to investiguate which input should be fed to the
HLS tool so it “respects” the parallelism and the resource allocation suggested by the DPN. From this basis,
we plan to investiguate the points described thereafter.

Roofline model and dataflow-level resource evaluation. Operational intensity must be tuned according to the
roofline model. The roofline model [56] must be redefined in light of FPGA constraints. Indeed, the peak
performance is no longer constant: it depends on the operational intensity itself. The more operational intensity
we need, the more local memory we use, the less parallelization we get (since FPGA resources are limited),
and finally the less performance we get! Hence, multiple iterations may be needed before reaching an efficient
implementation. To accelerate the design process, we propose to iterate at the dataflow program level, which
implies a fast resource evaluation at the dataflow level.

Reducing FPGA resources. Each parallel unit must use as little resources as possible to maximize parallel
duplication, hence the final performance. This requires to factorize the control and the channels. Both can be
achieved with source-to-source optimizations at dataflow level. The main issue with outputs from polyhedral
optimization is large piecewise affine functions that require a wide silicon surface on the FPGA to be
computed. Actually we do not need to compute a closed form (expression that can be evaluated in bounded
time on the FPGA) statically. We believe that the circuit can be compacted if we allow control parts to be
evaluated dynamically. Finally, though dataflow architectures are a natural candidate, adjustments are required
to fit FPGA constraints (2D circuit, few memory blocks). Ideas from systolic arrays [48] can be borrowed
to re-use the same piece of data multiple times, despite the limitation to regular kernels and the lack of I/O
flexibility. A trade-off must be found between pure dataflow and systolic communications.

Improving circuit throughput. Since we target streaming applications, the throughput must be optimized.
To achieve such an optimization, we need to address the following questions. How to derive an optimal
upper bound on the throughput for polyhedral process network? Which dataflow transformations should be
performed to reach it? The limiting factors are well known: I/O (decoding of burst data), communications
through addressable channels, and latencies of the arithmetic operators. Finally, it is also necessary to find the
right methodology to measure the throughput statically and/or dynamically.

3.4.1. Expected Impact
So far, the HLS front-end applies basic loop optimizations (unrolling, flattening, pipelining, etc.) and use a
Hierarchical Control Flow Graph-like representation with data dependencies annotations (HCDFG). With this
approach, we intend to demonstrate that polyhedral analysis combined with dataflow representations is an
effective solution for HLS tools.

3.4.2. Scientific Program
3.4.2.1. Short-term and ongoing activities.

The HLS compiler designed in the CASH team currently extracts a fine-grain parallel intermediate represen-
tation (DPN [17], [16]) from a sequential program. We will not write a back-end that produces code for FPGA
but we need to provide C programs that can be fed into existing C-to-FPGA compilers. However we obvi-
ously need an end-to-end compiler for our experiments. One of the first task of our HLS activity is to develop
a DPN-to-C code generator suitable as input to an existing HLS tool like Vivado HLS. The generated code
should exhibit the parallelism extracted by our compiler, and allow generating a final circuit more efficient than

http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid27
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid30
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid9

60 Architecture, Languages and Compilation - Research Program - Team CASH

the one that would be generated by our target HLS tool if ran directly on the input program. Source-to-source
approaches have already been experimented successfully, e.g. in Alexandru Plesco’s PhD [45].

3.4.2.2. Medium-term activities.

Our DPN-to-C code generation will need to be improved in many directions. The first point is the elimination
of redundancies induced by the DPN model itself: buffers are duplicated to allow parallel reads, processes are
produced from statements in the same loop, hence with the same control automaton. Also, multiplexing uses
affine constraints which can be factorized [18]. We plan to study how these constructs can be factorized at
C-level and to design the appropriate DPN-to-C translation algorithms.

Also, we plan to explore how on-the-fly evaluation can reduce the complexity of the control. A good starting
point is the control required for the load process (which fetch data from the distant memory). If we want to
avoid multiple load of the same data, the FSM (Finite State Machine) that describes it is usually very complex.
We believe that dynamic construction of the load set (set of data to load from the main memory) will use less
silicon than an FSM with large piecewise affine functions computed statically.

3.4.2.3. Long-term activities.

The DPN-to-C compiler will open new research perspectives. We will explore the roofline model accuracy for
different applications by playing on DPN parameters (tile size). Unlike the classical roofline model, the peak
performance is no longer assumed to be constant, but decreasing with operational intensity [58]. Hence, we
expect a unique optimal set of parameters. Thus, we will build a DPN-level cost model to derive an interval
containing the optimal parameters.

Also, we want to develop DPN-level analysis and transformation to quantify the optimal reachable throughput
and to reach it. We expect the parallelism to increase the throughput, but in turn it may require an operational
intensity beyond the optimal point discussed in the first paragraph. We will assess the trade-offs, build the
cost-models, and the relevant dataflow transformations.

3.5. Simulation of Hardware
Complex systems such as systems-on-a-chip or HPC computer with FPGA accelerator comprise both hardware
and software parts, tightly coupled together. In particular, the software cannot be executed without the
hardware, or at least a simulator of the hardware.

Because of the increasing complexity of both software and hardware, traditional simulation techniques
(Register Transfer Level, RTL) are too slow to allow full system simulation in reasonable time. New techniques
such as Transaction Level Modeling (TLM) [14] in SystemC [13] have been introduced and widely
adopted in the industry. Internally, SystemC uses discrete-event simulation, with efficient context-switch using
cooperative scheduling. TLM abstracts away communication details, and allows modules to communicate
using function calls. We are particularly interested in the loosely timed coding style where the timing of the
platform is not modeled precisely, and which allows the fastest simulations. This allowed gaining several
orders of magnitude of simulation speed. However, SystemC/TLM is also reaching its limits in terms of
performance, in particular due to its lack of parallelism.

Work on SystemC/TLM parallel execution is both an application of other work on parallelism in the team and
a tool complementary to HLS presented in Sections 3.1 (dataflow models and programs) and 3.4 (application
to FPGA). Indeed, some of the parallelization techniques we develop in CASH could apply to SystemC/TLM
programs. Conversely, a complete design-flow based on HLS needs fast system-level simulation: the full-
system usually contains both hardware parts designed using HLS, handwritten hardware components, and
software.

We will also work on simulation of the DPN intermediate representation. Simulation is a very important
tool to help validate and debug a complete compiler chain. Without simulation, validating the front-end of
the compiler requires running the full back-end and checking the generated circuit. Simulation can avoid the
execution time of the backend and provide better debugging tools.

http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid31
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid32
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid33
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid34
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid35
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid13.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid50.html

61 Architecture, Languages and Compilation - Research Program - Team CASH

Automatic parallelization has shown to be hard, if at all possible, on loosely timed models [23]. We focus
on semi-automatic approaches where the programmer only needs to make minor modifications of programs to
get significant speedups.

3.5.1. Expected Impact
The short term impact is the possibility to improve simulation speed with a reasonable additional programming
effort. The amount of additional programming effort will thus be evaluated in the short term.

In the longer term, our work will allow scaling up simulations both in terms of models and execution
platforms. Models are needed not only for individual Systems on a Chip, but also for sets of systems
communicating together (e.g., the full model for a car which comprises several systems communicating
together), and/or heterogeneous models. In terms of execution platform, we are studying both parallel and
distributed simulations.

3.5.2. Scientific Program
3.5.2.1. Short-term and ongoing activities.

We started the joint PhD (with Tanguy Sassolas) of Gabriel Busnot with CEA-LIST. The research targets
parallelizing SystemC heterogeneous simulations. CEA-LIST already developed SCale [54], which is very
efficient to simulate parallel homogeneous platforms such as multi-core chips. However, SCale cannot
currently load-balance properly the computations when the platform contains different components modeled at
various levels of abstraction. Also, SCale requires manual annotations to identify accesses to shared variables.
These annotations are given as address ranges in the case of a shared memory. This annotation scheme does not
work when the software does non-trivial memory management (virtual memory using a memory management
unit, dynamic allocation), since the address ranges cannot be known statically. We started working on the
“heterogeneous” aspect of simulations with an approach allowing changing the level of details in a simulation
at runtime, and started tackling the virtual and dynamic memory management problem by porting Linux on
our simulation platform.

We also started working on an improved support for simulation and debugging of the DPN internal represen-
tation of our parallelizing compiler (see Section 3.3). A previous quick experiment with simulation was to
generate C code that simulates parallelism with POSIX-threads. While this simulator greatly helped debug the
compiler, this is limited in several ways: simulations are not deterministic, and the simulator does not scale up
since it would create a very large number of threads for a non-trivial design.

We are working in two directions. The first is to provide user-friendly tools to allow graphical inspection of
traces. For example, we will work on the visualization of the sequence of steps leading to a deadlock when
the situation occurs, and give hints on how to fix the problem in the compiler. The second is to use an efficient
simulator to speed up the simulation. We plan to generate SystemC/TLM code from the DPN representation
to benefit from the ability of SystemC to simulate a large number of processes.

3.5.2.2. Medium-term activities.

Several research teams have proposed different approaches to deal with parallelism and heterogeneity. Each
approach targets a specific abstraction level and coding style. While we do not hope for a universal solution,
we believe that a better coordination of different actors of the domain could lead to a better integration of
solutions. We could imagine, for example, a platform with one subsystem accelerated with SCale [54] from
CEA-LIST, some compute-intensive parts delegated to sc-during [43] from Matthieu Moy, and a co-simulation
with external physical solvers using SystemC-MDVP [21] from LIP6. We plan to work on the convergence
of approaches, ideally both through point-to-point collaborations and with a collaborative project.

A common issue with heterogeneous simulation is the level of abstraction. Physical models only simulate
one scenario and require concrete input values, while TLM models are usually abstract and not aware of
precise physical values. One option we would like to investigate is a way to deal with loose information, e.g.
manipulate intervals of possible values instead of individual, concrete values. This would allow a simulation
to be symbolic with respect to the physical values.

http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid36
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid37
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/uid33.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid37
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid38
http://raweb.inria.fr/rapportsactivite/RA{$year}/cash/bibliography.html#cash-2018-bid39

62 Architecture, Languages and Compilation - Research Program - Team CASH

Obviously, works on parallel execution of simulations would benefit to simulation of data-aware process
networks (DPN). Since DPN are generated, we can even tweak the generator to guarantee some properties
on the generated code, which will give us more freedom on the parallelization and partitioning techniques.

3.5.2.3. Long-term activities.

In the long term, our vision is a simulation framework that will allow combining several simulators (not
necessarily all SystemC-based), and allow running them in a parallel way. The Functional Mockup Interface
(FMI) standard is a good basis to build upon, but the standard does not allow expressing timing and functional
constraints needed for a full co-simulation to run properly.

63 Architecture, Languages and Compilation - Research Program - Project-Team CORSE

CORSE Project-Team

3. Research Program

3.1. Scientific Foundations
One of the characteristics of CORSE is to base our researches on diverse advanced mathematical tools.
Compiler optimization requires the usage of the several tools around discrete mathematics: combinatorial
optimization, algorithmic, and graph theory. The aim of CORSE is to tackle optimization not only for general
purpose but also for domain specific applications. We believe that new challenges in compiler technology
design and in particular for split compilation should also take advantage of graph labeling techniques. In
addition to run-time and compiler techniques for program instrumentation, hybrid analysis and compilation
advances will be mainly based on polynomial and linear algebra.

The other specificity of CORSE is to address technical challenges related to compiler technology, run-
time systems, and hardware characteristics. This implies mastering the details of each. This is especially
important as any optimization is based on a reasonably accurate model. Compiler expertise will be used in
modeling applications (e.g. through automatic analysis of memory and computational complexity); Run-time
expertise will be used in modeling the concurrent activities and overhead due to contention (including memory
management); Hardware expertise will be extensively used in modeling physical resources and hardware
mechanisms (including synchronization, pipelines, etc.).

The core foundation of the team is related to the combination of static and dynamic techniques, of compilation,
and run-time systems. We believe this to be essential in addressing high-performance and low energy
challenges in the context of new important changes shown by current application, software, and architecture
trends.

Our project is structured along two main directions. The first direction belongs to the area of run-time systems
with the objective of developing strong relations with compilers. The second direction belongs to the area of
compiler analysis and optimization with the objective of combining dynamic analysis and optimization with
static techniques. The aim of CORSE is to ground those two research activities on the development of the
end-to-end optimization of some specific domain applications.

http://www.inria.fr/equipes/corse

64 Architecture, Languages and Compilation - Research Program - Project-Team PACAP

PACAP Project-Team

3. Research Program

3.1. Motivation
Our research program is naturally driven by the evolution of our ecosystem. Relevant recent changes can be
classified in the following categories: technological constraints, evolving community, and domain constraints.
We hereby summarize these evolutions.

3.1.1. Technological constraints
Until recently, binary compatibility guaranteed portability of programs, while increased clock frequency
and improved micro-architecture provided increased performance. However, in the last decade, advances in
technology and micro-architecture started translating into more parallelism instead. Technology roadmaps
even predict the feasibility of thousands of cores on a chip by 2020. Hundreds are already commercially
available. Since the vast majority of applications are still sequential, or contain significant sequential sections,
such a trend put an end to the automatic performance improvement enjoyed by developers and users. Many
research groups consequently focused on parallel architectures and compiling for parallelism.

Still, the performance of applications will ultimately be driven by the performance of the sequential part.
Despite a number of advances (some of them contributed by members of the team), sequential tasks are still a
major performance bottleneck. Addressing it is still on the agenda of the proposed PACAP project-team.

In addition, due to power constraints, only part of the billions of transistors of a microprocessor can be operated
at any given time (the dark silicon paradigm). A sensible approach consists in specializing parts of the silicon
area to provide dedicated accelerators (not run simultaneously). This results in diverse and heterogeneous
processor cores. Application and compiler designers are thus confronted with a moving target, challenging
portability and jeopardizing performance.

Finally, we live in a world where billions of sensors, actuators, and computers play a crucial role in our
life: flight control, nuclear plant management, defense systems, banking, or health care. These systems must
be reliable, despite the fact that they are subject to faults (for example due to aging, charged particle hit,
or random noise). Faults will soon become the new de facto standard. The evolution of the semiconductor
industry predicts an exponential growth of the number of permanent faults [45]. Reliability considerations
usually degrade performance. We will propose solutions to mitigate this impact (for example by limiting
overheads to critical sections).

Note on technology.
Technology also progresses at a fast pace. We do not propose to pursue any research on technology per se.
Recently proposed paradigms (non-Silicon, brain-inspired) have received lots of attention from the research
community. We do not intend to invest in those paradigms, but we will continue to investigate compilation
and architecture for more conventional programming paradigms. Still, several technological shifts may have
consequences for us, and we will closely monitor their developments. They include for example non-volatile
memory (impacts security, makes writes longer than loads), 3D-stacking (impacts bandwidth), and photonics
(impacts latencies and connection network).

3.1.2. Evolving community
The PACAP project-team tackles performance-related issues, for conventional programming paradigms. In
fact, programming complex environments is no longer the exclusive domain of experts in compilation and
architecture. A large community now develops applications for a wide range of targets, including mobile
“apps”, cloud, multicore or heterogeneous processors.

http://www.inria.fr/equipes/pacap
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid0

65 Architecture, Languages and Compilation - Research Program - Project-Team PACAP

This also includes domain scientists (in biology, medicine, but also social sciences) who started relying
heavily on computational resources, gathering huge amounts of data, and requiring a considerable amount
of processing to analyze them. Our research is motivated by the growing discrepancy between on the one
hand, the complexity of the workloads and the computing systems, and on the other hand, the expanding
community of developers at large, with limited expertise to optimize and to map efficiently computations to
compute nodes.

3.1.3. Domain constraints
Mobile, embedded systems have become ubiquitous. Many of them have real-time constraints. For this class of
systems, correctness implies not only producing the correct result, but also doing so within specified deadlines.
In the presence of heterogeneous, complex and highly dynamic systems, producing tight (i.e., useful) upper
bound to the worst-case execution time has become extremely challenging. Our research will aim at improving
the tightness as well as enlarging the set of features that can be safely analyzed.

The ever growing dependence of our economy on computing systems also implies that security has become
of utmost importance. Many systems are under constant attacks from intruders. Protection has a cost also in
terms of performance. We plan to leverage our background to contribute solutions that minimize this impact.

Note on Applications Domains.
PACAP works on fundamental technologies for computer science: processor architecture, performance-
oriented compilation and guaranteed response time for real-time. The research results may have impact on
any application domain that requires high performance execution (telecommunication, multimedia, biology,
health, engineering, environment...), but also on many embedded applications that exhibit other constraints
such as power consumption, code size and guaranteed response time.

We strive to extract from active domains the fundamental characteristics that are relevant to our research. For
example, big data is of interest to PACAP because it relates to the study of hardware/software mechanisms to
efficiently transfer huge amounts of data to the computing nodes. Similarly, the Internet of Things is of interest
because it has implications in terms of ultra low-power consumption.

3.2. Research Objectives
Processor micro-architecture and compilation have been at the core of the research carried by the members
of the project teams for two decades, with undeniable contributions. They continue to be the foundation of
PACAP.

Heterogeneity and diversity of processor architectures now require new techniques to guarantee that the
hardware is satisfactorily exploited by the software. One of our goals is to devise new static compilation
techniques (cf. Section 3.2.1), but also build upon iterative [1] and split [2] compilation to continuously
adapt software to its environment (Section 3.2.2). Dynamic binary optimization will also play a key role in
delivering adapting software and increased performance.

The end of Moore’s law and Dennard’s scaling 0 offer an exciting window of opportunity, where performance
improvements will no longer derive from additional transistor budget or increased clock frequency, but rather
come from breakthroughs in micro-architecture (Section 3.2.3). Reconciling CPU and GPU designs (Section
3.2.4) is one of our objectives.

Heterogeneity and multicores are also major obstacles to determining tight worst-case execution times of
real-time systems (Section 3.2.5), which we plan to tackle.

Finally, we also describe how we plan to address transversal aspects such as reliability (Section 3.2.6), power
efficiency (Section 3.2.7), and security (Section 3.2.8).

0According to Dennard scaling, as transistors get smaller the power density remains constant, and the consumed power remains
proportional to the area.

http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/uid28.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/uid29.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/uid30.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/uid34.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/uid35.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/uid40.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/uid41.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/uid42.html

66 Architecture, Languages and Compilation - Research Program - Project-Team PACAP

3.2.1. Static Compilation
Static compilation techniques continue to be relevant in addressing the characteristics of emerging hardware
technologies, such as non-volatile memories, 3D-stacking, or novel communication technologies. These
techniques expose new characteristics to the software layers. As an example, non-volatile memories typically
have asymmetric read-write latencies (writes are much longer than reads) and different power consumption
profiles. PACAP studies new optimization opportunities and develops tailored compilation techniques for
upcoming compute nodes. New technologies may also be coupled with traditional solutions to offer new
trade-offs. We study how programs can adequately exploit the specific features of the proposed heterogeneous
compute nodes.

We propose to build upon iterative compilation [1] to explore how applications perform on different con-
figurations. When possible, Pareto points are related to application characteristics. The best configuration,
however, may actually depend on runtime information, such as input data, dynamic events, or properties that
are available only at runtime. Unfortunately a runtime system has little time and means to determine the best
configuration. For these reasons, we also leverage split-compilation [2]: the idea consists in pre-computing
alternatives, and embedding in the program enough information to assist and drive a runtime system towards
to the best solution.

3.2.2. Software Adaptation
More than ever, software needs to adapt to its environment. In most cases, this environment remains unknown
until runtime. This is already the case when one deploys an application to a cloud, or an “app” to mobile
devices. The dilemma is the following: for maximum portability, developers should target the most general
device; but for performance they would like to exploit the most recent and advanced hardware features. JIT
compilers can handle the situation to some extent, but binary deployment requires dynamic binary rewriting.
Our work has shown how SIMD instructions can be upgraded from SSE to AVX transparently [3]. Many more
opportunities will appear with diverse and heterogeneous processors, featuring various kinds of accelerators.

On shared hardware, the environment is also defined by other applications competing for the same compu-
tational resources. It becomes increasingly important to adapt to changing runtime conditions, such as the
contention of the cache memories, available bandwidth, or hardware faults. Fortunately, optimizing at runtime
is also an opportunity, because this is the first time the program is visible as a whole: executable and libraries
(including library versions). Optimizers may also rely on dynamic information, such as actual input data, pa-
rameter values, etc. We have already developed a software platform [12] to analyze and optimize programs
at runtime, and we started working on automatic dynamic parallelization of sequential code, and dynamic
specialization.

We started addressing some of these challenges in ongoing projects such as Nano2017 PSAIC Collaborative
research program with STMicroelectronics, as well as within the Inria Project Lab MULTICORE. The H2020
FET HPC project ANTAREX also addresses these challenges from the energy perspective. We further leverage
our platform and initial results to address other adaptation opportunities. Efficient software adaptation requires
expertise from all domains tackled by PACAP, and strong interaction between all team members is expected.

3.2.3. Research directions in uniprocessor micro-architecture
Achieving high single-thread performance remains a major challenge even in the multicore era (Amdahl’s
law). The members of the PACAP project-team have been conducting research in uniprocessor micro-
architecture research for about 20 years covering major topics including caches, instruction front-end, branch
prediction, out-of-order core pipeline, and value prediction. In particular, in recent years they have been
recognized as world leaders in branch prediction [19][9] and in cache prefetching [7] and they have revived
the forgotten concept of value prediction [11][10]. This research was supported by the ERC Advanced grant
DAL (2011-2016) and also by Intel. We pursue research on achieving ultimate unicore performance. Below
are several non-orthogonal directions that we have identified for mid-term research:

1. management of the memory hierarchy (particularly the hardware prefetching);
2. practical design of very wide issue execution cores;

http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid9

67 Architecture, Languages and Compilation - Research Program - Project-Team PACAP

3. speculative execution.

Memory design issues:
Performance of many applications is highly impacted by the memory hierarchy behavior. The interactions
between the different components in the memory hierarchy and the out-of-order execution engine have high
impact on performance.

The last Data Prefetching Contest held with ISCA 2015 has illustrated that achieving high prefetching
efficiency is still a challenge for wide-issue superscalar processors, particularly those featuring a very large
instruction window. The large instruction window enables an implicit data prefetcher. The interaction between
this implicit hardware prefetcher and the explicit hardware prefetcher is still relatively mysterious as illustrated
by Pierre Michaud’s BO prefetcher (winner of DPC2) [7]. The first research objective is to better understand
how the implicit prefetching enabled by the large instruction window interacts with the L2 prefetcher and then
to understand how explicit prefetching on the L1 also interacts with the L2 prefetcher.

The second research objective is related to the interaction of prefetching and virtual/physical memory. On real
hardware, prefetching is stopped by page frontiers. The interaction between TLB prefetching (and on which
level) and cache prefetching must be analyzed.

The prefetcher is not the only actor in the hierarchy that must be carefully controlled. Significant benefits can
also be achieved through careful management of memory access bandwidth, particularly the management of
spatial locality on memory accesses, both for reads and writes. The exploitation of this locality is traditionally
handled in the memory controller. However, it could be better handled if larger temporal granularity was
available. Finally, we also intend to continue to explore the promising avenue of compressed caches. In
particular we recently proposed the skewed compressed cache [13]. It offers new possibilities for efficient
compression schemes.

Ultra wide-issue superscalar.
To effectively leverage memory level parallelism, one requires huge out-of-order execution structures as well
as very wide issue superscalar processors. For the two past decades, implementing ever wider issue superscalar
processors has been challenging. The objective of our research on the execution core is to explore (and revisit)
directions that allow the design of a very wide-issue (8-to-16 way) out-of-order execution core while mastering
its complexity (silicon area, hardware logic complexity, power/energy consumption).

The first direction that we are exploring is the use of clustered architectures [8]. Symmetric clustered
organization allows to benefit from a simpler bypass network, but induce large complexity on the issue
queue. One remarkable finding of our study [8] is that, when considering two large clusters (e.g. 8-wide),
steering large groups of consecutive instructions (e.g. 64 µops) to the same cluster is quite efficient. This
opens opportunities to limit the complexity of the issue queues (monitoring fewer buses) and register files
(fewer ports and physical registers) in the clusters, since not all results have to be forwarded to the other
cluster.

The second direction that we are exploring is associated with the approach that we developed with Sembrant et
al. [15]. It reduces the number of instructions waiting in the instruction queues for the applications benefiting
from very large instruction windows. Instructions are dynamically classified as ready (independent from any
long latency instruction) or non-ready, and as urgent (part of a dependency chain leading to a long latency
instruction) or non-urgent. Non-ready non-urgent instructions can be delayed until the long latency instruction
has been executed; this allows to reduce the pressure on the issue queue. This proposition opens the opportunity
to consider an asymmetric micro-architecture with a cluster dedicated to the execution of urgent instructions
and a second cluster executing the non-urgent instructions. The micro-architecture of this second cluster
could be optimized to reduce complexity and power consumption (smaller instruction queue, less aggressive
scheduling...)

Speculative execution.
Out-of-order (OoO) execution relies on speculative execution that requires predictions of all sorts: branch,
memory dependency, value...

http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid12

68 Architecture, Languages and Compilation - Research Program - Project-Team PACAP

The PACAP members have been major actors of branch prediction research for the last 20 years; and their
proposals have influenced the design of most of the hardware branch predictors in current microprocessors.
We will continue to steadily explore new branch predictor designs, as for instance [17].

In speculative execution, we have recently revisited value prediction (VP) which was a hot research topic
between 1996 and 2002. However it was considered until recently that value prediction would lead to a
huge increase in complexity and power consumption in every stage of the pipeline. Fortunately, we have
recently shown that complexity usually introduced by value prediction in the OoO engine can be overcome
[11][10][19][9]. First, very high accuracy can be enforced at reasonable cost in coverage and minimal
complexity [11]. Thus, both prediction validation and recovery by squashing can be done outside the out-
of-order engine, at commit time. Furthermore, we propose a new pipeline organization, EOLE ({Early | Out-
of-order | Late} Execution), that leverages VP with validation at commit to execute many instructions outside
the OoO core, in-order [10]. With EOLE, the issue-width in OoO core can be reduced without sacrificing
performance, thus benefiting the performance of VP without a significant cost in silicon area and/or energy.
In the near future, we will explore new avenues related to value prediction. These directions include register
equality prediction and compatibility of value prediction with weak memory models in multiprocessors.

3.2.4. Towards heterogeneous single-ISA CPU-GPU architectures
Heterogeneous single-ISA architectures have been proposed in the literature during the 2000’s [44] and are
now widely used in the industry (Arm big.LITTLE, NVIDIA 4+1...) as a way to improve power-efficiency
in mobile processors. These architectures include multiple cores whose respective micro-architectures offer
different trade-offs between performance and energy efficiency, or between latency and throughput, while
offering the same interface to software. Dynamic task migration policies leverage the heterogeneity of the
platform by using the most suitable core for each application, or even each phase of processing. However,
these works only tune cores by changing their complexity. Energy-optimized cores are either identical cores
implemented in a low-power process technology, or simplified in-order superscalar cores, which are far from
state-of-the-art throughput-oriented architectures such as GPUs.

We investigate the convergence of CPU and GPU at both architecture and compiler levels.

Architecture.
The architecture convergence between Single Instruction Multiple Threads (SIMT) GPUs and multicore
processors that we have been pursuing [5] opens the way for heterogeneous architectures including latency-
optimized superscalar cores and throughput-optimized GPU-style cores, which all share the same instruction
set. Using SIMT cores in place of superscalar cores will enable the highest energy efficiency on regular sections
of applications. As with existing single-ISA heterogeneous architectures, task migration will not necessitate
any software rewrite and will accelerate existing applications.

Compilers for emerging heterogeneous architectures.
Single-ISA CPU+GPU architectures will provide the necessary substrate to enable efficient heterogeneous
processing. However, it will also introduce substantial challenges at the software and firmware level. Task
placement and migration will require advanced policies that leverage both static information at compile time
and dynamic information at run-time. We are tackling the heterogeneous task scheduling problem at the
compiler level.

3.2.5. Real-time systems
Safety-critical systems (e.g. avionics, medical devices, automotive...) have so far used simple unicore hardware
systems as a way to control their predictability, in order to meet timing constraints. Still, many critical
embedded systems have increasing demand in computing power, and simple unicore processors are not
sufficient anymore. General-purpose multicore processors are not suitable for safety-critical real-time systems,
because they include complex micro-architectural elements (cache hierarchies, branch, stride and value
predictors) meant to improve average-case performance, and for which worst-case performance is difficult to
predict. The prerequisite for calculating tight WCET is a deterministic hardware system that avoids dynamic,
time-unpredictable calculations at run-time.

http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid15

69 Architecture, Languages and Compilation - Research Program - Project-Team PACAP

Even for multi and manycore systems designed with time-predictability in mind (Kalray MPPA manycore
architecture 0, or the Recore manycore hardware 0) calculating WCETs is still challenging. The following
two challenges will be addressed in the mid-term:

1. definition of methods to estimate WCETs tightly on manycores, that smartly analyze and/or control
shared resources such as buses, NoCs or caches;

2. methods to improve the programmability of real-time applications through automatic parallelization
and optimizations from model-based designs.

3.2.6. Fault Tolerance
Technology trends suggest that, in tomorrow’s computing world, failures will become commonplace due to
many factors, and the expected probability of failure will increase with scaling. While well-known approaches,
such as error correcting codes, exist to recover from failures and provide fault-free chips, the exponential
growth of the number of faults will make them unaffordable in the future. Consequently, other approaches
such as fine-grained disabling and reconfiguration of hardware elements (e.g. individual functional units or
cache blocks) will become economically necessary. We are going to enter a new era: functionally correct
chips with variable performance among chips and throughout their lifetime [45].

Transient and permanent faults may be detected by similar techniques, but correcting them generally involves
different approaches. We are primarily interested in permanent faults, even though we do not necessarily
disregard transient faults (e.g. the TMR approach in the next paragraph addresses both kinds of faults).

CPU.
Permanent faults can occur anywhere in the processor. The performance implications of faulty cells vary
depending on how the array is used in a processor. Most of micro-architectural work aiming at assessing the
performance implications of permanently faulty cells relies on simulations with random fault-maps. These
studies are, therefore, limited by the fault-maps they use that may not be representative for the average and
distributed performance. They also do not consider aging effects.

Considering the memory hierarchy, we have already studied [4] the impact of permanent faults on the
average and worst-case performance based on analytical models. We will extend these models to cover other
components and other designs, and to analyze the interaction between faulty components.

For identified critical hardware structures, such as the memory hierarchy, we will propose protection mech-
anisms by for instance using larger cells, or even by selecting a different array organization to mitigate the
impact of faults.

Another approach to deal with faults is to introduce redundancy at the code level. We propose to consider static
compilation techniques focusing on existing hardware. As an example, we plan to leverage SIMD extensions
of current instruction sets to introduce redundancy in scalar code at minimum cost. With these instructions,
it will be possible to protect the execution from both soft errors by using TMR (triple modular redundancy)
with voters in the code itself, and permanent faults without the need of extra hardware support to deconfigure
faulty functional units.

Reconfigurable Computing.
In collaboration with the CAIRN project-team, we propose to construct Coarse Grain Reconfigurable Archi-
tectures (CGRA) from a sea of basic arithmetic and memory elements organized into clusters and connected
through a hierarchical interconnection network. These clusters of basic arithmetic operators (e.g. 8-bit arith-
metic and logic units) would be able to be seamlessly configured to various accuracy and data types to adapt
the consumed energy to application requirements taking advantage of approximate computations. We propose
to add new kinds of error detection (and sometimes correction) directly at the operator level by taking advan-
tage of the massive redundancy of the array. As an example, errors can be tracked and detected in a complex
sequence of double floating-point operations by using a reduced-precision version of the same processing.

0http://www.kalrayinc.com
0http://www.recoresystems.com/

http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid16
http://www.kalrayinc.com
http://www.recoresystems.com/

70 Architecture, Languages and Compilation - Research Program - Project-Team PACAP

Such reconfigurable blocks will be driven by compilation techniques, in charge of computing checkpoints,
detecting faults, and replaying computations when needed.

Dynamic compilation techniques will help better exploit faulty hardware, by allocating data and computations
on correct resources. In case of permanent faults, we will provide a mechanism to reconfigure the hardware,
for example by reducing the issue width of VLIW processors implemented in CGRA. Dynamic code
generation (JIT compiler) will re-generate code for the new configuration, guaranteeing portability and optimal
exploitation of the hardware.

3.2.7. Power efficiency
PACAP addresses power-efficiency at several levels. First, we design static and split compilation techniques
to contribute to the race for Exascale computing (the general goal is to reach 1018 FLOP/s at less than
20 MW). Second, we focus on high-performance low-power embedded compute nodes. Within the ANR
project Continuum, in collaboration with architecture and technology experts from LIRMM and the SME
Cortus, we research new static and dynamic compilation techniques that fully exploit emerging memory
and NoC technologies. Finally, in collaboration with the CAIRN project-team, we investigate the synergy
of reconfigurable computing and dynamic code generation.

Green and heterogeneous high-performance computing.
Concerning HPC systems, our approach consists in mapping, runtime managing and autotuning applications
for green and heterogeneous High-Performance Computing systems up to the Exascale level. One key
innovation of the proposed approach consists of introducing a separation of concerns (where self-adaptivity
and energy efficient strategies are specified aside to application functionalities) promoted by the definition
of a Domain Specific Language (DSL) inspired by aspect-oriented programming concepts for heterogeneous
systems. The new DSL will be introduced for expressing adaptivity/energy/performance strategies and to
enforce at runtime application autotuning and resource and power management. The goal is to support the
parallelism, scalability and adaptability of a dynamic workload by exploiting the full system capabilities
(including energy management) for emerging large-scale and extreme-scale systems, while reducing the Total
Cost of Ownership (TCO) for companies and public organizations.

High-performance low-power embedded compute nodes.
We will address the design of next generation energy-efficient high-performance embedded compute nodes. It
focuses at the same time on software, architecture and emerging memory and communication technologies in
order to synergistically exploit their corresponding features. The approach of the project is organized around
three complementary topics: 1) compilation techniques; 2) multicore architectures; 3) emerging memory and
communication technologies. PACAP will focus on the compilation aspects, taking as input the software-
visible characteristics of the proposed emerging technology, and making the best possible use of the new
features (non-volatility, density, endurance, low-power).

Hardware Accelerated JIT Compilation.
Reconfigurable hardware offers the opportunity to limit power consumption by dynamically adjusting the
number of available resources to the requirements of the running software. In particular, VLIW processors
can adjust the number of available issue lanes. Unfortunately, changing the processor width often requires
recompiling the application, and VLIW processors are highly dependent of the quality of the compilation,
mainly because of the instruction scheduling phase performed by the compiler. Another challenge lies in the
high constraints of the embedded system: the energy and execution time overhead due to the JIT compilation
must be carefully kept under control.

We started exploring ways to reduce the cost of JIT compilation targeting VLIW-based heterogeneous many-
core systems. Our approach relies on a hardware/software JIT compiler framework. While basic optimizations
and JIT management are performed in software, the compilation back-end is implemented by means of special-
ized hardware. This back-end involves both instruction scheduling and register allocation, which are known to
be the most time-consuming stages of such a compiler.

71 Architecture, Languages and Compilation - Research Program - Project-Team PACAP

3.2.8. Security
Security is a mandatory concern of any modern computing system. Various threat models have led to a
multitude of protection solutions. Members of PACAP already contributed, thanks to the HAVEGE [48]
random number generator, and code obfuscating techniques (the obfuscating just-in-time compiler [43], or
thread-based control flow mangling [46]).

We partner with security experts who can provide intuition, know-how and expertise, in particular in defining
threat models, and assessing the quality of the solutions. Our background in compilation and architecture helps
design more efficient and less expensive protection mechanisms.

We already have ongoing research directions related to security. SECODE (Secure Codes to Thwart Cyber-
physical Attacks) is a project started in January 2016, in collaboration with security experts from Télécom
Paris Tech, Paris 8, Université Catholique de Louvain (Belgium), and University of Sabancı (Turkey). We also
plan to partner with the Inria/CentraleSupelec CIDRE project-team to design a tainting technique based on a
just-in-time compiler.

Compiler-based data protection.
We specify and design error correction codes suitable for an efficient protection of sensitive information in
the context of Internet of Things (IoT) and connected objects. We partner with experts in security and codes
to prototype a platform that demonstrates resilient software. PACAP’s expertise is key to select and tune the
protection mechanisms developed within the project, and to propose safe, yet cost-effective solutions from an
implementation point of view.

JIT-based tainting.
Dynamic information flow control (DIFC, also known as tainting) is used to detect intrusions and to identify
vulnerabilities. It consists in attaching metadata (called taints or labels) to information containers, and to
propagate the taints when particular operations are applied to the containers: reads, writes, etc. The goal is
then to guarantee that confidential information is never used to generate data sent to an untrusted container;
conversely, data produced by untrusted entities cannot be used to update sensitive data.

The containers can be of various granularities: fine-grain approaches can deal with single variables, coarser-
grain approaches consider a file as a whole. The CIDRE project-team has developed several DIFC monitors.
kBlare is coarse-grain monitor in the Linux kernel. JBlare is a fine-grain monitor for Java applications. Fine-
grain monitors provide a better precision at the cost of a significant overhead in execution time.

Combining the expertise of CIDRE in DIFC with our expertise in JIT compilation will help design hybrid
approaches. An initial static analysis of the program prior to installation or execution will feed information to
a dynamic analyzer that propagates taints during just-in-time compilation.

http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid17
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid18
http://raweb.inria.fr/rapportsactivite/RA{$year}/pacap/bibliography.html#pacap-2018-bid19

72 Embedded and Real-time Systems - Research Program - Team AOSTE2

AOSTE2 Team

3. Research Program

3.1. The Algorithm-Architecture Adequation methodology and Real-Time
Scheduling
Participants: Liliana Cucu, Dumitru Potop Butucaru, Yves Sorel.

The Algorithm-Architecture Adequation (AAA) methodology relies on distributed real-time schedulability
and optimization theories to map efficiently an algorithm model to an architecture model.

The algorithm model which describes the functional specifications of the applications, is an extension of
the well known data-flow model from Dennis [14]. It is a directed acyclic hyper-graph (DAG) that we call
“conditioned factorized data dependence graph”, whose vertices are functions and hyper-edges are directed
“data or control dependences” between functions. The data dependences define a partial order on the functions
execution. The basic data-flow model was extended in three directions: first infinite (resp. finite) repetition of
a sub-graph pattern in order to specify the reactive aspect of real-time systems (resp. in order to specify the
finite repetition of a sub-graph consuming different data similar to a loop in imperative languages), second
“state” when data dependences are necessary between different infinite repetitions of the sub-graph pattern
introducing cycles which must be avoided by introducing specific vertices called “delays” (similar to z -n in
automatic control), third “conditioning” of a function by a control dependence similar to conditional control
structure in imperative languages, allowing the execution of alternative subgraphs. Delays combined with
conditioning allow the programmer to specify automata used for describing “mode changes”.

The architecture model which describes the non functional specifications is, in the simplest case, a directed
graph whose vertices are of two types: “processor” (one sequencer of functions, several sequencers of
communications and distributed or shared memories) and “medium” (multiplexers and demultiplexers), and
whose edges are directed connections. With such model it is possible to describe classic heterogeneous
distributed, parallel and multiprocessor platforms as well as the most recent multi/manycore platforms. The
worst case times mentioned previously are estimated according to this model.

The implementation model is a graph obtained by applying an external composition law such that an
architecture graph operates on an algorithm graph to give an algorithm graph while taking advantage of timing
characteristics, basically periods, deadlines and WCETs. This resulting algorithm graph is built by performing
spatial and timing allocations (distribution and scheduling) of algorithm graph functions on architecture graph
resources, and of dependences between functions on communication media. In that context "Adequation"
means to search, in the solution space of implementation graphs, one implementation graph which verifies
real-time constraints and, in addition, minimizes some criteria. These criteria consists in the total execution
time of the algorithm executed on the architecture, the number of computing or communication resources, etc.
Below, we describe distributed real-time schedulability analyses and optimization techniques suited for that
purposes.

We address two main issues: uniprocessor and multiprocessor real-time scheduling for which some real-time
constraints are of high criticality, i.e. they must be satisfied otherwise dramatic consequences occur.

In the case of uniprocessor real-time scheduling, besides the usual deadline constraint, often equal to the period
of each task, i.e. a function with timing characteristics, we take into consideration dependences beetween tasks,
and possibly several latencies. The latter are “end-to-end” constraints that may have complex relationships.
Dealing with multiple real-time constraints raises the complexity of the scheduling problems. Moreover, costs
of the Real-Time Operating System (RTOS) and of preemptions lead to, at least, a waste of resources due to
their approximation in the WCET (Worst Execution Time) of each task, as proposed by Liu and Layland in
their seminal article [21]. This is the reason why we first studied non-preemptive real-time scheduling with
dependences, periodicities, and latencies constraints. Although a bad approximation of costs of the RTOS and

http://www.inria.fr/equipes/aoste2
http://raweb.inria.fr/rapportsactivite/RA{$year}/aoste2/bibliography.html#aoste2-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/aoste2/bibliography.html#aoste2-2018-bid1

73 Embedded and Real-time Systems - Research Program - Team AOSTE2

of preemptions, may have dramatic consequences on real-time scheduling, there are only few researches on
this topic. Thus, we investigated preemptive real-time scheduling while taking into account its cost which is
very difficult to determine because it varies according to the instance (job) of each task. This latter is integrated
in the schedulability conditions, and in the corresponding scheduling algorithms we propose. More generally,
we integrate in schedulability analyses costs of the RTOS and of preemptions.

In the case of multiprocessor real-time scheduling, we chose to study first the “partitioned approach”,
rather than the “global approach”, since the latter uses task migrations whose cost is prohibitive for current
commercial processors, even for the more recent many/multicore. The partitioned approach enables us to
reuse the results obtained in the uniprocessor case in order to derive solutions for the multiprocessor case.
We consider also the semi-partitioned approach which allows only some migrations in order to minimize their
costs. In addition, to satisfy the multiple real-time constraints mentioned in the uniprocessor case, we have
to minimize the total execution time (makespan) since we deal with automatic control applications involving
feedback loops. The complexity of such minimization problem increases because the cost of interprocessor
communications (through buses in a multi-processor or routers in a manycore) must be taken into account.
Furthermore, the domain of embedded systems leads to solving minimization resources problems. Since both
optimization problems are NP-hard we develop exact algorithms (ILP, B & B, B & C) which are optimal
for simple problems, and heuristics which are sub-optimal for realistic problems corresponding to industrial
needs. Long time ago we proposed a very fast “greedy” heuristics whose results were regularly improved, and
extended with local neighborhood heuristics, or used as initial solutions for metaheuristics.

Besides the spatial dimension (distributed) of the real-time scheduling problem, other important dimensions
are the type of communication mechanisms (shared memory vs. message passing), or the source of control
and synchronization (event-driven vs. time-triggered). We explore real-time scheduling on architectures
corresponding to all combinations of the above dimensions. This is of particular impact in application domains
such as railways and avionics.

3.2. Probabilistic Worst Case Reasoning for Real-Time Systems
Participants: Liliana Cucu, Robert Davis, Yves Sorel.

The arrival of modern hardware responding to the increasing demand for new functionalities exacerbates the
limitations of the current worst-case real-time reasoning, mainly to the rarity of worst-case scenarios. Several
solutions exist to overcome this important pessimism and our solution takes into account the extremely low
probability of appearance of a worst-case scenario within one hour of functioning (10−45), compared to the
certification requirements for instance (10−9 for the highest level of certification in avionics). Thus we model
and analyze real-time systems with time parameters described by using probabilistic models. Our results for
such models address both schedulability analyses as well as timing analyses. Both such analyses are impacted
by existing misunderstanding. The independence between tasks is a property of real-time systems that is
often used for its basic results. Any complex model takes into account different dependences caused by
sharing resources other than the processor. On another hand, the probabilistic operations require, generally,
the (probabilistic) independence between the random variables describing some parameters of a probabilistic
real-time system. The main (original) criticism to probabilistic is based on this hypothesis of independence
judged too restrictive to model real-time systems. In reality the two notions of independence are different.
Providing arguments to underline this confusion is at the center of our dissemination effort in the last years.

We provide below the bases driving our current research as follows:

• Optimality of scheduling algorithms stays an important aspect of the probabilistic real-time systems,
especially that the introduction of probabilistic time parameters has a direct impact on the optimality
of the existing scheduling algorithms. For instance Rate Monotonic scheduling policy is no longer
optimal in the case of one processor when a preemptive fixed-priority solution exists. We expect
other classes of algorithms to lose their optimality and we concentrate our efforts to propose new
scheduling solutions in this context [22].

http://raweb.inria.fr/rapportsactivite/RA{$year}/aoste2/bibliography.html#aoste2-2018-bid2

74 Embedded and Real-time Systems - Research Program - Team AOSTE2

• Increased complexity of schedulability analysis due to the introduction of probabilistic parameters
requires appropriate complexity reasoning, especially with the emergence of probabilistic schedula-
bility analyses for mixed-criticality real-time systems [23]. Moreover the real-time applications are
rarely independent and precedence constraint using graph-based models are appropriate in this con-
text. Precedence constraints do decrease the number of possible schedulers, but they also imposes
an "heritage" of probabilistic description from execution times to release times for instance.

• Proving feasibility intervals is crucial for these approaches that are often used in industry on top of
simulation. As worst-case situations are rare events, then observing them or at least observe those
events that do provoke later the appearance of worst-case situations is difficult. By proposing an
iterative process of composition between different statistical models [17], we provide the basis to
build a solution to this essential problem to prove any probabilistic real-time reasoning based on
measurements.

• Providing representativeness of a measurement-based estimator is the final proof that a probabilistic
worst-case reasoning may receive. Our first negative results [24] indicate that the measurement
protocol is tighly connected to the statistical estimator and that both must verified properties of
reproducibility in order to contribute to a convergence proof.

3.3. Real-Time Systems Compilation
Participant: Dumitru Potop Butucaru.

In the early days of embedded computing, most software development activities were manual. This is no longer
true at the low level, where manual assembly coding has been almost completely replaced with the combined
use of so-called “high-level” languages (C, Ada, etc.) and the use of compilers. This was made possible by
the early adoption of standard interfaces that allowed the definition of economically-viable compilation tools
with a large-enough user base. These interfaces include not only the programming languages (C, Ada, etc.),
but also relatively stable microprocessor instruction set architectures (ISAs) or executable code formats like
ELF.

The paradigm shift towards fully automated code generation is far from being completed at the system level,
mainly due to the slower introduction of standard interfaces. This also explains why real-time scheduling has
historically dedicated much of its research effort to verifying the correctness of very abstract and relatively
standard implementation models (the task models). The actual construction of the implementations and the
abstraction of these implementations as task models drew comparatively less interest, because they were
application-dependent and non-portable.

But today the situation is bound to change. First, automation can no longer be avoided, as the complexity
of systems steadily increases in both specification size (number of tasks, processors, etc.) and complexity of
the objects involved (parallelized dependent tasks, multiple modes and criticalities, many-cores, etc.). Second,
fully automated implementation is attainable for industrially significant classes of systems, due to significant
advances in the standardization of both specification languages (Simulink, Scade, etc.) and of implementation
platforms (ARINC, AUTOSAR, etc.).

To allow the automatic implementation of complex embedded systems, we advocate for a real-time systems
compilation approach that combines aspects of both real-time scheduling – including the AAA methodology
– and (classical) compilation. Like a classical compiler such as GCC, a real-time systems compiler should
use fast and efficient scheduling and code generation heuristics, to ensure scalability. Similarly, it should
provide traceability support under the form of informative error messages enabling an incremental trial-and-
error design style, much like that of classical application software. This is more difficult than in a classical
compiler, given the complexity of the transformation flow (creation of tasks, allocation, scheduling, synthesis
of communication and synchronization code, etc.), and requires a full formal integration along the whole flow,
including the crucial issue of correct hardware/platform abstraction.

http://raweb.inria.fr/rapportsactivite/RA{$year}/aoste2/bibliography.html#aoste2-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/aoste2/bibliography.html#aoste2-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/aoste2/bibliography.html#aoste2-2018-bid5

75 Embedded and Real-time Systems - Research Program - Team AOSTE2

A real-time systems compiler should perform precise, conservative timing accounting along the whole
scheduling and code generation flow, allowing it to produce safe and tight real-time guarantees. In particu-
lar, resource allocation, timing analysis, and code generation must be tightly integrated to ensure that gen-
erated code (including communication and synchronization primitive calls) satisfies the timing hypotheses
used for scheduling. More generally, and unlike in classical compilers, the allocation and scheduling algo-
rithms must take into account a variety of non-functional requirements, such as real-time constraints, critical-
ity/partitioning, preemptability, allocation constraints, etc. As the accent is put on the respect of requirements
(as opposed to optimization of a metric, like in classical compilation), resulting scheduling problems are quite
different from those of classical compilation.

We have designed and built a prototype real-time systems compiler, called LoPhT, for statically scheduled real-
time systems. Results on industrial case studies are encouraging, hinting not only at the engineering potential
of the approach, but also at the scientific research directions it opens.

One key issue here is sound hardware/platform abstraction. To prove that it is possible to reconcile performance
with predictability in a fully automatic way, we started in the best possible configuration with industrial
relevance: statically-scheduled software running on very predictable (yet realistic) platforms. Already, in this
case, platform modeling is more complex than the one of classical compilation 0 or real-time scheduling.
0 The objective is now to move beyond this application class to more dynamic classes of specifications
implementations, but without losing too much of the predictability and/or effciency.

Efficiency is also a critical issue in practical systems design, and we must invest more in the design of
optimizations that improve the worst-case behavior of applications and take into account non-functional
requirements in a multi-objective optimization perspective, but while remaining in the class of low-complexity
heuristics to ensure scalability. Optimizations of classical compilation, such as loop unrolling, retiming, and
inlining, can serve as inspiration.

Ensuring the safety and efficiency of the generated code cannot be done by a single team. Collaborations on
the subject will have to cover at least the following subjects: the interaction between real-time scheduling
and WCET analysis, the design of predictable hardware and software architectures, programming language
support for efficient compilation, and formally proving the correctness of the compiler.

0Because safe timing accounting is needed.
0The compiler must perform safe timing accounting, and not rely on experience-derived margins.

76 Embedded and Real-time Systems - Research Program - Project-Team HYCOMES

HYCOMES Project-Team

3. Research Program

3.1. Hybrid Systems Modeling
Systems industries today make extensive use of mathematical modeling tools to design computer controlled
physical systems. This class of tools addresses the modeling of physical systems with models that are simpler
than usual scientific computing problems by using only Ordinary Differential Equations (ODE) and Difference
Equations but not Partial Differential Equations (PDE). This family of tools first emerged in the 1980’s with
SystemBuild by MatrixX (now distributed by National Instruments) followed soon by Simulink by Mathworks,
with an impressive subsequent development.

In the early 90’s control scientists from the University of Lund (Sweden) realized that the above approach did
not support component based modeling of physical systems with reuse 0. For instance, it was not easy to draw
an electrical or hydraulic circuit by assembling component models of the various devices. The development
of the Omola language by Hilding Elmqvist was a first attempt to bridge this gap by supporting some form
of Differential Algebraic Equations (DAE) in the models. Modelica quickly emerged from this first attempt
and became in the 2000’s a major international concerted effort with the Modelica Consortium 0. A wider
set of tools, both industrial and academic, now exists in this segment 0. In the EDA sector, VHDL-AMS was
developed as a standard [11] and also allows for differential algebraic equations. Several domain-specific
languages and tools for mechanical systems or electronic circuits also support some restricted classes of
differential algebraic equations. Spice is the historic and most striking instance of these domain-specific
languages/tools 0. The main difference is that equations are hidden and the fixed structure of the differential
algebraic results from the physical domain covered by these languages.

Despite these tools are now widely used by a number of engineers, they raise a number of technical difficulties.
The meaning of some programs, their mathematical semantics, can be tainted with uncertainty. A main source
of difficulty lies in the failure to properly handle the discrete and the continuous parts of systems, and their
interaction. How the propagation of mode changes and resets should be handled? How to avoid artifacts due
to the use of a global ODE solver causing unwanted coupling between seemingly non interacting subsystems?
Also, the mixed use of an equational style for the continuous dynamics with an imperative style for the mode
changes and resets is a source of difficulty when handling parallel composition. It is therefore not uncommon
that tools return complex warnings for programs with many different suggested hints for fixing them. Yet,
these “pathological” programs can still be executed, if wanted so, giving surprising results — See for instance
the Simulink examples in [19], [5] and [14].

Indeed this area suffers from the same difficulties that led to the development of the theory of synchronous
languages as an effort to fix obscure compilation schemes for discrete time equation based languages in the
1980’s. Our vision is that hybrid systems modeling tools deserve similar efforts in theory as synchronous
languages did for the programming of embedded systems.

3.2. Background on non-standard analysis
Non-Standard analysis plays a central role in our research on hybrid systems modeling [5], [19], [15], [14].
The following text provides a brief summary of this theory and gives some hints on its usefulness in the context
of hybrid systems modeling. This presentation is based on our paper [1], a chapter of Simon Bliudze’s PhD
thesis [24], and a recent presentation of non-standard analysis, not axiomatic in style, due to the mathematician
Lindström [48].

0http://www.lccc.lth.se/media/LCCC2012/WorkshopSeptember/slides/Astrom.pdf
0https://www.modelica.org/
0SimScape by Mathworks, Amesim by LMS International, now Siemens PLM, and more.
0http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/MANUALS/spice3.html

http://www.inria.fr/equipes/hycomes
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid7
http://www.lccc.lth.se/media/LCCC2012/WorkshopSeptember/slides/Astrom.pdf
https://www.modelica.org/
http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/MANUALS/spice3.html

77 Embedded and Real-time Systems - Research Program - Project-Team HYCOMES

Non-standard numbers allowed us to reconsider the semantics of hybrid systems and propose a radical
alternative to the super-dense time semantics developed by Edward Lee and his team as part of the Ptolemy II
project, where cascades of successive instants can occur in zero time by using R+ × N as a time index. In
the non-standard semantics, the time index is defined as a set T = {n∂ | n ∈ ∗N}, where ∂ is an infinitesimal
and ∗N is the set of non-standard integers. Remark that (1) T is dense in R+, making it “continuous”, and
(2) every t ∈ T has a predecessor in T and a successor in T, making it “discrete”. Although it is not effective
from a computability point of view, the non-standard semantics provides a framework that is familiar to the
computer scientist and at the same time efficient as a symbolic abstraction. This makes it an excellent candidate
for the development of provably correct compilation schemes and type systems for hybrid systems modeling
languages.

Non-standard analysis was proposed by Abraham Robinson in the 1960s to allow the explicit manipulation of
“infinitesimals” in analysis [54], [41], [10]. Robinson’s approach is axiomatic; he proposes adding three new
axioms to the basic Zermelo-Fraenkel (ZFC) framework. There has been much debate in the mathematical
community as to whether it is worth considering non-standard analysis instead of staying with the traditional
one. We do not enter this debate. The important thing for us is that non-standard analysis allows the use of the
non-standard discretization of continuous dynamics “as if” it was operational.

Not surprisingly, such an idea is quite ancient. Iwasaki et al. [43] first proposed using non-standard analysis
to discuss the nature of time in hybrid systems. Bliudze and Krob [25], [24] have also used non-standard
analysis as a mathematical support for defining a system theory for hybrid systems. They discuss in detail the
notion of “system” and investigate computability issues. The formalization they propose closely follows that
of Turing machines, with a memory tape and a control mechanism.

3.3. Contract-Based Design, Interfaces Theories, and Requirements
Engineering
System companies such as automotive and aeronautic companies are facing significant difficulties due to the
exponentially raising complexity of their products coupled with increasingly tight demands on functionality,
correctness, and time-to-market. The cost of being late to market or of imperfections in the products
is staggering as witnessed by the recent recalls and delivery delays that many major car and airplane
manufacturers had to bear in the recent years. The specific root causes of these design problems are complex
and relate to a number of issues ranging from design processes and relationships with different departments of
the same company and with suppliers, to incomplete requirement specification and testing.

We believe the most promising means to address the challenges in systems engineering is to employ structured
and formal design methodologies that seamlessly and coherently combine the various viewpoints of the design
space (behavior, space, time, energy, reliability, ...), that provide the appropriate abstractions to manage the
inherent complexity, and that can provide correct-by-construction implementations. The following technology
issues must be addressed when developing new approaches to the design of complex systems:

• The overall design flows for heterogeneous systems and the associated use of models across
traditional boundaries are not well developed and understood. Relationships between different teams
inside a same company, or between different stake-holders in the supplier chain, are not well
supported by solid technical descriptions for the mutual obligations.

• System requirements capture and analysis is in large part a heuristic process, where the informal
text and natural language-based techniques in use today are facing significant challenges. Formal
requirements engineering is in its infancy: mathematical models, formal analysis techniques and
links to system implementation must be developed.

• Dealing with variability, uncertainty, and life-cycle issues, such as extensibility of a product family,
are not well-addressed using available systems engineering methodologies and tools.

The challenge is to address the entire process and not to consider only local solutions of methodology, tools,
and models that ease part of the design.

http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid6

78 Embedded and Real-time Systems - Research Program - Project-Team HYCOMES

Contract-based design has been proposed as a new approach to the system design problem that is rigorous
and effective in dealing with the problems and challenges described before, and that, at the same time, does
not require a radical change in the way industrial designers carry out their task as it cuts across design flows
of different type. Indeed, contracts can be used almost everywhere and at nearly all stages of system design,
from early requirements capture, to embedded computing infrastructure and detailed design involving circuits
and other hardware. Contracts explicitly handle pairs of properties, respectively representing the assumptions
on the environment and the guarantees of the system under these assumptions. Intuitively, a contract is a pair
C = (A,G) of assumptions and guarantees characterizing in a formal way 1) under which context the design
is assumed to operate, and 2) what its obligations are. Assume/Guarantee reasoning has been known for a long
time, and has been used mostly as verification mean for the design of software [52]. However, contract based
design with explicit assumptions is a philosophy that should be followed all along the design, with all kinds
of models, whenever necessary. Here, specifications are not limited to profiles, types, or taxonomy of data, but
also describe the functions, performances of various kinds (time and energy), and reliability. This amounts to
enrich a component’s interface with, on one hand, formal specifications of the behavior of the environment in
which the component may be instantiated and, on the other hand, of the expected behavior of the component
itself. The consideration of rich interfaces is still in its infancy. So far, academic researchers have addressed the
mathematics and algorithmics of interfaces theories and contract-based reasoning. To make them a technique
of choice for system engineers, we must develop:

• Mathematical foundations for interfaces and requirements engineering that enable the design of
frameworks and tools;

• A system engineering framework and associated methodologies and tool sets that focus on system
requirements modeling, contract specification, and verification at multiple abstraction layers.

A detailed bibliography on contract and interface theories for embedded system design can be found in [6]. In
a nutshell, contract and interface theories fall into two main categories:

Assume/guarantee contracts. By explicitly relying on the notions of assumptions and guarantees, A/G-
contracts are intuitive, which makes them appealing for the engineer. In A/G-contracts, assumptions
and guarantees are just properties regarding the behavior of a component and of its environment.
The typical case is when these properties are formal languages or sets of traces, which includes the
class of safety properties [45], [32], [51], [13], [34]. Contract theories were initially developed as
specification formalisms able to refuse some inputs from the environment [42]. A/G-contracts were
advocated by the SPEEDS project [18]. They were further experimented in the framework of the
CESAR project [37], with the additional consideration of weak and strong assumptions. This is
still a very active research topic, with several recent contributions dealing with the timed [23] and
probabilistic [28], [29] viewpoints in system design, and even mixed-analog circuit design [53].

Automata theoretic interfaces. Interfaces combine assumptions and guarantees in a single, automata the-
oretic specification. Most interface theories are based on Lynch Input/Output Automata [50], [49].
Interface Automata [57], [56], [58], [30] focus primarily on parallel composition and compatibility:
Two interfaces can be composed and are compatible if there is at least one environment where they
can work together. The idea is that the resulting composition exposes as an interface the needed
information to ensure that incompatible pairs of states cannot be reached. This can be achieved by
using the possibility, for an Interface Automaton, to refuse selected inputs from the environment in
a given state, which amounts to the implicit assumption that the environment will never produce
any of the refused inputs, when the interface is in this state. Modal Interfaces [3] inherit from both
Interface Automata and the originally unrelated notion of Modal Transition System [47], [12], [26],
[46]. Modal Interfaces are strictly more expressive than Interface Automata by decoupling the I/O
orientation of an event and its deontic modalities (mandatory, allowed or forbidden). Informally, a
must transition is available in every component that realizes the modal interface, while a may transi-
tion needs not be. Research on interface theories is still very active. For instance, timed [59], [20],
[22], [39], [38], [21], probabilistic [28], [40] and energy-aware [31] interface theories have been
proposed recently.

http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid17
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid18
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid19
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid20
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid21
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid22
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid23
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid24
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid25
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid26
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid27
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid28
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid29
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid30
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid31
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid32
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid33
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid34
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid35
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid36
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid37
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid38
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid39
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid40
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid41
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid42
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid43
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid24
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid44
http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid45

79 Embedded and Real-time Systems - Research Program - Project-Team HYCOMES

Requirements Engineering is one of the major concerns in large systems industries today, particularly so
in sectors where certification prevails [55]. DOORS projects collecting requirements are poorly structured
and cannot be considered a formal modeling framework today. They are nothing more than an informal
documentation enriched with hyperlinks. As examples, medium size sub-systems may have a few thousands
requirements and the Rafale fighter aircraft has above 250,000 of them. For the Boeing 787, requirements
were not stable while subcontractors performed the development of the fly-by-wire and of the landing gear
subsystems.

We see Contract-Based Design and Interfaces Theories as innovative tools in support of Requirements
Engineering. The Software Engineering community has extensively covered several aspects of Requirements
Engineering, in particular:

• the development and use of large and rich ontologies; and

• the use of Model Driven Engineering technology for the structural aspects of requirements and
resulting hyperlinks (to tests, documentation, PLM, architecture, and so on).

Behavioral models and properties, however, are not properly encompassed by the above approaches. This is
the cause of a remaining gap between this phase of systems design and later phases where formal model based
methods involving behavior have become prevalent—see the success of Matlab/Simulink/Scade technologies.
We believe that our work on contract based design and interface theories is best suited to bridge this gap.

http://raweb.inria.fr/rapportsactivite/RA{$year}/hycomes/bibliography.html#hycomes-2018-bid46

80 Embedded and Real-time Systems - Research Program - Team KAIROS

KAIROS Team

3. Research Program

3.1. Cyber-Physical co-modeling
Cyber-Physical System modeling requires joint representation of digital/cyber controllers and natural physics
environments. Heterogeneous modeling must then be articulated to support accurate (co-)simulation, (co-
)analysis, and (co-)verification. The picture above sketches the overall design framework. It comprises
functional requirements, to be met provided surrounding platform guarantees, in a contract approach. All
relevant aspects are modeled with proper Domain Specific Languages (DSL), so that constraints can be
gathered globally, then analyzed to build a mapping proposal with both a structural aspect (functions
allocated to platform resources), but also a behavioral ones, scheduling activities. Mapping may be computed
automatically or not, provably correct or not, obtained by static analytic methods or abstract execution.
Physical phenomena (in a very broad acceptance of the term) are usually modeled using continuous-time
models and differential equations. Then the “proper” discretization opportunities for numerical simulation
form a large spectrum of mathematical engineering practices. This is not at all the domain of expertise of
Kairos members, but it should not be a limitation as long as one can assume a number of properties from
the discretized version. On the other hand, we do have a strong expertise on modeling of both embedded
processing architectures and embedded software (i.e., the kind of usually concurrent, sometimes distributed
software that reacts to and control the physical environment). This is important as, unlike in the “physical”
areas where modeling is common-place, modeling of software and programs is far from mainstream in the
Software Engineering community. These domains are also an area of computer science where modeling, and
even formal modeling, of the real objects that are originally of discrete/cyber nature, takes some importance
with formal Models of Computation and Communications. It seems therefore quite natural to combine physical
and cyber modeling in a more global design approach (even multi-physic domains and systems of systems
possibly, but always with software-intensive aspects involved). Our objective is certainly not to become experts
in physical modeling and/or simulation process, but to retain from it only the essential and important aspects
to include them into System-Level Engineering design, based on Model-Driven approaches allowing formal
analysis.

This sets an original research agenda: Model-Based System Engineering environments exist, at various
stages of maturity and specificity, in the academic and industrial worlds. Formal Methods and verifica-
tion/certification techniques also exist, but generally in a point-wise fashion. Our approach aims at raising
the level of formality describing relevant features of existing individual models, so that formal methods can
have a greater general impact on usual, “industrial-level”, modeling practices. Meanwhile, the relevance of
formal methods is enhanced as it now covers various aspects in a uniform setting (timeliness, energy budget,
dependability, safety/security...).

New research directions on formal CPS design should focus on the introduction of uncertainty (stochastic
models) in our particular framework, on relations between (logical) real-time and security, on relations
between common programming languages paradigms and logical time, on extending logical frameworks with
logical time, on the concern with discovery and mobility inherent to connected objects and Internet of Things.

3.2. Cyber-Physical co-simulation
The FMI standard (Functional Mock-Up Interface) has been proposed for “purely physical” (i.e., based on
persistent signals) co-simulation, and then adopted in over 100 industrial tools including frameworks such as
Matlab/Simulink and Ansys, to mention two famous model editors. With the recent use of co-simulation to
cyber-physical systems, dealing with the discrete and transient nature of cyber systems became mandatory.
Together with other people from the community, we shown that FMI and other frameworks for co-simulation
badly support co-simulation of cyber-physical systems; leading to bad accuracy and performances. More

http://www.inria.fr/equipes/kairos

81 Embedded and Real-time Systems - Research Program - Team KAIROS

precisely, the way to interact with the different parts of the co-simulation require a specific knowledge about
its internal semantics and the kind of data exposed (e.g., continuous, piecewise-constant). Towards a better co-
simulation of cyber-physical systems, we are looking for conservative abstractions of the parts and formalisms
that aim to describe the functional and temporal constraints that are required to bind several simulation models
together.

3.3. Formal analysis and verification
Because the nature of our constraints is specific, we want to adjust verification methods to the goals and
expressiveness of our modeling approach. Quantitative (interval) timing conditions on physical models
combined with (discrete) cyber modes suggest the use of SMT (Satisfiability Modulo Theories) automatic
solvers, but the natural expressiveness requested (as for instance in our CCSL constructs) shows this is not
always feasible. Either interactive proofs, or suboptimal solutions (essentially resulting of abstract run-time
simulations) should be considered. Complementarily to these approaches, we are experimenting with new
variants of symbolic behavioural semantics, allowing to construct finite representations of the behaviour of
CPS systems with explicit handling of data, time, or other non-functional aspects.

3.4. Relation to Code and Optimization
While models considered in Kairos can also be considered as executable specifications (through abstract
simulation schemes), they can also lead to code synthesis and deployment. Conversely, code execution of
smaller, elementary software components can lead to performance estimation enriching the models before
global mapping optimization. CPS introduce new challenging problems for code performance stability. Indeed,
two additional factors for performance variability appear, which were not present in classical embedded
systems: 1) variable and continuous data input from the physical world and 2) variable underlying hardware
platform. For the first factor, CPS software must be analysed in conjunction with its data input coming from
the physics, so the variability of the performance may come from the various data. For the second factor, the
underlying hardware of the CPS may change during the time (new computing actors appear or disappear, some
actors can be reconfigured during execution). The new challenge is to understand how these factors influence
performance variability exactly, and how to provide solutions to reduce it or to model it. The modeling of
performance variability becomes a new input.

3.5. Extending logical frameworks with logical time
The Curry-Howard isomorphism (proposition-as-types and proofs-as-typed-λ-terms) represent the logical and
computational basis to interactive theorem provers: our challenge is to investigate and design time constraints
within a dependent type theory (e.g. if event A happened-before event B, then the timestamp of A is less
than the timestamp of B). We hope to extend the Edinburgh Logical Framework (LF) of Harper-Honsell-
Plotkin with relevant constructs expressing logical time and synchronization between processes. Also, union
and intersection types with their subtyping constraints theories could capture some CCSL constraints needed
to formalize logical clocks (in particular CCSL expressions like subclock, clock union, intersection and
concatenation) and provide opportunities for an ad hoc polymorphic type theory. Logical time constraints seen
as property types can be beneficially handled by logical frameworks. The new challenge here is to demonstrate
the relevance of type theory to work on logical and multiform timing constraint resolution.

3.6. Object-oriented programming and logical time
We formalize in the past object-oriented programming features, like e.g. delegation-based and trait inheritance.
We view our logical time model as a mean to enhance the description of timing constraints and properties on
top of existing specification formalism. When considering general purpose object-oriented languages like Java,
type-theory is a natural way to provide such properties. Currently, such languages do not have constructs nor
special types to manage instants, time structures and instant relations like subclocking, precedence, causality,
equality, coincidence, exclusion, independence, etc. CCSL provide ad hoc constructors to specify clock

82 Embedded and Real-time Systems - Research Program - Team KAIROS

constraints and logical time: enriching object oriented type theories with CCSL expressions could constitute
an interesting research perspective towards a wider usage of CCSL. The new challenge is consider logical time
constraints as behavioral type properties, and the design of programming language constructs and ad hoc type
systems.

3.7. Extensions for spatio-temporal modeling and mobile systems.
While Time is clearly a primary ingredient in the proper design of CPS systems, in some cases Space, and
related notions of local proximity or conversely long distance, play also a key role for correct modeling, often
in part because of the constraints this puts on interactions and time for communications. Once space is taken
into account, one has to recognize also that many systems will request to consider mobility, originated as
change of location through time. Mobile CPS (or mCPS) systems occur casually, e.g., in the case of Intelligent
Transportation Systems, or in roaming connected objects of the IoT. Spatio-temporal and mobility modeling
may each lead to dynamicity in the representation of constraints, with the creation/deletion/discovering of new
components in the system. This opportunity for new expressiveness will certainly cause new needs in handling
constraint systems and topological graph locations. The new challenge is to provide an algebraic support with
a constraint description language that could be as simple and expressive as possible, and of use in the semantic
annotations for mobile CPS design.

83 Embedded and Real-time Systems - Research Program - Project-Team PARKAS

PARKAS Project-Team

3. Research Program

3.1. Programming Languages for Cyber-Physical Systems
We study the definition of languages for reactive and Cyber-Physical Systems in which distributed control
software interacts closely with physical devices. We focus on languages that mix discrete-time and continuous-
time; in particular, the combination of synchronous programming constructs with differential equations,
relaxed models of synchrony for distributed systems communicating via periodic sampling or through buffers,
and the embedding of synchronous features in a general purpose ML language.

The synchronous language SCADE, 0 based on synchronous languages principles, is ideal for programming
embedded software and is used routinely in the most critical applications. But embedded design also involves
modeling the control software together with its environment made of physical devices that are traditionally
defined by differential equations that evolve on a continuous-time basis and approximated with a numerical
solver. Furthermore, compilation usually produces single-loop code, but implementations increasingly involve
multiple and multi-core processors communicating via buffers and shared-memory.

The major player in embedded design for cyber-physical systems is undoubtedly SIMULINK, 0 with MOD-
ELICA0 a new player. Models created in these tools are used not only for simulation, but also for test-case
generation, formal verification, and translation to embedded code. That said, many foundational and practical
aspects are not well-treated by existing theory (for instance, hybrid automata), and current tools. In particular,
features that mix discrete and continuous time often suffer from inadequacies and bugs. This results in a bro-
ken development chain: for the most critical applications, the model of the controller must be reprogrammed
into either sequential or synchronous code, and properties verified on the source model have to be reverified
on the target code. There is also the question of how much confidence can be placed in the code used for
simulation.

We attack these issues through the development of the ZELUS research prototype, industrial collaborations
with the SCADE team at ANSYS/Esterel-Technologies, and collaboration with Modelica developers at
Dassault-Systèmes and the Modelica association. Our approach is to develop a conservative extension of
a synchronous language capable of expressing in a single source text a model of the control software and
its physical environment, to simulate the whole using off-the-shelf numerical solvers, and to generate target
embedded code. Our goal is to increase faithfulness and confidence in both what is actually executed on
platforms and what is simulated. The goal of building a language on a strong mathematical basis for hybrid
systems is shared with the Ptolemy project at UC Berkeley; our approach is distinguished by building our
language on a synchronous semantics, reusing and extending classical synchronous compilation techniques.

Adding continuous time to a synchronous language gives a richer programming model where reactive
controllers can be specified in idealized physical time. An example is the so called quasi-periodic architecture
studied by Caspi, where independent processors execute periodically and communicate by sampling. We have
applied ZELUS to model a class of quasi-periodic protocols and to analyze an abstraction proposed for model-
checking such systems.

Communication-by-sampling is suitable for control applications where value timeliness is paramount and
lost or duplicate values tolerable, but other applications—for instance, those involving video streams—seek
a different trade-off through the use of bounded buffers between processes. We developed the n-synchronous
model and the programming language LUCY-N to treat this issue.

0http://www.esterel-technologies.com/products/scade-suite
0http://www.mathworks.com/products/simulink
0https://www.modelica.org

http://www.inria.fr/equipes/parkas
http://www.esterel-technologies.com/products/scade-suite
http://www.mathworks.com/products/simulink
https://www.modelica.org

84 Embedded and Real-time Systems - Research Program - Project-Team PARKAS

3.2. Efficient Compilation for Parallel and Distributed Computing
We develop compilation techniques for sequential and multi-core processors, and efficient parallel run-
time systems for computationally intensive real-time applications (e.g., video and streaming). We study the
generation of parallel code from synchronous programs, compilation techniques based on the polyhedral
model, and the exploitation of synchronous Single Static Assignment (SSA) representations in general purpose
compilers.

We consider distribution and parallelism as two distinct concepts.

• Distribution refers to the construction of multiple programs which are dedicated to run on specific
computing devices. When an application is designed for, or adapted to, an embedded multiprocessor,
the distribution task grants fine grained—design- or compilation-time—control over the mapping
and interaction between the multiple programs.

• Parallelism is about generating code capable of efficiently exploiting multiprocessors. Typically
this amounts to maing (in)dependence properties, data transfers, atomicity and isolation explicit.
Compiling parallelism translates these properties into low-level synchronization and communication
primitives and/or onto a runtime system.

We also see a strong relation between the foundations of synchronous languages and the design of compiler
intermediate representations for concurrent programs. These representations are essential to the construction
of compilers enabling the optimization of parallel programs and the management of massively parallel
resources. Polyhedral compilation is one of the most popular research avenues in this area. Indirectly,
the design of intermediate representations also triggers exciting research on dedicated runtime systems
supporting parallel constructs. We are particularly interested in the implementation of non-blocking dynamic
schedulers interacting with decoupled, deterministic communication channels to hide communication latency
and optimize local memory usage.

While distribution and parallelism issues arise in all areas of computing, our programming language perspec-
tive pushes us to consider four scenarios:

1. designing an embedded system, both hardware and software, and codesign;

2. programming existing embedded hardware with functional and behavioral constraints;

3. programming and compiling for a general-purpose or high-performance, best-effort system;

4. programming large scale distributed, I/O-dominated and data-centric systems.

We work on a multitude of research experiments, algorithms and prototypes related to one or more of these
scenarios. Our main efforts focused on extending the code generation algorithms for synchronous languages
and on the development of more scalable and widely applicable polyhedral compilation methods.

3.3. Validation and Proof of Compilers
Compilers are complex software and not immune from bugs. We work on validation and proof tools for
compilers to relate the semantics of executed code and source programs. We develop techniques to formally
prove the correctness of compilation passes for synchronous languages (Lustre), and to validate compilation
optimization for C code in the presence of threads.

3.3.1. Lustre:
The formal validation of a compiler for a synchronous language (or more generally for a language based
on synchronous block diagrams) promises to reduce the likelihood of compiler-introduced bugs, the cost of
testing, and also to ensure that properties verified on the source model hold of the target code. Such a validation
would be complementary to existing industrial qualifications which certify the development process and not
the functional correctness of a compiler. The scientific interest is in developing models and techniques that
both facilitate the verification and allow for convenient reasoning over the semantics of a language and the
behavior of programs written in it.

85 Embedded and Real-time Systems - Research Program - Project-Team PARKAS

3.3.2. C/C++:
The recently approved C11 and C++11 standards define a concurrency model for the C and C++ languages,
which were originally designed without concurrency support. Their intent is to permit most compiler and
hardware optimizations, while providing escape mechanisms for writing portable, high-performance, low-
level code. Mainstream compilers are being modified to support the new standards. A subtle class of compiler
bugs is the so-called concurrency compiler bugs, where compilers generate correct sequential code but break
the concurrency memory model of the programming language. Such bugs are observable only when the
miscompiled functions interact with concurrent contexts, making them particularly hard to detect. All previous
techniques to test compiler correctness miss concurrency compiler bugs.

3.3.3. Static Analysis of x10
x10 is an explicit parallel programming language, originally developped by IBM Research. Parallelism is
expressed by the async / finish construct (a disymetric variant of fork / join), and synchronization
uses clocks, a sophisticated version of barriers. Programs in this language can be analysed at compile time
provided their control statements obey the restrictions of of the polyhedral model. The analysis focuses on the
extraction of the happens before relation of the subject program, and can be used for the detection of races and
deadlocks. A first version of this analysis, which did not take clocks into account, was published in 2013. Its
extension to clocked programs is a complex problem, which requires the use of a proof assistant, Coq. Work
in collaboration with Alain Ketterlin and Eric Violard (Inria Camus) and Tomofumi Yuki (Inria Cairn).

3.3.4. Toward a Polynomial Model
The polyhedral model is a powerful tool for program analysis and verification, autoparallelization, and
optimization. However, it can only be applied to a very restricted class of programs : counted loops, affine
conditionals and arrays with affine subscripts. The key mathematical result at the bottom of this model is Farkas
lemma, which characterizes all affine function non negative on a polyhedron. Recent mathematical results on
the Positiv Stellen Satz enable a similar characterization for polynomials positive on a semi-algebraic set.
Polynomials may be native to the subject code, but also appears as soon as counting is necessary, for instance
when a multidimensional array is linearized or when messages are transmitted through a one dimensional
channel. Applying the above theorems allows the detection of polynomial dependences and the construction
of polynomial schedules, hence the detection of deadlocks. Code generation from a polynomial schedule is the
subject of present work. These methods are applied to the language openStream. Work in collaboration with
Albert Cohen and Alain Darte (Xilinx).

86 Embedded and Real-time Systems - Research Program - Project-Team SPADES

SPADES Project-Team

3. Research Program

3.1. Introduction
The SPADES research program is organized around three main themes, Design and Programming Models,
Certified real-time programming, and Fault management and causal analysis, that seek to answer the three key
questions identified in Section 2.1 . We plan to do so by developing and/or building on programming languages
and techniques based on formal methods and formal semantics (hence the use of “sound programming” in the
project-team title). In particular, we seek to support design where correctness is obtained by construction,
relying on proven tools and verified constructs, with programming languages and programming abstractions
designed with verification in mind.

3.2. Design and Programming Models
Work on this theme aims to develop models , languages and tools to support a “correct-by-construction”
approach to the development of embedded systems.

On the programming side, we focus on the definition of domain specific programming models and languages
supporting static analyses for the computation of precise resource bounds for program executions. We propose
dataflow models supporting dynamicity while enjoying effective analyses. In particular, we study parametric
extensions where properties such as liveness and boundedness remain statically analyzable.

On the design side, we focus on the definition of component-based models for software architectures
combining distribution, dynamicity, real-time and fault-tolerant aspects. Component-based construction has
long been advocated as a key approach to the “correct-by-construction” design of complex embedded systems
[49]. Witness component-based toolsets such as PTOLEMY [38], BIP [30], or the modular architecture
frameworks used, for instance, in the automotive industry (AUTOSAR) [22]. For building large, complex
systems, a key feature of component-based construction is the ability to associate with components a set of
contracts, which can be understood as rich behavioral types that can be composed and verified to guarantee a
component assemblage will meet desired properties.

Formal models for component-based design are an active area of research. However, we are still missing a
comprehensive formal model and its associated behavioral theory able to deal at the same time with different
forms of composition, dynamic component structures, and quantitative constraints (such as timing, fault-
tolerance, or energy consumption).

We plan to develop our component theory by progressing on two fronts: a semantical framework and domain-
specific programming models. The work on the semantical framework should, in the longer term, provide
abstract mathematical models for the more operational and linguistic analysis afforded by component calculi.
Our work on component theory will find its application in the development of a COQ-based toolchain for the
certified design and construction of dependable embedded systems, which constitutes our first main objective
for this axis.

3.3. Certified Real-Time Programming
Programming real-time systems (i.e., systems whose correct behavior depends on meeting timing constraints)
requires appropriate languages (as exemplified by the family of synchronous languages [32]), but also
the support of efficient scheduling policies, execution time and schedulability analyses to guarantee real-
time constraints (e.g., deadlines) while making the most effective use of available (processing, memory, or
networking) resources. Schedulability analysis involves analyzing the worst-case behavior of real-time tasks
under a given scheduling algorithm and is crucial to guarantee that time constraints are met in any possible
execution of the system. Reactive programming and real-time scheduling and schedulability for multiprocessor

http://www.inria.fr/equipes/spades
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/uid3.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid5

87 Embedded and Real-time Systems - Research Program - Project-Team SPADES

systems are old subjects, but they are nowhere as mature as their uniprocessor counterparts, and still feature
a number of open research questions [28], [36], in particular in relation with mixed criticality systems. The
main goal in this theme is to address several of these open questions.

We intend to focus on two issues: multicriteria scheduling on multiprocessors, and schedulability analysis
for real-time multiprocessor systems. Beyond real-time aspects, multiprocessor environments, and multicore
ones in particular, are subject to several constraints in conjunction, typically involving real-time, reliability and
energy-efficiency constraints, making the scheduling problem more complex for both the offline and the online
cases. Schedulability analysis for multiprocessor systems, in particular for systems with mixed criticality tasks,
is still very much an open research area.

Distributed reactive programming is rightly singled out as a major open issue in the recent, but heavily biased
(it essentially ignores recent research in synchronous and dataflow programming), survey by Bainomugisha
et al. [28]. For our part, we intend to focus on devising synchronous programming languages for distributed
systems and precision-timed architectures.

3.4. Fault Management and Causal Analysis
Managing faults is a clear and present necessity in networked embedded systems. At the hardware level,
modern multicore architectures are manufactured using inherently unreliable technologies [33], [43]. The
evolution of embedded systems towards increasingly distributed architectures highlighted in the introductory
section means that dealing with partial failures, as in Web-based distributed systems, becomes an important
issue.

In this axis we intend to address the question of how to cope with faults and failures in embedded systems?.
We will tackle this question by exploiting reversible programming models and by developing techniques for
fault ascription and explanation in component-based systems.

A common theme in this axis is the use and exploitation of causality information. Causality, i.e., the logical
dependence of an effect on a cause, has long been studied in disciplines such as philosophy [53], natural
sciences, law [54], and statistics [55], but it has only recently emerged as an important focus of research in
computer science. The analysis of logical causality has applications in many areas of computer science. For
instance, tracking and analyzing logical causality between events in the execution of a concurrent system is
required to ensure reversibility [52], to allow the diagnosis of faults in a complex concurrent system [47],
or to enforce accountability [51], that is, designing systems in such a way that it can be determined without
ambiguity whether a required safety or security property has been violated, and why. More generally, the goal
of fault-tolerance can be understood as being to prevent certain causal chains from occurring by designing
systems such that each causal chain either has its premises outside of the fault model (e.g., by introducing
redundancy [45]), or is broken (e.g., by limiting fault propagation [57]).

http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/spades/bibliography.html#spades-2018-bid17

88 Embedded and Real-time Systems - Research Program - Project-Team TEA

TEA Project-Team

3. Research Program

3.1. Previous Works
The challenges of team TEA support the claim that sound Cyber-Physical System design (including embedded,
reactive, and concurrent systems altogether) should consider multi-form time models as a central aspect. In
this aim, architectural specifications found in software engineering are a natural focal point to start from.
Architecture descriptions organize a system model into manageable components, establish clear interfaces
between them, collect domain-specific constraints and properties to help correct integration of components
during system design. The definition of a formal design methodology to support heterogeneous or multi-form
models of time in architecture descriptions demands the elaboration of sound mathematical foundations and
the development of formal calculi and methods to instrument them. This constitutes the research program of
team TEA.

System design based on the “synchronous paradigm” has focused the attention of many academic and
industrial actors on abstracting non-functional implementation details from system design. This elegant design
abstraction focuses on the logic of interaction in reactive programs rather than their timed behavior, allowing
to secure functional correctness while remaining an intuitive programming model for embedded systems. Yet,
it corresponds to embedded technologies of single cores and synchronous buses from the 90s, and may hardly
cover the semantic diversity of distribution, parallelism, heterogeneity, of cyber-physical systems found in 21st
century Internet-connected, true-timeTM -synchronized clouds, of tomorrow’s grids.

By contrast with a synchronous hypothesis, yet from the same era, the polychronous MoCC is inherently
capable of describing multi-clock abstractions of GALS systems. Polychrony is implemented in the data-flow
specification language Signal, available in the Eclipse project POP 0 and in the CCSL standard 0 available from
the TimeSquare project. Both provide tooled infrastructures to refine high-level specifications into real-time
streaming applications or locally synchronous and globally asynchronous systems, through a series of model
analysis, verification, and synthesis services. These tool-supported refinement and transformation techniques
can assist the system engineer from the earliest design stages of requirement specification to the latest stages
of synthesis, scheduling and deployment. These characteristics make polychrony much closer to the required
semantic for compositional, refinement-based, architecture-driven, system design.

While polychrony was a step ahead of the traditional synchronous hypothesis, CCSL is a leap forward from
synchrony and polychrony. The essence of CCSL is “multi-form time” toward addressing all of the domain-
specific physical, electronic and logical aspects of cyber-physical system design.

3.2. Modeling Times
To make a sense and eventually formalize the semantics of time in system design, we should most certainly rely
on algebraic representations of time found in previous works and introduce the paradigm of "time systems"
(type systems to represent time) in a way reminiscent to CCSL. Just as a type system abstracts data carried
along operations in a program, a time system abstracts the causal interaction of that program module or
hardware element with its environment, its pre and post conditions, its assumptions and guarantees, either
logical or numerical, discrete or continuous. Some fundamental concepts of the time systems we envision are
present in the clock calculi found in data-flow synchronous languages like Signal or Lustre, yet bound to a
particular model of concurrency, hence time.

0Polychrony on Polarsys, https://www.polarsys.org/projects/polarsys.pop
0Clock Constraints in UML/MARTE CCSL. C. André, F. Mallet. RR-6540. Inria, 2008. http://hal.inria.fr/inria-00280941

http://www.inria.fr/equipes/tea
https://www.polarsys.org/projects/polarsys.pop
http://hal.inria.fr/inria-00280941

89 Embedded and Real-time Systems - Research Program - Project-Team TEA

In particular, the principle of refinement type systems 0, is to associate information (data-types) inferred from
programs and models with properties pertaining, for instance, to the algebraic domain on their value, or any
algebraic property related to its computation: effect, memory usage, pre-post condition, value-range, cost,
speed, time, temporal logic 0. Being grounded on type and domain theories, a time system should naturally
be equipped with program analysis techniques based on type inference (for data-type inference) or abstract
interpretation (for program properties inference) to help establish formal relations between heterogeneous
component “types”. Just as a time calculus may formally abstract timed concurrent behaviors of system
components, timed relations (abstraction and refinement) represent interaction among components.

Scalability and compositionality requires the use of assume-guarantee reasoning to represent them, and
to facilitate composition by behavioral sub-typing, in the spirit of the (static) contract-based formalism
proposed by Passerone et al. 0. Verification problems encompassing heterogeneously timed specifications
are common and of great variety: checking correctness between abstract and concrete time models relates
to desynchronisation (from synchrony to asynchrony) and scheduling analysis (from synchrony to hardware).
More generally, they can be perceived from heterogeneous timing viewpoints (e.g. mapping a synchronous-
time software on a real-time middle-ware or hardware).

This perspective demands capabilities not only to inject time models one into the other (by abstract inter-
pretation, using refinement calculi), to compare time abstractions one another (using simulation, refinement,
bi-simulation, equivalence relations) but also to prove more specific properties (synchronization, determinism,
endochrony). All this formalization effort will allow to effectively perform the tooled validation of common
cross-domain properties (e.g. cost v.s. power v.s. performance v.s. software mapping) and tackle equally com-
mon yet tough case studies such as these linking battery capacity, to on-board CPU performance, to static
software schedulability, to logical software correctness and plant controllability (by the choice of the correct
sampling period across system components).

3.3. Modeling Architectures
To address the formalization of such cross-domain case studies, modeling the architecture formally plays an
essential role. An architectural model represents components in a distributed system as boxes with well-defined
interfaces, connections between ports on component interfaces, and specifies component properties that can be
used in analytical reasoning about the model. Several architectural modeling languages for embedded systems
have emerged in recent years, including the SAE AADL 0, SysML 0, UML MARTE 0.

In system design, an architectural specification serves several important purposes. First, it breaks down a
system model into manageable components to establish clear interfaces between components. In this way,
complexity becomes manageable by hiding details that are not relevant at a given level of abstraction. Clear,
formally defined, component interfaces allow us to avoid integration problems at the implementation phase.
Connections between components, which specify how components affect each other, help propagate the effects
of a change in one component to the linked components.

Most importantly, an architectural model is a repository to share knowledge about the system being designed.
This knowledge can be represented as requirements, design artifacts, component implementations, held
together by a structural backbone. Such a repository enables automatic generation of analytical models for
different aspects of the system, such as timing, reliability, security, performance, energy, etc. Since all the
models are generated from the same source, the consistency of assumptions w.r.t. guarantees, of abstractions
w.r.t. refinements, used for different analyses becomes easier, and can be properly ensured in a design
methodology based on formal verification and synthesis methods.

0Abstract Refinement Types. N. Vazou, P. Rondon, and R. Jhala. European Symposium on Programming. Springer, 2013.
0LTL types FRP. A. Jeffrey. Programming Languages meets Program Verification.
0A contract-based formalism for the specification of heterogeneous systems. L. Benvenistu, et al. FDL, 2008
0Architecture Analysis and Design Language, AS-5506. SAE, 2004. http://standards.sae.org/as5506b
0System modeling Language. OMG, 2007. http://www.omg.org/spec/SysML
0UML Profile for MARTE. OMG, 2009. http://www.omg.org/spec/MARTE

http://standards.sae.org/as5506b
http://www.omg.org/spec/SysML
http://www.omg.org/spec/MARTE

90 Embedded and Real-time Systems - Research Program - Project-Team TEA

Related works in this aim, and closer in spirit to our approach (to focus on modeling time) are domain-
specific languages such as Prelude 0 to model the real-time characteristics of embedded software architectures.
Conversely, standard architecture description languages could be based on algebraic modeling tools, such as
interface theories with the ECDAR tool 0.

In project TEA, it takes form by the normalization of the AADL standard’s formal semantics and the proposal
of a time specification annex in the form of related standards, such as CCSL, to model concurrency time and
physical properties, and PSL, to model timed traces.

3.4. Scheduling Theory
Based on sound formalization of time and CPS architectures, real-time scheduling theory provides tools
for predicting the timing behavior of a CPS which consists of many interacting software and hardware
components. Expressing parallelism among software components is a crucial aspect of the design process
of a CPS. It allows for efficient partition and exploitation of available resources.

The literature about real-time scheduling 0 provides very mature schedulability tests regarding many schedul-
ing strategies, preemptive or non-preemptive scheduling, uniprocessor or multiprocessor scheduling, etc.
Scheduling of data-flow graphs has also been extensively studied in the past decades.

A milestone in this prospect is the development of abstract affine scheduling techniques 0. It consists, first,
of approximating task communication patterns (e.g. between Safety-Critical Java threads) using cyclo-static
data-flow graphs and affine functions. Then, it uses state of the art ILP techniques to find optimal schedules
and to concretize them as real-time schedules in the program implementations 00.

Abstract scheduling, or the use of abstraction and refinement techniques in scheduling borrowed to the
theory of abstract interpretation 0 is a promising development toward tooled methodologies to orchestrate
thousands of heterogeneous hardware/software blocks on modern CPS architectures (just consider modern
cars or aircrafts). It is an issue that simply defies the state of the art and known bounds of complexity theory
in the field, and consequently requires a particular focus.

To develop the underlying theory of this promising research topic, we first need to deepen the theoretical
foundation to establish links between scheduling analysis and abstract interpretation. A theory of time systems
would offer the ideal framework to pursue this development. It amounts to representing scheduling constraints,
inferred from programs, as types or contract properties. It allows to formalize the target time model of the
scheduler (the architecture, its middle-ware, its real-time system) and defines the basic concepts to verify
assumptions made in one with promises offered by the other: contract verification or, in this case, synthesis.

3.5. Verified programming for system design
The IoT is a network of devices that sense, actuate and change our immediate environment. Against this
fundamental role of sensing and actuation, design of edge devices often treats action and event timing to be
primarily software implementation issues: programming models for IoT abstract even the most rudimentary
information regarding timing, sensing and the effects of actuation. As a result, applications programming
interfaces for IoT allow wiring systems fast without any meaningful assertions about correctness, reliability or
resilience.

We make the case that the "API glue" must give way to the logical closure of interface types. Interfaces can
be governed by a calculus – a refinement type calculus – to enable reasoning on time, sensing and actuation,
in a way that provides both deep specification refinement, for mechanized verification of requirements, and
multi-layered abstraction, to support compositionality and scalability, from one end of the system to the other.

0The Prelude language. LIFL and ONERA, 2012. http://www.lifl.fr/~forget/prelude.html
0PyECDAR, timed games for timed specifications. Inria, 2013. https://project.inria.fr/pyecdar
0A survey of hard real-time scheduling for multiprocessor systems. R. I. Davis and A. Burns. ACM Computing Survey 43(4), 2011.
0Buffer minimization in EDF scheduling of data-flow graphs. A. Bouakaz and J.-P. Talpin. LCTES, ACM, 2013.
0ADFG for the synthesis of hard real-time applications. A. Bouakaz, J.-P. Talpin, J. Vitek. ACSD, IEEE, June 2012.
0Design of SCJ Level 1 Applications Using Affine Abstract Clocks. A. Bouakaz and J.-P. Talpin. SCOPES, ACM, 2013.
0La vérification de programmes par interprétation abstraite. P. Cousot. Séminaire au Collège de France, 2008.

http://www.lifl.fr/~forget/prelude.html
https://project.inria.fr/pyecdar

91 Embedded and Real-time Systems - Research Program - Project-Team TEA

Our project seeks to elevate the “function as type” paradigm to that of “system as type”: to define a refinement
type calculus for reasoning on networked devices and integrate them as cyber-physical systems 0. Our
companion paper 0 outlines our progress in this aim and plans towards building a verified programming
environment for networked IoT devices: we propose a type-driven approach to verifying and building safe
and secure IoT applications.

Accounting for such constrains in a more principled fashion demands reasoning about the composition of
all the software and hardware components of the application. Our proposed framework takes a step in this
direction by (1) using refinement types to make make physical constraints explicit and (2) imposing an event-
driven programming discipline to simplify the reasoning of system-wide properties to that of an event queue.
In taking this approach, our framework makes it possible for developers to build verified IoT application by
making it a type error for code to violate physical constraints.

0Refinement types for system design. Jean-Pierre Talpin. FDL’18 keynote.
0Steps toward verified programming of embedded computing systems. Jean-Pierre Talpin, Jean-Joseph Marty, Deian Stefan, Shravan

Nagarayan, Rajesh Gupta, DATE’18.

92 Proofs and Verification - Research Program - Project-Team ANTIQUE

ANTIQUE Project-Team

3. Research Program

3.1. Semantics
Semantics plays a central role in verification since it always serves as a basis to express the properties of
interest, that need to be verified, but also additional properties, required to prove the properties of interest, or
which may make the design of static analysis easier.

For instance, if we aim for a static analysis that should prove the absence of runtime error in some class
of programs, the concrete semantics should define properly what error states and non error states are, and
how program executions step from a state to the next one. In the case of a language like C, this includes the
behavior of floating point operations as defined in the IEEE 754 standard. When considering parallel programs,
this includes a model of the scheduler, and a formalization of the memory model.

In addition to the properties that are required to express the proof of the property of interest, it may also be
desirable that semantics describe program behaviors in a finer manner, so as to make static analyses easier
to design. For instance, it is well known that, when a state property (such as the absence of runtime error) is
valid, it can be established using only a state invariant (i.e., an invariant that ignores the order in which states
are visited during program executions). Yet searching for trace invariants (i.e., that take into account some
properties of program execution history) may make the static analysis significantly easier, as it will allow it
to make finer case splits, directed by the history of program executions. To allow for such powerful static
analyses, we often resort to a non standard semantics, which incorporates properties that would normally be
left out of the concrete semantics.

3.2. Abstract interpretation and static analysis
Once a reference semantics has been fixed and a property of interest has been formalized, the definition of
a static analysis requires the choice of an abstraction. The abstraction ties a set of abstract predicates to the
concrete ones, which they denote. This relation is often expressed with a concretization function that maps
each abstract element to the concrete property it stands for. Obviously, a well chosen abstraction should allow
one to express the property of interest, as well as all the intermediate properties that are required in order to
prove it (otherwise, the analysis would have no chance to achieve a successful verification). It should also lend
itself to an efficient implementation, with efficient data-structures and algorithms for the representation and
the manipulation of abstract predicates. A great number of abstractions have been proposed for all kinds of
concrete data types, yet the search for new abstractions is a very important topic in static analysis, so as to
target novel kinds of properties, to design more efficient or more precise static analyses.

Once an abstraction is chosen, a set of sound abstract transformers can be derived from the concrete semantics
and that account for individual program steps, in the abstract level and without forgetting any concrete
behavior. A static analysis follows as a result of this step by step approximation of the concrete semantics,
when the abstract transformers are all computable. This process defines an abstract interpretation [27]. The
case of loops requires a bit more work as the concrete semantics typically relies on a fixpoint that may not
be computable in finitely many iterations. To achieve a terminating analysis we then use widening operators
[27], which over-approximate the concrete union and ensure termination.

A static analysis defined that way always terminates and produces sound over-approximations of the programs
behaviors. Yet, these results may not be precise enough for verification. This is where the art of static analysis
design comes into play through, among others:
• the use of more precise, yet still efficient enough abstract domains;
• the combination of application-specific abstract domains;
• the careful choice of abstract transformers and widening operators.

http://www.inria.fr/equipes/antique
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2018-bid0

93 Proofs and Verification - Research Program - Project-Team ANTIQUE

3.3. Applications of the notion of abstraction in semantics
In the previous subsections, we sketched the steps in the design of a static analyzer to infer some family of
properties, which should be implementable, and efficient enough to succeed in verifying non trivial systems.

The same principles can be applied successfully to other goals. In particular, the abstract interpretation
framework should be viewed as a very general tool to compare different semantics, not necessarily with the
goal of deriving a static analyzer. Such comparisons may be used in order to prove two semantics equivalent
(i.e., one is an abstraction of the other and vice versa), or that a first semantics is strictly more expressive
than another one (i.e., the latter can be viewed an abstraction of the former, where the abstraction actually
makes some information redundant, which cannot be recovered). A classical example of such comparison is
the classification of semantics of transition systems [26], which provides a better understanding of program
semantics in general. For instance, this approach can be applied to get a better understanding of the semantics
of a programming language, but also to select which concrete semantics should be used as a foundation for a
static analysis, or to prove the correctness of a program transformation, compilation or optimization.

3.4. From properties to explanations
In many application domains, we can go beyond the proof that a program satisfies its specification. Abstrac-
tions can also offer new perspectives to understand how complex behaviors of programs emerge from simpler
computation steps. Abstractions can be used to find compact and readable representations of sets of traces,
causal relations, and even proofs. For instance, abstractions may decipher how the collective behaviors of
agents emerge from the orchestration of their individual ones in distributed systems (such as consensus pro-
tocols, models of signaling pathways). Another application is the assistance for the diagnostic of alarms of a
static analyzer.

Complex systems and software have often times intricate behaviors, leading to executions that are hard to
understand for programmers and also difficult to reason about with static analyzers. Shared memory and dis-
tributed systems are notorious for being hard to reason about due to the interleaving of actions performed by
different processes and the non-determinism of the network that might lose, corrupt, or duplicate messages.
Reduction theorems, e.g., Lipton’s theorem, have been proposed to facilitate reasoning about concurrency,
typically transforming a system into one with a coarse-grained semantics that usually increases the atomic
sections. We investigate reduction theorems for distributed systems and ways to compute the coarse-grained
counter part of a system automatically. Compared with shared memory concurrency, automated methods to
reason about distributed systems have been less investigated in the literature. We take a programming language
approach based on high-level programming abstractions. We focus on partially-synchronous communication
closed round-based models, introduced in the distributed algorithms community for its simpler proof argu-
ments. The high-level language is compiled into a low-level (asynchronous) programming language. Con-
versely, systems defined under asynchronous programming paradigms are decompiled into the high-level
programming abstractions. The correctness of the compilation/decompilation process is based on reduction
theorems (in the spirit of Lipton and Elrad-Francez) that preserve safety and liveness properties.

In models of signaling pathways, collective behavior emerges from competition for common resources, sep-
aration of scales (time/concentration), non linear feedback loops, which are all consequences of mechanistic
interactions between individual bio-molecules (e.g., proteins). While more and more details about mechanistic
interactions are available in the literature, understanding the behavior of these models at the system level is
far from easy. Causal analysis helps explaining how specific events of interest may occur. Model reduction
techniques combine methods from different domains such as the analysis of information flow used in com-
munication protocols, and tropicalization methods that comes from physics. The result is lower dimension
systems that preserve the behavior of the initial system while focusing of the elements from which emerges
the collective behavior of the system.

The abstraction of causal traces offer nice representation of scenarios that lead to expected or unexpected
events. This is useful to understand the necessary steps in potential scenarios in signaling pathways; this is
useful as well to understand the different steps of an intrusion in a protocol. Lastly, traces of computation of

http://raweb.inria.fr/rapportsactivite/RA{$year}/antique/bibliography.html#antique-2018-bid1

94 Proofs and Verification - Research Program - Project-Team ANTIQUE

a static analyzer can themselves be abstracted, which provides assistance to classify true and false alarms.
Abstracted traces are symbolic and compact representations of sets of counter-examples to the specification of
a system which help one to either understand the origin of bugs, or to find that some information has been lost
in the abstraction leading to false alarms.

95 Proofs and Verification - Research Program - Project-Team CELTIQUE

CELTIQUE Project-Team (section vide)

http://www.inria.fr/equipes/celtique

96 Proofs and Verification - Research Program - Project-Team CONVECS

CONVECS Project-Team

3. Research Program

3.1. New Formal Languages and their Concurrent Implementations
We aim at proposing and implementing new formal languages for the specification, implementation, and
verification of concurrent systems. In order to provide a complete, coherent methodological framework, two
research directions must be addressed:

• Model-based specifications: these are operational (i.e., constructive) descriptions of systems, usually
expressed in terms of processes that execute concurrently, synchronize together and communicate.
Process calculi are typical examples of model-based specification languages. The approach we
promote is based on LOTOS NT (LNT for short), a formal specification language that incorporates
most constructs stemming from classical programming languages, which eases its acceptance by
students and industry engineers. LNT [5] is derived from the ISO standard E-LOTOS (2001), of
which it represents the first successful implementation, based on a source-level translation from
LNT to the former ISO standard LOTOS (1989). We are working both on the semantic foundations
of LNT (enhancing the language with module interfaces and timed/probabilistic/stochastic features,
compiling the m among n synchronization, etc.) and on the generation of efficient parallel and
distributed code. Once equipped with these features, LNT will enable formally verified asynchronous
concurrent designs to be implemented automatically.

• Property-based specifications: these are declarative (i.e., non-constructive) descriptions of systems,
which express what a system should do rather than how the system should do it. Temporal logics
and µ-calculi are typical examples of property-based specification languages. The natural models
underlying value-passing specification languages, such as LNT, are Labeled Transition Systems
(LTSs or simply graphs) in which the transitions between states are labeled by actions containing
data values exchanged during handshake communications. In order to reason accurately about these
LTSs, temporal logics involving data values are necessary. The approach we promote is based on
MCL (Model Checking Language) [55], which extends the modal µ-calculus with data-handling
primitives, fairness operators encoding generalized Büchi automata, and a functional-like language
for describing complex transition sequences. We are working both on the semantic foundations of
MCL (extending the language with new temporal and hybrid operators, translating these operators
into lower-level formalisms, enhancing the type system, etc.) and also on improving the MCL on-
the-fly model checking technology (devising new algorithms, enhancing ergonomy by detecting and
reporting vacuity, etc.).

We address these two directions simultaneously, yet in a coherent manner, with a particular focus on applicable
concurrent code generation and computer-aided verification.

3.2. Parallel and Distributed Verification
Exploiting large-scale high-performance computers is a promising way to augment the capabilities of formal
verification. The underlying problems are far from trivial, making the correct design, implementation, fine-
tuning, and benchmarking of parallel and distributed verification algorithms long-term and difficult activities.
Sequential verification algorithms cannot be reused as such for this task: they are inherently complex, and their
existing implementations reflect several years of optimizations and enhancements. To obtain good speedup
and scalability, it is necessary to invent new parallel and distributed algorithms rather than to attempt a
parallelization of existing sequential ones. We seek to achieve this objective by working along two directions:

http://www.inria.fr/equipes/convecs
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2018-bid1

97 Proofs and Verification - Research Program - Project-Team CONVECS

• Rigorous design: Because of their high complexity, concurrent verification algorithms should them-
selves be subject to formal modeling and verification, as confirmed by recent trends in the certifi-
cation of safety-critical applications. To facilitate the development of new parallel and distributed
verification algorithms, we promote a rigorous approach based on formal methods and verification.
Such algorithms will be first specified formally in LNT, then validated using existing model checking
algorithms of the CADP toolbox. Second, parallel or distributed implementations of these algorithms
will be generated automatically from the LNT specifications, enabling them to be experimented on
large computing infrastructures, such as clusters and grids. As a side-effect, this “bootstrapping” ap-
proach would produce new verification tools that can later be used to self-verify their own design.

• Performance optimization: In devising parallel and distributed verification algorithms, particular
care must be taken to optimize performance. These algorithms will face concurrency issues at sev-
eral levels: grids of heterogeneous clusters (architecture-independence of data, dynamic load balanc-
ing), clusters of homogeneous machines connected by a network (message-passing communication,
detection of stable states), and multi-core machines (shared-memory communication, thread syn-
chronization). We will seek to exploit the results achieved in the parallel and distributed computing
field to improve performance when using thousands of machines by reducing the number of connec-
tions and the messages exchanged between the cooperating processes carrying out the verification
task. Another important issue is the generalization of existing LTS representations (explicit, implicit,
distributed) in order to make them fully interoperable, such that compilers and verification tools can
handle these models transparently.

3.3. Timed, Probabilistic, and Stochastic Extensions
Concurrent systems can be analyzed from a qualitative point of view, to check whether certain properties
of interest (e.g., safety, liveness, fairness, etc.) are satisfied. This is the role of functional verification, which
produces Boolean (yes/no) verdicts. However, it is often useful to analyze such systems from a quantitative
point of view, to answer non-functional questions regarding performance over the long run, response time,
throughput, latency, failure probability, etc. Such questions, which call for numerical (rather than binary)
answers, are essential when studying the performance and dependability (e.g., availability, reliability, etc.) of
complex systems.

Traditionally, qualitative and quantitative analyzes are performed separately, using different modeling lan-
guages and different software tools, often by distinct persons. Unifying these separate processes to form a
seamless design flow with common modeling languages and analysis tools is therefore desirable, for both sci-
entific and economic reasons. Technically, the existing modeling languages for concurrent systems need to be
enriched with new features for describing quantitative aspects, such as probabilities, weights, and time. Such
extensions have been well-studied and, for each of these directions, there exist various kinds of automata,
e.g., discrete-time Markov chains for probabilities, weighted automata for weights, timed automata for hard
real-time, continuous-time Markov chains for soft real-time with exponential distributions, etc. Nowadays, the
next scientific challenge is to combine these individual extensions altogether to provide even more expressive
models suitable for advanced applications.

Many such combinations have been proposed in the literature, and there is a large amount of models adding
probabilities, weights, and/or time. However, an unfortunate consequence of this diversity is the confuse
landscape of software tools supporting such models. Dozens of tools have been developed to implement
theoretical ideas about probabilities, weights, and time in concurrent systems. Unfortunately, these tools do
not interoperate smoothly, due both to incompatibilities in the underlying semantic models and to the lack of
common exchange formats.

To address these issues, CONVECS follows two research directions:
• Unifying the semantic models. Firstly, we will perform a systematic survey of the existing semantic

models in order to distinguish between their essential and non-essential characteristics, the goal
being to propose a unified semantic model that is compatible with process calculi techniques for
specifying and verifying concurrent systems. There are already proposals for unification either

98 Proofs and Verification - Research Program - Project-Team CONVECS

theoretical (e.g., Markov automata) or practical (e.g., PRISM and MODEST modeling languages),
but these languages focus on quantitative aspects and do not provide high-level control structures
and data handling features (as LNT does, for instance). Work is therefore needed to unify process
calculi and quantitative models, still retaining the benefits of both worlds.

• Increasing the interoperability of analysis tools. Secondly, we will seek to enhance the interoperabil-
ity of existing tools for timed, probabilistic, and stochastic systems. Based on scientific exchanges
with developers of advanced tools for quantitative analysis, we plan to evolve the CADP toolbox as
follows: extending its perimeter of functional verification with quantitative aspects; enabling deeper
connections with external analysis components for probabilistic, stochastic, and timed models; and
introducing architectural principles for the design and integration of future tools, our long-term goal
being the construction of a European collaborative platform encompassing both functional and non-
functional analyzes.

3.4. Component-Based Architectures for On-the-Fly Verification
On-the-fly verification fights against state explosion by enabling an incremental, demand-driven exploration
of LTSs, thus avoiding their entire construction prior to verification. In this approach, LTS models are
handled implicitly by means of their post function, which computes the transitions going out of given states
and thus serves as a basis for any forward exploration algorithm. On-the-fly verification tools are complex
software artifacts, which must be designed as modularly as possible to enhance their robustness, reduce their
development effort, and facilitate their evolution. To achieve such a modular framework, we undertake research
in several directions:

• New interfaces for on-the-fly LTS manipulation. The current application programming interface
(API) for on-the-fly graph manipulation, named OPEN/CAESAR [41], provides an “opaque” repre-
sentation of states and actions (transitions labels): states are represented as memory areas of fixed
size and actions are character strings. Although appropriate to the pure process algebraic setting, this
representation must be generalized to provide additional information supporting an efficient con-
struction of advanced verification features, such as: handling of the types, functions, data values, and
parallel structure of the source program under verification, independence of transitions in the LTS,
quantitative (timed/probabilistic/stochastic) information, etc.

• Compositional framework for on-the-fly LTS analysis. On-the-fly model checkers and equivalence
checkers usually perform several operations on graph models (LTSs, Boolean graphs, etc.), such
as exploration, parallel composition, partial order reduction, encoding of model checking and
equivalence checking in terms of Boolean equation systems, resolution and diagnostic generation
for Boolean equation systems, etc. To facilitate the design, implementation, and usage of these
functionalities, it is necessary to encapsulate them in software components that could be freely
combined and replaced. Such components would act as graph transformers, that would execute (on
a sequential machine) in a way similar to coroutines and to the composition of lazy functions in
functional programming languages. Besides its obvious benefits in modularity, such a component-
based architecture will also make it possible to take advantage of multi-core processors.

• New generic components for on-the-fly verification. The quest for new on-the-fly components for
LTS analysis must be pursued, with the goal of obtaining a rich catalog of interoperable components
serving as building blocks for new analysis features. A long-term goal of this approach is to provide
an increasingly large catalog of interoperable components covering all verification and analysis
functionalities that appear to be useful in practice. It is worth noticing that some components can
be very complex pieces of software (e.g., the encapsulation of an on-the-fly model checker for a
rich temporal logic). Ideally, it should be possible to build a novel verification or analysis tool by
assembling on-the-fly graph manipulation components taken from the catalog. This would provide
a flexible means of building new verification and analysis tools by reusing generic, interoperable
model manipulation components.

http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2018-bid2

99 Proofs and Verification - Research Program - Project-Team CONVECS

3.5. Real-Life Applications and Case Studies
We believe that theoretical studies and tool developments must be confronted with significant case studies to
assess their applicability and to identify new research directions. Therefore, we seek to apply our languages,
models, and tools for specifying and verifying formally real-life applications, often in the context of industrial
collaborations.

100 Proofs and Verification - Research Program - Project-Team DEDUCTEAM

DEDUCTEAM Project-Team

3. Research Program
3.1. Logical Frameworks

A thesis, which is at the root of our research effort, is that logical systems should be expressed as theories
in a logical framework. As a consequence, proof-checking systems should not be focused on one theory,
such as Simple type theory, Martin-Löf’s type theory, or the Calculus of constructions, but should be theory
independent. On the more theoretical side, the proof search algorithms, or the algorithmic interpretation of
proofs should not depend on the theory in which proofs are expressed, but this theory should just be a
parameter. This is for instance expressed in the title of our invited talk at ICALP 2012: A theory independent
Curry-De Bruijn-Howard correspondence [31].

Various limits of Predicate logic have led to the development of various families of logical frameworks: λ-
prolog and Isabelle have allowed terms containing free variables, the Edinburgh logical framework has allowed
proofs to be expressed as λ-terms, Pure type systems have allowed propositions to be considered as terms, and
Deduction modulo theory has allowed theories to be defined not only with axioms, but also with computation
rules.

The λΠ-calculus modulo theory, that is implemented in the system DEDUKTI and that is a synthesis of
the Edinburgh logical framework and of Deduction modulo theory, subsumes them all. Part of our research
effort is focused on improving the λΠ-calculus modulo theory, for instance allowing to define congruences
with associative and commutative rewriting. Another part of our research effort is focused on the automatic
analysis of theories to prove their confluence, termination, and consistency either by pencil and paper proofs
or automatically [4].

3.2. Interoperability and proof encyclopediae
Using a single prover to check proofs coming from different systems naturally leads to investigate how these
proofs can be translated from one theory to another and used in a system different from the system in which
they have been developed. This issue is of prime importance because developments in proof systems are
getting bigger and, unlike other communities in computer science, the proof checking community has given
little effort in the direction of standardization and interoperability.

For each proof, independently of the system in which it has been developed, we should be able to identify the
systems in which it can be expressed. For instance, we have shown that many proofs developed in the MATITA
prover did not use the full strength of the logic of MATITA and could be exported, for instance, to the systems
of the HOL family, that are based on a weaker logic.

Rather than importing proofs from one system, transforming them, and exporting them to another system, we
can use the same tools to develop system-independent proof encyclopedia. In such a library, each proof is
labeled with the theories in which it can be expressed and so with the systems in which it can be used.

3.3. Interactive theorem proving
If our main goal with DEDUKTI is to import, transform, and export proofs developed in other systems, we
also want to investigate how DEDUKTI can be used as the basis of an interactive theorem prover. This leads
to two new scientific questions: first, how much can a tactic system be theory independent, and then how does
rewriting extends the possibility to write tactics.

This has led to the development of a new version of DEDUKTI, which supports metavariables. Several tactics
have been developed for this system, which are intended to help a human user to write proofs in our system
instead of writing proof terms by hand. This work is a continuation of the previous work the team did on
DEMON, which was an extension of DEDUKTI, whereas the support for interactive theorem proving is now
native in DEDUKTI.

http://www.inria.fr/equipes/deducteam
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/deducteam/bibliography.html#deducteam-2018-bid2

101 Proofs and Verification - Research Program - Project-Team GALLINETTE

GALLINETTE Project-Team

3. Research Program

3.1. Scientific Context
Software quality is a requirement that is becoming more and more prevalent, by now far exceeding the
traditional scope of embedded systems. The development of tools to construct software that respects a given
specification is a major challenge facing computer science. Proof assistants such as Coq [50] provide a
formal method whose central innovation is to produce certified programs by transforming the very activity of
programming. Programming and proving are merged into a single development activity, informed by an elegant
but rigid mathematical theory inspired by the correspondence between programming, logic and algebra: the
Curry-Howard correspondence. For the certification of programs, this approach has shown its efficiency in
the development of important pieces of certified software such as the C compiler of the CompCert project
[79]. The extracted CompCert compiler is reliable and efficient, running only 15% slower than GCC 4 at
optimisation level 2 (gcc -O2), a level of optimisation that was considered before to be highly unreliable.

Proof assistants can also be used to formalise mathematical theories: they not only provide a means of
representing mathematical theories in a form amenable to computer processing, but their internal logic
provides a language for reasoning about such theories. In the last decade, proof assistants have been used
to verify extremely large and complicated proofs of recent mathematical results, sometimes requiring either
intensive computations [61], [65] or intricate combinations of a multitude of mathematical theories [60]. But
formalised mathematics is more than just proof checking and proof assistants can help with the organisation
mathematical knowledge or even with the discovery of new constructions and proofs.

Unfortunately, the rigidity of the theory behind proof assistants impedes their expressiveness both as pro-
gramming languages and as logical systems. For instance, a program extracted from Coq only uses a purely
functional subset of OCaml, leaving behind important means of expression such as side-effects and objects.
Limitations also appears in the formalisation of advanced mathematics: proof assistants do not cope well with
classical axioms such as excluded middle and choice which are sometimes used crucially. The fact of the
matter is that the development of proof assistants cannot be dissociated from a reflection on the nature of
programs and proofs coming from the Curry-Howard correspondence. In the EPC Gallinette, we propose to
address several drawbacks of proof assistants by pushing the boundaries of this correspondence.

In the 1970’s, the Curry-Howard correspondence was seen as a perfect match between functional programs,
intuitionistic logic, and Cartesian closed categories. It received several generalisations over the decades,
and now it is more widely understood as a fertile correspondence between computation, logic, and algebra.
Nowadays, the view of the Curry-Howard correspondence has evolved from a perfect match to a collection of
theories meant to explain similar structures at work in logic and computation, underpinned by mathematical
abstractions. By relaxing the requirement of a perfect match between programs and proofs, and instead
emphasising the common foundations of both, the insights of the Curry-Howard correspondence may be
extended to domains for which the requirements of programming and mathematics may in fact be quite
different.

Consider the following two major theories of the past decades, which were until recently thought to be
irreconcilable:
• (Martin-Löf) Type theory: introduced by Martin-Löf in 1971, this formalism [86] is both a

programming language and a logical system. The central ingredient is the use of dependent types
to allow fine-grained invariants to be expressed in program types. In 1985, Coquand and Huet
developed a similar system called the calculus of constructions, which served as logical foundation
of the first implementation of Coq. This kind of systems is still under active development, especially
with the recent advent of homotopy type theory (HoTT) [108] which gives a new point of view on
types and the notion of equality in type theory.

http://www.inria.fr/equipes/gallinette
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid6

102 Proofs and Verification - Research Program - Project-Team GALLINETTE

• The theory of effects: starting in the 1980’s, Moggi [91] and Girard [58] put forward monads and
co-monads as describing various compositional notions of computation. In this theory, programs can
have side-effects (state, exceptions, input-output), logics can be non-intuitionistic (linear, classical),
and different computational universes can interact (modal logics). Recently, the safe and automatic
management of resources has also seen a coming of age (Rust, Modern C++) confirming the impor-
tance of linear logic for various programming concepts. It is now understood that the characteristic
feature of the theory of effects is sensitivity to evaluation order, in contrast with type theory which
is built around the assumption that evaluation order is irrelevant.

We now outline a series of scientific challenges aimed at understanding of type theory, effects, and their
combination.

More precisely, three key axes of improvement have been identified:

1. Making the notion of equality closer to what is usually assumed when doing proofs on black board,
with a balance between irrelevant equality for simple structures and equality up-to equivalences
for more complex ones (Section 3.2). Such a notion of equality should allow one to implement
traditional model transformations that enhance the logical power of the proof assistant using distinct
compilation phases.

2. Advancing the foundations of effects within the Curry-Howard approach. The objective is to
pave the way for the integration of effects in proof assistants and to prototype the corresponding
implementation. This integration should allow for not only certified programming with effects, but
also the expression of more powerful logics (Section 3.3).

3. Making more programming features (notably, object polymorphism) available in proof assistants, in
order to scale to practical-sized developments. The objective is to enable programming styles closer
to common practices. One of the key challenges here is to leverage gradual typing to dependent
programming (Section 3.4).

To validate the new paradigms, we propose in Section 3.5 three particular application fields in which
members of the team already have a strong expertise: code refactoring, constraint programming and symbolic
computation.

3.2. Enhance the computational and logical power of proof assistants
The democratisation of proof assistants based on type theory has likely been impeded one central problem:
the mismatch between the conception of equality in mathematics and its formalisation in type theory. Indeed,
some basic principles that are used implicitly in mathematics—such as Church’s principle of propositional
extensionality, which says that two propositions are equal when they are logically equivalent—are not
derivable in type theory. Even more problematically, from a computer science point of view, the basic concept
of two functions being equal when they are equal at every “point” of their domain is also not derivable:
rather, it must be added as an additional axiom. Of course, these principles are consistent with type theory
so that working under the corresponding additional assumptions is safe. But the use of these assumptions
in a definition potentially clutters its computational behaviour: since axioms are computational black boxes,
computation gets stuck at the points of the code where they have been used.

We propose to investigate how expressive logical transformations such as forcing [71] and sheaf construction
might be used to enhance the computational and logical power of proof assistants—with a particular emphasis
on their implementation in the Coq proof assistant by the means of effective translations (or compilation
phases). One of the main topics of this task, in connection to the ERC project CoqHoTT, is the integration
in Coq of new concepts inspired by homotopy type theory [108] such as the univalence principle, and higher
inductive types.

http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/uid13.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/uid20.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/uid26.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/uid32.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid6

103 Proofs and Verification - Research Program - Project-Team GALLINETTE

3.2.1. A definitional proof-irrelevant version of Coq.
In the Coq proof assistant, the sort Prop stands for the universe of types which are propositions. That is,
when a term P has type Prop, the only relevant fact is whether P is inhabited (that is true) or not (that is
false). This property, known as proof irrelevance, can be expressed formally as: ∀x y : P, x = y. Originally,
the raison d’être of the sort Prop was to characterise types with no computational meaning with the intention
that terms of such types could be erased upon extraction. However, the assumption that every element of Prop
should be proof irrelevant has never been integrated to the system. Indeed, in Coq, proof irrelevance for the
sort Prop is not incorporated into the theory: it is only compatible with it, in the sense that its assumption
does not give rise to an inconsistent theory. In fact, the exact status of the sort Prop in Coq has never been
entirely clarified, which explains in part this lack of integration. Homotopy type theory brings fresh thinking
on this issue and suggests turning Prop into the collection of terms that a certain static inference procedure
tags as proof irrelevant. The goal of this task is to integrate this insight in the Coq system and to implement a
definitional proof-irrelevant version of the sort Prop.

3.2.2. Extend the Coq proof assistant with a computational version of univalence
The univalence principle is becoming widely accepted as a very promising avenue to provide new foundations
for mathematics and type theory. However, this principle has not yet been incorporated into a proof assistant.
Indeed, the very mathematical structures (known as∞-groupoids) motivating the theory remain to this day an
active area of research. Moreover, a correct and decidable type checking procedure for the whole theory raises
both computational complexity and logical coherence issues. Observational type theory [33], as implemented
in Epigram, provides a first-stage approximation to homotopy type theory, but only deals with functional
extensionality and does not capture univalence. Coquand and his collaborators have obtained significant results
on the computational meaning of univalence using cubical sets [40], [46]. Bickford has initiated a promising
formalisation work 0 in the NuPRL system. However, a complete formalisation in intensional type theory
remains an open problem.

Hence a major objective is to achieve a complete internalisation of univalence in intensional type theory,
including an integration to a new version of Coq. We will strive to keep compatibility with previous versions,
in particular from a performance point of view. Indeed, the additional complexity of homotopy type theory
should not induce an overhead in the type checking procedure used by the software if we want our new
framework to become rapidly adopted by the community. Concretely, we will make sure that the compilation
time of Coq’s Standard Library will be of the same order of magnitude.

3.2.3. Extend the logical power of type theory without axioms in a modular way
Extending the power of a logic using model transformations (e.g., forcing transformation [72], [71] or the
sheaf construction [101]) is a classic topic of mathematical logic [47], [77]. However, these ideas have not
been much investigated in the setting of type theory, even though they may provide a useful framework for
extending the logical power of proof assistant in a modular way. There is a good reason for this: with a syntactic
notion of equality, the underlying structure of type theory does not conform to the structure of topos used in
mathematical logic. A direct incorporation of the standard techniques is therefore not possible. However, a
univalent notion of equality brings type theory closer to the required algebraic structure, as it corresponds to
the notion of∞-topos recently studied by Lurie [84]. The goal of this task is to revisit model transformations
in the light of the univalence principle, and to obtain in this way new internal transformations in type theory
which can in turn be seen as compilation phases. The general notion of an internal syntactical translation has
already been investigated in the team [41].

3.2.4. Methodology: Extending type theory with different compilation phases
The Gallinette project advocates the use of distinct compilation phases as a methodology for the design of a
new generation of proof assistants featuring modular extensions of a core logic. The essence of a compiler
is the separation of the complexity of a translation process into modular stages, and the organization of their

0http://www.nuprl.org/wip/Mathematics/cubical!type!theory/index.html

http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid17
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid18
http://www.nuprl.org/wip/Mathematics/cubical!type!theory/index.html

104 Proofs and Verification - Research Program - Project-Team GALLINETTE

Figure 1. Multiple compilation phases to increase the logical and computational power of Coq.

re-composition. This idea finds a natural application in the design of complex proof assistants (Figure 1).
For instance, the definition of type classes in Coq follows this pattern, and is morally given by the means of
a translation into a type-class free kernel. More recently, a similar approach by compilation stages, using the
forcing transformation, was used to relax the strict positivity condition guarding inductive types [72], [71]. We
believe that this flavour of compilation-based strategies offers a promising direction of investigation for the
propose of defining a decidable type checking algorithm for HoTT.

3.3. Semantic and logical foundations for effects in proof assistants based on
type theory
We propose the incorporation of effects in the theory of proof assistants at a foundational level. Not only would
this allow for certified programming with effects, but it would moreover have implications for both semantics
and logic.

We mean effects in a broad sense that encompasses both Moggi’s monads [91] and Girard’s linear logic [58].
These two seminal works have given rise to respective theories of effects (monads) and resources (co-monads).
Recent advances, however have unified these two lines of thought: it is now clear that the defining feature of
effects, in the broad sense, is sensitivity to evaluation order [80], [51].

In contrast, the type theory that forms the foundations of proof assistants is based on pure λ calculus and is
built on the assumption that evaluation order is irrelevant. Evaluation order is therefore the blind spot of type
theory. In Moggi [92], integrating the dependent types of type theory with monads is “the next difficult step
[...] currently under investigation”.

Any realistic program contains effects: state, exceptions, input-output. More generally, evaluation order may
simply be important for complexity reasons. With this in mind, many works have focused on certified
programming with effects: notably Ynot [96], and more recently FI [106] and Idris [42], which propose
various ways for encapsulating effects and restricting the dependency of types on effectful terms. Effects are
either specialised, such as the monads with Hoare-style pre- and post-conditions found in Ynot or FI, or
more general, such as the algebraic effects implemented in Idris. But whereas there are several experiments
and projects pursuing the certification of programs with effects, each making its own choices on how effects
and dependency should be merged, there is on the other hand a deficit of logical and semantic investigations.

http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/uid17.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid19
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid20
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid21
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid22
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid23
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid24

105 Proofs and Verification - Research Program - Project-Team GALLINETTE

We propose to develop the foundations of a type theory with effects taking into account the logical and
semantic aspects, and to study their practical and theoretical consequences. A type theory that integrates
effects would have logical, algebraic and computational implications when viewed through the Curry-Howard
correspondence. For instance, effects such as control operators establish a link with classical proof theory
[63]. Indeed, control operators provide computational interpretations of type isomorphisms such as A ∼= ¬¬A
and ¬∀xA ∼= ∃x¬A (e.g. [93]), whereas the conventional wisdom of type theory holds that such axioms are
non-constructive (this is for instance the point of view that has been advocated so far in homotopy type theory
[108]). Another example of an effect with logical content is state (more precisely memoization) which is used
to provide constructive content to the classical dependent axiom of choice [39], [75], [67]. In the long term,
a whole body of literature on the constructive content of classical proofs is to be explored and integrated,
providing rich sources of inspiration: Kohlenbach’s proof mining [74] and Simpson’s reverse mathematics
[104], for instance, are certainly interesting to investigate from the Curry-Howard perspective.

The goal is to develop a type theory with effects that accounts both for practical experiments in certified
programming, and for clues from denotational semantics and logical phenomena, in a unified setting.

3.3.1. Models for integrating effects with dependent types
A crucial step is the integration of dependent types with effects, a topic which has remained “currently under
investigation” [92] ever since the beginning. The difficulty resides in expressing the dependency of types
on terms that can perform side-effects during the computation. On the side of denotational semantics, several
extensions of categorical models for effects with dependent types have been proposed [30], [109] using axioms
that should correspond to restrictions in terms of expressivity but whose practical implications, however, are
not immediately transparent. On the side of logical approaches [67], [68], [78], [90], one first considers a
drastic restriction to terms that do not compute, which is then relaxed by semantic means. On the side of
systems for certified programming such as FI, the type system ensures that types only depend on pure and
terminating terms.

Thus, the recurring idea is to introduce restrictions on the dependency in order to establish an encapsulation of
effects. In our approach, we seek a principled description of this idea by developing the concept of semantic
value (thunkables, linears) which arose from foundational considerations [57], [103], [94] and whose relevance
was highlighted in recent works [81], [100]. The novel aspect of our approach is to seek a proper extension
of type theory which would provide foundations for a classical type theory with axiom of choice in the style
of Herbelin [67], but which moreover could be generalised to effects other than just control by exploiting an
abstract and adaptable notion of semantic value.

3.3.2. Intuitionistic depolarisation
In our view, the common idea that evaluation order does not matter for pure and termination computations
should serve as a bridge between our proposals for dependent types in the presence of effects and traditional
type theory. Building on the previous goal, we aim to study the relationship between semantic values, purity,
and parametricity theorems [102], [59]. Our goal is to characterise parametricity as a form of intuitionistic
depolarisation following the method by which the first game model of full linear logic was given (Melliès
[87], [88]). We have two expected outcomes in mind: enriching type theory with intensional content without
losing its properties, and giving an explanation of the dependent types in the style of Idris and FI where
purity- and termination-checking play a role.

3.3.3. Developing the rewriting theory of calculi with effects
An integrated type theory with effects requires an understanding of evaluation order from the point of view
of rewriting. For instance, rewriting properties can entail the decidability of some conversions, allowing the
automation of equational reasoning in types [28]. They can also provide proofs of computational consistency
(that terms are not all equivalent) by showing that extending calculi with new constructs is conservative [105].
In our approach, the λ-calculus is replaced by a calculus modelling the evaluation in an abstract machine
[52]. We have shown how this approach generalises the previous semantic and proof-theoretic approaches
[34], [80], [82], and overcomes their shortcomings [95].

http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid25
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid26
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid27
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid28
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid29
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid30
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid31
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid21
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid32
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid33
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid29
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid34
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid35
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid36
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid37
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid38
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid39
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid40
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid41
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid29
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid42
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid43
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid44
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid45
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid46
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid47
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid48
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid49
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid19
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid50
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid51

106 Proofs and Verification - Research Program - Project-Team GALLINETTE

One goal is to prove computational consistency or decidability of conversions purely using advanced rewriting
techniques following a technique introduced in [105]. Another goal is the characterisation of weak reductions:
extensions of the operational semantics to terms with free variables that preserve termination, whose iteration
is equivalent to strong reduction [29], [55]. We aim to show that such properties derive from generic theorems
of higher-order rewriting [111], so that weak reduction can easily be generalised to richer systems with effects.

3.3.4. Direct models and categorical coherence
Proof theory and rewriting are a source of coherence theorems in category theory, which show how calculations
in a category can be simplified with an embedding into a structure with stronger properties [85], [76]. We aim
to explore such results for categorical models of effects [80], [51]. Our key insight is to consider the reflection
between indirect and direct models [57], [94] as a coherence theorem: it allows us to embed the traditional
models of effects into structures for which the rewriting and proof-theoretic techniques from the previous
section are effective.

Building on this, we are further interested in connecting operational semantics to 2-category theory, in which a
second dimension is traditionally considered for modelling conversions of programs rather than equivalences.
This idea has been successfully applied for the λ-calculus [73], [69] but does not scale yet to more realistic
models of computation. In our approach, it has already been noticed that the expected symmetries coming from
categorical dualities are better represented, motivating a new investigation into this long-standing question.

3.3.5. Models of effects and resources
The unified theory of effects and resources [51] prompts an investigation into the semantics of safe and
automatic resource management, in the style of Modern C++ and Rust. Our goal is to show how advanced
semantics of effects, resources, and their combination arise by assembling elementary blocks, pursuing the
methodology applied by Melliès and Tabareau in the context of continuations [89]. For instance, by combining
control flow (exceptions, return) with linearity allows us to describe in a precise way the “Resource Acquisition
Is Initialisation” idiom in which the resource safety is ensured with scope-based destructors. A further step
would be to reconstruct uniqueness types and borrowing using similar ideas.

3.4. Language extensions for the scaling of proof assistants
The development of tools to construct software systems that respect a given specification is a major challenge
of current and future research in computer science. Certified programming with dependent types has recently
attracted a lot of interest, and Coq is the de facto standard for such endeavours, with an increasing number
of users, pedagogical resources, and large-scale projects. Nevertheless, significant work remains to be done
to make Coq more usable from a software engineering point of view. The Gallinette team proposes to make
progress on three lines of work: (i) the development of gradual certified programming, (ii) the integration of
imperative features and object polymorphism in Coq, and (iii) the development of robust tactics for proof
engineering for the scaling of formalised libraries.

3.4.1. Gradual Certified Programming
One of the main issues faced by a programmer starting to internalise in a proof assistant code written in a
more permissive world is that type theory is constrained by a strict type discipline which lacks flexibility.
Concretely, as soon that you start giving more a precise type/specification to a function, the rest of the code
interacting with this functions needs to be more precise too. To address this issue, the Gallinette team will put
strong efforts into the development of gradual typing in type theory to allow progressive integration of code
that comes from a more permissive world.

Indeed, on the way to full verification, programmers can take advantage of a gradual approach in which some
properties are simply asserted instead of proven, subject to dynamic verification. Tabareau and Tanter have
made preliminary progress in this direction [107]. This work, however, suffers from a number of limitations,
the most important being the lack of a mechanism for handling the possibility of runtime errors within Coq.
Instead of relying on axioms, this project will explore the application of Section 3.3 to embed effects in Coq.

http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid47
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid52
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid53
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid54
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid55
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid56
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid19
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid20
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid37
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid39
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid57
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid58
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid20
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid59
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid60
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/uid20.html

107 Proofs and Verification - Research Program - Project-Team GALLINETTE

This way, instead of postulating axioms for parts of the development that are too hard/marginal to be dealt
with, the system adds dynamic checks. Then, after extraction, we get a program that corresponds to the initial
program but with dynamic check for parts that have not been proven, ensuring that the program will raise an
error instead of going outside its specification.

This will yield new foundations of gradual certified programming, both more expressive and practical. We will
also study how to integrate previous techniques with the extraction mechanism of Coq programs to OCaml, in
order to exploit the exception mechanism of OCaml.

3.4.2. Imperative features and object polymorphism in the Coq proof assistant
3.4.2.1. Imperative features.

Abstract data types (ADTs) become useful as the size of programs grows since they provide for a modular
approach, allowing abstractions about data to be expressed and then instantiated. Moreover, ADTs are natural
concepts in the calculus of inductive constructions. But while it is easy to declare an ADT, it is often difficult
to implement an efficient one. Compare this situation with, for example, Okasaki’s purely functional data
structures [97] which implement ADTs like queues in languages with imperative features. Of course, Okasaki’s
queues enforce some additional properties for free, such as persistence, but the programmer may prefer to
use and to study a simpler implementation without those additional properties. Also in certified symbolic
computation (see 3.5.3), an efficient functional implementation of ADTs is often not available, and efficiency
is a major challenge in this area. Relying on the theoretical work done in 3.3 , we will equip Coq with
imperative features and we will demonstrate how they can be used to provide efficient implementations of
ADTs. However, it is also often the case that imperative implementation are hard-to-reason-on, requiring for
instance the use of separation logic. But in that case, we could take benefice of recent works on integration of
separation logic in the Coq proof assistant and in particular the Iris project http://iris-project.org/.

3.4.2.2. Object polymorphism.

Object-oriented programming has evolved since its foundation based on the representation of computations
as an exchange of messages between objects. In modern programming languages like Scala, which aims at a
synthesis between object-oriented and functional programming, object-orientation concretely results in the use
of hierarchies of interfaces ordered by the subtyping relation and the definition of interface implementations
that can interoperate. As observed by Cook and Aldrich [49], [32], interoperability can be considered as the
essential feature of objects and is a requirement for many modern frameworks and ecosystems: it means that
two different implementations of the same interface can interoperate.

Our objective is to provide a representation of object-oriented programs, by focusing on subtyping and
interoperability.

For subtyping, the natural solution in type theory is coercive subtyping [83], as implemented in Coq, with an
explicit operator for coercions. This should lead to a shallow embedding, but has limitations: indeed, while
it allows subtyping to be faithfully represented, it does not provide a direct means to represent union and
intersection types, which are often associated with subtyping (for instance intersection types are present in
Scala). A more ambitious solution would be to resort to subsumptive subtyping (or semantic subtyping [56]): in
its more general form, a type algebra is extended with boolean operations (union, intersection, complementing)
to get a boolean algebra with operators (the original type constructors). Subtying is then interpreted as the
natural partial order of the boolean algebra.

We propose to use the type class machinery of Coq to implement semantic subtyping for dependent type theory.
Using type class resolution, we can emulate inference rules of subsumptive subtyping without modifying
Coq internally. This has also another advantage. As subsumptive subtyping for dependent types should be
undecidable in general, using type class resolution allows for an incomplete yet extensible decision procedure.

3.4.3. Robust tactics for proof engineering for the scaling of formalised libraries
When developing certified software, a major part of the effort is spent not only on writing proof scripts, but on
rewriting them, either for the purpose of code maintenance or because of more significant changes in the base

http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid61
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/uid38.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/uid20.html
http://iris-project.org/
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid62
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid63
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid64
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid65

108 Proofs and Verification - Research Program - Project-Team GALLINETTE

definitions. Regrettably, proof scripts suffer more often than not from a bad programming style, and too many
proof developers casually neglect the most elementary principles of well-behaved programmers. As a result,
many proof scripts are very brittle, user-defined tactics are often difficult to extend, and sometimes even lack
a clear specification. Formal libraries are thus generally very fragile pieces of software. One reason for this
unfortunate situation is that proof engineering is very badly served by the tools currently available to the users
of the Coq proof assistant, starting with its tactic language. One objective of the Gallinette team is to develop
better tools to write proof scripts.

Completing and maintaining a large corpus of formalised mathematics requires a well-designed tactic lan-
guage. This language should both accommodate the possible specific needs of the theories at stake, and help
with diagnostics at refactoring time. Coq’s tactic language is in fact two-leveled. First, it includes a basic tactic
language, to organise the deductive steps in a proof script and to perform the elementary bureaucracy. Its sec-
ond layer is a meta-programming language, which allows user to defined their own new tactics at toplevel. Our
first direction of work consists in the investigation of the appropriate features of the basic tactic language. For
instance, the design of the Ssreflect tactic language, and its support for the small scale reflection methodology
[62], has been a key ingredient in at least two large scale formalisation endeavours: the Four Colour Theorem
[61] and of the Odd Order Theorem [60]. Building on our experience with the Ssreflect tactic language, we
will contribute to the ongoing work on the basic tactic language for Coq. The second objective of this task is
to contribute to the design of a typed tactic language. In particular, we will build on the work of Ziliani and
his collaborators [110], extending it with reasoning about the effects that tactics have on the “state of a proof”
(e.g. number of sub-goals, metavariables in context). We will also develop a novel approach for incremental
type checking of proof scripts, so that programmers gain access to a richer discovery- engineering interaction
with the proof assistant.

3.5. Practical experiments
The first three axes of the EPC Gallinette aim at developing a new generation of proof assistants. But we
strongly believe that foundational investigations must go hand in hand with practical experiments. Therefore,
we expect to benefit from existing expertise and collaborations in the team to experiment our extensions of
Coq on real world developments. It should be noticed that those practical experiments are strongly guided by
the deep history of research on software engineering of team members.

3.5.1. Certified Code Refactoring
In the context of refactoring of C programs, we intend to formalise program transformations that are written
in an imperative style to test the usability of our addition of effects in the proof assistant. This subject has been
chosen based on the competence of members of the team.

We are currently working on the formalisation of refactoring tools in Coq [45]. Automatic refactoring of
programs in industrial languages is difficult because of the large number of potential interactions between
language features that are difficult to predict and to test. Indeed, all available refactoring tools suffer from
bugs : they fail to ensure that the generated program has the same behaviour as the input program. To cope
with that difficulty, we have chosen to build a refactoring tool with Coq : a program transformation is written
in the Coq programming language, then proven correct on all possible inputs, and then an OCaml executable
program is generated by the platform. We rely on the CompCert C formalisation of the C language. CompCert
is currently the most complete formalisation of an industrial language, which justifies that choice. We have
three goals in that project :
• Build a refactoring tool that programmers can rely on and make it available in a popular platform

(such as Eclipse, IntelliJ or Frama-C).
• Explore large, drastic program transformations such as replacing a design architecture for an other

one, by applying a sequence of small refactoring operations (as we have done for Java and Haskell
programs before [48], [44], [31]), while ensuring behaviour preservation.

• Explore the use of enhancements of proof systems on large developments. For instance, refactoring
tools are usually developed in the imperative/object paradigm, so the extension of Coq with side
effects or with object features proposed in the team can find a direct use-case here.

http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid66
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid67
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid68
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid69
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid70
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid71

109 Proofs and Verification - Research Program - Project-Team GALLINETTE

3.5.2. Certified Constraint Programming
We plan to make use of the internalisation of the object-oriented paradigm in the context of constraint
programming. Indeed, this domain is made of very complex algorithms that are often developed using object-
oriented programming (as it is the case for instance for CHOCO, which is developed in the Tasc Group at IMT
Atlantique, Nantes). We will in particular focus on filtering algorithms in constraint solvers, for which research
publications currently propose new algorithms with manual proofs. Their formalisation in Coq is challenging.
Another interesting part of constraint solving to formalise is the part that deals with program generation (as
opposed to extraction). However, when there are numerous generated pieces of code, it is not realistic to prove
their correctness manually, and it can be too difficult to prove the correctness of a generator. So we intend to
explore a middle path that consists in generating a piece of code along with its corresponding proof (script or
proof term). A target application could be interval constraints (for instance Allen interval algebra or region
connection calculus) that can generate thousands of specialised filtering algorithms for a small number of
variables [37].

Finally, Rémi Douence has already worked (articles publishing [64], [98], [54], PhD Thesis advising [99])
with different members of the Tasc team. Currently, he supervises with Nicolas Beldiceanu the PhD Thesis
of Ekaterina Arafailova in the Tasc team. She studies finite transducers to model time-series constraints [38],
[36], [35]. This work requires proofs, manually done for now, we would like to explore when these proofs
could be mechanised.

3.5.3. Certified Symbolic Computation
We will investigate how the addition of effects in the Coq proof assistant can facilitate the marriage of computer
algebra with formal proofs. Computer algebra systems on one hand, and proof assistants on the other hand,
are both designed for doing mathematics with the help of a computer, by the means of symbolic computations.
These two families of systems are however very different in nature: computer algebra systems allow for
implementations faithful to the theoretical complexity of the algorithms, whereas proof assistants have the
expressiveness to specify exactly the semantic of the data-structures and computations.

Experiments have been run that link computer algebra systems with Coq [53], [43]. These bridges rely on
the implementation of formal proof-producing core algorithms like normalisation procedures. Incidentally,
they require non trivial maintenance work to survive the evolution of both systems. Other proof assistants like
the Isabelle/HOL system make use of so-called reflection schemes: the proof assistant can produce code in
an external programming language like SML, but also allows to import the values output by these extracted
programs back inside the formal proofs. This feature extends the trusted base of code quite significantly but it
has been used for major achievements like a certified symbolic/numeric ODE solver [70].

We would like to bring Coq closer to the efficiency and user-friendliness of computer algebra systems: for
now it is difficult to use the Coq programming language so that certified implementations of computer algebra
algorithms have the right, observable, complexity when they are executed inside Coq. We see the addition
of effects to the proof assistant as an opportunity to ease these implementations, for instance by making
use of caching mechanisms or of profiling facilities. Such enhancements should enable the verification of
computation-intensive mathematical proofs that are currently beyond reach, like the validation of Helfgott’s
proof of the weak Goldbach conjecture [66].

http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid72
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid73
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid74
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid75
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid76
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid77
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid78
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid79
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid80
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid81
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid82
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallinette/bibliography.html#gallinette-2018-bid83

110 Proofs and Verification - Research Program - Project-Team GALLIUM

GALLIUM Project-Team

3. Research Program
3.1. Programming languages: design, formalization, implementation

Like all languages, programming languages are the media by which thoughts (software designs) are communi-
cated (development), acted upon (program execution), and reasoned upon (validation). The choice of adequate
programming languages has a tremendous impact on software quality. By “adequate”, we mean in particular
the following four aspects of programming languages:
• Safety. The programming language must not expose error-prone low-level operations (explicit

memory deallocation, unchecked array access, etc) to programmers. Further, it should provide
constructs for describing data structures, inserting assertions, and expressing invariants within
programs. The consistency of these declarations and assertions should be verified through compile-
time verification (e.g. static type-checking) and run-time checks.

• Expressiveness. A programming language should manipulate as directly as possible the concepts
and entities of the application domain. In particular, complex, manual encodings of domain notions
into programmatic notations should be avoided as much as possible. A typical example of a language
feature that increases expressiveness is pattern matching for examination of structured data (as
in symbolic programming) and of semi-structured data (as in XML processing). Carried to the
extreme, the search for expressiveness leads to domain-specific languages, customized for a specific
application area.

• Modularity and compositionality. The complexity of large software systems makes it impossi-
ble to design and develop them as one, monolithic program. Software decomposition (into semi-
independent components) and software composition (of existing or independently-developed com-
ponents) are therefore crucial. Again, this modular approach can be applied to any programming
language, given sufficient fortitude by the programmers, but is much facilitated by adequate linguis-
tic support. In particular, reflecting notions of modularity and software components in the program-
ming language enables compile-time checking of correctness conditions such as type correctness at
component boundaries.

• Formal semantics. A programming language should fully and formally specify the behaviours of
programs using mathematical semantics, as opposed to informal, natural-language specifications.
Such a formal semantics is required in order to apply formal methods (program proof, model
checking) to programs.

Our research work in language design and implementation centers on the statically-typed functional program-
ming paradigm, which scores high on safety, expressiveness and formal semantics, complemented with full
imperative features and objects for additional expressiveness, and modules and classes for compositionality.
The OCaml language and system embodies many of our earlier results in this area [37]. Through collabora-
tions, we also gained experience with several domain-specific languages based on a functional core, including
distributed programming (JoCaml), XML processing (XDuce, CDuce), reactive functional programming, and
hardware modeling.

3.2. Type systems
Type systems [39] are a very effective way to improve programming language reliability. By grouping the
data manipulated by the program into classes called types, and ensuring that operations are never applied to
types over which they are not defined (e.g. accessing an integer as if it were an array, or calling a string as if it
were a function), a tremendous number of programming errors can be detected and avoided, ranging from the
trivial (misspelled identifier) to the fairly subtle (violation of data structure invariants). These restrictions are
also very effective at thwarting basic attacks on security vulnerabilities such as buffer overflows.

http://www.inria.fr/equipes/gallium
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallium/bibliography.html#gallium-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallium/bibliography.html#gallium-2018-bid1

111 Proofs and Verification - Research Program - Project-Team GALLIUM

The enforcement of such typing restrictions is called type-checking, and can be performed either dynamically
(through run-time type tests) or statically (at compile-time, through static program analysis). We favor static
type-checking, as it catches bugs earlier and even in rarely-executed parts of the program, but note that not
all type constraints can be checked statically if static type-checking is to remain decidable (i.e. not degenerate
into full program proof). Therefore, all typed languages combine static and dynamic type-checking in various
proportions.

Static type-checking amounts to an automatic proof of partial correctness of the programs that pass the
compiler. The two key words here are partial, since only type safety guarantees are established, not full
correctness; and automatic, since the proof is performed entirely by machine, without manual assistance from
the programmer (beyond a few, easy type declarations in the source). Static type-checking can therefore be
viewed as the poor man’s formal methods: the guarantees it gives are much weaker than full formal verification,
but it is much more acceptable to the general population of programmers.

3.2.1. Type systems and language design.
Unlike most other uses of static program analysis, static type-checking rejects programs that it cannot prove
safe. Consequently, the type system is an integral part of the language design, as it determines which programs
are acceptable and which are not. Modern typed languages go one step further: most of the language design is
determined by the type structure (type algebra and typing rules) of the language and intended application area.
This is apparent, for instance, in the XDuce and CDuce domain-specific languages for XML transformations
[35], [32], whose design is driven by the idea of regular expression types that enforce DTDs at compile-time.
For this reason, research on type systems – their design, their proof of semantic correctness (type safety), the
development and proof of associated type-checking and inference algorithms – plays a large and central role
in the field of programming language research, as evidenced by the huge number of type systems papers in
conferences such as Principles of Programming Languages.

3.2.2. Polymorphism in type systems.
There exists a fundamental tension in the field of type systems that drives much of the research in this area.
On the one hand, the desire to catch as many programming errors as possible leads to type systems that
reject more programs, by enforcing fine distinctions between related data structures (say, sorted arrays and
general arrays). The downside is that code reuse becomes harder: conceptually identical operations must be
implemented several times (say, copying a general array and a sorted array). On the other hand, the desire
to support code reuse and to increase expressiveness leads to type systems that accept more programs, by
assigning a common type to broadly similar objects (for instance, the Object type of all class instances in
Java). The downside is a loss of precision in static typing, requiring more dynamic type checks (downcasts in
Java) and catching fewer bugs at compile-time.

Polymorphic type systems offer a way out of this dilemma by combining precise, descriptive types (to catch
more errors statically) with the ability to abstract over their differences in pieces of reusable, generic code
that is concerned only with their commonalities. The paradigmatic example is parametric polymorphism,
which is at the heart of all typed functional programming languages. Many forms of polymorphic typing
have been studied since then. Taking examples from our group, the work of Rémy, Vouillon and Garrigue on
row polymorphism [42], integrated in OCaml, extended the benefits of this approach (reusable code with no
loss of typing precision) to object-oriented programming, extensible records and extensible variants. Another
example is the work by Pottier on subtype polymorphism, using a constraint-based formulation of the type
system [40]. Finally, the notion of “coercion polymorphism” proposed by Cretin and Rémy[5] combines and
generalizes both parametric and subtyping polymorphism.

3.2.3. Type inference.
Another crucial issue in type systems research is the issue of type inference: how many type annotations
must be provided by the programmer, and how many can be inferred (reconstructed) automatically by the
type-checker? Too many annotations make the language more verbose and bother the programmer with
unnecessary details. Too few annotations make type-checking undecidable, possibly requiring heuristics,

http://raweb.inria.fr/rapportsactivite/RA{$year}/gallium/bibliography.html#gallium-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallium/bibliography.html#gallium-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallium/bibliography.html#gallium-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallium/bibliography.html#gallium-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/gallium/bibliography.html#gallium-2018-bid6

112 Proofs and Verification - Research Program - Project-Team GALLIUM

which is unsatisfactory. OCaml requires explicit type information at data type declarations and at component
interfaces, but infers all other types.

In order to be predictable, a type inference algorithm must be complete. That is, it must not find one, but all
ways of filling in the missing type annotations to form an explicitly typed program. This task is made easier
when all possible solutions to a type inference problem are instances of a single, principal solution.

Maybe surprisingly, the strong requirements – such as the existence of principal types – that are imposed
on type systems by the desire to perform type inference sometimes lead to better designs. An illustration of
this is row variables. The development of row variables was prompted by type inference for operations on
records. Indeed, previous approaches were based on subtyping and did not easily support type inference. Row
variables have proved simpler than structural subtyping and more adequate for type-checking record update,
record extension, and objects.

Type inference encourages abstraction and code reuse. A programmer’s understanding of his own program
is often initially limited to a particular context, where types are more specific than strictly required. Type
inference can reveal the additional generality, which allows making the code more abstract and thus more
reuseable.

3.3. Compilation
Compilation is the automatic translation of high-level programming languages, understandable by humans, to
lower-level languages, often executable directly by hardware. It is an essential step in the efficient execution,
and therefore in the adoption, of high-level languages. Compilation is at the interface between programming
languages and computer architecture, and because of this position has had considerable influence on the
design of both. Compilers have also attracted considerable research interest as the oldest instance of symbolic
processing on computers.

Compilation has been the topic of much research work in the last 40 years, focusing mostly on high-
performance execution (“optimization”) of low-level languages such as Fortran and C. Two major results
came out of these efforts: one is a superb body of performance optimization algorithms, techniques and
methodologies; the other is the whole field of static program analysis, which now serves not only to increase
performance but also to increase reliability, through automatic detection of bugs and establishment of safety
properties. The work on compilation carried out in the Gallium group focuses on a less investigated topic:
compiler certification.

3.3.1. Formal verification of compiler correctness.
While the algorithmic aspects of compilation (termination and complexity) have been well studied, its semantic
correctness – the fact that the compiler preserves the meaning of programs – is generally taken for granted.
In other terms, the correctness of compilers is generally established only through testing. This is adequate
for compiling low-assurance software, themselves validated only by testing: what is tested is the executable
code produced by the compiler, therefore compiler bugs are detected along with application bugs. This is
not adequate for high-assurance, critical software which must be validated using formal methods: what is
formally verified is the source code of the application; bugs in the compiler used to turn the source into the
final executable can invalidate the guarantees so painfully obtained by formal verification of the source.

To establish strong guarantees that the compiler can be trusted not to change the behavior of the program,
it is necessary to apply formal methods to the compiler itself. Several approaches in this direction have
been investigated, including translation validation, proof-carrying code, and type-preserving compilation. The
approach that we currently investigate, called compiler verification, applies program proof techniques to the
compiler itself, seen as a program in particular, and use a theorem prover (the Coq system) to prove that the
generated code is observationally equivalent to the source code. Besides its potential impact on the critical
software industry, this line of work is also scientifically fertile: it improves our semantic understanding of
compiler intermediate languages, static analyses and code transformations.

113 Proofs and Verification - Research Program - Project-Team GALLIUM

3.4. Interface with formal methods
Formal methods collectively refer to the mathematical specification of software or hardware systems and to the
verification of these systems against these specifications using computer assistance: model checkers, theorem
provers, program analyzers, etc. Despite their costs, formal methods are gaining acceptance in the critical
software industry, as they are the only way to reach the required levels of software assurance.

In contrast with several other Inria projects, our research objectives are not fully centered around formal
methods. However, our research intersects formal methods in the following two areas, mostly related to
program proofs using proof assistants and theorem provers.

3.4.1. Software-proof codesign
The current industrial practice is to write programs first, then formally verify them later, often at huge costs.
In contrast, we advocate a codesign approach where the program and its proof of correctness are developed
in interaction, and we are interested in developing ways and means to facilitate this approach. One possibility
that we currently investigate is to extend functional programming languages such as OCaml with the ability
to state logical invariants over data structures and pre- and post-conditions over functions, and interface with
automatic or interactive provers to verify that these specifications are satisfied. Another approach that we
practice is to start with a proof assistant such as Coq and improve its capabilities for programming directly
within Coq.

3.4.2. Mechanized specifications and proofs for programming language components
We emphasize mathematical specifications and proofs of correctness for key language components such as
semantics, type systems, type inference algorithms, compilers and static analyzers. These components are
getting so large that machine assistance becomes necessary to conduct these mathematical investigations.
We have already mentioned using proof assistants to verify compiler correctness. We are also interested in
using them to specify and reason about semantics and type systems. These efforts are part of a more general
research topic that is gaining importance: the formal verification of the tools that participate in the construction
and certification of high-assurance software.

114 Proofs and Verification - Research Program - Project-Team MARELLE

MARELLE Project-Team

3. Research Program

3.1. Type theory and formalization of mathematics
The calculus of inductive constructions is a branch of type theory that serves as a foundation for theorem
proving tools, especially the Coq proof assistant. It is powerful enough to formalize complex mathematics,
based on algebraic structures and operations. This is especially important as we want to produce proofs of
logical properties for these algebraic structures, a goal that is only marginally addressed in most scientific
computation systems.

The calculus of inductive constructions also makes it possible to write algorithms as recursive functional
programs which manipulate tree-like data structures. A third important characteristic of this calculus is
that it is also a language for manipulating proofs. All this makes this calculus a tool of choice for our
investigations. However, this language still is the object of improvements and part of our work focusses on
these improvements.

3.2. Verification of scientific algorithms
To produce certified algorithms, we use the following approach: instead of attempting to prove properties
of an existing program written in a conventional programming language such as C or Java, we produce
new programs in the calculus of constructions whose correctness is an immediate consequence of their
construction. This has several advantages. First, we work at a high level of abstraction, independently of
the target implementation language. Secondly, we concentrate on specific characteristics of the algorithm, and
abstract away from the rest (for instance, we abstract away from memory management or data implementation
strategies). Therefore, we are able to address more high-level mathematics and to express more general
properties without being overwhelmed by implementation details.

However, this approach also presents a few drawbacks. For instance, the calculus of constructions usually
imposes that recursive programs should explicitly terminate for all inputs. For some algorithms, we need to
use advanced concepts (for instance, well-founded relations) to make the property of termination explicit, and
proofs of correctness become especially difficult in this setting.

3.3. Programming language semantics
To bridge the gap between our high-level descriptions of algorithms and conventional programming languages,
we investigate the algorithms that are present in programming language implementations, for instance
algorithms that are used in a compiler or a static analysis tool. When working on these algorithms, we usually
base our work on the semantic description of the programming language. The properties that we attempt to
prove for an algorithm are, for example, that an optimization respects the meaning of programs or that the
programs produced are free of some unwanted behavior. In practice, we rely on this study of programming
language semantics to propose extensions to theorem proving tools or to verify that compilers for conventional
programming languages are exempt from bugs.

http://www.inria.fr/equipes/marelle

115 Proofs and Verification - Research Program - Project-Team MEXICO

MEXICO Project-Team

3. Research Program

3.1. Concurrency
Participants: Thomas Chatain, Stefan Haar, Serge Haddad, Stefan Schwoon.

Concurrency: Property of systems allowing some interacting processes to be executed in parallel.

Diagnosis: The process of deducing from a partial observation of a system aspects of the internal
states or events of that system; in particular, fault diagnosis aims at determining whether or not
some non-observable fault event has occurred.

Conformance Testing: Feeding dedicated input into an implemented system IS and deducing, from
the resulting output of I , whether I respects a formal specification S.

3.1.1. Introduction
It is well known that, whatever the intended form of analysis or control, a global view of the system state leads
to overwhelming numbers of states and transitions, thus slowing down algorithms that need to explore the
state space. Worse yet, it often blurs the mechanics that are at work rather than exhibiting them. Conversely,
respecting concurrency relations avoids exhaustive enumeration of interleavings. It allows us to focus on
‘essential’ properties of non-sequential processes, which are expressible with causal precedence relations.
These precedence relations are usually called causal (partial) orders. Concurrency is the explicit absence of
such a precedence between actions that do not have to wait for one another. Both causal orders and concurrency
are in fact essential elements of a specification. This is especially true when the specification is constructed
in a distributed and modular way. Making these ordering relations explicit requires to leave the framework of
state/interleaving based semantics. Therefore, we need to develop new dedicated algorithms for tasks such as
conformance testing, fault diagnosis, or control for distributed discrete systems. Existing solutions for these
problems often rely on centralized sequential models which do not scale up well.

3.1.2. Diagnosis
Participants: Stefan Haar, Serge Haddad, Stefan Schwoon.

Fault Diagnosis for discrete event systems is a crucial task in automatic control. Our focus is on event oriented
(as opposed to state oriented) model-based diagnosis, asking e.g. the following questions:
given a - potentially large - alarm pattern formed of observations,

• what are the possible fault scenarios in the system that explain the pattern ?

• Based on the observations, can we deduce whether or not a certain - invisible - fault has actually
occurred ?

Model-based diagnosis starts from a discrete event model of the observed system - or rather, its relevant
aspects, such as possible fault propagations, abstracting away other dimensions. From this model, an extraction
or unfolding process, guided by the observation, produces recursively the explanation candidates.

In asynchronous partial-order based diagnosis with Petri nets [49], [50], [51], one unfolds the labelled product
of a Petri net model N and an observed alarm pattern A, also in Petri net form. We obtain an acyclic net giving
partial order representation of the behaviors compatible with the alarm pattern. A recursive online procedure
filters out those runs (configurations) that explain exactlyA. The Petri-net based approach generalizes to
dynamically evolving topologies, in dynamical systems modeled by graph grammars, see [38]

http://www.inria.fr/equipes/mexico
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid3

116 Proofs and Verification - Research Program - Project-Team MEXICO

3.1.2.1. Observability and Diagnosability

Diagnosis algorithms have to operate in contexts with low observability, i.e., in systems where many events are
invisible to the supervisor. Checking observability and diagnosability for the supervised systems is therefore
a crucial and non-trivial task in its own right. Analysis of the relational structure of occurrence nets allows
us to check whether the system exhibits sufficient visibility to allow diagnosis. Developing efficient methods
for both verification of diagnosability checking under concurrency, and the diagnosis itself for distributed,
composite and asynchronous systems, is an important field for MExICo.

3.1.2.2. Distribution

Distributed computation of unfoldings allows one to factor the unfolding of the global system into smaller
local unfoldings, by local supervisors associated with sub-networks and communicating among each other. In
[50], [40], elements of a methodology for distributed computation of unfoldings between several supervisors,
underwritten by algebraic properties of the category of Petri nets have been developed. Generalizations, in
particular to Graph Grammars, are still do be done.

Computing diagnosis in a distributed way is only one aspect of a much vaster topic, that of distributed
diagnosis (see [47], [53]). In fact, it involves a more abstract and often indirect reasoning to conclude whether
or not some given invisible fault has occurred. Combination of local scenarios is in general not sufficient:
the global system may have behaviors that do not reveal themselves as faulty (or, dually, non-faulty) on any
local supervisor’s domain (compare [37], [43]). Rather, the local diagnosers have to join all information that
is available to them locally, and then deduce collectively further information from the combination of their
views. In particular, even the absence of fault evidence on all peers may allow to deduce fault occurrence
jointly, see [55], [56]. Automatizing such procedures for the supervision and management of distributed and
locally monitored asynchronous systems is a long-term goal to which MExICo hopes to contribute.

3.1.3. Hybrid Systems
Participants: Laurent Fribourg, Serge Haddad.

Hybrid systems constitute a model for cyber-physical systems which integrates continuous-time dynamics
(modes) governed by differential equations, and discrete transitions which switch instantaneously from one
mode to another. Thanks to their ease of programming, hybrid systems have been integrated to power
electronics systems, and more generally in cyber-physical systems. In order to guarantee that such systems
meet their specifications, classical methods consist in finitely abstracting the systems by discretization of
the (infinite) state space, and deriving automatically the appropriate mode control from the specification
using standard graph techniques. These methods face the well-known problem of “curse of dimensionality”,
and cannot generally treat systems of dimension exceeding 5 or 6. Thanks to the introduction of original
compositional techniques [25], [30], [13] as well as finer estimations of integration errors [3], we are now able
to control several case studies of greater dimension. Actually, in the real world, many parameters of hybrid
models are not known precisely, and require adjustements to experimental data. We plan to elaborate methods
based on parameter estimation and machine learning techniques in order to define formal stability criteria and
well-posed learning problems in the framework of hybrid systems with nonlinear dynamics.

3.1.4. Contextual Nets
Participant: Stefan Schwoon.

Assuring the correctness of concurrent systems is notoriously difficult due to the many unforeseeable ways in
which the components may interact and the resulting state-space explosion. A well-established approach to
alleviate this problem is to model concurrent systems as Petri nets and analyse their unfoldings, essentially an
acyclic version of the Petri net whose simpler structure permits easier analysis [48].

http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid15

117 Proofs and Verification - Research Program - Project-Team MEXICO

However, Petri nets are inadequate to model concurrent read accesses to the same resource. Such situations
often arise naturally, for instance in concurrent databases or in asynchronous circuits. The encoding tricks
typically used to model these cases in Petri nets make the unfolding technique inefficient. Contextual nets,
which explicitly do model concurrent read accesses, address this problem. Their accurate representation
of concurrency makes contextual unfoldings up to exponentially smaller in certain situations. An abstract
algorithm for contextual unfoldings was first given in [39]. In recent work, we further studied this subject
from a theoretical and practical perspective, allowing us to develop concrete, efficient data structures and
algorithms and a tool (Cunf) that improves upon existing state of the art. This work led to the PhD thesis of
César Rodríguez in 2014 .

Contextual unfoldings deal well with two sources of state-space explosion: concurrency and shared resources.
Recently, we proposed an improved data structure, called contextual merged processes (CMP) to deal with
a third source of state-space explosion, i.e. sequences of choices. The work on CMP [57] is currently at an
abstract level. In the short term, we want to put this work into practice, requiring some theoretical groundwork,
as well as programming and experimentation.

Another well-known approach to verifying concurrent systems is partial-order reduction, exemplified by the
tool SPIN. Although it is known that both partial-order reduction and unfoldings have their respective strengths
and weaknesses, we are not aware of any conclusive comparison between the two techniques. Spin comes with
a high-level modeling language having an explicit notion of processes, communication channels, and variables.
Indeed, the reduction techniques implemented in Spin exploit the specific properties of these features. On the
other side, while there exist highly efficient tools for unfoldings, Petri nets are a relatively general low-level
formalism, so these techniques do not exploit properties of higher language features. Our work on contextual
unfoldings and CMPs represents a first step to make unfoldings exploit richer models. In the long run, we
wish raise the unfolding technique to a suitable high-level modelling language and develop appropriate tool
support.

3.2. Management of Quantitative Behavior
Participants: Thomas Chatain, Stefan Haar, Serge Haddad.

3.2.1. Introduction
Besides the logical functionalities of programs, the quantitative aspects of component behavior and interaction
play an increasingly important role.

• Real-time properties cannot be neglected even if time is not an explicit functional issue, since
transmission delays, parallelism, etc, can lead to time-outs striking, and thus change even the logical
course of processes. Again, this phenomenon arises in telecommunications and web services, but
also in transport systems.

• In the same contexts, probabilities need to be taken into account, for many diverse reasons such as
unpredictable functionalities, or because the outcome of a computation may be governed by race
conditions.

• Last but not least, constraints on cost cannot be ignored, be it in terms of money or any other limited
resource, such as memory space or available CPU time.

Traditional mainframe systems were proprietary and (essentially) localized; therefore, impact of delays,
unforeseen failures, etc. could be considered under the control of the system manager. It was therefore natural,
in verification and control of systems, to focus on functional behavior entirely.

With the increase in size of computing system and the growing degree of compositionality and distribution,
quantitative factors enter the stage:

• calling remote services and transmitting data over the web creates delays;

• remote or non-proprietary components are not “deterministic”, in the sense that their behavior is
uncertain.

http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid17

118 Proofs and Verification - Research Program - Project-Team MEXICO

Time and probability are thus parameters that management of distributed systems must be able to handle;
along with both, the cost of operations is often subject to restrictions, or its minimization is at least desired.
The mathematical treatment of these features in distributed systems is an important challenge, which MExICo
is addressing; the following describes our activities concerning probabilistic and timed systems. Note that cost
optimization is not a current activity but enters the picture in several intended activities.

3.2.2. Probabilistic distributed Systems
Participants: Stefan Haar, Serge Haddad.

3.2.2.1. Non-sequential probabilistic processes

Practical fault diagnosis requires to select explanations of maximal likelihood. For partial-order based diag-
nosis, this leads therefore to the question what the probability of a given partially ordered execution is. In
Benveniste et al. [42], [35], we presented a model of stochastic processes, whose trajectories are partially
ordered, based on local branching in Petri net unfoldings; an alternative and complementary model based on
Markov fields is developed in [52], which takes a different view on the semantics and overcomes the first
model’s restrictions on applicability.

Both approaches abstract away from real time progress and randomize choices in logical time. On the other
hand, the relative speed - and thus, indirectly, the real-time behavior of the system’s local processes - are
crucial factors determining the outcome of probabilistic choices, even if non-determinism is absent from the
system.

In another line of research [44] we have studied the likelihood of occurrence of non-sequential runs under
random durations in a stochastic Petri net setting. It remains to better understand the properties of the
probability measures thus obtained, to relate them with the models in logical time, and exploit them e.g.
in diagnosis.

3.2.2.2. Distributed Markov Decision Processes
Participant: Serge Haddad.

Distributed systems featuring non-deterministic and probabilistic aspects are usually hard to analyze and,
more specifically, to optimize. Furthermore, high complexity theoretical lower bounds have been established
for models like partially observed Markovian decision processes and distributed partially observed Markovian
decision processes. We believe that these negative results are consequences of the choice of the models rather
than the intrinsic complexity of problems to be solved. Thus we plan to introduce new models in which the
associated optimization problems can be solved in a more efficient way. More precisely, we start by studying
connection protocols weighted by costs and we look for online and offline strategies for optimizing the mean
cost to achieve the protocol. We have been cooperating on this subject with the SUMO team at Inria Rennes;
in the joint work [36]; there, we strive to synthesize for a given MDP a control so as to guarantee a specific
stationary behavior, rather than - as is usually done - so as to maximize some reward.

3.2.3. Large scale probabilistic systems
Addressing large-scale probabilistic systems requires to face state explosion, due to both the discrete part
and the probabilistic part of the model. In order to deal with such systems, different approaches have been
proposed:

• Restricting the synchronization between the components as in queuing networks allows to express
the steady-state distribution of the model by an analytical formula called a product-form [41].

• Some methods that tackle with the combinatory explosion for discrete-event systems can be gener-
alized to stochastic systems using an appropriate theory. For instance symmetry based methods have
been generalized to stochastic systems with the help of aggregation theory [46].

• At last simulation, which works as soon as a stochastic operational semantic is defined, has been
adapted to perform statistical model checking. Roughly speaking, it consists to produce a confidence
interval for the probability that a random path fulfills a formula of some temporal logic [58] .

http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid18
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid19
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid20
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid21
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid22
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid23
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid24
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid25

119 Proofs and Verification - Research Program - Project-Team MEXICO

We want to contribute to these three axes: (1) we are looking for product-forms related to systems where
synchronization are more involved (like in Petri nets [2]); (2) we want to adapt methods for discrete-event
systems that require some theoretical developments in the stochastic framework and, (3) we plan to address
some important limitations of statistical model checking like the expressiveness of the associated logic and the
handling of rare events.

3.2.4. Real time distributed systems
Nowadays, software systems largely depend on complex timing constraints and usually consist of many
interacting local components. Among them, railway crossings, traffic control units, mobile phones, computer
servers, and many more safety-critical systems are subject to particular quality standards. It is therefore
becoming increasingly important to look at networks of timed systems, which allow real-time systems to
operate in a distributed manner.

Timed automata are a well-studied formalism to describe reactive systems that come with timing constraints.
For modeling distributed real-time systems, networks of timed automata have been considered, where the local
clocks of the processes usually evolve at the same rate [54] [45]. It is, however, not always adequate to assume
that distributed components of a system obey a global time. Actually, there is generally no reason to assume
that different timed systems in the networks refer to the same time or evolve at the same rate. Any component
is rather determined by local influences such as temperature and workload.

3.2.4.1. Implementation of Real-Time Concurrent Systems
Participants: Thomas Chatain, Stefan Haar, Serge Haddad.

This was one of the tasks of the ANR ImpRo.

Formal models for real-time systems, like timed automata and time Petri nets, have been extensively studied
and have proved their interest for the verification of real-time systems. On the other hand, the question of using
these models as specifications for designing real-time systems raises some difficulties. One of those comes
from the fact that the real-time constraints introduce some artifacts and because of them some syntactically
correct models have a formal semantics that is clearly unrealistic. One famous situation is the case of Zeno
executions, where the formal semantics allows the system to do infinitely many actions in finite time. But there
are other problems, and some of them are related to the distributed nature of the system. These are the ones
we address here.

One approach to implementability problems is to formalize either syntactical or behavioral requirements about
what should be considered as a reasonable model, and reject other models. Another approach is to adapt the
formal semantics such that only realistic behaviors are considered.

These techniques are preliminaries for dealing with the problem of implementability of models. Indeed
implementing a model may be possible at the cost of some transformation, which make it suitable for the
target device. By the way these transformations may be of interest for the designer who can now use high-
level features in a model of a system or protocol, and rely on the transformation to make it implementable.

We aim at formalizing and automating translations that preserve both the timed semantics and the concurrent
semantics. This effort is crucial for extending concurrency-oriented methods for logical time, in particular
for exploiting partial order properties. In fact, validation and management - in a broad sense - of distributed
systems is not realistic in general without understanding and control of their real-time dependent features; the
link between real-time and logical-time behaviors is thus crucial for many aspects of MExICo’s work.

http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid26
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid27
http://raweb.inria.fr/rapportsactivite/RA{$year}/mexico/bibliography.html#mexico-2018-bid28

120 Proofs and Verification - Research Program - Team MOCQUA

MOCQUA Team

3. Research Program

3.1. Quantum Computing
While it can be argued that the quantum revolution has already happened in cryptography [35] or in optics [34],
quantum computers are far from becoming a common commodity, with only a few teams around the world
working on a practical implementation. In fact, one of the most commonly known examples of a quantum
computer, the D-Wave 2X System, defies the usual definition of a computer: it is not general-purpose, and can
only solve (approximately) a very specific hardwired problem.

Most current prototypes of a quantum computer differ fundamentally on the hardware substrate, and it is quite
hard to predict which solution will finally be adopted. The landscape of quantum programming languages is
also constantly evolving. Comparably to compiler design, the foundation of quantum software therefore relies
on an intermediate representation that is suitable for manipulation, easy to produce from software and easily
encodable into hardware. The language of choice for this is the ZX-calculus.

Regardless of the actual model that will be accepted by the industry, it is becoming clear that some of the
hurdles into scaling up quantum computers from a few qubits to very large arrays will remain. As an example,
current implementations of quantum computers working on hundreds of qubits indeed are not able to form and
maintain all possible forms of entanglement between qubits. This raises two questions. First, does this restrict
the computational power, and the supposed advantage of the quantum computer over the classical computer?
Second, how to ensure that a quantum program that was designed for a theoretical quantum computer will
work on the practical implementations? This will be investigated, in particular by providing static analysis
methods for evaluating a priori how much entanglement a quantum program needs.

3.2. Higher-Order Computing
While programs often operate on natural numbers or finite structures such as graphs or finite strings, they
can also take functions as input. In that case, the program is said to perform higher-order computations, or
to compute a higher-order functional. Functional programming or object-oriented programming are important
paradigms allowing higher-order computations.

While the theory of computation is well developed for first-order programs, difficulties arise when dealing with
higher-order programs. There are many non-equivalent ways of presenting inputs to such programs: an input
function can be presented as a black-box, encoded in an infinite binary sequence, or sometimes by a finite
description. Comparing those representations is an important problem. A particularly useful application of
higher-order computations is to compute with infinite objects that can be represented by functions or symbolic
sequences. The theory works well in many cases (to be precise, when these objects live in a topological space
with a countable basis [40]), but is not well understood in other interesting cases. For instance, when the inputs
are the second-order functionals (of type (N→ N)→ (N→ N)), the classical theory does not apply and many
problems are still open.

3.3. Dynamical Systems
The most natural example of a computation with infinite precision is the simulation of a dynamical system.
The underlying space might be Rn in the case of the simulation of physical systems, or the Cantor space
{0, 1}Z in the case of discrete dynamical systems.

From the point of view of computation, the main point of interest is the link between the long-term behavior
of a system and its initial configuration. There are two questions here: (a) predict the behavior, (b) design
dynamical systems with some prescribed behavior. The first will be mainly examined through the angle of
reachability and more generally control theory for hybrid systems.

http://www.inria.fr/equipes/mocqua
http://raweb.inria.fr/rapportsactivite/RA{$year}/mocqua/bibliography.html#mocqua-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/mocqua/bibliography.html#mocqua-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/mocqua/bibliography.html#mocqua-2018-bid2

121 Proofs and Verification - Research Program - Team MOCQUA

The model of cellular automata will be of particular interest. This computational model is relevant for
simulating complex global phenomena which emerge from simple interactions between simple components.
It is widely used in various natural sciences (physics, biology, etc.) and in computer science, as it is an
appropriate model to reason about errors that occur in systems with a great number of components.

The simulation of a physical dynamical system on a computer is made difficult by various aspects. First,
the parameters of the dynamical systems are seldom exactly known. Secondly, the simulation is usually non
exact: real numbers are usually represented by floating-point numbers, and simulations of cellular automata
only simulate the behavior of finite or periodic configurations. For some chaotic systems, this means that the
simulation can be completely irrelevant.

122 Proofs and Verification - Research Program - Project-Team PARSIFAL

PARSIFAL Project-Team

3. Research Program

3.1. General overview
There are two broad approaches for computational specifications. In the computation as model approach,
computations are encoded as mathematical structures containing nodes, transitions, and state. Logic is used
to describe these structures, that is, the computations are used as models for logical expressions. Intensional
operators, such as the modals of temporal and dynamic logics or the triples of Hoare logic, are often employed
to express propositions about the change in state.

The computation as deduction approach, in contrast, expresses computations logically, using formulas, terms,
types, and proofs as computational elements. Unlike the model approach, general logical apparatus such as cut-
elimination or automated deduction becomes directly applicable as tools for defining, analyzing, and animating
computations. Indeed, we can identify two main aspects of logical specifications that have been very fruitful:

• Proof normalization, which treats the state of a computation as a proof term and computation
as normalization of the proof terms. General reduction principles such as β-reduction or cut-
elimination are merely particular forms of proof normalization. Functional programming is based on
normalization [57], and normalization in different logics can justify the design of new and different
functional programming languages [30].

• Proof search, which views the state of a computation as a a structured collection of formulas,
known as a sequent, and proof search in a suitable sequent calculus as encoding the dynamics of
the computation. Logic programming is based on proof search [61], and different proof search
strategies can be used to justify the design of new and different logic programming languages [60].

While the distinction between these two aspects is somewhat informal, it helps to identify and classify different
concerns that arise in computational semantics. For instance, confluence and termination of reductions are
crucial considerations for normalization, while unification and strategies are important for search. A key
challenge of computational logic is to find means of uniting or reorganizing these apparently disjoint concerns.

An important organizational principle is structural proof theory, that is, the study of proofs as syntactic,
algebraic and combinatorial objects. Formal proofs often have equivalences in their syntactic representations,
leading to an important research question about canonicity in proofs – when are two proofs “essentially the
same?” The syntactic equivalences can be used to derive normal forms for proofs that illuminate not only
the proofs of a given formula, but also its entire proof search space. The celebrated focusing theorem of
Andreoli [32] identifies one such normal form for derivations in the sequent calculus that has many important
consequences both for search and for computation. The combinatorial structure of proofs can be further
explored with the use of deep inference; in particular, deep inference allows access to simple and manifestly
correct cut-elimination procedures with precise complexity bounds.

Type theory is another important organizational principle, but most popular type systems are generally
designed for either search or for normalization. To give some examples, the Coq system [70] that implements
the Calculus of Inductive Constructions (CIC) is designed to facilitate the expression of computational features
of proofs directly as executable functional programs, but general proof search techniques for Coq are rather
primitive. In contrast, the Twelf system [66] that is based on the LF type theory (a subsystem of the CIC),
is based on relational specifications in canonical form (i.e., without redexes) for which there are sophisticated
automated reasoning systems such as meta-theoretic analysis tools, logic programming engines, and inductive
theorem provers. In recent years, there has been a push towards combining search and normalization in the
same type-theoretic framework. The Beluga system [67], for example, is an extension of the LF type theory
with a purely computational meta-framework where operations on inductively defined LF objects can be
expressed as functional programs.

http://www.inria.fr/equipes/parsifal
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid7

123 Proofs and Verification - Research Program - Project-Team PARSIFAL

The Parsifal team investigates both the search and the normalization aspects of computational specifications
using the concepts, results, and insights from proof theory and type theory.

3.2. Inductive and co-inductive reasoning
The team has spent a number of years in designing a strong new logic that can be used to reason (inductively
and co-inductively) on syntactic expressions containing bindings. This work is based on earlier work by
McDowell, Miller, and Tiu [59] [58] [62] [71], and on more recent work by Gacek, Miller, and Nadathur
[44] [43]. The Parsifal team, along with our colleagues in Minneapolis, Canberra, Singapore, and Cachan,
have been building two tools that exploit the novel features of this logic. These two systems are the following.

• Abella, which is an interactive theorem prover for the full logic.

• Bedwyr, which is a model checker for the “finite” part of the logic.

We have used these systems to provide formalize reasoning of a number of complex formal systems, ranging
from programming languages to the λ-calculus and π-calculus.

Since 2014, the Abella system has been extended with a number of new features. A number of new significant
examples have been implemented in Abella and an extensive tutorial for it has been written [1].

3.3. Developing a foundational approach to defining proof evidence
The team is developing a framework for defining the semantics of proof evidence. With this framework,
implementers of theorem provers can output proof evidence in a format of their choice: they will only need to
be able to formally define that evidence’s semantics. With such semantics provided, proof checkers can then
check alleged proofs for correctness. Thus, anyone who needs to trust proofs from various provers can put
their energies into designing trustworthy checkers that can execute the semantic specification.

In order to provide our framework with the flexibility that this ambitious plan requires, we have based our
design on the most recent advances within the theory of proofs. For a number of years, various team members
have been contributing to the design and theory of focused proof systems [33] [35] [37] [38] [46] [55] [56] and
we have adopted such proof systems as the corner stone for our framework.

We have also been working for a number of years on the implementation of computational logic systems,
involving, for example, both unification and backtracking search. As a result, we are also building an early and
reference implementation of our semantic definitions.

3.4. Deep inference
Deep inference [48], [50] is a novel methodology for presenting deductive systems. Unlike traditional
formalisms like the sequent calculus, it allows rewriting of formulas deep inside arbitrary contexts. The new
freedom for designing inference rules creates a richer proof theory. For example, for systems using deep
inference, we have a greater variety of normal forms for proofs than in sequent calculus or natural deduction
systems. Another advantage of deep inference systems is the close relationship to category-theoretic proof
theory. Due to the deep inference design one can directly read off the morphism from the derivations. There is
no need for a counter-intuitive translation.

The following research problems are investigated by members of the Parsifal team:

• Find deep inference system for richer logics. This is necessary for making the proof theoretic results
of deep inference accessible to applications as they are described in the previous sections of this
report.

• Investigate the possibility of focusing proofs in deep inference. As described before, focusing is a
way to reduce the non-determinism in proof search. However, it is well investigated only for the
sequent calculus. In order to apply deep inference in proof search, we need to develop a theory of
focusing for deep inference.

http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid17
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid18
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid19
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid20
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid21
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid22
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid23

124 Proofs and Verification - Research Program - Project-Team PARSIFAL

3.5. Proof nets, atomic flows, and combinatorial proofs
Proof nets graph-like presentations of sequent calculus proofs such that all "trivial rule permutations" are
quotiented away. Ideally the notion of proof net should be independent from any syntactic formalism, but most
notions of proof nets proposed in the past were formulated in terms of their relation to the sequent calculus.
Consequently we could observe features like “boxes” and explicit “contraction links”. The latter appeared not
only in Girard’s proof nets [45] for linear logic but also in Robinson’s proof nets [68] for classical logic. In
this kind of proof nets every link in the net corresponds to a rule application in the sequent calculus.

Only recently, due to the rise of deep inference, new kinds of proof nets have been introduced that take the
formula trees of the conclusions and add additional “flow-graph” information (see e.g., [54][2] leading to
the notion of atomic flow and [49]. On one side, this gives new insights in the essence of proofs and their
normalization. But on the other side, all the known correctness criteria are no longer available.

Combinatorial proofs [52] are another form syntax-independent proof presentation which separates the
multiplicative from the additive behaviour of classical connectives.

The following research questions investigated by members of the Parsifal team:

• Finding (for classical and intuitionistic logic) a notion of canonical proof presentation that is
deductive, i.e., can effectively be used for doing proof search.

• Studying the normalization of proofs using atomic flows and combinatorial proofs, as they simplify
the normalization procedure for proofs in deep inference, and additionally allow to get new insights
in the complexity of the normalization.

• Studying the size of proofs in the combinatorial proof formalism.

3.6. Cost Models and Abstract Machines for Functional Programs
In the proof normalization approach, computation is usually reformulated as the evaluation of functional
programs, expressed as terms in a variation over the λ-calculus. Thanks to its higher-order nature, this approach
provides very concise and abstract specifications. Its strength is however also its weakness: the abstraction
from physical machines is pushed to a level where it is no longer clear how to measure the complexity of an
algorithm.

Models like Turing machines or RAM rely on atomic computational steps and thus admit quite obvious cost
models for time and space. The λ-calculus instead relies on a single non-atomic operation, β-reduction, for
which costs in terms of time and space are far from evident.

Nonetheless, it turns out that the number of β-steps is a reasonable time cost model, i.e.,it is polynomially
related to those of Turing machines and RAM. For the special case of weak evaluation (i.e., reducing only
β-steps that are not under abstractions)—which is used to model functional programming languages—this is
a relatively old result due to Blelloch and Greiner [34] (1995). It is only very recently (2014) that the strong
case—used in the implementation models of proof assistants—has been solved by Accattoli and Dal Lago
[31].

With the recent recruitment of Accattoli, the team’s research has expanded in this direction. The topics under
investigations are:

1. Complexity of Abstract Machines. Bounding and comparing the overhead of different abstract
machines for different evaluation schemas (weak/strong call-by-name/value/need λ-calculi) with
respect to the cost model. The aim is the development of a complexity-aware theory of the
implementation of functional programs.

2. Reasonable Space Cost Models. Essentially nothing is known about reasonable space cost models. It
is known, however, that environment-based execution model—which are the mainstream technology
for functional programs—do not provide an answer. We are exploring the use of the non-standard
implementation models provided by Girard’s Geometry of Interaction to address this question.

http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid24
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid25
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid26
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid27
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid28
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid29
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid30
http://raweb.inria.fr/rapportsactivite/RA{$year}/parsifal/bibliography.html#parsifal-2018-bid31

125 Proofs and Verification - Research Program - Project-Team PI.R2

PI.R2 Project-Team

3. Research Program

3.1. Proof theory and the Curry-Howard correspondence
3.1.1. Proofs as programs

Proof theory is the branch of logic devoted to the study of the structure of proofs. An essential contributor to
this field is Gentzen [83] who developed in 1935 two logical formalisms that are now central to the study
of proofs. These are the so-called “natural deduction”, a syntax that is particularly well-suited to simulate the
intuitive notion of reasoning, and the so-called “sequent calculus”, a syntax with deep geometric properties
that is particularly well-suited for proof automation.

Proof theory gained a remarkable importance in computer science when it became clear, after genuine
observations first by Curry in 1958 [78], then by Howard and de Bruijn at the end of the 60’s [95], [114],
that proofs had the very same structure as programs: for instance, natural deduction proofs can be identified as
typed programs of the ideal programming language known as λ-calculus.

This proofs-as-programs correspondence has been the starting point to a large spectrum of researches and
results contributing to deeply connect logic and computer science. In particular, it is from this line of work
that Coquand and Huet’s Calculus of Constructions [75], [76] stemmed out – a formalism that is both a logic
and a programming language and that is at the source of the Coq system [113].

3.1.2. Towards the calculus of constructions
The λ-calculus, defined by Church [73], is a remarkably succinct model of computation that is defined via
only three constructions (abstraction of a program with respect to one of its parameters, reference to such
a parameter, application of a program to an argument) and one reduction rule (substitution of the formal
parameter of a program by its effective argument). The λ-calculus, which is Turing-complete, i.e. which has
the same expressiveness as a Turing machine (there is for instance an encoding of numbers as functions in
λ-calculus), comes with two possible semantics referred to as call-by-name and call-by-value evaluations. Of
these two semantics, the first one, which is the simplest to characterise, has been deeply studied in the last
decades [66].

To explain the Curry-Howard correspondence, it is important to distinguish between intuitionistic and classical
logic: following Brouwer at the beginning of the 20th century, classical logic is a logic that accepts the use
of reasoning by contradiction while intuitionistic logic proscribes it. Then, Howard’s observation is that the
proofs of the intuitionistic natural deduction formalism exactly coincide with programs in the (simply typed)
λ-calculus.

A major achievement has been accomplished by Martin-Löf who designed in 1971 a formalism, referred to as
modern type theory, that was both a logical system and a (typed) programming language [105].

In 1985, Coquand and Huet [75], [76] in the Formel team of Inria-Rocquencourt explored an alternative
approach based on Girard-Reynolds’ system F [84], [109]. This formalism, called the Calculus of Construc-
tions, served as logical foundation of the first implementation of Coq in 1984. Coq was called CoC at this
time.

3.1.3. The Calculus of Inductive Constructions
The first public release of CoC dates back to 1989. The same project-team developed the programming
language Caml (nowadays called OCaml and coordinated by the Gallium team) that provided the expressive
and powerful concept of algebraic data types (a paragon of it being the type of lists). In CoC, it was possible
to simulate algebraic data types, but only through a not-so-natural not-so-convenient encoding.

http://www.inria.fr/equipes/pi.r2
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid11

126 Proofs and Verification - Research Program - Project-Team PI.R2

In 1989, Coquand and Paulin [77] designed an extension of the Calculus of Constructions with a generalisation
of algebraic types called inductive types, leading to the Calculus of Inductive Constructions (CIC) that started
to serve as a new foundation for the Coq system. This new system, which got its current definitive name Coq,
was released in 1991.

In practice, the Calculus of Inductive Constructions derives its strength from being both a logic powerful
enough to formalise all common mathematics (as set theory is) and an expressive richly-typed functional
programming language (like ML but with a richer type system, no effects and no non-terminating functions).

3.2. The development of Coq
During 1984-2012 period, about 40 persons have contributed to the development of Coq, out of which 7
persons have contributed to bring the system to the place it was six years ago. First Thierry Coquand through
his foundational theoretical ideas, then Gérard Huet who developed the first prototypes with Thierry Coquand
and who headed the Coq group until 1998, then Christine Paulin who was the main actor of the system
based on the CIC and who headed the development group from 1998 to 2006. On the programming side,
important steps were made by Chet Murthy who raised Coq from the prototypical state to a reasonably scalable
system, Jean-Christophe Filliâtre who turned to concrete the concept of a small trustful certification kernel on
which an arbitrary large system can be set up, Bruno Barras and Hugo Herbelin who, among other extensions,
reorganised Coq on a new smoother and more uniform basis able to support a new round of extensions for the
next decade.

The development started from the Formel team at Rocquencourt but, after Christine Paulin got a position
in Lyon, it spread to École Normale Supérieure de Lyon. Then, the task force there globally moved to the
University of Orsay when Christine Paulin got a new position there. On the Rocquencourt side, the part of
Formel involved in ML moved to the Cristal team (now Gallium) and Formel got renamed into Coq. Gérard
Huet left the team and Christine Paulin started to head a Coq team bilocalised at Rocquencourt and Orsay.
Gilles Dowek became the head of the team which was renamed into LogiCal. Following Gilles Dowek who got
a position at École Polytechnique, LogiCal moved to the new Inria Saclay research center. It then split again,
giving birth to ProVal. At the same time, the Marelle team (formerly Lemme, formerly Croap) which has been
a long partner of the Formel team, invested more and more energy in the formalisation of mathematics in Coq,
while contributing importantly to the development of Coq, in particular for what regards user interfaces.

After various other spreadings resulting from where the wind pushed former PhD students, the development
of Coq got multi-site with the development now realised mainly by employees of Inria, the CNAM, Paris 7
and MINES.

In the last six years, Hugo Herbelin and Matthieu Sozeau coordinated the development of the system, the
official coordinator hat passed from Hugo to Matthieu in August 2016. The ecosystem and development model
changed greatly during this period, with a move towards an entirely distributed development model, integrating
contributions from all over the world. While the system had always been open-source, its development team
was relatively small, well-knit and gathered regularly at Coq working groups, and many developments on Coq
were still discussed only by the few interested experts.

The last years saw a big increase in opening the development to external scrutiny and contributions. This
was supported by the "core" team which started moving development to the open GitHub platform (including
since 2017 its bug-tracker [60] and wiki), made its development process public, starting to use public pull
requests to track the work of developers, organising yearly hackatons/coding-sprints for the dissemination of
expertise and developers & users meetings like the Coq Workshop and CoqPL, and, perhaps more anecdotally,
retransmitting Coq working groups on a public YouTube channel.

This move was also supported by the hiring of Maxime Dénès in 2016 as an Inria research engineer (in
Sophia-Antipolis), and the work of Matej Košík (2-year research engineer). Their work involved making the
development process more predictable and streamlined and to provide a higher level of quality to the whole
system. In September 2018, a second engineer, Vincent Laporte, was hired. Yves Bertot, Maxime Dénès and

http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid13

127 Proofs and Verification - Research Program - Project-Team PI.R2

Vincent Laporte are developing the Coq consortium, which aims to become the incarnation of the global Coq
community and to offer support for our users.

Today, the development of Coq involves participants from the Inria project-teams pi.r2 (Paris), Marelle
(Sophia-Antipolis), Toccata (Saclay), Gallinette (Nantes), Gallium (Paris), and Camus (Strasboug), the LIX at
École Polytechnique and the CRI Mines-ParisTech. Apart from those, active collaborators include members
from MPI-Saarbrucken (D. Dreyer’s group), KU Leuven (B. Jacobs group), MIT CSAIL (A. Chlipala’s group,
which hosted an Inria/MIT engineer, and N. Zeldovich’s group), the Institute for Advanced Study in Princeton
(from S. Awodey, T. Coquand and V. Voevodsky’s Univalent Foundations program) and Intel (M. Soegtrop).
The latest released version Coq 8.8.0 had 40 contributors (counted from the start of 8.8 development) and the
upcoming Coq 8.9 has 54.

On top of the developer community, there is a much wider user community, as Coq is being used in
many different fields. The Software Foundations series, authored by academics from the USA, along with
the reference Coq’Art book by Bertot and Castéran [67], the more advanced Certified Programming with
Dependent Types book by Chlipala [72] and the recent book on the Mathematical Components library by
Mahboubi, Tassi et al. provide resources for gradually learning the tool.

In the programming languages community, Coq is being taught in two summer schools, OPLSS and the
DeepSpec summer school. For more mathematically inclined users, there are regular Winter Schools in Nice
and in 2017 there was a school on the use of the Univalent Foundations library in Birmingham.

Since 2016, Coq also provides a central repository for Coq packages, the Coq opam archive, relying on the
OCaml opam package manager and including around 250 packages contributed by users. It would be too
long to make a detailed list of the uses of Coq in the wild. We only highlight four research projects relying
heavily on Coq. The Mathematical Components library has its origins in the formal proof of the Four Colour
Theorem and has grown to cover many areas of mathematics in Coq using the now integrated (since Coq
8.7) SSREFLECT proof language. The DeepSpec project is an NSF Expedition project led by A. Appel whose
aim is full-stack verification of a software system, from machine-checked proofs of circuits to an operating
system to a web-browser, entirely written in Coq and integrating many large projects into one. The ERC
CoqHoTT project led by N. Tabareau aims to use logical tools to extend the expressive power of Coq, dealing
with the univalence axiom and effects. The ERC RustBelt project led by D. Dreyer concerns the development
of rigorous formal foundations for the Rust programming language, using the Iris Higher-Order Concurrent
Separation Logic Framework in Coq.

We next briefly describe the main components of Coq.

3.2.1. The underlying logic and the verification kernel
The architecture adopts the so-called de Bruijn principle: the well-delimited kernel of Coq ensures the
correctness of the proofs validated by the system. The kernel is rather stable with modifications tied to the
evolution of the underlying Calculus of Inductive Constructions formalism. The kernel includes an interpreter
of the programs expressible in the CIC and this interpreter exists in two flavours: a customisable lazy
evaluation machine written in OCaml and a call-by-value bytecode interpreter written in C dedicated to
efficient computations. The kernel also provides a module system.

3.2.2. Programming and specification languages
The concrete user language of Coq, called Gallina, is a high-level language built on top of the CIC. It includes
a type inference algorithm, definitions by complex pattern-matching, implicit arguments, mathematical nota-
tions and various other high-level language features. This high-level language serves both for the development
of programs and for the formalisation of mathematical theories. Coq also provides a large set of commands.
Gallina and the commands together forms the Vernacular language of Coq.

3.2.3. Standard library
The standard library is written in the vernacular language of Coq. There are libraries for various arithmetical
structures and various implementations of numbers (Peano numbers, implementation of N, Z, Q with binary

https://softwarefoundations.cis.upenn.edu/
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid15
https://math-comp.github.io/mcb/
https://www.cs.uoregon.edu/research/summerschool/archives.html
http://deepspec.org
https://team.inria.fr/marelle/en/two-new-winter-schools-on-coq
https://unimath.github.io/bham2017/
http://math-comp.github.io/math-comp/
http://deepspec.org
http://coqhott.gforge.inria.fr/
http://plv.mpi-sws.org/rustbelt/

128 Proofs and Verification - Research Program - Project-Team PI.R2

digits, implementation of N, Z, Q using machine words, axiomatisation of R). There are libraries for lists, list
of a specified length, sorts, and for various implementations of finite maps and finite sets. There are libraries
on relations, sets, orders.

3.2.4. Tactics
The tactics are the methods available to conduct proofs. This includes the basic inference rules of the CIC,
various advanced higher level inference rules and all the automation tactics. Regarding automation, there are
tactics for solving systems of equations, for simplifying ring or field expressions, for arbitrary proof search,
for semi-decidability of first-order logic and so on. There is also a powerful and popular untyped scripting
language for combining tactics into more complex tactics.

Note that all tactics of Coq produce proof certificates that are checked by the kernel of Coq. As a consequence,
possible bugs in proof methods do not hinder the confidence in the correctness of the Coq checker. Note also
that the CIC being a programming language, tactics can have their core written (and certified) in the own
language of Coq if needed.

3.2.5. Extraction
Extraction is a component of Coq that maps programs (or even computational proofs) of the CIC to functional
programs (in OCaml, Scheme or Haskell). Especially, a program certified by Coq can further be extracted to
a program of a full-fledged programming language then benefiting of the efficient compilation, linking tools,
profiling tools, ... of the target language.

3.3. Dependently typed programming languages
Dependently typed programming (shortly DTP) is an emerging concept referring to the diffuse and broadening
tendency to develop programming languages with type systems able to express program properties finer than
the usual information of simply belonging to specific data-types. The type systems of dependently-typed
programming languages allow to express properties dependent of the input and the output of the program
(for instance that a sorting program returns a list of same size as its argument). Typical examples of such
languages were the Cayenne language, developed in the late 90’s at Chalmers University in Sweden and
the DML language developed at Boston. Since then, various new tools have been proposed, either as typed
programming languages whose types embed equalities (Ωmega at Portland, ATS at Boston, ...) or as hybrid
logic/programming frameworks (Agda at Chalmers University, Twelf at Carnegie, Delphin at Yale, OpTT at
U. Iowa, Epigram at Nottingham, ...).

DTP contributes to a general movement leading to the fusion between logic and programming. Coq, whose
language is both a logic and a programming language which moreover can be extracted to pure ML code
plays a role in this movement and some frameworks combining logic and programming have been proposed
on top of Coq (Concoqtion at Rice and Colorado, Ynot at Harvard, Why in the ProVal team at Inria, Iris at
MPI-Saarbrucken). It also connects to Hoare logic, providing frameworks where pre- and post-conditions of
programs are tied with the programs.

DTP approached from the programming language side generally benefits of a full-fledged language (e.g.
supporting effects) with efficient compilation. DTP approached from the logic side generally benefits of an
expressive specification logic and of proof methods so as to certify the specifications. The weakness of the
approach from logic however is generally the weak support for effects or partial functions.

3.3.1. Type-checking and proof automation
In between the decidable type systems of conventional data-types based programming languages and the
full expressiveness of logically undecidable formulae, an active field of research explores a spectrum of
decidable or semi-decidable type systems for possible use in dependently typed programming languages.
At the beginning of the spectrum, this includes, for instance, the system F’s extension MLF of the ML type
system or the generalisation of abstract data types with type constraints (G.A.D.T.) such as found in the Haskell
programming language. At the other side of the spectrum, one finds arbitrary complex type specification

129 Proofs and Verification - Research Program - Project-Team PI.R2

languages (e.g. that a sorting function returns a list of type “sorted list”) for which more or less powerful proof
automation tools exist – generally first-order ones.

3.4. Around and beyond the Curry-Howard correspondence
For two decades, the Curry-Howard correspondence has been limited to the intuitionistic case but since 1990,
an important stimulus spurred on the community following Griffin’s discovery that this correspondence was
extensible to classical logic. The community then started to investigate unexplored potential connections
between computer science and logic. One of these fields is the computational understanding of Gentzen’s
sequent calculus while another one is the computational content of the axiom of choice.

3.4.1. Control operators and classical logic
Indeed, a significant extension of the Curry-Howard correspondence has been obtained at the beginning of
the 90’s thanks to the seminal observation by Griffin [85] that some operators known as control operators
were typable by the principle of double negation elimination (¬¬A⇒ A), a principle that enables classical
reasoning.

Control operators are used to jump from one location of a program to another. They were first considered
in the 60’s by Landin [102] and Reynolds [108] and started to be studied in an abstract way in the 80’s by
Felleisen et al [81], leading to Parigot’s λµ-calculus [106], a reference calculus that is in close Curry-Howard
correspondence with classical natural deduction. In this respect, control operators are fundamental pieces to
establish a full connection between proofs and programs.

3.4.2. Sequent calculus
The Curry-Howard interpretation of sequent calculus started to be investigated at the beginning of the 90’s.
The main technicality of sequent calculus is the presence of left introduction inference rules, for which two
kinds of interpretations are applicable. The first approach interprets left introduction rules as construction rules
for a language of patterns but it does not really address the problem of the interpretation of the implication
connective. The second approach, started in 1994, interprets left introduction rules as evaluation context
formation rules. This line of work led in 2000 to the design by Hugo Herbelin and Pierre-Louis Curien of
a symmetric calculus exhibiting deep dualities between the notion of programs and evaluation contexts and
between the standard notions of call-by-name and call-by-value evaluation semantics.

3.4.3. Abstract machines
Abstract machines came as an intermediate evaluation device, between high-level programming languages
and the computer microprocessor. The typical reference for call-by-value evaluation of λ-calculus is Landin’s
SECD machine [101] and Krivine’s abstract machine for call-by-name evaluation [98], [97]. A typical abstract
machine manipulates a state that consists of a program in some environment of bindings and some evaluation
context traditionally encoded into a “stack”.

3.4.4. Delimited control
Delimited control extends the expressiveness of control operators with effects: the fundamental result here is a
completeness result by Filinski [82]: any side-effect expressible in monadic style (and this covers references,
exceptions, states, dynamic bindings, ...) can be simulated in λ-calculus equipped with delimited control.

3.5. Effective higher-dimensional algebra
3.5.1. Higher-dimensional algebra

Like ordinary categories, higher-dimensional categorical structures originate in algebraic topology. Indeed,
∞-groupoids have been initially considered as a unified point of view for all the information contained in the
homotopy groups of a topological space X: the fundamental ∞-groupoidΠ(X) of X contains the elements
ofX as 0-dimensional cells, continuous paths inX as 1-cells, homotopies between continuous paths as 2-cells,
and so on. This point of view translates a topological problem (to determine if two given spaces X and Y
are homotopically equivalent) into an algebraic problem (to determine if the fundamental groupoids Π(X)
and Π(Y) are equivalent).

http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid17
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid18
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid19
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid20
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid21
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid22
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid23
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid24

130 Proofs and Verification - Research Program - Project-Team PI.R2

In the last decades, the importance of higher-dimensional categories has grown fast, mainly with the new trend
of categorification that currently touches algebra and the surrounding fields of mathematics. Categorification is
an informal process that consists in the study of higher-dimensional versions of known algebraic objects (such
as higher Lie algebras in mathematical physics [65]) and/or of “weakened” versions of those objects, where
equations hold only up to suitable equivalences (such as weak actions of monoids and groups in representation
theory [80]).

Since a few years, the categorification process has reached logic, with the introduction of homotopy type
theory. After a preliminary result that had identified categorical structures in type theory [94], it has been
observed recently that the so-called “identity types” are naturally equiped with a structure of∞-groupoid: the
1-cells are the proofs of equality, the 2-cells are the proofs of equality between proofs of equality, and so on.
The striking resemblance with the fundamental∞-groupoid of a topological space led to the conjecture that
homotopy type theory could serve as a replacement of set theory as a foundational language for different fields
of mathematics, and homotopical algebra in particular.

3.5.2. Higher-dimensional rewriting
Higher-dimensional categories are algebraic structures that contain, in essence, computational aspects. This
has been recognised by Street [112], and independently by Burroni [71], when they have introduced the
concept of computad or polygraph as combinatorial descriptions of higher categories. Those are directed
presentations of higher-dimensional categories, generalising word and term rewriting systems.

In the recent years, the algebraic structure of polygraph has led to a new theory of rewriting, called higher-
dimensional rewriting, as a unifying point of view for usual rewriting paradigms, namely abstract, word and
term rewriting [99], [104], [86], [87], and beyond: Petri nets [89] and formal proofs of classical and linear logic
have been expressed in this framework [88]. Higher-dimensional rewriting has developed its own methods to
analyse computational properties of polygraphs, using in particular algebraic tools such as derivations to prove
termination, which in turn led to new tools for complexity analysis [68].

3.5.3. Squier theory
The homotopical properties of higher categories, as studied in mathematics, are in fact deeply related to the
computational properties of their polygraphic presentations. This connection has its roots in a tradition of using
rewriting-like methods in algebra, and more specifically in the work of Anick [63] and Squier [111], [110]
in the 1980s: Squier has proved that, if a monoid M can be presented by a finite, terminating and confluent
rewriting system, then its third integral homology groupH3(M,Z) is finitely generated and the monoidM has
finite derivation type (a property of homotopical nature). This allowed him to conclude that finite convergent
rewriting systems were not a universal solution to decide the word problem of finitely generated monoids.
Since then, Yves Guiraud and Philippe Malbos have shown that this connection was part of a deeper unified
theory when formulated in the higher-dimensional setting [14], [15], [91], [92], [93].

In particular, the computational content of Squier’s proof has led to a constructive methodology to produce,
from a convergent presentation, coherent presentations and polygraphic resolutions of algebraic structures,
such as monoids [14] and algebras [31]. A coherent presentation of a monoid M is a 3-dimensional
combinatorial object that contains not only a presentation of M (generators and relations), but also higher-
dimensional cells, each of which corresponding to two fundamentally different proofs of the same equality:
this is, in essence, the same as the proofs of equality of proofs of equality in homotopy type theory. When this
process of “unfolding” proofs of equalities is pursued in every dimension, one gets a polygraphic resolution
of the starting monoid M . This object has the following desirable qualities: it is free and homotopically
equivalent to M (in the canonical model structure of higher categories [100], [64]). A polygraphic resolution
of an algebraic object X is a faithful formalisation of X on which one can perform computations, such
as homotopical or homological invariants of X . In particular, this has led to new algorithms and proofs in
representation theory [10], and in homological algebra [90][31].

http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid25
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid26
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid27
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid28
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid29
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid30
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid31
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid32
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid33
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid34
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid35
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid36
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid37
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid38
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid39
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid40
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid41
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid42
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid43
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid44
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid40
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid45
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid46
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid47
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid48
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid49
http://raweb.inria.fr/rapportsactivite/RA{$year}/pi.r2/bibliography.html#pi.r2-2018-bid45

131 Proofs and Verification - Research Program - Project-Team SUMO

SUMO Project-Team

3. Research Program

3.1. Analysis and verification of quantitative systems
The overall objective of this axis is to develop the quantitative aspects of formal methods while maintaining the
tractability of verification objectives and progressing toward the management of large systems. This covers the
development of relevant modeling formalims, to nicely weave time, costs and probabilities with existing mod-
els for concurrency. We plan to further study time(d) Petri nets, networks of timed automata (with synchronous
or asynchronous communications), stochastic automata, partially-observed Markov decision processes, etc.
A second objective is to develop verification methods for such quantitative systems. This covers several as-
pects: quantitative verification questions (e.g. computing an optimal scheduling policy), Boolean questions
on quantitative features (deciding whether some probability is greater than a threshold), robustness issues
(will a system have the same behaviors if some parameter is slightly altered?), etc. Our goal is to explore
the frontier between decidable and undecidable problems, or more pragmatically tractable and untractable
problems. Of course, there is a tradeoff between the expressivity and the tractability of a model. Models that
incorporate distributed aspects, probabilities, time, etc., are typically untractable. In such a case, abstraction
or approximation techniques are a workaround that we will explore.

Here are some precise topics that we place in our agenda:
• analysis of diagnosability and opacity properties for stochastic systems;
• verification of time(d) Petri nets;
• robustness analysis for timed and/or stochastic systems;
• abstraction techniques for quantitative systems.

3.2. Control of quantitative systems
The main objective of this research axis is to explore the quantitative and/or distributed extensions of classical
control problems. We envision control in its widest meaning of driving a system in order to guarantee or
enforce some extra property (i.e. not guaranteed by the system alone), in a partially- or totally-observed setting.
This property can either be logical (e.g. reachability or safety) or quantitative (e.g. reach some performance
level). These problems have of course an offline facet (e.g. controller design, existence of a policy/strategy)
and an online facet (e.g. algorithm to select some optimal action at runtime).

Our objectives comprise classical controler synthesis for discrete-event systems, with extensions to tempo-
ral/stochastic/reward settings. They also cover maintaining or maximizing extra properties such as diagnos-
ability or opacity, for example in stochastic systems. We also target further analysis of POMDPs (partially-
observed Markov decision processes), and multi-agent versions of policy synthesis relying on tools from
game theory. We aim at adressing some control problems motivated by industrial applications, that raise is-
sues like the optimal control of timed and stochastic discrete-event systems, with concerns like robustness to
perturbations and multicriteria optimization. Finally, we also plan to work on modular testing, and on runtime
enforcement techniques, in order to garantee extra logical and temporal properties to event flows.

3.3. Management of large or distributed systems
The generic terms of “supervision” or “management” of distributed systems cover problems like control,
diagnosis, sensor placement, planning, optimization, (state) estimation, parameter identification, testing, etc.
This research axis examines how classical settings for such problems can scale up to large or distributed
systems. Our work will be driven by considerations like: how to take advantage of modularity, how to
design approximate management algorithms, how to design relevant abstractions to make large systems more
tractable, how to deal with models of unknown size, how to design mechanisms to obtain relevant models, etc.

http://www.inria.fr/equipes/sumo

132 Proofs and Verification - Research Program - Project-Team SUMO

As more specific objectives, let us mention:

• Parametric-size systems: how to verify properties of distributed systems with an unknown number
of components;

• Approximate management methods: we will explore the extension of ideas developed for Bayesian
inference in large-scale stochastic systems (such as turbo-algorithms) to the field of modular dynamic
systems. When component interactions are sparse, even if exact management methods are unacces-
sible (for diagnosis, planning, control, etc.), good approximations based on local computations may
be accessible;

• Model abstraction: we will explore techniques to design more tractable abstractions of stochastic
dynamic systems defined on large sets of variables;

• Self-modelling, which consists in managing large-scale systems that are known by their building
rules, but where the specific instance is only discovered on-the-fly at runtime. The model of the
managed system is built on-line, following the needs of the management algorithms;

• Distributed control: we will tackle issues related to asynchronous communications between local
controllers, and to abstraction techniques allowing to address large systems;

• Test and enforcement: we will tackle coverage issues for the test of large systems, and the test and
enforcement of properties for timed models, or for systems handling data.

3.4. Data driven systems
Data-driven systems are systems whose behaviour depends both on explicit workflows (scheduling and
durations of tasks, calls to possibly distant services, ...) and on the data processed by the system (stored data,
parameters of a request, results of a request, ...). This family of systems covers workflows that convey data
(business processes or information systems), transactional systems (web stores), large databases managed
with rules (banking systems), collaborative environments (crowds, health systems), etc. These systems are
distributed, modular, and open: they integrate components and sub-services distributed over the web, and
accept requests from clients. Our objective is to provide validation and supervision tools for such systems.
To achieve this goal, we have to solve several challenging tasks:

• provide realistic models, and sound automated abstraction techniques, to reason on models that are
reasonable abstractions of real systems. These models should be able to encompass modularity,
distribution, in a context where workflows and data aspects are tightly connected;

• address design of data driven systems in a declarative way: declarative models are another way to
handle data-driven systems. Rather than defining the explicit workflows and their effects on data,
rule-based models state how actions are enacted in terms of the shape (pattern matching) or value
of the current data. We think that distributed rewriting rules or attributed grammars can provide
a practical yet formal framework for maintenance, by providing a solution to update mandatory
documentation during the lifetime of an artifact.

• provide tractable solutions for validation of models: frequent issues are safety questions
(can a system reach some bad configuration?), but also liveness (workflows progess), ... These
questions should not only remain decidable on our models, but also with efficient computational
methods.

• address QoS management in large reconfigurable systems: data-driven distributed systems often have
constraints in terms of QoS. This QoS questions adress performance issues, but also data quality.
This calls for an analysis of quantitative features and for reconfiguration techniques to meet desired
QoS.

133 Proofs and Verification - Research Program - Project-Team TOCCATA

TOCCATA Project-Team

3. Research Program

3.1. Introduction
In the former ProVal project, we have been working on the design of methods and tools for deductive
verification of programs. One of our original skills was the ability to conduct proofs by using automatic
provers and proof assistants at the same time, depending on the difficulty of the program, and specifically the
difficulty of each particular verification condition. We thus believe that we are in a good position to propose
a bridge between the two families of approaches of deductive verification presented above. Establishing this
bridge is one of the goals of the Toccata project: we want to provide methods and tools for deductive program
verification that can offer both a high amount of proof automation and a high guarantee of validity. Toward this
objective, a new axis of research was proposed: the development of certified analysis tools that are themselves
formally proved correct.

The reader should be aware that the word “certified” in this scientific programme means “verified by a formal
specification and a formal proof that the program meets this specification”. This differs from the standard
meaning of “certified” in an industrial context where it means a conformance to some rigorous process and/or
norm. We believe this is the right term to use, as it was used for the Certified Compiler project [112], the new
conference series Certified Programs and Proofs, and more generally the important topics of proof certificates.

In industrial applications, numerical calculations are very common (e.g. control software in transportation).
Typically they involve floating-point numbers. Some of the members of Toccata have an internationally
recognized expertise on deductive program verification involving floating-point computations. Our past work
includes a new approach for proving behavioral properties of numerical C programs using Frama-C/Jessie [42],
various examples of applications of that approach [65], the use of the Gappa solver for proving numerical
algorithms [132], an approach to take architectures and compilers into account when dealing with floating-
point programs [66], [123]. We also contributed to the Handbook of Floating-Point Arithmetic [122]. A
representative case study is the analysis and the proof of both the method error and the rounding error of
a numerical analysis program solving the one-dimension acoustic wave equation [3] [56]. Our experience led
us to a conclusion that verification of numerical programs can benefit a lot from combining automatic and
interactive theorem proving [59], [65]. Certification of numerical programs is the other main axis of Toccata.

Our scientific programme in structured into four objectives:

1. deductive program verification;

2. automated reasoning;

3. formalization and certification of languages, tools and systems;

4. proof of numerical programs.

We detail these objectives below.

3.2. Deductive Program Verification
Permanent researchers: A. Charguéraud, S. Conchon, J.-C. Filliâtre, C. Marché, G. Melquiond, A. Paskevich

http://www.inria.fr/equipes/toccata
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid17
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid18
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid19
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid12

134 Proofs and Verification - Research Program - Project-Team TOCCATA

Figure 1. The Why3 ecosystem

135 Proofs and Verification - Research Program - Project-Team TOCCATA

3.2.1. The Why3 Ecosystem
This ecosystem is central in our work; it is displayed on Figure 1 . The boxes in red background correspond to
the tools we develop in the Toccata team.
• The initial design of Why3 was presented in 2012 [51], [98]. In the past years, the main improve-

ments concern the specification language (such as support for higher-order logic functions [72])
and the support for provers. Several new interactive provers are now supported: PVS 6 (used at
NASA), Isabelle2014 (planned to be used in the context of Ada program via Spark), and Mathemat-
ica. We also added support for new automated provers: CVC4, Metitarski, Metis, Beagle, Princess,
and Yices2. More technical improvements are the design of a Coq tactic to call provers via Why3
from Coq, and the design of a proof session mechanism [50]. Why3 was presented during several
invited talks [97], [96], [93], [94].

• At the level of the C front-end of Why3 (via Frama-C), we have proposed an approach to add a
notion of refinement on C programs [131], and an approach to reason about pointer programs with a
standard logic, via separation predicates [49]

• The Ada front-end of Why3 has mainly been developed during the past three years, leading to the
release of SPARK2014 [107] (http://www.spark-2014.org/)

• In collaboration with J. Almeida, M. Barbosa, J. Pinto, and B. Vieira (University do Minho, Braga,
Portugal), J.-C. Filliâtre has developed a method for certifying programs involving cryptographic
methods. It uses Why as an intermediate language [41].

• With M. Pereira and S. Melo de Sousa (Universidade da Beira Interior, Covilhã, Portugal), J.-
C. Filliâtre has developed an environment for proving ARM assembly code. It uses Why3 as an
intermediate VC generator. It was presented at the Inforum conference [126] (best student paper).

3.2.2. Concurrent Programming
• S. Conchon and A. Mebsout, in collaboration with F. Zaïdi (VALS team, LRI), A. Goel and S. Krstić

(Strategic Cad Labs, INTEL) have proposed a new model-checking approach for verifying safety
properties of array-based systems. This is a syntactically restricted class of parametrized transition
systems with states represented as arrays indexed by an arbitrary number of processes. Cache
coherence protocols and mutual exclusion algorithms are typical examples of such systems. It
was first presented at CAV 2012 [5] and detailed further [83]. It was applied to the verification
of programs with fences [79]. The core algorithm has been extended with a mechanism for inferring
invariants. This new algorithm, called BRAB, is able to automatically infer invariants strong enough
to prove industrial cache coherence protocols. BRAB computes over-approximations of backward
reachable states that are checked to be unreachable in a finite instance of the system. These
approximations (candidate invariants) are then model-checked together with the original safety
properties. Completeness of the approach is ensured by a mechanism for backtracking on spurious
traces introduced by too coarse approximations [80], [118].

• In the context of the ERC DeepSea project 0, A. Charguéraud and his co-authors have developed
a unifying semantics for various different paradigms of parallel computing (fork-join, async-finish,
and futures), and published a conference paper describing this work [40]. Besides, A. Charguéraud
and his co-authors have polished their previous work on granularity control for parallel algorithms
using user-provided complexity functions, and produced a journal article [39].

3.2.3. Case Studies
• To provide an easy access to the case studies that we develop using Why3 and its front-ends, we

have published a gallery of verified programs on our web page http://toccata.lri.fr/gallery/. Part of
these examples are the solutions to the competitions VerifyThis 2011 [67], VerifyThis 2012 [2], and
the competition VScomp 2011 [99].

0Arthur Charguéraud is involved 40% of his time in the ERC DeepSea project, which is hosted at Inria Paris Rocquencourt (team
Gallium).

http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/uid13.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid20
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid21
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid22
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid23
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid24
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid25
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid26
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid27
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid28
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid29
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid30
http://www.spark-2014.org/
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid31
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid32
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid33
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid34
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid35
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid36
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid37
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid38
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid39
http://toccata.lri.fr/gallery/
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid40
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid6

136 Proofs and Verification - Research Program - Project-Team TOCCATA

• Other case studies that led to publications are the design of a library of data-structures based on
AVLs [71], the verification a two-lines C program (solving the N -queens puzzle) using Why3 [95],
and the verification of Koda and Ruskey’s algorithm [100].

• A. Charguéraud, with F. Pottier (Inria Paris), extended their formalization of the correctness and
asympotic complexity of the classic Union Find data structure, which features the bound expressed
in terms of the inverse Ackermann function [38]. The proof, conducted using CFML extended with
time credits, was refined using a slightly more complex potential function, allowing to derive a
simpler and richer interface for the data structure [70].

For other case studies, see also sections of numerical programs and formalization of languages and tools.
3.2.4. Project-team Positioning

Several research groups in the world develop their own approaches, techniques, and tools for deductive
verification. With respect to all these related approaches and tools, our originality is our will to use more
sophisticated specification languages (with inductive definitions, higher-order features and such) and the
ability to use a large set of various theorem provers, including the use of interactive theorem proving to deal
with complex functional properties.
• The RiSE team 0 at Microsoft Research Redmond, USA, partly in collaboration with team “pro-

gramming methodology” team 0 at ETH Zurich develop tools that are closely related to ours: Boogie
and Dafny are direct competitors of Why3, VCC is a direct competitor of Frama-C/Jessie.

• The KeY project 0 (several teams, mainly at Karlsruhe and Darmstadt, Germany, and Göteborg,
Sweden) develops the KeY tool for Java program verification [37], based on dynamic logic, and has
several industrial users. They use a specific modal logic (dynamic logic) for modeling programs,
whereas we use standard logic, so as to be able to use off-the-shelf automated provers.

• The “software engineering” group at Augsburg, Germany, develops the KIV system 0, which was
created more than 20 years ago (1992) and is still well maintained and efficient. It provides a semi-
interactive proof environment based on algebraic-style specifications, and is able to deal with several
kinds of imperative style programs. They have a significant industrial impact.

• The VeriFast system 0 aims at verifying C programs specified in Separation Logic. It is developed
at the Katholic University at Leuven, Belgium. We do not usually use separation logic (so as to use
off-the-shelf provers) but alternative approaches (e.g. static memory separation analysis).

• The Mobius Program Verification Environment 0 is a joint effort for the verification of Java source
annotated with JML, combining static analysis and runtime checking. The tool ESC/Java2 0 is a VC
generator similar to Krakatoa, that builds on top of Boogie. It is developed by a community leaded by
University of Copenhagen, Denmark. Again, our specificity with respect to them is the consideration
of more complex specification languages and interactive theorem proving.

• The Lab for Automated Reasoning and Analysis 0 at EPFL, develop methods and tools for verifica-
tion of Java (Jahob) and Scala (Leon) programs. They share with us the will and the ability to use
several provers at the same time.

• The TLA environment 0, developed by Microsoft Research and the Inria team Veridis, aims at
the verification of concurrent programs using mathematical specifications, model checking, and
interactive or automated theorem proving.

• The F* project 0, developed by Microsoft Research and the Inria Prosecco team, aims at providing a
rich environment for developing programs and proving them.

0http://research.microsoft.com/en-us/groups/rise/default.aspx
0http://www.pm.inf.ethz.ch/
0http://www.key-project.org/
0http://www.isse.uni-augsburg.de/en/software/kiv/
0http://people.cs.kuleuven.be/~bart.jacobs/verifast/
0http://kindsoftware.com/products/opensource/Mobius/
0http://kindsoftware.com/products/opensource/ESCJava2/
0http://lara.epfl.ch/w/
0http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
0http://research.microsoft.com/en-us/projects/fstar/

http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid41
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid42
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid43
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid44
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid45
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid46
http://research.microsoft.com/en-us/groups/rise/default.aspx
http://www.pm.inf.ethz.ch/
http://www.key-project.org/
http://www.isse.uni-augsburg.de/en/software/kiv/
http://people.cs.kuleuven.be/~bart.jacobs/verifast/
http://kindsoftware.com/products/opensource/Mobius/
http://kindsoftware.com/products/opensource/ESCJava2/
http://lara.epfl.ch/w/
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
http://research.microsoft.com/en-us/projects/fstar/

137 Proofs and Verification - Research Program - Project-Team TOCCATA

The KeY and KIV environments mentioned above are partly based on interactive theorem provers. There
are other approaches on top of general-purpose proof assistants for proving programs that are not purely
functional:

• The Ynot project 0 is a Coq library for writing imperative programs specified in separation logic. It
was developed at Harvard University, until the end of the project in 2010. Ynot had similar goals as
CFML, although Ynot requires programs to be written in monadic style inside Coq, whereas CFML
applies directly on programs written in OCaml syntax, translating them into logical formulae.

• Front-ends to Isabelle were developed to deal with simple sequential imperative programs [130] or
C programs [125]. The L4-verified project [108] is built on top of Isabelle.

3.3. Automated Reasoning
Permanent researchers: S. Conchon, G. Melquiond, A. Paskevich

3.3.1. Generalities on Automated Reasoning
• J. C. Blanchette and A. Paskevich have designed an extension to the TPTP TFF (Typed First-order

Form) format of theorem proving problems to support rank-1 polymorphic types (also known as
ML-style parametric polymorphism) [47]. This extension, named TFF1, has been incorporated in
the TPTP standard.

• S. Conchon defended his habilitation à diriger des recherches in December 2012. The memoir
[76] provides a useful survey of the scientific work of the past 10 years, around the SMT solving
techniques, that led to the tools Alt-Ergo and Cubicle as they are nowadays.

3.3.2. Quantifiers and Triggers
• C. Dross, J. Kanig, S. Conchon, and A. Paskevich have proposed a generic framework for adding

a decision procedure for a theory or a combination of theories to an SMT prover. This mechanism
is based on the notion of instantiation patterns, or triggers, which restrict instantiation of universal
premises and can effectively prevent a combinatorial explosion. A user provides an axiomatization
with triggers, along with a proof of completeness and termination in the proposed framework, and
obtains in return a sound, complete and terminating solver for his theory. A prototype implementa-
tion was realized on top of Alt-Ergo. As a case study, a feature-rich axiomatization of doubly-linked
lists was proved complete and terminating [88]. C. Dross defended her PhD thesis in April 2014 [89].
The main results of the thesis are: (1) a formal semantics of the notion of triggers typically used to
control quantifier instantiation in SMT solvers, (2) a general setting to show how a first-order ax-
iomatization with triggers can be proved correct, complete, and terminating, and (3) an extended
DPLL(T) algorithm to integrate a first-order axiomatization with triggers as a decision procedure
for the theory it defines. Significant case studies were conducted on examples coming from SPARK
programs, and on the benchmarks on B set theory constructed within the BWare project.

3.3.3. Reasoning Modulo Theories
• S. Conchon, É. Contejean and M. Iguernelala have presented a modular extension of ground AC-

completion for deciding formulas in the combination of the theory of equality with user-defined
AC symbols, uninterpreted symbols and an arbitrary signature-disjoint Shostak theory X [78]. This
work extends the results presented in [77] by showing that a simple preprocessing step allows to get
rid of a full AC-compatible reduction ordering, and to simply use a partial multiset extension of a
non-necessarily AC-compatible ordering.

• S. Conchon, M. Iguernelala, and A. Mebsout have designed a collaborative framework for reasoning
modulo simple properties of non-linear arithmetic [82]. This framework has been implemented in
the Alt-Ergo SMT solver.

0http://ynot.cs.harvard.edu/

http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid47
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid48
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid49
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid50
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid51
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid52
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid53
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid54
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid55
http://ynot.cs.harvard.edu/

138 Proofs and Verification - Research Program - Project-Team TOCCATA

• S. Conchon, G. Melquiond and C. Roux have described a dedicated procedure for a theory of
floating-point numbers which allows reasoning on approximation errors. This procedure is based
on the approach of the Gappa tool: it performs saturation of consequences of the axioms, in order to
refine bounds on expressions. In addition to the original approach, bounds are further refined by a
constraint solver for linear arithmetic [84]. This procedure has been implemented in Alt-Ergo.

• In collaboration with A. Mahboubi (Inria project-team Typical), and G. Melquiond, the group
involved in the development of Alt-Ergo have implemented and proved the correctness of a novel
decision procedure for quantifier-free linear integer arithmetic [1]. This algorithm tries to bridge
the gap between projection and branching/cutting methods: it interleaves an exhaustive search for a
model with bounds inference. These bounds are computed provided an oracle capable of finding
constant positive linear combinations of affine forms. An efficient oracle based on the Simplex
procedure has been designed. This algorithm is proved sound, complete, and terminating and is
implemented in Alt-Ergo.

• Most of the results above are detailed in M. Iguernelala’s PhD thesis [105].

3.3.4. Applications
• We have been quite successful in the application of Alt-Ergo to industrial development: qualification

by Airbus France, integration of Alt-Ergo into the Spark Pro toolset.

• In the context of the BWare project, aiming at using Why3 and Alt-Ergo for discharging proof
obligations generated by Atelier B, we made progress into several directions. The method of
translation of B proof obligations into Why3 goals was first presented at ABZ’2012 [121]. Then,
new drivers have been designed for Why3, in order to use new back-end provers Zenon modulo
and iProver modulo. A notion of rewrite rule was introduced into Why3, and a transformation
for simplifying goals before sending them to back-end provers was designed. Intermediate results
obtained so far in the project were presented both at the French conference AFADL [87] and at
ABZ’2014 [86].

On the side of Alt-Ergo, recent developments have been made to efficiently discharge proof obliga-
tions generated by Atelier B. This includes a new plugin architecture to facilitate experiments with
different SAT engines, new heuristics to handle quantified formulas, and important modifications
in its internal data structures to boost performances of core decision procedures. Benchmarks real-
ized on more than 10,000 proof obligations generated from industrial B projects show significant
improvements [81].

• Hybrid automatons interleave continuous behaviors (described by differential equations) with dis-
crete transitions. D. Ishii and G. Melquiond have worked on an automated procedure for verifying
safety properties (that is, global invariants) of such systems [106].

3.3.5. Project-team Positioning
Automated Theorem Proving is a large community, but several sub-groups can be identified:

• The SMT-LIB community gathers people interested in reasoning modulo theories. In this commu-
nity, only a minority of participants are interested in supporting first-order quantifiers at the same
time as theories. SMT solvers that support quantifiers are Z3 (Microsoft Research Redmond, USA),
CVC3 and its successor CVC4 0.

• The TPTP community gathers people interested in first-order theorem proving.

• Other Inria teams develop provers: veriT by team Veridis, and Psyche by team Parsifal.

• Other groups develop provers dedicated to very specific cases, such as Metitarski 0 at Cambridge,
UK, which aims at proving formulas on real numbers, in particular involving special functions such
as log or exp. The goal is somewhat similar to our CoqInterval library, cf objective 4.

0http://cvc4.cs.stanford.edu/web/
0http://www.cl.cam.ac.uk/~lp15/papers/Arith/

http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid56
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid57
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid58
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid59
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid60
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid61
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid62
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid63
http://cvc4.cs.stanford.edu/web/
http://www.cl.cam.ac.uk/~lp15/papers/Arith/

139 Proofs and Verification - Research Program - Project-Team TOCCATA

It should be noticed that a large number of provers mentioned above are connected to Why3 as back-ends.

3.4. Formalization and Certification of Languages, Tools and Systems
Permanent researchers: S. Boldo, A. Charguéraud, C. Marché, G. Melquiond, C. Paulin

3.4.1. Real Numbers, Real Analysis, Probabilities
• S. Boldo, C. Lelay, and G. Melquiond have worked on the Coquelicot library, designed to be a

user-friendly Coq library about real analysis [62], [63]. An easier way of writing formulas and
theorem statements is achieved by relying on total functions in place of dependent types for limits,
derivatives, integrals, power series, and so on. To help with the proof process, the library comes with
a comprehensive set of theorems and some automation. We have exercised the library on several
use cases: on an exam at university entry level [110], for the definitions and properties of Bessel
functions [109], and for the solution of the one-dimensional wave equation [111]. We have also
conducted a survey on the formalization of real arithmetic and real analysis in various proof systems
[64].

• Watermarking techniques are used to help identify copies of publicly released information. They
consist in applying a slight and secret modification to the data before its release, in a way that should
remain recognizable even in (reasonably) modified copies of the data. Using the Coq ALEA library,
which formalizes probability theory and probabilistic programs, D. Baelde together with P. Courtieu,
D. Gross-Amblard from Rennes and C. Paulin have established new results about the robustness
of watermarking schemes against arbitrary attackers [43]. The technique for proving robustness
is adapted from methods commonly used for cryptographic protocols and our work illustrates the
strengths and particularities of the ALEA style of reasoning about probabilistic programs.

3.4.2. Formalization of Languages, Semantics
• P. Herms, together with C. Marché and B. Monate (CEA List), has developed a certified VC

generator, using Coq. The program for VC calculus and its specifications are both written in Coq,
but the code is crafted so that it can be extracted automatically into a stand-alone executable. It is
also designed in a way that allows the use of arbitrary first-order theorem provers to discharge the
generated obligations [104]. On top of this generic VC generator, P. Herms developed a certified VC
generator for C source code annotated using ACSL. This work is the main result of his PhD thesis
[103].

• A. Tafat and C. Marché have developed a certified VC generator using Why3 [114], [115]. The
challenge was to formalize the operational semantics of an imperative language, and a correspond-
ing weakest precondition calculus, without the possibility to use Coq advanced features such as
dependent types or higher-order functions. The classical issues with local bindings, names and sub-
stitutions were solved by identifying appropriate lemmas. It was shown that Why3 can offer a sig-
nificantly higher amount of proof automation compared to Coq.

• A. Charguéraud, together with Alan Schmitt (Inria Rennes) and Thomas Wood (Imperial College),
has developed an interactive debugger for JavaScript. The interface, accessible as a webpage
in a browser, allows to execute a given JavaScript program, following step by step the formal
specification of JavaScript developped in prior work on JsCert [52]. Concretely, the tool acts as
a double-debugger: one can visualize both the state of the interpreted program and the state of the
interpreter program. This tool is intended for the JavaScript committee, VM developpers, and other
experts in JavaScript semantics.

• M. Clochard, C. Marché, and A. Paskevich have developed a general setting for developing programs
involving binders, using Why3. This approach was successfully validated on two case studies: a
verified implementation of untyped lambda-calculus and a verified tableaux-based theorem prover
[75].

http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid64
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid65
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid66
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid67
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid68
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid69
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid70
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid71
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid72
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid73
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid74
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid75
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid76

140 Proofs and Verification - Research Program - Project-Team TOCCATA

• M. Clochard, J.-C. Filliâtre, C. Marché, and A. Paskevich have developed a case study on the
formalization of semantics of programming languages using Why3 [72]. This case study aims at
illustrating recent improvements of Why3 regarding the support for higher-order logic features in
the input logic of Why3, and how these are encoded into first-order logic, so that goals can be
discharged by automated provers. This case study also illustrates how reasoning by induction can be
done without need for interactive proofs, via the use of lemma functions.

• M. Clochard and L. Gondelman have developed a formalization of a simple compiler in Why3 [73].
It compiles a simple imperative language into assembler instructions for a stack machine. This case
study was inspired by a similar example developed using Coq and interactive theorem proving.
The aim is to improve significantly the degree of automation in the proofs. This is achieved by
the formalization of a Hoare logic and a Weakest Precondition Calculus on assembly programs, so
that the correctness of compilation is seen as a formal specification of the assembly instructions
generated.

3.4.3. Project-team Positioning
The objective of formalizing languages and algorithms is very general, and it is pursued by several Inria teams.
One common trait is the use of the Coq proof assistant for this purpose: Pi.r2 (development of Coq itself and
its meta-theory), Gallium (semantics and compilers of programming languages), Marelle (formalization of
mathematics), SpecFun (real arithmetic), Celtique (formalization of static analyzers).

Other environments for the formalization of languages include
• ACL2 system 0: an environment for writing programs with formal specifications in first-order

logic based on a Lisp engine. The proofs are conducted using a prover based on the Boyer-Moore
approach. It is a rather old system but still actively maintained and powerful, developed at University
of Texas at Austin. It has a strong industrial impact.

• Isabelle environment 0: both a proof assistant and an environment for developing pure applicative
programs. It is developed jointly at University of Cambridge, UK, Technische Universität München,
Germany, and to some extent by the VALS team at LRI, Université Paris-Sud. It features highly
automated tactics based on ATP systems (the Sledgehammer tool).

• The team “Trustworthy Systems” at NICTA in Australia 0 aims at developing highly trustable
software applications. They developed a formally verified micro-kernel called seL4 [108], using
a home-made layer to deal with C programs on top of the Isabelle prover.

• The PVS system 0 is an environment for both programming and proving (purely applicative)
programs. It is developed at the Computer Science Laboratory of SRI international, California, USA.
A major user of PVS is the team LFM 0 at NASA Langley, USA, for the certification of programs
related to air traffic control.

In the Toccata team, we do not see these alternative environments as competitors, even though, for historical
reasons, we are mainly using Coq. Indeed both Isabelle and PVS are available as back-ends of Why3.

3.5. Proof of Numerical Programs
Permanent researchers: S. Boldo, C. Marché, G. Melquiond
• Linked with objective 1 (Deductive Program Verification), the methodology for proving numerical

C programs has been presented by S. Boldo in her habilitation [54] and as invited speaker [55].
An application is the formal verification of a numerical analysis program. S. Boldo, J.-C. Filliâtre,
and G. Melquiond, with F. Clément and P. Weis (POMDAPI team, Inria Paris - Rocquencourt),
and M. Mayero (LIPN), completed the formal proof of the second-order centered finite-difference
scheme for the one-dimensional acoustic wave [57][3].

0http://www.cs.utexas.edu/~moore/acl2/
0http://isabelle.in.tum.de/
0http://ssrg.nicta.com.au/projects/TS/
0http://pvs.csl.sri.com/
0http://shemesh.larc.nasa.gov/fm/fm-main-team.html

http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid22
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid77
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid78
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid79
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid80
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid17
http://www.cs.utexas.edu/~moore/acl2/
http://isabelle.in.tum.de/
http://ssrg.nicta.com.au/projects/TS/
http://pvs.csl.sri.com/
http://shemesh.larc.nasa.gov/fm/fm-main-team.html

141 Proofs and Verification - Research Program - Project-Team TOCCATA

• Several challenging floating-point algorithms have been studied and proved. This includes an
algorithm by Kahan for computing the area of a triangle: S. Boldo proved an improvement of its
error bound and new investigations in case of underflow [53]. This includes investigations about
quaternions. They should be of norm 1, but due to the round-off errors, a drift of this norm is
observed over time. C. Marché determined a bound on this drift and formally proved it correct
[9]. P. Roux formally verified an algorithm for checking that a matrix is semi-definite positive [129].
The challenge here is that testing semi-definiteness involves algebraic number computations, yet it
needs to be implemented using only approximate floating-point operations.

• Because of compiler optimizations (or bugs), the floating-point semantics of a program might change
once compiled, thus invalidating any property proved on the source code. We have investigated
two ways to circumvent this issue, depending on whether the compiler is a black box. When it is,
T. Nguyen has proposed to analyze the assembly code it generates and to verify it is correct [124].
On the contrary, S. Boldo and G. Melquiond (in collaboration with J.-H. Jourdan and X. Leroy) have
added support for floating-point arithmetic to the CompCert compiler and formally proved that none
of the transformations the compiler applies modify the floating-point semantics of the program [61],
[60].

• Linked with objectives 2 (Automated Reasoning) and 3 (Formalization and Certification of Lan-
guages, Tools and Systems), G. Melquiond has implemented an efficient Coq library for floating-
point arithmetic and proved its correctness in terms of operations on real numbers [119]. It serves
as a basis for an interval arithmetic on which Taylor models have been formalized. É. Martin-Dorel
and G. Melquiond have integrated these models into CoqInterval [10]. This Coq library is dedi-
cated to automatically proving the approximation properties that occur when formally verifying the
implementation of mathematical libraries (libm).

• Double rounding occurs when the target precision of a floating-point computation is narrower than
the working precision. In some situations, this phenomenon incurs a loss of accuracy. P. Roux has
formally studied when it is innocuous for basic arithmetic operations [129]. É. Martin-Dorel and
G. Melquiond (in collaboration with J.-M. Muller) have formally studied how it impacts algorithms
used for error-free transformations [117]. These works were based on the Flocq formalization of
floating-point arithmetic for Coq.

• By combining multi-precision arithmetic, interval arithmetic, and massively-parallel computations,
G. Melquiond (in collaboration with G. Nowak and P. Zimmermann) has computed enough digits of
the Masser-Gramain constant to invalidate a 30-year old conjecture about its closed form [120].

3.5.1. Project-team Positioning
This objective deals both with formal verification and floating-point arithmetic, which is quite uncommon.
Therefore our competitors/peers are few. We may only cite the works by J. Duracz and M. Konečný, Aston
University in Birmingham, UK.

The Inria team AriC (Grenoble - Rhône-Alpes) is closer to our research interests, but they are lacking
manpower on the formal proof side; we have numerous collaborations with them. The Inria team Caramel
(Nancy - Grand Est) also shares some research interests with us, though fewer; again, they do not work on the
formal aspect of the verification; we have some occasional collaborations with them.

There are many formalization efforts from chip manufacturers, such as AMD (using the ACL2 proof assistant)
and Intel (using the Forte proof assistants) but the algorithms they consider are quite different from the ones
we study. The works on the topic of floating-point arithmetic from J. Harrison at Intel using HOL Light are
really close to our research interests, but they seem to be discontinued.

A few deductive program verification teams are willing to extend their tools toward floating-point programs.
This includes the KeY project and SPARK. We have an ongoing collaboration with the latter, in the context of
the ProofInUSe project.

http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid81
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid82
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid83
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid84
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid85
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid86
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid87
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid88
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid83
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid89
http://raweb.inria.fr/rapportsactivite/RA{$year}/toccata/bibliography.html#toccata-2018-bid90

142 Proofs and Verification - Research Program - Project-Team TOCCATA

Deductive verification is not the only way to prove programs. Abstract interpretation is widely used, and
several teams are interested in floating-point arithmetic. This includes the Inria team Antique (Paris -
Rocquencourt) and a CEA List team, who have respectively developed the Astrée and Fluctuat tools. This
approach targets a different class of numerical algorithms than the ones we are interested in.

Other people, especially from the SMT community (cf objective 2), are also interested in automatically
proving formulas about floating-point numbers, notably at Oxford University. They are mainly focusing on
pure floating-point arithmetic though and do not consider them as approximation of real numbers.

Finally, it can be noted that numerous teams are working on the verification of numerical programs, but
assuming the computations are real rather than floating-point ones. This is out of the scope of this objective.

143 Proofs and Verification - Research Program - Project-Team VERIDIS

VERIDIS Project-Team

3. Research Program

3.1. Automated and Interactive Theorem Proving
The VeriDis team gathers experts in techniques and tools for automatic deduction and interactive theorem
proving, and specialists in methods and formalisms designed for the development of trustworthy concurrent
and distributed systems and algorithms. Our common objective is twofold: first, we wish to advance the state
of the art in automated and interactive theorem proving, and their combinations. Second, we work on making
the resulting technology available for the computer-aided verification of distributed systems and protocols. In
particular, our techniques and tools are intended to support sound methods for the development of trustworthy
distributed systems that scale to algorithms relevant for practical applications.

VeriDis members from Saarbrücken are developing the SPASS [10] workbench. It currently consists of one
of the leading automated theorem provers for first-order logic based on the superposition calculus [51] and a
theory solver for linear arithmetic.

In a complementary approach to automated deduction, VeriDis members from Nancy work on techniques for
integrating reasoners for specific theories. They develop veriT [1], an SMT 0 solver that combines decision
procedures for different fragments of first-order logic. The veriT solver is designed to produce detailed proofs;
this makes it particularly suitable as a component of a robust cooperation of deduction tools.

Finally, VeriDis members design effective quantifier elimination methods and decision procedures for alge-
braic theories, supported by their efficient implementation in the Redlog system [4].

An important objective of this line of work is the integration of theories in automated deduction. Typical
theories of interest, including fragments of arithmetic, are difficult or impossible to express in first-order logic.
We therefore explore efficient, modular techniques for integrating semantic and syntactic reasoning methods,
develop novel combination results and techniques for quantifier instantiation. These problems are addressed
from both sides, e.g. by embedding decision procedures into the superposition framework or by allowing an
SMT solver to accept axiomatizations for plug-in theories. We also develop specific decision procedures for
theories such as non-linear real arithmetic that are important when reasoning about certain classes of (e.g.,
real-time) systems but that also have interesting applications beyond verification.

We rely on interactive theorem provers for reasoning about specifications at a high level of abstraction
when fully automatic verification is not (yet) feasible. An interactive proof platform should help verification
engineers lay out the proof structure at a sufficiently high level of abstraction; powerful automatic plug-ins
should then discharge the resulting proof steps. Members of VeriDis have ample experience in the specification
and subsequent machine-assisted, interactive verification of algorithms. In particular, we participate in a
project at the joint Microsoft Research-Inria Centre in Saclay on the development of methods and tools for the
formal proof of TLA+ [67] specifications. Our prover relies on a declarative proof language, and calls upon
several automatic backends [3]. Trust in the correctness of the overall proof can be ensured when the backends
provide justifications that can be checked by the trusted kernel of a proof assistant. During the development of a
proof, most obligations that are passed to the prover actually fail – for example, because necessary information
is not present in the context or because the invariant is too weak, and we are interested in explaining failed
proof attempts to the user, in particular through the construction of counter-models.

0Satisfiability Modulo Theories [54]

http://www.inria.fr/equipes/veridis
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2018-bid0
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2018-bid1
https://verit.loria.fr
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2018-bid2
http://www.redlog.eu
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2018-bid3

144 Proofs and Verification - Research Program - Project-Team VERIDIS

3.2. Formal Methods for Developing and Analyzing Algorithms and Systems
Theorem provers are not used in isolation, but they support the application of sound methodologies for
modeling and verifying systems. In this respect, members of VeriDis have gained expertise and recognition in
making contributions to formal methods for concurrent and distributed algorithms and systems [2], [9], and
in applying them to concrete use cases. In particular, the concept of refinement [49], [52], [68] in state-based
modeling formalisms is central to our approach because it allows us to present a rational (re)construction of
system development. An important goal in designing such methods is to establish precise proof obligations
many of which can be discharged by automatic tools. This requires taking into account specific characteristics
of certain classes of systems and tailoring the model to concrete computational models. Our research in this
area is supported by carrying out case studies for academic and industrial developments. This activity benefits
from and influences the development of our proof tools.

In this line of work, we investigate specific development and verification patterns for particular classes of
algorithms, in order to reduce the work associated with their verification. We are also interested in applications
of formal methods and their associated tools to the development of systems that underlie specific certification
requirements in the sense of, e.g., Common Criteria. Finally, we are interested in the adaptation of model
checking techniques for verifying actual distributed programs, rather than high-level models.

Today, the formal verification of a new algorithm is typically the subject of a PhD thesis, if it is addressed
at all. This situation is not sustainable given the move towards more and more parallelism in mainstream
systems: algorithm developers and system designers must be able to productively use verification tools
for validating their algorithms and implementations. On a high level, the goal of VeriDis is to make
formal verification standard practice for the development of distributed algorithms and systems, just as
symbolic model checking has become commonplace in the development of embedded systems and as security
analysis for cryptographic protocols is becoming standard practice today. Although the fundamental problems
in distributed programming are well-known, they pose new challenges in the context of modern system
paradigms, including ad-hoc and overlay networks or peer-to-peer systems, and they must be integrated for
concrete applications.

http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2018-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/veridis/bibliography.html#veridis-2018-bid11

145 Security and Confidentiality - Research Program - Project-Team CIDRE

CIDRE Project-Team

3. Research Program
3.1. Our perspective

For many aspects of our daily lives, we rely heavily on computer systems, many of which are based on
massively interconnected devices that support a population of interacting and cooperating entities. As these
systems become more open and complex, accidental and intentional failures become much more frequent and
serious. We believe that the purpose of attacks against these systems is expressed at a high level (compromise
of sensitive data, unavailability of services). However, these attacks are often carried out at a very low level
(exploitation of vulnerabilities by malicious code, hardware attacks).

The CIDRE team is specialized in the defense of computer systems. We argue that to properly protect these
systems we must have a complete understanding of the attacker’s concrete capabilities. In other words, to
defend properly we must understand the attack.

The CIDRE team therefore strives to have a global expertise in information systems: from hardware to
distributed architectures. Our objective is to highlight security issues and propose preventive or reactive
countermeasures in widely used and privacy-friendly systems.

3.2. Attack Comprehension
The first step before being able to offer secure systems is to understand and measure the real capabilities of
the attacker. It’s a cat and mouse game and in this game, the attacker is always one step ahead of the defender.
The attacker is able to exploit for his own benefit all the services, machines, codes that are accessible to him,
even on systems that seem highly protected.

Our first research axis therefore aims at highlighting both the effective attacker’s means and the way an attack
unfolds and spreads.

This knowledge is valuable for security experts who must react quickly during an attack. They need effective
ways to understand how their systems may have been compromised.

The main scientific challenge is to be able to adapt to all the attacker’s protections against automatic analysis
that the attacker could imagine.

In this context, we are particularly interested in
• highlighting attacks on hardware that affect software security
• providing expert support

– to analyze malicious code
– to quickly investigate an intrusion on a system monitored by an intrusion detection system

3.3. Attack Detection
An attack has several phases. A first major phase is the approach phase, during which the attacker enters the
system, locates the target and makes himself persistent, the attack is at this point a simple intrusion. In a second
phase, the attack is actually launched.

The main objective of intrusion detection is to be able to detect the attacker during the first approach phase.
For that purpose, an intrusion detection system (IDS) is based on probes that continuously monitor the system.
These probes generate low level alerts (warnings) for any observation of an event that could be a sign of
an intrusion. These low-level alerts are very numerous and their semantic value is low. In other words, an
IDS generates a huge amount of low-level alerts that bring only few information and overwhelm the security
analyst. In addition, many of these alerts are actually false positives, i.e. alerts raised when there is no real
intrusion.

http://www.inria.fr/equipes/cidre

146 Security and Confidentiality - Research Program - Project-Team CIDRE

However, these low-level alerts can themselves be considered as security events by a higher-level IDS: an alert
correlation system. These higher-level IDS seek to exploit known relationships between low-level alerts to
generate meta-alerts with greater semantic value, i.e. with higher-level meaning. An alert correlation system
allows to reduce the number of alerts (and especially, false positives) and to return to the security analysts a
higher level analysis of the situation.

There are mainly two approaches to detect intrusions. The misuse-based detection and the anomaly-based
detection. A misuse-based detection is actually a signature-based detection approach: it allows to detect only
the attacks whose signature is available. From our point of view, while useful in practice, misuse-detection
is intrinsically limited. Indeed, it requires to continuously update the database of signatures. We follow the
alternative approach, namely the anomaly approach, which consists in detecting any deviation from a reference
behavior. The main difficulty is thus to compute a model of this reference behavior. Such a model is only
useful if it is sufficiently accurate. Otherwise, if the model is an over-approximation, it will be a source of
false negatives, i.e. real intrusions not detected. If the model is a under-approximation, it will be a source of
false positives, i.e. normal behaviors seen as intrusions.

In this context, our contributions in intrusion detection systems follow two separate axes: anomaly-based IDS
and alert correlation systems. Our contribution in anomaly-based intrusion detection relies on:

• Illegal Information Flow Detection: we have proposed to detect information flows in the monitored
system (either a node or a set of trusted nodes) that are allowed by the access control mechanism, but
are illegal from the security policy point of view. This approach is particularly appealing to detect
intrusions in a standalone node.

• Anomaly-Based Detection in Distributed Applications: our goal is to specify the normal behavior
based on either a formal specification of the distributed application, or previous executions. This
approach is particularly appealing to detect intrusions in industrial control systems since these
systems exhibit well-defined behaviors at different levels: network level (network communication
patterns, protocol specifications, etc.), control level (continuous and discrete process control laws),
or even the state of the local resources (memory or CPU).

• Online data analytics: our goal is to estimate on the fly different statistics or metrics on distributed
input streams to detect abnormal behavior with respect to a well-defined criterion such as the distance
between different streams, their correlation or their entropy.

3.4. Attack Resistance
The first two axes of the team allowed us to measure the concrete technical means of the attacker. We claim
that the attacker can always avoid the measures put in place to secure a system. We believe that another way to
offer more secure systems is to take into account from the design phase that these systems will operate in the
presence of an omnipotent attacker. The last research axis of the CIDRE team is focused on offering systems
that are resistant to attackers, i.e. they can provide the expected services even in the presence of an attacker.

To achieve this goal, we explore two approaches:

• be able to take into account all possible actions of the attacker

• provide services based on the collaboration of a set of nodes that are not affected by the presence in
minority of malicious nodes

We are interested in massively-used systems that are essential building blocks of security or privacy.

147 Security and Confidentiality - Research Program - Project-Team COMETE

COMETE Project-Team

3. Research Program
3.1. Probability and information theory

Participants: Konstantinos Chatzikokolakis, Catuscia Palamidessi, Marco Romanelli, Anna Pazii.

Much of the research of Comète focuses on security and privacy. In particular, we are interested in the problem
of the leakage of secret information through public observables.

Ideally we would like systems to be completely secure, but in practice this goal is often impossible to achieve.
Therefore, we need to reason about the amount of information leaked, and the utility that it can have for the
adversary, i.e. the probability that the adversary is able to exploit such information.

The recent tendency is to use an information theoretic approach to model the problem and define the leakage in
a quantitative way. The idea is to consider the system as an information-theoretic channel. The input represents
the secret, the output represents the observable, and the correlation between the input and output (mutual
information) represents the information leakage.

Information theory depends on the notion of entropy as a measure of uncertainty. From the security point of
view, this measure corresponds to a particular model of attack and a particular way of estimating the security
threat (vulnerability of the secret). Most of the proposals in the literature use Shannon entropy, which is
the most established notion of entropy in information theory. We, however, consider also other notions, in
particular Rényi min-entropy, which seems to be more appropriate for security in common scenarios like
one-try attacks.

3.2. Expressiveness of Concurrent Formalisms
Participants: Catuscia Palamidessi, Frank Valencia.

We study computational models and languages for distributed, probabilistic and mobile systems, with a
particular attention to expressiveness issues. We aim at developing criteria to assess the expressive power
of a model or formalism in a distributed setting, to compare existing models and formalisms, and to define
new ones according to an intended level of expressiveness, also taking into account the issue of (efficient)
implementability.

3.3. Concurrent constraint programming
Participants: Frank Valencia, Santiago Quintero.

Concurrent constraint programming (ccp) is a well established process calculus for modeling systems where
agents interact by posting and asking information in a store, much like in users interact in social networks.
This information is represented as first-order logic formulae, called constraints, on the shared variables of the
system (e.g., X > 42). The most distinctive and appealing feature of ccp is perhaps that it unifies in a single
formalism the operational view of processes based upon process calculi with a declarative one based upon first-
order logic. It also has an elegant denotational semantics that interprets processes as closure operators (over
the set of constraints ordered by entailment). In other words, any ccp process can be seen as an idempotent,
increasing, and monotonic function from stores to stores. Consequently, ccp processes can be viewed as:
computing agents, formulae in the underlying logic, and closure operators. This allows ccp to benefit from the
large body of techniques of process calculi, logic and domain theory.

Our research in ccp develops along the following two lines:
1. (a) The study of a bisimulation semantics for ccp. The advantage of bisimulation, over other kinds

of semantics, is that it can be efficiently verified.
2. (b) The extension of ccp with constructs to capture emergent systems such as those in social networks

and cloud computing.

http://www.inria.fr/equipes/comete

148 Security and Confidentiality - Research Program - Project-Team COMETE

3.4. Model checking
Participants: Konstantinos Chatzikokolakis, Catuscia Palamidessi.

Model checking addresses the problem of establishing whether a given specification satisfies a certain property.
We are interested in developing model-checking techniques for verifying concurrent systems of the kind
explained above. In particular, we focus on security and privacy, i.e., on the problem of proving that a
given system satisfies the intended security or privacy properties. Since the properties we are interested in
have a probabilistic nature, we use probabilistic automata to model the protocols. A challenging problem is
represented by the fact that the interplay between nondeterminism and probability, which in security presents
subtleties that cannot be handled with the traditional notion of a scheduler,

149 Security and Confidentiality - Research Program - Team DATASPHERE

DATASPHERE Team

3. Research Program

3.1. Dynamics of digital transformations
The research program of the Datasphere team aims at understanding the transformations induced by digital
systems on socio-economic and socio-ecological organizations. These transformations are very broad and
impact a large part of society. Understanding these changes is very ambitious and would require much
more resources than those of the team. Interactions with other teams in other disciplines is thus of strategic
importance. The research directions we have worked in and will continue to in the coming years are the
following.

• The legal and strategic implications of the development of networks, the growing global interdepen-
dencies, and the increase of digital flows beyond control.

• The geopolitics of digital systems, data flows and cyber control, the raise of new strategic imbalances,
and digital powers (US, China, Russia, etc.)

• The structural consequences of the translation of governance to digital actors, their inclusion into
diplomatic forums, and the weakening of sovereignty over territories.

3.2. Foundations of digital economy
• The economy of intermediation and the progressive control of all two-sided and multi-sided markets

by remote digital platforms.

• The methodologies for assessing the strategic value of data and evaluating its leverage for the
political economy.

• The analysis of Online Advertisement/tracking ecosystems.

3.3. Ecosystems and Anthropocene
• The interdependencies of natural ecosystems and socio-economic systems, and the role of digital

systems on measuring and controlling the global natural/social system.

• The role of digital actors in the adaptation and mitigation of climate change.

• The information economy of planetary challenges related to global warming, biodiversity, health
monitoring.

3.4. Large scale graph analysis
• Community analysis and extraction, spectral methods.

• Manifold based approaches to large scale graph analysis, optimal transport.

• Information/rumor/fake news propagation in social networks.

http://www.inria.fr/equipes/datasphere

150 Security and Confidentiality - Research Program - Project-Team PESTO

PESTO Project-Team

3. Research Program

3.1. Modelling
Before being able to analyse and properly design security protocols, it is essential to have a model with a
precise semantics of the protocols themselves, the attacker and its capabilities, as well as the properties a
protocol must ensure.

Most current languages for protocol specification are quite basic and do not provide support for global state,
loops, or complex data structures such as lists, or Merkle trees. As an example we may cite Hardware Security
Modules that rely on a notion of mutable global state which does not arise in traditional protocols, see e.g. the
discussion by Herzog [57].

Similarly, the properties a protocol should satisfy are generally not precisely defined, and stating the “right”
definitions is often a challenging task in itself. In the case of authentication, many protocol attacks were
due to the lack of a precise meaning, cf. [56]. While the case of authentication has been widely studied,
the recent digitalisation of all kinds of transactions and services, introduces a plethora of new properties,
including for instance anonymity in e-voting, untraceability of RFID tokens, verifiability of computations
that are out-sourced, as well as sanitisation of data in social networks. We expect that many privacy and
anonymity properties may be modelled as particular observational equivalences in process calculi [52], or
indistinguishability between cryptographic games [2]; sanitisation of data may also rely on information-
theoretic measures.

We also need to take into account that the attacker model changes. While historically the attacker was
considered to control the communication network, we may nowadays argue that even (part of) the host
executing the software may be compromised through, e.g., malware. This situation motivates the use of secure
elements and multi-factor authentication with out-of-band channels. A typical example occurs in e-commerce:
to validate an online payment a user needs to enter an additional code sent by the bank via SMS to the user’s
mobile phone. Such protocols require the possession of a physical device in addition to the knowledge of a
password which could have been leaked on an untrusted platform. The fact that data needs to be copied by a
human requires these data to be short, and hence amenable to brute-force attacks by an attacker or guessing.

3.2. Analysis
3.2.1. Generic proof techniques

Most automated tools for verifying security properties rely on techniques stemming from automated deduction.
Often existing techniques do however not apply directly, or do not scale up due to state explosion problems.
For instance, the use of Horn clause resolution techniques requires dedicated resolution methods [46][3].
Another example is unification modulo equational theory, which is a key technique in several tools, e.g. [55].
Security protocols however require to consider particular equational theories that are not naturally studied
in classical automated reasoning. Sometimes, even new concepts have been introduced. One example is the
finite variant property [50], which is used in several tools, e.g., Akiss [3], Maude-NPA [55] and Tamarin [58].
Another example is the notion of asymmetric unification [54] which is a variant of unification used in Maude-
NPA to perform important syntactic pruning techniques of the search space, even when reasoning modulo an
equational theory. For each of these topics we need to design efficient decision procedures for a variety of
equational theories.

http://www.inria.fr/equipes/pesto
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid10

151 Security and Confidentiality - Research Program - Project-Team PESTO

3.2.2. Dedicated procedures and tools
We design dedicated techniques for automated protocol verification. While existing techniques for security
protocol verification are efficient and have reached maturity for verification of confidentiality and authen-
tication properties (or more generally safety properties), our goal is to go beyond these properties and the
standard attacker models, verifying the properties and attacker models identified in Section 3.1 . This includes
techniques that:

• can analyse indistinguishability properties, including for instance anonymity and unlinkability
properties, but also properties stated in simulation-based (also known as universally composable)
frameworks, which express the security of a protocol as an ideal (correct by design) system;

• take into account protocols that rely on a notion of mutable global state which does not arise in
traditional protocols, but is essential when verifying tamper-resistant hardware devices, e.g., the
RSA PKCS#11 standard, IBM’s CCA and the trusted platform module (TPM);

• consider attacker models for protocols relying on weak secrets that need to be copied or remembered
by a human, such as multi-factor authentication.

These goals are beyond the scope of most current analysis tools and require both theoretical advances in the
area of verification, as well as the design of new efficient verification tools.

3.3. Design
Given our experience in formal analysis of security protocols, including both protocol proofs and finding of
flaws, it is tempting to use our experience to design protocols with security in mind and security proofs. This
part includes both provably secure design techniques, as well as the development of new protocols.

3.3.1. General design techniques
Design techniques include composition results that allow one to design protocols in a modular way [51],
[49]. Composition results come in many flavours: they may allow one to compose protocols with different
objectives, e.g. compose a key exchange protocol with a protocol that requires a shared key or rely on a
protocol for secure channel establishment, compose different protocols in parallel that may re-use some key
material, or compose different sessions of the same protocol.

Another area where composition is of particular importance is Service Oriented Computing, where an
“orchestrator” must combine some available component services, while guaranteeing some security properties.
In this context, we work on the automated synthesis of the orchestrator or monitors for enforcing the security
goals. These problems require the study of new classes of automata that communicate with structured
messages.

3.3.2. New protocol design
We also design new protocols. Application areas that seem of particular importance are:

• External hardware devices such as security APIs that allow for flexible key management, including
key revocation, and their integration in security protocols. The security fiasco of the PKCS#11
standard [48], [53] witnesses the need for new protocols in this area.

• Election systems that provide strong security guarantees. We have been working (in collaboration
with the Caramba team) on a prototype implementation of an e-voting system, Belenios (http://
belenios.gforge.inria.fr).

• Mechanisms for publishing personal information (e.g. on social networks) in a controlled way.

http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/uid13.html
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/pesto/bibliography.html#pesto-2018-bid14
http://belenios.gforge.inria.fr
http://belenios.gforge.inria.fr

152 Security and Confidentiality - Research Program - Project-Team PRIVATICS

PRIVATICS Project-Team (section vide)

http://www.inria.fr/equipes/privatics

153 Security and Confidentiality - Research Program - Project-Team PROSECCO

PROSECCO Project-Team

3. Research Program

3.1. Symbolic verification of cryptographic applications
Despite decades of experience, designing and implementing cryptographic applications remains dangerously
error-prone, even for experts. This is partly because cryptographic security is an inherently hard problem, and
partly because automated verification tools require carefully-crafted inputs and are not widely applicable.
To take just the example of TLS, a widely-deployed and well-studied cryptographic protocol designed,
implemented, and verified by security experts, the lack of a formal proof about all its details has regularly led to
the discovery of major attacks (including several in PROSECCO) on both the protocol and its implementations,
after many years of unsuspecting use.

As a result, the automated verification for cryptographic applications is an active area of research, with a wide
variety of tools being employed for verifying different kinds of applications.

In previous work, we have developed the following three approaches:

• ProVerif: a symbolic prover for cryptographic protocol models

• Tookan: an attack-finder for PKCS#11 hardware security devices

• F*: a new language that enables the verification of cryptographic applications

3.1.1. Verifying cryptographic protocols with ProVerif
Given a model of a cryptographic protocol, the problem is to verify that an active attacker, possibly with
access to some cryptographic keys but unable to guess other secrets, cannot thwart security goals such
as authentication and secrecy [70]; it has motivated a serious research effort on the formal analysis of
cryptographic protocols, starting with [65] and eventually leading to effective verification tools, such as our
tool ProVerif.

To use ProVerif, one encodes a protocol model in a formal language, called the applied pi-calculus, and
ProVerif abstracts it to a set of generalized Horn clauses. This abstraction is a small approximation: it just
ignores the number of repetitions of each action, so ProVerif is still very precise, more precise than, say, tree
automata-based techniques. The price to pay for this precision is that ProVerif does not always terminate;
however, it terminates in most cases in practice, and it always terminates on the interesting class of tagged
protocols [60]. ProVerif can handle a wide variety of cryptographic primitives, defined by rewrite rules or by
some equations, and prove a wide variety of security properties: secrecy [58], [44], correspondences (including
authentication) [59], and observational equivalences [57]. Observational equivalence means that an adversary
cannot distinguish two processes (protocols); equivalences can be used to formalize a wide range of properties,
but they are particularly difficult to prove. Even if the class of equivalences that ProVerif can prove is limited
to equivalences between processes that differ only by the terms they contain, these equivalences are useful
in practice and ProVerif has long been the only tool that proves equivalences for an unbounded number of
sessions. (Maude-NPA in 2014 and Tamarin in 2015 adopted ProVerif’s approach to proving equivalences.)

Using ProVerif, it is now possible to verify large parts of industrial-strength protocols, such as TLS [52],
Signal [68], JFK [45], and Web Services Security [56], against powerful adversaries that can run an unlimited
number of protocol sessions, for strong security properties expressed as correspondence queries or equivalence
assertions. ProVerif is used by many teams at the international level, and has been used in more than 120
research papers (references available at http://proverif.inria.fr/proverif-users.html).

http://www.inria.fr/equipes/prosecco
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid0
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid1
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid2
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid10
http://proverif.inria.fr/proverif-users.html

154 Security and Confidentiality - Research Program - Project-Team PROSECCO

3.1.2. Verifying security APIs using Tookan
Security application programming interfaces (APIs) are interfaces that provide access to functionality while
also enforcing a security policy, so that even if a malicious program makes calls to the interface, certain security
properties will continue to hold. They are used, for example, by cryptographic devices such as smartcards and
Hardware Security Modules (HSMs) to manage keys and provide access to cryptographic functions whilst
keeping the keys secure. Like security protocols, their design is security critical and very difficult to get right.
Hence formal techniques have been adapted from security protocols to security APIs.

The most widely used standard for cryptographic APIs is RSA PKCS#11, ubiquitous in devices from
smartcards to HSMs. A 2003 paper highlighted possible flaws in PKCS#11 [62], results which were extended
by formal analysis work using a Dolev-Yao style model of the standard [63]. However at this point it was
not clear to what extent these flaws affected real commercial devices, since the standard is underspecified
and can be implemented in many different ways. The Tookan tool, developed by Steel in collaboration with
Bortolozzo, Centenaro and Focardi, was designed to address this problem. Tookan can reverse engineer the
particular configuration of PKCS#11 used by a device under test by sending a carefully designed series of
PKCS#11 commands and observing the return codes. These codes are used to instantiate a Dolev-Yao model
of the device’s API. This model can then be searched using a security protocol model checking tool to find
attacks. If an attack is found, Tookan converts the trace from the model checker into the sequence of PKCS#11
queries needed to make the attack and executes the commands directly on the device. Results obtained by
Tookan are remarkable: of 18 commercially available PKCS#11 devices tested, 10 were found to be susceptible
to at least one attack.

3.1.3. Verifying cryptographic applications using F*
Verifying the implementation of a protocol has traditionally been considered much harder than verifying its
model. This is mainly because implementations have to consider real-world details of the protocol, such as
message formats, that models typically ignore. This leads to a situation that a protocol may have been proved
secure in theory, but its implementation may be buggy and insecure. However, with recent advances in both
program verification and symbolic protocol verification tools, it has become possible to verify fully functional
protocol implementations in the symbolic model. One approach is to extract a symbolic protocol model from
an implementation and then verify the model, say, using ProVerif. This approach has been quite successful,
yielding a verified implementation of TLS in F# [55]. However, the generated models are typically quite large
and whole-program symbolic verification does not scale very well.

An alternate approach is to develop a verification method directly for implementation code, using well-
known program verification techniques. Our current focus is on designing and implementing the programming
language F* [73], [49], in collaboration with Microsoft Research. F* (pronounced F star) is an ML-like
functional programming language aimed at program verification. Its type system includes polymorphism,
dependent types, monadic effects, refinement types, and a weakest precondition calculus. Together, these
features allow expressing precise and compact specifications for programs, including functional correctness
and security properties. The F* type-checker aims to prove that programs meet their specifications using a
combination of SMT solving and manual proofs. Programs written in F* can be translated to efficient OCaml,
F#, or C for execution [71]. The main ongoing use case of F* is building a verified, drop-in replacement for
the whole HTTPS stack in Project Everest [53] (a larger collaboration with Microsoft Research). This includes
a verified implementation of TLS 1.2 and 1.3 [54].

3.2. Computational verification of cryptographic applications
Proofs done by cryptographers in the computational model are mostly manual. Our goal is to provide computer
support to build or verify these proofs. In order to reach this goal, we have designed the automatic tool
CryptoVerif, which generates proofs by sequences of games. We already applied it to important protocols
such as TLS [52] and Signal [68] but more work is still needed in order to develop this approach, so that it
is easier to apply to more protocols. We also design and implement techniques for proving implementations

http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid11
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid12
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid13
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid17
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid18
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid8

155 Security and Confidentiality - Research Program - Project-Team PROSECCO

of protocols secure in the computational model. In particular, CryptoVerif can generate implementations from
CryptoVerif specifications that have been proved secure [61]. We plan to continue working on this approach.

A different approach is to directly verify cryptographic applications in the computational model by typing. A
recent work [66] shows how to use refinement typechecking in F7 to prove computational security for protocol
implementations. In this method, henceforth referred to as computational F7, typechecking is used as the main
step to justify a classic game-hopping proof of computational security. The correctness of this method is based
on a probabilistic semantics of F# programs and crucially relies on uses of type abstraction and parametricity
to establish strong security properties, such as indistinguishability.

In principle, the two approaches, typechecking and game-based proofs, are complementary. Understanding
how to combine these approaches remains an open and active topic of research.

An alternative to direct computation proofs is to identify the cryptographic assumptions under which symbolic
proofs, which are typically easier to derive automatically, can be mapped to computational proofs. This line
of research is sometimes called computational soundness and the extent of its applicability to real-world
cryptographic protocols is an active area of investigation.

3.3. F*: A Higher-Order Effectful Language for Program Verification
F* [73], [49] is a verification system for effectful programs developed collaboratively by Inria and Microsoft
Research. It puts together the automation of an SMT-backed deductive verification tool with the expressive
power of a proof assistant based on dependent types. After verification, F* programs can be extracted
to efficient OCaml, F#, or C code [71]. This enables verifying the functional correctness and security of
realistic applications. F*’s type system includes dependent types, monadic effects, refinement types, and a
weakest precondition calculus. Together, these features allow expressing precise and compact specifications
for programs, including functional correctness and security properties. The F* type-checker aims to prove
that programs meet their specifications using a combination of SMT solving and interactive proofs. The main
ongoing use case of F* is building a verified, drop-in replacement for the whole HTTPS stack in Project
Everest. This includes verified implementations of TLS 1.2 and 1.3 [54] and of the underlying cryptographic
primitives [74].

3.4. Efficient Formally Secure Compilers to a Tagged Architecture
Severe low-level vulnerabilities abound in today’s computer systems, allowing cyber-attackers to remotely
gain full control. This happens in big part because our programming languages, compilers, and architectures
were designed in an era of scarce hardware resources and too often trade off security for efficiency. The
semantics of mainstream low-level languages like C is inherently insecure, and even for safer languages,
establishing security with respect to a high-level semantics does not guarantee the absence of low-level attacks.
Secure compilation using the coarse-grained protection mechanisms provided by mainstream hardware
architectures would be too inefficient for most practical scenarios.

We aim to leverage emerging hardware capabilities for fine-grained protection to build the first, efficient secure
compilation chains for realistic low-level programming languages (the C language, and Low* a safe subset
of C embedded in F* for verification [71]). These compilation chains will provide a secure semantics for all
programs and will ensure that high-level abstractions cannot be violated even when interacting with untrusted
low-level code. To achieve this level of security without sacrificing efficiency, our secure compilation chains
target a tagged architecture [50], which associates a metadata tag to each word and efficiently propagates and
checks tags according to software-defined rules. We hope to experimentally evaluate and carefully optimize the
efficiency of our secure compilation chains on realistic workloads and standard benchmark suites. We are also
using property-based testing and formal verification to provide high confidence that our compilation chains
are indeed secure. Formally, we are constructing machine-checked proofs of a new security criterion we call
robustly safe compilation, which is defined as the preservation of safety properties even against an adversarial
context [46], [47]. This strong criterion complements compiler correctness and ensures that no machine-code
attacker can do more harm to securely compiled components than a component already could with respect to
a secure source-level semantics.

http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid19
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid20
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid14
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid15
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid18
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid21
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid16
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid22
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid23
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid24

156 Security and Confidentiality - Research Program - Project-Team PROSECCO

3.5. Provably secure web applications
Web applications are fast becoming the dominant programming platform for new software, probably because
they offer a quick and easy way for developers to deploy and sell their apps to a large number of customers.
Third-party web-based apps for Facebook, Apple, and Google, already number in the hundreds of thousands
and are likely to grow in number. Many of these applications store and manage private user data, such as
health information, credit card data, and GPS locations. To protect this data, applications tend to use an ad
hoc combination of cryptographic primitives and protocols. Since designing cryptographic applications is
easy to get wrong even for experts, we believe this is an opportune moment to develop security libraries and
verification techniques to help web application programmers.

As a typical example, consider commercial password managers, such as LastPass, RoboForm, and 1Password.
They are implemented as browser-based web applications that, for a monthly fee, offer to store a user’s
passwords securely on the web and synchronize them across all of the user’s computers and smartphones. The
passwords are encrypted using a master password (known only to the user) and stored in the cloud. Hence,
no-one except the user should ever be able to read her passwords. When the user visits a web page that has
a login form, the password manager asks the user to decrypt her password for this website and automatically
fills in the login form. Hence, the user no longer has to remember passwords (except her master password) and
all her passwords are available on every computer she uses.

Password managers are available as browser extensions for mainstream browsers such as Firefox, Chrome,
and Internet Explorer, and as downloadable apps for Android and Apple phones. So, seen as a distributed
application, each password manager application consists of a web service (written in PHP or Java), some
number of browser extensions (written in JavaScript), and some smartphone apps (written in Java or Objective
C). Each of these components uses a different cryptographic library to encrypt and decrypt password data.
How do we verify the correctness of all these components?

We propose three approaches. For client-side web applications and browser extensions written in JavaScript,
we propose to build a static and dynamic program analysis framework to verify security invariants. To this end,
we have developed two security-oriented type systems for JavaScript, Defensive JavaScript [64] [64] and TS*
[72], and used them to guarantee security properties for a number of JavaScript applications. For Android
smartphone apps and web services written in Java, we propose to develop annotated JML cryptography
libraries that can be used with static analysis tools like ESC/Java to verify the security of application code. For
clients and web services written in F# for the .NET platform, we propose to use F* to verify their correctness.
We also propose to translate verified F* web applications to JavaScript via a verified compiler that preserves
the semantics of F* programs in JavaScript.

3.6. Design and Verification of next-generation protocols: identity,
blockchains, and messaging
Building on our work on verifying and re-designing pre-existing protocols like TLS and Web Security in
general, with the resources provided by the NEXTLEAP project, we are working on both designing and
verifying new protocols in rapidly emerging areas like identity, blockchains, and secure messaging. These
are all areas where existing protocols, such as the heavily used OAuth protocol, are in need of considerable
re-design in order to maintain privacy and security properties. Other emerging areas, such as blockchains
and secure messaging, can have modifications to existing pre-standard proposals or even a complete ’clean
slate’ design. As shown by Prosecco’s work, newer standards, such as IETF OAuth, W3C Web Crypto, and
W3C Web Authentication API, can have vulnerabilities fixed before standardization is complete and heavily
deployed. We hope that the tools used by Prosecco can shape the design of new protocols even before they are
shipped to standards bodies. We have seen considerable progress in identity with the UnlimitID design and
with messaging via the IETF MLS effort, with new work on blockchain technology underway.

http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid25
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid25
http://raweb.inria.fr/rapportsactivite/RA{$year}/prosecco/bibliography.html#prosecco-2018-bid26

157 Security and Confidentiality - Research Program - Project-Team TAMIS

TAMIS Project-Team

3. Research Program

3.1. Axis 1: Vulnerability analysis
This axis proposes different techniques to discover vulnerabilities in systems. The outcomes of this axis are
(a) new techniques to discover system vulnerabilities as well as to analyze them, and (b) to understand the
importance of the hardware support.

Most existing approaches used at the engineering level rely on testing and fuzzing. Such techniques consist
in simulating the system for various input values, and then checking that the result conforms to a given
standard. The problem being the large set of inputs to be potentially tested. Existing solutions propose to
extract significant sets by mutating a finite set of inputs. Other solutions, especially concolic testing developed
at Microsoft, propose to exploit symbolic executions to extract constraints on new values. We build on those
existing work, and extend them with recent techniques based on dissimilarity distances and learning. We also
account for the execution environment, and study techniques based on the combination of timing attacks with
fuzzing techniques to discover and classify classes of behavior of the system under test.

Techniques such as model checking and static analysis have been used for verifying several types of
requirements such as safety and reliability. Recently, several works have attempted to adapt model checking
to the detection of security issues. It has clearly been identified that this required to work at the level of binary
code. Applying formal techniques to such code requires the development of disassembly techniques to obtain
a semantically well-defined model. One of the biggest issues faced with formal analysis is the state space
explosion problem. This problem is amplified in our context as representations of data (such as stack content)
definitively blow up the state space. We propose to use statistical model checking (SMC) of rare events to
efficiently identify problematic behaviors.

We also seek to understand vulnerabilities at the architecture and hardware levels. Particularly, we evaluate
vulnerabilities of the interfaces and how an adversary could use them to get access to core assets in the system.
One particular mechanism to be investigated is the DMA and the so-called Trustzone. An ad-hoc technique
to defend against adversarial DMA-access to memory is to keep key material exclusively in registers. This
implies co-analyzing machine code and an accurate hardware model.

3.2. Axis 2: Malware analysis
Axis 1 is concerned with vulnerabilities. Such vulnerabilities can be exploited by an attacker in order to
introduce malicious behaviors in a system. Another method to identify vulnerabilities is to analyze malware
that exploits them. However, modern malware has a wide variety of analysis avoidance techniques. In
particular, attackers obfuscate the code leading to a security exploit. For doing so, recent black hat research
suggests hiding constants in program choices via polynomials. Such techniques hinder forensic analysis by
making detailed analysis labor intensive and time consuming. The objective of research axis 2 is to obtain a
full tool chain for malware analysis starting from (a) the observability of the malware via deobfuscation, and
(b) the analysis of the resulting binary file. A complementary objective is to understand how hardware attacks
can be exploited by malwares.

We first investigate obfuscation techniques. Several solutions exist to mitigate the packer problem. As an
example, we try to reverse the packer and remove the environment evaluation in such a way that it performs
the same actions and outputs the resulting binary for further analysis. There is a wide range of techniques
to obfuscate malware, which includes flattening and virtualization. We will produce a taxonomy of both
techniques and tools. We will first give a particular focus to control flow obfuscation via mixed Boolean
algebra, which is highly deployed for malware obfuscation. We recently showed that a subset of them can be
broken via SAT-solving and synthesis. Then, we will expand our research to other obfuscation techniques.

http://www.inria.fr/equipes/tamis

158 Security and Confidentiality - Research Program - Project-Team TAMIS

Once the malware code has been unpacked/deobfuscated, the resulting binary still needs to be fully understood.
Advanced malware often contains multiple stages, multiple exploits and may unpack additional features based
on its environment. Ensuring that one understands all interesting execution paths of a malware sample is
related to enumerating all of the possible execution paths when checking a system for vulnerabilities. The main
difference is that in one case we are interested in finding vulnerabilities and in the other in finding exploitative
behavior that may mutate. Still, some of the techniques of Axis 1 can be helpful in analyzing malware. The
main challenge for axis 2 is thus to adapt the tools and techniques to deal with binary programs as inputs,
as well as the logic used to specify malware behavior, including behavior with potentially rare occurrences.
Another challenge is to take mutation into account, which we plan to do by exploiting mining algorithms.

Most recent attacks against hardware are based on fault injection which dynamically modifies the semantics of
the code. We demonstrated the possibility to obfuscate code using constraint solver in such a way that the code
becomes intentionally hostile while hit by a laser beam. This new form of obfuscation opens a new challenge
for secure devices where malicious programs can be designed and uploaded that defeat comprehensive static
analysis tools or code reviews, due to their multi-semantic nature. We have shown on several products that
such an attack cannot be mitigated with the current defenses embedded in Java cards. In this research, we
first aim at extending the work on fault injection, then at developing new techniques to analyze such hostile
code. This is done by proposing formal models of fault injection, and then reusing results from our work on
obfuscation/deobfuscation.

3.3. Axis 3: Building a secure network stack
Christian Grothoff, who leads this axis, got a position in Bern in 2017. This axis followed him, although
TAMIS still held during 2018 expertise and members to finish ongoing work with the team.

