

RESEARCH CENTER

FIELD Networks, Systems and Services, Distributed Computing

Activity Report 2018

Section Software

Edition: 2019-03-07

DISTRIBUTED SYSTEMS AND MIDDLEWARE
1. Coast Project-Team
2. CTRL-A Project-Team
3. DELYS Team (section vide)7
4. MIMOVE Project-Team
5. MYRIADS Project-Team
6. SPIRALS Project-Team
7. WHISPER Project-Team
8. WIDE Project-Team
DISTRIBUTED AND HIGH PERFORMANCE COMPUTING
9. ALPINES Project-Team
10. AVALON Project-Team
11. DATAMOVE Project-Team 24
12. HIEPACS Project-Team
13. KERDATA Project-Team 32
14. POLARIS Project-Team
15. ROMA Project-Team
16. STORM Project-Team
17. TADAAM Project-Team
DISTRIBUTED PROGRAMMING AND SOFTWARE ENGINEERING
18. DIVERSE Project-Team
19. EASE Team
20. FOCUS Project-Team
21. INDES Project-Team
22. PHOENIX-POST Team
23. RMOD Project-Team
24. STACK Team
NETWORKS AND TELECOMMUNICATIONS
25. AGORA Project-Team
26. COATI Project-Team
27. DANTE Project-Team
28. DIANA Project-Team
29. DIONYSOS Project-Team
30. DYOGENE Project-Team (section vide)
31. EVA Project-Team
32. FUN Project-Team
33. GANG Project-Team
34. INFINE-POST Team (section vide)
35. Neo Project-Team
36. POEMS-POST Team
37. RESIST Team

4 Distributed Systems and middleware - Software and Platforms - Project-Team Coast

38. SOCRATE Project-Team		94
--------------------------	--	----

Coast Project-Team

5. New Software and Platforms

5.1. BeGoood

FUNCTIONAL DESCRIPTION: BeGoood is a generic system for managing non-regression tests on knowledge bases. BeGoood allows to define test plans in order to monitor the evolution of knowledge-bases. Any system answering queries by providing results in the form of set of strings can be tested with BeGoood. BeGoood has been developed following a REST architecture and is independent of any application domain. BeGoood is a part of the Kolflow infrastructure.

- Participant: Gérôme Canals
- Contact: Gérôme Canals
- URL: https://github.com/kolflow/begoood

5.2. MUTE

Multi-User Text Editor

FUNCTIONAL DESCRIPTION: MUTE (Multi-User Text Editor) is a web-based text editing tool that allows to edit documents collaboratively in real-time. It implements our recent work on collaborative editing algorithms and more specifically the LogootSplit+ approach. Compared to existing web-based collaborative text editing tool this editor does not require a powerful central server since the server is not performing any computation and acts as a simple broadcast server. Our editor offers support for working offline while still being able to reconnect at a later time.

- Participants: Claudia-Lavinia Ignat, François Charoy, Gérald Oster and Luc André
- Contact: Gérald Oster
- URL: https://github.com/coast-team/mute-demo/

5.3. Replication Benchmarker

FUNCTIONAL DESCRIPTION: The Replication Benchmarker is a performance evaluation framework for optimistic replication mechanisms used in collaborative applications. It contains a library of implementation of several CRDT (Commutative Replicated Data Type) and OT (Operational Transformation) algorithms for different data types: text, set, trees. The framework is able to evaluate the performance of comparable algorithms on different corpus of events traces. These events traces can be produced randomly according to different parameters, can be extracted from real real-time editing session that have been recorded, or can be automatically extracted from distributed version control repositories such as the one produced with Git. Performances of the algorithms are measured in term of execution time, memory footprint and merge result quality (compared to manual merge history stored in git repositories).

- Participants: Gérald Oster, Mehdi Ahmed-Nacer and Pascal Urso
- Contact: Pascal Urso
- URL: https://github.com/score-team/replication-benchmarker/

5.4. Rivage

Real-tIme Vector grAphic Group Editor

FUNCTIONAL DESCRIPTION: Rivage is a real-time collaborative graphical editor. Several users can edit at the same time and in real-time a graphical document, user changes being immediately seen by the other users. The editor relies on a peer-to-peer architecture where users can join and leave the group at any time. Each user has a copy of the shared document and user changes on the document copies are merged in real-time by using a CRDT (Commutative Replicated Data Type) algorithm.

- Participant: Claudia-Lavinia Ignat
- Contact: Claudia-Lavinia Ignat
- URL: https://github.com/stephanemartin/rivage/

CTRL-A Project-Team

5. New Software and Platforms

5.1. Heptagon

KEYWORDS: Compilers - Synchronous Language - Controller synthesis

FUNCTIONAL DESCRIPTION: Heptagon is an experimental language for the implementation of embedded real-time reactive systems. It is developed inside the Synchronics large-scale initiative, in collaboration with Inria Rhones-Alpes. It is essentially a subset of Lucid Synchrone, without type inference, type polymorphism and higher-order. It is thus a Lustre-like language extended with hierchical automata in a form very close to SCADE 6. The intention for making this new language and compiler is to develop new aggressive optimization techniques for sequential C code and compilation methods for generating parallel code for different platforms. This explains much of the simplifications we have made in order to ease the development of compilation techniques.

The current version of the compiler includes the following features: - Inclusion of discrete controller synthesis within the compilation: the language is equipped with a behavioral contract mechanisms, where assumptions can be described, as well as an "enforce" property part. The semantics of this latter is that the property should be enforced by controlling the behaviour of the node equipped with the contract. This property will be enforced by an automatically built controller, which will act on free controllable variables given by the programmer. This extension has been named BZR in previous works. - Expression and compilation of array values with modular memory optimization. The language allows the expression and operations on arrays (access, modification, iterators). With the use of location annotations, the programmer can avoid unnecessary array copies.

- Participants: Adrien Guatto, Brice Gelineau, Cédric Pasteur, Eric Rutten, Gwenaël Delaval, Léonard Gérard and Marc Pouzet
- Partners: UGA ENS Paris Inria LIG
- Contact: Gwenaël Delaval
- URL: http://heptagon.gforge.inria.fr

DELYS Team (section vide)

MIMOVE Project-Team

6. New Software and Platforms

6.1. SocialBus

Universal Social Network Bus

KEYWORDS: Middleware - Interoperability - Social networks - Software Oriented Service (SOA)

FUNCTIONAL DESCRIPTION: Online social network services (OSNSs) have become an integral part of our daily lives. At the same time, the aggressive market competition has led to the emergence of multiple competing siloed OSNSs that cannot interoperate. As a consequence, people face the burden of creating and managing multiple OSNS accounts and learning how to use them, to stay connected. The goal of the Universal Social Network Bus (USNB) is to relieve users from such a burden, letting them use their favorite applications to communicate.

- Authors: Rafael Angarita Arocha, Nikolaos Georgantas and Valérie Issarny
- Contact: Valérie Issarny
- URL: https://gitlab.inria.fr/usnb/universal-social-network-bus

6.2. WeBrowse

KEYWORDS: Web Usage Mining - Content analysis - Recommendation systems

FUNCTIONAL DESCRIPTION: The amount of information available on the web today, and the fast rate with which new information appears, overwhelm most users. The goal of our research is to assist Web users in discovering content. One of the most powerful means today to help people discover new web content is sharing between members of online communities. In the case of communities of a place (e.g., people who live, study, or work together) people share common interests, but often fail to actively share content. To address this problem, we have developed WeBrowse, a passive crowdsourced content discovery system for communities of a place.

WeBrowse leverages the passive observation of web-clicks (i.e., the URLs users intentionally visit) as an indication of users' interest in a piece of content. Intuitively, the more users click on a URL, the higher the interest in the content on the corresponding page. Our approach is then to leverage the collective clicks in a community to automatically discover relevant content to promote to users of the community.

To implement passive crowdsourcing, one must be in a position to observe the aggregated web-clicks of the community. Luckily, in many communities of a place, users will connect to the Internet from the same network, such as, e.g., the campus/enterprise network or the network of a residential Internet Service Provider (ISP) in a neighborhood. WeBrowse (i) observes web packets flowing through a network link, (ii) passively extracts HTTP logs (i.e., streams recording the headers of HTTP requests), and (iii) detects and decides on-the-fly the set of URLs to show to users.

- Contact: Renata Cruz Teixeira
- URL: https://team.inria.fr/muse/webrowse-info-page/

6.3. EEE

Experiment Execution Engine KEYWORD: Iot

FUNCTIONAL DESCRIPTION: Experiment Execution Engine (EEE) eases the development of IoT applications that perform analysis of recent or continuously increasing volumes of IoT data from various data stores. To this end, EEE provides APIs for scheduling queries on federated large-scale semantically-enabled IoT data stores. Queries are expressed in the FIESTA-IoT (http://fiesta-iot.eu) Experiment Description Specification (FEDSpec), which acts as a Domain Specific Language (DSL). EEE (in combination with Experiment Management Console - EMC) further provides features such as: (a) manage scheduled experiments, (b) (un)subscribe to already existing FEDSpec objects, (c) execute an on-demand query outside a described schedule, (d) monitor execution logs, (e) interact with third-party services such as Analytics and Result Storage, (e) handle dynamic attributes, and (f) API sandbox. EEE is integrated within the FIESTA-IoT Platform. It can be customised depending on needs.

- Authors: Rachit Agarwal and Nikolaos Georgantas
- Contact: Nikolaos Georgantas
- URL: https://github.com/fiesta-iot/ExperimentExecutionEngine

6.4. EMC

Experiment Management Console

KEYWORD: Iot

FUNCTIONAL DESCRIPTION: Experiment Management Console (EMC) is a simple easy-to-use user interface that enables experimenters to control their experiments/queries that execute using the Experiment Execution Engine (EEE). EMC provides features such as managing experiment execution, (un)subscribing an existing experiment, and monitoring execution logs.

- Authors: Nikolaos Georgantas and Rachit Agarwal
- Contact: Nikolaos Georgantas
- URL: https://github.com/fiesta-iot/ExperimentManagementConsole

6.5. VSB

eVolution Service Bus

KEYWORDS: Service and Thing choreographies - Middleware protocol interoperability - Enterprise service bus

FUNCTIONAL DESCRIPTION: VSB is a development and runtime environment dedicated to complex distributed applications of the Future Internet. Such applications are open, dynamic choreographies of extremely heterogeneous services and Things, including lightweight embedded systems (e.g., sensors, actuators and networks of them), mobile systems (e.g., smartphone applications), and resource-rich IT systems (e.g., systems hosted on enterprise servers and Cloud infrastructures). VSB's objective is to seamlessly interconnect, inside choreographies, services and Things that employ heterogeneous interaction protocols at the middleware level, e.g., SOAP Web services, REST Web services, Things using CoAP. This is based on runtime conversions between such protocols, with respect to their primitives and data type systems, while properly mapping between their semantics. This also includes mapping between the public interfaces of services/Things, regarding their operations and data, from the viewpoint of the middleware: the latter means that operations and data are converted based on their middleware-level semantics, while their business semantics remains transparent to the conversion. VSB follows the well-known Enterprise Service Bus (ESB) paradigm. We propose a generic interface description, which we call GIDL, for application components that employ VSB. Based on GIDL, we enable automated synthesis of binding components for connecting heterogeneous services and Things onto VSB.

- Participants: Georgios Bouloukakis, Nikolaos Georgantas and Patient Ntumba
- Contact: Nikolaos Georgantas
- URL: https://gitlab.ow2.org/chorevolution/evolution-service-bus

6.6. Service traceroute

KEYWORDS: Network monitoring - Network diagnosis

FUNCTIONAL DESCRIPTION: Traceroute is often used to help diagnose when users experience issues with Internet applications or services. Unfortunately, probes issued by classic traceroute tools differ from application traffic and hence can be treated differently by middleboxes within the network. We propose a new traceroute tool, called Service traceroute. Service traceroute leverages the idea from paratrace, which passively listens to application traffic to then issue traceroute probes that pretend to be part of the application flow. We extend this idea to work for modern Internet services with support for identifying the flows to probe automatically, for tracing of multiple concurrent flows, and for UDP flows. We implement command-line and library versions of Service traceroute, which we release as open source.

- Partner: Princeton University
- Contact: Renata Cruz Teixeira
- URL: https://github.com/wontoniii/service-traceroute

6.7. TA

TA - Traffic Analysis

KEYWORDS: Quality of Experience - Network monitoring - Video analysis

FUNCTIONAL DESCRIPTION: System running at the home getaway that analyzes traffic generated by DASH on-demand and live video streams. The system tracks traffic patterns to infer key video QoE metrics such as average bitrate and re-buffering events. Moreover, the system exploits novel algorithms that use probing techniques, i.e. lightweight pings and traceroutes, to detect possible congestion location.

- Participants: Francesco Bronzino and Renata Cruz Teixeira
- Contact: Francesco Bronzino

6.8. HostView Mobile

KEYWORDS: Quality of Experience - Network monitoring

FUNCTIONAL DESCRIPTION: HostView for mobile runs on Android devices to monitor user system and network performance together with user feedback on Internet experience.

• Contact: Giulio Grassi

10

MYRIADS Project-Team

6. New Software and Platforms

6.1. GinFlow

KEYWORDS: Workflow - Distributed computing - Distributed - Distributed Applications - Dynamic adaptation - Framework

FUNCTIONAL DESCRIPTION: GinFlow decentralizes the coordination of the execution of workflow-based applications. GinFlow relyies on an architecture where multiple service agents (SA) coordinate each others through a shared space containing the workflow description and current status. GinFlow allows the user to define several variants of a workflow and to switch from one to the other during run time.

- Participants: Cédric Tedeschi, Hector Fernandez, Javier Rojas Balderrama, Matthieu Simonin and Thierry Priol
- Partner: Université de Rennes 1
- Contact: Cédric Tedeschi
- URL: http://ginflow.inria.fr

6.2. PaaSage Adapter

KEYWORDS: Cloud computing - Dynamic adaptation - Cloud applications management

FUNCTIONAL DESCRIPTION: The purpose of the Adapter is to transform the current configuration of a cloud application into a target configuration in an efficient and safe way. The Adapter is part of PaaSage, an open-source platform for modeling, deploying and executing applications on different clouds in an optimal manner. The Adapter has the following responsibilities: (1) validating reconfiguration plans, (2) applying the plans to the running system, and (3) maintaining an up-to-date representation of the current system state.

- Contact: Nikolaos Parlavantzas
- URL: https://team.inria.fr/myriads/software-and-platforms/paasage-adapter/

6.3. SAIDS

self-adaptable intrusion detection system

KEYWORDS: Cloud - Security

FUNCTIONAL DESCRIPTION: SAIDS is a self-adaptable intrusion detection system for IaaS clouds. To maintain an effective level of intrusion detection, SAIDS monitors changes in the virtual infrastructure of a Cloud environment and reconfigures its components (security probes) accordingly. SAIDS can also reconfigure probes in the case of a change in the list of running services.

- Authors: Anna Giannakou and Jean-Léon Cusinato
- Contact: Christine Morin

6.4. SimGrid

KEYWORDS: Large-scale Emulators - Grid Computing - Distributed Applications

SCIENTIFIC DESCRIPTION: SimGrid is a toolkit that provides core functionalities for the simulation of distributed applications in heterogeneous distributed environments. The simulation engine uses algorithmic and implementation techniques toward the fast simulation of large systems on a single machine. The models are theoretically grounded and experimentally validated. The results are reproducible, enabling better scientific practices.

Its models of networks, cpus and disks are adapted to (Data)Grids, P2P, Clouds, Clusters and HPC, allowing multi-domain studies. It can be used either to simulate algorithms and prototypes of applications, or to emulate real MPI applications through the virtualization of their communication, or to formally assess algorithms and applications that can run in the framework.

The formal verification module explores all possible message interleavings in the application, searching for states violating the provided properties. We recently added the ability to assess liveness properties over arbitrary and legacy codes, thanks to a system-level introspection tool that provides a finely detailed view of the running application to the model checker. This can for example be leveraged to verify both safety or liveness properties, on arbitrary MPI code written in C/C++/Fortran.

NEWS OF THE YEAR: There were 3 major releases in 2018: The public API was sanitized (with compatibility wrappers in place). Th documentation was completely overhauled. Our continuous integration was greatly improved (45 Proxy Apps + BigDFT + StarPU + BatSim now tested nightly). Some kernel headers are now installed, allowing external plugins. Allow dynamic replay of MPI apps, controlled by S4U actors. Port the MPI trace replay engine to C++, fix visualization (+ the classical bug fixes and doc improvement).

- Participants: Adrien Lèbre, Arnaud Legrand, Augustin Degomme, Florence Perronnin, Frédéric Suter, Jean-Marc Vincent, Jonathan Pastor, Luka Stanisic and Martin Quinson
- Partners: CNRS ENS Rennes
- Contact: Martin Quinson
- URL: https://simgrid.org/

6.5. DiFFuSE

Distributed framework for cloud-based epidemic simulations

KEYWORDS: Simulation - Cloud

FUNCTIONAL DESCRIPTION: The DiFFuSE framework enables simulations of epidemics to take full advantage of cloud environments. The framework provides design support, reusable code, and tools for building and executing epidemic simulations. Notably, the framework automatically handles failures and supports elastic allocation of resources from multiple clouds.

- Authors: Yvon Jégou, Manh Linh Pham, Nikolaos Parlavantzas and Christine Morin
- Contact: Nikolaos Parlavantzas
- Publication: hal-01612979/
- URL: https://team.inria.fr/myriads/software-and-platforms/diffuse/

SPIRALS Project-Team

6. New Software and Platforms

6.1. APISENSE

KEYWORDS: Mobile sensing - Crowd-sensing - Mobile application - Crowd-sourcing - Android FUNCTIONAL DESCRIPTION: APISENSE platform is a software solution to collect various contextual information from Android devices (client application) and automatically upload collected data to a server (deployed as a SaaS). APISENSE is based on a Cloud computing infrastructure to facilitate datasets collection from significant populations of mobile users for research purposes.

- Participants: Antoine Veuiller, Christophe Ribeiro, Julien Duribreux, Nicolas Haderer, Romain Rouvoy, Romain Sommerard and Lakhdar Meftah
- Partner: Université de Lille
- Contact: Romain Rouvoy
- URL: https://apisense.io

6.2. PowerAPI

KEYWORDS: Energy efficiency - Energy management

FUNCTIONAL DESCRIPTION: PowerAPI is a library for monitoring the energy consumption of software systems.

PowerAPI differs from existing energy process-level monitoring tool in its software orientation, with a fully customizable and modular solution that let the user to precisely define what he/she wants to monitor. PowerAPI is based on a modular and asynchronous event-driven architecture using the Akka library. PowerAPI offers an API which can be used to define requests about energy spent by a process, following its hardware resource utilization (in term of CPU, memory, disk, network, etc.).

- Participants: Adel Noureddine, Loïc Huertas, Maxime Colmant and Romain Rouvoy
- Contact: Romain Rouvoy
- URL: http://powerapi.org

6.3. Saloon

KEYWORDS: Feature Model - Software Product Line - Cloud computing - Model-driven engineering - Ontologies

FUNCTIONAL DESCRIPTION: Saloon is a framework for the selection and configuration of Cloud providers according to application requirements. The framework enables the specification of such requirements by defining ontologies. Each ontology provides a unified vision of provider offers in terms of frameworks, databases, languages, application servers and computational resources (i.e., memory, storage and CPU frequency). Furthermore, each provider is related to a Feature Model (FM) with attributes and cardinalities, which captures its capabilities. By combining the ontology and FMs, the framework is able to match application requirements with provider capabilities and select a suitable one. Specific scripts to the selected provider are generated in order to enable its configuration.

- Participants: Clément Quinton, Daniel Romero Acero, Laurence Duchien, Lionel Seinturier and Romain Rouvoy
- Partner: Université Lille 1
- Contact: Lionel Seinturier
- URL: https://gitlab.irisa.fr/drome00A/saloon

6.4. SPOON

KEYWORDS: Java - Code analysis

FUNCTIONAL DESCRIPTION: Spoon is an open-source library that enables you to transform (see below) and analyze Java source code (see example). Spoon provides a complete and fine-grained Java metamodel where any program element (classes, methods, fields, statements, expressions...) can be accessed both for reading and modification. Spoon takes as input source code and produces transformed source code ready to be compiled.

- Participants: Gérard Paligot, Lionel Seinturier, Martin Monperrus and Nicolas Petitprez
- Contact: Martin Monperrus
- URL: http://spoon.gforge.inria.fr

WHISPER Project-Team

6. New Software and Platforms

6.1. Coccinelle

KEYWORDS: Code quality - Evolution - Infrastructure software

FUNCTIONAL DESCRIPTION: Coccinelle is a tool for code search and transformation for C programs. It has been extensively used for bug finding and evolutions in Linux kernel code.

- Participants: Gilles Muller, Julia Lawall, Nicolas Palix, Rene Rydhof Hansen and Thierry Martinez
- Partners: LIP6 IRILL
- Contact: Julia Lawall
- URL: http://coccinelle.lip6.fr

6.2. Prequel

KEYWORDS: Code search - Git

SCIENTIFIC DESCRIPTION: The commit history of a code base such as the Linux kernel is a gold mine of information on how evolutions should be made, how bugs should be fixed, etc. Nevertheless, the high volume of commits available and the rudimentary filtering tools provided mean that it is often necessary to wade through a lot of irrelevant information before finding example commits that can help with a specific software development problem. To address this issue, we propose Prequel (Patch Query Language), which brings the descriptive power of code matching to the problem of querying a commit history.

FUNCTIONAL DESCRIPTION: Prequel is a tool for searching for complex patterns in the commits of software managed using git.

- Participants: Gilles Muller and Julia Lawall
- Partners: LIP6 IRILL
- Contact: Julia Lawall
- URL: http://prequel-pql.gforge.inria.fr/

6.3. Usuba

KEYWORDS: Cryptography - Optimizing compiler - Synchorous language

FUNCTIONAL DESCRIPTION: Usuba is a programming language for specifying block ciphers as well as a bitslicing compiler, for producing high-throughput and secure code.

- Contact: Pierre-Evariste Dagand
- Publication: Usuba, Optimizing & Trustworthy Bitslicing Compiler
- URL: https://github.com/DadaIsCrazy/usuba/

WIDE Project-Team

5. New Software and Platforms

5.1. WebGC

Web-based Gossip Communication

KEYWORDS: Epidemic protocols - Gossip protocols - Peer-to-peer - Web - Personalized systems - Decentralized architectures - Recommendation systems - WebRTC - Decentralized web

SCIENTIFIC DESCRIPTION: The library currently includes the implementation of two peer sampling protocols, Cyclon and the generic peer-sampling protocol from, as well as a clustering protocol. All protocols implement a common GossipProtocol "interface"

FUNCTIONAL DESCRIPTION: WebGC consists of a WebRTC-based library that supports gossip-based communication between web browsers and enables them to operate with Node-JS applications. WebGC comprises the implementation of standard gossip protocols such as Peer Sampling or Clustering, and simplifies the development of new protocols. It comprises a decentralized signaling service that makes it easier to build completely decentralized browser-based applications.

- Participants: Anne-Marie Kermarrec, Davide Frey, Matthieu Simonin and Raziel Carvajal Gomez
- Contact: Davide Frey

5.2. YALPS

KEYWORDS: Traffic-shaping - Nat traversal - Experimentation - Peer-to-peer - Simulator - Deployment FUNCTIONAL DESCRIPTION: YALPS is an open-source Java library designed to facilitate the development, deployment, and testing of distributed applications. Applications written using YALPS can be run both in simulation and in real-world mode without changing a line of code or even recompiling the sources. A simple change in a configuration file will load the application in the proper environment. A number of features make YALPS useful both for the design and evaluation of research prototypes and for the development of applications to be released to the public. Specifically, YALPS makes it possible to run the same application as a simulation or in a real deployment. Applications communicate by means of application-defined messages which are then routed either through UDP/TCP or through YALPS's simulation infrastructure. In both cases, YALPS's communication layer offers features for testing and evaluating distributed protocols and applications. Communication channels can be tuned to incorporate message losses or to constrain their outgoing bandwidth. Finally, YALPS includes facilities to support operation in the presence of NATs and firewalls using relaying and NAT-traversal techniques. The implementation of YALPS includes approximately 16K lines of code, and is used in several projects by ASAP, including HEAP, AllYours-P2P, and Behave.

- Participants: Anne Marie Kermarrec, Arnaud Jegou, Davide Frey, Heverson Borba Ribeiro and Maxime Monod
- Contact: Davide Frey
- URL: http://yalps.gforge.inria.fr/

5.3. KIFF

KIFF: An impressively fast and efficient JAVA library for KNN construction KEYWORD: KNN

FUNCTIONAL DESCRIPTION: This package implements the KIFF algorithm reported in [1]. KIFF is a generic, fast and scalable K-Nearest-Neighbor graph construction algorithm. This algorithm connects each object to its k most similar counterparts, according to a given similarity metric. In term of comparison, this package implements also HYREC [2] and NN-DESCENT [3]. The standalone program implements cosine similarity only, however this library supports arbitrary similarity measures.

[1] Antoine Boutet, Anne-Marie Kermarrec, Nupur Mittal, Francois Taiani. Being prepared in a sparse world: the case of KNN graph construction. ICDE 2016, Finland.

- Partner: LIRIS
- Contact: Antoine Boutet

ALPINES Project-Team

6. New Software and Platforms

6.1. FreeFem++

FeeFrem++

SCIENTIFIC DESCRIPTION: FreeFem++ is a partial differential equation solver. It has its own language. freefem scripts can solve multiphysics non linear systems in 2D and 3D.

Problems involving PDE (2d, 3d) from several branches of physics such as fluid-structure interactions require interpolations of data on several meshes and their manipulation within one program. FreeFem++ includes a fast 2d^-tree-based interpolation algorithm and a language for the manipulation of data on multiple meshes (as a follow up of bamg (now a part of FreeFem++).

FreeFem++ is written in C++ and the FreeFem++ language is a C++ idiom. It runs on Macs, Windows, Unix machines. FreeFem++ replaces the older freefem and freefem+.

FUNCTIONAL DESCRIPTION: FreeFem++ is a PDE (partial differential equation) solver based on a flexible language that allows a large number of problems to be expressed (elasticity, fluids, etc) with different finite element approximations on different meshes.

- Partner: UPMC
- Contact: Frederic Hecht
- URL: http://www.freefem.org/ff++/

6.2. HPDDM

SCIENTIFIC DESCRIPTION: HPDDM is an efficient implementation of various domain decomposition methods (DDM) such as one- and two-level Restricted Additive Schwarz methods, the Finite Element Tearing and Interconnecting (FETI) method, and the Balancing Domain Decomposition (BDD) method. This code has been proven to be efficient for solving various elliptic problems such as scalar diffusion equations, the system of linear elasticity, but also frequency domain problems like the Helmholtz equation. A comparison with modern multigrid methods can be found in the thesis of Pierre Jolivet.

FUNCTIONAL DESCRIPTION: HPDDM is an efficient implementation of various domain decomposition methods (DDM) such as one- and two-level Restricted Additive Schwarz methods, the Finite Element Tearing and Interconnecting (FETI) method, and the Balancing Domain Decomposition (BDD) method.

- Participants: Frédéric Nataf and Pierre Jolivet
- Contact: Pierre Jolivet
- URL: https://github.com/hpddm

6.3. LORASC

LORASC preconditioner KEYWORD: Preconditioner

- Participants: Laura Grigori and Rémi Lacroix
- Contact: Laura Grigori

6.4. Platforms

6.4.1. HTOOL

KEYWORD: Hierarchical Matrices

18

FUNCTIONAL DESCRIPTION: HTOOL is a C++ header-only library implementing compression techniques (e.g. Adaptive Cross Approximation) using hierarchical matrices. The library uses MPI and OpenMP for parallelism, and is interfaced with HPDDM for the solution of linear systems.

- Partners: CNRS UPMC ANR NonlocalDD
- Contact: Pierre Marchand
- URL: https://github.com/PierreMarchand20/htool

6.4.2. BemTool

KEYWORD: Boundary Element Method

FUNCTIONAL DESCRIPTION: BemTool is a C++ header-only library implementing the boundary element method for the discretisation of the Laplace, Helmholtz and Maxwell equations, in 2D and 3D. Its main purpose is the assembly of classic boundary element matrices, which can be compressed and inverted through its interface with HTOOL.

- Partners: UPMC ANR NonlocalDD
- Contact: Xavier Claeys
- URL: https://github.com/xclaeys/BemTool

6.4.3. Geneo4PETSc

KEYWORD: Domain decomposition method

FUNCTIONAL DESCRIPTION: Implementation of the GenEO preconditioner with PETSc and SLEPc.

- Partners: CNRS UPMC European project NLAFET
- Contact: Frédéric Nataf
- URL: https://github.com/geneo4PETSc/geneo4PETSc

6.4.4. ffddm

KEYWORD: Domain decomposition method

FUNCTIONAL DESCRIPTION: In the acronym ffddm, ff stands for FreeFem++ and ddm for domain decomposition methods. The idea behind ffddm is to simplify the use of parallel solvers in FreeFem++: distributed direct methods and domain decomposition methods.

- Partners: CNRS UPMC
- Contact: Pierre-Henri Tournier and Frédéric Nataf
- URL: https://doc.freefem.org/documentation/ffddm/ffddm

6.4.5. preAlps

KEYWORD: Preconditioned enlarged Krylov subspace methos FUNCTIONAL DESCRIPTION: Contains enlarged Conjugate Gradient Krylov subspace method and Lorasc preconditioner.

- Partners: Inria
- Contact: Simplice Donfack, Laura Grigori, Olivier Tissot
- URL: https://github.com/NLAFET/preAlps

6.4.6. FreeFem++ v4

KEYWORD: New version of Freefem++, with new sparce matrix kernel, and with surface finite element. FUNCTIONAL DESCRIPTION:

- Partners: UPMC Inria
- Contact: Frederic Hecht
- URL: https://github.com/FreeFem/FreeFem-sources/tree/v4

AVALON Project-Team

6. New Software and Platforms

6.1. MAD

Madeus Application Deployer

KEYWORDS: Automatic deployment - Distributed Software - Component models - Cloud computing SCIENTIFIC DESCRIPTION: MAD is a Python implementation of the Madeus deployment model for multicomponent distributed software. Precisely, it allows to: 1. describe the deployment process and the dependencies of distributed software components in accordance with the Madeus model, 2. describe an assembly of components, resulting in a functional distributed software, 3. automatically deploy the component assembly of distributed software following the operational semantics of Madeus.

RELEASE FUNCTIONAL DESCRIPTION: Initial submission with basic functionalities of MAD NEWS OF THE YEAR: Operational prototype.

- Participants: Christian Pérez, Dimitri Pertin, Hélène Coullon and Maverick Chardet
- Partners: IMT Atlantique LS2N LIP
- Contact: Hélène Coullon
- Publications: Madeus: A formal deployment model Behavioral interfaces for reconfiguration of component models

6.2. DIET

Distributed Interactive Engineering Toolbox

KEYWORDS: Scheduling - Clusters - Grid - Cloud - HPC - Middleware - Data management. FUNCTIONAL DESCRIPTION: Middleware for grids and clouds. Toolbox for the use and porting of intensive computing applications on heterogeneous architectures.

RELEASE FUNCTIONAL DESCRIPTION: - Upgrade to support Cmake 3.3 and later - Update workflow unit tests to take the results of the execution into account - DIET workflow engine was improved

NEWS OF THE YEAR: Work on the next DIET release (DIET 2.11) New DIET Webboard based on Angular Two news biological application platform based on DIET (Aevol and Wasabi) Rutgers University (NJ, USA) Collaboration

- Participants: Joel Faubert, Hadrien Croubois, Abdelkader Amar, Arnaud Lefray, Aurélien Bouteiller, Benjamin Isnard, Daniel Balouek, Eddy Caron, Eric Bois, Frédéric Desprez, Frédéric Lombart, Gaël Le Mahec, Guillaume Verger, Huaxi Zhang, Jean-Marc Nicod, Jonathan Rouzaud-Cornabas, Lamiel Toch, Maurice Faye, Peter Frauenkron, Philippe Combes, Philippe Laurent, Raphaël Bolze and Yves Caniou
- Partners: CNRS ENS Lyon UCBL Lyon 1 Sysfera
- Contact: Eddy Caron
- URL: http://graal.ens-lyon.fr/diet/

6.3. SimGrid

KEYWORDS: Large-scale Emulators - Grid Computing - Distributed Applications

SCIENTIFIC DESCRIPTION: SimGrid is a toolkit that provides core functionalities for the simulation of distributed applications in heterogeneous distributed environments. The simulation engine uses algorithmic and implementation techniques toward the fast simulation of large systems on a single machine. The models are theoretically grounded and experimentally validated. The results are reproducible, enabling better scientific practices.

20

Its models of networks, cpus and disks are adapted to (Data)Grids, P2P, Clouds, Clusters and HPC, allowing multi-domain studies. It can be used either to simulate algorithms and prototypes of applications, or to emulate real MPI applications through the virtualization of their communication, or to formally assess algorithms and applications that can run in the framework.

The formal verification module explores all possible message interleavings in the application, searching for states violating the provided properties. We recently added the ability to assess liveness properties over arbitrary and legacy codes, thanks to a system-level introspection tool that provides a finely detailed view of the running application to the model checker. This can for example be leveraged to verify both safety or liveness properties, on arbitrary MPI code written in C/C++/Fortran.

NEWS OF THE YEAR: There were 3 major releases in 2018: The public API was sanitized (with compatibility wrappers in place). Th documentation was completely overhauled. Our continuous integration was greatly improved (45 Proxy Apps + BigDFT + StarPU + BatSim now tested nightly). Some kernel headers are now installed, allowing external plugins. Allow dynamic replay of MPI apps, controlled by S4U actors. Port the MPI trace replay engine to C++, fix visualization (+ the classical bug fixes and doc improvement).

- Participants: Adrien Lèbre, Arnaud Legrand, Augustin Degomme, Florence Perronnin, Frédéric Suter, Jean-Marc Vincent, Jonathan Pastor, Luka Stanisic and Martin Quinson
- Partners: CNRS ENS Rennes
- Contact: Martin Quinson
- URL: https://simgrid.org/

6.4. Kwapi

KiloWatt API

KEYWORD: Power monitoring

FUNCTIONAL DESCRIPTION: Kwapi is a software framework dealing with energy monitoring of large scale infrastructures through heterogeneous energy sensors. Kwapi has been designed inside the FSN XLCloud project for Openstack infrastructures. Through the support of Hemera Inria project, kwapi has been extended and deployed in production mode to support easy and large scale energy profiling of the Grid5000 resources. Kwapi now supports high frequency powermeters of the Grid5000 Lyon platform.

RELEASE FUNCTIONAL DESCRIPTION: - many bugfixes - multiprocessing instead of multithreading - many optimizations

- Participants: François Rossigneux, Jean-Patrick Gelas, Laurent Lefèvre, Laurent Pouilloux, Simon Delamare and Matthieu Imbert
- Contact: Laurent Lefèvre
- URL: https://launchpad.net/kwapi

6.5. execo

KEYWORDS: Toolbox - Deployment - Orchestration - Python

FUNCTIONAL DESCRIPTION: Execo offers a Python API for asynchronous control of local or remote, standalone or parallel, unix processes. It is especially well suited for quickly and easily scripting workflows of parallel/distributed operations on local or remote hosts: automate a scientific workflow, conduct computer science experiments, perform automated tests, etc. The core python package is execo. The execo_g5k package provides a set of tools and extensions for the Grid5000 testbed. The execo_engine package provides tools to ease the development of computer sciences experiments.

RELEASE FUNCTIONAL DESCRIPTION: - misc python3 support fixes - basic documentation for wheezy compatible package build - remove some debug outputs - fix crash in processes conductor in some situations - improve/fix process stdout/stderr handlers - fix ge_cluste_networ_equipments - add a FAQ

- Participants: Florent Chuffart, Laurent Pouilloux and Matthieu Imbert
- Contact: Matthieu Imbert
- URL: http://execo.gforge.inria.fr

6.6. SeeDep

Seed based Deployment

KEYWORDS: Reproducibility - Deployment - Cloud

SCIENTIFIC DESCRIPTION: SeeDep aims at devising a new way where researchers can communicate in a comprehensive and accurate way the experimentation set-up used in their work. It lies on two components: (i) a public algorithm that generates experimentation networks, and (ii) a generation key (i.e. a seed) that can be shared which specifies the said network. Therefore, researchers only need to share (in their paper for instance) the "generation key" that corresponds to their experimentation network. With such key, any other researcher/professional will be able to re-generate a comprehensive and accurate model of the same network. FUNCTIONAL DESCRIPTION: SeeDep is a framework aiming at generating, reproducing and deploying experiments set-up on different Cloud platforms.

- Participants: Cyril Seguin and Eddy Caron
- Partner: Nokia Bell Labs
- Contact: Eddy Caron

6.7. libkomp

Runtime system libkomp

KEYWORDS: HPC - Multicore - OpenMP

FUNCTIONAL DESCRIPTION: libKOMP is a runtime support for OpenMP compatible with différent compiler: GNU gcc/gfortran, Intel icc/ifort or clang/llvm. It is based on source code initially developed by Intel for its own OpenMP runtime, with extensions from Kaapi software (task representation, task scheduling). Moreover it contains an OMPT module for recording trace of execution.

RELEASE FUNCTIONAL DESCRIPTION: Initial version

- Contact: Thierry Gautier
- URL: http://gitlab.inria.fr/openmp/libkomp

6.8. Platform: Grid'5000

Participants: Laurent Lefèvre, Simon Delamare, David Loup, Christian Perez.

FUNCTIONAL DESCRIPTION

The Grid'5000 experimental platform is a scientific instrument to support computer science research related to distributed systems, including parallel processing, high performance computing, cloud computing, operating systems, peer-to-peer systems and networks. It is distributed on 10 sites in France and Luxembourg, including Lyon. Grid'5000 is a unique platform as it offers to researchers many and varied hardware resources and a complete software stack to conduct complex experiments, ensure reproducibility and ease understanding of results. In 2018, a new generation of high speed wattmeters has been deployed on the Lyon site. They allow energy monitoring with up to 50 measurements per second. In parallel, a new version of kwapi (software stack for energy monitoring) has been proposed and redesigned.

- Contact: Laurent Lefèvre
- URL: https://www.grid5000.fr/

6.9. Platform: Leco

Participants: Thierry Gautier, Laurent Lefèvre, Christian Perez.

FUNCTIONAL DESCRIPTION

The LECO experimental platform is a new medium size scientific instrument funded by DRRT to investigate research related to BigData and HPC. It is located in Grenoble as part of the the HPCDA computer managed by UMS GRICAD. The platform has been deployed in 2018 and was available for experiment since the summer. All the nodes of the platform are instrumented to capture the energy consumption and data are available through the Kwapi software.

• Contact: Thierry Gautier

6.10. Platform: SILECS

Participants: Laurent Lefèvre, Simon Delamare, Christian Perez.

The SILECS infrastructure (IR ministère) aims at providing an experimental platform for experimental computer Science (Internet of things, clouds, hpc, big data, *etc.*). This new infrastructure is based on two existing infrastructures, Grid'5000 and FIT.

- Contact: Christian Perez
- URL: https://www.silecs.net/

DATAMOVE Project-Team

5. New Software and Platforms

5.1. FlowVR

SCIENTIFIC DESCRIPTION: FlowVR adopts the "data-flow" paradigm, where your application is divided as a set of components exchanging messages (think of it as a directed graph). FlowVR enables to encapsulate existing codes in components, interconnect them through data channels, and deploy them on distributed computing resources. FlowVR takes care of all the heavy lifting such as application deployment and message exchange.

The base entity, called a module or component, is an autonomous process, potentially multi-threaded with tools like OpenMP, TBB, or deferring computations to a GPU or Xeon Phi. This module processes data coming from input ports and write data on output ports. A module has no global insight on where the data comes from or goes to. The programming interface is designed to limit code refactoring, easing turning an existing code into a FlowVR component. The three main functions are:

wait(): Blocking function call that waits for the availability of new messages on input ports. get(): Retrieve a handle to access the message received at the previous wait() call on a given input port. put(): Notify FlowVR that a new message on a given output port is ready for dispatch. FlowVR manages data transfers. Intra-node communications between two components take place through a shared memory segment, avoiding copies. Once the sender has prepared the data in a shared memory segment, it simply handles a pointer to the destination that can directly access them. Inter-node communications extend this mechanism, FlowVR taking care of packing and transferring the data from the source shared memory segment to the destination shared memory segment.

Assembling components to build an application consists in writing a Python script, instanciate it according to the target machine. FlowVR will process it and prepare everything so that in one command line you can deploy and start your application.

FUNCTIONAL DESCRIPTION: FlowVR adopts the "data-flow" paradigm, where your application is divided as a set of components exchanging messages (think of it as a directed graph). FlowVR enables to encapsulate existing codes in components, interconnect them through data channels, and deploy them on distributed computing resources. FlowVR takes care of all the heavy lifting such as application deployment and message exchange.

- Participants: Bruno Raffin, Clément Ménier, Emmanuel Melin, Jean Denis Lesage, Jérémie Allard, Jérémy Jaussaud, Matthieu Dreher, Sébastien Limet, Sophie Robert and Valérie Gourantou
- Contact: Bruno Raffin
- URL: http://flowvr.sf.net

5.2. OAR

KEYWORDS: HPC - Cloud - Clusters - Resource manager - Light grid

SCIENTIFIC DESCRIPTION: This batch system is based on a database (PostgreSQL (preferred) or MySQL), a script language (Perl) and an optional scalable administrative tool (e.g. Taktuk). It is composed of modules which interact mainly via the database and are executed as independent programs. Therefore, formally, there is no API, the system interaction is completely defined by the database schema. This approach eases the development of specific modules. Indeed, each module (such as schedulers) may be developed in any language having a database access library.

FUNCTIONAL DESCRIPTION: OAR is a versatile resource and task manager (also called a batch scheduler) for HPC clusters, and other computing infrastructures (like distributed computing experimental testbeds where versatility is a key).

- Participants: Bruno Bzeznik, Olivier Richard and Pierre Neyron
- Partners: LIG CNRS Grid'5000 CIMENT
- Contact: Olivier Richard
- URL: http://oar.imag.fr

5.3. MELISSA

Modular External Library for In Situ Statistical Analysis

KEYWORD: Sensitivity Analysis

FUNCTIONAL DESCRIPTION: Melissa is an in situ solution for sensitivity analysis. It implements iterative algorithms to compute spatio-temporal statistic fields over results of large scale sensitivity studies. Melissa relies on a client/server architecture, composed of three main modules:

Melissa Server: an independent parallel executable. It receives data from the simulations, updates iterative statistics as soon as possible, then trow data away. Melissa API: a shared library to be linked within the simulation code. It mainly transmit simulation data to Melissa Server at each timestep. The simulations of the sensitivity analysis become the clients of Melissa Server. Melissa Launcher: A Python script in charge of generating and managing the whole global sensitivity analysis.

- Authors: Théophile Terraz, Bruno Raffin, Alejandro Ribes and Bertrand Iooss
- Partner: Edf
- Contact: Bruno Raffin
- Publications: In Situ Statistical Analysis for Parametric Studies Melissa: Large Scale In Transit Sensitivity Analysis Avoiding Intermediate Files
- URL: https://melissa-sa.github.io

5.4. Platforms

5.4.1. Grid'5000 (https://www.grid5000.fr/) and Meso Center Ciment (https://ciment.ujf-grenoble.fr)

We have been very active in promoting the factorization of compute resources at a regional and national level. We have a three level implication, locally to maintain a pool of very flexible experimental machines (hundreds of cores), regionally through the CIMENT meso center (Equipex Grant), and nationally by contributing to the Grid'5000 platform, our local resources being included in this platform. Olivier Richard is member of Grid'5000 scientific committee and Pierre Neyron is member of the technical committee. The OAR scheduler in particular is deployed on both infrastructures. We are currently preparing proposals for the next generation machines within the context of the new university association (Univ. Grenoble-Alpes).

HIEPACS Project-Team

6. New Software and Platforms

6.1. Chameleon

KEYWORDS: Runtime system - Task-based algorithm - Dense linear algebra - HPC - Task scheduling SCIENTIFIC DESCRIPTION: Chameleon is part of the MORSE (Matrices Over Runtime Systems @ Exascale) project. The overall objective is to develop robust linear algebra libraries relying on innovative runtime systems that can fully benefit from the potential of those future large-scale complex machines.

We expect advances in three directions based first on strong and closed interactions between the runtime and numerical linear algebra communities. This initial activity will then naturally expand to more focused but still joint research in both fields.

1. Fine interaction between linear algebra and runtime systems. On parallel machines, HPC applications need to take care of data movement and consistency, which can be either explicitly managed at the level of the application itself or delegated to a runtime system. We adopt the latter approach in order to better keep up with hardware trends whose complexity is growing exponentially. One major task in this project is to define a proper interface between HPC applications and runtime systems in order to maximize productivity and expressivity. As mentioned in the next section, a widely used approach consists in abstracting the application as a DAG that the runtime system is in charge of scheduling. Scheduling such a DAG over a set of heterogeneous processing units introduces a lot of new challenges, such as predicting accurately the execution time of each type of task over each kind of unit, minimizing data transfers between MPI will be designed to allow applications to provide scheduling hints to the runtime system and to get real-time feedback about the consequences of scheduling decisions.

2. Runtime systems. A runtime environment is an intermediate layer between the system and the application. It provides low-level functionality not provided by the system (such as scheduling or management of the heterogeneity) and high-level features (such as performance portability). In the framework of this proposal, we will work on the scalability of runtime environment. To achieve scalability it is required to avoid all centralization. Here, the main problem is the scheduling of the tasks. In many task-based runtime environments the scheduler is centralized and becomes a bottleneck as soon as too many cores are involved. It is therefore required to distribute the scheduling decision or to compute a data distribution that impose the mapping of task using, for instance the so-called "owner-compute" rule. Expected advances: We will design runtime systems that enable an efficient and scalable use of thousands of distributed multicore nodes enhanced with accelerators.

3. Linear algebra. Because of its central position in HPC and of the well understood structure of its algorithms, dense linear algebra has often pioneered new challenges that HPC had to face. Again, dense linear algebra has been in the vanguard of the new era of petascale computing with the design of new algorithms that can efficiently run on a multicore node with GPU accelerators. These algorithms are called "communication-avoiding" since they have been redesigned to limit the amount of communication between processing units (and between the different levels of memory hierarchy). They are expressed through Direct Acyclic Graphs (DAG) of fine-grained tasks that are dynamically scheduled. Expected advances: First, we plan to investigate the impact of these principles in the case of sparse applications (whose algorithms are slightly more complicated but often rely on dense kernels). Furthermore, both in the dense and sparse cases, the scalability on thousands of nodes is still limited, new numerical approaches need to be found. We will specifically design sparse hybrid direct/iterative methods that represent a promising approach.

Overall end point. The overall goal of the MORSE associate team is to enable advanced numerical algorithms to be executed on a scalable unified runtime system for exploiting the full potential of future exascale machines.

26

FUNCTIONAL DESCRIPTION: Chameleon is a dense linear algebra software relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a Runtime system. A Runtime system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes). This kind of implementation paradigm allows to design high performing linear algebra algorithms on very different type of architecture: laptop, many-core nodes, CPUs-GPUs, multiple nodes. For example, Chameleon is able to perform a Cholesky factorization (double-precision) at 80 TFlop/s on a dense matrix of order 400 000 (e.i. 4 min).

RELEASE FUNCTIONAL DESCRIPTION: Chameleon includes the following features:

- BLAS 3, LAPACK one-sided and LAPACK norms tile algorithms - Support QUARK and StarPU runtime systems and PaRSEC since 2018 - Exploitation of homogeneous and heterogeneous platforms through the use of BLAS/LAPACK CPU kernels and cuBLAS/MAGMA CUDA kernels - Exploitation of clusters of interconnected nodes with distributed memory (using OpenMPI)

- Participants: Cédric Castagnede, Samuel Thibault, Emmanuel Agullo, Florent Pruvost and Mathieu Faverge
- Partners: Innovative Computing Laboratory (ICL) King Abdullha University of Science and Technology University of Colorado Denver
- Contact: Emmanuel Agullo
- URL: https://gitlab.inria.fr/solverstack/chameleon

6.2. Fabulous

Fast Accurate Block Linear krylOv Solver

KEYWORDS: Numerical algorithm - Block Krylov solver

SCIENTIFIC DESCRIPTION: Versatile and flexible numerical library that implements Block Krylov iterative schemes for the solution of linear systems of equations with multiple right-hand sides

FUNCTIONAL DESCRIPTION: Versatile and flexible numerical library that implements Block Krylov iterative schemes for the solution of linear systems of equations with multiple right-hand sides. The library implements block variants of minimal norm residual variants with partial convergence management and spectral information recycling. The package already implements regular block-GMRES (BGMRES), Inexact Breakdown BGMRES (IB-BMGRES), Inexact Breakdown BGMRES with Deflated Restarting (IB-BGMRES-DR), Block Generalized Conjugate Residual with partial convergence management. The C++ library relies on callback mechanisms to implement the calculations (matrix-vector, dot-product, ...) that depend on the parallel data distribution selected by the user.

- Participants: Emmanuel Agullo, Luc Giraud and Cyrille Piacibello
- Contact: Luc Giraud
- Publication: Block GMRES method with inexact breakdowns and deflated restarting
- URL: https://gitlab.inria.fr/solverstack/fabulous/

6.3. HIPS

Hierarchical Iterative Parallel Solver KEYWORDS: Simulation - HPC - Parallel calculation - Hybrid direct iterative method SCIENTIFIC DESCRIPTION: The key point of the methods implemented in HIPS is to define an ordering and a partition of the unknowns that relies on a form of nested dissection ordering in which cross points in the separators play a special role (Hierarchical Interface Decomposition ordering). The subgraphs obtained by nested dissection correspond to the unknowns that are eliminated using a direct method and the Schur complement system on the remaining of the unknowns (that correspond to the interface between the subgraphs viewed as sub-domains) is solved using an iterative method (GMRES or Conjugate Gradient at the time being). This special ordering and partitioning allows for the use of dense block algorithms both in the direct and iterative part of the solver and provides a high degree of parallelism to these algorithms. The code provides a hybrid method which blends direct and iterative solvers. HIPS exploits the partitioning and multistage ILUU techniques to enable a highly parallel scheme where several subdomains can be assigned to the same process. It also provides a scalar preconditioner based on the multistage ILUT factorization.

HIPS can be used as a standalone program that reads a sparse linear system from a file, it also provides an interface to be called from any C, C++ or Fortran code. It handles symmetric, unsymmetric, real or complex matrices. Thus, HIPS is a software library that provides several methods to build an efficient preconditioner in almost all situations.

FUNCTIONAL DESCRIPTION: HIPS (Hierarchical Iterative Parallel Solver) is a scientific library that provides an efficient parallel iterative solver for very large sparse linear systems.

- Participants: Jérémie Gaidamour, Pascal Hénon and Yousef Saad
- Contact: Pierre Ramet
- URL: https://gitlab.inria.fr/solverstack/hips

6.4. MAPHYS

Massively Parallel Hybrid Solver

KEYWORD: Parallel hybrid direct/iterative solution of large linear systems

FUNCTIONAL DESCRIPTION: MaPHyS is a software package that implements a parallel linear solver coupling direct and iterative approaches. The underlying idea is to apply to general unstructured linear systems domain decomposition ideas developed for the solution of linear systems arising from PDEs. The interface problem, associated with the so called Schur complement system, is solved using a block preconditioner with overlap between the blocks that is referred to as Algebraic Additive Schwarz. A fully algebraic coarse space is available for symmetric positive definite problems, that insures the numerical scalability of the preconditioner.

The parallel implementation is based on MPI+thread. Maphys relies on state-of-the art sparse and dense direct solvers.

MaPHyS is essentially a preconditioner that can be used to speed-up the convergence of any Krylov subspace method and is coupled with the ones implemented in the Fabulous package.

- Participants: Emmanuel Agullo, Luc Giraud, Matthieu Kuhn, Gilles Marait and Louis Poirel
- Contact: Emmanuel Agullo
- Publications: Hierarchical hybrid sparse linear solver for multicore platforms Robust coarse spaces for Abstract Schwarz preconditioners via generalized eigenproblems
- URL: https://gitlab.inria.fr/solverstack/maphys

6.5. MetaPart

KEYWORDS: High performance computing - HPC - Parallel computing - Graph algorithmics - Graph - Hypergraph

FUNCTIONAL DESCRIPTION: MetaPart is a framework for graph or hypergraph manipulation that addresses different problems, like partitioning, repartitioning, or co-partitioning, ... MetaPart is made up of several projects, such as StarPart, LibGraph or CoPart. StarPart is the core of the MetaPart framework. It offers a wide variety of graph partitioning methods (Metis, Scotch, Zoltan, Patoh, ParMetis, Kahip, ...), which makes it easy to compare these different methods and to better adjust the parameters of these methods. It is built upon the LibGraph library, that provides basic graph and hypergraph routines. The Copart project is a library used on top of StarPart, that provides co-partitioning algorithms for the load-blancing of parallel coupled simulations.

- Participant: Aurélien Esnard
- Contact: Aurélien Esnard
- URL: https://gitlab.inria.fr/metapart

6.6. MPICPL

MPI CouPLing

KEYWORDS: MPI - Coupling software

FUNCTIONAL DESCRIPTION: MPICPL is a software library dedicated to the coupling of parallel legacy codes, that are based on the well-known MPI standard. It proposes a lightweight and comprehensive programing interface that simplifies the coupling of several MPI codes (2, 3 or more). MPICPL facilitates the deployment of these codes thanks to the mpicplrun tool and it interconnects them automatically through standard MPI intercommunicators. Moreover, it generates the universe communicator, that merges the world communicators of all coupled-codes. The coupling infrastructure is described by a simple XML file, that is just loaded by the mpicplrun tool.

- Participant: Aurélien Esnard
- Contact: Aurélien Esnard
- URL: https://gitlab.inria.fr/esnard/mpicpl

6.7. OptiDis

KEYWORDS: Dislocation dynamics simulation - Fast multipole method - Large scale - Collision

FUNCTIONAL DESCRIPTION: OptiDis is a new code for large scale dislocation dynamics simulations. Its purpose is to simulate real life dislocation densities (up to 5.1022 dislocations/m-2) in order to understand plastic deformation and study strain hardening. The main application is to observe and understand plastic deformation of irradiated zirconium. Zirconium alloys are the first containment barrier against the dissemination of radioactive elements. More precisely, with neutron irradiated zirconium alloys we are talking about channeling mechanism, which means to stick with the reality, more than tens of thousands of induced loops, i. e. 100 million degrees of freedom in the simulation. The code is based on Numodis code developed at CEA Saclay and the ScalFMM library developed in HiePACS project. The code is written in C++ language and using the last features of C++11/14. One of the main aspects is the hybrid parallelism MPI/OpenMP that gives the software the ability to scale on large cluster while the computation load rises. In order to achieve that, we use a thinner level for threads, dividing the domain by an Octree representation. All theses parts are controlled by the ScalFMM library. On the last level, our data are stored in an adaptive structure that absorbs the dynamics of this type of simulation and manages the parallelism of tasks..

- Participant: Olivier Coulaud
- Contact: Olivier Coulaud
- URL: http://optidis.gforge.inria.fr/

6.8. PaStiX

Parallel Sparse matriX package

KEYWORDS: Linear algebra - High-performance calculation - Factorisation - Sparse Matrices - Linear Systems Solver

SCIENTIFIC DESCRIPTION: PaStiX is based on an efficient static scheduling and memory manager, in order to solve 3D problems with more than 50 million of unknowns. The mapping and scheduling algorithm handle a combination of 1D and 2D block distributions. A dynamic scheduling can also be applied to take care of NUMA architectures while taking into account very precisely the computational costs of the BLAS 3 primitives, the communication costs and the cost of local aggregations.

FUNCTIONAL DESCRIPTION: PaStiX is a scientific library that provides a high performance parallel solver for very large sparse linear systems based on block direct and block ILU(k) methods. It can handle lowrank compression techniques to reduce the computation and the memory complexity. Numerical algorithms are implemented in single or double precision (real or complex) for LLt, LDLt and LU factorization with static pivoting (for non symmetric matrices having a symmetric pattern). The PaStiX library uses the graph partitioning and sparse matrix block ordering packages Scotch or Metis.

The PaStiX solver is suitable for any heterogeneous parallel/distributed architecture when its performance is predictable, such as clusters of multicore nodes with GPU accelerators or KNL processors. In particular, we provide a high-performance version with a low memory overhead for multicore node architectures, which fully exploits the advantage of shared memory by using an hybrid MPI-thread implementation.

The solver also provides some low-rank compression methods to reduce the memory footprint and/or the time-to-solution.

- Participants: Grégoire Pichon, Mathieu Faverge and Pierre Ramet
- Partners: Université Bordeaux 1 INP Bordeaux
- Contact: Pierre Ramet
- URL: https://gitlab.inria.fr/solverstack/pastix

6.9. ScalFMM

Scalable Fast Multipole Method

KEYWORDS: N-body - Fast multipole method - Parallelism - MPI - OpenMP

SCIENTIFIC DESCRIPTION: ScalFMM is a software library to simulate N-body interactions using the Fast Multipole Method. The library offers two methods to compute interactions between bodies when the potential decays like 1/r. The first method is the classical FMM based on spherical harmonic expansions and the second is the Black-Box method which is an independent kernel formulation (introduced by E. Darve @ Stanford). With this method, we can now easily add new non oscillatory kernels in our library. For the classical method, two approaches are used to decrease the complexity of the operators. We consider either matrix formulation that allows us to use BLAS routines or rotation matrix to speed up the M2L operator.

ScalFMM intends to offer all the functionalities needed to perform large parallel simulations while enabling an easy customization of the simulation components: kernels, particles and cells. It works in parallel in a shared/distributed memory model using OpenMP and MPI. The software architecture has been designed with two major objectives: being easy to maintain and easy to understand. There is two main parts:

the management of the octree and the parallelization of the method the kernels. This new architecture allow us to easily add new FMM algorithm or kernels and new paradigm of parallelization.

FUNCTIONAL DESCRIPTION: Compute N-body interactions using the Fast Multipole Method for large number of objects

- Participants: Bramas Bérenger and Olivier Coulaud
- Contact: Olivier Coulaud
- URL: https://gitlab.inria.fr/solverstack/ScalFMM

6.10. VITE

Visual Trace Explorer

KEYWORDS: Visualization - Execution trace

FUNCTIONAL DESCRIPTION: VITE is a trace explorer. It is a tool made to visualize execution traces of large parallel programs. It supports Pajé, a trace format created by Inria Grenoble, and OTF and OTF2 formats, developed by the University of Dresden and allows the programmer a simpler way to analyse, debug and/or profile large parallel applications.

- Participant: Mathieu Faverge
- Contact: Mathieu Faverge
- URL: http://vite.gforge.inria.fr/

6.11. PlaFRIM

Plateforme Fédérative pour la Recherche en Informatique et Mathématiques

KEYWORDS: High-Performance Computing - Hardware platform

FUNCTIONAL DESCRIPTION: PlaFRIM is an experimental platform for research in modeling, simulations and high performance computing. This platform has been set up from 2009 under the leadership of Inria Bordeaux Sud-Ouest in collaboration with computer science and mathematics laboratories, respectively Labri and IMB with a strong support in the region Aquitaine.

It aggregates different kinds of computational resources for research and development purposes. The latest technologies in terms of processors, memories and architecture are added when they are available on the market. It is now more than 1,000 cores (excluding GPU and Xeon Phi) that are available for all research teams of Inria Bordeaux, Labri and IMB. This computer is in particular used by all the engineers who work in HiePACS and are advised by F. Rue from the SED.

- Contact: Olivier Coulaud
- URL: https://www.plafrim.fr/en/home/

KERDATA Project-Team

4. New Software and Platforms

4.1. Damaris

KEYWORDS: Visualization - I/O - HPC - Exascale - High performance computing

SCIENTIFIC DESCRIPTION: Damaris is a middleware for I/O and data management targeting large-scale, MPI-based HPC simulations. It initially proposed to dedicate cores for asynchronous I/O in multicore nodes of recent HPC platforms, with an emphasis on ease of integration in existing simulations, efficient resource usage (with the use of shared memory) and simplicity of extension through plug-ins. Over the years, Damaris has evolved into a more elaborate system, providing the possibility to use dedicated cores or dedicated nodes to in situ data processing and visualization. It proposes a seamless connection to the VisIt visualization framework to enable in situ visualization with minimum impact on run time. Damaris provides an extremely simple API and can be easily integrated into the existing large-scale simulations.

Damaris was at the core of the PhD thesis of Matthieu Dorier, who received an Accessit to the Gilles Kahn Ph.D. Thesis Award of the SIF and the Academy of Science in 2015. Developed in the framework of our collaboration with the JLESC – Joint Laboratory for Extreme-Scale Computing, Damaris was the first software resulted from this joint lab validated in 2011 for integration to the Blue Waters supercomputer project. It scaled up to 16,000 cores on Oak Ridge's leadership supercomputer Titan (first in the Top500 supercomputer list in 2013) before being validated on other top supercomputers. Active development is currently continuing within the KerData team at Inria, where it is at the center of several collaborations with industry as well as with national and international academic partners.

FUNCTIONAL DESCRIPTION: Damaris is a middleware for data management and in-situ visualization targeting large-scale HPC simulations: - In situ data analysis by some dedicated cores/nodes of the simulation platform - Asynchronous and fast data transfer from HPC simulations to Damaris - Semantic-aware dataset processing through Damaris plug-ins - Writing aggregated data (by hdf5 format) or visualizating them either by VisIt or ParaView

- Participants: Gabriel Antoniu, Lokman Rahmani, Luc Bougé, Matthieu Dorier, Orçun Yildiz and Hadi Salimi
- Partner: ENS Rennes
- Contact: Matthieu Dorier
- URL: https://project.inria.fr/damaris/

4.2. OverFlow

FUNCTIONAL DESCRIPTION: OverFlow is a uniform data management system for scientific workflows running across geographically distributed sites, aiming to reap economic benefits from this geo-diversity. The software is environment-aware, as it monitors and models the global cloud infrastructure, offering high and predictable data handling performance for transfer cost and time, within and across sites. OverFlow proposes a set of pluggable services, grouped in a data-scientist cloud kit. They provide the applications with the possibility to monitor the underlying infrastructure, to exploit smart data compression, deduplication and geo-replication, to evaluate data management costs, to set a tradeoff between money and time, and optimize the transfer strategy accordingly.

Currently, OverFlow is used for data transfers by the Microsoft Research ATLE Munich team as well as for synthetic benchmarks at the Politehnica University of Bucharest.

- Participants: Alexandru Costan, Gabriel Antoniu and Radu Marius Tudoran
- Contact: Alexandru Costan

4.3. Pufferbench

KEYWORDS: Distributed Storage Systems - Elasticity - Benchmarking

SCIENTIFIC DESCRIPTION: Pufferbench is a benchmark for evaluating how fast one can scale up and down a distributed storage system on a given infrastructure and, thereby, how viably can one implement storage malleability on it. Besides, it can serve to quickly prototype and evaluate mechanisms for malleability in existing distributed storage systems.

FUNCTIONAL DESCRIPTION: Pufferbench is a benchmark to designed to evaluate whether to use malleable distributed storage systems on a given platform. - It measures the duration of commission and decommission operations. - Its modularity allows to quickly change and adapt each component to the needs of the user. - It can serve as a baseline when implementing commission and decommission mechanisms in a distributed storage system.

RELEASE FUNCTIONAL DESCRIPTION: This is the first release of Pufferbench.

It includes default components for each of the customisable components: - storage: in memory, on drive with file system cache, and on drive without file system cache - network: MPI network - IODispatcher: basic, and with acknowledgements - DataTransferScheduler: basic - DataDistributionGenerator: uniform, and random - MetadataGenerator: Files of same size The diversity of available components enables Pufferbench to fit to multiple use cases.

- Participants: Nathanaël Cheriere, Matthieu Dorier and Gabriel Antoniu
- Partner: ENS Rennes
- Contact: Nathanaël Cheriere
- Publication: Pufferbench: Evaluating and Optimizing Malleability of Distributed Storage
- URL: https://gitlab.inria.fr/Puffertools/Pufferbench/wikis/home

4.4. Tyr

KEYWORDS: Cloud storage - Distributed Storage Systems - Big data

FUNCTIONAL DESCRIPTION: Tyr is the first blob storage system to provide built-in, multiblob transactions, while retaining sequential consistency and high throughput under heavy access concurrency. Tyr offers finegrained random write access to data and in-place atomic operations.

- Partner: Universidad Politécnica de Madrid
- Contact: Gabriel Antoniu

4.5. Planner

KEYWORDS: Edge elements - Cloud computing - Scheduling

FUNCTIONAL DESCRIPTION: Planner is a middleware for uniform and transparent stream processing across Edge and Cloud. Planner automatically selects which parts of the executiongraph will be executed at the Edge in order to minimize thenetwork cost.

- Partner: ENS Cachan
- Contact: Gabriel Antoniu
- URL: https://team.inria.fr/kerdata/

4.6. KerA

KerAnalytics KEYWORD: Distributed Storage Systems FUNCTIONAL DESCRIPTION: A unified architecture for stream ingestion and storage which can lead to the optimization of the processing of Big Data applications. This approach minimizes data movement within the analytics architecture, finally leading to better utilized resources.

• Contact: Gabriel Antoniu

4.7. TailWind

KEYWORDS: Fault-tolerance - Data management. - Distributed Data Management

FUNCTIONAL DESCRIPTION: Replication is essential for fault-tolerance. However, in in-memory systems, it is a source of high overhead. Remote direct memory access (RDMA) is attractive to create redundant copies of data, since it is low-latency and has no CPU overhead at the target. However, existing approaches still result in redundant data copying and active receivers. To ensure atomic data transfers, receivers check and apply only fully received messages. Tailwind is a zero-copy recovery-log replication protocol for scale-out in-memory databases. Tailwind is the first replication protocol that eliminates *all* CPU-driven data copying and fully bypasses target server CPUs, thus leaving backups idle. Tailwind ensures all writes are atomic by leveraging a protocol that detects incomplete RDMA transfers. Tailwind substantially improves replication throughput and response latency compared with conventional RPC-based replication. In symmetric systems where servers both serve requests and act as replicas, Tailwind also improves normal-case throughput by freeing server CPU resources for request processing. We implemented and evaluated Tailwind on RAMCloud, a low-latency in-memory storage system. Experiments show Tailwind improves RAMCloud's normal-case request processing throughput by 1.7×. It also cuts down writes median and 99th percentile latencies by 2x and 3x respectively.

• Contact: Gabriel Antoniu

POLARIS Project-Team

6. New Software and Platforms

6.1. Framesoc

FUNCTIONAL DESCRIPTION: Framesoc is the core software infrastructure of the SoC-Trace project. It provides a graphical user environment for execution-trace analysis, featuring interactive analysis views as Gantt charts or statistics views. It provides also a software library to store generic trace data, play with them, and build other analysis tools (e.g., Ocelotl).

- Participants: Arnaud Legrand and Jean-Marc Vincent
- Contact: Guillaume Huard
- URL: http://soctrace-inria.github.io/framesoc/

6.2. GameSeer

FUNCTIONAL DESCRIPTION: GameSeer is a tool for students and researchers in game theory that uses Mathematica to generate phase portraits for normal form games under a variety of (user-customizable) evolutionary dynamics. The whole point behind GameSeer is to provide a dynamic graphical interface that allows the user to employ Mathematica's vast numerical capabilities from a simple and intuitive front-end. So, even if you've never used Mathematica before, you should be able to generate fully editable and customizable portraits quickly and painlessly.

- Contact: Panayotis Mertikopoulos
- URL: http://mescal.imag.fr/membres/panayotis.mertikopoulos/publications.html

6.3. marmoteCore

Markov Modeling Tools and Environments - the Core

KEYWORDS: Modeling - Stochastic models - Markov model

FUNCTIONAL DESCRIPTION: marmoteCore is a C++ environment for modeling with Markov chains. It consists in a reduced set of high-level abstractions for constructing state spaces, transition structures and Markov chains (discrete-time and continuous-time). It provides the ability of constructing hierarchies of Markov models, from the most general to the particular, and equip each level with specifically optimized solution methods.

This software is developed within the ANR MARMOTE project: ANR-12-MONU-00019.

- Participants: Alain Jean-Marie, Hlib Mykhailenko, Benjamin Briot, Franck Quessette, Issam Rabhi, Jean-Marc Vincent and Jean-Michel Fourneau
- Partner: UVSQ
- Contact: Alain Jean-Marie
- Publications: marmoteCore: a Markov Modeling Platform marmoteCore: a software platform for Markov modeling
- URL: http://marmotecore.gforge.inria.fr/

6.4. Moca

Memory Organisation Cartography and Analysis

35

KEYWORDS: High-Performance Computing - Performance analysis

- Contact: David Beniamine
- URL: https://github.com/dbeniamine/MOCA

6.5. Ocelotl

Multidimensional Overviews for Huge Trace Analysis

FUNCTIONAL DESCRIPTION: Ocelotl is an innovative visualization tool, which provides overviews for execution trace analysis by using a data aggregation technique. This technique enables to find anomalies in huge traces containing up to several billions of events, while keeping a fast computation time and providing a simple representation that does not overload the user.

- Participants: Arnaud Legrand and Jean-Marc Vincent
- Contact: Jean-Marc Vincent
- URL: http://soctrace-inria.github.io/ocelotl/

6.6. PSI

Perfect Simulator

FUNCTIONAL DESCRIPTION: Perfect simulator is a simulation software of markovian models. It is able to simulate discrete and continuous time models to provide a perfect sampling of the stationary distribution or directly a sampling of functional of this distribution by using coupling from the past. The simulation kernel is based on the CFTP algorithm, and the internal simulation of transitions on the Aliasing method.

- Contact: Jean-Marc Vincent
- URL: http://psi.gforge.inria.fr/

6.7. SimGrid

KEYWORDS: Large-scale Emulators - Grid Computing - Distributed Applications

SCIENTIFIC DESCRIPTION: SimGrid is a toolkit that provides core functionalities for the simulation of distributed applications in heterogeneous distributed environments. The simulation engine uses algorithmic and implementation techniques toward the fast simulation of large systems on a single machine. The models are theoretically grounded and experimentally validated. The results are reproducible, enabling better scientific practices.

Its models of networks, cpus and disks are adapted to (Data)Grids, P2P, Clouds, Clusters and HPC, allowing multi-domain studies. It can be used either to simulate algorithms and prototypes of applications, or to emulate real MPI applications through the virtualization of their communication, or to formally assess algorithms and applications that can run in the framework.

The formal verification module explores all possible message interleavings in the application, searching for states violating the provided properties. We recently added the ability to assess liveness properties over arbitrary and legacy codes, thanks to a system-level introspection tool that provides a finely detailed view of the running application to the model checker. This can for example be leveraged to verify both safety or liveness properties, on arbitrary MPI code written in C/C++/Fortran.

NEWS OF THE YEAR: There were 3 major releases in 2018: The public API was sanitized (with compatibility wrappers in place). Th documentation was completely overhauled. Our continuous integration was greatly improved (45 Proxy Apps + BigDFT + StarPU + BatSim now tested nightly). Some kernel headers are now installed, allowing external plugins. Allow dynamic replay of MPI apps, controlled by S4U actors. Port the MPI trace replay engine to C++, fix visualization (+ the classical bug fixes and doc improvement).

- Participants: Adrien Lèbre, Arnaud Legrand, Augustin Degomme, Florence Perronnin, Frédéric Suter, Jean-Marc Vincent, Jonathan Pastor, Luka Stanisic and Martin Quinson
- Partners: CNRS ENS Rennes
- Contact: Martin Quinson
- URL: https://simgrid.org/

6.8. Tabarnac

Tool for Analyzing the Behavior of Applications Running on NUMA ArChitecture KEYWORDS: High-Performance Computing - Performance analysis - NUMA

- Contact: David Beniamine
- URL: https://dbeniamine.github.io/Tabarnac/

ROMA Project-Team

6. New Software and Platforms

6.1. MUMPS

A MUltifrontal Massively Parallel Solver

KEYWORDS: High-Performance Computing - Direct solvers - Finite element modelling

FUNCTIONAL DESCRIPTION: MUMPS is a software library to solve large sparse linear systems (AX=B) on sequential and parallel distributed memory computers. It implements a sparse direct method called the multifrontal method. It is used worldwide in academic and industrial codes, in the context numerical modeling of physical phenomena with finite elements. Its main characteristics are its numerical stability, its large number of features, its high performance and its constant evolution through research and feedback from its community of users. Examples of application fields include structural mechanics, electromagnetism, geophysics, acoustics, computational fluid dynamics. MUMPS is developed by INPT(ENSEEIHT)-IRIT, Inria, CERFACS, University of Bordeaux, CNRS and ENS Lyon. In 2014, a consortium of industrial users has been created (http://mumps-consortium.org).

RELEASE FUNCTIONAL DESCRIPTION: MUMPS versions 5.1.0, 5.1.1 and 5.1.2, all released in 2017 include many new features and improvements. The two main new features are Block Low-Rank compression, decreasing the complexity of sparse direct solvers for various types of applications, and selective 64bit integers, allowing to process matrices with more than 2 billion entries. Several new features have been developed in 2017 and 2018 that are included in some MUMPS versions provided to partners for experimentation (e.g. in the context of industrial contracts). These features will appear in the future public versions, starting with MUMPS 5.2.0.

- Participants: Gilles Moreau, Abdou Guermouche, Alfredo Buttari, Aurélia Fevre, Bora Uçar, Chiara Puglisi, Clément Weisbecker, Emmanuel Agullo, François-Henry Rouet, Guillaume Joslin, Jacko Koster, Jean-Yves L'excellent, Marie Durand, Maurice Bremond, Mohamed Sid-Lakhdar, Patrick Amestoy, Philippe Combes, Stéphane Pralet, Theo Mary and Tzvetomila Slavova
- Partners: Université de Bordeaux CNRS CERFACS ENS Lyon INPT IRIT Université de Lyon Université de Toulouse LIP
- Contact: Jean-Yves L'excellent
- URL: http://mumps-solver.org/

STORM Project-Team

6. New Software and Platforms

6.1. Chameleon

KEYWORDS: Runtime system - Task-based algorithm - Dense linear algebra - HPC - Task scheduling SCIENTIFIC DESCRIPTION: Chameleon is part of the MORSE (Matrices Over Runtime Systems @ Exascale) project. The overall objective is to develop robust linear algebra libraries relying on innovative runtime systems that can fully benefit from the potential of those future large-scale complex machines.

We expect advances in three directions based first on strong and closed interactions between the runtime and numerical linear algebra communities. This initial activity will then naturally expand to more focused but still joint research in both fields.

1. Fine interaction between linear algebra and runtime systems. On parallel machines, HPC applications need to take care of data movement and consistency, which can be either explicitly managed at the level of the application itself or delegated to a runtime system. We adopt the latter approach in order to better keep up with hardware trends whose complexity is growing exponentially. One major task in this project is to define a proper interface between HPC applications and runtime systems in order to maximize productivity and expressivity. As mentioned in the next section, a widely used approach consists in abstracting the application as a DAG that the runtime system is in charge of scheduling. Scheduling such a DAG over a set of heterogeneous processing units introduces a lot of new challenges, such as predicting accurately the execution time of each type of task over each kind of unit, minimizing data transfers between memory banks, performing data prefetching, etc. Expected advances: In a nutshell, a new runtime system API will be designed to allow applications to provide scheduling hints to the runtime system and to get real-time feedback about the consequences of scheduling decisions.

2. Runtime systems. A runtime environment is an intermediate layer between the system and the application. It provides low-level functionality not provided by the system (such as scheduling or management of the heterogeneity) and high-level features (such as performance portability). In the framework of this proposal, we will work on the scalability of runtime environment. To achieve scalability it is required to avoid all centralization. Here, the main problem is the scheduling of the tasks. In many task-based runtime environments the scheduler is centralized and becomes a bottleneck as soon as too many cores are involved. It is therefore required to distribute the scheduling decision or to compute a data distribution that impose the mapping of task using, for instance the so-called "owner-compute" rule. Expected advances: We will design runtime systems that enable an efficient and scalable use of thousands of distributed multicore nodes enhanced with accelerators.

3. Linear algebra. Because of its central position in HPC and of the well understood structure of its algorithms, dense linear algebra has often pioneered new challenges that HPC had to face. Again, dense linear algebra has been in the vanguard of the new era of petascale computing with the design of new algorithms that can efficiently run on a multicore node with GPU accelerators. These algorithms are called "communication-avoiding" since they have been redesigned to limit the amount of communication between processing units (and between the different levels of memory hierarchy). They are expressed through Direct Acyclic Graphs (DAG) of fine-grained tasks that are dynamically scheduled. Expected advances: First, we plan to investigate the impact of these principles in the case of sparse applications (whose algorithms are slightly more complicated but often rely on dense kernels). Furthermore, both in the dense and sparse cases, the scalability on thousands of nodes is still limited, new numerical approaches need to be found. We will specifically design sparse hybrid direct/iterative methods that represent a promising approach.

Overall end point. The overall goal of the MORSE associate team is to enable advanced numerical algorithms to be executed on a scalable unified runtime system for exploiting the full potential of future exascale machines.

FUNCTIONAL DESCRIPTION: Chameleon is a dense linear algebra software relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a Runtime system. A Runtime system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes). This kind of implementation paradigm allows to design high performing linear algebra algorithms on very different type of architecture: laptop, many-core nodes, CPUs-GPUs, multiple nodes. For example, Chameleon is able to perform a Cholesky factorization (double-precision) at 80 TFlop/s on a dense matrix of order 400 000 (e.i. 4 min).

RELEASE FUNCTIONAL DESCRIPTION: Chameleon includes the following features:

- BLAS 3, LAPACK one-sided and LAPACK norms tile algorithms - Support QUARK and StarPU runtime systems and PaRSEC since 2018 - Exploitation of homogeneous and heterogeneous platforms through the use of BLAS/LAPACK CPU kernels and cuBLAS/MAGMA CUDA kernels - Exploitation of clusters of interconnected nodes with distributed memory (using OpenMPI)

- Participants: Cédric Castagnede, Samuel Thibault, Emmanuel Agullo, Florent Pruvost and Mathieu Faverge
- Partners: Innovative Computing Laboratory (ICL) King Abdullha University of Science and Technology University of Colorado Denver
- Contact: Emmanuel Agullo
- URL: https://gitlab.inria.fr/solverstack/chameleon

6.2. hwloc

Hardware Locality

KEYWORDS: NUMA - Multicore - GPU - Affinities - Open MPI - Topology - HPC - Locality

FUNCTIONAL DESCRIPTION: Hardware Locality (hwloc) is a library and set of tools aiming at discovering and exposing the topology of machines, including processors, cores, threads, shared caches, NUMA memory nodes and I/O devices. It builds a widely-portable abstraction of these resources and exposes it to applications so as to help them adapt their behavior to the hardware characteristics. They may consult the hierarchy of resources, their attributes, and bind task or memory on them.

hwloc targets many types of high-performance computing applications, from thread scheduling to placement of MPI processes. Most existing MPI implementations, several resource managers and task schedulers, and multiple other parallel libraries already use hwloc.

- Participants: Brice Goglin and Samuel Thibault
- Partners: Open MPI consortium Intel AMD
- Contact: Brice Goglin
- Publications: hwloc: a Generic Framework for Managing Hardware Affinities in HPC Applications - Managing the Topology of Heterogeneous Cluster Nodes with Hardware Locality (hwloc) - A Topology-Aware Performance Monitoring Tool for Shared Resource Management in Multicore Systems - Exposing the Locality of Heterogeneous Memory Architectures to HPC Applications -Towards the Structural Modeling of the Topology of next-generation heterogeneous cluster Nodes with hwloc - On the Overhead of Topology Discovery for Locality-aware Scheduling in HPC
- URL: http://www.open-mpi.org/projects/hwloc/

6.3. KaStORS

The KaStORS OpenMP Benchmark Suite

KEYWORDS: Benchmarking - HPC - Task-based algorithm - Task scheduling - OpenMP - Data parallelism

FUNCTIONAL DESCRIPTION: The KaStORS benchmarks suite has been designed to evaluate implementations of the OpenMP dependent task paradigm, introduced as part of the OpenMP 4.0 specification.

- Participants: François Broquedis, Nathalie Furmento, Olivier Aumage, Philippe Virouleau, Pierrick Brunet, Samuel Thibault and Thierry Gautier
- Contact: Thierry Gautier
- URL: http://kastors.gforge.inria.fr/#!index.md

6.4. KStar

The KStar OpenMP Compiler

KEYWORDS: Source-to-source compiler - OpenMP - Task scheduling - Compilers - Data parallelism FUNCTIONAL DESCRIPTION: The KStar software is a source-to-source OpenMP compiler for languages C and C++. The KStar compiler translates OpenMP directives and constructs into API calls from the StarPU runtime system or the XKaapi runtime system. The KStar compiler is virtually fully compliant with OpenMP 3.0 constructs. The KStar compiler supports OpenMP 4.0 dependent tasks and accelerated targets.

- Participants: Nathalie Furmento, Olivier Aumage, Philippe Virouleau and Samuel Thibault
- Contact: Olivier Aumage
- Publications: Bridging the gap between OpenMP and task-based runtime systems for the fast multipole method Bridging the gap between OpenMP 4.0 and native runtime systems for the fast multipole method Evaluation of OpenMP Dependent Tasks with the KASTORS Benchmark Suite
- URL: http://kstar.gforge.inria.fr/#!index.md

6.5. MAQAO

SCIENTIFIC DESCRIPTION: MAQAO relies on binary codes for Intel x86 and ARM architectures. For x86 architecture, it can insert probes for instrumention directly inside the binary. There is no need to recompile. The static/dynamic approach of MAQAO analysis is the main originality of the tool, combining performance model with values collected through instrumentation.

MAQAO has a static performance model for x86 and ARM architectures. This model analyzes performance of the codes on the architectures and provides some feed-back hints on how to improve these codes, in particular for vector instructions.

The dynamic collection of data in MAQAO enables the analysis of thread interactions, such as false sharing, amount of data reuse, runtime scheduling policy, ...

FUNCTIONAL DESCRIPTION: MAQAO is a performance tuning tool for OpenMP parallel applications. It relies on the static analysis of binary codes and the collection of dynamic information (such as memory traces). It provides hints to the user about performance bottlenecks and possible workarounds.

- Participants: Christopher Haine, Denis Barthou, James Tombi A Mba and Olivier Aumage
- Contact: Denis Barthou

6.6. StarPU

The StarPU Runtime System KEYWORDS: Multicore - GPU - Scheduling - HPC - Performance SCIENTIFIC DESCRIPTION: Traditional processors have reached architectural limits which heterogeneous multicore designs and hardware specialization (eg. coprocessors, accelerators, ...) intend to address. However, exploiting such machines introduces numerous challenging issues at all levels, ranging from programming models and compilers to the design of scalable hardware solutions. The design of efficient runtime systems for these architectures is a critical issue. StarPU typically makes it much easier for high performance libraries or compiler environments to exploit heterogeneous multicore machines possibly equipped with GPGPUs or Cell processors: rather than handling low-level issues, programmers may concentrate on algorithmic concerns.Portability is obtained by the means of a unified abstraction of the machine. StarPU offers a unified offloadable task abstraction named "codelet". Rather than rewriting the entire code, programmers can encapsulate existing functions within codelets. In case a codelet may run on heterogeneous architectures, it is possible to specify one function for each architectures (eg. one function for CUDA and one function for CPUs). StarPU takes care to schedule and execute those codelets as efficiently as possible over the entire machine. In order to relieve programmers from the burden of explicit data transfers, a high-level data management library enforces memory coherency over the machine: before a codelet starts (eg. on an accelerator), all its data are transparently made available on the compute resource. Given its expressive interface and portable scheduling policies, StarPU obtains portable performances by efficiently (and easily) using all computing resources at the same time. StarPU also takes advantage of the heterogeneous nature of a machine, for instance by using scheduling strategies based on auto-tuned performance models.

StarPU is a task programming library for hybrid architectures

The application provides algorithms and constraints: - CPU/GPU implementations of tasks - A graph of tasks, using either the StarPU's high level GCC plugin pragmas or StarPU's rich C API

StarPU handles run-time concerns - Task dependencies - Optimized heterogeneous scheduling - Optimized data transfers and replication between main memory and discrete memories - Optimized cluster communications

Rather than handling low-level scheduling and optimizing issues, programmers can concentrate on algorithmic concerns!

FUNCTIONAL DESCRIPTION: StarPU is a runtime system that offers support for heterogeneous multicore machines. While many efforts are devoted to design efficient computation kernels for those architectures (e.g. to implement BLAS kernels on GPUs), StarPU not only takes care of offloading such kernels (and implementing data coherency across the machine), but it also makes sure the kernels are executed as efficiently as possible.

- Participants: Corentin Salingue, Andra Hugo, Benoît Lize, Cédric Augonnet, Cyril Roelandt, François Tessier, Jérôme Clet-Ortega, Ludovic Courtes, Ludovic Stordeur, Marc Sergent, Mehdi Juhoor, Nathalie Furmento, Nicolas Collin, Olivier Aumage, Pierre-André Wacrenier, Raymond Namyst, Samuel Thibault, Simon Archipoff, Xavier Lacoste, Terry Cojean, Yanis Khorsi, Philippe Virouleau, LOïC JOUANS and Leo Villeveygoux
- Contact: Olivier Aumage
- Publications: Achieving High Performance on Supercomputers with a Sequential Task-based Programming Model The StarPU Runtime System at Exascale ? Analyzing Dynamic Task-Based Applications on Hybrid Platforms: An Agile Scripting Approach Resource aggregation for task-based Cholesky Factorization on top of heterogeneous machines Resource aggregation in task-based applications over accelerator-based multicore machines Controlling the Memory Subscription of Distributed Applications with a Task-Based Runtime System Exploiting Two-Level Parallelism by Aggregating Computing Resources in Task-Based Applications Over Accelerator-Based Machines Exploiting Two-Level Parallelism by Aggregating Computing Resources in Task-Based Applications Over Accelerator-Based Machines Achieving High Performance on Supercomputers with a Sequential Task-based Programming Model Bridging the gap between OpenMP 4.0 and native runtime systems for the fast multipole method Scalability of a task-based runtime system for dense linear algebra applications Faithful Performance Prediction of a Dynamic Task-Based Runtime

System for Heterogeneous Multi-Core Architectures - Towards seismic wave modeling on heterogeneous many-core architectures using task-based runtime system - Bridging the Gap between Performance and Bounds of Cholesky Factorization on Heterogeneous Platforms - Composing multiple StarPU applications over heterogeneous machines: A supervised approach - Evaluation of OpenMP Dependent Tasks with the KASTORS Benchmark Suite - A runtime approach to dynamic resource allocation for sparse direct solvers - Modeling and Simulation of a Dynamic Task-Based Runtime System for Heterogeneous Multi-Core Architectures - Toward OpenCL Automatic Multi-Device Support - Harnessing clusters of hybrid nodes with a sequential task-based programming model -Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes - Modulariser les ordonnanceurs de tâches : une approche structurelle - Overview of Distributed Linear Algebra on Hybrid Nodes over the StarPU Runtime - StarPU-MPI: Task Programming over Clusters of Machines Enhanced with Accelerators - Modeling and Simulation of a Dynamic Task-Based Runtime System for Heterogeneous Multi-Core Architectures - Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes - Adaptive Task Size Control on High Level Programming for GPU/CPU Work Sharing - Composing multiple StarPU applications over heterogeneous machines: a supervised approach - Implementation of FEM Application on GPU with StarPU - Le problème de la composition parallèle : une approche supervisée - Support exécutif scalable pour les architectures hybrides distribuées - SOCL: An OpenCL Implementation with Automatic Multi-Device Adaptation Support - C Language Extensions for Hybrid CPU/GPU Programming with StarPU - Programming Models and Runtime Systems for Heterogeneous Architectures - Programmation unifiée multi-accélérateur OpenCL - StarPU-MPI: Task Programming over Clusters of Machines Enhanced with Accelerators - Parallelization on Heterogeneous Multicore and Multi-GPU Systems of the Fast Multipole Method for the Helmholtz Equation Using a Runtime System - High-Level Support for Pipeline Parallelism on Many-Core Architectures - Programmability and Performance Portability Aspects of Heterogeneous Multi-/Manycore Systems - Programmation des architectures hétérogènes à l'aide de tâches divisibles - StarPU: a unified platform for task scheduling on heterogeneous multicore architectures - PEPPHER: Efficient and Productive Usage of Hybrid Computing Systems - The PEPPHER Approach to Programmability and Performance Portability for Heterogeneous many-core Architectures - Flexible runtime support for efficient skeleton programming on hybrid systems - LU Factorization for Accelerator-based Systems - QR Factorization on a Multicore Node Enhanced with Multiple GPU Accelerators - Programmation multi-accélérateurs unifiée en OpenCL - Détection optimale des coins et contours dans des bases d'images volumineuses sur architectures multicœurs hétérogènes - Association de modèles de programmation pour l'exploitation de clusters de GPUs dans le calcul intensif - Programming heterogeneous, accelerator-based multicore machines:current situation and main challenges - Scheduling Tasks over Multicore machines enhanced with acelerators: a Runtime System's Perspective - Composabilité de codes parallèles sur architectures hétérogènes - Data-Aware Task Scheduling on Multi-Accelerator based Platforms -Dynamically scheduled Cholesky factorization on multicore architectures with GPU accelerators. - StarPU: a Runtime System for Scheduling Tasks over Accelerator-Based Multicore Machines -StarPU : un support exécutif unifié pour les architectures multicoeurs hétérogènes - Automatic Calibration of Performance Models on Heterogeneous Multicore Architectures - StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures - Exploiting the Cell/BE architecture with the StarPU unified runtime system - Bridging the gap between OpenMP and taskbased runtime systems for the fast multipole method

• URL: http://starpu.gforge.inria.fr/

6.7. PARCOACH

PARallel Control flow Anomaly CHecker KEYWORDS: High-Performance Computing - Program verification - Debug - MPI - OpenMP - Compilation SCIENTIFIC DESCRIPTION: PARCOACH verifies programs in two steps. First, it statically verifies applications with a data- and control-flow analysis and outlines execution paths leading to potential deadlocks. The code is then instrumented, displaying an error and synchronously interrupting all processes if the actual scheduling leads to a deadlock situation.

FUNCTIONAL DESCRIPTION: Supercomputing plays an important role in several innovative fields, speeding up prototyping or validating scientific theories. However, supercomputers are evolving rapidly with now millions of processing units, posing the questions of their programmability. Despite the emergence of more widespread and functional parallel programming models, developing correct and effective parallel applications still remains a complex task. As current scientific applications mainly rely on the Message Passing Interface (MPI) parallel programming model, new hardwares designed for Exascale with higher node-level parallelism clearly advocate for an MPI+X solutions with X a thread-based model such as OpenMP. But integrating two different programming models inside the same application can be error-prone leading to complex bugs - mostly detected unfortunately at runtime. PARallel COntrol flow Anomaly CHecker aims at helping developers in their debugging phase.

- Participants: Emmanuelle Saillard, Denis Barthou and Pierre Huchant
- Partner: CEA
- Contact: Emmanuelle Saillard
- URL: https://esaillar.github.io/PARCOACH/

6.8. AFF3CT

A Fast Forward Error Correction Toolbox

KEYWORDS: High-Performance Computing - Signal processing - Error Correction Code

FUNCTIONAL DESCRIPTION: AFF3CT proposes high performance Error Correction algorithms for Polar, Turbo, LDPC, RSC (Recursive Systematic Convolutional), Repetition and RA (Repeat and Accumulate) codes. These signal processing codes can be parameterized in order to optimize some given metrics, such as Bit Error Rate, Bandwidth, Latency, ...using simulation. For the designers of such signal processing chain, AFF3CT proposes also high performance building blocks so to develop new algorithms. AFF3CT compiles with many compilers and runs on Windows, Mac OS X, Linux environments and has been optimized for x86 (SSE, AVX instruction sets) and ARM architectures (NEON instruction set).

- Authors: Adrien Cassagne, Bertrand Le Gal, Camille Leroux, Denis Barthou and Olivier Aumage
- Partner: IMS
- Contact: Adrien Cassagne
- URL: https://aff3ct.github.io/

6.9. MORSE

KEYWORDS: High performance computing - Matrix calculation - Fast multipole method - Runtime system FUNCTIONAL DESCRIPTION: MORSE (Matrices Over Runtime Systems @ Exascale) is a scientific project, its objectives are to solve matrix problems on complex architectures, using runtime systems. More specifically, the goal is to write codes that reach a high level of performance for all architectures. The algorithms are written independently of the architecture, and the runtime system dispatches the different computational parts to the different computing units. This methodology has been validated on three classes of problems: dense linear algebra, sparse and dense, and fast multipole methods. The corresponding codes have been incorporated into several softwares, MAGMA, Pastix and ScalFMM.

- Contact: Emmanuel Agullo
- URL: http://icl.cs.utk.edu/morse/

6.10. SwLoc

Software Contexts for Locality

KEYWORDS: HPC - Locality - Contexts - Multicore - GPU

FUNCTIONAL DESCRIPTION: SwLoc is a library for flexible and generic partitioning of computing resources (processors, accelerators) to be able to co-excute confined parallel regions which can rely on different runtime systems (e.g. OpenMP, Intel TBB, StarPU, etc.). With all different hypervisor strategies, It is possible to adapt dynamically the computing resources of each context, in order to match each parallel region's need as closely as possible.

- Contact: Corentin Salingue
- URL: http://swloc.gforge.inria.fr/

6.11. VITE

Visual Trace Explorer

KEYWORDS: Visualization - Execution trace

FUNCTIONAL DESCRIPTION: VITE is a trace explorer. It is a tool made to visualize execution traces of large parallel programs. It supports Pajé, a trace format created by Inria Grenoble, and OTF and OTF2 formats, developed by the University of Dresden and allows the programmer a simpler way to analyse, debug and/or profile large parallel applications.

- Participant: Mathieu Faverge
- Contact: Mathieu Faverge
- URL: http://vite.gforge.inria.fr/

TADAAM Project-Team

6. New Software and Platforms

6.1. Hsplit

Hierarchical communicators split

KEYWORDS: MPI communication - Topology - Hardware platform

SCIENTIFIC DESCRIPTION: Hsplit is a library that implements an abstraction allowing the programmer using MPI in their parallel applications to access the underlying hardware structure through a hierarchy of communicators. Hsplit is based on the MPI_Comm_split_type routine and provides a new value for the split_type argument that specifically creates a hierarchy a subcommunicators where each new subcommunicator corresponds to a meaningful hardware level. The important point is that only the structure o the hardware is exploited and the number of levels or the levels names are not fixed so as to propose a solution independent from future hardware evolutions (such as new levels for instance). Another flavor of this MPI_Comm_split_type function is provided that creates a roots communicators at the same time a subcommunicator is produced, in order to ease the collective communication and/or synchronization among subcommunicators.

FUNCTIONAL DESCRIPTION: Hsplit implements an abstraction that allows the programmer using MPI in their parallel applications to access the underlying hardware structure through a hierarchy of communicators. Hsplit is based on the MPI_Comm_split_type routine and provides a new value for the split_type argument that specifically creates a hierarchy a subcommunicators where each new subcommunicator corresponds to a meaningful hardware level. The important point is that only the structure o the hardware is exploited and the number of levels or the levels names are not fixed so as to propose a solution independent from future hardware evolutions (such as new levels for instance). Another flavor of this MPI_Comm_split_type function is provided that creates a roots communicators at the same time a subcommunicator is produced, in order to ease the collective communication and/or synchronization among subcommunicators.

NEWS OF THE YEAR: A new working group in the MPI Forum to champion the integration of this proposal in the MPI standard has been created. This working group includes Inria, CEA, Atos/Bull, Paratools, the University of Tennessee - Knoxville and many other institutions/companies are interested to join in.

- Participants: Guillaume Mercier, Brice Goglin, Emmanuel Jeannot and Farouk Mansouri
- Contact: Guillaume Mercier
- Publications: A hierarchical model to manage hardware topology in MPI applications A Hierarchical Model to Manage Hardware Topology in MPI Applications
- URL: http://mpi-topology.gforge.inria.fr/

6.2. hwloc

Hardware Locality

KEYWORDS: NUMA - Multicore - GPU - Affinities - Open MPI - Topology - HPC - Locality FUNCTIONAL DESCRIPTION: Hardware Locality (hwloc) is a library and set of tools aiming at discovering and exposing the topology of machines, including processors, cores, threads, shared caches, NUMA memory nodes and I/O devices. It builds a widely-portable abstraction of these resources and exposes it to applications so as to help them adapt their behavior to the hardware characteristics. They may consult the hierarchy of

resources, their attributes, and bind task or memory on them.

hwloc targets many types of high-performance computing applications, from thread scheduling to placement of MPI processes. Most existing MPI implementations, several resource managers and task schedulers, and multiple other parallel libraries already use hwloc.

- Participants: Brice Goglin and Samuel Thibault
- Partners: Open MPI consortium Intel AMD
- Contact: Brice Goglin
- Publications: hwloc: a Generic Framework for Managing Hardware Affinities in HPC Applications - Managing the Topology of Heterogeneous Cluster Nodes with Hardware Locality (hwloc) - A Topology-Aware Performance Monitoring Tool for Shared Resource Management in Multicore Systems - Exposing the Locality of Heterogeneous Memory Architectures to HPC Applications -Towards the Structural Modeling of the Topology of next-generation heterogeneous cluster Nodes with hwloc - On the Overhead of Topology Discovery for Locality-aware Scheduling in HPC
- URL: http://www.open-mpi.org/projects/hwloc/

6.3. NetLoc

Network Locality

KEYWORDS: Topology - Locality - Distributed networks - HPC - Parallel computing - MPI communication FUNCTIONAL DESCRIPTION: netloc (Network Locality) is a library that extends hwloc to network topology information by assembling hwloc knowledge of server internals within graphs of inter-node fabrics such as Infiniband, Intel OmniPath or Cray networks.

Netloc builds a software representation of the entire cluster so as to help applications properly place their tasks on the nodes. It may also help communication libraries optimize their strategies according to the wires and switches.

Netloc targets the same challenges as hwloc but focuses on a wider spectrum by enabling cluster-wide solutions such as process placement. It interoperates with the Scotch graph partitioner to do so.

Netloc is distributed within hwloc releases starting with hwloc 2.0.

- Participants: Brice Goglin, Clement Foyer and Cyril Bordage
- Contact: Brice Goglin
- Publications: netloc: Towards a Comprehensive View of the HPC System Topology Netloc: a Tool for Topology-Aware Process Mapping
- URL: http://www.open-mpi.org/projects/netloc/

6.4. NewMadeleine

NewMadeleine: An Optimizing Communication Library for High-Performance Networks KEYWORDS: High-performance calculation - MPI communication

FUNCTIONAL DESCRIPTION: NewMadeleine is the fourth incarnation of the Madeleine communication library. The new architecture aims at enabling the use of a much wider range of communication flow optimization techniques. Its design is entirely modular: drivers and optimization strategies are dynamically loadable software components, allowing experimentations with multiple approaches or on multiple issues with regard to processing communication flows.

The optimizing scheduler SchedOpt targets applications with irregular, multi-flow communication schemes such as found in the increasingly common application conglomerates made of multiple programming environments and coupled pieces of code, for instance. SchedOpt itself is easily extensible through the concepts of optimization strategies (what to optimize for, what the optimization goal is) expressed in terms of tactics (how to optimize to reach the optimization goal). Tactics themselves are made of basic communication flows operations such as packet merging or reordering.

The communication library is fully multi-threaded through its close integration with PIOMan. It manages concurrent communication operations from multiple libraries and from multiple threads. Its MPI implementation MadMPI fully supports the MPI_THREAD_MULTIPLE multi-threading level.

- Participants: Alexandre Denis, Clement Foyer, Nathalie Furmento, Raymond Namyst and ADRIEN GUILBAUD
- Contact: Alexandre Denis
- Publications: NewMadeleine: a Fast Communication Scheduling Engine for High Performance Networks - Ordonnancement et qualité de service pour réseaux rapides - Improving Reactivity and Communication Overlap in MPI using a Generic I/O Manager - PIOMan : un gestionnaire d'entréessorties générique - A multithreaded communication engine for multicore architectures - A multicoreenabled multirail communication engine - About the interactions between communication and thread scheduling in clusters of multicore machines - An analysis of the impact of multi-threading on communication performance - A scalable and generic task scheduling system for communication libraries - A Generic and High Performance Approach for Fault Tolerance in Communication Library - A High-Performance Superpipeline Protocol for InfiniBand - A sampling-based approach for communication libraries auto-tuning - High performance checksum computation for faulttolerant MPI over InfiniBand - pioman: a Generic Framework for Asynchronous Progression and Multithreaded Communications - pioman: a pthread-based Multithreaded Communication Engine -Updating MadMPI to MPI-3: Remote Memory Access - Portage de StarPU sur la bibliothèque de communication NewMadeleine
- URL: http://pm2.gforge.inria.fr/newmadeleine/

6.5. PaMPA

Parallel Mesh Partitioning and Adaptation

KEYWORDS: Dynamic load balancing - Unstructured heterogeneous meshes - Parallel remeshing - Subdomain decomposition - Parallel numerical solvers

SCIENTIFIC DESCRIPTION: PaMPA is a parallel library for handling, redistributing and remeshing unstructured meshes on distributed-memory architectures. PaMPA dramatically eases and speeds-up the development of parallel numerical solvers for compact schemes. It provides solver writers with a distributed mesh abstraction and an API to: - describe unstructured and possibly heterogeneous meshes, on the form of a graph of interconnected entities of different kinds (e.g. elements, faces, edges, nodes), - attach values to the mesh entities, - distribute such meshes across processing elements, with an overlap of variable width, - perform synchronous or asynchronous data exchanges of values across processing elements, - describe numerical schemes by means of iterators over mesh entities and their connected neighbors of a given kind, - redistribute meshes so as to balance computational load, - perform parallel dynamic remeshing, by applying adequately a user-provided sequential remesher to relevant areas of the distributed mesh.

PaMPA runs concurrently multiple sequential remeshing tasks to perform dynamic parallel remeshing and redistribution of very large unstructured meshes. E.g., it can remesh a tetrahedral mesh from 43Melements to more than 1Belements on 280 Broadwell processors in 20 minutes.

FUNCTIONAL DESCRIPTION: Parallel library for handling, redistributing and remeshing unstructured, heterogeneous meshes on distributed-memory architectures. PaMPA dramatically eases and speeds-up the development of parallel numerical solvers for compact schemes.

NEWS OF THE YEAR: PaMPA has been used to remesh an industrial mesh of a helicopter turbine combustion chamber, up to more than 1 billion elements.

- Participants: Cécile Dobrzynski, Cedric Lachat and François Pellegrini
- Partners: Université de Bordeaux CNRS IPB
- Contact: François Pellegrini
- URL: http://project.inria.fr/pampa/

6.6. TreeMatch

KEYWORDS: Intensive parallel computing - High-Performance Computing - Hierarchical architecture - Placement

SCIENTIFIC DESCRIPTION: TreeMatch embeds a set of algorithms to map processors/cores in order to minimize the communication cost of the application.

Important features are : the number of processors can be greater than the number of applications processes , it assumes that the topology is a tree and does not require valuation of the topology (e.g. communication speeds) , it implements different placement algorithms that are switched according to the input size.

Some core algorithms are parallel to speed-up the execution. Optionally embeds scotch for fix-vertex mapping. enable exhaustive search if required. Several metric mapping are computed. Allow for oversubscribing of ressources. multithreaded.

TreeMatch is integrated into various software such as the Charm++ programming environment as well as in both major open-source MPI implementations: Open MPI and MPICH2.

FUNCTIONAL DESCRIPTION: TreeMatch is a library for performing process placement based on the topology of the machine and the communication pattern of the application.

- Participants: Adele Villiermet, Emmanuel Jeannot, François Tessier, Guillaume Mercier and Pierre Celor
- Partners: Université de Bordeaux CNRS IPB
- Contact: Emmanuel Jeannot
- URL: http://treematch.gforge.inria.fr/

6.7. SCOTCH

KEYWORDS: Mesh partitioning - Domain decomposition - Graph algorithmics - High-performance calculation - Sparse matrix ordering - Static mapping

FUNCTIONAL DESCRIPTION: Scotch is a graph partitioner. It helps optimise the division of a problem, by means of a graph, into a set of independent sub-problems of equivalent sizes. These sub-problems can also be solved in parallel.

RELEASE FUNCTIONAL DESCRIPTION: Version 6.0 offers many new features:

sequential graph repartitioning

sequential graph partitioning with fixed vertices

sequential graph repartitioning with fixed vertices

new, fast, direct k-way partitioning and mapping algorithms

multi-threaded, shared memory algorithms in the (formerly) sequential part of the library

exposure in the API of many centralized and distributed graph handling routines

embedded pseudo-random generator for improved reproducibility

and even more ...

- Participants: François Pellegrini, Sébastien Fourestier, Jun-Ho Her and Cédric Chevalier
- Partners: Université de Bordeaux IPB CNRS Region Aquitaine
- Contact: François Pellegrini
- Publications: Process Mapping onto Complex Architectures and Partitions Thereof Multi-criteria Graph Partitioning with Scotch - Adaptation au repartitionnement de graphes d'une méthode d'optimisation globale par diffusion - Contributions au partitionnement de graphes parallèle multiniveaux - A parallelisable multi-level banded diffusion scheme for computing balanced partitions with smooth boundaries - PT-Scotch: A tool for efficient parallel graph ordering - Design and implementation of efficient tools for parallel partitioning and distribution of very large numerical problems - Improvement of the Efficiency of Genetic Algorithms for Scalable Parallel Graph Partitioning in a Multi-Level Framework - PT-Scotch : Un outil pour la renumérotation parallèle efficace de grands graphes dans un contexte multi-niveaux - PT-Scotch: A tool for efficient parallel graph ordering
- URL: http://www.labri.fr/~pelegrin/scotch/

6.8. disk-revolve

KEYWORDS: Automatic differentiation - Gradients - Machine learning

FUNCTIONAL DESCRIPTION: This software provides several algorithms (Disk-Revolve, 1D-Revolve, Periodic-Disk-Revolve,...) computing the optimal checkpointing strategy when executing a adjoin chain with limited memory. The considered architecture has a level of limited memory that is free to access (writing and reading costs are negligible) and a level of unlimited memory with non-negligible access costs. The algorithms describe which data should be saved in the memory to minimize the number of re-computation during the execution.

- Authors: Guillaume Aupy and Julien Herrmann
- Contact: JULIEN HERRMANN
- Publications: Periodicity in optimal hierarchical checkpointing schemes for adjoint computations Optimal Multistage Algorithm for Adjoint Computation
- URL: https://gitlab.inria.fr/adjoint-computation/disk-revolve-public

DIVERSE Project-Team

5. New Software and Platforms

5.1. amiunique

KEYWORDS: Privacy - Browser fingerprinting

SCIENTIFIC DESCRIPTION: The amiunique web site has been deployed in the context of the DiverSE's research activities on browser fingerprinting and how software diversity can be leveraged in order to mitigate the impact of fingerprinting on the privacy of users. The construction of a dataset of genuine fingerprints is essential to understand in details how browser fingerprints can serve as unique identifiers and hence what should be modified in order to mitigate its impact privacy. This dataset also supports the large-scale investigation of the impact of web technology advances on fingerprinting. For example, we can analyze in details the impact of the HTML5 canvas element or the behavior of fingerprinting on mobile devices.

The whole source code of amiunique is open source and is distributed under the terms of the MIT license.

Similar sites: Panopticlick https://panopticlick.eff.org/ BrowserSpy http://browserspy.dk/ http://noc.to/ Main innovative features: canvas fingerprinting WebGL fingerprinting advanced JS features (platform, DNT, etc.)

Impact: The website has been showcased in several professional forums in 2014 and 2015 (Open World Forum 2014, FOSSA'14, FIC'15, ICT'15) and it has been visited by more than 100000 unique visitors in one year. FUNCTIONAL DESCRIPTION: This web site aims at informing visitors about browser fingerprinting and possible tools to mitigate its effect, as well as at collecting data about the fingerprints that can be found on the web. It collects browser fingerprints with the explicit agreement of the users (they have to click on a button on the home page). Fingerprints are composed of 17 attributes, which include regular HTTP headers as well as the most recent state of the art techniques (canvas fingerprinting, WebGL information).

- Participants: Benoit Baudry and Pierre Laperdrix
- Partner: INSA Rennes
- Contact: Benoit Baudry
- URL: https://amiunique.org/

5.2. FAMILIAR

KEYWORDS: Software line product - Configators - Customisation

SCIENTIFIC DESCRIPTION: FAMILIAR (for FeAture Model scrIpt Language for manIpulation and Automatic Reasoning) is a language for importing, exporting, composing, decomposing, editing, configuring, computing "diffs", refactoring, reverse engineering, testing, and reasoning about (multiple) feature models. All these operations can be combined to realize complex variability management tasks. A comprehensive environment is proposed as well as integration facilities with the Java ecosystem.

FUNCTIONAL DESCRIPTION: Familiar is an environment for large-scale product customisation. From a model of product features (options, parameters, etc.), Familiar can automatically generate several million variants. These variants can take many forms: software, a graphical interface, a video sequence or even a manufactured product (3D printing). Familiar is particularly well suited for developing web configurators (for ordering customised products online), for providing online comparison tools and also for engineering any family of embedded or software-based products.

- Participants: Aymeric Hervieu, Benoit Baudry, Didier Vojtisek, Edward Mauricio Alferez Salinas, Guillaume Bécan, Joao Bosco Ferreira-Filho, Julien Richard-Foy, Mathieu Acher, Olivier Barais and Sana Ben Nasr
- Contact: Mathieu Acher
- URL: http://familiar-project.github.com

52 Distributed programming and Software engineering - Software and Platforms - Project-Team DIVERSE

5.3. GEMOC Studio

KEYWORDS: DSL - Language workbench - Model debugging

SCIENTIFIC DESCRIPTION: The language workbench put together the following tools seamlessly integrated to the Eclipse Modeling Framework (EMF):

- Melange, a tool-supported meta-language to modularly define executable modeling languages with execution functions and data, and to extend (EMF-based) existing modeling languages. - MoCCML, a tool-supported meta-language dedicated to the specification of a Model of Concurrency and Communication (MoCC) and its mapping to a specific abstract syntax and associated execution functions of a modeling language. - GEL, a tool-supported meta-language dedicated to the specification of the protocol between the execution functions and the MoCC to support the feedback of the data as well as the callback of other expected execution functions. - BCOoL, a tool-supported meta-language dedicated to the specification of language coordination patterns to automatically coordinates the execution of, possibly heterogeneous, models. - Sirius Animator, an extension to the model editor designer Sirius to create graphical animators for executable modeling languages.

FUNCTIONAL DESCRIPTION: The GEMOC Studio is an eclipse package that contains components supporting the GEMOC methodology for building and composing executable Domain-Specific Modeling Languages (DSMLs). It includes the two workbenches: The GEMOC Language Workbench: intended to be used by language designers (aka domain experts), it allows to build and compose new executable DSMLs. The GEMOC Modeling Workbench: intended to be used by domain designersto create, execute and coordinate models conforming to executable DSMLs. The different concerns of a DSML, as defined with the tools of the language workbench, are automatically deployed into the modeling workbench. They parametrize a generic execution framework that provide various generic services such as graphical animation, debugging tools, trace and event managers, timeline, etc.

- Participants: Didier Vojtisek, Dorian Leroy, Erwan Bousse, Fabien Coulon and Julien Deantoni
- Partners: IRIT ENSTA I3S OBEO Thales TRT
- Contact: Benoît Combemale
- URL: http://gemoc.org/studio.html

5.4. Kevoree

Kevoree Core

KEYWORDS: M2M - Dynamic components - Iot - Heterogeneity - Smart home - Cloud - Software architecture - Dynamic deployment

SCIENTIFIC DESCRIPTION: Kevoree is an open-source models@runtime platform (http://www.kevoree.org) to properly support the dynamic adaptation of distributed systems. Models@runtime basically pushes the idea of reflection [132] one step further by considering the reflection layer as a real model that can be uncoupled from the running architecture (e.g. for reasoning, validation, and simulation purposes) and later automatically resynchronized with its running instance.

Kevoree has been influenced by previous work that we carried out in the DiVA project [132] and the Entimid project [135]. With Kevoree we push our vision of models@runtime [131] farther. In particular, Kevoree provides a proper support for distributed models@runtime. To this aim we introduced the Node concept to model the infrastructure topology and the Group concept to model semantics of inter node communication during synchronization of the reflection model among nodes. Kevoree includes a Channel concept to allow for multiple communication semantics between remoteComponents deployed on heterogeneous nodes. All Kevoree concepts (Component, Channel, Node, Group) obey the object type design pattern to separate deployment artifacts from running artifacts. Kevoree supports multiple kinds of very different execution node technology (e.g. Java, Android, MiniCloud, FreeBSD, Arduino, ...).

Kevoree is distributed under the terms of the LGPL open source license.

Main competitors:

- the Fractal/Frascati eco-system (http://frascati.ow2.org).
- SpringSource Dynamic Module (http://spring.io/)

GCM-Proactive (http://proactive.inria.fr/)

OSGi (http://www.osgi.org)

Chef

Vagran (http://vagrantup.com/)

Main innovative features:

distributed models@runtime platform (with a distributed reflection model and an extensible models@runtime dissemination set of strategies).

Support for heterogeneous node type (from Cyber Physical System with few resources until cloud computing infrastructure).

Fully automated provisioning model to correctly deploy software modules and their dependencies.

Communication and concurrency access between software modules expressed at the model level (not in the module implementation).

Impact:

Several tutorials and courses have been performed this year at EJCP for French PhD student, at ECNU summer school for 82 chineese PhD students. See also the web page http://www.kevoree.org .

In 2015, we mainly created a new implementation in C# and we created an implementation for system containers for driving resources using Kevoree. We also use Kevoree in the context of Mohammed's PhD to create testing infrastructure on-demand.

FUNCTIONAL DESCRIPTION: Kevoree is an open-source models@runtime platform to properly support the dynamic adaptation of distributed systems. Models@runtime basically pushes the idea of reflection one step further by considering the reflection layer as a real model that can be uncoupled from the running architecture (e.g. for reasoning, validation, and simulation purposes) and later automatically resynchronized with its running instance.

- Participants: Aymeric Hervieu, Benoit Baudry, Francisco-Javier Acosta Padilla, Inti Gonzalez Herrera, Ivan Paez Anaya, Jacky Bourgeois, Jean Emile Dartois, Johann Bourcier, Manuel Leduc, Maxime Tricoire, Mohamed Boussaa, Noël Plouzeau and Olivier Barais
- Contact: Olivier Barais
- URL: http://kevoree.org/

5.5. Melange

KEYWORDS: Model-driven engineering - Meta model - MDE - DSL - Model-driven software engineering - Dedicated langage - Language workbench - Meta-modelisation - Modeling language - Meta-modeling SCIENTIFIC DESCRIPTION: Melange is a follow-up of the executable metamodeling language Kermeta, which provides a tool-supported dedicated meta-language to safely assemble language modules, customize them and produce new DSMLs. Melange provides specific constructs to assemble together various abstract syntax and operational semantics artifacts into a DSML. DSMLs can then be used as first class entities to be reused, extended, restricted or adapted into other DSMLs. Melange relies on a particular model-oriented type system that provides model polymorphism and language substitutability, i.e. the possibility to manipulate a model through different interfaces and to define generic transformations that can be invoked on models written using different DSLs. Newly produced DSMLs are correct by construction, ready for production (i.e., the result can be deployed and used as-is), and reusable in a new assembly.

Melange is tightly integrated with the Eclipse Modeling Framework ecosystem and relies on the meta-language Ecore for the definition of the abstract syntax of DSLs. Executable meta-modeling is supported by weaving operational semantics defined with Xtend. Designers can thus easily design an interpreter for their DSL in a non-intrusive way. Melange is bundled as a set of Eclipse plug-ins.

FUNCTIONAL DESCRIPTION: Melange is a language workbench which helps language engineers to mashup their various language concerns as language design choices, to manage their variability, and support their reuse. It provides a modular and reusable approach for customizing, assembling and integrating DSMLs specifications and implementations.

- Participants: Arnaud Blouin, Benoît Combemale, David Mendez Acuna, Didier Vojtisek, Dorian Leroy, Erwan Bousse, Fabien Coulon, Jean-Marc Jézéquel, Olivier Barais and Thomas Degueule
- Contact: Benoît Combemale
- URL: http://melange-lang.org

5.6. Opencompare

KEYWORD: Software Product Line

FUNCTIONAL DESCRIPTION: Product comparison matrices (PCMs) are tabular data: supported and unsupported features are documented for both describing the product itself and for discriminating one product compared to another. PCMs abound – we are all using PCMs – and constitute a rich source of knowledge for easily comparing and choosing product. Yet the current practice is suboptimal both for humans and computers, mainly due to unclear semantics, heterogeneous forms of data, and lack of dedicated support.

OpenCompare.org is an ambitious project for the collaborative edition, the sharing, the standardisation, and the open exploitation of PCMs. The goal of OpenCompare.org is to provide an integrated set of tools (e.g., APIs, visualizations, configurators, editors) for democratizing their creation, import, maintenance, and exploitation.

- Participants: Guillaume Bécan, Mathieu Acher and Sana Ben Nasr
- Contact: Mathieu Acher
- URL: http://opencompare.org

5.7. DSpot

KEYWORDS: Software testing - Test amplification

FUNCTIONAL DESCRIPTION: DSpot is a tool that generates missing assertions in JUnit tests. DSpot takes as input a Java project with an existing test suite. As output, DSpot outputs new test cases on console. DSpot supports Java projects built with Maven and Gradle

- Participants: Benoit Baudry, Martin Monperrus and Benjamin Danglot
- Partner: KTH Royal Institute of Technology
- Contact: Benjamin Danglot
- URL: https://github.com/STAMP-project/dspot

5.8. ALE

Action Language for Ecore KEYWORDS: Meta-modeling - Executable DSML FUNCTIONAL DESCRIPTION: Main features of ALE include: - Executable metamodeling: Re-open existing EClasses to insert new methods with their implementations - Metamodel extension: The very same mechanism can be used to extend existing Ecore metamodels and insert new features (eg. attributes) in a non-intrusive way - Interpreted: No need to deploy Eclipse plugins, just run the behavior on a model directly in your modeling environment - Extensible: If ALE doesn't fit your needs, register Java classes as services and invoke them inside your implementations of EOperations.

- Partner: OBEO
- Contact: Benoît Combemale
- URL: http://gemoc.org/ale-lang/

5.9. InspectorGuidget

KEYWORDS: Static analysis - Software testing - User Interfaces

FUNCTIONAL DESCRIPTION: InspectorGuidget is a static code analysing tool. InspectorGuidget analyses UI (user interface/interaction) code of a software system to extract high level information and metrics. InspectorGuidget also finds bad UI coding pratices, such as Blob listener instances. InspectorGuidget analyses Java code.

- Participants: Arnaud Blouin and Benoit Baudry
- Contact: Arnaud Blouin
- Publications: User Interface Design Smell: Automatic Detection and Refactoring of Blob Listeners - Automatic Detection of GUI Design Smells: The Case of Blob Listener
- URL: https://github.com/diverse-project/InspectorGuidget

EASE Team

5. New Software and Platforms

5.1. THEGAME

KEYWORD: Contextual service

SCIENTIFIC DESCRIPTION: Context-aware applications have to sense the environment in order to adapt themselves and provide with contextual services. This is the case of Smart Homes equipped with sensors and augmented appliances. However, sensors can be numerous, heterogeneous and unreliable. Thus the data fusion is complex and requires a solid theory to handle those problems. The aim of the data fusion, in our case, is to compute small pieces of context we call context attributes. Those context attributes are diverse and could be for example the presence in a room, the number of people in a room or even that someone may be sleeping in a room. For this purpose, we developed an implementation of the belief functions theory (BFT). THE GAME (THeory of Evidence in a lanGuage Adapted for Many Embedded systems) is made of a set of C-Libraries. It provides the basics of belief functions theory, computations are optimized for an embedded environment (binary representation of sets, conditional compilation and diverse algorithmic optimizations).

THE GAME is published under apache licence (https://github.com/bpietropaoli/THEGAME/). It is maintained and experimented by Aurélien Richez within a sensor network platform developed by TACOMA since June 2013.

FUNCTIONAL DESCRIPTION: THEGAME is a set of software services for detecting different types of situation in a building (presence in a room, activity level, etc.) based on a set of raw data sourced from all sorts of sensors. Written in C or Java, it can be integrated in an embedded computer: tablet, smartphone, box, etc., and can be connected to different sensor networks. It can be used to implement context-aware services: for example, to alert the user if s/he forgets to close a window when leaving the building, or to turn off the heating in an empty room, etc.

- Participants: Aurélien Richez and Bastien Pietropaoli
- Contact: Frédéric Weis
- URL: https://github.com/bpietropaoli/THEGAME/

5.2. Platform Pervasive_RFID

SCIENTIFIC DESCRIPTION

The RFID experiment testbed has been designed and deployed in collaboration with IETR (see Figure 2). This system allows both interactive testing as well as long running experiments of RFID reading protocols. It comprises a software platform allowing fine control over all dynamic aspects influencing RFID readings: movements for target and antenna, RFID reader configuration, and smart antenna configuration (diversity and power control).

KEYWORDS: Composite objects - RFID

- Participants: Paul Couderc and Anthony Blair (Univ. Rennes 1)
- Partner: Univ. Rennes 1 (IETR lab bringing together researchers in the electronics and telecommunications)
- Contact: Paul Couderc

5.3. ISO/IEC 15118-2 Open source Implementation

SCIENTIFIC DESCRIPTION

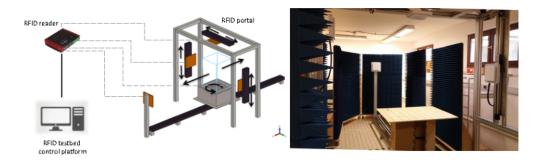


Figure 2. RFID testbed

The ISO/IEC 15118 standard, named "Road vehicles – Vehicle-to-Grid Communication Interface", defines how an electric vehicle and a charging station should communicate. It enables the Smart Charging of electric vehicles by allowing them to plan their charging sessions. As we want to be able to manage the charge of electric vehicles in our micro Smart Grid systems, we decided to implement the protocol defined by this standard. The goal is also to participate actively in the design of the new version of this protocol. During a charging session the charging station provides the vehicle with the status of the electric power grid. The vehicle is then able to plan its sharing session accordingly. It sends back its charge plan to the charging station, so that the Smart Grid is aware of it. The protocol also provides security and authentication features.

This software platform was implemented onto small PCs, and was used to control the charge in a small and portable demonstration platform, to demonstrate how it is possible to interconnect this high level decision and communication software with low level components, such as a Battery Management System (BMS), and a battery charger. In 2016, in the context of the Greenfeed project our software has been demonstrated to control the charge of the electric vehicle during the final demonstration of the project. The integration work has been done in collaboration with VeDeCom⁰.

KEYWORDS: Smart Grid - Intelligent Transport System

- Partner: IMT Atlantique
- Participants: Guillaume Le Gall
- Contact: Jean-Marie Bonnin

⁰http://www.vedecom.fr/

FOCUS Project-Team

5. New Software and Platforms

5.1. HoCA

Higher-Order Complexity Analysis

KEYWORDS: Ocaml - Verification - Runtime Complexity Analysis

SCIENTIFIC DESCRIPTION: Over the last decade, various tools for the static analysis of resource properties of programs have emerged. In particular, the rewriting community has recently developed several tools for the time complexity analysis of term rewrite systems. These tools have matured and are nowadays able to treat non-trivial programs, in a fully automatic setting. However, none of these automatic complexity analysers can deal with higher-order functions, a pervasive feature of functional programs. HoCA (Higher-Order Complexity Analyser) overcomes this limitation by translating higher-order programs – in the form of side-effect free OCaml programs - into equivalent first-order rewrite systems. At the heart of our tool lies Reynold's defunctionalization technique. Defunctionalization however is not enough. Resulting programs have a recursive structure too complicated to be analysed automatically in all but trivial cases. To overcome this issue, HoCA integrates a handful of well established program transformation techniques, noteworthy dead-code elimination, inlining, instantiation and uncurrying. A complexity bound on the resulting first-order program can be relayed back reliably to the higher-order program of interest. A detailed description of HoCA is available on http://arxiv.org/abs/1506.05043.

FUNCTIONAL DESCRIPTION: HoCA is an abbreviation for Higher-Order Complexity Analysis, and is meant as a laboratory for the automated complexity analysis of higher-order functional programs. Currently, HoCA consists of one executable pcf2trs which translates a pure subset of OCaml to term rewrite systems, in a complexity reflecting manner. As a first step, HoCA desugars the given program to a variation of Plotkin's PCF with data-constructors. Via Reynold's defunctionalization, the PCF program is turned into an applicative term rewrite system (ATRS for short), call-by-value reductions of the PCF program are simulated by the ATRS step-by-step, on the ATRS, and various complexity reflecting transformations are performed: inlining, deadcode-elminiation, instantiation of higher-order variables through a call-flow-analysis and finally uncurrying. This results finally in a first-order rewrite system, whose runtime-complexity reflects the complexity of the initial program, asymptotically.

- Participants: Martin Avanzini and Ugo Dal Lago
- Contact: Ugo Dal Lago
- URL: http://cbr.uibk.ac.at/tools/hoca/

5.2. JOLIE

Java Orchestration Language Interpreter Engine

KEYWORD: Microservices

SCIENTIFIC DESCRIPTION: Jolie enforces a strict separation of concerns between behaviour, describing the logic of the application, and deployment, describing the communication capabilities. The behaviour is defined using the typical constructs of structured sequential programming, communication primitives, and operators to deal with concurrency (parallel composition and input choice). Jolie communication primitives comprise two modalities of interaction typical of Service-Oriented Architectures (SOAs), namely one-way (sends an asynchronous message) and request-response (sends a message and waits for an answer). A main feature of the Jolie language is that it allows one to switch among many communication media and data protocols in a simple, uniform way. Since it targets the field of SOAs, Jolie supports the main communication media (TCP/IP sockets, Bluetooth L2CAP, Java RMI, and Unix local sockets) and data protocols (HTTP, JSON-RPC, XML-RPC, SOAP and their respective SSL versions) from this area.

FUNCTIONAL DESCRIPTION: Jolie is a language for programming service-oriented and microservice applications. It directly supports service-oriented abstractions such as service, port, and session. Jolie allows to program a service behaviour, possibly obtained by composing existing services, and supports the main communication protocols and data formats used in service-oriented architectures. Differently from other serviceoriented programming languages such as WS-BPEL, Jolie is based on a user-friendly Java-like syntax (more readable than the verbose XML syntax of WS-BPEL). Moreover, the kernel of Jolie is equipped with a formal operational semantics. Jolie is used to provide proof of concepts around Focus activities.

RELEASE FUNCTIONAL DESCRIPTION: There are many fixes to the HTTP extension, improvements to the embedding engine for Javascript programs, and improvements to the support tools jolie2java and wsdl2jolie. NEWS OF THE YEAR: During 2018 Jolie was complemented by the creation of the JIoT project, aimed at integrating IoT-related technologies into the Jolie language. The final goal is to provide easy-to-use and flexible communication abstractions to interconnect and make interact disparate IoT islands. Jolie currently supports some of the main technologies used in SOAs (e.g., HTTP). However, only a limited amount of IoT devices uses the media and protocols already supported by Jolie. Indeed, protocols such as CoAP and MQTT, which are widely used in IoT scenarios, are not implemented in Jolie. Integrating these protocols, as we have done, is essential in order to allow Jolie programs to directly interact with the majority of IoT devices. We note that emerging frameworks for interoperability, such as the Web of Things, rely on the same protocols we mentioned for IoT, thus JIoT is also compliant with them. Concretely, work in 2018 comprised the inclusion of the CoAP/UDP and MQTT/TCP protocols among the communication technologies supported by the language. The Jolie implementation of MQTT and CoAP, as well as the UDP transport protocol used by CoAP, are based on the JAVA framework Netty.

- Participants: Claudio Guidi, Fabrizio Montesi, Maurizio Gabbrielli, Saverio Giallorenzo and Ivan Lanese
- Contact: Fabrizio Montesi
- URL: http://www.jolie-lang.org/

5.3. NightSplitter

KEYWORD: Constraint-based programming

FUNCTIONAL DESCRIPTION: Nightsplitter deals with the group preference optimization problem. We propose to split users into subgroups trying to optimize members' satisfaction as much as possible. In a large city with a huge volume of activity information, designing subgroup activities and avoiding time conflict is a challenging task. Currently, the Demo is available only for restaurant and movie activities in the city of Paris.

- Contact: Tong Liu
- URL: http://cs.unibo.it/t.liu/nightsplitter/

5.4. AIOCJ

Adaptive Interaction-Oriented Choreographies in Jolie KEYWORD: Dynamic adaptation

SCIENTIFIC DESCRIPTION: AIOCJ is an open-source choreographic programming language for developing adaptive systems. It allows one to describe a distributed system as an AIOC, to generate code for each role avoiding by construction errors such as deadlocks. Furthermore, it supports dynamic adaptation of the distributed system via adaptation rules.

FUNCTIONAL DESCRIPTION: AIOCJ is a framework for programming adaptive distributed systems based on message passing. AIOCJ comes as a plugin for Eclipse, AIOCJ-ecl, allowing to edit descriptions of distributed systems written as adaptive interaction-oriented choreographies (AIOC). From interaction-oriented choreographies the description of single participants can be automatically derived. Adaptation is specified by rules allowing one to replace predetermined parts of the AIOC with a new behaviour. A suitable protocol ensures that all the participants are updated in a coordinated way. As a result, the distributed system follows the specification given by the AIOC under all changing sets of adaptation rules and environment conditions. In particular, the system is always deadlock free. AIOCJ can interact with external services, seen as functions, by specifying their URL and the protocol they support (HTTP, SOAP, ...). Deadlock-freedom guarantees of the application are preserved provided that those services do not block.

NEWS OF THE YEAR: In 2018 we did minor changes to AIOCJ, including the possibility of generating code only for a few roles, thus avoiding the need for deployment information for other roles.

- Participants: Ivan Lanese, Jacopo Mauro, Maurizio Gabbrielli, Mila Dalla Preda and Saverio Giallorenzo
- Contact: Saverio Giallorenzo
- URL: http://www.cs.unibo.it/projects/jolie/aiocj.html

5.5. CauDEr

Causal-consistent Debugger for Erlang

KEYWORDS: Debug - Reversible computing

SCIENTIFIC DESCRIPTION: The reversible debugger is based on the theory of causal-consistent reversibility, which states that any action can be undone provided that its consequences, if any, are undone beforehand. This theory relies on a causal semantic for the target language, and can be used even if different processes have different notions of time

FUNCTIONAL DESCRIPTION: CauDEr is a debugger allowing one to explore the execution of concurrent Erlang programs both forward and backward. Notably, when going backward, any action can be undone provided that its consequences, if any, are undone beforehand. The debugger also provides commands to automatically find and undo consequences of a given action. Forward computation can be driven by a log taken from a computation in the standard Erlang/OTP environment. An action in the log can be selected and replayed together with all and only its causes. The debugger enables one to find a bug by following the causality links from the visible misbehaviour to the bug. The debugger takes an Erlang program but debugging is done on its translation into Core Erlang.

- Partner: Universitat Politècnica de València
- Contact: Ivan Lanese
- URL: https://github.com/mistupv/cauder

5.6. SUNNY-AS

SUNNY FOR ALGORITHM SELECTION

KEYWORDS: Optimisation - Machine learning

FUNCTIONAL DESCRIPTION: SUNNY-AS is a portfolio solver derived from SUNNY-CP for Algorithm Selection Problems (ASLIB). The goal of SUNNY-AS is to provide a flexible, configurable, and usable portfolio solver that can be set up and executed just like a regular individual solver.

- Contact: Tong Liu
- URL: https://github.com/lteu/oasc

INDES Project-Team

4. New Software and Platforms

4.1. Bigloo

KEYWORD: Compilers

FUNCTIONAL DESCRIPTION: Bigloo is a Scheme implementation devoted to one goal: enabling Scheme based programming style where C(++) is usually required. Bigloo attempts to make Scheme practical by offering features usually presented by traditional programming languages but not offered by Scheme and functional programming. Bigloo compiles Scheme modules. It delivers small and fast stand alone binary executables. Bigloo enables full connections between Scheme and C programs, between Scheme and Java programs.

RELEASE FUNCTIONAL DESCRIPTION: modification of the object system (language design and implementation), new APIs (alsa, flac, mpg123, avahi, csv parsing), new library functions (UDP support), new regular expressions support, new garbage collector (Boehm's collection 7.3alpha1).

- Participant: Manuel Serrano
- Contact: Manuel Serrano
- URL: http://www-sop.inria.fr/teams/indes/fp/Bigloo/

4.2. Hop

KEYWORDS: Programming language - Multimedia - Iot - Web 2.0 - Functional programming

SCIENTIFIC DESCRIPTION: The Hop programming environment consists in a web broker that intuitively combines in a single architecture a web server and a web proxy. The broker embeds a Hop interpreter for executing server-side code and a Hop client-side compiler for generating the code that will get executed by the client.

An important effort is devoted to providing Hop with a realistic and efficient implementation. The Hop implementation is validated against web applications that are used on a daily-basis. In particular, we have developed Hop applications for authoring and projecting slides, editing calendars, reading RSS streams, or managing blogs.

FUNCTIONAL DESCRIPTION: Multitier web programming language and runtime environment.

- Participant: Manuel Serrano
- Contact: Manuel Serrano
- URL: http://hop.inria.fr

4.3. IFJS

Infomation Flow monitor inlining for JavaScript

KEYWORD: Cybersecurity

FUNCTIONAL DESCRIPTION: The IFJS compiler is applied to JavaScript code. The compiler generates JavaScript code instrumented with checks to secure code. The compiler takes into account special features of JavaScript such as implicit type coercions and programs that actively try to bypass the inlined enforcement mechanisms. The compiler guarantees that third-party programs cannot (1) access the compiler internal state by randomizing the names of the resources through which it is accessed and (2) change the behaviour of native functions that are used by the enforcement mechanisms inlined in the compiled code.

- Contact: Tamara Rezk
- URL: http://www-sop.inria.fr/indes/ifJS/

4.4. iflowsigs.js

KEYWORDS: Compilers - Monitoring

FUNCTIONAL DESCRIPTION: iflowsigs.js is a JavaScript library designed to inline an information flow monitor into JavaScript code. iflowsigs.js support is able to track information flow even in programs that interact with arbitrary Web APIs.

- Participants: José Fragoso Santos and Tamara Rezk
- Contact: Tamara Rezk
- URL: http://j3fsantos.github.io/PersonalPage/IFMonitor/

4.5. iflowTYPES.js

FUNCTIONAL DESCRIPTION: iflowtypes.js is a JavaScript library designed to type secure information flow in JavaScript. iflowtypes.js has two main modes of operation: fully static and hybrid. In the hybrid mode, the program to be typed is instrumented with runtime assertions that are verified at runtime. By deferring rejection to runtime, the hybrid type system is able to type more programs than fully static mechanisms.

- Contact: Tamara Rezk
- URL: http://j3fsantos.github.io/PersonalPage/TypeSystem/

4.6. Mashic

KEYWORD: Security

FUNCTIONAL DESCRIPTION: The Mashic compiler is applied to mashups with untrusted scripts. The compiler generates mashups with sandboxed scripts, secured by the same origin policy of the browsers. The compiler is written in Bigloo.

- Contact: Tamara Rezk
- URL: http://web.ist.utl.pt/~ana.matos/Mashic/mashic.html

4.7. Hiphop.js

KEYWORDS: Web 2.0 - Synchronous Language - Programming language

FUNCTIONAL DESCRIPTION: HipHop.js is an Hop.js DLS for orchestrating web applications. HipHop.js helps programming and maintaining Web applications where the orchestration of asynchronous tasks is complex.

- Contact: Manuel Serrano
- URL: http://hop-dev.inria.fr/hiphop

4.8. Server-Side Protection against Third Party Web Tracking

KEYWORDS: Privacy - Web Application - Web - Architecture - Security by design - Program rewriting techniques

FUNCTIONAL DESCRIPTION: We present a new web application architecture that allows web developers to gain control over certain types of third party content. In the traditional web application architecture, a web application developer has no control over third party content. This allows the exchange of tracking information between the browser and the third party content provider.

To prevent this, our solution is based on the automatic rewriting of the web application in such a way that the third party requests are redirected to a trusted third party server, called the Middle Party Server. It may be either controlled by a trusted party, or by a main site owner and automatically eliminates third-party tracking cookies and other technologies that may be exchanged by the browser and third party server

- Contact: Doliere Some
- URL: http://www-sop.inria.fr/members/Doliere.Some/essos/

4.9. BELL

Browser fingerprinting via Extensions and Login-Leaks

KEYWORDS: Browser Extensions - Security and Privacy in Web Services - Social Networks Security and Privacy

FUNCTIONAL DESCRIPTION: Recent studies show that users can be tracked based on their web browser properties. This software is designed to conduct an experiment on such kinds of user tracking. In this experiment, we demonstrate that a Web user can also be tracked by

- her browser extensions (such as AdBlock, Pinterest, or Ghostery), and

- the websites she has logged in (such as Facebook, Gmail, or Twitter).

In the experiment, we collect user's browser fingerprint, together with the browser extensions installed and a list of websites she has logged in. We only collect anonymous data during the experiment (more details in our Privacy Policy⁰), we will securely store the data on an Inria server, use it only for research purposes and not share it with anyone outside of Inria.

- Contact: Gabor Gulyas
- URL: https://extensions.inrialpes.fr/

4.10. webstats

Webstats

KEYWORDS: Web Usage Mining - Statistic analysis - Security

FUNCTIONAL DESCRIPTION: The goal of this tool is to perform a large-scale monthly crawl of the top Alexa sites, collecting both inline scripts (written by web developers) and remote scripts, and establishing the popularity of remote scripts (such as Google Analytics and jQuery). With this data, we establish whether the collected scripts are actually written in a subset of JavaScript by analyzing the different constructs used in those scripts. Finally, we collect and analyze the HTTP headers of the different sites visited, and provide statistics about the usage of HTTPOnly and Secure cookies, and the Content Security Policy in top sites.

- Contact: Doliere Some
- URL: https://webstats.inria.fr

4.11. Platforms

4.11.1. Skini

Skini is a distributed system for composing and producing live performances with audience participation using HTML5 devices. Skini is developed in Hop and HipHop. It proposes a framework for composing music based on patterns and dynamic control of the orchestration for either synthesizers or musicians.

The system has two basic concepts, "Pattern" and "Orchestration" which can be modulated as much as the composer wants in terms of complexity, duration, etc. The platform is meant for interaction with the audience during the show. Each participant can interact with the platform as well as with other participants. According to our experience during the Golem show in MANCA 2017, we implemented five levels of interaction, which allowed theoretically 120 possible combinations.

⁰https://extensions.inrialpes.fr/privacy.php

PHOENIX-POST Team

5. New Software and Platforms

5.1. Allen

The Allen DSL for online context detection over binary sensors

KEYWORDS: DSL - Contextual service - Iot - Sensors - Data stream

SCIENTIFIC DESCRIPTION: There is a large variety of binary sensors in use today, and useful contextaware services can be defined using such binary sensors. However, the currently available approaches for programming context-aware services do not conveniently support binary sensors. Indeed, no existing approach simultaneously supports a notion of state, central to binary sensors, offers a complete set of operators to compose states, allows to define reusable abstractions by means of such compositions, and implements efficient online processing of these operators.

The Allen language proposes a new approach for event processing specifically targeted to binary sensors. The central contributions of this language are a native notion of state and semi-causal operators for temporal state composition including: Allen logic's interval relations generalized for handling multiple intervals, and temporal filters for handling delays. Compared to other approaches such as CEP (complex event processing), our language provides less discontinued information, allows less restricted compositions, and supports reusable abstractions. We implemented a compiler for our language and applied it to successfully rewrite a full set of real Ambient Assisted Living services. The performance of our prototype interpreter has been shown to compete well with a commercial CEP engine when expressing the same services.

FUNCTIONAL DESCRIPTION: Main concepts and features: * Signal: formalized as a boolean function of (discrete) time. A signal models either the current state of a physical sensor or a higher-level context depending on such sensors. The "states" of a signal are the time intervals where the signal is 1. * Precise semantics of an Allen program: based on the above model. Allows checking domain properties. * Operators: allow to combine signals for deriving more complex signals. Each operator takes a given number of signals and produces a signal. For instance, the logic operators "and", "or", "not" have their usual meaning, at each time point, unary operators up(s) and down(s) produces the starting/ending events of signal s. Binary operator during(p,q) produces a signal containing the states of p entirely contained in some state of q. * Parameterized operators: take, besides a given number of signals, a given number of scalar (numeric) parameters, such as temporal delays. For instance, the unary operators gt[T](s) and lt[T](s) produces signals containing only the states of s which are longer/shorter than some delay T. * Language constructs for defining new operators. For instance, "def up(s) = gt[1](s)" allows defining operator "up" above, based on the more primitive operator "gt". This feature enables the construction of user-defined abstractions, and thus creating layers of reusable pieces of context logic. * Online context detection: the computation in real time of contexts based on incoming streams of events produces by sensors.

RELEASE FUNCTIONAL DESCRIPTION: First public version.

- Author: Eugène Volanschi
- Contact: Eugène Volanschi
- URL: https://github.com/NicVolanschi/Allen

RMOD Project-Team

6. New Software and Platforms

6.1. Moose

Moose: Software and Data Analysis Platform

KEYWORDS: Software engineering - Meta model - Software visualisation

FUNCTIONAL DESCRIPTION: Moose is an extensive platform for software and data analysis. It offers multiple services ranging from importing and parsing data, to modeling, to measuring, querying, mining, and to building interactive and visual analysis tools. The development of Moose has been evaluated to 200 man/year.

Mots-cles : MetaModeling, Program Visualization, Software metrics, Code Duplication, Software analyses, Parsers

- Participants: Anne Etien, Nicolas Anquetil, Olivier Auverlot, Stéphane Ducasse, Julien Delplanque, Guillaume Larcheveque, Cyril Ferlicot-Delbecque and Pavel Krivanek
- Partners: Université de Berne Sensus Synectique Pleiad USI Vrije Universiteit Brussel
- Contact: Stéphane Ducasse
- URL: http://www.moosetechnology.org

6.2. Pharo

KEYWORDS: Live programmation objet - Reflective system - Web Application

FUNCTIONAL DESCRIPTION: Pharo is a pure object reflective and dynamic language inspired by Smalltalk. In addition, Pharo comes with a full advanced programming environment developed under the MIT License. It provides a platform for innovative development both in industry and research. By providing a stable and small core system, excellent developer tools, and maintained releases, Pharo's goal is to be a platform to build and deploy mission critical applications, while at the same time continue to evolve. Pharo 60 got 100 contributors world-wide. It is used by around 30 universities, 15 research groups and around 40 companies.

- Participants: Christophe Demarey, Clement Bera, Damien Pollet, Esteban Lorenzano, Marcus Denker, Stéphane Ducasse and Guillermo Polito
- Partners: BetaNine Reveal Inceptive Netstyle Feenk ObjectProfile GemTalk Systems Greyc Université de Caen - Basse-Normandie - Université de Berne - Yesplan - RMod - Pleiad - Sensus
 Université de Bretagne Occidentale - École des Mines de Douai - ENSTA - Uqbar foundation Argentina - LAM Research - ZWEIDENKER - LifeWare - JPMorgan Chase - KnowRoaming - ENIT
 Spesenfuchs - FINWorks - Esug - FAST - Ingenieubüro Schmidt - Projector Software - HRWorks
 Inspired.org - Palantir Solutions - High Octane - Soops - Osoco - Ta Mère SCRL - University of Yaounde 1 - Software Quality Laboratory, University of Novi Sad - Software Institute Università della Svizzera italiana - Universidad Nacional de Quilmes - UMMISCO IRD - Université technique de Prague
- Contact: Marcus Denker
- URL: http://www.pharo.org

6.3. Pillar

KEYWORDS: HTML - LaTeX - HTML5

FUNCTIONAL DESCRIPTION: Pillar is a markup syntax and associated tools to write and generate documentation and books. Pillar is currently used to write several books and other documentation. It is used in the tools developed by Feenk.com.

- Partner: Feenk
- Contact: Stéphane Ducasse
- URL: https://github.com/Pillar-markup/pillar

STACK Team

6. New Software and Platforms

6.1. MAD

Madeus Application Deployer

KEYWORDS: Automatic deployment - Distributed Software - Component models - Cloud computing SCIENTIFIC DESCRIPTION: MAD is a Python implementation of the Madeus deployment model for multicomponent distributed software. Precisely, it allows to: 1. describe the deployment process and the dependencies of distributed software components in accordance with the Madeus model, 2. describe an assembly of components, resulting in a functional distributed software, 3. automatically deploy the component assembly of distributed software following the operational semantics of Madeus.

RELEASE FUNCTIONAL DESCRIPTION: Initial submission with basic functionalities of MAD

NEWS OF THE YEAR: Operational prototype.

- Participants: Christian Pérez, Dimitri Pertin, Hélène Coullon and Maverick Chardet
- Partners: IMT Atlantique LS2N LIP
- Contact: Hélène Coullon
- Publications: Madeus: A formal deployment model Behavioral interfaces for reconfiguration of component models

6.2. Nitro

KEYWORDS: Cloud storage - Virtual Machine Image - Geo-distribution SCIENTIFIC DESCRIPTION: Nitro is a storage system that is designed to work in geo-distributed cloud environments (i.e., over WAN) to efficiently manage Virtual Machine Images (VMIs).

Nitro employs fixed-size deduplication to store VMIs. This technique contributes to minimizing the network cost. Also, Nitro incorporates a network-aware scheduling algorithm (based on max flow algorithm) to determine which chunks should be pulled from which site in order to reconstruct the corresponding image on the destination site, with minimal (provisioning) time.

FUNCTIONAL DESCRIPTION: Geo-distributed Storage System to optimize Images (VM, containers, ...) management, in terms of cost and time, in geographically distributed cloud environment (i.e. data centers are connected over WAN).

- Authors: Jad Darrous, Shadi Ibrahim and Christian Pérez
- Contact: Shadi Ibrahim
- URL: https://gitlab.inria.fr/jdarrous/nitro

6.3. VMPlaces

KEYWORDS: Simulation - Virtualization - Scheduling

FUNCTIONAL DESCRIPTION: VMPlaces is a dedicated framework to evaluate and compare VM placement algorithms. This framework is composed of two major components: the injector and the VM placement algorithm. The injector is the generic part of the framework (i.e. the one you can directly use) while the VM placement algorithm is the part you want to study (or compare with available algorithms). Currently, the VMPlaceS is released with three algorithms:

Entropy, a centralized approach using a constraint programming approach to solve the placement/reconfiguration VM problem

67

Snooze, a hierarchical approach where each manager of a group invokes Entropy to solve the placement/reconfiguration VM problem. Note that in the original implementation of Snooze, it is using a specific heuristic to solve the placement/reconfiguration VM problem. As the sake of simplicity, we have simply reused the entropy scheduling code.

DVMS, a distributed approach that dynamically partitions the system and invokes Entropy on each partition.

- Participants: Adrien Lèbre, Flavien Quesnel, Jonathan Pastor, Mario Südholt and Takahiro Hirofuchi
- Contact: Adrien Lèbre
- URL: http://beyondtheclouds.github.io/VMPlaceS/

6.4. ENOS

Experimental eNvironment for OpenStack KEYWORDS: OpenStack - Experimentation - Reproducibility FUNCTIONAL DESCRIPTION: Enos workflow :

A typical experiment using Enos is the sequence of several phases:

- enos up : Enos will read the configuration file, get machines from the resource provider and will prepare the next phase - enos os : Enos will deploy OpenStack on the machines. This phase rely highly on Kolla deployment. - enos init-os : Enos will bootstrap the OpenStack installation (default quotas, security rules, ...)
- enos bench : Enos will run a list of benchmarks. Enos support Rally and Shaker benchmarks. - enos backup : Enos will backup metrics gathered, logs and configuration files from the experiment.

- Partner: Orange Labs
- Contact: Adrien Lèbre
- URL: http://enos.readthedocs.io/en/stable/

6.5. Platforms

6.5.1. OpenStack

OpenStack is the de facto open-source management system to operate and use Cloud Computing infrastructures. Started in 2012, the OpenStack foundation gathers 500 organizations including groups such as Intel, AT&T, RedHat, etc. The software platform relies on tens of services with a 6-month development cycle. It is composed of more than 2 millions of lines of code, mainly in Python, just for the core services. While these aspects make the whole ecosystem quite swift, they are also good signs of maturity of this community. We created and animated between 2016 and 2018 the Fog/Edge/Massively Distributed (FEMDC) Special Interest Group ⁰ and have been contributing to the Performance working group since 2015. The former investigates how OpenStack can address Fog/Edge Computing use cases whereas the latter addresses scalability, reactivity and high-availability challenges. In addition to releasing white papers and guidelines [100], the major result from the academic view point is the aforementioned EnOS solution, a holistic framework to conduct performance evaluations of OpenStack (control and data plane). In May 2018, the FEMDC SiG turned into a larger group under the control of the OpenStack foundation. This group gathers large companies such as Verizon, ATT, etc.

⁰https://wiki.openstack.org/wiki/Fog_Edge_Massively_Distributed_Clouds

6.5.2. Grid'5000

Grid'5000 is a large-scale and versatile testbed for experiment-driven research in all areas of computer science, with a focus on parallel and distributed computing including Cloud, HPC and Big Data. It provides access to a large amount of resources: 12000 cores, 800 compute-nodes grouped in homogeneous clusters, and featuring various technologies (GPU, SSD, NVMe, 10G and 25G Ethernet, Infiniband, Omni-Path) and advanced monitoring and measurement features for traces collection of networking and power consumption, providing a deep understanding of experiments. It is highly reconfigurable and controllable. Researchers can experiment with a fully customized software stack thanks to bare-metal deployment features for traces collection of networking and power consumption, providing a deep understanding of experiments, with full traceability of infrastructure and software changes on the testbed. STACK members are strongly involved into the management and the supervision of the testbed, notably through the steering committee or the SeDuCe testbed described hereafter.

6.5.3. SeDuCe

The SeDuCe project aims to deliver a research testbed dedicated to holistic research studies on energetical aspects of datacenters. Part of the Grid'5000 Nantes' site, this infrastructure is composed of probes that measure the power consumption of each server, each switch and each cooling system, and also measure the temperature at the front and the back of each servers. These sensors enable reasearch to cover a full spectrum of the energetical aspect of datacenters, such as cooling and power consumption depending of experimental conditions.

The testbed should soon be connected to renewqble energy sources (solar panels). This "green" datacenter will enable researchers to perform real experiment-driven studies on fields such as temperature based scheduling or "green" aware software (*i.e.*, software that take into account renewable energies and weather conditions).

6.5.4. SILECS

STACK Members are involved in the definition and bootstrap of the SILECS infrastructure (IR ministère). This infrastructure can be seen as a merge of the Grid'5000 and FIT testbeds with the goal of providing a common platform for experimental computer Science (Next Generation Internet, Internet of things, clouds, HPC, big data, ...).

AGORA Project-Team

6. New Software and Platforms

6.1. TAPASCologne

Travel and Activity PAtterns Simulation Cologne

KEYWORDS: Mobility - Traces

FUNCTIONAL DESCRIPTION: TAPASCologne is an initiative by the Institute of Transportation Systems at the German Aerospace Center (ITS-DLR), aimed at reproducing, with the highest level of realism possible, car traffic in the greater urban area of the city of Cologne, in Germany.

To that end, different state-of-art data sources and simulation tools are brought together, so to cover all of the specific aspects required for a proper characterization of vehicular traffic:

The street layout of the Cologne urban area is obtained from the OpenStreetMap (OSM) database, The microscopic mobility of vehicles is simulated with the Simulation of Urban Mobility (SUMO) software, The traffic demand information on the macroscopic traffic flows across the Cologne urban area (i.e., the O/D matrix) is derived through the Travel and Activity PAtterns Simulation (TAPAS) methodology, The traffic assignment of the vehicular flows described by the TAPASCologne O/D matrix over the road topology is performed by means of Gawron's dynamic user assignment algorithm.

- Participants: Marco Fiore and Razvan Stanica
- Contact: Marco Fiore
- URL: http://kolntrace.project.citi-lab.fr/#download

6.2. Sense in the City

KEYWORDS: Sensors - Sensors network - Wireless Sensor Networks

FUNCTIONAL DESCRIPTION: Sense in the city is a lightweight experimentation platform for wireless sensor networks in development. The main objective of this platform is to be easily transferable and deployable on the field. It allows a simplified deployment of the code running on the sensors and the collection of logs generated by the instrumentation of the code on a centralized database. In the early stage of the platform, the sensors are powered by small PCs, e.g. Raspberry Pis, but we are investigating the integration of energy harvesting capabilities such as solar panels.

- Participants: Hervé Rivano and Khaled Boussetta
- Contact: Khaled Boussetta

6.3. PrivaMovApp

KEYWORD: Crowd-sensing

FUNCTIONAL DESCRIPTION: Agora is leading the development of an Android application for user data collection purposes. The application is based on the Funf framework, and is currently available on Google Play.

- Participants: Stéphane D'alu, Hervé Rivano, Razvan Stanica and SOLOHAJA RABENJAMINA
- Contact: Razvan Stanica

6.4. WSNet

KEYWORD: Network simulator

FUNCTIONAL DESCRIPTION: WSNet is a modular event-driven simulator targeted to Wireless Sensor Networks. Its main goals are to offer scalabiliy, extensibility and modularity for the integration of new protocols/hardware models and a precise radio medium simulation. We still hope to find the proper resource to make WSNet evolve into a wireless capillary network simulator suitable for conducting simulations at the urban scale.

- Participants: Rodrigue Domga Komguem and Fabrice Valois
- Partner: CEA-LETI
- Contact: Guillaume Chelius
- URL: https://gforge.inria.fr/projects/wsnet-3/

6.5. Platforms

6.5.1. PPAIR Plateforme LoRa - Campus Connecté

The project aims at providing a platform that offers connectivity through a long-range, low-energy network to smart objects. The platform uses LoRa technology, which offers a wide connectivity, covering the entire INSA Lyon campus and providing a data collection service to all campus users. The main purpose of the LoRa plateforme is: (*i*) research (researchers can use it for studying reliability and capacity problems, privacy related challenges, etc.), and (*ii*) teaching (several courses from INSA, especially in the Telecom department can use this platform as a pedagogical tool).

Part of the software is mutualized with the University of Paris 13, where a LoRaWan testbed project is under deployment at the campus of Villetaneuse. This project, is supported by a local BQR and is leaded by Khaled Boussetta. The mutualization of the software tools will allows us to conduct multi sites experiments, at Lyon and at Paris.

6.5.2. UrPolSens Platform

We designed from scratch an energy efficient air pollution sensor network using Atmega micro-controllers and electrochemical air pollution probes. The micro-controller is integrated into a lab-designed printed circuit which includes among others: a high precision ADC, a micro-SD card reader and a radio communication module. The designed nodes measure the nitrogen dioxide (NO2) pollutant in addition to temperature and humidity and transmit data using LoRa to a gateway, which is connected to our servers using a 4G connection. The sensors are also equipped with solar panels in order to extend their lifetime when their batteries are drained. Our platform had been operational in the downtown of the Lyon city with 12 sensor nodes deployed in the Garibaldi street from mid-July to Mid-October 2018.

COATI Project-Team

6. New Software and Platforms

6.1. GRPH

The high performance graph library for Java

KEYWORDS: Graph - Graph algorithmics - Java

FUNCTIONAL DESCRIPTION: Grph is an open-source Java library for the manipulation of graphs. Its design objectives are to make it portable, simple to use/extend, computationally/memory efficient, and, according to its initial motivation: useful in the context of graph experimentation and network simulation. Grph also has the particularity to come with tools like an evolutionary computation engine, a bridge to linear programming solvers, a framework for distributed computing, etc.

Grph offers a very general model of graphs. Unlike other graph libraries which impose the user to first decide if he wants to deal with directed, undirected, hyper (or not) graphs, the model offered by Grph is unified in a general class that supports mixed graphs made of undirected and directed simple and hyper edges. Grph achieves great efficiency through the use of multiple code optimization techniques such as multi-core parallelism, caching, adequate data structures, use of primitive objects, exploitation of low-level processor caches, on-the-fly compilation of specific C/C++ code, etc. Grph attempts to access the Internet in order to check if a new version is available and to report who is using it (login name and hostname). This has no impact whatsoever on performance and security.

- Participants: Aurélien Lancin, David Coudert, Issam Tahiri, Luc Hogie and Nathann Cohen
- Contact: Luc Hogie
- URL: http://www.i3s.unice.fr/~hogie/grph/

6.2. BigGraphs

KEYWORDS: Graph algorithmics - Distributed computing - Java - Graph processing

FUNCTIONAL DESCRIPTION: The objective of BigGraphs is to provide a distributed platform for very large graphs processing. A typical data set for testing purpose is a sample of the Twitter graph : 240GB on disk, 398M vertices, 23G edges, average degree of 58 and max degree of 24635412.

We started the project in 2014 with the evaluation of existing middlewares (GraphX / Spark and Giraph / Hadoop). After having tested some useful algorithms (written according to the BSP model) we decided to develop our own platform.

This platform is based on the existing BIGGRPH library and we are now in the phasis where we focus on the quality and the improvement of the code. In particular we have designed strong test suites and some non trivial bugs have been fixed. We also have solved problems of scalability, in particular concerning the communication layer with billions of messages exchanged between BSP steps. We also have implemented specific data structures for BSP and support for distributed debugging. This comes along with the implementation of algorithms such as BFS or strongly connected components that are run on the NEF cluster.

In 2017 we have developed a multi-threaded shared-memory parallel version of the Bulk Synchronous Parallel framework. This new version uses advanced synchronization mechanisms and strategies to minimize the congestion of multiple threads working on the same graph. Using the NEF cluster (Inria Sophia Antipolis), this parallel version exhibits speed-ups up to 6.5 using 8 nodes (16 cores each) when computing a BFS on the 23 G edges Twitter graph sample.

- Participants: Luc Hogie, Michel Syska and Nicolas Chleq
- Partner: CNRS
- Contact: Luc Hogie
- URL: http://www.i3s.unice.fr/~hogie/software/?name=biggrph

6.3. JMaxGraph

KEYWORDS: Java - HPC - Graph algorithmics

FUNCTIONAL DESCRIPTION: JMaxGraph is a collection of techniques for the computation of large graphs on one single computer. The motivation for such a centralized computing platform originates in the constantly increasing efficiency of computers which now come with hundred gigabytes of RAM, tens of cores and fast drives. JMaxGraph implements a compact adjacency-table for the representation of the graph in memory. This data structure is designed to 1) be fed page by page, à-la GraphChi, 2) enable fast iteration, avoiding memory jumps as much as possible in order to benefit from hardware caches, 3) be tackled in parallel by multiplethreads. Also, JMaxGraph comes with a flexible and resilient batch-oriented middleware, which is suited to executing long computations on shared clusters. The first use-case of JMaxGraph allowed F. Giroire, T. Trolliet and S. Pérennes to count K2,2s, and various types of directed triangles in the Twitter graph of users (23G arcs, 400M vertices). The computation campaign took 4 days, using up to 400 cores in the NEF Inria cluster.

- Contact: Luc Hogie
- URL: http://www.i3s.unice.fr/~hogie/software/?name=jmaxgraph

6.4. Sagemath

SageMath

KEYWORDS: Graph algorithmics - Graph - Combinatorics - Probability - Matroids - Geometry - Numerical optimization

SCIENTIFIC DESCRIPTION: SageMath is a free open-source mathematics software system. It builds on top of many existing open-source packages: NumPy, SciPy, matplotlib, Sympy, Maxima, GAP, FLINT, R and many more. Access their combined power through a common, Python-based language or directly via interfaces or wrappers.

FUNCTIONAL DESCRIPTION: SageMath is an open-source mathematics software initially created by William Stein (Professor of mathematics at Washington University). We contribute the addition of new graph algorithms along with their documentations and the improvement of underlying data structures.

RELEASE FUNCTIONAL DESCRIPTION: See http://www.sagemath.org/changelogs/sage-8.4.txt

NEWS OF THE YEAR: 1) Implementation of a linear time algorithm for partitioning a graph into 3-connected components. Done in the context of Google Summer of Code 2018. 2) Main contributor for making the graph module (more than 100,000 lines of code) of SageMath compatible with Python3 (ongoing, already more than 100 patchs)

- Participant: David Coudert
- Contact: David Coudert
- URL: http://www.sagemath.org/

DANTE Project-Team

6. New Software and Platforms

6.1. GraSP

Graph Signal Processing KEYWORDS: Matlab - LaTeX - Graph - Graph visualization - Signal processing - GNU Octave FUNCTIONAL DESCRIPTION: Matlab / GNU Octave toolbox to manipulate and visualize signals on graphs. LaTeX package to draw signals.

• Contact: Benjamin Girault

6.2. IoT-LAB aggregation-tools

KEYWORD: Internet of things

FUNCTIONAL DESCRIPTION: IoT-LAB aggregation-tools allow aggregating data results from many nodes at a time. It connects to several tcp connections and handle the received data.

- Participant: Gaetan Harter
- Contact: Eric Fleury
- URL: https://github.com/iot-lab/aggregation-tools

6.3. IoT-LAB cli-tools

KEYWORD: Internet of things

FUNCTIONAL DESCRIPTION: IoT-LAB cli-tools provide a basic set of operations for managing IoT-LAB experiments from the command-line.

- Participants: Frédéric Saint-Marcel and Gaetan Harter
- Contact: Eric Fleury
- URL: https://github.com/iot-lab/cli-tools

6.4. IoT-LAB gateway

KEYWORD: Internet of things

FUNCTIONAL DESCRIPTION: IoT-LAB software embedded on a IoT-LAB gateway node new generation provides the local management of the experiment on that node. It is a software bridge between the IoT-LAB server, the user open node and the control node.

- Contact: Frédéric Saint-Marcel
- URL: https://github.com/iot-lab/iot-lab-gateway

6.5. IoT-LAB robots

KEYWORDS: Internet of things - Robotics

FUNCTIONAL DESCRIPTION: IoT-LAB robots is an embedded robot controler on a Turtlebot2 providing the IoT-LAB node mobility functionnality

- Partner: Université de Strasbourg
- Contact: Julien Vandaële
- URL: https://github.com/iot-lab/

6.6. Queueing Systems

FUNCTIONAL DESCRIPTION: This tool aims at providing a simple web interface to promote the use of our proposed solutions to numerically solve classical queueing systems.

- Participants: Alexandre Brandwajn and Thomas Begin
- Contact: Thomas Begin
- URL: http://queueing-systems.ens-lyon.fr/

6.7. WSNet

KEYWORD: Network simulator

FUNCTIONAL DESCRIPTION: WSNet is a modular event-driven simulator targeted to Wireless Sensor Networks. Its main goals are to offer scalabiliy, extensibility and modularity for the integration of new protocols/hardware models and a precise radio medium simulation. We still hope to find the proper resource to make WSNet evolve into a wireless capillary network simulator suitable for conducting simulations at the urban scale.

- Participants: Rodrigue Domga Komguem and Fabrice Valois
- Partner: CEA-LETI
- Contact: Guillaume Chelius
- URL: https://gforge.inria.fr/projects/wsnet-3/

DIANA Project-Team

5. New Software and Platforms

5.1. ACQUAmobile

KEYWORDS: Android - Internet access - Performance measure - Quality of Experience

FUNCTIONAL DESCRIPTION: ACQUA is an Application for predicting QUality of Experience (QoE) at Internet Access. It is developed by the Diana team at Inria Sophia Antipolis – Méditerranée and was supported by Inria under the ADT ACQUA grant. The scientific project around ACQUA is supported by Inria Project Lab BetterNet and the French National Project ANR BottleNet. The project also got the approval of Inria COERLE and French CNIL for the part on experimentation with real users. ACQUA presents a new way for the evaluation of the performance of Internet access. Starting from network-level measurements as the ones we often do today (bandwidth, delay, loss rates, jitter, etc), ACQUA targets the estimated Quality of Experience (QoE) related to the different applications of interest to the user without the need to run them (e.g., estimated Skype quality, estimated video streaming quality).

An application in ACQUA is a function, or a model, that links the network-level and device-level measurements to the expected Quality of Experience. Supervised machine learning techniques are used to establish such link between measurements both at the network level and the device level, and estimations of the Quality of Experience for different Internet applications. The required data for such learning can be obtained either by controlled experiments as we did in [22], [21] on YouTube Quality of Experience, or by soliciting the crowd (i.e. crowdsourcing) for combinations (i.e. tuples) of measurements and corresponding application-level Quality of Experience. Our current work is concentrating on using the ACQUA principle in the estimation and prediction of the Quality of Experience for main user's applications. We refer to the web site of the project for further details.

The ACQUA Android application is supposed to be on one hand the reference application for QoE forecasting and troubleshooting for end users at their Internet access, and on the other hand, the feedback channel that allows end users to report to us (if they are willing) on their experience together with the corresponding network measurements so as to help us calibrating better and more realistic models. For this calibration, we are currently performing extensive, efficient and automatic measurements in the laboratory, we will count on end users to help us completing this dataset with further applications and more realistic network and user conditions.

ACQUA is mainly meant for end users, but it is also of interest to (mobile) network operators and to content providers to estimate the QoE of their customers and their networks without each time having to run expensive application-level traffic and to involve real users.

- Authors: Thierry Spetebroot and Chadi Barakat
- Contact: Chadi Barakat
- URL: http://project.inria.fr/acqua/

5.2. ElectroSmart

KEYWORDS: Crowd-sourcing - UMTS - GSM - Bluetooth - Wi-Fi - 4G - 3G - 2G - Electromagnetic waves - Android - LTE

FUNCTIONAL DESCRIPTION: The Internet and new devices such as smartphones have fundamentally changed the way people communicate, but this technological revolution comes at the price of a higher exposition of the general population to microwave electromagnetic fields (EMF). This exposition is a concern for health agencies and epidemiologists who want to understand the impact of such an exposition on health, for the general public who wants a higher transparency on its exposition and the health hazard it might represent, but also for cellular operators and regulation authorities who want to improve the cellular coverage while limiting the exposition, and for computer scientists who want to better understand the network connectivity in order to optimize communication protocols. Despite the fundamental importance to understand the exposition of the general public to EMF, it is poorly understood because of the formidable difficulty to measure, model, and analyze this exposition.

The goal of the ElectroSmart project is to develop the instrument, methods, and models to compute the exposition of the general public to microwave electromagnetic fields used by wireless protocols and infrastructures such as Wi-Fi, Bluetooth, or cellular. Using a pluri-disciplinary approach combining crowd-based measurements, in-lab experiments, and modeling using sparse and noisy data, we address challenges such as designing and implementing a measuring instrument leveraging on crowd-based measurements from mobile devices such as smartphones, modeling the exposition of the general public to EMF to compute the most accurate estimation of the exposition, and analyzing the evolution of the exposition to EMF with time. This technological breakthrough will have scientific, technical, and societal applications, notably on public health politics, by providing the scientific community and potential users with a unique measuring instrument, methods, and models to exploit the invaluable data gathered by the instrument.

This project is supported by the UCN@Sophia Labex in 2016/2017/2018 (funding the engineer Mondi Ravi), by an Inria ADT (funding the engineer Abdelhakim Akodadi) 2017/2018, by and Inria ATT (funding the business developer David Migliacci) in 2017/2018, and by the academy 1 of UCAJedi (funding a Ph.D. student Yanis Boussad) 2017/2020.

In August 2016, we released the first stable public release of ElectroSmart. On the 13th July 2018 we have 84 000 downloads in Google Play, an average score of 4.4/5, 30 000 active users, 850 millions measured signals.

We are in a process of creating a startup to commercialize the exposition maps we can build with the data we are collecting.

- Participants: Arnaud Legout, Abdelhakim Akodadi, Hackob Melconian, Inderjeet Singh and Mondi Ravi
- Contact: Arnaud Legout
- URL: https://es.inria.fr/home/index?path_prefix=en

5.3. OpenLISP

KEYWORDS: LISP - Routing - Control-plane

FUNCTIONAL DESCRIPTION: Among many options tackling the scalability issues of the current Internet routing architecture, the Locator/Identifier Separation Protocol (LISP) appears as a viable solution. LISP improves a network's scalability, flexibility, and traffic engineering, enabling mobility with limited overhead. As for any new technology, implementation and deployment are essential to gather and master the real benefits that it provides. We propose a complete open source implementation of the LISP control plane. Our implementation is deployed in the worldwide LISP Beta Network and the French LISP-Lab testbed, and includes the key standardized control plane features. Our control plane software is the companion of the existing OpenLISP dataplane implementation, allowing the deployment of a fully functional open source LISP network compatible with any implementation respecting the standards.

- Contact: Damien Saucez
- URL: http://www.openlisp.org/downloads

5.4. nepi-ng

KEYWORDS: Wireless network - Experimentation

FUNCTIONAL DESCRIPTION: In the specific context of R2lab, we have created a tool suite for orchestrating network experiments, that for historical reasons we refer to collectively as nepi-ng, for NEPI new generation. An umbrella website is available at https://nepi-ng.inria.fr/.

At this point, nepi-ng has a much smaller scope than its NEPI ancestor used to have, in that it only supports remote control of network experiments over ssh. As a matter of fact, in practice, this is the only access mechanism that we need to have for running experiments on both R2lab, and PlanetLab Europe.

The design of nepi-ng of course is modular, so that it will be perfectly possible to add other control mechanisms to this core if and when it becomes necessary.

nepi-ng is currently made of two separate python libraries:

- asynciojobs:
 - URL: http://asynciojobs.readthedocs.io/en/latest/
 - Version: asynciojobs v0.5.4
 - Keywords: networking experimentation, orchestration
 - License: CC BY-SA 4.0
 - Type of human computer interaction: python library
 - OS/Middleware: Linux
 - Required library or software: python-3.5 / asyncio
 - Programming language: python3
- apssh:
 - URL: http://apssh.readthedocs.io/en/latest/
 - Version: apssh v0.7.1
 - Keywords: networking experimentation, orchestration
 - License: CC BY-SA 4.0
 - Type of human computer interaction: python library
 - OS/Middleware: Linux
 - Required library or software: python-3.5 / asyncio
 - Programming language: python3
- Contact: Thierry Parmentelat
- URL: http://nepi-ng.inria.fr

5.5. Platforms

5.5.1. Reproducible research Lab - R2lab

Scientific evaluation of network protocols requires for experiments to be reproducible before they can be deemed valid. This is particularly difficult to obtain in the wireless networking area, where characteristics of wireless channels are known to be variable, unpredictable and hardly controllable.

The R2lab wireless testbed is built around an isolated and anechoic chamber, featuring RF absorbers preventing radio waves reflections and a Faraday cage blocking external interferences. This lab, named R2lab, represents an ideal environment for experiments reproducibility.

It represents a perfect facility for making wireless experiments reproducible. It has been operated for 3 years now, in the context of the FIT (Future Internet of Things) Equipment of Excellence project, and as such, it is now federated with the other testbeds that are part of the FIT initiative. This testbed is for the long-haul, and is scheduled to remain operational until at least 2020.

During 2018, our focus regarding R2lab has been set on enhancing the nepi-ng software toolkit, extending the set of tutorials and on deploying more network devices such as LoRa and Ettus USRP devices. The chamber now offers 19 USRP devices, as well as a couple of lime-sdr devices and a couple of E3372 LTE dongles. Moreover, two remotely controllable iphone are available. All these additions aim at widening even further the spectrum of experiments that the testbed can support.

Access to R2lab is open 24/7. We currently have around 150 active users from all over the world among them 45 new users registered in 2018. For more details see http://r2lab.inria.fr.

5.5.2. Network simulator for aircrafts

- Keywords: network, simulation, real-time
- Functional Description: In collaboration with Safran Electrical and Power we produced a network design tool for aircrafts. This tool simulates aircraft networks. The tool is about 10,000 lines of code, out of which we produced 2,000.
- Assessment: A-2up,SO-3,SM-2up,EM-4,SDL-3,OC-DA-CD-TPM
- Licence: confidential
- URL: confidential
- Contact: Damien Saucez

DIONYSOS Project-Team

6. New Software and Platforms

6.1. IPv6 Test Toolkit

FUNCTIONAL DESCRIPTION: These test suites are developed using the TTCN-3 environment.

The packages contains the full Abstract Test Suites written in TTCN-3 and the source files for building the codecs and adapters with the help of T3DevKit.

- Participants: Annie Floch, Anthony Baire, Ariel Sabiguero, Bruno Deniaud, César Viho and Frédéric Roudaut
- Contact: César Viho

6.2. Passive Test Tool

- Participants: Anthony Baire and César Viho
- Contact: Anthony Baire

6.3. T3DevKit

KEYWORDS: IPv6 - Conformance testing - TTCN-3

SCIENTIFIC DESCRIPTION: We have built a toolkit for easing executing tests written in the standardized TTCN-3 test specification language. This toolkit is made of a C++ library together with a highly customizable CoDec generator that allows fast development of external components (that are required to execute a test suite) such as CoDec (for message Coding/Decoding), System and Platform Adapters. It also provides a framework for representing and manipulating TTCN-3 events so as to ease the production of test reports. The toolkit addresses issues that are not yet covered by ETSI standards while being fully compatible with the existing standard interfaces: TRI (Test Runtime Interfaces) and TCI (Test Control Interfaces), it has been tested with four TTCN-3 environments (IBM, Elvior, Danet and Go4IT) and on three different platforms (Linux, Windows and Cygwin).

FUNCTIONAL DESCRIPTION: T3DevKit is a free open source toolkit to ease the development of test suites in the TTCN-3 environment. It provides:

a CoDec generator (t3cdgen) that automates the development process of the CoDec needed for coding TTCN-3 values into physically transmittable messages and decoding incoming messages a library (t3devlib) that provides an object oriented framework to manipulate TTCN-3 entities (values, ports, timers, external functions...) an implementation of the TRI and TCI standard interfaces default implementations for the system adapter (SA), platform adapter (PA), test management (TM), test logging (TL) and component handling (CH) modules default codecs build scripts for the generation of executable test suites, these are tool-independent and facilitate the distribution of test suite sources

- Participants: Annie Floch, Anthony Baire, Ariel Sabiguero, César Viho and Frédéric Roudaut
- Contact: Federico Sismondi

6.4. ttproto

Testing Tool Prototype

KEYWORDS: Interoperability - Conformance testing - TTCN-3

FUNCTIONAL DESCRIPTION: ttproto is an experimental tool for implementing testing tools, for conformance and interoperability testing.

It was first implemented to explore new features and concepts for the TTCN-3 standard, but we also used it to implement a passive interoperability test suite we provided for the CoAP interoperability event held in Paris in March 2012.

This tool is implemented in python3 and its design was influenced mainly by TTCN-3 (abstract model, templates, snapshots, behaviour trees, communication ports, logging) and by Scapy (syntax, flexibility, customisability)

Its purpose is to facilitate rapid prototyping rather than experimentations (rather than production use). We choosed to maximise its modularity and readability rather than performances and real-time considerations.

Now you should have a look at the Features page: https://www.irisa.fr/tipi/wiki/doku.php/ testing_tool_prototype:features

- Contact: Federico Sismondi
- URL: https://www.irisa.fr/tipi/wiki/doku.php/testing_tool_prototype

6.5. CoAP Testing Tool

KEYWORDS: Test - Interoperability - Conformance testing - Plugtests

FUNCTIONAL DESCRIPTION: The software helps developers of the CoAP protocol assessing if their implementations (either CoAP clients or CoAP servers) are conformant to protocol specifications, and interoperable with other implementations. It encompasses:

- Coordination of CoAP interoperability tests
- Analysis of CoAP traces & issuing verdicts
- Automation of open source CoAP implementations for based reference interop testing
- Authors: Federico Sismondi and César Viho
- Contact: Federico Sismondi

6.6. ioppytest

Interoperability testing

KEYWORDS: Interoperability - Conformance testing - CoAP - 6LoWPAN - OneM2M

FUNCTIONAL DESCRIPTION: The software is a framework for developing interoperability tests. The interoperability tests help developers of network protocol assessing if their implementations are conformant to protocol specifications, and interoperable with other implementations.

The software already integrates interoperability tests for CoAP, OneM2M and 6LoWPAN The framework provides the following features to the users:

- Coordination of the interoperability tests (enabling remote testing)
- VPN-like connectivity between users' implementations (enabling remote testing)
- Analysis of exchanged network traces & issuing verdicts
- Automation of open source implementations for based reference interop testing

This framework is the evolution of the CoAP Testing Tool (https://bil.inria.fr/fr/software/view/2937/tab)

- Contact: Federico Sismondi
- URL: https://gitlab.f-interop.eu/f-interop-contributors/ioppytest

DYOGENE Project-Team (section vide)

EVA Project-Team

6. New Software and Platforms

6.1. OpenWSN

KEYWORDS: Internet of things - 6TiSCH - 6LoWPAN - CoAP

FUNCTIONAL DESCRIPTION: OpenWSN is an open-source implementation of a fully standards-based protocol stack for the Internet of Things. It has become the de-facto implementation of the IEEE802.15.4e TSCH standard, has a vibrant community of academic and industrial users, and is the reference implementation of the work we do in the IETF 6TiSCH standardization working group.

- Partner: University of California Berkeley
- Contact: Thomas Watteyne
- URL: http://www.openwsn.org/

6.2. 6TiSCH Simulator

High-level simulator of a 6TiSCH network

KEYWORDS: Network simulator - 6TiSCH

FUNCTIONAL DESCRIPTION: The simulator is written in Python. While it doesn't provide a cycle-accurate emulation, it does implement the functional behavior of a node running the full 6TiSCH protocol stack. This includes RPL, 6LoWPAN, CoAP and 6P. The implementation work tracks the progress of the standardization process at the IETF.

• Contact: Malisa Vucinic

6.3. Argus

KEYWORDS: Cloud - Low-Power WIreless - Sniffer FUNCTIONAL DESCRIPTION: There are three piece to the Argus:

The Argus Probe is the program which attaches to your low-power wireless sniffer and forwards its traffic to the Argus Broker.

The Argus Broker sits somewhere in the cloud. Based on MQTT, it connect Argus Probes with Argus Clients based on a pub-sub architecture.

Several Argus Clients can the started at the same time. It is a program which subscribes to the Argus Broker and displays the frames in Wireshark.

• Contact: Rémy Leone

6.4. SolSystem

Sensor Object Library System

KEYWORDS: Low-Power WIreless - Back-End System - SmartMesh IP

FUNCTIONAL DESCRIPTION: The source code is composed of the definition of the SOL structure (https://github.com/realms-team/sol), the code that runs on the manager (https://github.com/realms-team/solmanager, written in Python) and the code that runs on the server receiving the data (https://github.com/realms-team/solserver, written in Python)

- Contact: Keoma Brun-Laguna
- URL: http://www.solsystem.io/

6.5. 6TiSCH Wireshark Dissector

KEYWORDS: 6TiSCH - Wireshark

FUNCTIONAL DESCRIPTION: Implementation on the dissectors is done through an open-source repository, stable code is regularly contributed back to the main Wireshark code base.

• Contact: Jonathan Munoz

6.6. F-Interop

Remote Conformance and Interoperability Tests for the Internet of Thing KEYWORDS: Interoperability - Iot - Conformance testing - Standardization

- Partners: UPMC IMEC ETSI EANTC Mandat International Digital Catapult University of Luxembourg Device Gateway
- Contact: Rémy Leone

6.7. Mercator

KEYWORDS: Deployment - Low-Power WIreless - Testbeds - Connectivity FUNCTIONAL DESCRIPTION: The firmware is written as part of the OpenWSN project. Scripts and analysis tools are written in Python.

• Contact: Keoma Brun-Laguna

FUN Project-Team

6. New Software and Platforms

6.1. AspireRFID ALE

FUNCTIONAL DESCRIPTION: AspireRFID middleware is a modular OW2 open source RFID middleware. It is compliant with EPC Global standards. This new module integrates the modifications of the new standard release, including new RP and LLRP definitions and fixing bugs. This module has been implemented in the framework of the MIAOU project.

- Participants: Ibrahim Amadou, Julien Vandaële, Nathalie Mitton and Rim Driss
- Contact: Nathalie Mitton

6.2. ETINODE-CONTIKI-PORT

FUNCTIONAL DESCRIPTION: Contiki is an open source embedded OS for Internet of Things (IoT). It is light and portable to different hardware architectures. It embeds communication stacks for IoT II embarque aussi des piles de communication pour l'internet des objets. This driver allows the running of Contiki OS over Etinode-MSP430. The code dalso allows the use of radio chip and embedded sensors. This module has been implemented in the framework of the ETIPOPS project.

- Participants: Nathalie Mitton, Roudy Dagher and Salvatore Guzzo Bonifacio
- Contact: Salvatore Guzzo Bonifacio

6.3. ETINODE-DRIVERS

FUNCTIONAL DESCRIPTION: These drivers for Etinode-MSP430 control the different embedded sensors and hardware components available on an Etinode-MSP430 node such as gyroscope, accelerometer and barometric sensor. This module has been implemented in the framework of the ETIPOPS project.

- Participants: Nathalie Mitton, Roudy Dagher and Salvatore Guzzo Bonifacio
- Contact: Salvatore Guzzo Bonifacio

6.4. EVe-TCF

Embedded Verifier for Transitive Control Flow

KEYWORDS: Control Flow - JavaCard - Embedded systems - Embedded - Security - Code analysis FUNCTIONAL DESCRIPTION: Verification of transitive control flow policies on JavaCard 2.x bytecode. Control flow policies expressed using a DSL language are embedded in JavaCard packages (CAP files) using EVe-TCF convert tool. Control flow policies are then statically verified on-device at loading-time thanks to an embedded verifier (designed for smart cards in EVe-TCF). EVe-TCF (Embedded Verifier for Transitive Control Flow) also contains an off-device (i.e. PC tool) to simulate on-device loading process of JavaCard 2.x platforms with GlobalPlatform 2.x installed.

- Participants: Arnaud Fontaine and Isablle Simplot Ryl
- Contact: Nathalie Mitton

6.5. GOLIATH

Generic Optimized LIghtweight communication stack for Ambient TecHnologies KEYWORDS: WSN - WSN430 FUNCTIONAL DESCRIPTION: GOLIATH (Generic Optimized LIghtweight communication stack for Ambient TecHnologies) is a full protocol stack for wireless sensor networks. This module has been implemented in the framework of the ETIPOPS project.

- Participants: David Simplot Ryl, Fadila Khadar, Nathalie Mitton and Salvatore Guzzo Bonifacio
- Contact: Nathalie Mitton
- URL: https://gforge.inria.fr/projects/goliath/

6.6. IoT-LAB robots

KEYWORDS: Internet of things - Robotics

FUNCTIONAL DESCRIPTION: IoT-LAB robots is an embedded robot controler on a Turtlebot2 providing the IoT-LAB node mobility functionnality

- Partner: Université de Strasbourg
- Contact: Julien Vandaële
- URL: https://github.com/iot-lab/

6.7. T-SCAN

KEYWORDS: Rfid - RFID Middleware

FUNCTIONAL DESCRIPTION: T-Scan is an interface ensuring the translation from a SGTIN tag format to an ONS hostname format according to the EPCGlobal standards. It allows the sending of a DNS request to look up the EPC-IS aides to which the product belongs in order to access the data relative to that product. This module has been implemented in the framework of the TRACAVERRE project.

- Participants: Gabriele Sabatino and Nathalie Mitton
- Contact: Gabriele Sabatino

6.8. FIT IoT-Lab

Participants: Nathalie Mitton [correspondant], Julien Vandaele, Matthieu Berthome.

FIT IoT-LAB is a very large scale open testbed that features over 2700 wireless sensor nodes and more than 200 robots spread across six different sites in France. Nodes are either fixed or mobile and can be allocated in various topologies throughout all sites. A variety of wireless sensors are available, with different processor architectures (MSP430, STM32 and Cortex-A8) and different wireless chips (802.15.4 PHY at 800 MHz or 2.4 GHz). In addition, "open nodes" can receive custom wireless sensors for inclusion in IoT-LAB testbed. This platform is completely open and can be used by any one wishing to run experiment on wireless sensors and robots.

The Lille site displays 3 subsets of the platforms:

- Euratechnologies: this site features 256 WSN430 sensor nodes operating in the 2.4GHz band. 64 nodes are mobile, embedded on mobile trains.
- Haute Borne: this site features 256 M3 sensor nodes operating in the 2.4GHz band and 64 mobile robots (32 turtlebots and 32 wifibots) completely remotely programmable.
- Opennodes: this site will feature (opening beginning 2015) 64 hardware open slots to allow any one to plug his own hardware and benefits from the platform debugging and monitoring tools.

GANG Project-Team

6. New Software and Platforms

6.1. big-graph-tools

KEYWORD: Graph algorithmics

FUNCTIONAL DESCRIPTION: Gang is developping a software for big graph manipulation. A preliminary library offering diameter and skeleton computation. This library was used to compute the diameters of the worldwide road network (200M edges) and the largest strongly connected component of the Twitter follower-followee graph (23G edges).

- Contact: Laurent Viennot
- URL: https://who.rocq.inria.fr/Laurent.Viennot/dev/big-graph-tools/

6.2. GRPH

The high performance graph library for Java

KEYWORDS: Graph - Graph algorithmics - Java

FUNCTIONAL DESCRIPTION: Grph is an open-source Java library for the manipulation of graphs. Its design objectives are to make it portable, simple to use/extend, computationally/memory efficient, and, according to its initial motivation: useful in the context of graph experimentation and network simulation. Grph also has the particularity to come with tools like an evolutionary computation engine, a bridge to linear programming solvers, a framework for distributed computing, etc.

Grph offers a very general model of graphs. Unlike other graph libraries which impose the user to first decide if he wants to deal with directed, undirected, hyper (or not) graphs, the model offered by Grph is unified in a general class that supports mixed graphs made of undirected and directed simple and hyper edges. Grph achieves great efficiency through the use of multiple code optimization techniques such as multi-core parallelism, caching, adequate data structures, use of primitive objects, exploitation of low-level processor caches, on-the-fly compilation of specific C/C++ code, etc. Grph attempts to access the Internet in order to check if a new version is available and to report who is using it (login name and hostname). This has no impact whatsoever on performance and security.

- Participants: Aurélien Lancin, David Coudert, Issam Tahiri, Luc Hogie and Nathann Cohen
- Contact: Luc Hogie
- URL: http://www.i3s.unice.fr/~hogie/grph/

INFINE-POST Team (section vide)

Neo Project-Team

6. New Software and Platforms

6.1. marmoteCore

Markov Modeling Tools and Environments - the Core

KEYWORDS: Modeling - Stochastic models - Markov model

FUNCTIONAL DESCRIPTION: marmoteCore is a C++ environment for modeling with Markov chains. It consists in a reduced set of high-level abstractions for constructing state spaces, transition structures and Markov chains (discrete-time and continuous-time). It provides the ability of constructing hierarchies of Markov models, from the most general to the particular, and equip each level with specifically optimized solution methods.

This software is developed within the ANR MARMOTE project: ANR-12-MONU-00019.

- Participants: Alain Jean-Marie, Hlib Mykhailenko, Benjamin Briot, Franck Quessette, Issam Rabhi, Jean-Marc Vincent and Jean-Michel Fourneau
- Partner: UVSQ
- Contact: Alain Jean-Marie
- Publications: marmoteCore: a Markov Modeling Platform marmoteCore: a software platform for Markov modeling
- URL: http://marmotecore.gforge.inria.fr/

POEMS-POST Team

6. New Software and Platforms

6.1. XLiFE++

KEYWORDS: Numerical simulations - Finite element modelling - Boundary element method FUNCTIONAL DESCRIPTION: XLiFE++ is an FEM-BEM C++ code developed by POEMS laboratory and IRMAR laboratory, that can solve 1D/2D/3D, scalar/vector, transient/stationary/harmonic problems. Description: https://uma.ensta-paristech.fr/soft/XLiFE++/

• Contact: Eric Lunéville

6.2. COFFEE

KEYWORDS: Numerical simulations - Wave propagation - Boundary element method

FUNCTIONAL DESCRIPTION: COFFEE is an adapted fast BEM solver to model acoustic and elastic wave propagation (full implementation in Fortran 90). The 3-D acoustic or elastodynamic equations are solved with the boundary element method accelerated by the multi-level fast multipole method or a hierarchicalmatrices based representation of the system matrix. The fundamental solutions for the infinite space are used in this implementation. A boundary element-boundary element coupling strategy is also implemented so multiregion problems (strata inside a valley for example) can be solved. In order to accelerate the convergence of the iterative solver, various analytic or algebraic preconditioners are available. Finally, an anisotropic mesh adaptation strategy is used to further reduce the computational times.

• Contact: Stéphanie Chaillat

RESIST Team

6. New Software and Platforms

6.1. Distem

KEYWORDS: Large scale - Experimentation - Virtualization - Emulation

FUNCTIONAL DESCRIPTION: Distem is a distributed systems emulator. When conducting research on Cloud, P2P, High Performance Computing or Grid systems, it can be used to transform an homogeneous cluster (composed of identical nodes) into an experimental platform where nodes have different performance, and are linked together through a complex network topology, making it the ideal tool to benchmark applications targetting such environments, or aiming at tolerating performance degradations or variations which are frequent in the Cloud or in other applications distributed at large scale (P2P for example).

RELEASE FUNCTIONAL DESCRIPTION: New features in Distem 1.3 include: (1) New network emulation parameters: loss, duplication, corruption, reordering and jitter, (2) Support for Debian Stretch, (3) Added many tests, (4) Moved project from GForge to GitHub (https://github.com/madynes/distem). NEWS OF THE YEAR: New version 1.3

- Participants: Luc Sarzyniec, Lucas Nussbaum and Tomasz Buchert
- Partners: CNRS Université de Lorraine Loria Grid'5000 Inria
- Contact: Lucas Nussbaum
- URL: http://distem.gforge.inria.fr

6.2. Grid'5000

Grid'5000 experimental platform

KEYWORDS: HPC - Cloud - Big data - Testbeds

FUNCTIONAL DESCRIPTION: The Grid'5000 experimental platform is a scientific instrument to support computer science research related to distributed systems, including parallel processing, high performance computing, cloud computing, operating systems, peer-to-peer systems and networks. It is distributed on 10 sites in France and Luxembourg, including Lyon. Grid'5000 is a unique platform as it offers to researchers many and varied hardware resources and a complete software stack to conduct complex experiments, ensure reproducibility and ease understanding of results.

NEWS OF THE YEAR: This year's highlights include the first joint FIT-Grid'5000 school, and various improvements (update to Debian 9, several new clusters, etc.). More information on https://www.grid5000. fr/w/News

- Participants: Christian Pérez, David Loup, Frédéric Desprez, Laurent Lefèvre, Laurent Pouilloux, Marc Pinhède, Simon Delamare, Lucas Nussbaum, Teddy Valette and Alexandre Merlin
- Contact: Frédéric Desprez
- URL: https://www.grid5000.fr/

6.3. HTTP-NDN gateway

A gateway to transport HTTP over NDN

KEYWORDS: Internet protocols - Interoperability - Named Data Networking - Web - Network gateway FUNCTIONAL DESCRIPTION: In order to creat an NDN island using our HTTP over NDN architecture, we propose two kinds of gateways: (1) an ingress gateway (iGW), which converts HTTP user requests into NDN messages and converts requested NDN messages into HTTP responses sent to the end-users, and (2) an egress gateway (eGW), the counterpart of the first one, which converts requested NDN messages into HTTP requests towards web sites and converts HTTP responses into NDN messages. The whole thing can be considered as an HTTP proxy for the outsiders of the NDN network because the gateways represent the input(s) and output(s) of the NDN network island which can store the HTTP responses passing through. The gateway also features intelligent naming and cache management of web contents passing through the NDN network to better use the NDN architecture. Native NDN clients and NDN web servers can be present inside this NDN network, and they can communicate with the same mapping protocol used by the gateways to communicate with regular HTTP/IP clients or servers. NEWS OF THE YEAR: First release

• Partner: Orange Labs

- Contact: Thibault Cholez
- URL: https://github.com/DOCTOR-ANR/NDN-HTTP-Gateway

6.4. micro-NDN

microservices for NDN

KEYWORDS: Named Data Networking - Network Function Virtualization - Microservices

FUNCTIONAL DESCRIPTION: micro-NDN proposes to split the main functions of an NDN (Named-Data Networking) router into multiple microservices and to orchestrate them. Currently, it implements seven microservices: five are usual functions of an NDN router as in the NFD forwarding deamon (http://named-data. net/doc/NFD/current), and two are proposed to improve security: - Name Router (NR): Route Interest packets to producers that have registered a prefix of the name of the packet, it is like the Forwarding Information Base (FIB) in an NDN router, - Backward Router (BR): Route back Data packets to the consumers that have asked for it, it is like the Pending Interest Table (PIT) in an NDN router, - Packet Dispatcher (PD): Select the right pipeline for each kind of packet, - Content Store (CS): Aims to store Data packets to reuse them later when reasked, like the Content Store (CS) in an NDN router, - Strategy Forwarder (SF): A more general way to apply strategy (fail-over, round-robin, etc.), - Signature Verifier (SV): Verify the signature of the NDN packet based on the trusted keys, - Name Filter (NF): Drop packets based on their name.

We also provide a central manager that can monitor and orchestrate all the microservices. It provides a webbased GUI and a REST API to dynamically manipulate the topology (spawn a microservice, link them, etc.). It can also trigger actions based on predefined rules, for example to scale-up a bottleneck component. NEWS OF THE YEAR: First release

- Contact: Thibault Cholez
- URL: https://github.com/DOCTOR-ANR/NDN-microservices

6.5. ndnperf

tool for server-side evaluation of NDN throughput

KEYWORDS: Named Data Networking - Performance measure

FUNCTIONAL DESCRIPTION: NDNperf is a tool for NDN server-side performance evaluation and sizing purposes, in order to have an idea of the throughput a server can achieve when it has to generate and transmit NDN Data packets. It is very similar to iPerf and also needs a client and a server to perform the measurements while minimizing the number of instructions between Interest reception and Data emission. It exists in two flavors (Java and C++) and has the following features: - Periodic performance report: end-to-end throughput, latency, processing time, - Multi-threaded (one main thread for event lookup and N threads for NDN Data generation), - Able to use all the available signatures implemented in the NDN library, choose the size of the key, and the transmission size of Data packets, - Message broker implementation (Java version only, currently no update is scheduled).

NDNperf features many options regarding the signing process because we identified it as the main bottleneck of application performances.

NEWS OF THE YEAR: First release

- Contact: Thibault Cholez
- URL: https://github.com/DOCTOR-ANR/ndnperf

6.6. SCUBA

A Tool Suite for the automated security assessment of IoT environments

KEYWORDS: Cybersecurity - Internet of things - Machine learning - Artificial intelligence

FUNCTIONAL DESCRIPTION: IoT devices are used in different fields of application, not only for the general public, but also in industrial environments. SCUBA is tool suite for the security assessment of industrial and general public IoT devices. It mainly relies on collected information through passive and active scanning of a running IoT device in its exploitation environment to build its Security Knowledge Base (SKB). The knowledge base contains all relevant information of the device regarding its network communications extracted from PCAP files, the enumeration of its used hardware and software represented in the CPE (Common Platform Enumeration) format, the list of its known vulnerabilities in the CVE (Common Vulnerabilities and Exposures) format associated to their CWE (Common Weakness Enumeration) and CAPEC (Common Attack Pattern Enumeration and Classification) descriptions. The SKB is used by SCUBA to predict the intrusion chains associated to an IoT device and its environment. SCUBA tries to be as automated as possible to face the large scale and the great heterogeneity of IoT networks.

NEWS OF THE YEAR: First release

- Participants: Abdelkader Lahmadi, Frédéric Beck, Thomas Lacour and Jérôme François
- Contact: Abdelkader Lahmadi

6.7. Platforms

6.7.1. CPS Security Assessment Platform

During 2018, we have extended our Cyber-Physical systems security assessment platform with new hardware components including multiple types of Programmable Logic Controllers (PLCs), a small scale distribution and sorting testbed, and an experimental system modelled after a microgrid system. The physical platform is also extended with several IoT devices dedicated to residential networks (heating control, lightning system, home gateways, etc). The platform will be mainly used for building security assessment and evaluation experimentation on the available devices to identify and validate their associated attack patterns and discover new vulnerabilities. This platform is used as a testbed for the development carried on the SCUBA (see 6.6) tool suite to assess the security of IoT and SCADA systems.

SOCRATE Project-Team

5. New Software and Platforms

5.1. fftweb

KEYWORDS: Experimentation - Data visualization - SDR (Software Defined Radio)

FUNCTIONAL DESCRIPTION: fftweb is a real-time spectral (FFT) visualization of one or several signal, embedded in a web page. The FFT is computed in a GNURadio block, then sent to a gateway server, which serves the web page, associated javascripts, and signal websockets. The end user only has to use the GNURadio block and and the web page, and doesn't need to bother about the internal details of the system. fftweb has been developped specially for the CorteXlab testbed but with minor adaptations, it can be used in other contexts, and also can be used to draw more generic real-time graphs, not only FFTs. Technologies: GNURadio, python, python-gevent, Javascript, D3JS

• Contact: Matthieu Imbert

5.2. FloPoCo

Floating-Point Cores, but not only

KEYWORD: Synthesizable VHDL generator

FUNCTIONAL DESCRIPTION: The purpose of the open-source FloPoCo project is to explore the many ways in which the flexibility of the FPGA target can be exploited in the arithmetic realm.

NEWS OF THE YEAR: FloPoCo has been enhanced in 2019 with a last-bit accurate IIR filter generator and a generator of parallel FFT cores, among others.

- Participants: Florent Dupont De Dinechin and Luc Forget
- Partners: CNRS ENS Lyon UCBL Lyon 1 UPVD
- Contact: Florent Dupont De Dinechin
- URL: http://flopoco.gforge.inria.fr/

5.3. minus

KEYWORDS: Experimentation - SDR (Software Defined Radio)

FUNCTIONAL DESCRIPTION: Minus is an experiment control system able to control, the whole lifecycle of a radio experiment in CorteXlab or any other testbed inspired by it. Minus controls and automates the whole experiment process starting from node power cycling, experiment deployment, experiment start and stop, and results collection and transfer. Minus is also capable of managing multiple queues of experiments which are executed simultaneously in the testbed.

• Contact: Matthieu Imbert

5.4. WiPlan

FUNCTIONAL DESCRIPTION: Wiplan is a software including an Indoor propagation engine and a wireless LAN optimization suite, which has been registered by INSA-Lyon. The heart of this software is the propagation simulation core relying on an original method, MR-FDPF (multi-resolution frequency domain ParFlow), proposed by JM Gorce in 2001 and further extended. The discrete ParFlow equations are translated in the Fourier domain providing a large linear system, solved in two steps taking advantage of a multi- resolution approach. The first step computes a cell-based tree structure referred to as the pyramid. In the second phase, a radiating source is simulated, taking advantage of the pre-processed pyramidal structure. Using of a full-space discrete simulator instead of classical ray-tracing techniques is a challenge due to the inherent high computational load to be restricted to a pre-processing phase. Extensive works have been done to make predictions more realistic.

• Contact: Tanguy Risset

5.5. Sytare

KEYWORDS: Embedded systems - Operating system - Non volatile memory

FUNCTIONAL DESCRIPTION: Sytare is an embedded operating system targeting tiny platforms with intermittent power. In order to make power failures transparent for the application, the system detects imminent failures and saves a checkpoint of program state to non-volatile memory. Hardware peripherals are also made persistent without requiring developer attention.

- Authors: Tristan Delizy, Gautier Berthou, Guillaume Salagnac, Kevin Marquet and Tanguy Risset
- Contact: Guillaume Salagnac
- Publication: Peripheral State Persistence For Transiently Powered Systems
- URL: https://hal.inria.fr/hal-01460699