

Activity Report 2019

Section Application Domains

Edition: 2020-03-21

1. BONUS Project-Team	4
2. DEFROST Project-Team	6
3. FUN Project-Team (section vide)	9
4. INOCS Project-Team	
5. LINKS Project-Team	
6. LOKI Project-Team	
7. MAGNET Project-Team	
8. MEPHYSTO Team (section vide)	14
9. MODAL Project-Team	
10. RAPSODI Project-Team	
11. RMOD Project-Team	18
12. SEQUEL Project-Team	19
13. SPIRALS Project-Team	20
14. VALSE Project-Team	

BONUS Project-Team

4. Application Domains

4.1. Introduction

For the validation of our findings we obviously use standard benchmarks to facilitate the comparison with related works. In addition, we also target real-world applications in the context of our collaborations and industrial contracts. From the application point of view two classes are targeted: complex scheduling and engineering design. The objective is twofold: proposing new models for complex problems and solving efficiently BOPs using jointly the three lines of our research program. In the following, are given some use cases that are the focus of our current industrial collaborations.

4.2. Big optimization for complex scheduling

Three application domains are targeted: energy, health and transport and logistics. In the **energy** field, with the smart grid revolution (multi-)house energy management is gaining a growing interest. The key challenge is to make elastic with respect to the energy market the (multi-)house energy consumption and management. This kind of demand-side management will be of strategic importance for energy companies in the near future. In collaboration with the EDF energy company we are working on the formulation and solving of optimization problems on demand-side management in smart micro-grids for single- and multi-user frameworks. These complex problems require taking into account multiple conflicting objectives and constraints and many (deterministic/uncertain, discrete/continuous) parameters. A representative example of such BOPs that we are addressing is the scheduling of the activation of a large number of electrical and thermal appliances for a set of homes optimizing at least three criteria: maximizing the user's confort, minimizing its energy bill and minimzing peak consumption situations. In the **health** care domain, we are collaborating with the Beckman & Coulter company on the design and planning of large medical laboratories. This is a hot topic resulting from the mutualisation phenomenon which makes these laboratories bigger. As a consequence, being responsible for analyzing medical tests ordered by physicians on patient's samples, these laboratories receive large amounts of prescriptions and tubes making their associated workflow more complex. Our aim is therefore to design and plan any medical laboratory to minimize the costs and time required to perform the tests. More exactly, the focus is put on the multi-objective modeling and solving of large (e.g. dozens of thousands of medical test tubes to be analyzed) strategic, tactical and operational problems such as the layout design, machine selection and configuration, assignment and scheduling. Finally, in transport and logistics, within the context of our potential collaboration (being set up) with the EXOTEC company we target the optimization of the robotic logistics of 3D warehouses. More exactly, the problem consists in efficient complex scheduling without collision of thousands of missions realized by a fleet of dozens of robots and several operators in a 3D logistics warehouse. The problem is identified in the literature as the parts-to-picker based order processing in a rackmoving mobile robots environment.

4.3. Big optimization for engineering design

The focus is for now put on the aerospace vehicle design, a complex multidisciplinary optimization process, we are exploring in collaboration with ONERA. The objective is to find the vehicle architecture and characteristics that provide the optimal performance (flight performance, safety, reliability, cost etc.) while satisfying design requirements [39]. A representative topic we are investigating, and will continue to investigate throughout the lifetime of the project given its complexity, is the design of launch vehicles that involves at least four tightly coupled disciplines (aerodynamics, structure, propulsion and trajectory). Each discipline may rely on time-demanding simulations such as Finite Element analyses (structure) and Computational Fluid Dynamics analyses (aerodynamics). Surrogate-assisted optimization is highly required to reduce the time complexity. In addition, the problem is high-dimensional (dozens of parameters and more than three objectives) requiring different decomposition schemas (coupling vs. local variables, continuous vs. discrete even categorial variables, scalarization of the objectives). Another major issue arising in this area is the non-stationarity of the objective functions which is generally due to the abrupt change of a physical property that often occurs in the design of launch vehicles. In the same spirit than deep learning using neural networks, we use Deep Gaussian Processes to deal with non-stationary multi-objective functions. Finally, the resolution of the problem using only one objective takes one week using a multi-core processor. Therefore, in addition to surrogates ultra-scale computing is required at different levels to speed up the search and improve the reliability which is a major requirement in aerospace design. This example shows that we need to use the synergy between the three lines of our research program to tackle such BOPs.

DEFROST Project-Team

4. Application Domains

4.1. Industry

Robotics in the manufacturing industry is already widespread and is one of the strategies put in place to maintain the level of competitiveness of companies based in France and to avoid relocation to cheap labor countries. Yet, in France, it is considered that the level of robotization is insufficient, compared to Germany for instance. One of the challenges is the high investment cost for the acquisition of robotic arms. In recent years, this challenge has led to the development of "generic" and "flexible" (but rigid) robotic solutions that can be mass produced. But their applicability to specific tasks is still challenging or too costly. With the development of 3D printing, we can imagine the development of a complete opposite strategy: a "task-specific" design of robots. Given a task that needs to be performed by a deformable robot, we could optimize its shape and its structure to create the set of desired motions. A second important aspect is the reduction of the manufacturing cost: it is often predicted that the cost of deformable robots will be low compared to classical rigid robots. The robot could be built on one piece using rapid prototyping or 3D printers and be more adapted for collaborative work with operators. In this area, using soft materials is particularly convenient as they provide a mass/carried load ratio several orders of magnitude higher than traditional robots, highly decreasing the kinetic energy thus increasing the motion speed allowed in presence of humans. Moreover, the technology allows more efficient and ergonomic wearable robotic devices, opening the option for exo-skeletons to be used by human operators inside the factories and distribution centers. This remains to be put in place, but it can open new perspectives in robotic applications. A last remarkable property of soft robots is their adaptability to fragile or tortuous environments. For some particular industry fields (chemistry, food industry...) this could also be an advantage compared to existing rigid solutions. For instance, the German company http://www.festo.com, key player in the industrial robotics field, is experimenting with deformable trunk robots that exhibit great compliance and adaptability, and we are working on their accurate control.

4.2. Personal and service robotics

The personal and service robotics are considered an important source of economic expansion in the coming years. The potential applications are numerous and in particular include the challenge of finding robotic solutions for active and healthy aging at home. We plan to develop functional orthosis for which it is better not to have a rigid exoskeleton that is particularly uncomfortable. These orthosis will be ideally personalized for each patient and built using rapid prototyping. On this topic, the place of our team will be to provide algorithms for controlling the robots. We will find some partners to build these robots that would fall in the category of "wearable robots". With this thematic we also connect with a strong pole of excellence of the region on intelligent textiles (see Up-Tex) and with the strategic plan of Inria (Improving Rehabilitation and Autonomy).

4.3. Entertainment industry and arts

Robots have a long history with entertainment and arts where animatronics have been used for decades for cinematographic shootings, theater, amusement parks (Disney's audio-animatronic) and performing arts. We believe that soft robots could be a good support for art. As an example, last year we collaborated with the artist Dewi Brunet in the creation of animated origami structures (see https://dewiorigami.com/).

4.4. Medical Applications

Soft robots have many medical applications as their natural compliance makes them safer than traditional robots when interacting with humans. Such robots can be used for minimally invasive surgery, to access and act on remote parts of the body through minimal incisions in the patient. Applications include laparascopic and brain surgery, treatment of several cancers including prostate cancer, and cardiology, for example percutaneous coronary interventions.

Figure 1. Dewi Brunet and his "Origami 2.0" exhibit at the AMV in Trélon

As an example, we received an industry grant (CIFRE) with Robocath to work on autonomous catheter navigation. See section 8.2. Another application is cochlear implant surgery.

FUN Project-Team (section vide)

INOCS Project-Team

4. Application Domains

4.1. Energy

In energy, the team mainly focuses on pricing models for demand side management. Demand side management methods are traditionally used to control electricity demand which became quite irregular recently and resulted in inefficiency in supply. We have explored the relationship between energy suppliers and customers who are connected to a smart grid. The smart grid technology allows customers to keep track of hourly prices and shift their demand accordingly, and allows the provider to observe the actual demand response to its pricing strategy. We tackle pricing problems in energy according to the bilevel optimization approaches. Some research works in this domain are supported by bilateral grants with EDF.

4.2. Transportation and Logistics

In transportation and logistics, the team addresses mainly integrated problems, which require taking into account simultaneously different types of decision. Examples are location and routing, inventory management and routing or staff scheduling and warehouse operations management. Such problems occur from the supply chain design level to the logistic facility level.

4.3. Telecommunications

In telecommunications, the team mainly focuses on network design problems and on routing problems. Such problems are optimization problems with complex structure, since the optimization of capacity installation and traffic flow routing have to be addressed simultaneously.

LINKS Project-Team

4. Application Domains

4.1. Linked Data Integration

There are many contexts in which integrating linked data is interesting. We advocate here one possible scenario, namely that of integrating business linked data to feed what is called Business Intelligence. The latter consists of a set of theories and methodologies that transform raw data into meaningful and useful information for business purposes (from Wikipedia). In the past decade, most of the enterprise data was proprietary, thus residing within the enterprise repository, along with the knowledge derived from that data. Today's enterprises and businessmen need to face the problem of information explosion, due to the Internet's ability to rapidly convey large amounts of information throughout the world via end-user applications and tools. Although linked data collections exist by bridging the gap between enterprise data and external resources, they are not sufficient to support the various tasks of Business Intelligence. To make a concrete example, concepts in an enterprise repository need to be matched with concepts in Wikipedia and this can be done via pointers or equalities. However, more complex logical statements (i.e. mappings) need to be conceived to map a portion of a local database to a portion of an RDF graph, such as a subgraph in Wikipedia or in a social network, e.g. LinkedIn. Such mappings would then enrich the amount of knowledge shared within the enterprise and let more complex queries be evaluated. As an example, businessmen with the aid of business intelligence tools need to make complex sentimental analysis on the potential clients and for such a reason, such tools must be able to pose complex queries, that exploit the previous logical mappings to guide their analysis. Moreover, the external resources may be rapidly evolving thus leading to revisit the current state of business intelligence within the enterprise.

4.2. Data Cleaning

The second example of application of our proposal concerns scientists who want to quickly inspect relevant literature and datasets. In such a case, local knowledge that comes from a local repository of publications belonging to a research institute (e.g. HAL) need to be integrated with other Web-based repositories, such as DBLP, Google Scholar, ResearchGate and even Wikipedia. Indeed, the local repository may be incomplete or contain semantic ambiguities, such as mistaken or missing conference venues, mistaken long names for the publication venues and journals, missing explanation of research keywords, and opaque keywords. We envision a publication management system that exploits both links between database elements, namely pointers to external resources and logical links. The latter can be complex relationships between local portions of data and remote resources, encoded as schema mappings. There are different tasks that such a scenario could entail such as (i) cleaning the errors with links to correct data e.g. via mappings from HAL to DBLP for the publications errors, and via mappings from HAL to Wikipedia for opaque keywords, (ii) thoroughly enrich the list of publications of a given research institute, and (iii) support complex queries on the corrected data combined with logical mappings.

4.3. Real Time Complex Event Processing

Complex event processing serves for monitoring nested word streams in real time. Complex event streams are gaining popularity with social networks such as with Facebook and Twitter, and thus should be supported by distributed databases on the Web. Since this is not yet the case, there remains much space for future industrial transfer related to Links' second axis on dynamic linked data.

LOKI Project-Team

4. Application Domains

4.1. Application Domains

Loki works on fundamental and technological aspects of Human-Computer Interaction that can be applied to diverse application domains.

Our 2019 research involved desktop, augmented reality, touch-based, haptics, and BCI interfaces with notable applications to medicine (analysis of fine motor control for patients with Parkinson disease), digital humanities (interpretation of handwritten historical documents), as well as creativity support tools (production of illustrations, design of Digital Musical Instruments). Our technical work also contributes to the more general application domains of software engineering and systems' design.

MAGNET Project-Team

4. Application Domains

4.1. Application Domains

Our main targeted applications are browsing, monitoring, recommending and mining in information networks. The learning tasks considered in the project such as node clustering, node and link classification and link prediction are likely to yield important improvements in these applications. Application domains cover social networks for cultural data and e-commerce, and biomedical informatics.

We also target applications related to decentralized learning and privacy preserving systems when users or devices are interconnected in large networks. We develop solutions based on urban and mobility data where privacy is a specific requirement.

MEPHYSTO Team (section vide)

MODAL Project-Team

4. Application Domains

4.1. Economic world

The Modal team applies it research to the economic world through CIFRE Phd supervision such as CACF (credit scoring), A-Volute (expert in 3D sound), Meilleur Taux (insurance comparator), Worldline. It also has several contracts with companies such as COLAS, Nokia-Apsys/Airbus.

4.2. Biology

The second main application domain of the team is the biology. Members of the team are involved in the supervision and scientific animation of the bilille platform, the bioinformatics and bioanalysis platform and OncoLille project of Lille.

RAPSODI Project-Team

4. Application Domains

4.1. Porous media flows

Porous media flows are of great interest in many contexts, like, e.g., oil engineering, water resource management, nuclear waste repository management, or carbon dioxyde sequestration. We refer to [73], [72] for an extensive discussion on porous media flow models.

From a mathematical point of view, the transport of complex fluids in porous media often leads to possibly degenerate parabolic conservation laws. The porous rocks can be highly heterogeneous and anisotropic. Moreover, the grids on which one intends to solve numerically the problems are prescribed by the geological data, and might be non-conformal with cells of various shapes. Therefore, the schemes used for simulating such complex flows must be particularly robust.

4.2. Corrosion and concrete carbonation

The team is interested in the theoretical and numerical analysis of mathematical models describing degradation of materials as concrete carbonation and corrosion. The study of such models is an important environmental and industrial issue. Atmospheric carbonation degrades reinforced concretes and limits the lifetime of civil engineering structures. Corrosion phenomena issues occur for instance in the reliability of nuclear power plants and the nuclear waste repository. The study of the long time evolution of these phenomena is of course fundamental in order to predict the lifetime of the structures.

From a mathematical point of view, the modeling of concrete carbonation (see [67]) as the modeling of corrosion in an underground repository (DPCM model developed by Bataillon *et al.* [71]) lead to systems of PDEs posed on moving domains. The coupling between convection-diffusion-reaction equations and moving boundary equations leads to challenging mathematical questions.

4.3. Complex fluid flows

The team is interested in some numerical methods for the simulation of systems of PDEs describing complex flows, like for instance, mixture flows, granular gases, rarefied gases, or quantum fluids.

Variable-density, low-Mach flows have been widely studied in the recent literature because of their applicability in various phenomena such as flows in high-temperature gas reactors, meteorological flows, flows with convective and/or conductive heat transfer or combustion processes. In such cases, the resolution of the full compressible Navier–Stokes system is not adapted, because of the sound waves speed. The Boussinesq incompressible model is not a better alternative for such low-speed phenomena, because the compressibility effects can not be totally cancelled due to large variations of temperature and density. Consequently, some models have been formally derived, leading to the filtering of the acoustic waves by the use of some formal asymptotic expansions and two families of methods have been developed in the literature in order to compute these flows. We are interested in particular in the so-called pressure-based methods which are more robust than density-based solvers, although their range of validity is in general more limited.

Kinetic theory of molecular gases models a gas as a system of elastically colliding spheres, conserving mechanical energy during impact. Once initialized, it takes a molecular gas not more than few collisions per particle to relax to its equilibrium state, characterized by a Maxwellian velocity distribution and a certain homogeneous density (in the absence of external forces). A granular gas is a system of dissipatively colliding, macroscopic particles (grains). This slight change in the microscopic dynamics (converting energy into heat) causes drastic changes in the behavior of the gas: granular gases are open systems, which exhibit self-organized spatio-temporal cluster formations, and have no equilibrium distribution. They can be used to model silos, avalanches, pollen or planetary rings.

The quantum models can be used to describe superfluids, quantum semiconductors, weakly interacting Bose gases or quantum trajectories of Bohmian mechanics. They have attracted considerable attention in the last decades, due in particular to the development of the nanotechnology applications. To describe quantum phenomena, there exists a large variety of models. In particular there exist three different levels of description: microscopic, mesoscopic and macroscopic. The quantum Navier–Stokes equations deal with a macroscopic description in which the quantum effects are taken into account through a third order term called the quantum Bohm potential. This Bohm potential arises from the fluid dynamical formulation of the single-state Schrödinger equation. The non-locality of quantum mechanics is approximated by the fact that the equations of state do not only depend on the particle density but also on its gradient. These equations were employed to model field emissions from metals and steady-state tunneling in metal- insulator- metal structures and to simulate ultra-small semiconductor devices.

4.4. Stratigraphy

The knowledge of the geology is a prerequisite before simulating flows within the subsoil. Numerical simulations of the geological history thanks to stratigraphy numerical codes allow to complete the knowledge of the geology where experimental data are lacking. Stratigraphic models consist in a description of the erosion and sedimentation phenomena at geological scales.

The characteristic time scales for the sediments are much larger than the characteristic time scales for the water in the river. However, the (time-averaged) water flux plays a crucial role in the evolution of the stratigraphy. Therefore, defining appropriate models that take the coupling between the rivers and the sediments into account is fundamental and challenging. Once the models are at hand, efficient numerical methods must be developed.

4.5. Low-frequency electromagnetism

Numerical simulation is nowadays an essential tool in order to design electromagnetic systems, by estimating the electromagnetic fields generated in a wide variety of devices. An important challenge for many applications is to quantify the intensity of the electric field induced in a conductor by a current generated in its neighborhood. In the low-frequency regime, we can for example quote the study of the impact on the human body of a high-tension line or, for higher frequencies, the one of a smartphone. But the ability to simulate accurately some electromagnetic fields is also very useful for non-destructive control, in the context of the maintenance of nuclear power stations for example. The development of efficient numerical tools, among which a posteriori error estimators, is consequently necessary to reach a high precision of calculation in order to provide estimations as reliable as possible.

RMOD Project-Team

4. Application Domains

4.1. Programming Languages and Tools

Many of the results of RMoD are improving programming languages or development tools for such languages. As such the application domain of these results is as varied as the use of programming languages in general. Pharo, the language that RMoD develops, is used for a very broad range of applications. From pure research experiments to real world industrial use (the Pharo Consortium has more than 25 company members).

Examples are web applications, server backends for mobile applications or even graphical tools and embedded applications

4.2. Software Reengineering

Moose is a language-independent environment for reverse and re-engineering complex software systems. Moose provides a set of services including a common meta-model, metrics evaluation and visualization. As such Moose is used for analyzing software systems to support understanding and continuous development as well as software quality analysis.

SEQUEL Project-Team

4. Application Domains

4.1. Sequential decision making under uncertainty and prediction

The spectrum of applications of our research is very wide: it ranges from the core of our research, that is sequential decision making under uncertainty, to the application of components used to solve this decision making problem.

To be more specific, we work on computational advertising and recommendation systems; these problems are considered as a sequential matching problem in which resources available in a limited amount have to be matched to meet some users' expectations. The sequential approach we advocate paves the way to better tackle the cold-start problem, and non stationary environments. More generally, these approaches are applied to the optimization of budgeted resources under uncertainty, in a time-varying environment, including constraints on computational times (typically, a decision has to be made in less than 1 ms in a recommendation system). An other field of application of our research is related to education which we consider as a sequential matching problem between a student, and educational contents.

The algorithms to solve these tasks heavily rely on tools from machine learning, statistics, and optimization. Henceforth, we also apply our work to more classical supervised learning, and prediction tasks, as well as unsupervised learning tasks. The whole range of methods is used, from decision forests, to kernel methods, to deep learning. For instance, we have recently used deep learning on images. We also have a line of work related to software development studying how machine learning can improve the quality of software being developed. More generally, we apply our research to data science.

SPIRALS Project-Team

4. Application Domains

4.1. Introduction

Although our research is general enough to be applied to many application domains, we currently focus on applications and distributed services for the retail industry and for the digital home. These two application domains are supported by a strong expertise in mobile computing and in cloud computing that are the two main target environments on which our research prototypes are built, for which we are recognized, and for which we have already established strong collaborations with the industrial ecosystem.

4.2. Distributed software services for the retail industry

This application domain is developed in relation with the PICOM (*Pôle de compétivité Industries du Commerce*) cluster. We have established strong collaborations with local companies in the context of former funded projects, such as Cappucino and Macchiato, which focused on the development of a new generation of mobile computing platforms for e-commerce. We are also involved in the Datalyse and OCCIware funded projects that define cloud computing environments with applications for the retail industry. Finally, our activities in terms of crowd-sensing and data gathering on mobile devices with the APISENSE[®] platform share also applications for the retail industry.

4.3. Distributed software services for the digital home

We are developing new middleware solutions for the digital home, in particular through our long standing collaboration with Orange Labs. We are especially interested in developing energy management and saving solutions with the POWERAPI software library for distributed environments such the ones that equip digital homes. We are also working to bridge the gap between distributed services hosted on home gateways and distributed services hosted on the cloud to be able to smoothly transition between both environments. This work is especially conducted with the SALOON platform.

VALSE Project-Team

4. Application Domains

4.1. Application Domains

An objective of the team is the application of the developed control and estimation algorithms for different scenarios in IoT or CPSs. The participation in various potential applications allows Valse team to better understand the features of CPSs and their required performances, and to formulate properly the control and estimation problems that have to be solved. Here is a list of ongoing and potential applications addressed in the team:

• smart bivalve-based biosensor for water quality monitoring (ANR project WaQMoS, the developed sensor is shown in Fig. 2): in living beings, the presence of persistent external perturbations, may be difficult to measure, and important model uncertainties render the application of conventional techniques complicated; another issue for estimation is the consensus seeking between animals for a contamination detection [68];

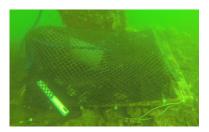


Figure 2. The valvometer used in ANR project WaQMoS

• control and estimation for flying vehicles, *e.g.* quadrotors or blimps given in Fig. 3 (PhD Centrale Lille): nonlinearity of the model and its uncertainty coupled with important aerodynamic perturbations have to be compensated by fast (finite- or fixed-time) and robust control and estimation algorithms;

Figure 3. Blimp and quadrotor robots

- human behavior modeling and identification with posterior design of algorithms for human-computer interaction (ANR project TurboTouch): robust finite-time differentiators demonstrate good estimation capabilities needed for prediction in this application [88], [69];
- human physiological characteristics estimation (like emotion detection, galvanic skin response
 filtering, fatigue evaluation in collaborations with Neotrope and Ellcie Healthy): intelligent robust
 filtering and finite-time distributed estimation are key features in these scenarios;
- path planning for autonomous vehicles taking into account the behavior of humans (PhD CIFRE with SEQUEL team and Renault): application of interval and finite-time adaptive estimation and prediction techniques allows for treating the uncertainty of the environment by reducing computational complexity of reinforcement learning [79] ⁰;
- flow control (in the framework of ContrATech subprogram of CPER ELSAT, see also [78]): the case of control and estimation of a distributed-parameter system with very fast and uncertain dynamics, where finite-time solutions developed by Valse are necessary (an example of results is given in Fig. 4);

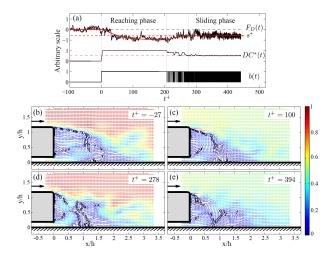


Figure 4. Particle Image Velocimetry on flow control for an Ahmed body (LAMIH wind tunnel)

• control of synthetic microbial communities (in the framework of IPL COSY, the experimental platform is shown in Fig. 5): here again, the problem is an important uncertainty of the model, which can be handled by robust sliding mode control algorithms, or by applying adaptive finite-time estimation and identification tools;

It is worth to highlight a widespread distribution of various scientific domains in the list of applications for the team given above. Such an *interdisciplinarity* for Valse is unsurprising, since the control theory is a science of systems whose interest today is, by nature, to interface with other disciplines and their fields of application. This is also well aligned with the domain of CPSs, which by its origin requires multidisciplinary competences.

⁰The examples of interval prediction algorithm application can be consulted here.

Figure 5. Chemostat platform at Inria, Grenoble