
RESEARCH CENTER

FIELD
Algorithmics, Programming, Soft-
ware and Architecture

Activity Report 2019

Section Software

Edition: 2020-03-21

ALGORITHMICS, COMPUTER ALGEBRA AND CRYPTOLOGY

1. ARIC Project-Team . 5
2. AROMATH Project-Team (section vide) .7
3. CARAMBA Project-Team . 8
4. CASCADE Project-Team (section vide) . 10
5. DATASHAPE Project-Team .11
6. GAMBLE Project-Team . 13
7. GRACE Project-Team . 14
8. LFANT Project-Team . 15
9. OURAGAN Project-Team . 18
10. POLSYS Project-Team . 20
11. SECRET Project-Team . 22
12. SPECFUN Project-Team .23

ARCHITECTURE, LANGUAGES AND COMPILATION

13. CAIRN Project-Team . 25
14. CAMUS Project-Team . 30
15. CASH Project-Team . 35
16. CORSE Project-Team . 36
17. PACAP Project-Team . 38

EMBEDDED AND REAL-TIME SYSTEMS

18. HYCOMES Project-Team . 42
19. Kairos Project-Team . 45
20. KOPERNIC Team . 50
21. PARKAS Project-Team .52
22. SPADES Project-Team . 58
23. TEA Project-Team . 59

PROOFS AND VERIFICATION

24. ANTIQUE Project-Team . 62
25. CAMBIUM Project-Team . 67
26. CELTIQUE Project-Team .70
27. CONVECS Project-Team . 73
28. DEDUCTEAM Project-Team . 76
29. GALLINETTE Project-Team .80
30. MEXICO Project-Team .82
31. MOCQUA Team .83
32. PARSIFAL Project-Team . 84
33. PI.R2 Project-Team . 86
34. STAMP Project-Team . 90
35. SUMO Project-Team . 96
36. TOCCATA Project-Team . 97
37. VERIDIS Project-Team . 101

4 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team ARIC

SECURITY AND CONFIDENTIALITY

38. CIDRE Project-Team .106
39. COMETE Project-Team . 109
40. DATASPHERE Team . 111
41. PESTO Project-Team . 112
42. PRIVATICS Project-Team . 115
43. PROSECCO Project-Team .117
44. TAMIS Project-Team . 121

5 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team ARIC

ARIC Project-Team

6. New Software and Platforms

6.1. FPLLL
KEYWORDS: Euclidean Lattices - Computer algebra system (CAS) - Cryptography

SCIENTIFIC DESCRIPTION: The fplll library is used or has been adapted to be integrated within several
mathematical computation systems such as Magma, Sage, and PariGP. It is also used for cryptanalytic
purposes, to test the resistance of cryptographic primitives.

FUNCTIONAL DESCRIPTION: fplll contains implementations of several lattice algorithms. The implementa-
tion relies on floating-point orthogonalization, and LLL is central to the code, hence the name.

It includes implementations of floating-point LLL reduction algorithms, offering different speed/guarantees
ratios. It contains a ’wrapper’ choosing the estimated best sequence of variants in order to provide a guaranteed
output as fast as possible. In the case of the wrapper, the succession of variants is oblivious to the user.

It includes an implementation of the BKZ reduction algorithm, including the BKZ-2.0 improvements (extreme
enumeration pruning, pre-processing of blocks, early termination). Additionally, Slide reduction and self dual
BKZ are supported.

It also includes a floating-point implementation of the Kannan-Fincke-Pohst algorithm that finds a shortest
non-zero lattice vector. For the same task, the GaussSieve algorithm is also available in fplll. Finally, it contains
a variant of the enumeration algorithm that computes a lattice vector closest to a given vector belonging to the
real span of the lattice.

• Author: Damien Stehlé

• Contact: Damien Stehlé

• URL: https://github.com/fplll/fplll

6.2. Gfun
generating functions package

KEYWORD: Symbolic computation

FUNCTIONAL DESCRIPTION: Gfun is a Maple package for the manipulation of linear recurrence or differ-
ential equations. It provides tools for guessing a sequence or a series from its first terms, for manipulating
rigorously solutions of linear differential or recurrence equations, using the equation as a data-structure.

• Contact: Bruno Salvy

• URL: http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/

6.3. GNU-MPFR
KEYWORDS: Multiple-Precision - Floating-point - Correct Rounding

http://www.inria.fr/equipes/aric
https://github.com/fplll/fplll
http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/

6 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team ARIC

FUNCTIONAL DESCRIPTION: GNU MPFR is an efficient arbitrary-precision floating-point library with well-
defined semantics (copying the good ideas from the IEEE 754 standard), in particular correct rounding in
5 rounding modes. It provides about 80 mathematical functions, in addition to utility functions (assignments,
conversions...). Special data (Not a Number, infinities, signed zeros) are handled like in the IEEE 754 standard.
GNU MPFR is based on the mpn and mpz layers of the GMP library.
• Participants: Guillaume Hanrot, Paul Zimmermann, Philippe Théveny and Vincent Lefèvre
• Contact: Vincent Lefèvre
• Publications: Correctly Rounded Arbitrary-Precision Floating-Point Summation - Optimized Bi-

nary64 and Binary128 Arithmetic with GNU MPFR - Évaluation rapide de fonctions hyper-
géométriques - Arbitrary Precision Error Analysis for computing ζ(s) with the Cohen-Olivier al-
gorithm: Complete description of the real case and preliminary report on the general case - MPFR:
A Multiple-Precision Binary Floating-Point Library with Correct Rounding. - The Generic Multiple-
Precision Floating-Point Addition With Exact Rounding (as in the MPFR Library)

• URL: https://www.mpfr.org/

6.4. Sipe
KEYWORDS: Floating-point - Correct Rounding

FUNCTIONAL DESCRIPTION: Sipe is a mini-library in the form of a C header file, to perform radix-2 floating-
point computations in very low precisions with correct rounding, either to nearest or toward zero. The goal of
such a tool is to do proofs of algorithms/properties or computations of tight error bounds in these precisions by
exhaustive tests, in order to try to generalize them to higher precisions. The currently supported operations are
addition, subtraction, multiplication (possibly with the error term), fused multiply-add/subtract (FMA/FMS),
and miscellaneous comparisons and conversions. Sipe provides two implementations of these operations, with
the same API and the same behavior: one based on integer arithmetic, and a new one based on floating-point
arithmetic.
• Participant: Vincent Lefèvre
• Contact: Vincent Lefèvre
• Publications: SIPE: Small Integer Plus Exponent - Sipe: a Mini-Library for Very Low Precision

Computations with Correct Rounding
• URL: https://www.vinc17.net/research/sipe/

6.5. LinBox
KEYWORD: Exact linear algebra

FUNCTIONAL DESCRIPTION: LinBox is an open-source C++ template library for exact, high-performance
linear algebra computations. It is considered as the reference library for numerous computations (such as
linear system solving, rank, characteristic polynomial, Smith normal forms,...) over finite fields and integers
with dense, sparse, and structured matrices.
• Participants: Clément Pernet and Thierry Gautier
• Contact: Clément Pernet
• URL: http://linalg.org/

6.6. HPLLL
KEYWORDS: Euclidean Lattices - Computer algebra system (CAS)

FUNCTIONAL DESCRIPTION: Software library for linear algebra and Euclidean lattice problems
• Contact: Gilles Villard
• URL: http://perso.ens-lyon.fr/gilles.villard/hplll/

https://hal.inria.fr/hal-01394289
https://hal.inria.fr/hal-01502326
https://hal.inria.fr/hal-01502326
https://hal.inria.fr/inria-00069930
https://hal.inria.fr/inria-00069930
https://hal.inria.fr/inria-00070174
https://hal.inria.fr/inria-00070174
https://hal.inria.fr/inria-00103655
https://hal.inria.fr/inria-00103655
https://hal.inria.fr/inria-00000026
https://hal.inria.fr/inria-00000026
https://www.mpfr.org/
https://hal.inria.fr/hal-00763954
https://hal.inria.fr/hal-00864580
https://hal.inria.fr/hal-00864580
https://www.vinc17.net/research/sipe/
http://linalg.org/
http://perso.ens-lyon.fr/gilles.villard/hplll/

7 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team AROMATH

AROMATH Project-Team (section vide)

http://www.inria.fr/equipes/aromath

8 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team CARAMBA

CARAMBA Project-Team

6. New Software and Platforms

6.1. Belenios
Belenios - Verifiable online voting system

KEYWORD: E-voting

FUNCTIONAL DESCRIPTION: Belenios is an open-source online voting system that provides confidentiality
and verifiability. End-to-end verifiability relies on the fact that the ballot box is public (voters can check that
their ballots have been received) and on the fact that the tally is publicly verifiable (anyone can recount the
votes). Confidentiality relies on the encryption of the votes and the distribution of the decryption key.

Belenios builds upon Helios, a voting protocol used in several elections. The main design enhancement of
Belenios vs. Helios is that the ballot box can no longer add (fake) ballots, due to the use of credentials.
Moreover, Belenios includes a practical threshold decryption system that allows splitting the decryption key
among several authorities.

NEWS OF THE YEAR: Since 2015, it has been used by CNRS for remote election among its councils (more
than 30 elections every year) and since 2016, it has been used by Inria to elect representatives in the “comités
de centre” of each Inria center. In 2018, it has been used to organize about 250 elections (not counting test
elections). Belenios is typically used for elections in universities as well as in associations. This goes from
laboratory councils (e.g. Irisa, Cran), scientific societies (e.g. SMAI) to various associations (e.g. FFBS -
Fédération Française de Baseball et Softball, or SRFA - Société du Rat Francophone et de ses Amateurs).

In 2019, a threshold encryption mode has been added that makes the system more robust to the case where
(say) one trustee among three loses her part of the decryption key.

• Participants: Pierrick Gaudry, Stéphane Glondu and Véronique Cortier

• Partners: CNRS - Inria

• Contact: Stéphane Glondu

• URL: http://www.belenios.org/

6.2. CADO-NFS
Crible Algébrique: Distribution, Optimisation - Number Field Sieve

KEYWORDS: Cryptography - Number theory

FUNCTIONAL DESCRIPTION: CADO-NFS is a complete implementation in C/C++ of the Number Field Sieve
(NFS) algorithm for factoring integers and computing discrete logarithms in finite fields. It consists in various
programs corresponding to all the phases of the algorithm, and a general script that runs them, possibly in
parallel over a network of computers.

NEWS OF THE YEAR: The main program for relation collection now supports composite "special-q". The
memory footprint of the central step of linear algebra was reduced. Parallelism of many of the Cado-NFS
programs was improved considerably (sieving, relation filtering, as well as the central step of linear algebra).

• Participants: Pierrick Gaudry, Emmanuel Thomé and Paul Zimmermann

• Contact: Emmanuel Thomé

• URL: http://cado-nfs.gforge.inria.fr/

http://www.inria.fr/equipes/caramba
http://www.belenios.org/
http://cado-nfs.gforge.inria.fr/

9 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team CARAMBA

6.3. Platforms
6.3.1. Platform: computational resources

Since 2018, the CARAMBA team has been using in particular a computer cluster called grvingt, acquired
in 2018. This equipment was funded by the CPER «CyberEntreprises» (French Ministry of Research, Région
Grand Est, Inria, CNRS) and comprises a 64-node, 2,048-core cluster. This cluster is installed in the Inria
facility. Other slightly older hardware (a medium-size cluster called grcinq from 2013, funded by ANR, and
a special machine funded by the aforementioned CPER grant) is also installed in the same location, to form a
coherent platform with about 3,000 cpu cores, 100 TB of storage, and specific machines for RAM-demanding
computations. As a whole, this platform provides an excellent support for the computational part of the work
done in CARAMBA. This platform is also embedded in the larger Grid’5000/Silecs platform (and accessible
as a normal resource within this platform). Technical administration is done by the Grid’5000 staff.

This equipment has played a key role in the record factorization of RSA-240 as well as the computation of
discrete logarithms modulo a 240-digit prime, completed in the end of 2019.

10 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team CASCADE

CASCADE Project-Team (section vide)

http://www.inria.fr/equipes/cascade

11 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team
DATASHAPE

DATASHAPE Project-Team

4. New Software and Platforms

4.1. GUDHI
Geometric Understanding in Higher Dimensions

KEYWORDS: Computational geometry - Topology

SCIENTIFIC DESCRIPTION: The current release of the GUDHI library includes: – Data structures to represent,
construct and manipulate simplicial and cubical complexes. – Algorithms to compute simplicial complexes
from point cloud data. – Algorithms to compute persistent homology and multi-field persistent homology. –
Simplification methods via implicit representations.

FUNCTIONAL DESCRIPTION: The GUDHI open source library will provide the central data structures and
algorithms that underly applications in geometry understanding in higher dimensions. It is intended to both
help the development of new algorithmic solutions inside and outside the project, and to facilitate the transfer
of results in applied fields.

NEWS OF THE YEAR: - Cover complex - Representation of persistence diagrams - Cech complex - weighted
periodic 3d alpha-complex - sparse Rips complex - debian / docker / conda-forge packages
• Participants: Clément Maria, François Godi, David Salinas, Jean-Daniel Boissonnat, Marc Glisse,

Mariette Yvinec, Pawel Dlotko, Siargey Kachanovich, Vincent Rouvreau, Mathieu Carrière and
Bertrand Michel

• Contact: Jean-Daniel Boissonnat
• URL: https://gudhi.inria.fr/

4.2. CGAL module: interval arithmetics
KEYWORD: Arithmetic

FUNCTIONAL DESCRIPTION: This package of CGAL (Computational Geometry Algorithms Library
http://www.cgal.org) provides an efficient number type for intervals of double and the corresponding
arithmetic operations. It is used in the evaluation of geometric predicates for a first quick computation, which
either provides the result with guarantees, or rarely answers that more precision is needed.

RELEASE FUNCTIONAL DESCRIPTION: Partial rewrite to take advantage of SIMD instructions on recent x86
processors.
• Contact: Marc Glisse
• URL: https://www.cgal.org/

4.3. CGAL module: interface to Boost.Multiprecision
KEYWORD: Arithmetic

FUNCTIONAL DESCRIPTION: This package of CGAL (Computational Geometry Algorithms Library
http://www.cgal.org) makes it possible to use some number types from Boost.Multiprecision in CGAL.
• Author: Marc Glisse
• Contact: Marc Glisse
• URL: https://www.cgal.org/

4.4. Module CGAL: New dD Geometry Kernel
KEYWORD: Computational geometry

http://www.inria.fr/equipes/datashape
https://gudhi.inria.fr/
https://www.cgal.org/
https://www.cgal.org/

12 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team
DATASHAPE

FUNCTIONAL DESCRIPTION: This package of CGAL (Computational Geometry Algorithms Library
http://www.cgal.org) provides the basic geometric types (point, vector, etc) and operations (orientation test,
etc) used by geometric algorithms in arbitrary dimension. It uses filters for efficient exact predicates.

RELEASE FUNCTIONAL DESCRIPTION: New kernel with lazy exact constructions.

• Author: Marc Glisse

• Contact: Marc Glisse

• URL: http://www.cgal.org/

http://www.cgal.org/

13 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team GAMBLE

GAMBLE Project-Team

6. New Software and Platforms

6.1. CGAL Package : 2D periodic hyperbolic triangulations
KEYWORDS: Geometry - Delaunay triangulation - Hyperbolic space

FUNCTIONAL DESCRIPTION: This module implements the computation of Delaunay triangulations of the
Bolza surface.

NEWS OF THE YEAR: Integration into CGAL 4.14
• Authors: Iordan Iordanov and Monique Teillaud
• Contact: Monique Teillaud
• Publication: Implementing Delaunay Triangulations of the Bolza Surface
• URL: https://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic4HyperbolicTriangulation2

6.2. CGAL Package : 2D hyperbolic triangulations
KEYWORDS: Geometry - Delaunay triangulation - Hyperbolic space

FUNCTIONAL DESCRIPTION: This package implements the construction of Delaunay triangulations in the
Poincaré disk model.

NEWS OF THE YEAR: Integration into CGAL 4.14
• Participants: Mikhail Bogdanov, Olivier Devillers, Iordan Iordanov and Monique Teillaud
• Contact: Monique Teillaud
• Publication: Hyperbolic Delaunay Complexes and Voronoi Diagrams Made Practical
• URL: https://doc.cgal.org/latest/Manual/packages.html#PkgHyperbolicTriangulation2

6.3. clenshaw
KEYWORDS: Numerical solver - Visualization - Polynomial equations

FUNCTIONAL DESCRIPTION: Clenshaw is a mixed C and python library that provides computation and
plotting functions for the solutions of polynomial equations in the Taylor or the Chebyshev basis. The library
is optimized for machine double precision and for numerically well-conditioned polynomials. In particular, it
can find the roots of polynomials with random coefficients of degree one million.
• Contact: Guillaume Moroz
• URL: https://gitlab.inria.fr/gmoro/clenshaw

6.4. voxelize
KEYWORDS: Visualization - Curve plotting - Implicit surface - Polynomial equations

FUNCTIONAL DESCRIPTION: Voxelize is a C++ software to visualize the solutions of polynomial equations
and inequalities. The software is optimized for high degree curves and surfaces. Internally, polynomials and
sets of boxes are stored in the Compressed Sparse Fiber format. The output is either a mesh or a union of
boxes written in the standard 3D file format ply.

RELEASE FUNCTIONAL DESCRIPTION: This is the first published version.
• Contact: Guillaume Moroz
• URL: https://gitlab.inria.fr/gmoro/voxelize

http://www.inria.fr/equipes/gamble
https://hal.inria.fr/hal-01568002
https://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic4HyperbolicTriangulation2
https://hal.inria.fr/hal-00961390
https://doc.cgal.org/latest/Manual/packages.html#PkgHyperbolicTriangulation2
https://gitlab.inria.fr/gmoro/clenshaw
https://gitlab.inria.fr/gmoro/voxelize

14 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team GRACE

GRACE Project-Team

5. New Software and Platforms
5.1. ACTIS

Algorithmic Coding Theory in Sage

FUNCTIONAL DESCRIPTION: The aim of this project is to vastly improve the state of the error correcting
library in Sage. The existing library does not present a good and usable API, and the provided algorithms
are very basic, irrelevant, and outdated. We thus have two directions for improvement: renewing the APIs to
make them actually usable by researchers, and incorporating efficient programs for decoding, like J. Nielsen’s
CodingLib, which contains many new algorithms.
• Partner: Technical University Denmark
• Contact: Daniel Augot

5.2. DECODING
KEYWORD: Algebraic decoding

FUNCTIONAL DESCRIPTION: Decoding is a standalone C library. Its primary goal is to implement Gu-
ruswami–Sudan list decoding-related algorithms, as efficiently as possible. Its secondary goal is to give an
efficient tool for the implementation of decoding algorithms (not necessarily list decoding algorithms) and
their benchmarking.
• Participant: Guillaume Quintin
• Contact: Daniel Augot

5.3. Fast Compact Diffie-Hellman
KEYWORD: Cryptography

FUNCTIONAL DESCRIPTION: A competitive, high-speed, open implementation of the Diffie–Hellman proto-
col, targeting the 128-bit security level on Intel platforms. This download contains Magma files that demon-
strate how to compute scalar multiplications on the x-line of an elliptic curve using endomorphisms. This
accompanies the EuroCrypt 2014 paper by Costello, Hisil and Smith, the full version of which can be found
here: http://eprint.iacr.org/2013/692. The corresponding SUPERCOP-compatible crypto_dh application can
be downloaded from http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz.
• Participant: Ben Smith
• Contact: Ben Smith
• URL: http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/

5.4. CADO-NFS
Crible Algébrique: Distribution, Optimisation - Number Field Sieve

KEYWORDS: Cryptography - Number theory

FUNCTIONAL DESCRIPTION: CADO-NFS is a complete implementation in C/C++ of the Number Field Sieve
(NFS) algorithm for factoring integers and computing discrete logarithms in finite fields. It consists in various
programs corresponding to all the phases of the algorithm, and a general script that runs them, possibly in
parallel over a network of computers.

NEWS OF THE YEAR: The main program for relation collection now supports composite "special-q". The
memory footprint of the central step of linear algebra was reduced. Parallelism of many of the Cado-NFS
programs was improved considerably (sieving, relation filtering, as well as the central step of linear algebra).
• Participants: Pierrick Gaudry, Emmanuel Thomé and Paul Zimmermann
• Contact: Emmanuel Thomé
• URL: http://cado-nfs.gforge.inria.fr/

http://www.inria.fr/equipes/grace
http://eprint.iacr.org/2013/692
http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz
http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/
http://cado-nfs.gforge.inria.fr/

15 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team LFANT

LFANT Project-Team

5. New Software and Platforms

5.1. APIP
Another Pairing Implementation in PARI

KEYWORDS: Cryptography - Computational number theory

SCIENTIFIC DESCRIPTION: Apip , Another Pairing Implementation in PARI, is a library for computing
standard and optimised variants of most cryptographic pairings.

The following pairings are available: Weil, Tate, ate and twisted ate, optimised versions (à la Ver-
cauteren–Hess) of ate and twisted ate for selected curve families.

The following methods to compute the Miller part are implemented: standard Miller double-and-add method,
standard Miller using a non-adjacent form, Boxall et al. version, Boxall et al. version using a non-adjacent
form.

The final exponentiation part can be computed using one of the following variants: naive exponentiation,
interleaved method, Avanzi–Mihailescu’s method, Kato et al.’s method, Scott et al.’s method.

Part of the library has been included into Pari/Gp proper.

FUNCTIONAL DESCRIPTION: APIP is a library for computing standard and optimised variants of most
cryptographic pairings.

• Participant: Jérôme Milan

• Contact: Andreas Enge

• URL: http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml

5.2. AVIsogenies
Abelian Varieties and Isogenies

KEYWORDS: Computational number theory - Cryptography

FUNCTIONAL DESCRIPTION: AVIsogenies is a Magma package for working with abelian varieties, with a
particular emphasis on explicit isogeny computation.

Its prominent feature is the computation of (l,l)-isogenies between Jacobian varieties of genus-two hyperellip-
tic curves over finite fields of characteristic coprime to l, practical runs have used values of l in the hundreds.

It can also be used to compute endomorphism rings of abelian surfaces, and find complete addition laws on
them.

• Participants: Damien Robert, Gaëtan Bisson and Romain Cosset

• Contact: Damien Robert

• URL: http://avisogenies.gforge.inria.fr/

5.3. CM
KEYWORD: Arithmetic

FUNCTIONAL DESCRIPTION: The Cm software implements the construction of ring class fields of imaginary
quadratic number fields and of elliptic curves with complex multiplication via floating point approximations. It
consists of libraries that can be called from within a C program and of executable command line applications.

http://www.inria.fr/equipes/lfant
http://www.lix.polytechnique.fr/~milanj/apip/apip.xhtml
http://avisogenies.gforge.inria.fr/

16 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team LFANT

RELEASE FUNCTIONAL DESCRIPTION: Features - Precisions beyond 300000 bits are now supported by an
addition chain of variable length for the -function. Dependencies - The minimal version number of Mpfr has
been increased to 3.0.0, that of Mpc to 1.0.0 and that of Pari to 2.7.0.

• Participant: Andreas Enge

• Contact: Andreas Enge

• URL: http://www.multiprecision.org/cm/home.html

5.4. CMH
Computation of Igusa Class Polynomials

KEYWORDS: Mathematics - Cryptography - Number theory

FUNCTIONAL DESCRIPTION: Cmh computes Igusa class polynomials, parameterising two-dimensional
abelian varieties (or, equivalently, Jacobians of hyperelliptic curves of genus 2) with given complex multi-
plication.

• Participants: Andreas Enge, Emmanuel Thomé and Regis Dupont

• Contact: Emmanuel Thomé

• URL: http://cmh.gforge.inria.fr

5.5. CUBIC
KEYWORD: Number theory

FUNCTIONAL DESCRIPTION: Cubic is a stand-alone program that prints out generating equations for cubic
fields of either signature and bounded discriminant. It depends on the Pari library. The algorithm has quasi-
linear time complexity in the size of the output.

• Participant: Karim Belabas

• Contact: Karim Belabas

• URL: http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.2.tgz

5.6. Euclid
KEYWORD: Number theory

FUNCTIONAL DESCRIPTION: Euclid is a program to compute the Euclidean minimum of a number field. It
is the practical implementation of the algorithm described in [38] . Some corresponding tables built with the
algorithm are also available. Euclid is a stand-alone program depending on the PARI library.

• Participants: Jean-Paul Cerri and Pierre Lezowski

• Contact: Jean-Paul Cerri

• URL: http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php

5.7. KleinianGroups
KEYWORDS: Computational geometry - Computational number theory

FUNCTIONAL DESCRIPTION: KleinianGroups is a Magma package that computes fundamental domains of
arithmetic Kleinian groups.

• Participant: Aurel Page

• Contact: Aurel Page

• URL: http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html

http://www.multiprecision.org/cm/home.html
http://cmh.gforge.inria.fr
http://www.math.u-bordeaux.fr/~belabas/research/software/cubic-1.2.tgz
http://www.math.u-bordeaux1.fr/~plezowsk/euclid/index.php
http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html

17 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team LFANT

5.8. GNU MPC
KEYWORD: Arithmetic

FUNCTIONAL DESCRIPTION: Mpc is a C library for the arithmetic of complex numbers with arbitrarily high
precision and correct rounding of the result. It is built upon and follows the same principles as Mpfr. The
library is written by Andreas Enge, Philippe Théveny and Paul Zimmermann.

RELEASE FUNCTIONAL DESCRIPTION: Fixed mpc_pow, see http://lists.gforge.inria.fr/pipermail/mpc-
discuss/2014-October/001315.html - #18257: Switched to libtool 2.4.5.

• Participants: Andreas Enge, Mickaël Gastineau, Paul Zimmermann and Philippe Théveny

• Contact: Andreas Enge

• URL: http://www.multiprecision.org/

5.9. MPFRCX
KEYWORD: Arithmetic

FUNCTIONAL DESCRIPTION: Mpfrcx is a library for the arithmetic of univariate polynomials over arbitrary
precision real (Mpfr) or complex (Mpc) numbers, without control on the rounding. For the time being, only
the few functions needed to implement the floating point approach to complex multiplication are implemented.
On the other hand, these comprise asymptotically fast multiplication routines such as Toom-Cook and the FFT.

RELEASE FUNCTIONAL DESCRIPTION: - new function product_and_hecke - improved memory consump-
tion for unbalanced FFT multiplications

• Participant: Andreas Enge

• Contact: Andreas Enge

• URL: http://www.multiprecision.org/mpfrcx/home.html

5.10. PARI/GP
KEYWORD: Computational number theory

FUNCTIONAL DESCRIPTION: Pari/Gp is a widely used computer algebra system designed for fast computa-
tions in number theory (factorisation, algebraic number theory, elliptic curves, modular forms ...), but it also
contains a large number of other useful functions to compute with mathematical entities such as matrices,
polynomials, power series, algebraic numbers, etc., and many transcendental functions.

• Participants: Andreas Enge, Hamish Ivey-Law, Henri Cohen and Karim Belabas

• Partner: CNRS

• Contact: Karim Belabas

• URL: http://pari.math.u-bordeaux.fr/

5.11. Platforms
5.11.1. SageMath

Following the article [19], Xavier Caruso and Thibaut Verron proposed an implementation of Tate algebras
and ideals in Tate algebras (including an implementation of Buchberger algorithm) for SageMath; their
implementation is now part of the standard distribution.

Xavier Caruso implemented a new unified framework for dealing with ring extensions and field extensions in
SageMath. This code will be integrated soon in the standard distribution.

5.11.2. ARB
Fredrik Johansson released a new version, 2.17, of ARB.

http://lists.gforge.inria.fr/pipermail/mpc-discuss/2014-October/001315.html
http://lists.gforge.inria.fr/pipermail/mpc-discuss/2014-October/001315.html
http://www.multiprecision.org/
http://www.multiprecision.org/mpfrcx/home.html
http://pari.math.u-bordeaux.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/lfant/bibliography.html#lfant-2019-bid5

18 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team OURAGAN

OURAGAN Project-Team

6. New Software and Platforms

6.1. ISOTOP
Topology and geometry of planar algebraic curves

KEYWORDS: Topology - Curve plotting - Geometric computing

FUNCTIONAL DESCRIPTION: Isotop is a Maple software for computing the topology of an algebraic plane
curve, that is, for computing an arrangement of polylines isotopic to the input curve. This problem is a
necessary key step for computing arrangements of algebraic curves and has also applications for curve plotting.
This software has been developed since 2007 in collaboration with F. Rouillier from Inria Paris - Rocquencourt.

• Participants: Luis Penaranda, Marc Pouget and Sylvain Lazard

• Contact: Marc Pouget

• Publications: Rational Univariate Representations of Bivariate Systems and Applications - Separat-
ing Linear Forms for Bivariate Systems - On The Topology of Planar Algebraic Curves - New bivari-
ate system solver and topology of algebraic curves - Improved algorithm for computing separating
linear forms for bivariate systems - Solving bivariate systems using Rational Univariate Representa-
tions - On the topology of planar algebraic curves - On the topology of real algebraic plane curves
- Bivariate triangular decompositions in the presence of asymptotes - Separating linear forms and
Rational Univariate Representations of bivariate systems

• URL: https://isotop.gamble.loria.fr/

6.2. RS
FUNCTIONAL DESCRIPTION: Real Roots isolation for algebraic systems with rational coefficients with a
finite number of Complex Roots

• Participant: Fabrice Rouillier

• Contact: Fabrice Rouillier

• URL: https://team.inria.fr/ouragan/software/

6.3. A NewDsc
A New Descartes

KEYWORD: Scientific computing

FUNCTIONAL DESCRIPTION: Computations of the real roots of univariate polynomials with rational coeffi-
cients.

• Authors: Fabrice Rouillier, Alexander Kobel and Michael Sagraloff

• Partner: Max Planck Institute for Software Systems

• Contact: Fabrice Rouillier

• URL: https://anewdsc.mpi-inf.mpg.de

6.4. SIROPA
KEYWORDS: Robotics - Kinematics

http://www.inria.fr/equipes/ouragan
https://hal.inria.fr/hal-00809430
https://hal.inria.fr/hal-00809425
https://hal.inria.fr/hal-00809425
https://hal.inria.fr/inria-00329754
https://hal.inria.fr/inria-00580431
https://hal.inria.fr/inria-00580431
https://hal.inria.fr/hal-00992634
https://hal.inria.fr/hal-00992634
https://hal.inria.fr/hal-01342211
https://hal.inria.fr/hal-01342211
https://hal.inria.fr/inria-00425383
https://hal.inria.fr/inria-00517175
https://hal.inria.fr/hal-01468796
https://hal.inria.fr/hal-00977671
https://hal.inria.fr/hal-00977671
https://isotop.gamble.loria.fr/
https://team.inria.fr/ouragan/software/
https://anewdsc.mpi-inf.mpg.de

19 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team OURAGAN

FUNCTIONAL DESCRIPTION: Library of functions for certified computations of the properties of articulated
mechanisms, particularly the study of their singularities

• Authors: Damien Chablat, Fabrice Rouillier, Guillaume Moroz and Philippe Wenger

• Partner: LS2N

• Contact: Guillaume Moroz

• URL: http://siropa.gforge.inria.fr/

6.5. MPFI
KEYWORD: Arithmetic

FUNCTIONAL DESCRIPTION: MPFI is a C library based on MPFR and GMP for multi precision floating point
arithmetic.

• Contact: Fabrice Rouillier

• URL: http://mpfi.gforge.inria.fr

http://siropa.gforge.inria.fr/
http://mpfi.gforge.inria.fr

20 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team POLSYS

POLSYS Project-Team

5. New Software and Platforms

5.1. Epsilon
FUNCTIONAL DESCRIPTION: Epsilon is a library of functions implemented in Maple and Java for polynomial
elimination and decomposition with (geometric) applications.
• Contact: Dongming Wang
• URL: http://wang.cc4cm.org/epsilon/index.html

5.2. FGb
KEYWORDS: Gröbner bases - Nonlinear system - Computer algebra

FUNCTIONAL DESCRIPTION: FGb is a powerful software for computing Gröbner bases. It includes the new
generation of algorihms for computing Gröbner bases polynomial systems (mainly the F4, F5 and FGLM
algorithms). It is implemented in C/C++ (approximately 250000 lines), standalone servers are available on
demand. Since 2006, FGb is dynamically linked with Maple software (version 11 and higher) and is part of
the official distribution of this software.
• Participant: Jean Charles Faugere
• Contact: Jean-Charles Faugère
• URL: http://www-polsys.lip6.fr/~jcf/FGb/index.html

5.3. FGb Light
FUNCTIONAL DESCRIPTION: Gröbner basis computation modulo p (p is a prime integer of 16 bits).
• Participant: Jean-Charles Faugère
• Contact: Jean-Charles Faugère
• URL: http://www-polsys.lip6.fr/~jcf/FGb/index.html

5.4. GBLA
FUNCTIONAL DESCRIPTION: GBLA is an open source C library for linear algebra specialized for eliminating
matrices generated during Gröbner basis computations in algorithms like F4 or F5.
• Contact: Jean-Charles Faugère
• URL: http://www-polsys.lip6.fr/~jcf/GBLA/index.html

5.5. HFEBoost
FUNCTIONAL DESCRIPTION: Public-key cryptography system enabling an authentification of dematerialized
data.
• Authors: Jean-Charles Faugère and Ludovic Perret
• Partner: UPMC
• Contact: Jean-Charles Faugère
• URL: http://www-polsys.lip6.fr/Links/hfeboost.html

5.6. RAGlib
Real Algebraic Geometry library

http://www.inria.fr/equipes/polsys
http://wang.cc4cm.org/epsilon/index.html
http://www-polsys.lip6.fr/~jcf/FGb/index.html
http://www-polsys.lip6.fr/~jcf/FGb/index.html
http://www-polsys.lip6.fr/~jcf/GBLA/index.html
http://www-polsys.lip6.fr/Links/hfeboost.html

21 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team POLSYS

FUNCTIONAL DESCRIPTION: RAGLib is a powerful library, written in Maple, dedicated to solving over
the reals polynomial systems. It is based on the FGb library for computing Grobner bases. It provides
functionalities for deciding the emptiness and/or computing sample points to real solution sets of polynomial
systems of equations and inequalities. This library provides implementations of the state-of-the-art algorithms
with the currently best known asymptotic complexity for those problems.

• Contact: Mohab Safey El Din

• URL: http://www-polsys.lip6.fr/~safey/RAGLib/

5.7. RealCertify
KEYWORDS: Polynomial or analytical systems - Univariate polynomial - Real solving

FUNCTIONAL DESCRIPTION: The package RealCertify aims at providing a full suite of hybrid algorithms for
computing certificates of non-negativity based on numerical software for solving linear matrix inequalities.
The module univsos handles the univariate case and the module multivsos is designed for the multivariate
case.

• Contact: Mohab Safey El Din

• URL: https://gricad-gitlab.univ-grenoble-alpes.fr/magronv/RealCertify

5.8. SLV
KEYWORDS: Univariate polynomial - Real solving

FUNCTIONAL DESCRIPTION: SLV is a software package in C that provides routines for isolating (and
subsequently refine) the real roots of univariate polynomials with integer or rational coefficients based on
subdivision algorithms and on the continued fraction expansion of real numbers. Special attention is given so
that the package can handle polynomials that have degree several thousands and size of coefficients hundrends
of Megabytes. Currently the code consists of approx. 5000 lines.

• Contact: Elias Tsigaridas

• URL: https://who.paris.inria.fr/Elias.Tsigaridas/soft.html

5.9. SPECTRA
Semidefinite Programming solved Exactly with Computational Tools of Real Algebra

KEYWORD: Linear Matrix Inequalities

FUNCTIONAL DESCRIPTION: SPECTRA is a Maple library devoted to solving exactly Semi-Definite Pro-
grams. It can handle rank constraints on the solution. It is based on the FGb library for computing Gröbner
bases and provides either certified numerical approximations of the solutions or exact representations thereof.

• Contact: Mohab Safey El Din

• URL: http://homepages.laas.fr/henrion/software/spectra/

http://www-polsys.lip6.fr/~safey/RAGLib/
https://gricad-gitlab.univ-grenoble-alpes.fr/magronv/RealCertify
https://who.paris.inria.fr/Elias.Tsigaridas/soft.html
http://homepages.laas.fr/henrion/software/spectra/

22 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team SECRET

SECRET Project-Team

6. New Software and Platforms

6.1. CFS
FUNCTIONAL DESCRIPTION: Reference implementation of parallel CFS (reinforced version of the digital
signature scheme CFS). Two variants are proposed, one with a « bit-packing » finite field arithmetic and
an evolution with a « bit-slicing » finite-field arithmetic (collaboration with Peter Schwabe). For 80 bits of
security the running time for producing one signature with the « bit-packing » variant is slightly above one
second. This is high but was still the fastest so far. The evolution with the « bit-slicing » arithmetic produces
the same signature in about 100 milliseconds.

• Participants: Grégory Landais and Nicolas Sendrier

• Contact: Nicolas Sendrier

• URL: https://gforge.inria.fr/projects/cfs-signature/

6.2. Collision Decoding
KEYWORDS: Algorithm - Binary linear code

FUNCTIONAL DESCRIPTION: Collision Decoding implements two variants of information set decoding :
Stern-Dumer, and MMT. To our knowledge it is the best full-fledged open-source implementation of generic
decoding of binary linear codes. It is the best generic attack against code-based cryptography.

• Participants: Grégory Landais and Nicolas Sendrier

• Contact: Nicolas Sendrier

• URL: https://gforge.inria.fr/projects/collision-dec/

6.3. ISDF
FUNCTIONAL DESCRIPTION: Implementation of the Stern-Dumer decoding algorithm, and of a variant of the
algorithm due to May, Meurer and Thomae.

• Participants: Grégory Landais and Nicolas Sendrier

• Contact: Anne Canteaut

• URL: https://gforge.inria.fr/projects/collision-dec/

http://www.inria.fr/equipes/secret
https://gforge.inria.fr/projects/cfs-signature/
https://gforge.inria.fr/projects/collision-dec/
https://gforge.inria.fr/projects/collision-dec/

23 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team SPECFUN

SPECFUN Project-Team

5. New Software and Platforms

5.1. DynaMoW
Dynamic Mathematics on the Web

FUNCTIONAL DESCRIPTION: Programming tool for controlling the generation of mathematical websites that
embed dynamical mathematical contents generated by computer-algebra calculations. Implemented in OCaml.

• Participants: Alexis Darrasse, Frédéric Chyzak and Maxence Guesdon

• Contact: Frédéric Chyzak

• URL: http://ddmf.msr-inria.inria.fr/DynaMoW/

5.2. ECS
Encyclopedia of Combinatorial Structures

FUNCTIONAL DESCRIPTION: On-line mathematical encyclopedia with an emphasis on sequences that arise
in the context of decomposable combinatorial structures, with the possibility to search by the first terms in the
sequence, keyword, generating function, or closed form.

• Participants: Alexis Darrasse, Frédéric Chyzak, Maxence Guesdon and Stéphanie Petit

• Contact: Frédéric Chyzak

• URL: http://ecs.inria.fr/

5.3. DDMF
Dynamic Dictionary of Mathematical Functions

FUNCTIONAL DESCRIPTION: Web site consisting of interactive tables of mathematical formulas on elemen-
tary and special functions. The formulas are automatically generated by OCaml and computer-algebra routines.
Users can ask for more terms of the expansions, more digits of the numerical values, proofs of some of the
formulas, etc.

• Participants: Alexandre Benoit, Alexis Darrasse, Bruno Salvy, Christoph Koutschan, Frédéric
Chyzak, Marc Mezzarobba, Maxence Guesdon, Stefan Gerhold and Thomas Gregoire

• Contact: Frédéric Chyzak

• URL: http://ddmf.msr-inria.inria.fr/1.9.1/ddmf

5.4. Mgfun
multivariate generating functions package

FUNCTIONAL DESCRIPTION: The Mgfun Project is a collection of packages for the computer algebra system
Maple, and is intended for the symbolic manipulation of a large class of special functions and combinatorial
sequences (in one or several variables and indices) that appear in many branches of mathematics, mathematical
physics, and engineering sciences. Members of the class satisfy a crucial finiteness property which makes the
class amenable to computer algebra methods and enjoy numerous algorithmic closure properties, including
algorithmic closures under integration and summation.

• Contact: Frédéric Chyzak

• URL: http://specfun.inria.fr/chyzak/mgfun.html

http://www.inria.fr/equipes/specfun
http://ddmf.msr-inria.inria.fr/DynaMoW/
http://ecs.inria.fr/
http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
http://specfun.inria.fr/chyzak/mgfun.html

24 Algorithmics, Computer Algebra and Cryptology - Software and Platforms - Project-Team SPECFUN

5.5. Ssreflect
KEYWORD: Proof assistant

SCIENTIFIC DESCRIPTION: Ssreflect is tactic language that helps writing concise and uniform tactic based
proof scripts for the Coq system. It was designed during the proofs of the 4 Color Theorem and the Feit-
Thompson theorem.

FUNCTIONAL DESCRIPTION: Ssreflect is a tactic language extension to the Coq system, developed by the
Mathematical Components team.

NEWS OF THE YEAR: In 2019, we extended the intro pattern functionality of SSreflect and added support for
working under binders using the "under" tactical.

• Participants: Assia Mahboubi, Cyril Cohen, Enrico Tassi, Georges Gonthier, Laurence Rideau,
Laurent Théry and Yves Bertot

• Contact: Yves Bertot

• URL: http://math-comp.github.io/math-comp/

5.6. Math-Components
Mathematical Components library

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: The Mathematical Components library is a set of Coq libraries that cover the
prerequiste for the mechanization of the proof of the Odd Order Theorem.

RELEASE FUNCTIONAL DESCRIPTION: This releases is compatible with Coq 8.9 and Coq 8.10 it adds many
theorems for finite function, prime numbers, sequences, finite types, bigo operations, natural numbers, cycles
in graphs.

• Participants: Alexey Solovyev, Andrea Asperti, Assia Mahboubi, Cyril Cohen, Enrico Tassi,
François Garillot, Georges Gonthier, Ioana Pasca, Jeremy Avigad, Laurence Rideau, Laurent Théry,
Russell O’Connor, Sidi Ould Biha, Stéphane Le Roux and Yves Bertot

• Contact: Assia Mahboubi

• URL: http://math-comp.github.io/math-comp/

http://math-comp.github.io/math-comp/
http://math-comp.github.io/math-comp/

25 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAIRN

CAIRN Project-Team

5. New Software and Platforms
5.1. Gecos

Generic Compiler Suite

KEYWORDS: Source-to-source compiler - Model-driven software engineering - Retargetable compilation

SCIENTIFIC DESCRIPTION: The Gecos (Generic Compiler Suite) project is a source-to-source compiler
infrastructure developed in the Cairn group since 2004. It was designed to enable fast prototyping of program
analysis and transformation for hardware synthesis and retargetable compilation domains.

Gecos is Java based and takes advantage of modern model driven software engineering practices. It uses the
Eclipse Modeling Framework (EMF) as an underlying infrastructure and takes benefits of its features to make
it easily extensible. Gecos is open-source and is hosted on the Inria gforge.

The Gecos infrastructure is still under very active development, and serves as a backbone infrastructure to
projects of the group. Part of the framework is jointly developed with Colorado State University and between
2012 and 2015 it was used in the context of the FP7 ALMA European project. The Gecos infrastructure is
currently used by the EMMTRIX start-up, a spin-off from the ALMA project which aims at commercializing
the results of the project, and in the context of the H2020 ARGO European project.

FUNCTIONAL DESCRIPTION: GeCoS provides a programme transformation toolbox facilitating paralleli-
sation of applications for heterogeneous multiprocessor embedded platforms. In addition to targeting pro-
grammable processors, GeCoS can regenerate optimised code for High Level Synthesis tools.
• Participants: Tomofumi Yuki, Thomas Lefeuvre, Imèn Fassi, Mickael Dardaillon, Ali Hassan El

Moussawi and Steven Derrien
• Partner: Université de Rennes 1
• Contact: Steven Derrien
• URL: http://gecos.gforge.inria.fr

5.2. ID-Fix
Infrastructure for the Design of Fixed-point systems

KEYWORDS: Energy efficiency - Dynamic range evaluation - Accuracy optimization - Fixed-point arithmetic
- Analytic Evaluation - Embedded systems - Code optimisation

SCIENTIFIC DESCRIPTION: The different techniques proposed by the team for fixed-point conversion are
implemented in the ID.Fix infrastructure. The application is described with a C code using floating-point data
types and different pragmas, used to specify parameters (dynamic, input/output word-length, delay operations)
for the fixed-point conversion. This tool determines and optimizes the fixed-point specification and then,
generates a C code using fixed-point data types (ac_fixed) from Mentor Graphics. The infrastructure is made
of two main modules corresponding to the fixed-point conversion (ID.Fix-Conv) and the accuracy evaluation
(ID.Fix-Eval).

FUNCTIONAL DESCRIPTION: ID.Fix focuses on computational precision accuracy and can provide an
optimized specification using fixed-point arithmetic from a C source code with floating-point data types. Fixed
point arithmetic is very widely used in embedded systems as it provides better performance and is much more
energy-efficient. ID.Fix constructs an analytic accuracy model of the program, which means it can explore
more solutions and thereby produce a much more efficient code.
• Participant: Olivier Sentieys
• Partner: Université de Rennes 1
• Contact: Olivier Sentieys
• URL: http://idfix.gforge.inria.fr

http://www.inria.fr/equipes/cairn
http://gecos.gforge.inria.fr
http://idfix.gforge.inria.fr

26 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAIRN

5.3. SmartSense
KEYWORDS: Wireless Sensor Networks - Smart building - Non-Intrusive Appliance Load Monitoring

FUNCTIONAL DESCRIPTION: To measure energy consumption by equipment in a building, NILM techniques
(Non-Intrusive Appliance Load Monitoring) are based on observation of overall variations in electrical voltage.
This avoids having to deploy watt-meters on every device and thus reduces the cost. SmartSense goes a
step further to improve on these techniques by combining sensors (light, temperature, electromagnetic wave,
vibration and sound sensors, etc.) to provide additional information on the activity of equipment and people.
Low-cost sensors can be energy-autonomous too.

• Contact: Olivier Sentieys

5.4. Platforms
5.4.1. Zyggie: a Wireless Body Sensor Network Platform

KEYWORDS: Health - Biomechanics - Wireless body sensor networks - Low power - Gesture recognition -
Hardware platform - Software platform - Localization

SCIENTIFIC DESCRIPTION: Zyggie is a hardware and software wireless body sensor network platform. Each
sensor node, attached to different parts of the human body, contains inertial sensors (IMU) (accelerometer,
gyrometer, compass and barometer), an embedded processor and a low-power radio module to communicate
data to a coordinator node connected to a computer, tablet or smartphone. One of the system’s key innovations
is that it collects data from sensors as well as on distances estimated from the power of the radio signal received
to make the 3D location of the nodes more precise and thus prevent IMU sensor drift and power consumption
overhead. Zyggie can be used to determine posture or gestures and mainly has applications in sport, healthcare
and the multimedia industry.

FUNCTIONAL DESCRIPTION: The Zyggie sensor platform was developed to create an autonomous Wireless
Body Sensor Network (WBSN) with the capabilities of monitoring body movements. The Zyggie platform
is part of the BoWI project funded by CominLabs. Zyggie is composed of a processor, a radio transceiver
and different sensors including an Inertial Measurement Unit (IMU) with 3-axis accelerometer, gyrometer,
and magnetometer. Zyggie is used for evaluating data fusion algorithms, low power computing algorithms,
wireless protocols, and body channel characterization in the BoWI project.

The Zyggie V2 prototype (see Figure 2) includes the following features: a 32-bit micro-controller to manage
a custom MAC layer and process quaternions based on IMU measures, and an UWB radio from DecaWave to
measure distances between nodes with Time of Flight (ToF).

• Participants: Arnaud Carer and Olivier Sentieys

• Partners: Lab-STICC, Université de Rennes 1

• Contact: Olivier Sentieys

• URL: https://bowi.cominlabs.u-bretagneloire.fr/zyggie-wbsn-platform

5.4.2. E-methodHW: an automatic tool for the evaluation of polynomial and rational function
approximations
KEYWORDS: function approximation, FPGA hardware implementation generator

SCIENTIFIC DESCRIPTION: E-methodHW is an open source C/C++ prototype tool written to exemplify what
kind of numerical function approximations can be developed using a digit recurrence evaluation scheme for
polynomials and rational functions.

http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/uid30.html
https://bowi.cominlabs.u-bretagneloire.fr/zyggie-wbsn-platform

27 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAIRN

Figure 2. CAIRN’s Zyggie platform for WBSN

FUNCTIONAL DESCRIPTION: E-methodHW provides a complete design flow from choice of mathematical
function operator up to optimised VHDL code that can be readily deployed on an FPGA. The use of the
E-method allows the user great flexibility if targeting high throughput applications.

• Participants: Silviu-Ioan Filip, Matei Istoan

• Partners: Université de Rennes 1, Imperial College London

• Contact: Silviu-Ioan Filip

• URL: https://github.com/sfilip/emethod

5.4.3. Firopt: a tool for the simultaneous design of digital FIR filters along with the dedicated
hardware model
KEYWORDS: FIR filter design, multiplierless hardware implementation generator

SCIENTIFIC DESCRIPTION: the firopt tool is an open source C++ prototype that produces Finite Impulse
Response (FIR) filters that have minimal cost in terms of digital adders needed to implement them. This
project aims at fusing the filter design problem from a frequency domain specification with the design of the
dedicated hardware architecture. The optimality of the results is ensured by solving appropriate mixed integer
linear programming (MILP) models developed for the project. It produces results that are generally more
efficient than those of other methods found in the literature or from commercial tools (such as MATLAB).

• Participants: Silviu-Ioan Filip, Martin Kumm, Anastasia Volkova

• Partners: Université de Rennes 1, Université de Nantes, Fulda University of Applied Sciences

• Contact: Silviu-Ioan Filip

• URL: https://gitlab.com/filteropt/firopt

5.4.4. Hybrid-DBT
KEYWORDS: Dynamic Binary Translation, hardware acceleration, VLIW processor, RISC-V

SCIENTIFIC DESCRIPTION: Hybrid-DBT is a hardware/software Dynamic Binary Translation (DBT) frame-
work capable of translating RISC-V binaries into VLIW binaries. Since the DBT overhead has to be as small as
possible, our implementation takes advantage of hardware acceleration for performance critical stages (binary
translation, dependency analysis and instruction scheduling) of the flow. Thanks to hardware acceleration, our
implementation is two orders of magnitude faster than a pure software implementation and enable an overall
performance improvements by 23% on average, compared to a native RISC-V execution.

• Participants: Simon Rokicki, Steven Derrien

• Partners: Université de Rennes 1

• URL: https://github.com/srokicki/HybridDBT

https://github.com/sfilip/emethod
https://gitlab.com/filteropt/firopt
https://github.com/srokicki/HybridDBT

28 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAIRN

5.4.5. Comet
KEYWORDS: Processor core, RISC-V instruction-set architecture

SCIENTIFIC DESCRIPTION: Comet is a RISC-V pipelined processor with data/instruction caches, fully
developed using High-Level Synthesis. The behavior of the core is defined in a small C code which is then fed
into a HLS tool to generate the RTL representation. Thanks to this design flow, the C description can be used
as a fast and cycle-accurate simulator, which behaves exactly like the final hardware. Moreover, modifications
in the core can be done easily at the C level.

• Participants: Simon Rokicki, Steven Derrien, Olivier Sentieys, Davide Pala, Joseph Paturel

• Partners: Université de Rennes 1

• URL: https://gitlab.inria.fr/srokicki/Comet

5.4.6. TypEx
KEYWORDS: Embedded systems, Fixed-point arithmetic, Floating-point, Low power consumption, Energy
efficiency, FPGA, ASIC, Accuracy optimization, Automatic floating-point to fixed-point conversion

SCIENTIFIC DESCRIPTION: TypEx is a tool designed to automatically determine custom number representa-
tions and word-lengths (i.e., bit-width) for FPGAs and ASIC designs at the C source level. The main goal of
TypEx is to explore the design space spanned by possible number formats in the context of High-Level Syn-
thesis. TypEx takes a C code written using floating-point datatypes specifying the application to be explored.
The tool also takes as inputs a cost model as well as some user constraints and generates a C code where the
floating-point datatypes are replaced by the wordlengths found after exploration. The best set of word-lengths
is the one found by the tool that respects the given accuracy constraint and that minimizes a parametrized cost
function. Figure 3 presents an overview of the TypEx design flow.

• Participants: Olivier Sentieys, Tomofumi Yuki, Van-Phu Ha

• Partners: Université de Rennes 1

• URL: https://gitlab.inria.fr/gecos/gecos-float2fix

https://gitlab.inria.fr/srokicki/Comet
http://raweb.inria.fr/rapportsactivite/RA{$year}/cairn/uid53.html
https://gitlab.inria.fr/gecos/gecos-float2fix

29 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAIRN

Figure 3. TypEx: a tool for type exploration and automatic floating-point to fixed-point conversion

30 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAMUS

CAMUS Project-Team

6. New Software and Platforms
6.1. CLooG

Code Generator in the Polyhedral Model

KEYWORDS: Polyhedral compilation - Optimizing compiler - Code generator

FUNCTIONAL DESCRIPTION: CLooG is a free software and library to generate code (or an abstract syntax tree
of a code) for scanning Z-polyhedra. That is, it finds a code (e.g. in C, FORTRAN...) that reaches each integral
point of one or more parameterized polyhedra. CLooG has been originally written to solve the code generation
problem for optimizing compilers based on the polyhedral model. Nevertheless it is used now in various
area e.g. to build control automata for high-level synthesis or to find the best polynomial approximation of a
function. CLooG may help in any situation where scanning polyhedra matters. While the user has full control
on generated code quality, CLooG is designed to avoid control overhead and to produce a very effective code.
CLooG is widely used (including by GCC and LLVM compilers), disseminated (it is installed by default by
the main Linux distributions) and considered as the state of the art in polyhedral code generation.

RELEASE FUNCTIONAL DESCRIPTION: It mostly solves building and offers a better OpenScop support.
• Participant: Cédric Bastoul
• Contact: Cédric Bastoul
• URL: http://www.cloog.org

6.2. OpenScop
A Specification and a Library for Data Exchange in Polyhedral Compilation Tools

KEYWORDS: Polyhedral compilation - Optimizing compiler

FUNCTIONAL DESCRIPTION: OpenScop is an open specification that defines a file format and a set of data
structures to represent a static control part (SCoP for short), i.e., a program part that can be represented in
the polyhedral model. The goal of OpenScop is to provide a common interface to the different polyhedral
compilation tools in order to simplify their interaction. To help the tool developers to adopt this specification,
OpenScop comes with an example library (under 3-clause BSD license) that provides an implementation of
the most important functionalities necessary to work with OpenScop.
• Participant: Cédric Bastoul
• Contact: Cédric Bastoul
• URL: http://icps.u-strasbg.fr/people/bastoul/public_html/development/openscop/

6.3. ORWL
Ordered Read-Write Lock

KEYWORDS: Task scheduling - Deadlock detection

FUNCTIONAL DESCRIPTION: ORWL is a reference implementation of the Ordered Read-Write Lock tools.
The macro definitions and tools for programming in C99 that have been implemented for ORWL have been
separated out into a toolbox called P99.
• Participants: Jens Gustedt, Mariem Saied and Stéphane Vialle
• Contact: Jens Gustedt
• Publications: Iterative Computations with Ordered Read-Write Locks - Automatic, Abstracted

and Portable Topology-Aware Thread Placement - Resource-Centered Distributed Processing of
Large Histopathology Images - Automatic Code Generation for Iterative Multi-dimensional Stencil
Computations

http://www.inria.fr/equipes/camus
http://www.cloog.org
http://icps.u-strasbg.fr/people/bastoul/public_html/development/openscop/
https://hal.inria.fr/inria-00330024
https://hal.inria.fr/hal-01621936
https://hal.inria.fr/hal-01621936
https://hal.inria.fr/hal-01325648
https://hal.inria.fr/hal-01325648
https://hal.inria.fr/hal-01337093
https://hal.inria.fr/hal-01337093

31 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAMUS

6.4. musl
KEYWORDS: Standards - Library

SCIENTIFIC DESCRIPTION: musl provides consistent quality and implementation behavior from tiny embed-
ded systems to full-fledged servers. Minimal machine-specific code means less chance of breakage on minority
architectures and better success with “write once run everywhere” C development.

musl’s efficiency is unparalleled in Linux libc implementations. Designed from the ground up for static linking,
musl carefully avoids pulling in large amounts of code or data that the application will not use. Dynamic
linking is also efficient, by integrating the entire standard library implementation, including threads, math, and
even the dynamic linker itself into a single shared object, most of the startup time and memory overhead of
dynamic linking have been eliminated.

FUNCTIONAL DESCRIPTION: We participate in the development of musl, a re-implementation of the C library
as it is described by the C and POSIX standards. It is lightweight, fast, simple, free, and strives to be correct in
the sense of standards-conformance and safety. Musl is production quality code that is mainly used in the area
of embedded devices. It gains more market share also in other areas, e.g. there are now Linux distributions
that are based on musl instead of Gnu LibC.

• Participant: Jens Gustedt

• Contact: Jens Gustedt

• URL: http://www.musl-libc.org/

6.5. Modular C
KEYWORDS: Programming language - Modularity

FUNCTIONAL DESCRIPTION: The change to the C language is minimal since we only add one feature,
composed identifiers, to the core language. Our modules can import other modules as long as the import
relation remains acyclic and a module can refer to its own identifiers and those of the imported modules
through freely chosen abbreviations. Other than traditional C include, our import directive ensures complete
encapsulation between modules. The abbreviation scheme allows to seamlessly replace an imported module by
another one with an equivalent interface. In addition to the export of symbols, we provide parameterized code
injection through the import of “snippets”. This implements a mechanism that allows for code reuse, similar to
X macros or templates. Additional features of our proposal are a simple dynamic module initialization scheme,
a structured approach to the C library and a migration path for existing software projects.

• Author: Jens Gustedt

• Contact: Jens Gustedt

• Publications: Modular C - Arbogast: Higher order automatic differentiation for special functions
with Modular C - Futex based locks for C11’s generic atomics

• URL: http://cmod.gforge.inria.fr/

6.6. arbogast
KEYWORD: Automatic differentiation

SCIENTIFIC DESCRIPTION: This high-level toolbox for the calculus with Taylor polynomials is named after
L.F.A. Arbogast (1759-1803), a French mathematician from Strasbourg (Alsace), for his pioneering work in
derivation calculus. Its modular structure ensures unmatched efficiency for computing higher order Taylor
polynomials. In particular it permits compilers to apply sophisticated vector parallelization to the derivation
of nearly unmodified application code.

http://www.musl-libc.org/
https://hal.inria.fr/hal-01169491
https://hal.inria.fr/hal-01307750
https://hal.inria.fr/hal-01307750
https://hal.inria.fr/hal-01236734
http://cmod.gforge.inria.fr/

32 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAMUS

FUNCTIONAL DESCRIPTION: Arbogast is based on a well-defined extension of the C programming language,
Modular C, and places itself between tools that proceed by operator overloading on one side and by rewriting,
on the other. The approach is best described as contextualization of C code because it permits the programmer
to place his code in different contexts – usual math or AD – to reinterpret it as a usual C function or as a
differential operator. Because of the type generic features of modern C, all specializations can be delegated to
the compiler.

• Author: Jens Gustedt

• Contact: Jens Gustedt

• Publications: Arbogast: Higher order automatic differentiation for special functions with Modular C
- Arbogast – Origine d’un outil de dérivation automatique

• URL: https://gforge.inria.fr/projects/arbo

6.7. CFML
Interactive program verification using characteristic formulae

KEYWORDS: Coq - Software Verification - Deductive program verification - Separation Logic

FUNCTIONAL DESCRIPTION: The CFML tool supports the verification of OCaml programs through interac-
tive Coq proofs. CFML proofs establish the full functional correctness of the code with respect to a specifica-
tion. They may also be used to formally establish bounds on the asymptotic complexity of the code. The tool is
made of two parts: on the one hand, a characteristic formula generator implemented as an OCaml program that
parses OCaml code and produces Coq formulae, and, on the other hand, a Coq library that provides notations
and tactics for manipulating characteristic formulae interactively in Coq.

• Participants: Arthur Charguéraud, Armaël Guéneau and François Pottier

• Contact: Arthur Charguéraud

• URL: http://www.chargueraud.org/softs/cfml/

6.8. SPETABARU
SPEculative TAsk-BAsed RUntime system

KEYWORDS: HPC - Parallel computing - Task-based algorithm

FUNCTIONAL DESCRIPTION: SPETABARU is a task-based runtime system for multi-core architectures that
includes speculative execution models. It is a pure C++11 product without external dependency. It uses
advanced meta-programming and allows for an easy customization of the scheduler. It is also capable to
generate execution traces in SVG to better understand the behavior of the applications.

• Contact: Bérenger Bramas

• URL: https://gitlab.inria.fr/bramas/spetabaru

6.9. APAC
KEYWORDS: Source-to-source compiler - Automatic parallelization - Parallelisation - Parallel programming

SCIENTIFIC DESCRIPTION: APAC is a compiler for automatic parallelization that transforms C++ source
code to make it parallel by inserting tasks. It uses the tasks+dependencies paradigm and relies on OpenMP or
SPETABARU as runtime system. Internally, it is based on Clang-LLVM.

FUNCTIONAL DESCRIPTION: Automatic task-based parallelization compiler

• Participants: Bérenger Bramas, Stéphane Genaud and Garip Kusoglu

• Contact: Bérenger Bramas

• URL: https://gitlab.inria.fr/bramas/apac

https://hal.inria.fr/hal-01307750
https://hal.inria.fr/hal-01313355
https://gforge.inria.fr/projects/arbo
http://www.chargueraud.org/softs/cfml/
https://gitlab.inria.fr/bramas/spetabaru
https://gitlab.inria.fr/bramas/apac

33 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAMUS

6.10. Dagpar
KEYWORDS: Graph algorithmics - Clustering - Partitioning

SCIENTIFIC DESCRIPTION: This library is a clustering algorithm to create macro-tasks in a DAG of tasks. It
extends a clustering/partitioning strategy proposed by Rossignon et al. to speed up the parallel execution of
a task-based application. In this package, we provide two additional heuristics to this algorithm, which have
been validated on a large graph set. The objective of clustering the nodes of task graphs is to increase the
granularity of the tasks and thus obtain faster execution by mitigating the overhead from the management of
the dependencies. An important asset of this approach is that working at the graph level allows us to create a
generic method independent of the application and of what is done at the user level, but also independent of
the task-based runtime system that could be used underneath.

FUNCTIONAL DESCRIPTION: Acyclic Dag Partitioning.

• Participants: Bérenger Bramas and Alain Ketterlin

• Contact: Bérenger Bramas

• URL: https://gitlab.inria.fr/bramas/dagpar

6.11. LetItBench
Lenient to Errors, Transformations, Irregularities and Turbulence Benchmarks

KEYWORDS: Approximate computing - Benchmarking

FUNCTIONAL DESCRIPTION: LetItBench is a benchmark set to help evaluating works on approximate
compilation techniques. We propose a set of meaningful applications with an iterative kernel, that is not too
complex for automatic analysis and can be analyzed by polyhedral tools. The benchmark set called LetItBench
(Lenient to Errors, Transformations, Irregularities and Turbulence Benchmarks) is composed of standalone
applications written in C, and a benchmark runner based on CMake. The benchmark set includes fluid
simulation, FDTD, heat equations, game of life or K-means clustering. It spans various kind of applications
that are resilient to approximation.

• Contact: Cédric Bastoul

• URL: https://github.com/Syllo/LetItBench

6.12. ACR
Adaptive Code Refinement

KEYWORDS: Approximate computing - Optimizing compiler

FUNCTIONAL DESCRIPTION: ACR is to approximate programming what OpenMP is to parallel program-
ming. It is an API including a set of language extensions to provide the compiler with pertinent information
about how to approximate a code block, a high-level compiler to automatically generate the approximated
code, and a runtime library to exploit the approximation information at runtime according to the dataset prop-
erties. ACR is designed to provide approximate computing to non experts. The programmer may write a trivial
code without approximation, provide approximation information thanks to pragmas, and let the compiler gen-
erate an optimized code based on approximation.

• Contact: Cédric Bastoul

• URL: https://github.com/Syllo/acr

6.13. APOLLO
Automatic speculative POLyhedral Loop Optimizer

KEYWORD: Automatic parallelization

https://gitlab.inria.fr/bramas/dagpar
https://github.com/Syllo/LetItBench
https://github.com/Syllo/acr

34 Architecture, Languages and Compilation - Software and Platforms - Project-Team CAMUS

FUNCTIONAL DESCRIPTION: APOLLO is dedicated to automatic, dynamic and speculative parallelization
of loop nests that cannot be handled efficiently at compile-time. It is composed of a static part consisting of
specific passes in the LLVM compiler suite, plus a modified Clang frontend, and a dynamic part consisting
of a runtime system. It can apply on-the-fly any kind of polyhedral transformations, including tiling, and can
handle nonlinear loops, as while-loops referencing memory through pointers and indirections.

• Participants: Aravind Sukumaran-Rajam, Juan Manuel Martinez Caamaño, Manuel Selva and
Philippe Clauss

• Contact: Philippe Clauss

• URL: http://apollo.gforge.inria.fr

http://apollo.gforge.inria.fr

35 Architecture, Languages and Compilation - Software and Platforms - Project-Team CASH

CASH Project-Team

5. New Software and Platforms

5.1. DCC
DPN C Compiler

KEYWORDS: Polyhedral compilation - Automatic parallelization - High-level synthesis

FUNCTIONAL DESCRIPTION: Dcc (Data-aware process network C compiler) analyzes a sequential regular
program written in C and generates an equivalent architecture of parallel computer as a communicating
process network (Data-aware Process Network, DPN). Internal communications (channels) and external
communications (external memory) are automatically handled while fitting optimally the characteristics of
the global memory (latency and throughput). The parallelism can be tuned. Dcc has been registered at the
APP ("Agence de protection des programmes") and transferred to the XtremLogic start-up under an Inria
license.

• Participants: Alexandru Plesco and Christophe Alias

• Contact: Christophe Alias

5.2. PoCo
Polyhedral Compilation Library

KEYWORDS: Polyhedral compilation - Automatic parallelization

FUNCTIONAL DESCRIPTION: PoCo (Polyhedral Compilation Library) is a compilation framework allowing to
develop parallelizing compilers for regular programs. PoCo features many state-of-the-art polyhedral program
analysis and a symbolic calculator on execution traces (represented as convex polyhedra). PoCo has been
registered at the APP (“agence de protection des programmes”) and transferred to the XtremLogic start-up
under an Inria licence.

• Participant: Christophe Alias

• Contact: Christophe Alias

5.3. MPPcodegen
Source-to-source loop tiling based on MPP

KEYWORDS: Source-to-source compiler - Polyhedral compilation

FUNCTIONAL DESCRIPTION: MPPcodegen applies a monoparametric tiling to a C program enriched with
pragmas specifying the tiling and the scheduling function. The tiling can be generated by any convex
polyhedron and translation functions, it is not necessarily a partition. The result is a C program depending
on a scaling factor (the parameter). MPPcodegen relies on the MPP mathematical library to tile the iteration
sets.

• Partner: Colorado State University

• Contact: Christophe Alias

• URL: http://foobar.ens-lyon.fr/mppcodegen/

http://www.inria.fr/equipes/cash
http://foobar.ens-lyon.fr/mppcodegen/

36 Architecture, Languages and Compilation - Software and Platforms - Project-Team CORSE

CORSE Project-Team

5. New Software and Platforms

5.1. Verde
KEYWORDS: Debug - Verification

FUNCTIONAL DESCRIPTION: Interactive Debugging with a traditional debugger can be tedious. One has to
manually run a program step by step and set breakpoints to track a bug.

i-RV is an approach to bug fixing that aims to help developpers during their Interactive Debbugging sessions
using Runtime Verification.

Verde is the reference implementation of i-RV.

• Participants: Kevin Pouget, Ylies Falcone, Raphael Jakse and Jean-François Méhaut

• Contact: Raphael Jakse

• Publication: Interactive Runtime Verification - When Interactive Debugging meets Runtime Verifi-
cation

• URL: https://gitlab.inria.fr/monitoring/verde

5.2. Mickey
KEYWORDS: Dynamic Analysis - Performance analysis - Profiling - Polyhedral compilation

FUNCTIONAL DESCRIPTION: Mickey is a set of tools for profiling based performance debugging for compiled
binaries. It uses a dynamic binary translator to instrument arbitrary programs as they are being run to
reconstruct the control flow and track data dependencies. This information is then fed to a polyhedral optimizer
that proposes structured transformations for the original code.

Mickey can handle both inter- and intra-procedural control and data flow in a unified way, thus enabling inter-
procedural structured transformations. It is based on QEMU to allow for portability, both in terms of targeted
CPU architectures, but also in terms of programming environment and the use of third-party libraries for which
no source code is available.

• Partner: STMicroelectronics

• Contact: Fabrice Rastello

• Publications: hal-02060796v1 - hal-01967828v2

5.3. GUS
KEYWORDS: CPU - Microarchitecture simulation - Performance analysis - Dynamic Analysis

FUNCTIONAL DESCRIPTION: GUS’ goal is to detect performance bottlenecks at the very low level on
monothread applications by the use of sensitivity analysis. It is coded as a QEMU plug-in in order to collect
runtime information that are later treated by the generic CPU model.

• Contact: Nicolas Derumigny

• URL: https://gitlab.inria.fr/nderumig/gus

5.4. Pipedream
KEYWORDS: Performance analysis - CPU - Reverse engineering

http://www.inria.fr/equipes/corse
https://hal.inria.fr/hal-01592671
https://hal.inria.fr/hal-01592671
https://gitlab.inria.fr/monitoring/verde
https://hal.inria.fr/hal-02060796v1
https://hal.inria.fr/hal-01967828v2
https://gitlab.inria.fr/nderumig/gus

37 Architecture, Languages and Compilation - Software and Platforms - Project-Team CORSE

SCIENTIFIC DESCRIPTION: Pipedream reverse engineers the following performance characteristics: - Instruc-
tion latency – The number of cycles an instruction requires to execute. - Peak micro-op retirement rate – How
many fused micro-ops the CPU can retire per cycle. - Micro-fusion – The number of fused micro-ops an in-
struction decomposes into. - Micro-op decomposition and micro-op port usage – The list of unfused micro-ops
every instruction decomposes into and the list of execution ports every one of these micro-ops can execute on.

The first step of the reverse engineering process consists of generating a number of microbenchmarks.
Pipedream then runs these benchmark, measuring their performance using hardware counters. The latency,
throughput, and micro-fusion of different instructions can then be read directly from these measurements.

The process of finding port mappings, i.e. micro-op decompositions and micro-op port usage, however, is
more involved. For this purpose, we have defined a variation of the maximum flow problem which we call
the "instruction flow problem". We have developed a linear program (LP) formulation of the instruction flow
problem which can be used to calculate the peak IPC and micro-operations per cycle (MPC) a benchmark
kernel can theoretically achieve with a given port mapping. The actual port mapping of the underlying
hardware is then determined by finding the mapping for which the throughput predicted by instruction flow
best matches the actual measured IPC and MPC.

FUNCTIONAL DESCRIPTION: Pipedream is a tool for measuring specific performance characteristics of CPUs
It is used to build the performance model of another tool called Gus (https://gitlab.inria.fr/nderumig/gus).
Pipedream finds measured performance characteristics such as the throughput and latency of instructions by
running a large set of automatically generated microbenchmarks. The tool can also find port mappings, a
model of part of the CPU instruction scheduler, by analysing performance measurements of specially crafted
microkernels using a LP solver. We have used it to produce a port mapping for the Intel Skylake CPU
architecture. Pipedream is able to find the port mappings for some instructions for which existing approaches
fall back to manual analysis.
• Contact: Nicolas Derumigny
• URL: https://gitlab.inria.fr/fgruber/pipedream

5.5. Platforms
5.5.1. Grid’5000

Grid’5000 0 is a large-scale and versatile testbed for experiment-driven research in all areas of computer sci-
ence, with a focus on parallel and distributed computing including Cloud, HPC and Big Data. It provides
access to a large amount of resources: 14828 cores, 829 compute-nodes grouped in homogeneous clusters lo-
cated in 8 sites in France connected through a dedicated network (Renater), and featuring various technologies
(GPU, SSD, NVMe, 10G and 25G Ethernet, Infiniband, Omni-Path) and advanced monitoring and measure-
ment features for traces collection of networking and power consumption, providing a deep understanding of
experiments. It is highly reconfigurable and controllable. Researchers can experiment with a fully customized
software stack thanks to bare-metal deployment features, and can isolate their experiment at the networking
layer advanced monitoring and measurement features for traces collection of networking and power consump-
tion, providing a deep understanding of experiments designed to support Open Science and reproducible re-
search, with full traceability of infrastructure and software changes on the testbed. Frédéric Desprez is director
of the GRID5000 GIS.

5.5.2. SILECS/SLICES
Frédéric Desprez is co-PI with Serge Fdida (Université Sorbonne) of the SILECS 0 infrastructure (IR
ministère) which goal is to provide an experimental platform for experimental computer Science (Internet of
things, clouds, HPC, big data, IA, wireless technologies, ...). This new infrastructure is based on two existing
infrastructures, Grid’5000 and FIT. A European infrastructure (SLICES) is also currently designed with other
european partners (Spain, Cyprus, Greece, Netherland, Switzerland, Poland, ...).

0https://www.grid5000.fr/
0https://www.silecs.net/

https://gitlab.inria.fr/fgruber/pipedream
https://www.grid5000.fr/
https://www.silecs.net/

38 Architecture, Languages and Compilation - Software and Platforms - Project-Team PACAP

PACAP Project-Team

6. New Software and Platforms

6.1. ATMI
KEYWORDS: Analytic model - Chip design - Temperature

SCIENTIFIC DESCRIPTION: Research on temperature-aware computer architecture requires a chip temper-
ature model. General purpose models based on classical numerical methods like finite differences or finite
elements are not appropriate for such research, because they are generally too slow for modeling the time-
varying thermal behavior of a processing chip.

ATMI (Analytical model of Temperature in MIcroprocessors) is an ad hoc temperature model for studying
thermal behaviors over a time scale ranging from microseconds to several minutes. ATMI is based on an
explicit solution to the heat equation and on the principle of superposition. ATMI can model any power
density map that can be described as a superposition of rectangle sources, which is appropriate for modeling
the microarchitectural units of a microprocessor.

FUNCTIONAL DESCRIPTION: ATMI is a library for modelling steady-state and time-varying temperature in
microprocessors. ATMI uses a simplified representation of microprocessor packaging.
• Participant: Pierre Michaud
• Contact: Pierre Michaud
• URL: https://team.inria.fr/pacap/software/atmi/

6.2. HEPTANE
KEYWORDS: IPET - WCET - Performance - Real time - Static analysis - Worst Case Execution Time

SCIENTIFIC DESCRIPTION: WCET estimation

The aim of Heptane is to produce upper bounds of the execution times of applications. It is targeted at
applications with hard real-time requirements (automotive, railway, aerospace domains). Heptane computes
WCETs using static analysis at the binary code level. It includes static analyses of microarchitectural elements
such as caches and cache hierarchies.

FUNCTIONAL DESCRIPTION: In a hard real-time system, it is essential to comply with timing constraints, and
Worst Case Execution Time (WCET) in particular. Timing analysis is performed at two levels: analysis of the
WCET for each task in isolation taking account of the hardware architecture, and schedulability analysis of all
the tasks in the system. Heptane is a static WCET analyser designed to address the first issue.
• Participants: Benjamin Lesage, Loïc Besnard, Damien Hardy, François Joulaud, Isabelle Puaut and

Thomas Piquet
• Partner: Université de Rennes 1
• Contact: Isabelle Puaut
• URL: https://team.inria.fr/pacap/software/heptane/

6.3. tiptop
KEYWORDS: Instructions - Cycles - Cache - CPU - Performance - HPC - Branch predictor

SCIENTIFIC DESCRIPTION: Tiptop is a new simple and flexible user-level tool that collects hardware counter
data on Linux platforms (version 2.6.31+) and displays them in a way simple to the Linux "top" utility. The
goal is to make the collection of performance and bottleneck data as simple as possible, including simple
installation and usage. No privilege is required, any user can run tiptop.

http://www.inria.fr/equipes/pacap
https://team.inria.fr/pacap/software/atmi/
https://team.inria.fr/pacap/software/heptane/

39 Architecture, Languages and Compilation - Software and Platforms - Project-Team PACAP

Tiptop is written in C. It can take advantage of libncurses when available for pseudo-graphic display.
Installation is only a matter of compiling the source code. No patching of the Linux kernel is needed, and
no special-purpose module needs to be loaded.

Current version is 2.3.1, released October 2017. Tiptop has been integrated in major Linux distributions, such
as Fedora, Debian, Ubuntu, CentOS.

FUNCTIONAL DESCRIPTION: Today’s microprocessors have become extremely complex. To better under-
stand the multitude of internal events, manufacturers have integrated many monitoring counters. Tiptop can be
used to collect and display the values from these performance counters very easily. Tiptop may be of interest
to anyone who wants to optimise the performance of their HPC applications.

• Participant: Erven Rohou

• Contact: Erven Rohou

• URL: http://tiptop.gforge.inria.fr

6.4. PADRONE
KEYWORDS: Legacy code - Optimization - Performance analysis - Dynamic Optimization

FUNCTIONAL DESCRIPTION: Padrone is new platform for dynamic binary analysis and optimization. It
provides an API to help clients design and develop analysis and optimization tools for binary executables.
Padrone attaches to running applications, only needing the executable binary in memory. No source code or
debug information is needed. No application restart is needed either. This is especially interesting for legacy
or commercial applications, but also in the context of cloud deployment, where actual hardware is unknown,
and other applications competing for hardware resources can vary. The profiling overhead is minimum.

• Participants: Emmanuel Riou and Erven Rohou

• Contact: Erven Rohou

• URL: https://team.inria.fr/pacap/software/padrone

6.5. If-memo
KEYWORD: Performance

SCIENTIFIC DESCRIPTION: We propose a linker based technique for enabling software memorizing of any
dynamically linked pure function by function interception and we illustrate our framework using a set of
computationally expensive pure functions - the transcendental functions.

FUNCTIONAL DESCRIPTION: If-memo is a linker-based technique for enabling software memorizing of any
dynamically linked pure function by function interception. Typically, this framework is useful to intercept the
computationally expensive pure functions - the transcendental functions from the math library. Our technique
does not need the availability of source code and thus can even be applied to commercial applications as
well as applications with legacy codes. As far as users are concerned, enabling memoization is as simple as
setting an environment variable. Our framework does not make any specific assumptions about the underlying
architecture or compiler too-chains, and can work with a variety of current architectures.

• Participants: Arjun Suresh and Erven Rohou

• Contact: Erven Rohou

• URL: https://team.inria.fr/pacap/software/if-memo/

6.6. Simty
KEYWORDS: GPU - Softcore - FPGA - SIMT - Multi-threading - RISC-V

http://tiptop.gforge.inria.fr
https://team.inria.fr/pacap/software/padrone
https://team.inria.fr/pacap/software/if-memo/

40 Architecture, Languages and Compilation - Software and Platforms - Project-Team PACAP

FUNCTIONAL DESCRIPTION: Simty is a massively multi-threaded processor core that dynamically assembles
SIMD instructions from scalar multi-thread code. It runs the RISC-V (RV32-I) instruction set. Unlike existing
SIMD or SIMT processors like GPUs, Simty takes binaries compiled for general-purpose processors without
any instruction set extension or compiler changes. Simty is described in synthesizable VHDL.
• Author: Caroline Collange
• Contact: Caroline Collange
• URL: https://gforge.inria.fr/projects/simty

6.7. Barra
KEYWORDS: GPU - GPGPU - Tesla ISA - Debug - Computer architecture - Performance - Profiling -
Simulator - HPC - CUDA

SCIENTIFIC DESCRIPTION: Research on throughput-oriented architectures demands accurate and representa-
tive models of GPU architectures in order to be able to evaluate new architectural ideas, explore design spaces
and characterize applications. The Barra project is a simulator of the NVIDIA Tesla GPU architecture.

Barra builds upon knowledge acquired through micro-benchmarking, in order to provide a baseline model
representative of industry practice. The simulator provides detailed statistics to identify optimization opportu-
nities and is fully customizable to experiment ideas of architectural modifications. Barra incorporates both a
functional model and a cycle-level performance model.

FUNCTIONAL DESCRIPTION: Barra is a Graphics Processing Unit (GPU) architecture simulator. It simulates
NVIDIA CUDA programs at the assembly language level. Barra is a tool for research on computer architecture,
and can also be used to debug, profile and optimize CUDA programs at the lowest level.

RELEASE FUNCTIONAL DESCRIPTION: Version 0.5.10 introduces: Timing model, Tesla-like architecture
model, Fermi-like architecture model, New per-PC control-flow divergence management, Support for Simul-
taneous branch and warp interweaving, Support for Affine vector cache.
• Participants: Alexandre Kouyoumdjian, David Defour, Fabrice Mouhartem and Caroline Collange
• Partners: ENS Lyon - UPVD
• Contact: Caroline Collange
• URL: http://barra.gforge.inria.fr/

6.8. Memoization
KEYWORDS: Optimization - Pure function - Memoization

FUNCTIONAL DESCRIPTION: Memoization is a technique used at runtime that consists in caching results of
pure functions and retrieving them instead of computing them when the arguments repeat. It can be applied to
C and C++ programs. To be memoized, the interface of a pure function (or a method) must verify the following
properties: (1) the function/method has at most four arguments of same type T, (2) the function/method returns
a data of type T, (3) T is either ’double’, ’float’, or ’int’.

The memoization operation of a function/method is controlled by several parameters: the size of the internal
table (number of entries), the replacement policy to be used in case of index conflict (whether the value of the
table must be replaced or not), an approximation threshold that allows to not distinguish very close values). It
is also possible to initialize the table with the content of a file, and to save the content of the table to a file at
the end of the execution (the data may be used as input for a future execution).
• Participants: Loïc Besnard, Imane Lasri and Erven Rohou
• Contact: Loïc Besnard

6.9. FiPlib
KEYWORDS: Compilation - Approximate computing - Fixed-point representation

https://gforge.inria.fr/projects/simty
http://barra.gforge.inria.fr/

41 Architecture, Languages and Compilation - Software and Platforms - Project-Team PACAP

FUNCTIONAL DESCRIPTION: FiPlib is a C++ library that provides type definition and conversion operations
for computations in fixed-point representation. Basic arithmetic as well as logical operations are transparently
supported thanks to operator overloading. FiPlib also provides optimized implementations of the transcenden-
tal math functions of libm. For convenient integration, FiPlib is released as C++ header files only. Optionally,
FiPlib can detect overflows and compute errors compared to floating point representation.

• Participants: Pierre Le Meur, Imane Lasri and Erven Rohou

• Contact: Erven Rohou

6.10. sigmask
KEYWORDS: Compilation - Side-channel - Masking - Security - Embedded systems

SCIENTIFIC DESCRIPTION: Sigmask is a compiler plugin based on the LLVM infrastructure that automat-
ically protects secret information in programs, such as encryption keys, against side-channel attacks. The
programmer annotates their source code to highlight variables containing sensitive data. The compiler auto-
matically analyzes the program and computes all memory locations potentially derived from the secret. It then
applies a masking scheme to avoid information leakage. Sigmask provides several schemes: OSDM (Orthogo-
nal Direct Sum Masking), IP (Inner Product) Masking, and simple random bit masking. The programmer may
also provide their own masking scheme through a well-defined API.

FUNCTIONAL DESCRIPTION: Sigmask is a compiler plugin based on the LLVM infrastructure that auto-
matically protects secret information in programs, such as encryption keys, against side-channel attacks. The
programmer annotates their source code to highlight variables containing sensitive data. The compiler auto-
matically analyzes the program and computes all memory locations potentially derived from the secret. It then
applies a masking scheme to avoid information leakage. Sigmask provides several schemes: ODSM (Orthogo-
nal Direct Sum Masking), IP (Inner Product) Masking, and simple random bit masking. The programmer may
also provide their own masking scheme through a well-defined API.

• Participants: Nicolas Kiss, Damien Hardy and Erven Rohou

• Contact: Erven Rohou

42 Embedded and Real-time Systems - Software and Platforms - Project-Team HYCOMES

HYCOMES Project-Team

5. New Software and Platforms

5.1. Demodocos
Demodocos (Examples to Generic Scenario Models Generator)

KEYWORDS: Surgical process modelling - Net synthesis - Process mining

SCIENTIFIC DESCRIPTION: Demodocos is used to construct a Test and Flip net (Petri net variant) from a
collection of instances of a given procedure. The tool takes as input either standard XES log files (a standard
XML file format for process mining tools) or a specific XML file format for surgical applications. The result
is a Test and Flip net and its marking graph. The tool can also build a #SEVEN scenario for integration into
a virtual reality environment. The scenario obtained corresponds to the generalization of the input instances,
namely the instances synthesis enriched with new behaviors respecting the relations of causality, conflicts and
competition observed.

Demodocos is a synthesis tool implementing a linear algebraic polynomial time algorithm. Computations are
done in the Z/2Z ring. Test and Flip nets extend Elementary Net Systems by allowing test to zero, test to
one and flip arcs. The effect of flip arcs is to complement the marking of the place. While the net synthesis
problem has been proved to be NP hard for Elementary Net Systems, thanks to flip arcs, the synthesis of Test
and Flip nets can be done in polynomial time. Test and flip nets have the required expressivity to give concise
and accurate representations of surgical processes (models of types of surgical operations). Test and Flip nets
can express causality and conflict relations. The tool takes as input either standard XES log files (a standard
XML file format for process mining tools) or a specific XML file format for surgical applications. The output
is a Test and Flip net, solution of the following synthesis problem: Given a finite input language (log file),
compute a net, which language is the least language in the class of Test and Flip net languages, containing the
input language.

FUNCTIONAL DESCRIPTION: The tool Demodocos allows to build a generic model for a given procedure
from some examples of instances of this procedure. The generated model can take the form of a graph, a Test
’n Flip net or a SEVEN scenario (intended for integration into a virtual reality environment).

The classic use of the tool is to apply the summary operation to a set of files describing instances of the target
procedure. Several file formats are supported, including the standard XES format for log events. As output,
several files are generated. These files represent the generic procedure in different forms, responding to varied
uses.

This application is of limited interest in the case of an isolated use, out of context and without a specific
objective when using the model generated. It was developed as part of a research project focusing in particular
on surgical procedures, and requiring the generation of a generic model for integration into a virtual reality
training environment. It is also quite possible to apply the same method in another context.

• Participants: Aurélien Lamercerie and Benoît Caillaud

• Contact: Benoît Caillaud

• Publication: Surgical Process Mining with Test and Flip Net Synthesis

5.2. MICA
Model Interface Compositional Analysis Library

KEYWORDS: Modal interfaces - Contract-based desing

http://www.inria.fr/equipes/hycomes
https://hal.inria.fr/hal-00872284

43 Embedded and Real-time Systems - Software and Platforms - Project-Team HYCOMES

SCIENTIFIC DESCRIPTION: In Mica, systems and interfaces are represented by extension. However, a careful
design of the state and event heap enables the definition, composition and analysis of reasonably large systems
and interfaces. The heap stores states and events in a hash table and ensures structural equality (there is no
duplication). Therefore complex data-structures for states and events induce a very low overhead, as checking
equality is done in constant time.

Thanks to the Inter module and the mica interactive environment, users can define complex systems and
interfaces using Ocaml syntax. It is even possible to define parameterized components as Ocaml functions.

FUNCTIONAL DESCRIPTION: Mica is an Ocaml library implementing the Modal Interface algebra. The
purpose of Modal Interfaces is to provide a formal support to contract based design methods in the field
of system engineering. Modal Interfaces enable compositional reasoning methods on I/O reactive systems.

• Participant: Benoît Caillaud

• Contact: Benoît Caillaud

• URL: http://www.irisa.fr/s4/tools/mica/

5.3. IsamDAE
Implicit Structural Analysis of Multimode DAE systems

KEYWORDS: Structural analysis - Differential algebraic equations - Multimode - Scheduling

SCIENTIFIC DESCRIPTION: Modeling languages and tools based on Differential Algebraic Equations (DAE)
bring several specific issues that do not exist with modeling languages based on Ordinary Differential
Equations. The main problem is the determination of the differentiation index and latent equations. Prior
to generating simulation code and calling solvers, the compilation of a model requires a structural analysis
step, which reduces the differentiation index to a level acceptable by numerical solvers.

The Modelica language, among others, allows hybrid models with multiple modes, mode-dependent dynamics
and state-dependent mode switching. These Multimode DAE (mDAE) systems are much harder to deal with.
The main difficulties are (i) the combinatorial explosion of the number of modes, and (ii) the correct handling
of mode switchings.

The aim of the software is on the first issue, namely: How can one perform a structural analysis of an mDAE
in all possible modes, without enumerating these modes? A structural analysis algorithm for mDAE systems
has been designed and implemented, based on an implicit representation of the varying structure of an mDAE.
It generalizes J. Pryce’s Sigma-method to the multimode case and uses Binary Decision Diagrams (BDD) to
represent the mode-dependent structure of an mDAE. The algorithm determines, as a function of the mode,
the set of latent equations, the leading variables and the state vector. This is then used to compute a mode-
dependent block-triangular decomposition of the system, that can be used to generate simulation code with a
mode-dependent scheduling of the blocks of equations.

FUNCTIONAL DESCRIPTION: IsamDAE (Implicit Structural Analysis of Multimode DAE systems) is a soft-
ware library for testing new structural analysis algorithms for multimode DAE systems, based on an implicit
representation of incidence graphs, matchings between equations and variables, and block decompositions.
The input of the software is a variable dimension multimode DAE system consisting in a set of guarded
equations and guarded variable declarations. It computes a mode-dependent structural index-reduction of the
multimode system and produces a mode-dependent graph for the scheduling of blocks of equations. Evalu-
ation functions make it possible to return the lists of leading equations and leading variables, as well as the
actual scheduling of blocks, in a specified mode.

IsamDAE is coded in OCaml, and uses the following packages: * MLBDD by Arlen Cox, * Menhir by François
Pottier and Yann Régis-Gianas, * Pprint by François Pottier, * XML-Light by Nicolas Cannasse and Jacques
Garrigue.

http://www.irisa.fr/s4/tools/mica/

44 Embedded and Real-time Systems - Software and Platforms - Project-Team HYCOMES

RELEASE FUNCTIONAL DESCRIPTION: Version 0.2: * MEL: ad hoc language for the declaration of variable
dimension multi-mode DAE systems * automatic parsing, model checking and model allocation * XML output
for the list of evaluation blocks (parameters, equations, unknowns to be computed) * new algorithms for the
mode-dependent scheduling and the evaluation of the scheduling in a given mode

NEWS OF THE YEAR: It has been possible to perform the structural analysis of systems with more than 750
equations and 10 to the power 23 modes, therefore demonstrating the scalability of the method.

• Authors: Benoît Caillaud and Mathias Malandain

• Contact: Benoît Caillaud

45 Embedded and Real-time Systems - Software and Platforms - Project-Team Kairos

Kairos Project-Team

6. New Software and Platforms

6.1. VerCors
VERification of models for distributed communicating COmponants, with safety and Security

KEYWORDS: Software Verification - Specification language - Model Checking

FUNCTIONAL DESCRIPTION: The VerCors tools include front-ends for specifying the architecture and
behaviour of components in the form of UML diagrams. We translate these high-level specifications, into
behavioural models in various formats, and we also transform these models using abstractions. In a final step,
abstract models are translated into the input format for various verification toolsets. Currently we mainly use
the various analysis modules of the CADP toolset.

RELEASE FUNCTIONAL DESCRIPTION: It includes integrated graphical editors for GCM component archi-
tecture descriptions, UML classes, interfaces, and state-machines. The user diagrams can be checked using the
recently published validation rules from, then the corresponding GCM components can be executed using an
automatic generation of the application ADL, and skeletons of Java files.

The experimental version (2019) also includes algorithms for computing the symbolic semantics of Open
Systems, using symbolic methods based on the Z3 SMT engine.

NEWS OF THE YEAR: The experimental version (2019) also includes: - algorithms for computing the
symbolic semantics of Open Systems, using symbolic methods based on the Z3 SMT engine. - a stand alone
textual editor for (open) pNet systems, that generates API code to construct their internal representation in the
platform.

• Participants: Antonio Cansado, Bartlomiej Szejna, Eric Madelaine, Ludovic Henrio, Marcela Rivera,
Nassim Jibai, Oleksandra Kulankhina, Siqi Li, Xudong Qin and Zechen Hou

• Partner: East China Normal University Shanghai (ECNU)

• Contact: Eric Madelaine

• URL: https://team.inria.fr/scale/software/vercors/

6.2. TimeSquare
KEYWORDS: Profil MARTE - Embedded systems - UML - IDM

SCIENTIFIC DESCRIPTION: TimeSquare offers six main functionalities:

* graphical and/or textual interactive specification of logical clocks and relative constraints between them,

* definition and handling of user-defined clock constraint libraries,

* automated simulation of concurrent behavior traces respecting such constraints, using a Boolean solver for
consistent trace extraction,

* call-back mechanisms for the traceability of results (animation of models, display and interaction with
waveform representations, generation of sequence diagrams...).

* compilation to pure java code to enable embedding in non eclipse applications or to be integrated as a time
and concurrency solver within an existing tool.

* a generation of the whole state space of a specification (if finite of course) in order to enable model checking
of temporal properties on it

http://www.inria.fr/equipes/kairos
https://team.inria.fr/scale/software/vercors/

46 Embedded and Real-time Systems - Software and Platforms - Project-Team Kairos

FUNCTIONAL DESCRIPTION: TimeSquare is a software environment for the modeling and analysis of timing
constraints in embedded systems. It relies specifically on the Time Model of the Marte UML profile, and more
accurately on the associated Clock Constraint Specification Language (CCSL) for the expression of timing
constraints.
• Participants: Benoît Ferrero, Charles André, Frédéric Mallet, Julien DeAntoni and Nicolas Chleq
• Contact: Julien DeAntoni
• URL: http://timesquare.inria.fr

6.3. GEMOC Studio
KEYWORDS: DSL - Language workbench - Model debugging

SCIENTIFIC DESCRIPTION: The language workbench put together the following tools seamlessly integrated
to the Eclipse Modeling Framework (EMF):
• Melange, a tool-supported meta-language to modularly define executable modeling languages with

execution functions and data, and to extend (EMF-based) existing modeling languages.
• MoCCML, a tool-supported meta-language dedicated to the specification of a Model of Concurrency

and Communication (MoCC) and its mapping to a specific abstract syntax and associated execution
functions of a modeling language.

• GEL, a tool-supported meta-language dedicated to the specification of the protocol between the
execution functions and the MoCC to support the feedback of the data as well as the callback of
other expected execution functions.

• BCOoL, a tool-supported meta-language dedicated to the specification of language coordination
patterns to automatically coordinates the execution of, possibly heterogeneous, models.

• Sirius Animator, an extension to the model editor designer Sirius to create graphical animators for
executable modeling languages.

FUNCTIONAL DESCRIPTION: The GEMOC Studio is an eclipse package that contains components supporting
the GEMOC methodology for building and composing executable Domain-Specific Modeling Languages
(DSMLs). It includes the two workbenches: The GEMOC Language Workbench: intended to be used by
language designers (aka domain experts), it allows to build and compose new executable DSMLs. The
GEMOC Modeling Workbench: intended to be used by domain designersto create, execute and coordinate
models conforming to executable DSMLs. The different concerns of a DSML, as defined with the tools of the
language workbench, are automatically deployed into the modeling workbench. They parametrize a generic
execution framework that provide various generic services such as graphical animation, debugging tools, trace
and event managers, timeline, etc.
• Participants: Didier Vojtisek, Dorian Leroy, Erwan Bousse, Fabien Coulon and Julien DeAntoni
• Partners: IRIT - ENSTA - I3S - OBEO - Thales TRT
• Contact: Benoît Combemale
• URL: http://gemoc.org/studio.html

6.4. BCOol
BCOoL

KEYWORDS: DSL - Language workbench - Behavior modeling - Model debugging - Model animation

FUNCTIONAL DESCRIPTION: BCOoL is a tool-supported meta-language dedicated to the specification of
language coordination patterns to automatically coordinates the execution of, possibly heterogeneous, models.
• Participants: Julien DeAntoni, Matias Vara Larsen, Benoît Combemale and Didier Vojtisek
• Contact: Julien DeAntoni
• URL: http://www.gemoc.org

http://timesquare.inria.fr
http://gemoc.org/studio.html
http://www.gemoc.org

47 Embedded and Real-time Systems - Software and Platforms - Project-Team Kairos

6.5. myMed
A geo-localised Framework for building Publish-Subscribe applications in a fixed and mobile environment

KEYWORDS: Framework - Peer-to-peer. - NoSQL - Mobile application - Social network - Publish-subscribe -
Iot - Peer-to-peer

SCIENTIFIC DESCRIPTION: myMed : an ad-hoc framework to design, develop, host, and execute Publish-
Subscribe based fully distributed applications running in a static or mobile network. Application examples can
be found in Online Social Networks or in Resource Discovery for the IoT. In a nutshell myMed is composed
by:

• A myMed Software Development Kit (SDK) to develop fixed and mobile web applications, but also to build
native applications on Smartphones equipped with Android or iOS. Every module can be freely used without
interfering with other applications, in a true Lego fashion.

• A myMed cloud to execute the mobile applications: the cloud is composed of a backbone of 50PCs,
distributed through the "AlpMed" EuroRegion and following some precise network criteria (4G, optical Fiber,
..). The operating system running on those PC is a customised and partitioned version of Ubuntu to allow to
use the PC as a myMed server as well as a ordinary desktops. As in Peer-to-Peer technology, we do not require
that all machines belonging to the backbone are constantly running.

• A myMed backbone, based on a well-tested noSQL database, Cassandra, which can accommodate any
number of users without any code changes. Machines can be classically concentrated on a data-center or
– more interestingly – fully decentralized (modulo a decent internet connection). Failures of one or many
machines do not affect the running of the system, thanks to replication of the data on several servers. A little
collection of proof of concept applications to validate, experiment, and testing the development kit and the
execution cloud have been implemented.

FUNCTIONAL DESCRIPTION: myMed is an experimental framework for implementing, hosting and de-
ploying, on the top of a built-in cloud platform, many applications using intensively the Publish-Subscribe
(PUB/SUB) paradigm, like e.g. Open Social Networks or Resource Discovery in a distributed data-base. Those
applications could take advantage of sharing common software modules, hardware resources, making inter-
communication and inter-interaction simpler and improving rapid development and deployement.
• Participants: Luigi Liquori, Claudio Casetti, Mariangiola Dezani and Mino Anglano
• Partners: Politecnico di Torino - Université de Nice Sophia Antipolis (UNS) - Università di Torino -

Università del Piemonte Orientale
• Contact: Luigi Liquori
• URL: http://www.mymed.fr

6.6. JMaxGraph
KEYWORDS: Java - HPC - Graph algorithmics

FUNCTIONAL DESCRIPTION: JMaxGraph is a collection of techniques for the computation of large graphs
on one single computer. The motivation for such a centralized computing platform originates in the constantly
increasing efficiency of computers which now come with hundred gigabytes of RAM, tens of cores and fast
drives. JMaxGraph implements a compact adjacency-table for the representation of the graph in memory. This
data structure is designed to 1) be fed page by page, à-la GraphChi, 2) enable fast iteration, avoiding memory
jumps as much as possible in order to benefit from hardware caches, 3) be tackled in parallel by multiple-
threads. Also, JMaxGraph comes with a flexible and resilient batch-oriented middleware, which is suited to
executing long computations on shared clusters. The first use-case of JMaxGraph allowed F. Giroire, T. Trolliet
and S. Pérennes to count K2,2s, and various types of directed triangles in the Twitter graph of users (23G arcs,
400M vertices). The computation campaign took 4 days, using up to 400 cores in the NEF Inria cluster.
• Contact: Luc Hogie
• URL: http://www.i3s.unice.fr/~hogie/software/?name=jmaxgraph

http://www.mymed.fr
http://www.i3s.unice.fr/~hogie/software/?name=jmaxgraph

48 Embedded and Real-time Systems - Software and Platforms - Project-Team Kairos

6.7. Lopht
Logical to Physical Time Compiler

KEYWORDS: Real time - Compilation

SCIENTIFIC DESCRIPTION: The Lopht (Logical to Physical Time Compiler) has been designed as an
implementation of the AAA methodology. Like SynDEx, Lopht relies on off-line allocation and scheduling
techniques to allow real-time implementation of dataflow synchronous specifications onto multiprocessor
systems. But there are several originality points: a stronger focus on efficiency, which results in the use
of a compilation-like approach, a focus on novel target architectures (many-core chips and time-triggered
embedded systems), and the possibility to handle multiple, complex non-functional requirements covering
real-time (release dates and deadlines possibly different from period, major time frame, end-to-end flow
constraints), ARINC 653 partitioning, the possibility to preempt or not each task, and finally SynDEx-like
allocation.

FUNCTIONAL DESCRIPTION: Compilation of high-level embedded systems specifications into executable
code for IMA/ARINC 653 avionics platforms. It ensures the functional and non-functional correctness of the
generated code.

• Participants: Dumitru Potop-Butucaru, Manel Djemal, Thomas Carle and Zhen Zhang

• Contact: Dumitru Potop-Butucaru

6.8. LoPhT-manycore
Logical to Physical Time compiler for many cores

KEYWORDS: Real time - Compilation - Task scheduling - Automatic parallelization

SCIENTIFIC DESCRIPTION: Lopht is a system-level compiler for embedded systems, whose objective is
to fully automate the implementation process for certain classes of embedded systems. Like in a classical
compiler (e.g. gcc), its input is formed of two objects. The first is a program providing a platform-indepedent
description of the functionality to implement and of the non-functional requirements it must satisfy (e.g. real-
time, partitioning). This is provided under the form of a data-flow synchronous program annotated with non-
functional requirements. The second is a description of the implementation platform, defining the topology of
the platform, the capacity of its elements, and possibly platform-dependent requirements (e.g. allocation).

From these inputs, Lopht produces all the C code and configuration information needed to allow compilation
and execution on the physical target platform. Implementations are correct by construction Resulting imple-
mentations are functionally correct and satisfy the non-functional requirements. Lopht-manycore is a version
of Lopht targeting shared-memory many-core architectures.

The algorithmic core of Lopht-manycore is formed of timing analysis, allocation, scheduling, and code
generation heuristics which rely on four fundamental choices. 1) A static (off-line) real-time scheduling
approach where allocation and scheduling are represented using time tables (also known as scheduling or
reservation tables). 2) Scalability, attained through the use of low-complexity heuristics for all synthesis and
associated analysis steps. 3) Efficiency (of generated implementations) is attained through the use of precise
representations of both functionality and the platform, which allow for fine-grain allocation of resources such
as CPU, memory, and communication devices such as network-on-chip multiplexers. 4) Full automation,
including that of the timing analysis phase.

The last point is characteristic to Lopht-manycore. Existing methods for schedulability analysis and real-time
software synthesis assume the existence of a high-level timing characterization that hides much of the hardware
complexity. For instance, a common hypothesis is that synchronization and interference costs are accounted
for in the duration of computations. However, the high-level timing characterization is seldom (if ever) soundly
derived from the properties of the platform and the program. In practice, large margins (e.g. 100%) with little
formal justification are added to computation durations to account for hidden hardware complexity. Lopht-
manycore overcomes this limitation. Starting from the worst-case execution time (WCET) estimations of

49 Embedded and Real-time Systems - Software and Platforms - Project-Team Kairos

computation operations and from a precise and safe timing model of the platform, it maintains a precise
timing accounting throughout the mapping process. To do this, timing accounting must take into account all
details of allocation, scheduling, and code generation, which in turn must satisfy specific hypotheses.

FUNCTIONAL DESCRIPTION: Accepted input languages for functional specifications include dialects of
Lustre such as Heptagon and Scade v4. To ensure the respect of real-time requirements, Lopht-manycore
pilots the use of the worst-case execution time (WCET) analysis tool (ait from AbsInt). By doing this, and
by using a precise timing model for the platform, Lopht-manycore eliminates the need to adjust the WCET
values through the addition of margins to the WCET values that are usually both large and without formal
safety guarantees. The output of Lopht-manycore is formed of all the multi-threaded C code and configuration
information needed to allow compilation, linking/loading, and real-time execution on the target platform.

NEWS OF THE YEAR: In the framework of the ITEA3 ASSUME project we have extended the Lopht-
manycore to allow multiple cores to access the same memory bank at the same time. To do this, the timing
accounting of Lopht has been extended to take into account memory access interferences during the allocation
and scheduling process. Lopht now also pilots the aiT static WCET analysis tool from AbsInt by generating
the analysis scripts, thus ensuring the consistency between the hypotheses made by Lopht and the way timing
analysis is performed by aiT. As a result, we are now able to synthesize code for the computing clusters of
the Kalray MPPA256 platform. Lopht-manycore is evaluated on avionics case studies in the perspective of
increasing its technology readiness level for this application class.

• Participants: Dumitru Potop-Butucaru and Keryan Didier

• Contact: Dumitru Potop-Butucaru

50 Embedded and Real-time Systems - Software and Platforms - Team KOPERNIC

KOPERNIC Team

6. New Software and Platforms
6.1. SynDEx

KEYWORDS: Distributed - Optimization - Real time - Embedded systems - Scheduling analyses

SCIENTIFIC DESCRIPTION: SynDEx is a system level CAD software implementing the AAA methodology for
rapid prototyping and for optimizing distributed real-time embedded applications. It is developed in OCaML.

Architectures are represented as graphical block diagrams composed of programmable (processors) and
non-programmable (ASIC, FPGA) computing components, interconnected by communication media (shared
memories, links and busses for message passing). In order to deal with heterogeneous architectures it may
feature several components of the same kind but with different characteristics.

Two types of non-functional properties can be specified for each task of the algorithm graph. First, a period
that does not depend on the hardware architecture. Second, real-time features that depend on the different types
of hardware components, ranging amongst execution and data transfer time, memory, etc.. Requirements are
generally constraints on deadline equal to period, latency between any pair of tasks in the algorithm graph,
dependence between tasks, etc.

Exploration of alternative allocations of the algorithm onto the architecture may be performed manually
and/or automatically. The latter is achieved by performing real-time multiprocessor schedulability analyses
and optimization heuristics based on the minimization of temporal or resource criteria. For example while
satisfying deadline and latency constraints they can minimize the total execution time (makespan) of the
application onto the given architecture, as well as the amount of memory. The results of each exploration
is visualized as timing diagrams simulating the distributed real-time implementation.

Finally, real-time distributed embedded code can be automatically generated for dedicated distributed real-
time executives, possibly calling services of resident real-time operating systems such as Linux/RTAI or Osek
for instance. These executives are deadlock-free, based on off-line scheduling policies. Dedicated executives
induce minimal overhead, and are built from processor-dependent executive kernels. To this date, executives
kernels are provided for: TMS320C40, PIC18F2680, i80386, MC68332, MPC555, i80C196 and Unix/Linux
workstations. Executive kernels for other processors can be achieved at reasonable cost following these
examples as patterns.

FUNCTIONAL DESCRIPTION: Software for optimising the implementation of embedded distributed real-time
applications and generating efficient and correct by construction code

NEWS OF THE YEAR: We improved the distribution and scheduling heuristics to take into account the needs
of co-simulation.
• Participant: Yves Sorel
• Contact: Yves Sorel
• URL: http://www.syndex.org

6.2. EVT Kopernic
KEYWORDS: Embedded systems - Worst Case Execution Time - Real-time application - Statistics

SCIENTIFIC DESCRIPTION: The EVT-Kopernic tool is an implementation of the Extreme Value Theory (EVT)
for the problem of the statistical estimation of worst-case bounds for the execution time of a program on a
processor. Our implementation uses the two versions of EVT - GEV and GPD - to propose two independent
methods of estimation. Their results are compared and only results that are sufficiently close allow to validate
an estimation. Our tool is proved predictable by its unique choice of block (GEV) and threshold (GPD) while
proposant reproducible estimations.

http://www.inria.fr/equipes/kopernic
http://www.syndex.org

51 Embedded and Real-time Systems - Software and Platforms - Team KOPERNIC

FUNCTIONAL DESCRIPTION: EVT-Kopernic is tool proposing a statistical estimation for bounds on worst-
case execution time of a program on a processor. The estimator takes into account dependences between
execution times by learning from the history of execution, while dealing also with cases of small variability of
the execution times.

NEWS OF THE YEAR: Any statistical estimator should come with an representative measurement protocole
based on the processus of composition, proved correct. We propose the first such principle of composition
while using a Bayesien modeling taking into account iteratively different measurement models. The composi-
tion model has been described in a patent submitted this year with a scientific publication under preparation.

• Participants: Adriana Gogonel and Liliana Cucu

• Contact: Adriana Gogonel

• URL: http://inria-rscript.serveftp.com/

http://inria-rscript.serveftp.com/

52 Embedded and Real-time Systems - Software and Platforms - Project-Team PARKAS

PARKAS Project-Team

5. New Software and Platforms

5.1. Cmmtest
FUNCTIONAL DESCRIPTION: Cmmtest is a tool for hunting concurrency compiler bugs. The Cmmtest tool
performs random testing of C and C++ compilers against the C11/C++11 memory model. A test case is any
well-defined, sequential C program, for each test case, cmmtest:

compiles the program using the compiler and compiler optimisations that are being tested,

runs the compiled program in an instrumented execution environment that logs all memory accesses to global
variables and synchronisations,

compares the recorded trace with a reference trace for the same program, checking if the recorded trace can
be obtained from the reference trace by valid eliminations, reorderings and introductions.

Cmmtest identified several mistaken write introductions and other unexpected behaviours in the latest release
of the gcc compiler. These have been promptly fixed by the gcc developers.

• Participants: Anirudh Kumar, Francesco Zappa Nardelli, Pankaj More, Pankaj Pawan, Pankaj
Prateek Kewalramani and Robin Morisset

• Contact: Francesco Zappa Nardelli

• URL: http://www.di.ens.fr/~zappa/projects/cmmtest/

5.2. GCC
KEYWORDS: Compilation - Polyhedral compilation

FUNCTIONAL DESCRIPTION: The GNU Compiler Collection includes front ends for C, C++, Objective-C,
Fortran, Java, Ada, and Go, as well as libraries for these languages (libstdc++, libgcj,...). GCC was originally
written as the compiler for the GNU operating system. The GNU system was developed to be 100% free
software, free in the sense that it respects the user’s freedom.

• Participants: Albert Cohen, Feng Li, Nhat Minh Le, Riyadh Baghdadi and Tobias Grosser

• Contact: Albert Cohen

• URL: http://gcc.gnu.org/

5.3. Heptagon
KEYWORDS: Compilers - Synchronous Language - Controller synthesis

FUNCTIONAL DESCRIPTION: Heptagon is an experimental language for the implementation of embedded
real-time reactive systems. It is developed inside the Synchronics large-scale initiative, in collaboration with
Inria Rhones-Alpes. It is essentially a subset of Lucid Synchrone, without type inference, type polymorphism
and higher-order. It is thus a Lustre-like language extended with hierchical automata in a form very close to
SCADE 6. The intention for making this new language and compiler is to develop new aggressive optimization
techniques for sequential C code and compilation methods for generating parallel code for different platforms.
This explains much of the simplifications we have made in order to ease the development of compilation
techniques.

http://www.inria.fr/equipes/parkas
http://www.di.ens.fr/~zappa/projects/cmmtest/
http://gcc.gnu.org/

53 Embedded and Real-time Systems - Software and Platforms - Project-Team PARKAS

The current version of the compiler includes the following features: - Inclusion of discrete controller synthesis
within the compilation: the language is equipped with a behavioral contract mechanisms, where assumptions
can be described, as well as an "enforce" property part. The semantics of this latter is that the property should
be enforced by controlling the behaviour of the node equipped with the contract. This property will be enforced
by an automatically built controller, which will act on free controllable variables given by the programmer. This
extension has been named BZR in previous works. - Expression and compilation of array values with modular
memory optimization. The language allows the expression and operations on arrays (access, modification,
iterators). With the use of location annotations, the programmer can avoid unnecessary array copies.

• Participants: Adrien Guatto, Brice Gelineau, Cédric Pasteur, Eric Rutten, Gwenaël Delaval, Léonard
Gérard and Marc Pouzet

• Partners: UGA - ENS Paris - Inria - LIG

• Contact: Gwenaël Delaval

• URL: http://heptagon.gforge.inria.fr

5.4. isl
FUNCTIONAL DESCRIPTION: isl is a library for manipulating sets and relations of integer points bounded by
linear constraints. Supported operations on sets include intersection, union, set difference, emptiness check,
convex hull, (integer) affine hull, integer projection, transitive closure (and over-approximation), computing
the lexicographic minimum using parametric integer programming. It includes an ILP solver based on
generalized basis reduction, and a new polyhedral code generator. isl also supports affine transformations
for polyhedral compilation, and increasingly abstract representations to model source and intermediate code
in a polyhedral framework.

• Participants: Albert Cohen, Sven Verdoolaege and Tobias Grosser

• Contact: Sven Verdoolaege

• URL: http://freshmeat.net/projects/isl

5.5. Lem
lightweight executable mathematics

FUNCTIONAL DESCRIPTION: Lem is a lightweight tool for writing, managing, and publishing large scale
semantic definitions. It is also intended as an intermediate language for generating definitions from domain-
specific tools, and for porting definitions between interactive theorem proving systems (such as Coq, HOL4,
and Isabelle). As such it is a complementary tool to Ott. Lem resembles a pure subset of Objective Caml, sup-
porting typical functional programming constructs, including top-level parametric polymorphism, datatypes,
records, higher-order functions, and pattern matching. It also supports common logical mechanisms including
list and set comprehensions, universal and existential quantifiers, and inductively defined relations. From this,
Lem generates OCaml, HOL4, Coq, and Isabelle code.

• Participants: Francesco Zappa Nardelli, Peter Sewell and Scott Owens

• Contact: Francesco Zappa Nardelli

• URL: http://www.cl.cam.ac.uk/~pes20/lem/

5.6. Lucid Synchrone
FUNCTIONAL DESCRIPTION: Lucid Synchrone is a language for the implementation of reactive systems. It is
based on the synchronous model of time as provided by Lustre combined with features from ML languages. It
provides powerful extensions such as type and clock inference, type-based causality and initialization analysis
and allows to arbitrarily mix data-flow systems and hierarchical automata or flows and valued signals.

http://heptagon.gforge.inria.fr
http://freshmeat.net/projects/isl
http://www.cl.cam.ac.uk/~pes20/lem/

54 Embedded and Real-time Systems - Software and Platforms - Project-Team PARKAS

RELEASE FUNCTIONAL DESCRIPTION: The language is still used for teaching and in our research but we
do not develop it anymore. Nonetheless, we have integrated several features from Lucid Synchrone in new
research prototypes described below. The Heptagon language and compiler are a direct descendent of it.
The new language Zélus for hybrid systems modeling borrows many features originaly introduced in Lucid
Synchrone.

• Contact: Marc Pouzet

• URL: http://www.di.ens.fr/~pouzet/lucid-synchrone/

5.7. Lucy-n
Lucy-n: an n-synchronous data-flow programming language

FUNCTIONAL DESCRIPTION: Lucy-n is a language to program in the n-synchronous model. The language
is similar to Lustre with a buffer construct. The Lucy-n compiler ensures that programs can be executed
in bounded memory and automatically computes buffer sizes. Hence this language allows to program Kahn
networks, the compiler being able to statically compute bounds for all FIFOs in the program.

• Participants: Adrien Guatto, Albert Cohen, Louis Mandel and Marc Pouzet

• Contact: Albert Cohen

• URL: https://www.lri.fr/~mandel/lucy-n/

5.8. Ott
FUNCTIONAL DESCRIPTION: Ott is a tool for writing definitions of programming languages and calculi. It
takes as input a definition of a language syntax and semantics, in a concise and readable ASCII notation that
is close to what one would write in informal mathematics. It generates output:

a LaTeX source file that defines commands to build a typeset version of the definition,

a Coq version of the definition,

an Isabelle version of the definition, and

a HOL version of the definition.

Additionally, it can be run as a filter, taking a LaTeX/Coq/Isabelle/HOL source file with embedded (symbolic)
terms of the defined language, parsing them and replacing them by typeset terms.

The main goal of the Ott tool is to support work on large programming language definitions, where the scale
makes it hard to keep a definition internally consistent, and to keep a tight correspondence between a definition
and implementations. We also wish to ease rapid prototyping work with smaller calculi, and to make it easier
to exchange definitions and definition fragments between groups. The theorem-prover backends should enable
a smooth transition between use of informal and formal mathematics.

• Participants: Francesco Zappa Nardelli, Peter Sewell and Scott Owens

• Contact: Francesco Zappa Nardelli

• URL: http://www.cl.cam.ac.uk/~pes20/ott/

5.9. PPCG
FUNCTIONAL DESCRIPTION: PPCG is our source-to-source research tool for automatic parallelization in the
polyhedral model. It serves as a test bed for many compilation algorithms and heuristics published by our
group, and is currently the best automatic parallelizer for CUDA and OpenCL (on the Polybench suite).

• Participants: Albert Cohen, Riyadh Baghdadi, Sven Verdoolaege and Tobias Grosser

• Contact: Sven Verdoolaege

• URL: http://freshmeat.net/projects/ppcg

http://www.di.ens.fr/~pouzet/lucid-synchrone/
https://www.lri.fr/~mandel/lucy-n/
http://www.cl.cam.ac.uk/~pes20/ott/
http://freshmeat.net/projects/ppcg

55 Embedded and Real-time Systems - Software and Platforms - Project-Team PARKAS

5.10. ReactiveML
FUNCTIONAL DESCRIPTION: ReactiveML is a programming language dedicated to the implementation of
interactive systems as found in graphical user interfaces, video games or simulation problems. ReactiveML is
based on the synchronous reactive model due to Boussinot, embedded in an ML language (OCaml).

The Synchronous reactive model provides synchronous parallel composition and dynamic features like the
dynamic creation of processes. In ReactiveML, the reactive model is integrated at the language level (not as a
library) which leads to a safer and a more natural programming paradigm.

• Participants: Cédric Pasteur, Guillaume Baudart and Louis Mandel

• Contact: Guillaume Baudart

5.11. SundialsML
Sundials/ML

KEYWORDS: Simulation - Mathematics - Numerical simulations

SCIENTIFIC DESCRIPTION: Sundials/ML is a comprehensive OCaml interface to the Sundials suite of
numerical solvers (CVODE, CVODES, IDA, IDAS, KINSOL). Its structure mostly follows that of the Sundials
library, both for ease of reading the existing documentation and for adapting existing source code, but several
changes have been made for programming convenience and to increase safety, namely:

solver sessions are mostly configured via algebraic data types rather than multiple function calls,

errors are signalled by exceptions not return codes (also from user-supplied callback routines),

user data is shared between callback routines via closures (partial applications of functions),

vectors are checked for compatibility (using a combination of static and dynamic checks), and

explicit free commands are not necessary since OCaml is a garbage-collected language.

FUNCTIONAL DESCRIPTION: Sundials/ML is a comprehensive OCaml interface to the Sundials suite of
numerical solvers (CVODE, CVODES, IDA, IDAS, KINSOL, ARKODE).

RELEASE FUNCTIONAL DESCRIPTION: Adds support for v3.1.x of the Sundials Suite of numerical solvers.

Notably this release adds support for the new generic matrix and linear solver interfaces. The OCaml interface
changes but the library is backward compatible with Sundials 2.7.0.

OCaml 4.02.3 or greater is now required and optionally OCamlMPI 1.03.

* New Sundials.Matrix and Sundials.LinearSolver modules. * Better treatment of integer type used for matrix
indexing. * Refactor Dls and Sls modules into Sundials.Matrix. * Add confidence intervals to performance
graph. * Miscellaneous improvements to configure script. * Potential incompatibility: changes to some label
names: comm_fn -> comm, iter_type -> iter. * Untangle the ARKODE mass-solver interface from the Jacobian
interface.

• Participants: Jun Inoue, Marc Pouzet and Timothy Bourke

• Partner: UPMC

• Contact: Marc Pouzet

• URL: http://inria-parkas.github.io/sundialsml/

5.12. Zelus
SCIENTIFIC DESCRIPTION: The Zélus implementation has two main parts: a compiler that transforms Zélus
programs into OCaml programs and a runtime library that orchestrates compiled programs and numeric
solvers. The runtime can use the Sundials numeric solver, or custom implementations of well-known algo-
rithms for numerically approximating continuous dynamics.

http://inria-parkas.github.io/sundialsml/

56 Embedded and Real-time Systems - Software and Platforms - Project-Team PARKAS

FUNCTIONAL DESCRIPTION: Zélus is a new programming language for hybrid system modeling. It is based
on a synchronous language but extends it with Ordinary Differential Equations (ODEs) to model continuous-
time behaviors. It allows for combining arbitrarily data-flow equations, hierarchical automata and ODEs. The
language keeps all the fundamental features of synchronous languages: the compiler statically ensure the
absence of deadlocks and critical races, it is able to generate statically scheduled code running in bounded
time and space and a type-system is used to distinguish discrete and logical-time signals from continuous-
time ones. The ability to combines those features with ODEs made the language usable both for programming
discrete controllers and their physical environment.
• Participants: Marc Pouzet and Timothy Bourke
• Contact: Marc Pouzet

5.13. Telamon
KEYWORDS: Compilation - Monte-Carlo methods - Constraint Programming - GPU - Dense linear algebra

FUNCTIONAL DESCRIPTION: Telamon is a framework for the optimization of computational kernels for
GPUs through efficient search in a well-behaved optimization space in which optimization decisions commute
and satisfaction of constraints restricting legal optimizations.
• Contact: Ulysse Beaugnon
• URL: https://github.com/ulysseB/telamon/

5.14. Vélus
Verified Lustre Compiler

KEYWORDS: Synchronous Language - Compilation - Software Verification - Coq - Ocaml

FUNCTIONAL DESCRIPTION: Vélus is a prototype compiler from a subset of Lustre to assembly code. It is
written in a mix of Coq and OCaml and incorporates the CompCert verified C compiler. The compiler includes
formal specifications of the semantics and type systems of Lustre, as well as the semantics of intermediate
languages, and a proof of correctness that relates the high-level dataflow model to the values produced by
iterating the generated assembly code.

RELEASE FUNCTIONAL DESCRIPTION: First source-code release. Treatment of primitive reset construct.
Clocks allowed for node arguments.
• Contact: Timothy Bourke
• URL: https://velus.inria.fr

5.15. Tensor Comprehensions
KEYWORDS: Machine learning - Matrix calculation - Polyhedral compilation - GPU - CUDA

FUNCTIONAL DESCRIPTION: Tensor Comprehensions (TC) is a notation based on generalized Einstein
notation for computing on multi-dimensional arrays. TC greatly simplifies ML framework implementations by
providing a concise and powerful syntax which can be efficiently translated to high-performance computation
kernels, automatically.

RELEASE FUNCTIONAL DESCRIPTION: Integration of the loop tactics matching framework for identifying
linear algebra operations and optimizing them.
• Partner: Eindhoven University of Technology
• Contact: Albert Cohen

5.16. Aftermath
KEYWORDS: Performance analysis - Runtime system - Parallel programming - High-performance calculation
- Execution trace

https://github.com/ulysseB/telamon/
https://velus.inria.fr

57 Embedded and Real-time Systems - Software and Platforms - Project-Team PARKAS

FUNCTIONAL DESCRIPTION: Aftermath is a toolkit for building custom graphical tools for trace-based
performance analysis of parallel programs, run-time systems and compilers.

• Partner: The University of Manchester

• Contact: Andi Drebes

5.17. MPPcodegen
Source-to-source loop tiling based on MPP

KEYWORDS: Source-to-source compiler - Polyhedral compilation

FUNCTIONAL DESCRIPTION: MPPcodegen applies a monoparametric tiling to a C program enriched with
pragmas specifying the tiling and the scheduling function. The tiling can be generated by any convex
polyhedron and translation functions, it is not necessarily a partition. The result is a C program depending
on a scaling factor (the parameter). MPPcodegen relies on the MPP mathematical library to tile the iteration
sets.

• Partner: Colorado State University

• Contact: Christophe Alias

• URL: http://foobar.ens-lyon.fr/mppcodegen/

5.18. MPP
MonoParametric Partitionning transformation

KEYWORDS: Compilation - Polyhedral compilation

FUNCTIONAL DESCRIPTION: This library applies a monoparametric partitioning transformation to polyhedra
and affine functions. This transformation is a subset of the parametric sized tiling transformation, specialized
for the case where shapes depend only on a single parameter. Unlike in the general case, the resulting sets and
functions remain in the polyhedral model.

• Contact: Guillaume Iooss

• URL: https://github.com/guillaumeiooss/MPP

5.19. Obelisk
KEYWORDS: LaTeX - HTML - Ocaml

FUNCTIONAL DESCRIPTION: Obelisk is a simple tool which produces pretty-printed output from a Menhir
parser file (.mly).

It is inspired from yacc2latex and it is also written in OCaml, but it is aimed at supporting features from
Menhir instead of only those of ocamlyacc.

• Contact: Lelio Brun

• URL: https://github.com/Lelio-Brun/Obelisk

http://foobar.ens-lyon.fr/mppcodegen/
https://github.com/guillaumeiooss/MPP
https://github.com/Lelio-Brun/Obelisk

58 Embedded and Real-time Systems - Software and Platforms - Project-Team SPADES

SPADES Project-Team

5. New Software and Platforms

5.1. pyCPA_TWCA
Analysis tool for weakly-hard real-time systems

KEYWORDS: Real time - Scheduling analyses

FUNCTIONAL DESCRIPTION: pyCPA_TWCA is a pyCPA plugin for Typical Worst-Case Analysis. pyCPA
is an open-source Python implementation of Compositional Performance Analysis developed at TU Braun-
schweig, which allows in particular response-time analysis. pyCPA_TWCA is an extension of that tool that is
co-developed by Sophie Quinton and Zain Hammadeh at TU Braunschweig. It allows in particular the compu-
tation of weakly-hard guarantees for real-time tasks, i.e. number of deadline misses out of a sequence of exe-
cutions. So far, pyCPA_TWCA is restricted to uniprocessor systems of independent tasks. pyCPA_TWCA can
handle the following scheduling policies: Fixed Priority Preemptive, Fixed Priority Non-Preemptive, Weighted
Round-Robin, Earliest Deadline First.

• Contact: Sophie Quinton

5.2. CertiCAN
Certifier of CAN bus analysis results

KEYWORDS: Certification - CAN bus - Real time - Static analysis

FUNCTIONAL DESCRIPTION: CertiCAN is a tool, produced using the Coq proof assistant, allowing the formal
certification of the correctness of CAN bus analysis results. Result certification is a process that is light-
weight and flexible compared to tool certification, which makes it a practical choice for industrial purposes.
The analysis underlying CertiCAN, which is based on a combined use of two well-known CAN analysis
techniques, is computationally efficient. Experiments demonstrate that CertiCAN is able to certify the results
of RTaW-Pegase, an industrial CAN analysis tool, even for large systems. Furthermore, CertiCAN can certify
the results of any other RTA tool for the same analysis and system model (periodic tasks with offsets in
transactions).

• Contact: Xiaojie Guo

http://www.inria.fr/equipes/spades

59 Embedded and Real-time Systems - Software and Platforms - Project-Team TEA

TEA Project-Team

6. New Software and Platforms

6.1. ADFG
Affine data-flow graphs schedule synthesizer

KEYWORDS: Code generation - Scheduling - Static program analysis

FUNCTIONAL DESCRIPTION: ADFG is a synthesis tool of real-time system scheduling parameters: ADFG
computes task periods and buffer sizes of systems resulting in a trade-off between throughput maximiza-
tion and buffer size minimization. ADFG synthesizes systems modeled by ultimately cyclo-static dataflow
(UCSDF) graphs, an extension of the standard CSDF model.

Knowing the WCET (Worst Case Execute Time) of the actors and their exchanges on the channels, ADFG
tries to synthezise the scheduler of the application. ADFG offers several scheduling policies and can detect
unschedulable systems. It ensures that the real scheduling does not cause overflows or underflows and tries to
maximize the throughput (the processors utilization) while minimizing the storage space needed between the
actors (i.e. the buffer sizes).

Abstract affine scheduling is first applied on the dataflow graph, that consists only of periodic actors, to com-
pute timeless scheduling constraints (e.g. relation between the speeds of two actors) and buffering parameters.
Then, symbolic schedulability policies analysis (i.e., synthesis of timing and scheduling parameters of actors)
is applied to produce the scheduller for the actors.

ADFG, initially defined to synthesize real-time schedulers for SCJ/L1 applications, may be used for scheduling
analysis of AADL programs.

• Authors: Thierry Gautier, Jean-Pierre Talpin, Adnan Bouakaz, Alexandre Honorat and Loïc
Besnard

• Contact: Loïc Besnard

6.2. POLYCHRONY
KEYWORDS: Code generation - AADL - Proof - Optimization - Multi-clock - GALS - Architecture -
Cosimulation - Real time - Synchronous Language

FUNCTIONAL DESCRIPTION: Polychrony is an Open Source development environment for critical/embedded
systems. It is based on Signal, a real-time polychronous data-flow language. It provides a unified model-
driven environment to perform design exploration by using top-down and bottom-up design methodologies
formally supported by design model transformations from specification to implementation and from synchrony
to asynchrony. It can be included in heterogeneous design systems with various input formalisms and output
languages. The Polychrony tool-set provides a formal framework to: validate a design at different levels, by the
way of formal verification and/or simulation, refine descriptions in a top-down approach, abstract properties
needed for black-box composition, compose heterogeneous components (bottom-up with COTS), generate
executable code for various architectures. The Polychrony tool-set contains three main components and an
experimental interface to GNU Compiler Collection (GCC):

* The Signal toolbox, a batch compiler for the Signal language, and a structured API that provides a set of
program transformations. Itcan be installed without other components and is distributed under GPL V2 license.

* The Signal GUI, a Graphical User Interface to the Signal toolbox (editor + interactive access to compiling
functionalities). It can be used either as a specific tool or as a graphical view under Eclipse. It has been
transformed and restructured, in order to get a more up-to-date interface allowing multi-window manipulation
of programs. It is distributed under GPL V2 license.

http://www.inria.fr/equipes/tea

60 Embedded and Real-time Systems - Software and Platforms - Project-Team TEA

* The POP Eclipse platform, a front-end to the Signal toolbox in the Eclipse environment. It is distributed
under EPL license.

• Participants: Loïc Besnard, Paul Le Guernic and Thierry Gautier

• Partners: CNRS - Inria

• Contact: Loïc Besnard

• URL: https://www.polarsys.org/projects/polarsys.pop

6.3. Polychrony AADL2SIGNAL
KEYWORDS: Real-time application - Polychrone - Synchronous model - Polarsys - Polychrony - Signal -
AADL - Eclipse - Meta model

FUNCTIONAL DESCRIPTION: This polychronous MoC has been used previously as semantic model for
systems described in the core AADL standard. The core AADL is extended with annexes, such as the
Behavior Annex, which allows to specify more precisely architectural behaviors. The translation from AADL
specifications into the polychronous model should take into account these behavior specifications, which are
based on description of automata.

For that purpose, the AADL state transition systems are translated as Signal automata (a slight extension of
the Signal language has been defined to support the model of polychronous automata).

Once the AADL model of a system transformed into a Signal program, one can analyze the program using the
Polychrony framework in order to check if timing, scheduling and logical requirements over the whole system
are met.

We have implemented the translation and experimented it using a concrete case study, which is the AADL
modeling of an Adaptive Cruise Control (ACC) system, a highly safety-critical system embedded in recent
cars.

• Participants: Huafeng Yu, Loïc Besnard, Paul Le Guernic, Thierry Gautier and Yue Ma

• Partner: CNRS

• Contact: Loïc Besnard

• URL: http://www.inria.fr/equipes/tea

6.4. POP
Polychrony on Polarsys

KEYWORDS: Synchronous model - Model-driven engineering

FUNCTIONAL DESCRIPTION: The Eclipse project POP is a model-driven engineering front-end to our open-
source toolset Polychrony. a major achievement of the ESPRESSO (and now TEA) project-team. The Eclipse
project POP is a model-driven engineering front-end to our open-source toolset Polychrony. It was finalised in
the frame of project OPEES, as a case study: by passing the POLARSYS qualification kit as a computer aided
simulation and verification tool. This qualification was implemented by CS Toulouse in conformance with
relevant generic (platform independent) qualification documents. Polychrony is now distributed by the Eclipse
project POP on the platform of the POLARSYS industrial working group. Team TEA aims at continuing its
dissemination to academic partners, as to its principles and features, and industrial partners, as to the services
it can offer.

https://www.polarsys.org/projects/polarsys.pop
http://www.inria.fr/equipes/tea

61 Embedded and Real-time Systems - Software and Platforms - Project-Team TEA

Project POP is composed of the Polychrony tool set, under GPL license, and its Eclipse framework, under EPL
license. SSME (Syntactic Signal-Meta under Eclipse), is the meta-model of the Signal language implemented
with Eclipse/Ecore. It describes all syntactic elements specified in Signal Reference Manual0: all Signal
operators (e.g. arithmetic, clock synchronization), model (e.g. process frame, module), and construction (e.g.
iteration, type declaration). The meta-model primarily aims at making the language and services of the
Polychrony environment available to inter-operation and composition with other components (e.g. AADL,
Simulink, GeneAuto, P) within an Eclipse-based development tool-chain. Polychrony now comprises the
capability to directly import and export Ecore models instead of textual Signal programs, in order to facilitate
interaction between components within such a tool-chain. The download site for project POP has opened in
2015 at https://www.polarsys.org/projects/polarsys.pop. It should be noted that the Eclipse Foundation does
not host code under GPL license. So, the Signal toolbox useful to compile Signal code from Eclipse is hosted
on our web server.

• Participants: Jean-Pierre Talpin, Loïc Besnard, Paul Le Guernic and Thierry Gautier

• Contact: Loïc Besnard

• URL: https://www.polarsys.org/projects/polarsys.pop

6.5. Sigali
FUNCTIONAL DESCRIPTION: Sigali is a model-checking tool that operates on ILTS (Implicit Labeled
Transition Systems, an equational representation of an automaton), an intermediate model for discrete event
systems. It offers functionalities for verification of reactive systems and discrete controller synthesis. The
techniques used consist in manipulating the system of equations instead of the set of solutions, which avoids
the enumeration of the state space. Each set of states is uniquely characterized by a predicate and the operations
on sets can be equivalently performed on the associated predicates. Therefore, a wide spectrum of properties,
such as liveness, invariance, reachability and attractivity, can be checked. Algorithms for the computation of
predicates on states are also available. Sigali is connected with the Polychrony environment (Tea project-team)
as well as the Matou environment (VERIMAG), thus allowing the modeling of reactive systems by means of
Signal Specification or Mode Automata and the visualization of the synthesized controller by an interactive
simulation of the controlled system.

• Contact: Hervé Marchand

0

SIGNAL V4-Inria version: Reference Manual. Besnard, L., Gautier, T. and Le Guernic, P.
http://www.irisa.fr/espresso/Polychrony, 2010

https://www.polarsys.org/projects/polarsys.pop
http://www.irisa.fr/espresso/Polychrony

62 Proofs and Verification - Software and Platforms - Project-Team ANTIQUE

ANTIQUE Project-Team

6. New Software and Platforms

6.1. APRON
SCIENTIFIC DESCRIPTION: The APRON library is intended to be a common interface to various underlying
libraries/abstract domains and to provide additional services that can be implemented independently from the
underlying library/abstract domain, as shown by the poster on the right (presented at the SAS 2007 conference.
You may also look at:

FUNCTIONAL DESCRIPTION: The Apron library is dedicated to the static analysis of the numerical variables
of a program by abstract interpretation. Its goal is threefold: provide ready-to-use numerical abstractions under
a common API for analysis implementers, encourage the research in numerical abstract domains by providing
a platform for integration and comparison of domains, and provide a teaching and demonstration tool to
disseminate knowledge on abstract interpretation.

• Participants: Antoine Miné and Bertrand Jeannet

• Contact: Antoine Miné

• URL: http://apron.cri.ensmp.fr/library/

6.2. Astrée
The AstréeA Static Analyzer of Asynchronous Software

KEYWORDS: Static analysis - Static program analysis - Program verification - Software Verification -
Abstraction

SCIENTIFIC DESCRIPTION: Astrée analyzes structured C programs, with complex memory usages, but
without dynamic memory allocation nor recursion. This encompasses many embedded programs as found
in earth transportation, nuclear energy, medical instrumentation, and aerospace applications, in particular
synchronous control/command. The whole analysis process is entirely automatic.

Astrée discovers all runtime errors including:

undefined behaviors in the terms of the ANSI C99 norm of the C language (such as division by 0 or out of
bounds array indexing),

any violation of the implementation-specific behavior as defined in the relevant Application Binary Interface
(such as the size of integers and arithmetic overflows),

any potentially harmful or incorrect use of C violating optional user-defined programming guidelines (such as
no modular arithmetic for integers, even though this might be the hardware choice),

failure of user-defined assertions.

FUNCTIONAL DESCRIPTION: Astrée analyzes structured C programs, with complex memory usages, but
without dynamic memory allocation nor recursion. This encompasses many embedded programs as found
in earth transportation, nuclear energy, medical instrumentation, and aerospace applications, in particular
synchronous control/command. The whole analysis process is entirely automatic.

Astrée discovers all runtime errors including: - undefined behaviors in the terms of the ANSI C99 norm of the C
language (such as division by 0 or out of bounds array indexing), - any violation of the implementation-specific
behavior as defined in the relevant Application Binary Interface (such as the size of integers and arithmetic
overflows), - any potentially harmful or incorrect use of C violating optional user-defined programming
guidelines (such as no modular arithmetic for integers, even though this might be the hardware choice), -
failure of user-defined assertions.

http://www.inria.fr/equipes/antique
http://apron.cri.ensmp.fr/library/

63 Proofs and Verification - Software and Platforms - Project-Team ANTIQUE

Astrée is a static analyzer for sequential programs based on abstract interpretation. The Astrée static analyzer
aims at proving the absence of runtime errors in programs written in the C programming language.
• Participants: Antoine Miné, Jérôme Feret, Laurent Mauborgne, Patrick Cousot, Radhia Cousot and

Xavier Rival
• Partners: CNRS - ENS Paris - AbsInt Angewandte Informatik GmbH
• Contact: Patrick Cousot
• URL: http://www.astree.ens.fr/

6.3. AstréeA
The AstréeA Static Analyzer of Asynchronous Software

KEYWORDS: Static analysis - Static program analysis

SCIENTIFIC DESCRIPTION: AstréeA analyzes C programs composed of a fixed set of threads that communi-
cate through a shared memory and synchronization primitives (mutexes, FIFOs, blackboards, etc.), but without
recursion nor dynamic creation of memory, threads nor synchronization objects. AstréeA assumes a real-time
scheduler, where thread scheduling strictly obeys the fixed priority of threads. Our model follows the AR-
INC 653 OS specification used in embedded industrial aeronautic software. Additionally, AstréeA employs a
weakly-consistent memory semantics to model memory accesses not protected by a mutex, in order to take
into account soundly hardware and compiler-level program transformations (such as optimizations). AstréeA
checks for the same run-time errors as Astrée , with the addition of data-races.

FUNCTIONAL DESCRIPTION: AstréeA is a static analyzer prototype for parallel software based on abstract
interpretation. The AstréeA prototype is a fork of the Astrée static analyzer that adds support for analyzing
parallel embedded C software.
• Participants: Antoine Miné, Jérôme Feret, Patrick Cousot, Radhia Cousot and Xavier Rival
• Partners: CNRS - ENS Paris - AbsInt Angewandte Informatik GmbH
• Contact: Patrick Cousot
• URL: http://www.astreea.ens.fr/

6.4. ClangML
KEYWORD: Compilation

FUNCTIONAL DESCRIPTION: ClangML is an OCaml binding with the Clang front-end of the LLVM compiler
suite. Its goal is to provide an easy to use solution to parse a wide range of C programs, that can be called
from static analysis tools implemented in OCaml, which allows to test them on existing programs written in C
(or in other idioms derived from C) without having to redesign a front-end from scratch. ClangML features an
interface to a large set of internal AST nodes of Clang , with an easy to use API. Currently, ClangML supports
all C language AST nodes, as well as a large part of the C nodes related to C++ and Objective-C.
• Participants: Devin Mccoughlin, François Berenger and Pippijn Van Steenhoven
• Contact: Xavier Rival
• URL: https://github.com/Antique-team/clangml/tree/master/clang

6.5. FuncTion
SCIENTIFIC DESCRIPTION: FuncTion is based on an extension to liveness properties of the framework to
analyze termination by abstract interpretation proposed by Patrick Cousot and Radhia Cousot. FuncTion infers
ranking functions using piecewise-defined abstract domains. Several domains are available to partition the
ranking function, including intervals, octagons, and polyhedra. Two domains are also available to represent
the value of ranking functions: a domain of affine ranking functions, and a domain of ordinal-valued ranking
functions (which allows handling programs with unbounded non-determinism).

http://www.astree.ens.fr/
http://www.astreea.ens.fr/
https://github.com/Antique-team/clangml/tree/master/clang

64 Proofs and Verification - Software and Platforms - Project-Team ANTIQUE

FUNCTIONAL DESCRIPTION: FuncTion is a research prototype static analyzer to analyze the termination
and functional liveness properties of programs. It accepts programs in a small non-deterministic imperative
language. It is also parameterized by a property: either termination, or a recurrence or a guarantee property
(according to the classification by Manna and Pnueli of program properties). It then performs a backward static
analysis that automatically infers sufficient conditions at the beginning of the program so that all executions
satisfying the conditions also satisfy the property.

• Participants: Antoine Miné and Caterina Urban

• Contact: Caterina Urban

• URL: http://www.di.ens.fr/~urban/FuncTion.html

6.6. HOO
Heap Abstraction for Open Objects

FUNCTIONAL DESCRIPTION: JSAna with HOO is a static analyzer for JavaScript programs. The primary
component, HOO, which is designed to be reusable by itself, is an abstract domain for a dynamic language
heap. A dynamic language heap consists of open, extensible objects linked together by pointers. Uniquely,
HOO abstracts these extensible objects, where attribute/field names of objects may be unknown. Additionally,
it contains features to keeping precise track of attribute name/value relationships as well as calling unknown
functions through desynchronized separation.

As a library, HOO is useful for any dynamic language static analysis. It is designed to allow abstractions for
values to be easily swapped out for different abstractions, allowing it to be used for a wide-range of dynamic
languages outside of JavaScript.

• Participant: Arlen Cox

• Contact: Arlen Cox

6.7. MemCAD
The MemCAD static analyzer

KEYWORDS: Static analysis - Abstraction

FUNCTIONAL DESCRIPTION: MemCAD is a static analyzer that focuses on memory abstraction. It takes as
input C programs, and computes invariants on the data structures manipulated by the programs. It can also
verify memory safety. It comprises several memory abstract domains, including a flat representation, and two
graph abstractions with summaries based on inductive definitions of data-structures, such as lists and trees and
several combination operators for memory abstract domains (hierarchical abstraction, reduced product). The
purpose of this construction is to offer a great flexibility in the memory abstraction, so as to either make very
efficient static analyses of relatively simple programs, or still quite efficient static analyses of very involved
pieces of code. The implementation consists of over 30 000 lines of ML code, and relies on the ClangML
front-end. The current implementation comes with over 300 small size test cases that are used as regression
tests.

• Participants: Antoine Toubhans, François Berenger, Huisong Li and Xavier Rival

• Contact: Xavier Rival

• URL: http://www.di.ens.fr/~rival/memcad.html

6.8. KAPPA
A rule-based language for modeling interaction networks

KEYWORDS: Systems Biology - Modeling - Static analysis - Simulation - Model reduction

http://www.di.ens.fr/~urban/FuncTion.html
http://www.di.ens.fr/~rival/memcad.html

65 Proofs and Verification - Software and Platforms - Project-Team ANTIQUE

SCIENTIFIC DESCRIPTION: OpenKappa is a collection of tools to build, debug and run models of biological
pathways. It contains a compiler for the Kappa Language, a static analyzer (for debugging models), a simulator,
a compression tool for causal traces, and a model reduction tool.

FUNCTIONAL DESCRIPTION: Kappa is provided with the following tools: - a compiler - a stochastic simulator
- a static analyzer - a trace compression algorithm - an ODE generator.

RELEASE FUNCTIONAL DESCRIPTION: On line UI, Simulation is based on a new data-structure (see ESOP
2017), New abstract domains are available in the static analyzer (see SASB 2016), Local traces (see TCBB
2018), Reasoning on polymers (see SASB 2018).
• Participants: Jean Krivine, Jérôme Feret, Kim-Quyen Ly, Pierre Boutillier, Russ Harmer, Vincent

Danos and Walter Fontana
• Partners: ENS Lyon - Université Paris-Diderot - HARVARD Medical School
• Contact: Jérôme Feret
• URL: http://www.kappalanguage.org/

6.9. QUICr
FUNCTIONAL DESCRIPTION: QUICr is an OCaml library that implements a parametric abstract domain for
sets. It is constructed as a functor that accepts any numeric abstract domain that can be adapted to the interface
and produces an abstract domain for sets of numbers combined with numbers. It is relational, flexible, and
tunable. It serves as a basis for future exploration of set abstraction.
• Participant: Arlen Cox
• Contact: Arlen Cox

6.10. LCertify
KEYWORD: Compilation

SCIENTIFIC DESCRIPTION: The compilation certification process is performed automatically, thanks to a
prover designed specifically. The automatic proof is done at a level of abstraction which has been defined so
that the result of the proof of equivalence is strong enough for the goals mentioned above and so that the proof
obligations can be solved by efficient algorithms.

FUNCTIONAL DESCRIPTION: Abstract interpretation, Certified compilation, Static analysis, Translation
validation, Verifier. The main goal of this software project is to make it possible to certify automatically
the compilation of large safety critical software, by proving that the compiled code is correct with respect to
the source code: When the proof succeeds, this guarantees semantic equivalence. Furthermore, this approach
should allow to meet some domain specific software qualification criteria (such as those in DO-178 regulations
for avionics software), since it allows proving that successive development levels are correct with respect
to each other i.e., that they implement the same specification. Last, this technique also justifies the use of
source level static analyses, even when an assembly level certification would be required, since it establishes
separately that the source and the compiled code are equivalent.ntees that no compiler bug did cause incorrect
code to be generated.
• Participant: Xavier Rival
• Partners: CNRS - ENS Paris
• Contact: Xavier Rival
• URL: http://www.di.ens.fr/~rival/lcertify.html

6.11. Zarith
FUNCTIONAL DESCRIPTION: Zarith is a small (10K lines) OCaml library that implements arithmetic and
logical operations over arbitrary-precision integers. It is based on the GNU MP library to efficiently implement
arithmetic over big integers. Special care has been taken to ensure the efficiency of the library also for small
integers: small integers are represented as Caml unboxed integers and use a specific C code path. Moreover,
optimized assembly versions of small integer operations are provided for a few common architectures.

http://www.kappalanguage.org/
http://www.di.ens.fr/~rival/lcertify.html

66 Proofs and Verification - Software and Platforms - Project-Team ANTIQUE

Zarith is currently used in the Astrée analyzer to enable the sound analysis of programs featuring 64-bit (or
larger) integers. It is also used in the Frama-C analyzer platform developed at CEA LIST and Inria Saclay.

• Participants: Antoine Miné, Pascal Cuoq and Xavier Leroy

• Contact: Antoine Miné

• URL: http://forge.ocamlcore.org/projects/zarith

6.12. PYPPAI
Pyro Probabilistic Program Analyzer

KEYWORDS: Probability - Static analysis - Program verification - Abstraction

FUNCTIONAL DESCRIPTION: PYPPAI is a program analyzer to verify the correct semantic definition of
probabilistic programs written in Pyro. At the moment, PYPPAI verifies consistency conditions between
models and guides used in probabilistic inference programs.

PYPPAI is written in OCaml and uses the pyml Python in OCaml library. It features a numerical abstract
domain based on Apron, an abstract domain to represent zones in tensors, and dedicated abstract domains to
describe distributions and states in probabilistic programs.

• Contact: Xavier Rival

• URL: https://github.com/wonyeol/static-analysis-for-support-match

http://forge.ocamlcore.org/projects/zarith
https://github.com/wonyeol/static-analysis-for-support-match

67 Proofs and Verification - Software and Platforms - Project-Team CAMBIUM

CAMBIUM Project-Team

5. New Software and Platforms

5.1. OCaml
KEYWORDS: Functional programming - Static typing - Compilation

FUNCTIONAL DESCRIPTION: The OCaml language is a functional programming language that combines
safety with expressiveness through the use of a precise and flexible type system with automatic type inference.
The OCaml system is a comprehensive implementation of this language, featuring two compilers (a bytecode
compiler, for fast prototyping and interactive use, and a native-code compiler producing efficient machine
code for x86, ARM, PowerPC and System Z), a debugger, a documentation generator, a compilation manager,
a package manager, and many libraries contributed by the user community.
• Participants: Damien Doligez, Xavier Leroy, Fabrice Le Fessant, Luc Maranget, Gabriel Scherer,

Alain Frisch, Jacques Garrigue, Marc Shinwell, Jeremy Yallop and Leo White
• Contact: Damien Doligez
• URL: https://ocaml.org/

5.2. Compcert
The CompCert formally-verified C compiler

KEYWORDS: Compilers - Formal methods - Deductive program verification - C - Coq

FUNCTIONAL DESCRIPTION: CompCert is a compiler for the C programming language. Its intended use is
the compilation of life-critical and mission-critical software written in C and meeting high levels of assurance.
It accepts most of the ISO C 99 language, with some exceptions and a few extensions. It produces machine
code for the ARM, PowerPC, RISC-V, and x86 architectures. What sets CompCert C apart from any other
production compiler, is that it is formally verified to be exempt from miscompilation issues, using machine-
assisted mathematical proofs (the Coq proof assistant). In other words, the executable code it produces is
proved to behave exactly as specified by the semantics of the source C program. This level of confidence
in the correctness of the compilation process is unprecedented and contributes to meeting the highest levels
of software assurance. In particular, using the CompCert C compiler is a natural complement to applying
formal verification techniques (static analysis, program proof, model checking) at the source code level: the
correctness proof of CompCert C guarantees that all safety properties verified on the source code automatically
hold as well for the generated executable.

RELEASE FUNCTIONAL DESCRIPTION: Novelties include a formally-verified type checker for CompCert
C, a more careful modeling of pointer comparisons against the null pointer, algorithmic improvements in the
handling of deeply nested struct and union types, much better ABI compatibility for passing composite values,
support for GCC-style extended inline asm, and more complete generation of DWARF debugging information
(contributed by AbsInt).
• Participants: Xavier Leroy, Sandrine Blazy, Jacques-Henri Jourdan, Sylvie Boldo and Guillaume

Melquiond
• Partner: AbsInt Angewandte Informatik GmbH
• Contact: Xavier Leroy
• URL: http://compcert.inria.fr/

5.3. Diy
Do It Yourself

http://www.inria.fr/equipes/cambium
https://ocaml.org/
http://compcert.inria.fr/

68 Proofs and Verification - Software and Platforms - Project-Team CAMBIUM

KEYWORD: Parallelism

FUNCTIONAL DESCRIPTION: The diy suite provides a set of tools for testing shared memory models: the
litmus tool for running tests on hardware, various generators for producing tests from concise specifications,
and herd, a memory model simulator. Tests are small programs written in x86, Power or ARM assembler that
can thus be generated from concise specification, run on hardware, or simulated on top of memory models.
Test results can be handled and compared using additional tools.

• Participants: Jade Alglave and Luc Maranget

• Partner: University College London UK

• Contact: Luc Maranget

• URL: http://diy.inria.fr/

5.4. Menhir
KEYWORDS: Compilation - Context-free grammars - Parsing

FUNCTIONAL DESCRIPTION: Menhir is a LR(1) parser generator for the OCaml programming language.
That is, Menhir compiles LR(1) grammar specifications down to OCaml code. Menhir was designed and
implemented by François Pottier and Yann Régis-Gianas.

• Contact: François Pottier

• Publications: A Simple, Possibly Correct LR Parser for C11 - Reachability and Error Diagnosis in
LR(1) Parsers

5.5. CFML
Interactive program verification using characteristic formulae

KEYWORDS: Coq - Software Verification - Deductive program verification - Separation Logic

FUNCTIONAL DESCRIPTION: The CFML tool supports the verification of OCaml programs through interac-
tive Coq proofs. CFML proofs establish the full functional correctness of the code with respect to a specifica-
tion. They may also be used to formally establish bounds on the asymptotic complexity of the code. The tool is
made of two parts: on the one hand, a characteristic formula generator implemented as an OCaml program that
parses OCaml code and produces Coq formulae, and, on the other hand, a Coq library that provides notations
and tactics for manipulating characteristic formulae interactively in Coq.

• Participants: Arthur Charguéraud, Armaël Guéneau and François Pottier

• Contact: Arthur Charguéraud

• URL: http://www.chargueraud.org/softs/cfml/

5.6. TLAPS
TLA+ proof system

KEYWORD: Proof assistant

SCIENTIFIC DESCRIPTION: TLAPS is a platform for developing and mechanically verifying proofs about
TLA+ specifications. The TLA+ proof language is hierarchical and explicit, allowing a user to decompose
the overall proof into proof steps that can be checked independently. TLAPS consists of a proof manager that
interprets the proof language and generates a collection of proof obligations that are sent to backend verifiers.
The current backends include the tableau-based prover Zenon for first-order logic, Isabelle/TLA+, an encoding
of TLA+ set theory as an object logic in the logical framework Isabelle, an SMT backend designed for use
with any SMT-lib compatible solver, and an interface to a decision procedure for propositional temporal logic.

FUNCTIONAL DESCRIPTION: TLAPS is a proof assistant for the TLA+ specification language.

http://diy.inria.fr/
https://hal.inria.fr/hal-01633123
https://hal.inria.fr/hal-01417004
https://hal.inria.fr/hal-01417004
http://www.chargueraud.org/softs/cfml/

69 Proofs and Verification - Software and Platforms - Project-Team CAMBIUM

NEWS OF THE YEAR: Work in 2019 focused on providing support for reasoning about TLA+’s ENABLED
and action composition constructs. We also prepared a minor release, fixing some issues and switching to Z3
as the default SMT back-end solver.

• Participants: Damien Doligez, Stephan Merz and Ioannis Filippidis

• Contact: Stephan Merz

• URL: https://tla.msr-inria.inria.fr/tlaps/content/Home.html

5.7. ZENON
KEYWORD: Automated theorem proving

FUNCTIONAL DESCRIPTION: Zenon is an automatic theorem prover based on the tableaux method. Given a
first-order statement as input, it outputs a fully formal proof in the form of a Coq proof script. It has special
rules for efficient handling of equality and arbitrary transitive relations. Although still in the prototype stage,
it already gives satisfying results on standard automatic-proving benchmarks.

Zenon is designed to be easy to interface with front-end tools (for example integration in an interactive
proof assistant), and also to be retargeted to output scripts for different frameworks (for example, Isabelle
and Dedukti).

• Author: Damien Doligez

• Contact: Damien Doligez

• URL: http://zenon-prover.org/

5.8. hevea
hevea is a fast latex to html translator.

KEYWORDS: LaTeX - Web

FUNCTIONAL DESCRIPTION: HEVEA is a LATEX to html translator. The input language is a fairly complete
subset of LATEX 2 (old LATEX style is also accepted) and the output language is html that is (hopefully)
correct with respect to version 5. HEVEA understands LATEX macro definitions. Simple user style files are
understood with little or no modifications. Furthermore, HEVEA customisation is done by writing LATEX
code.

HEVEA is written in Objective Caml, as many lexers. It is quite fast and flexible. Using HEVEA it is possible
to translate large documents such as manuals, books, etc. very quickly. All documents are translated as one
single html file. Then, the output file can be cut into smaller files, using the companion program HACHA.
HEVEA can also be instructed to output plain text or info files.

Information on HEVEA is available at http://hevea.inria.fr/.

• Author: Luc Maranget

• Contact: Luc Maranget

• URL: http://hevea.inria.fr/

https://tla.msr-inria.inria.fr/tlaps/content/Home.html
http://zenon-prover.org/
http://hevea.inria.fr/

70 Proofs and Verification - Software and Platforms - Project-Team CELTIQUE

CELTIQUE Project-Team

3. New Software and Platforms

3.1. CompcertSSA
KEYWORDS: Optimizing compiler - Formal methods - Proof assistant - SSA

FUNCTIONAL DESCRIPTION: CompcertSSA is built on top of the Compcert verified C compiler, by adding a
middle-end based on the SSA form (Static Single Assignment) : conversion to SSA, SSA-based optimizations,
and destruction of SSA.

• Participants: Sandrine Blazy, Delphine Demange, Yon Fernandez de Retana, David Pichardie and
Leo Stefanesco

• Contact: Delphine Demange

• Publications: Mechanizing conventional SSA for a verified destruction with coalescing - Validating
Dominator Trees for a Fast, Verified Dominance Test - A Formally Verified SSA-based Middle-end
: Static Single Assignment meets CompCert - Formal Verification of an SSA-based Middle-end for
CompCert - Verifying Fast and Sparse SSA-based Optimizations in Coq.

• URL: http://compcertssa.gforge.inria.fr/

3.2. Jacal
JAvaCard AnaLyseur

KEYWORDS: JavaCard - Certification - Static program analysis - AFSCM

FUNCTIONAL DESCRIPTION: Jacal is a JAvaCard AnaLyseur developed on top of the SAWJA platform. This
proprietary software verifies automatically that Javacard programs conform with the security guidelines issued
by the AFSCM (Association Française du Sans Contact Mobile). Jacal is based on the theory of abstract
interpretation and combines several object-oriented and numeric analyses to automatically infer sophisticated
invariants about the program behaviour. The result of the analysis is thereafter harvest to check that it is
sufficient to ensure the desired security properties.

• Participants: David Pichardie, Delphine Demange, Frédéric Besson and Thomas Jensen

• Contact: Thomas Jensen

3.3. Javalib
KEYWORDS: Library - Java - Ocaml

FUNCTIONAL DESCRIPTION: Javalib is an efficient library to parse Java .class files into OCaml data
structures, thus enabling the OCaml programmer to extract information from class files, to manipulate and
to generate valid .class files.

• Participants: David Pichardie, Frédéric Besson, Laurent Guillo, Laurent Hubert, Nicolas Barré,
Pierre Vittet and Tiphaine Turpin

• Contact: David Pichardie

• URL: http://sawja.inria.fr/

3.4. JSCert
Certified JavaScript

http://www.inria.fr/equipes/celtique
https://hal.inria.fr/hal-01378393
https://hal.inria.fr/hal-01193281
https://hal.inria.fr/hal-01193281
https://hal.inria.fr/hal-01110783
https://hal.inria.fr/hal-01110783
https://hal.inria.fr/hal-01097677
https://hal.inria.fr/hal-01097677
https://hal.inria.fr/hal-01110779
http://compcertssa.gforge.inria.fr/
http://sawja.inria.fr/

71 Proofs and Verification - Software and Platforms - Project-Team CELTIQUE

FUNCTIONAL DESCRIPTION: The JSCert project aims to really understand JavaScript. JSCert itself is
a mechanised specification of JavaScript, written in the Coq proof assistant, which closely follows the
ECMAScript 5 English standard. JSRef is a reference interpreter for JavaScript in OCaml , which has been
proved correct with respect to JSCert and tested with the Test 262 test suite.
• Participants: Alan Schmitt and Martin Bodin
• Partner: Imperial College London
• Contact: Alan Schmitt
• URL: http://jscert.org/

3.5. SAWJA
Static Analysis Workshop for Java

KEYWORDS: Security - Software - Code review - Smart card

SCIENTIFIC DESCRIPTION: Sawja is a library written in OCaml, relying on Javalib to provide a high level
representation of Java bytecode programs. It name comes from Static Analysis Workshop for JAva. Whereas
Javalib is dedicated to isolated classes, Sawja handles bytecode programs with their class hierarchy and with
control flow algorithms.

Moreover, Sawja provides some stackless intermediate representations of code, called JBir and A3Bir. The
transformation algorithm, common to these representations, has been formalized and proved to be semantics-
preserving.

See also the web page http://sawja.inria.fr/ .

Version: 1.5

Programming language: Ocaml

FUNCTIONAL DESCRIPTION: Sawja is a toolbox for developing static analysis of Java code in bytecode
format. Sawja provides advanced algorithms for reconstructing high-level programme representations. The
SawjaCard tool dedicated to JavaCard is based on the Sawja infrastructure and automatically validates
the security guidelines issued by AFSCM (http://www.afscm.org/). SawjaCard can automate the code audit
process and automatic verification of functional properties.
• Participants: David Pichardie, Frédéric Besson and Laurent Guillo
• Partners: CNRS - ENS Cachan
• Contact: David Pichardie
• URL: http://sawja.inria.fr/

3.6. Timbuk
KEYWORDS: Automated deduction - Ocaml - Program verification - Tree Automata - Term Rewriting Systems

FUNCTIONAL DESCRIPTION: Timbuk is a tool designed to compute or over-approximate sets of terms
reachable by a given term rewriting system. The libray also provides an OCaml toplevel with all usual functions
on Bottom-up Nondeterministic Tree Automata.
• Participant: Thomas Genet
• Contact: Thomas Genet
• URL: http://people.irisa.fr/Thomas.Genet/timbuk/index.html

3.7. jsexplain
JSExplain

KEYWORDS: JavaScript - Compilation - Standards - Debug - Interpreter

http://jscert.org/
http://sawja.inria.fr/
http://www.afscm.org/
http://sawja.inria.fr/
http://people.irisa.fr/Thomas.Genet/timbuk/index.html

72 Proofs and Verification - Software and Platforms - Project-Team CELTIQUE

FUNCTIONAL DESCRIPTION: JSExplain is a reference interpreter for JavaScript that closely follows the
specification and that produces execution traces. These traces may be interactively investigated in a browser,
with an interface that displays not only the code and the state of the interpreter, but also the code and the state
of the interpreted program. Conditional breakpoints may be expressed with respect to both the interpreter and
the interpreted program. In that respect, JSExplain is a double-debugger for the specification of JavaScript.

• Partner: Imperial College London

• Contact: Alan Schmitt

• Publication: JSExplain: A Double Debugger for JavaScript

• URL: https://gitlab.inria.fr/star-explain/jsexplain

https://hal.inria.fr/hal-01745792
https://gitlab.inria.fr/star-explain/jsexplain

73 Proofs and Verification - Software and Platforms - Project-Team CONVECS

CONVECS Project-Team

6. New Software and Platforms

6.1. CADP
Construction and Analysis of Distributed Processes

KEYWORDS: Formal methods - Verification

FUNCTIONAL DESCRIPTION: CADP (Construction and Analysis of Distributed Processes – formerly known
as CAESAR/ALDEBARAN Development Package) [5] is a toolbox for protocols and distributed systems
engineering.

In this toolbox, we develop and maintain the following tools:

• CAESAR.ADT [34] is a compiler that translates LOTOS abstract data types into C types and
C functions. The translation involves pattern-matching compiling techniques and automatic recog-
nition of usual types (integers, enumerations, tuples, etc.), which are implemented optimally.

• CAESAR [40], [39] is a compiler that translates LOTOS processes into either C code (for rapid
prototyping and testing purposes) or finite graphs (for verification purposes). The translation is done
using several intermediate steps, among which the construction of a Petri net extended with typed
variables, data handling features, and atomic transitions.

• OPEN/CAESAR [35] is a generic software environment for developing tools that explore graphs on
the fly (for instance, simulation, verification, and test generation tools). Such tools can be developed
independently of any particular high level language. In this respect, OPEN/CAESAR plays a central
role in CADP by connecting language-oriented tools with model-oriented tools. OPEN/CAESAR
consists of a set of 16 code libraries with their programming interfaces, such as:

– CAESAR GRAPH, which provides the programming interface for graph exploration,

– CAESAR HASH, which contains several hash functions,

– CAESAR SOLVE, which resolves Boolean equation systems on the fly,

– CAESAR STACK, which implements stacks for depth-first search exploration, and

– CAESAR TABLE, which handles tables of states, transitions, labels, etc.

A number of on-the-fly analysis tools have been developed within the OPEN/CAESAR environment,
among which:

– BISIMULATOR, which checks bisimulation equivalences and preorders,

– CUNCTATOR, which performs steady-state simulation of continuous-time Markov
chains,

– DETERMINATOR, which eliminates stochastic nondeterminism in normal, probabilistic,
or stochastic systems,

– DISTRIBUTOR, which generates the graph of reachable states using several machines,

– EVALUATOR, which evaluates MCL formulas,

– EXECUTOR, which performs random execution,

– EXHIBITOR, which searches for execution sequences matching a given regular expres-
sion,

– GENERATOR, which constructs the graph of reachable states,

– PROJECTOR, which computes abstractions of communicating systems,

http://www.inria.fr/equipes/convecs
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2019-bid3
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2019-bid4
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2019-bid5
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2019-bid6
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2019-bid2

74 Proofs and Verification - Software and Platforms - Project-Team CONVECS

– REDUCTOR, which constructs and minimizes the graph of reachable states modulo
various equivalence relations,

– SIMULATOR, XSIMULATOR, and OCIS, which enable interactive simulation, and
– TERMINATOR, which searches for deadlock states.

• BCG (Binary Coded Graphs) is both a file format for storing very large graphs on disk (using
efficient compression techniques) and a software environment for handling this format. BCG also
plays a key role in CADP as many tools rely on this format for their inputs/outputs. The BCG
environment consists of various libraries with their programming interfaces, and of several tools,
such as:

– BCG CMP, which compares two graphs,
– BCG DRAW, which builds a two-dimensional view of a graph,
– BCG EDIT, which allows the graph layout produced by BCG DRAW to be modified

interactively,
– BCG GRAPH, which generates various forms of practically useful graphs,
– BCG INFO, which displays various statistical information about a graph,
– BCG IO, which performs conversions between BCG and many other graph formats,
– BCG LABELS, which hides and/or renames (using regular expressions) the transition

labels of a graph,
– BCG MIN, which minimizes a graph modulo strong or branching equivalences (and can

also deal with probabilistic and stochastic systems),
– BCG STEADY, which performs steady-state numerical analysis of (extended) continuous-

time Markov chains,
– BCG TRANSIENT, which performs transient numerical analysis of (extended)

continuous-time Markov chains, and
– XTL (eXecutable Temporal Language), which is a high level, functional language for

programming exploration algorithms on BCG graphs. XTL provides primitives to handle
states, transitions, labels, successor and predecessor functions, etc.

For instance, one can define recursive functions on sets of states, which allow evaluation
and diagnostic generation fixed point algorithms for usual temporal logics (such as HML
[43], CTL [32], ACTL [33], etc.) to be defined in XTL.

• PBG (Partitioned BCG Graph) is a file format implementing the theoretical concept of Partitioned
LTS [38] and providing a unified access to a graph partitioned in fragments distributed over a set
of remote machines, possibly located in different countries. The PBG format is supported by several
tools, such as:

– PBG CP, PBG MV, and PBG RM, which facilitate standard operations (copying, mov-
ing, and removing) on PBG files, maintaining consistency during these operations,

– PBG MERGE (formerly known as BCG MERGE), which transforms a distributed graph
into a monolithic one represented in BCG format,

– PBG INFO, which displays various statistical information about a distributed graph.
• The connection between explicit models (such as BCG graphs) and implicit models (explored on the

fly) is ensured by OPEN/CAESAR-compliant compilers, e.g.:
– BCG OPEN, for models represented as BCG graphs,
– CAESAR.OPEN, for models expressed as LOTOS descriptions,
– EXP.OPEN, for models expressed as communicating automata,
– FSP.OPEN, for models expressed as FSP [45] descriptions,
– LNT.OPEN, for models expressed as LNT descriptions, and
– SEQ.OPEN, for models represented as sets of execution traces.

http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2019-bid7
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2019-bid8
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2019-bid9
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2019-bid10
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2019-bid11

75 Proofs and Verification - Software and Platforms - Project-Team CONVECS

The CADP toolbox also includes TGV (Test Generation based on Verification), which has been developed by
the VERIMAG laboratory (Grenoble) and Inria Rennes – Bretagne-Atlantique.

The CADP tools are well-integrated and can be accessed easily using either the EUCALYPTUS graphical
interface or the SVL [36] scripting language. Both EUCALYPTUS and SVL provide users with an easy and
uniform access to the CADP tools by performing file format conversions automatically whenever needed and
by supplying appropriate command-line options as the tools are invoked.

• Participants: Hubert Garavel, Frédéric Lang, Radu Mateescu and Wendelin Serwe

• Contact: Hubert Garavel

• URL: http://cadp.inria.fr/

6.2. TRAIAN
KEYWORDS: Compilation - LOTOS NT

FUNCTIONAL DESCRIPTION: TRAIAN is a compiler for translating LOTOS NT descriptions into C pro-
grams, which will be used for simulation, rapid prototyping, verification, and testing.

The current version of TRAIAN, which handles LOTOS NT types and functions only, has useful applications
in compiler construction [37], being used in all recent compilers developed by CONVECS.

• Participants: Hubert Garavel, Frédéric Lang and Wendelin Serwe

• Contact: Hubert Garavel

• URL: http://convecs.inria.fr/software/traian/

http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2019-bid12
http://cadp.inria.fr/
http://raweb.inria.fr/rapportsactivite/RA{$year}/convecs/bibliography.html#convecs-2019-bid13
http://convecs.inria.fr/software/traian/

76 Proofs and Verification - Software and Platforms - Project-Team DEDUCTEAM

DEDUCTEAM Project-Team

5. New Software and Platforms
5.1. Autotheo

KEYWORD: Automated deduction

SCIENTIFIC DESCRIPTION: Transformation of axiomatic theories into rewriting systems that can be used by
iProverModulo.

FUNCTIONAL DESCRIPTION: Autotheo is a tool that transforms axiomatic theories into polarized rewriting
systems, thus making them usable in iProverModulo. It supports several strategies to orient the axioms, some
of them being proved to be complete, in the sense that ordered polarized resolution modulo the resulting
systems is refutationally complete, some others being merely heuristics. In practice, Autotheo takes a TPTP
input file and produces an input file for iProverModulo.

NEWS OF THE YEAR: Maintenance.
• Participant: Guillaume Burel
• Partner: ENSIIE
• Contact: Guillaume Burel
• Publication: Consistency Implies Cut Admissibility
• URL: http://www.ensiie.fr/~guillaume.burel/blackandwhite_autotheo.html.en

5.2. CoLoR
Coq Library on Rewriting and termination

KEYWORDS: Coq - Formalisation

FUNCTIONAL DESCRIPTION: CoLoR is a Coq library on rewriting theory and termination. It provides many
definitions and theorems on various mathematical structures (quasi-ordered sets, relations, ordered semi-rings,
etc.), data structures (lists, vectors, matrices, polynomials, finite graphs), term structures (strings, first-order
terms, lambda-terms, etc.), transformation techniques (dependency pairs, semantic labeling, etc.) and (non-
)termination criteria (polynomial and matrix interpretations, recursive path ordering, computability closure,
etc.).
• Authors: Frédéric Blanqui and Sébastien Hinderer
• Contact: Frédéric Blanqui
• Publications: CoLoR: a Coq library on well-founded rewrite relations and its application to the au-

tomated verification of termination certificates - Automated Verification of Termination Certificates
- CoLoR: a Coq library on rewriting and termination

• URL: http://color.inria.fr/

5.3. Coqine
Coq In dEdukti

KEYWORDS: Higher-order logic - Formal methods - Proof

FUNCTIONAL DESCRIPTION: CoqInE is a plugin for the Coq software translating Coq proofs into Dedukti
terms. It provides a Dedukti signature file faithfully encoding the underlying theory of Coq (or a sufficiently
large subset of it). Current development is mostly focused on implementing support for Coq universe
polymorphism. The generated ouput is meant to be type-checkable using the latest version of Dedukti.
• Contact: Guillaume Burel
• URL: http://www.ensiie.fr/~guillaume.burel/blackandwhite_coqInE.html.en

http://www.inria.fr/equipes/deducteam
https://hal.inria.fr/inria-00614040
http://www.ensiie.fr/~guillaume.burel/blackandwhite_autotheo.html.en
https://hal.inria.fr/inria-00543157
https://hal.inria.fr/inria-00543157
https://hal.inria.fr/inria-00390902
https://hal.inria.fr/inria-00084835
http://color.inria.fr/
http://www.ensiie.fr/~guillaume.burel/blackandwhite_coqInE.html.en

77 Proofs and Verification - Software and Platforms - Project-Team DEDUCTEAM

5.4. Dedukti
KEYWORD: Logical Framework

FUNCTIONAL DESCRIPTION: Dedukti is a proof-checker for the LambdaPi-calculus modulo. As it can be
parametrized by an arbitrary set of rewrite rules, defining an equivalence relation, this calculus can express
many different theories. Dedukti has been created for this purpose: to allow the interoperability of different
theories.

Dedukti’s core is based on the standard algorithm for type-checking semi-full pure type systems and imple-
ments a state-of-the-art reduction machine inspired from Matita’s and modified to deal with rewrite rules.

Dedukti’s input language features term declarations and definitions (opaque or not) and rewrite rule definitions.
A basic module system allows the user to organize his project in different files and compile them separately.

Dedukti features matching modulo beta for a large class of patterns called Miller’s patterns, allowing for more
rewriting rules to be implemented in Dedukti.

NEWS OF THE YEAR: There has been a new release 2.6 in 2018. This release provides a better control on
module loading, and a better log of rewrite steps.

• Participants: François Thiré, Gaspard Ferey, Guillaume Genestier and Rodolphe Lepigre

• Contact: François Thiré

• Publications: Dedukti:un vérificateur de preuves universel - Rewriting Modulo β in the λΠ-Calculus
Modulo - Expressing theories in the λΠ-calculus modulo theory and in the Dedukti system

• URL: https://deducteam.github.io/

5.5. Holide
KEYWORD: Proof

FUNCTIONAL DESCRIPTION: Holide translates HOL proofs to Dedukti[OT] proofs, using the OpenTheory
standard (common to HOL Light and HOL4). Dedukti[OT] being the encoding of OpenTheory in Dedukti.

• Contact: Guillaume Burel

• URL: http://deducteam.gforge.inria.fr/holide/

5.6. HOT
Higher-Order Termination

FUNCTIONAL DESCRIPTION: HOT is an automated termination prover for higher-order rewriting, based on
the notion of computability closure.

• Contact: Frédéric Blanqui

• URL: http://rewriting.gforge.inria.fr/hot.html

5.7. iProver Modulo
KEYWORDS: Automated deduction - Automated theorem proving

SCIENTIFIC DESCRIPTION: Integration of ordered polarized resolution modulo theory into the prover iProver.

FUNCTIONAL DESCRIPTION: iProver Modulo is an extension of the automated theorem prover iProver
originally developed by Konstantin Korovin at the University of Manchester. It implements ordered polarized
resolution modulo theory, a refinement of the resolution method based on deduction modulo theory. It takes
as input a proposition in predicate logic and a clausal rewriting system defining the theory in which the
formula has to be proved. Normalization with respect to the term rewriting rules is performed very efficiently
through translation into OCaml code, compilation and dynamic linking. Experiments have shown that ordered
polarized resolution modulo dramatically improves proof search compared to using raw axioms.

https://hal.inria.fr/hal-01086609
https://hal.inria.fr/hal-01176715
https://hal.inria.fr/hal-01176715
https://hal.inria.fr/hal-01441751
https://deducteam.github.io/
http://deducteam.gforge.inria.fr/holide/
http://rewriting.gforge.inria.fr/hot.html

78 Proofs and Verification - Software and Platforms - Project-Team DEDUCTEAM

NEWS OF THE YEAR: Maintenance of Dedukti output
• Participant: Guillaume Burel
• Partner: ENSIIE
• Contact: Guillaume Burel
• Publications: A Shallow Embedding of Resolution and Superposition Proofs into the ??-Calculus

Modulo - Experimenting with deduction modulo
• URL: https://github.com/gburel/iProverModulo

5.8. mSAT
KEYWORD: Propositional logic

FUNCTIONAL DESCRIPTION: mSAT is a modular, proof-producing, SAT and SMT core based on Alt-Ergo
Zero, written in OCaml. The solver accepts user-defined terms, formulas and theory, making it a good tool
for experimenting. This tool produces resolution proofs as trees in which the leaves are user-defined proof of
lemmas.
• Contact: Guillaume Bury
• Publication: mSAT:An OCaml SAT Solver
• URL: https://github.com/Gbury/mSAT

5.9. Rainbow
Termination certificate verifier

KEYWORDS: Demonstration - Code generation - Verification

FUNCTIONAL DESCRIPTION: Rainbow is a set of tools for automatically verifying the correctness of termi-
nation certificates expressed in the CPF format used in the annual international competition of termination
tools. It contains: a tool xsd2coq for generating Coq data types for representing XML files valid with respect
to some XML Schema, a tool xsd2ml for generating OCaml data types and functions for parsing XML files
valid with respect to some XML Schema, a tool for translating a CPF file into a Coq script, and a standalone
Coq certified tool for verifying the correctness of a CPF file.
• Author: Frédéric Blanqui
• Contact: Frédéric Blanqui
• Publications: Automated verification of termination certificates - Automated verification of termina-

tion certificates
• URL: http://color.inria.fr/rainbow.html

5.10. Krajono
KEYWORD: Proof

FUNCTIONAL DESCRIPTION: Krajono translates Matita proofs into Dedukti[CiC] (encoding of CiC in
Dedukti) terms.
• Contact: François Thiré

5.11. archsat
KEYWORDS: Automated theorem proving - First-order logic - Propositional logic

FUNCTIONAL DESCRIPTION: Archsat is an automated theorem prover aimed at studying the integration of
first-order theorem prover technologies, such as rewriting, into SMT solvers.
• Contact: Guillaume Bury
• URL: https://gforge.inria.fr/projects/archsat

https://hal.inria.fr/hal-01126321
https://hal.inria.fr/hal-01126321
https://hal.inria.fr/hal-01125858
https://github.com/gburel/iProverModulo
https://hal.inria.fr/hal-01670765
https://github.com/Gbury/mSAT
https://hal.inria.fr/tel-01097793
https://hal.inria.fr/hal-00763495
https://hal.inria.fr/hal-00763495
http://color.inria.fr/rainbow.html
https://gforge.inria.fr/projects/archsat

79 Proofs and Verification - Software and Platforms - Project-Team DEDUCTEAM

5.12. lrat2dk
KEYWORDS: Automated theorem proving - Proof

FUNCTIONAL DESCRIPTION: Take as input a SAT proof trace in LRAT format, which can be obtained
from the de facto standard format DRAT using drat-trim. Output a proof checkable by Dedukti, in a shallow
encoding of propositional logic.

• Participant: Guillaume Burel

• Partner: ENSIIE

• Contact: Guillaume Burel

• URL: https://github.com/gburel/lrat2dk

5.13. ekstrakto
KEYWORDS: TPTP - TSTP - Proof assistant - Dedukti

FUNCTIONAL DESCRIPTION: Extracting TPTP problems from a TSTP trace. Proof reconstruction in Dedukti
from TSTP trace.

• Contact: Mohamed Yacine El Haddad

• URL: https://github.com/elhaddadyacine/ekstrakto

5.14. SizeChangeTool
KEYWORDS: Rewriting systems - Proof assistant - Termination

FUNCTIONAL DESCRIPTION: A termination-checker for higher-order rewriting with dependent types. Took
part in the Termination Competition 2018 (http://termination-portal.org/wiki/Termination_Competition_2018
) in the "Higher-Order Rewriting (union Beta)" category.

• Partner: Mines ParisTech

• Contact: Guillaume Genestier

• URL: https://github.com/Deducteam/SizeChangeTool

5.15. Logipedia
KEYWORDS: Formal methods - Web Services - Logical Framework

FUNCTIONAL DESCRIPTION: Logipedia is composed of two distinct parts: 1) A back-end that translates
proofs expressed in a theory encoded in Dedukti to other systems such as Coq, Lean or HOL 2) A front-end
that prints these proofs in a "nice way" via a website. Using the website, the user can search for a definition or
a theorem then, download the whole proof into the wanted system.

Currently, the available systems are: Coq, Matita, Lean, PVS and OpenTheory. The proofs comes from a logic
called STTForall.

In the long run, more systems and more logic should be added.

RELEASE FUNCTIONAL DESCRIPTION: This is the beta version of Logipedia. It implements the functionali-
ties mentioned above.

• Contact: François Thiré

• URL: http://www.logipedia.science

https://github.com/gburel/lrat2dk
https://github.com/elhaddadyacine/ekstrakto
https://github.com/Deducteam/SizeChangeTool
http://www.logipedia.science

80 Proofs and Verification - Software and Platforms - Project-Team GALLINETTE

GALLINETTE Project-Team

5. New Software and Platforms

5.1. Coq
The Coq Proof Assistant

KEYWORDS: Proof - Certification - Formalisation

SCIENTIFIC DESCRIPTION: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and co-inductive
families, an impredicative sort and a hierarchy of predicative universes, making it a very expressive logic. The
calculus allows to formalize both general mathematics and computer programs, ranging from theories of finite
structures to abstract algebra and categories to programming language metatheory and compiler verification.
Coq is organised as a (relatively small) kernel including efficient conversion tests on which are built a set of
higher-level layers: a powerful proof engine and unification algorithm, various tactics/decision procedures, a
transactional document model and, at the very top an IDE.

FUNCTIONAL DESCRIPTION: Coq provides both a dependently-typed functional programming language and
a logical formalism, which, altogether, support the formalisation of mathematical theories and the specification
and certification of properties of programs. Coq also provides a large and extensible set of automatic or semi-
automatic proof methods. Coq’s programs are extractible to OCaml, Haskell, Scheme, ...

RELEASE FUNCTIONAL DESCRIPTION: Coq version 8.10 contains two major new features: support for
a native fixed-precision integer type and a new sort SProp of strict propositions. It is also the result of
refinements and stabilization of previous features, deprecations or removals of deprecated features, cleanups
of the internals of the system and API, and many documentation improvements. This release includes many
user-visible changes, including deprecations that are documented in the next subsection, and new features that
are documented in the reference manual.

Version 8.10 is the fifth release of Coq developed on a time-based development cycle. Its development spanned
6 months from the release of Coq 8.9. Vincent Laporte is the release manager and maintainer of this release.
This release is the result of 2500 commits and 650 PRs merged, closing 150+ issues.

See the Zenodo citation for more information on this release: https://zenodo.org/record/3476303#.Xe54f5NKjOQ

NEWS OF THE YEAR: Coq 8.10.0 contains:

- some quality-of-life bug fixes, - a critical bug fix related to template polymorphism, - native 63-bit machine
integers, - a new sort of definitionally proof-irrelevant propositions: SProp, - private universes for opaque
polymorphic constants, - string notations and numeral notations, - a new simplex-based proof engine for the
tactics lia, nia, lra and nra, - new introduction patterns for SSReflect, - a tactic to rewrite under binders: under,
- easy input of non-ASCII symbols in CoqIDE, which now uses GTK3.

All details can be found in the user manual.

• Participants: Yves Bertot, Frédéric Besson, Maxime Denes, Emilio Jesús Gallego Arias, Gaëtan
Gilbert, Jason Gross, Hugo Herbelin, Assia Mahboubi, Érik Martin-Dorel, Guillaume Melquiond,
Pierre-Marie Pédrot, Michael Soegtrop, Matthieu Sozeau, Enrico Tassi, Laurent Théry, Théo Zim-
mermann, Theo Winterhalter, Vincent Laporte, Arthur Charguéraud, Cyril Cohen, Christian Doczkal
and Chantal Keller

• Partners: CNRS - Université Paris-Sud - ENS Lyon - Université Paris-Diderot

• Contact: Matthieu Sozeau

• URL: http://coq.inria.fr/

http://www.inria.fr/equipes/gallinette
http://coq.inria.fr/

81 Proofs and Verification - Software and Platforms - Project-Team GALLINETTE

5.2. Math-Components
Mathematical Components library

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: The Mathematical Components library is a set of Coq libraries that cover the
prerequiste for the mechanization of the proof of the Odd Order Theorem.

RELEASE FUNCTIONAL DESCRIPTION: The library includes 16 more theory files, covering in particular field
and Galois theory, advanced character theory, and a construction of algebraic numbers.

• Participants: Alexey Solovyev, Andrea Asperti, Assia Mahboubi, Cyril Cohen, Enrico Tassi,
François Garillot, Georges Gonthier, Ioana Pasca, Jeremy Avigad, Laurence Rideau, Laurent Théry,
Russell O’Connor, Sidi Ould Biha, Stéphane Le Roux and Yves Bertot

• Contact: Assia Mahboubi

• URL: http://math-comp.github.io/math-comp/

5.3. Ssreflect
FUNCTIONAL DESCRIPTION: Ssreflect is a tactic language extension to the Coq system, developed by the
Mathematical Components team.

• Participants: Assia Mahboubi, Cyril Cohen, Enrico Tassi, Georges Gonthier, Laurence Rideau,
Laurent Théry and Yves Bertot

• Contact: Yves Bertot

• URL: http://math-comp.github.io/math-comp/

5.4. Ltac2
KEYWORDS: Coq - Proof assistant

FUNCTIONAL DESCRIPTION: A replacement for Ltac, the tactic language of Coq.

• Contact: Pierre-Marie Pédrot

http://math-comp.github.io/math-comp/
http://math-comp.github.io/math-comp/

82 Proofs and Verification - Software and Platforms - Project-Team MEXICO

MEXICO Project-Team

6. New Software and Platforms

6.1. COSMOS
KEYWORD: Model Checker

FUNCTIONAL DESCRIPTION: COSMOS is a statistical model checker for the Hybrid Automata Stochastic
Logic (HASL). HASL employs Linear Hybrid Automata (LHA), a generalization of Deterministic Timed
Automata (DTA), to describe accepting execution paths of a Discrete Event Stochastic Process (DESP), a class
of stochastic models which includes, but is not limited to, Markov chains. As a result HASL verification turns
out to be a unifying framework where sophisticated temporal reasoning is naturally blended with elaborate
reward-based analysis. COSMOS takes as input a DESP (described in terms of a Generalized Stochastic Petri
Net), an LHA and an expression Z representing the quantity to be estimated. It returns a confidence interval
estimation of Z, recently, it has been equipped with functionalities for rare event analysis.

It is easy to generate and use a C code for discrete Simulink models (using only discrete blocks, which are
sampled at fixed intervals) using MathWorks tools. However, it limits the expressivity of the models. In order
to use more diverse Simulink models and control the flow of a multi-model simulation (with Discrete Event
Stochastic Processes) we developed a Simulink Simulation Engine embedded into Cosmos.

COSMOS is written in C++

• Participants: Benoît Barbot, Hilal Djafri, Marie Duflot-Kremer, Paolo Ballarini and Serge Haddad

• Contact: Benoît Barbot

• URL: http://www.lsv.ens-cachan.fr/~barbot/cosmos/

6.2. CosyVerif
FUNCTIONAL DESCRIPTION: CosyVerif is a platform dedicated to the formal specification and verification
of dynamic systems. It allows to specify systems using several formalisms (such as automata and Petri nets),
and to run verification tools on these models.

• Participants: Alban Linard, Fabrice Kordon, Laure Petrucci and Serge Haddad

• Partners: LIP6 - LSV - LIPN (Laboratoire d’Informatique de l’Université Paris Nord)

• Contact: Serge Haddad

• URL: http://www.cosyverif.org/

6.3. Mole
FUNCTIONAL DESCRIPTION: Mole computes, given a safe Petri net, a finite prefix of its unfolding. It is
designed to be compatible with other tools, such as PEP and the Model-Checking Kit, which are using the
resulting unfolding for reachability checking and other analyses. The tool Mole arose out of earlier work on
Petri nets.

• Participant: Stefan Schwoon

• Contact: Stefan Schwoon

• URL: http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

http://www.inria.fr/equipes/mexico
http://www.lsv.ens-cachan.fr/~barbot/cosmos/
http://www.cosyverif.org/
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

83 Proofs and Verification - Software and Platforms - Team MOCQUA

MOCQUA Team

6. New Software and Platforms

6.1. FiatLux
KEYWORDS: Cellular automaton - Multi-agent - Distributed systems

SCIENTIFIC DESCRIPTION: FiatLux is a discrete dynamical systems simulator that allows the user to
experiment with various models and to perturb them. It includes 1D and 2D cellular automata, moving agents,
interacting particle systems, etc. Its main feature is to allow users to change the type of updating, for example
from a deterministic parallel updating to an asynchronous random updating. FiatLux has a Graphical User
Interface and can also be launched in a batch mode for the experiments that require statistics.

FUNCTIONAL DESCRIPTION: FiatLux is a cellular automata simulator in Java specially designed for the study
of the robustness of the models. Its main distinctive features is to allow to perturb the updating of the system
(synchrony rate) and to perturb the topology of the grid.

• Participants: Nazim Fatès and Olivier Boure

• Partners: ENS Lyon - Université de Lorraine

• Contact: Nazim Fatès

• URL: http://fiatlux.loria.fr/

6.2. ComplexityParser
KEYWORDS: Complexity - Static typing - Parsing

FUNCTIONAL DESCRIPTION: ComplexityParser is a static complexity analyzer of Java programs written in
Java (approximatively 5000 lines of code). The program consists in a type inference and checking program
based on the data tiering principle. It allows the program to certify that the typed program has a polynomial
time complexity.

• Participants: Olivier Zeyen, Emmanuel Hainry, Romain Péchoux and Emmanuel Jeandel

• Contact: Emmanuel Hainry

http://www.inria.fr/equipes/mocqua
http://fiatlux.loria.fr/

84 Proofs and Verification - Software and Platforms - Project-Team PARSIFAL

PARSIFAL Project-Team

6. New Software and Platforms

6.1. Abella
FUNCTIONAL DESCRIPTION: Abella is an interactive theorem prover for reasoning about computations given
as relational specifications. Abella is particuarly well suited for reasoning about binding constructs.

• Participants: Dale Miller, Gopalan Nadathur, Kaustuv Chaudhuri, Mary Southern, Matteo Cimini,
Olivier Savary-Bélanger and Yuting Wang

• Partner: Department of Computer Science and Engineering, University of Minnesota

• Contact: Kaustuv Chaudhuri

• URL: http://abella-prover.org/

6.2. Bedwyr
Bedwyr - A proof search approach to model checking

KEYWORD: Model Checker

FUNCTIONAL DESCRIPTION: Bedwyr is a generalization of logic programming that allows model checking
directly on syntactic expressions that possibly contain bindings. This system, written in OCaml, is a direct
implementation of two recent advances in the theory of proof search.

It is possible to capture both finite success and finite failure in a sequent calculus. Proof search in such a
proof system can capture both may and must behavior in operational semantics. Higher-order abstract syntax
is directly supported using term-level lambda-binders, the nabla quantifier, higher-order pattern unification,
and explicit substitutions. These features allow reasoning directly on expressions containing bound variables.

The distributed system comes with several example applications, including the finite pi-calculus (operational
semantics, bisimulation, trace analyses, and modal logics), the spi-calculus (operational semantics), value-
passing CCS, the lambda-calculus, winning strategies for games, and various other model checking problems.

• Participants: Dale Miller, Quentin Heath and Roberto Blanco Martinez

• Contact: Dale Miller

• URL: http://slimmer.gforge.inria.fr/bedwyr/

6.3. Checkers
Checkers - A proof verifier

KEYWORDS: Proof - Certification - Verification

FUNCTIONAL DESCRIPTION: Checkers is a tool in Lambda-prolog for the certification of proofs. Checkers
consists of a kernel which is based on LKF and is based on the notion of ProofCert.

• Participants: Giselle Machado Nogueira Reis, Marco Volpe and Tomer Libal

• Contact: Tomer Libal

• URL: https://github.com/proofcert/checkers

6.4. Psyche
Proof-Search factorY for Collaborative HEuristics

KEYWORD: Automated theorem proving

http://www.inria.fr/equipes/parsifal
http://abella-prover.org/
http://slimmer.gforge.inria.fr/bedwyr/
https://github.com/proofcert/checkers

85 Proofs and Verification - Software and Platforms - Project-Team PARSIFAL

FUNCTIONAL DESCRIPTION: Psyche is a modular platform for automated or interactive theorem proving,
programmed in OCaml and built on an architecture (similar to LCF) where a trusted kernel interacts with
plugins. The kernel offers an API of proof-search primitives, and plugins are programmed on top of the API to
implement search strategies. This architecture is set up for pure logical reasoning as well as for theory-specific
reasoning, for various theories.

RELEASE FUNCTIONAL DESCRIPTION: It is now equipped with the machinery to handle quantifiers and
quantifier-handling techniques. Concretely, it uses meta-variables to delay the instantiation of existential
variables, and constraints on meta-variables are propagated through the various branches of the search-space,
in a way that allows local backtracking. The kernel, of about 800 l.o.c., is purely functional.

• Participants: Assia Mahboubi, Jean-Marc Notin and Stéphane Graham-Lengrand

• Contact: Stéphane Graham-Lengrand

• URL: http://www.csl.sri.com/users/sgl/

6.5. Maetning
FUNCTIONAL DESCRIPTION: Mætning is an automated theorem prover for intuitionistic predicate logic that
is designed to disprove non-theorems.

• Contact: Kaustuv Chaudhuri

• URL: https://github.com/chaudhuri/maetning/

6.6. OCaml
KEYWORDS: Functional programming - Static typing - Compilation

FUNCTIONAL DESCRIPTION: The OCaml language is a functional programming language that combines
safety with expressiveness through the use of a precise and flexible type system with automatic type inference.
The OCaml system is a comprehensive implementation of this language, featuring two compilers (a bytecode
compiler, for fast prototyping and interactive use, and a native-code compiler producing efficient machine
code for x86, ARM, PowerPC and System Z), a debugger, a documentation generator, a compilation manager,
a package manager, and many libraries contributed by the user community.

• Participants: Damien Doligez, Xavier Leroy, Fabrice Le Fessant, Luc Maranget, Gabriel Scherer,
Alain Frisch, Jacques Garrigue, Marc Shinwell, Jeremy Yallop and Leo White

• Contact: Damien Doligez

• URL: https://ocaml.org/

http://www.csl.sri.com/users/sgl/
https://github.com/chaudhuri/maetning/
https://ocaml.org/

86 Proofs and Verification - Software and Platforms - Project-Team PI.R2

PI.R2 Project-Team

5. New Software and Platforms

5.1. Coq
The Coq Proof Assistant

KEYWORDS: Proof - Certification - Formalisation

SCIENTIFIC DESCRIPTION: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and co-inductive
families, an impredicative sort and a hierarchy of predicative universes, making it a very expressive logic. The
calculus allows to formalize both general mathematics and computer programs, ranging from theories of finite
structures to abstract algebra and categories to programming language metatheory and compiler verification.
Coq is organised as a (relatively small) kernel including efficient conversion tests on which are built a set of
higher-level layers: a powerful proof engine and unification algorithm, various tactics/decision procedures, a
transactional document model and, at the very top an IDE.

FUNCTIONAL DESCRIPTION: Coq provides both a dependently-typed functional programming language and
a logical formalism, which, altogether, support the formalisation of mathematical theories and the specification
and certification of properties of programs. Coq also provides a large and extensible set of automatic or semi-
automatic proof methods. Coq’s programs are extractible to OCaml, Haskell, Scheme, ...

RELEASE FUNCTIONAL DESCRIPTION: Coq version 8.10 contains two major new features: support for
a native fixed-precision integer type and a new sort SProp of strict propositions. It is also the result of
refinements and stabilization of previous features, deprecations or removals of deprecated features, cleanups
of the internals of the system and API, and many documentation improvements. This release includes many
user-visible changes, including deprecations that are documented in the next subsection, and new features that
are documented in the reference manual.

Version 8.10 is the fifth release of Coq developed on a time-based development cycle. Its development spanned
6 months from the release of Coq 8.9. Vincent Laporte is the release manager and maintainer of this release.
This release is the result of 2500 commits and 650 PRs merged, closing 150+ issues.

See the Zenodo citation for more information on this release: https://zenodo.org/record/3476303#.Xe54f5NKjOQ

NEWS OF THE YEAR: Coq 8.10.0 contains:

- some quality-of-life bug fixes, - a critical bug fix related to template polymorphism, - native 63-bit machine
integers, - a new sort of definitionally proof-irrelevant propositions: SProp, - private universes for opaque
polymorphic constants, - string notations and numeral notations, - a new simplex-based proof engine for the
tactics lia, nia, lra and nra, - new introduction patterns for SSReflect, - a tactic to rewrite under binders: under,
- easy input of non-ASCII symbols in CoqIDE, which now uses GTK3.

All details can be found in the user manual.

• Participants: Yves Bertot, Frédéric Besson, Maxime Denes, Emilio Jesús Gallego Arias, Gaëtan
Gilbert, Jason Gross, Hugo Herbelin, Assia Mahboubi, Érik Martin-Dorel, Guillaume Melquiond,
Pierre-Marie Pédrot, Michael Soegtrop, Matthieu Sozeau, Enrico Tassi, Laurent Théry, Théo Zim-
mermann, Theo Winterhalter, Vincent Laporte, Arthur Charguéraud, Cyril Cohen, Christian Doczkal
and Chantal Keller

• Partners: CNRS - Université Paris-Sud - ENS Lyon - Université Paris-Diderot

• Contact: Matthieu Sozeau

• URL: http://coq.inria.fr/

http://www.inria.fr/equipes/pi.r2
http://coq.inria.fr/

87 Proofs and Verification - Software and Platforms - Project-Team PI.R2

5.2. Equations
KEYWORDS: Coq - Dependent Pattern-Matching - Proof assistant - Functional programming

SCIENTIFIC DESCRIPTION: Equations is a tool designed to help with the definition of programs in the setting
of dependent type theory, as implemented in the Coq proof assistant. Equations provides a syntax for defining
programs by dependent pattern-matching and well-founded recursion and compiles them down to the core type
theory of Coq, using the primitive eliminators for inductive types, accessibility and equality. In addition to the
definitions of programs, it also automatically derives useful reasoning principles in the form of propositional
equations describing the functions, and an elimination principle for calls to this function. It realizes this using
a purely definitional translation of high-level definitions to core terms, without changing the core calculus in
any way, or using axioms.

FUNCTIONAL DESCRIPTION: Equations is a function definition plugin for Coq (supporting Coq 8.8 to 8.10,
with special support for the Coq-HoTT library), that allows the definition of functions by dependent pattern-
matching and well-founded, mutual or nested structural recursion and compiles them into core terms. It
automatically derives the clauses equations, the graph of the function and its associated elimination principle.

Equations is based on a simplification engine for the dependent equalities appearing in dependent eliminations
that is also usable as a separate tactic, providing an axiom-free variant of dependent destruction. The main
features of Equations include:

Dependent pattern-matching in the style of Agda/Epigram, with inaccessible patterns, with and where clauses.
The use of the K axiom or a proof of K is configurable, and it is able to solve unification problems without
resorting to the K rule if not necessary.

Support for well-founded and mutual recursion using measure/well-foundedness annotations, even on indexed
inductive types, using an automatic derivation of the subterm relation for inductive families.

Support for mutual and nested structural recursion using with and where auxilliary definitions, allowing to
factor multiple uses of the same nested fixpoint definition. It proves the expected elimination principles for
mutual and nested definitions.

Automatic generation of the defining equations as rewrite rules for every definition.

Automatic generation of the unfolding lemma for well-founded definitions (requiring only functional exten-
sionality).

Automatic derivation of the graph of the function and its elimination principle. In case the automation fails to
prove these principles, the user is asked to provide a proof.

A new dependent elimination tactic based on the same splitting tree compilation scheme that can advanta-
geously replace dependent destruction and sometimes inversion as well. The as clause of dependent elimina-
tion allows to specify exactly the patterns and naming of new variables needed for an elimination.

A set of Derive commands for automatic derivation of constructions from an inductive type: its signature,
no-confusion property, well-founded subterm relation and decidable equality proof, if applicable.

RELEASE FUNCTIONAL DESCRIPTION: This version of Equations is based on an improved simplification
engine for the dependent equalities appearing during dependent eliminations that is also usable as a separate
dependent elimination tactic, providing an axiom-free variant of dependent destruction and a more powerful
form of inversion. See http://mattam82.github.io/Coq-Equations/equations/2019/01/28/1.2beta.html and the
following release notes for more information.

NEWS OF THE YEAR: Equations 1.2 was first released in may this year, after 3 years of development. It
provides a refined simplification engine based on the work published at ICFP’19 (see the "Equations Reloaded"
paper for details). The system has been improved to also work in the setting of Homotopy Type Theory and
provides a more expressive source language and robust dependent elimination tactics.

• Participants: Matthieu Sozeau and Cyprien Mangin

• Contact: Matthieu Sozeau

88 Proofs and Verification - Software and Platforms - Project-Team PI.R2

• Publications: Equations reloaded - Equations for Hereditary Substitution in Leivant’s Predicative
System F: A Case Study - Equations: A Dependent Pattern-Matching Compiler

• URL: http://mattam82.github.io/Coq-Equations/

5.3. Rewr
Rewriting methods in algebra

KEYWORDS: Computer algebra system (CAS) - Rewriting systems - Algebra

FUNCTIONAL DESCRIPTION: Rewr is a prototype of computer algebra system, using rewriting methods
to compute resolutions and homotopical invariants of monoids. The library implements various classical
constructions of rewriting theory (such as completion), improved by experimental features coming from
Garside theory, and allows homotopical algebra computations based on Squier theory. Specific functionalities
have been developed for usual classes of monoids, such as Artin monoids and plactic monoids.

NEWS OF THE YEAR: Rewr has been extended with the experimental KGB completion algorithm, based on
Knuth-Bendix completion procedure improved by techniques coming from Garside theory.

• Participants: Yves Guiraud and Samuel Mimram

• Contact: Yves Guiraud

• Publications: Higher-dimensional categories with finite derivation type - Higher-dimensional nor-
malisation strategies for acyclicity - Coherent presentations of Artin monoids - A Homotopical Com-
pletion Procedure with Applications to Coherence of Monoids - Polygraphs of finite derivation type
- Quadratic normalisation in monoids

• URL: http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/rewr

5.4. Catex
KEYWORDS: LaTeX - String diagram - Algebra

FUNCTIONAL DESCRIPTION: Catex is a Latex package and an external tool to typeset string diagrams easily
from their algebraic expression. Catex works similarly to Bibtex.

NEWS OF THE YEAR: It is now possible to add labels to objects and morphisms

• Participant: Yves Guiraud

• Contact: Yves Guiraud

• URL: https://www.irif.fr/~guiraud/catex/catex.zip

5.5. Cox
KEYWORDS: Computer algebra system (CAS) - Rewriting systems - Algebra

FUNCTIONAL DESCRIPTION: Cox is a Python library for the computation of coherent presentations of Artin
monoids, with experimental features to compute the lower dimensions of the Salvetti complex.

• Participant: Yves Guiraud

• Contact: Yves Guiraud

• Publications: Coherent presentations of Artin monoids - A Homotopical Completion Procedure with
Applications to Coherence of Monoids

• URL: https://www.irif.fr/~guiraud/cox/cox.zip

5.6. jsCoq
KEYWORDS: Coq - Program verification - Interactive - Formal concept analysis - Proof assistant - Ocaml -
Education - JavaScript

https://hal.inria.fr/hal-01671777
https://hal.inria.fr/hal-01248807
https://hal.inria.fr/hal-01248807
https://hal.inria.fr/inria-00628862
http://mattam82.github.io/Coq-Equations/
https://hal.inria.fr/hal-00326974
https://hal.inria.fr/hal-00531242
https://hal.inria.fr/hal-00531242
https://hal.inria.fr/hal-00682233
https://hal.inria.fr/hal-00818253
https://hal.inria.fr/hal-00818253
https://hal.inria.fr/hal-00932845
https://hal.inria.fr/hal-01141226
http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/rewr
https://www.irif.fr/~guiraud/catex/catex.zip
https://hal.inria.fr/hal-00682233
https://hal.inria.fr/hal-00818253
https://hal.inria.fr/hal-00818253
https://www.irif.fr/~guiraud/cox/cox.zip

89 Proofs and Verification - Software and Platforms - Project-Team PI.R2

FUNCTIONAL DESCRIPTION: jsCoq is an Online Integrated Development Environment for the Coq proof
assistant and runs in your browser! It aims to enable new UI/interaction possibilities and to improve the
accessibility of the Coq platform itself.

RELEASE FUNCTIONAL DESCRIPTION: - Coq 8.10 support - Much improved interaction and general
experience - Open / Save dialogs - AST and full serialization of Coq’s datatypes - NPM packaging - Timeout
support

• Participant: Emilio Jesus Gallego Arias

• Partners: Mines ParisTech - Technion, Israel Institute of Technology

• Contact: Emilio Jesus Gallego Arias

• Publication: jsCoq: Towards Hybrid Theorem Proving Interfaces

• URL: https://github.com/ejgallego/jscoq

5.7. coq-serapi
KEYWORDS: Interaction - Coq - Ocaml - Data centric - User Interfaces - GUI (Graphical User Interface) -
Toolkit

FUNCTIONAL DESCRIPTION: SerAPI is a library for machine-to-machine interaction with the Coq proof
assistant, with particular emphasis on applications in IDEs, code analysis tools, and machine learning. SerAPI
provides automatic serialization of Coq’s internal OCaml datatypes from/to JSON or S-expressions (sexps).

RELEASE FUNCTIONAL DESCRIPTION: - Support Coq 8.10 - Serialization of extensive AST - Serialization
of kernel structures - Support for kernel traces [dumping and replay] - Tokenization of Coq documents -
Serialization to JSON - Improved protocol and printing - Bug fixes

• Participant: Karl Palmskog

• Partner: KTH Royal Institute of Technology

• Contact: Emilio Jesus Gallego Arias

• Publication: SerAPI: Machine-Friendly, Data-Centric Serialization for COQ : Technical Report

• URL: https://github.com/ejgallego/coq-serapi

https://hal.inria.fr/hal-01425752
https://github.com/ejgallego/jscoq
https://hal.inria.fr/hal-01384408
https://github.com/ejgallego/coq-serapi

90 Proofs and Verification - Software and Platforms - Project-Team STAMP

STAMP Project-Team

5. New Software and Platforms

5.1. Coq
The Coq Proof Assistant

KEYWORDS: Proof - Certification - Formalisation

SCIENTIFIC DESCRIPTION: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and co-inductive
families, an impredicative sort and a hierarchy of predicative universes, making it a very expressive logic. The
calculus allows to formalize both general mathematics and computer programs, ranging from theories of finite
structures to abstract algebra and categories to programming language metatheory and compiler verification.
Coq is organised as a (relatively small) kernel including efficient conversion tests on which are built a set of
higher-level layers: a powerful proof engine and unification algorithm, various tactics/decision procedures, a
transactional document model and, at the very top an IDE.

FUNCTIONAL DESCRIPTION: Coq provides both a dependently-typed functional programming language and
a logical formalism, which, altogether, support the formalisation of mathematical theories and the specification
and certification of properties of programs. Coq also provides a large and extensible set of automatic or semi-
automatic proof methods. Coq’s programs are extractible to OCaml, Haskell, Scheme, ...

RELEASE FUNCTIONAL DESCRIPTION: Coq version 8.10 contains two major new features: support for
a native fixed-precision integer type and a new sort SProp of strict propositions. It is also the result of
refinements and stabilization of previous features, deprecations or removals of deprecated features, cleanups
of the internals of the system and API, and many documentation improvements. This release includes many
user-visible changes, including deprecations that are documented in the next subsection, and new features that
are documented in the reference manual.

Version 8.10 is the fifth release of Coq developed on a time-based development cycle. Its development spanned
6 months from the release of Coq 8.9. Vincent Laporte is the release manager and maintainer of this release.
This release is the result of 2500 commits and 650 PRs merged, closing 150+ issues.

See the Zenodo citation for more information on this release: https://zenodo.org/record/3476303#.
Xe54f5NKjOQ

NEWS OF THE YEAR: Coq 8.10.0 contains:

- some quality-of-life bug fixes,

- a critical bug fix related to template polymorphism,

- native 63-bit machine integers,

- a new sort of definitionally proof-irrelevant propositions: SProp,

- private universes for opaque polymorphic constants,

- string notations and numeral notations,

- a new simplex-based proof engine for the tactics lia, nia, lra and nra,

- new introduction patterns for SSReflect,

- a tactic to rewrite under binders: under,

- easy input of non-ASCII symbols in CoqIDE, which now uses GTK3.

http://www.inria.fr/equipes/stamp
https://zenodo.org/record/3476303#.Xe54f5NKjOQ
https://zenodo.org/record/3476303#.Xe54f5NKjOQ

91 Proofs and Verification - Software and Platforms - Project-Team STAMP

All details can be found in the user manual.
• Participants: Yves Bertot, Frédéric Besson, Maxime Denes, Emilio Jesús Gallego Arias, Gaëtan

Gilbert, Jason Gross, Hugo Herbelin, Assia Mahboubi, Érik Martin-Dorel, Guillaume Melquiond,
Pierre-Marie Pédrot, Michael Soegtrop, Matthieu Sozeau, Enrico Tassi, Laurent Théry, Théo Zim-
mermann, Theo Winterhalter, Vincent Laporte, Arthur Charguéraud, Cyril Cohen, Christian Doczkal
and Chantal Keller

• Partners: CNRS - Université Paris-Sud - ENS Lyon - Université Paris-Diderot
• Contact: Matthieu Sozeau
• URL: http://coq.inria.fr/

5.2. Math-Components
Mathematical Components library

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: The Mathematical Components library is a set of Coq libraries that cover the
prerequiste for the mechanization of the proof of the Odd Order Theorem.

RELEASE FUNCTIONAL DESCRIPTION: This releases is compatible with Coq 8.9 and Coq 8.10 it adds many
theorems for finite function, prime numbers, sequences, finite types, bigo operations, natural numbers, cycles
in graphs.
• Participants: Alexey Solovyev, Andrea Asperti, Assia Mahboubi, Cyril Cohen, Enrico Tassi,

François Garillot, Georges Gonthier, Ioana Pasca, Jeremy Avigad, Laurence Rideau, Laurent Théry,
Russell O’Connor, Sidi Ould Biha, Stéphane Le Roux and Yves Bertot

• Contact: Assia Mahboubi
• URL: http://math-comp.github.io/math-comp/

5.3. Semantics
KEYWORDS: Semantic - Programming language - Coq

FUNCTIONAL DESCRIPTION: A didactical Coq development to introduce various semantics styles. Shows
how to derive an interpreter, a verifier, or a program analyser from formal descriptions, and how to prove their
consistency.

This is a library for the Coq system, where the description of a toy programming language is presented. The
value of this library is that it can be re-used in classrooms to teach programming language semantics or the Coq
system. The topics covered include introductory notions to domain theory, pre and post-conditions, abstract
interpretation, and the proofs of consistency between all these point of views on the same programming
language. Standalone tools for the object programming language can be derived from this development.
• Participants: Christine Paulin and Yves Bertot
• Contact: Yves Bertot
• URL: http://www-sop.inria.fr/members/Yves.Bertot/proofs/semantics_survey.tgz

5.4. Easycrypt
KEYWORDS: Proof assistant - Cryptography

FUNCTIONAL DESCRIPTION: EasyCrypt is a toolset for reasoning about relational properties of probabilistic
computations with adversarial code. Its main application is the construction and verification of game-based
cryptographic proofs. EasyCrypt can also be used for reasoning about differential privacy.
• Participants: Benjamin Grégoire, Gilles Barthe and Pierre-Yves Strub
• Contact: Gilles Barthe
• URL: https://www.easycrypt.info/trac/

http://coq.inria.fr/
http://math-comp.github.io/math-comp/
http://www-sop.inria.fr/members/Yves.Bertot/proofs/semantics_survey.tgz
https://www.easycrypt.info/trac/

92 Proofs and Verification - Software and Platforms - Project-Team STAMP

5.5. ELPI
Embeddable Lambda Prolog Interpreter

KEYWORDS: Constraint Programming - Programming language - Higher-order logic

SCIENTIFIC DESCRIPTION: The programming language has the following features

- Native support for variable binding and substitution, via an Higher Order Abstract Syntax (HOAS) embed-
ding of the object language. The programmer needs not to care about De Bruijn indexes.

- Native support for hypothetical context. When moving under a binder one can attach to the bound variable
extra information that is collected when the variable gets out of scope. For example when writing a type-
checker the programmer needs not to care about managing the typing context.

- Native support for higher order unification variables, again via HOAS. Unification variables of the meta-
language (lambdaProlog) can be reused to represent the unification variables of the object language. The
programmer does not need to care about the unification-variable assignment map and cannot assign to a
unification variable a term containing variables out of scope, or build a circular assignment.

- Native support for syntactic constraints and their meta-level handling rules. The generative semantics of
Prolog can be disabled by turning a goal into a syntactic constraint (suspended goal). A syntactic constraint
is resumed as soon as relevant variables gets assigned. Syntactic constraints can be manipulated by constraint
handling rules (CHR).

- Native support for backtracking. To ease implementation of search.

- The constraint store is extensible. The host application can declare non-syntactic constraints and use custom
constraint solvers to check their consistency.

- Clauses are graftable. The user is free to extend an existing program by inserting/removing clauses, both at
runtime (using implication) and at "compilation" time by accumulating files.

Most of these feature come with lambdaProlog. Constraints and propagation rules are novel in ELPI.

FUNCTIONAL DESCRIPTION: ELPI implements a variant of lambdaProlog enriched with Constraint Handling
Rules, a programming language well suited to manipulate syntax trees with binders and unification variables.

ELPI is a research project aimed at providing a programming platform for the so called elaborator component
of an interactive theorem prover.

ELPI is designed to be embedded into larger applications written in OCaml as an extension language. It comes
with an API to drive the interpreter and with an FFI for defining built-in predicates and data types, as well as
quotations and similar goodies that come in handy to adapt the language to the host application.

RELEASE FUNCTIONAL DESCRIPTION: improvement to the parser (parsing negative numbers) improvement
to the foreign function interface (accepting ternary comparison, instead of equality) adds ternary comparisons
to the standard library provides a builtin comparison cmp_term provides a builtin to check whether a term is
ground

NEWS OF THE YEAR: There were 7 releases in 2019. Work done mostly in these areas:

- consolidation (documentation, bug fixes, test suits)

- API and FFI (making it easier to export host applications to ELPI)

- standard library

• Participant: Claudio Sacerdoti Coen

• Contact: Enrico Tassi

• Publications: ELPI: fast, Embeddable, λProlog Interpreter - Implementing Type Theory in Higher
Order Constraint Logic Programming - Deriving proved equality tests in Coq-elpi: Stronger induc-
tion principles for containers in Coq

• URL: https://github.com/lpcic/elpi/

https://hal.inria.fr/hal-01176856
https://hal.inria.fr/hal-01410567
https://hal.inria.fr/hal-01410567
https://hal.inria.fr/hal-01897468
https://hal.inria.fr/hal-01897468
https://github.com/lpcic/elpi/

93 Proofs and Verification - Software and Platforms - Project-Team STAMP

5.6. Coq-elpi
KEYWORDS: Metaprogramming - Extension

SCIENTIFIC DESCRIPTION: Coq-elpi provides a Coq plugin that embeds ELPI. It also provides a way to
embed Coq’s terms into lambdaProlog using the Higher-Order Abstract Syntax approach (HOAS) and a way
to read terms back. In addition to that it exports to ELPI a set of Coq’s primitives, e.g. printing a message,
accessing the environment of theorems and data types, defining a new constant and so on. For convenience it
also provides a quotation and anti-quotation for Coq’s syntax in lambdaProlog. E.g. {{nat}} is expanded to the
type name of natural numbers, or {{A -> B}} to the representation of a product by unfolding the -> notation.
Finally it provides a way to define new vernacular commands and new tactics.

FUNCTIONAL DESCRIPTION: Coq plugin embedding ELPI

RELEASE FUNCTIONAL DESCRIPTION: Minor relase for extra API for global reference data types

NEWS OF THE YEAR: Releases 1.0, 1.1, and 1.2 were made in 2019, they constitute the first public release
with tutorials and examples.

Work done in 2019 is mostly in these areas:

- expose a complete set of API to script Coq’s vernacular language

- take advantage or recent ELPI API and FFI to convert back and forth terms containing existential variables
(Evars)

• Contact: Enrico Tassi

• Publications: Deriving proved equality tests in Coq-elpi: Stronger induction principles for containers
in Coq - Elpi: an extension language for Coq (Metaprogramming Coq in the Elpi λProlog dialect)

5.7. AutoGnP
KEYWORDS: Formal methods - Security - Cryptography

FUNCTIONAL DESCRIPTION: autoGnP is an automated tool for analyzing the security of padding-based
public-key encryption schemes (i.e. schemes built from trapdoor permutations and hash functions). This years
we extended the tool to be able to deal with schemes based on cyclic groups and bilinear maps.

• Participants: Benjamin Grégoire, Gilles Barthe and Pierre-Yves Strub

• Contact: Gilles Barthe

• URL: https://github.com/ZooCrypt/AutoGnP

5.8. MaskComp
KEYWORD: Masking

FUNCTIONAL DESCRIPTION: MaskComp is a compiler generating masked implémentation protected against
side channel attack based on differential power analysis. It take a unmasked program in a syntaxe close to
C and generate a new C protected program. We did not claim that the generate C program will be secure
after compilation (C compiler can break protection), but it provide a good support for generating masked
implementation.

• Contact: Benjamin Grégoire

• URL: https://sites.google.com/site/maskingcompiler/home

5.9. Jasmin
Jasmin compiler and analyser

KEYWORDS: Cryptography - Static analysis - Compilers

https://hal.inria.fr/hal-01897468
https://hal.inria.fr/hal-01897468
https://hal.inria.fr/hal-01637063
https://github.com/ZooCrypt/AutoGnP
https://sites.google.com/site/maskingcompiler/home

94 Proofs and Verification - Software and Platforms - Project-Team STAMP

FUNCTIONAL DESCRIPTION: Analysing the execution time of a cryptographic code can be a way to discover
the secret protected by this code. To avoid this pitfall, Jasmin proposes a high-level language and an analyzer
for this language that makes it possible to predict when the execution of this code will happen in constant time
and thus does not unveil the secret (for instance, the cryptographic key). Once the Jasmin code is valid with
respect to the analyzer, the compiler produces assembly code that still preserves this property of constant time.
• Contact: Benjamin Grégoire

5.10. MaskVerif
KEYWORDS: Masking - Hardware and Software Platform

FUNCTIONAL DESCRIPTION: MaskVerif is a tool to verify the security of implementations protected against
side channel attacks, in particular differential power analysis. It allows to check different security notions
in the probing model: - Probing security - Non Interference - Strong Non Interference. The tool is able to
analyse software implementations and hardware implementations (written in Verilog). It can prove the different
security notions in presence of glitch or transition.
• Contact: Benjamin Grégoire
• URL: https://sites.google.com/view/maskverif/home

5.11. CoqEAL
The Coq Effective Algebra Library

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: This library contains formal developments in algebra and optimized algorithms
on mathcomp data structures and a framework to ease change of data representation during a proof.

RELEASE FUNCTIONAL DESCRIPTION: First release
• Contact: Cyril Cohen

5.12. math-comp-analysis
Mathematical Components Analysis

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: This library adds definitions and theorems for real numbers and their mathe-
matical structures

RELEASE FUNCTIONAL DESCRIPTION: Compatible with mathcomp 1.8.0, 1.9.0, and 1.10.0

NEWS OF THE YEAR: In 2019, there were 3 releases.
• Partners: Ecole Polytechnique - AIST Tsukuba
• Contact: Cyril Cohen
• Publication: Formalization Techniques for Asymptotic Reasoning in Classical Analysis
• URL: https://github.com/math-comp/analysis

5.13. math-comp-finmap
Finite maps and ordered types library

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: Support for reasoning about finite maps and ordered types

RELEASE FUNCTIONAL DESCRIPTION: This release is solely an update of order.v and set.v in order to
integrate the changes in math-comp/math-comp#270
• Contact: Cyril Cohen

https://sites.google.com/view/maskverif/home
https://hal.inria.fr/hal-01719918
https://github.com/math-comp/analysis

95 Proofs and Verification - Software and Platforms - Project-Team STAMP

5.14. math-comp-real-closed
Real Closed Fields

KEYWORD: Proof assistant

FUNCTIONAL DESCRIPTION: Theorems for real closed fields

RELEASE FUNCTIONAL DESCRIPTION: First release

• Contact: Cyril Cohen

• URL: https://github.com/math-comp/real-closed

https://github.com/math-comp/real-closed

96 Proofs and Verification - Software and Platforms - Project-Team SUMO

SUMO Project-Team

6. New Software and Platforms

6.1. Active Workspaces
KEYWORDS: Active workspace - Collaborative systems - Artifact centric workflow system

SCIENTIFIC DESCRIPTION: Tool for computer supported cooperative work where a user’s workspace is given
by an active structured repository containing the pending tasks together with information needed to perform
the tasks. Communication between active workspaces is asynchronous using message passing. The tool is
based on the model of guarded attribute grammars.

• Authors: Éric Badouel and Robert Nsaibirni

• Contact: Éric Badouel

• URL: http://people.rennes.inria.fr/Eric.Badouel/Research/ActiveWorkspaces.html

6.2. SIMSTORS
Simulator for stochastic regulated systems

KEYWORDS: Simulation - Public transport - Stochastic models - Distributed systems

FUNCTIONAL DESCRIPTION: SIMSTORS is a software for the simulation of stochastic concurrent timed
systems. The heart of the software is a variant of stochastic and timed Petri nets, whose execution is controlled
by a regulation policy (a controller), or a predetermined theoretical schedule. The role of the regulation
policy is to control the system to realize objectives or a schedule when it exists with the best possible
precision. SIMSTORS is well adapted to represent systems with randomness, parallelism, tasks scheduling,
and resources. From 2015 to 2018, it was used for the P22 collaboration with Asltom Transport, to model
metro traffic and evaluate performance of regulation solutions. It is now (2019) at the heart of a collaboration
on multi-modal networks with Alstom transport Madrid. This software allows for step by step simulation,
but also for efficient performance analysis of systems such as production cells or train systems. The initial
implementation was released in 2015, and the software is protected by the APP.

Since then, SIMSTORS has been extended along two main axes: on one hand, SIMSTORS models were
extended to handle situations where shared resources can be occupied by more than one object (this is
of paramount importance to represent conveyors, roads occupied by cars, or train tracks with smoothed
scheduling allowing shared sections among trains) with priorities, constraint on their ordering and individual
characteristics. This allows for instance to model vehicles with different speeds on a road, while handling
safety distance constraints. On the other hand, SIMSTORS models were extended to allow control of stochastic
nets based on decision rules that follow optimization schemes. In 2019, it was extended to include planning-
based regulation techniques during a collaboration with Roma 3 University.

RELEASE FUNCTIONAL DESCRIPTION: modeling of continuous vehicles movements

• Participants: Abd El Karim Kecir and Loïc Hélouët

• Contact: Loïc Hélouët

• URL: http://www.irisa.fr/sumo/Software/SIMSTORS/

http://www.inria.fr/equipes/sumo
http://people.rennes.inria.fr/Eric.Badouel/Research/ActiveWorkspaces.html
http://www.irisa.fr/sumo/Software/SIMSTORS/

97 Proofs and Verification - Software and Platforms - Project-Team TOCCATA

TOCCATA Project-Team

6. New Software and Platforms
6.1. Alt-Ergo

Automated theorem prover for software verification

KEYWORDS: Software Verification - Automated theorem proving

FUNCTIONAL DESCRIPTION: Alt-Ergo is an automatic solver of formulas based on SMT technology. It is
especially designed to prove mathematical formulas generated by program verification tools, such as Frama-C
for C programs, or SPARK for Ada code. Initially developed in Toccata research team, Alt-Ergo’s distribution
and support are provided by OCamlPro since September 2013.

RELEASE FUNCTIONAL DESCRIPTION: the "SAT solving" part can now be delegated to an external plu-
gin, new experimental SAT solver based on mini-SAT, provided as a plugin. This solver is, in general, more
efficient on ground problems, heuristics simplification in the default SAT solver and in the matching (instan-
tiation) module, re-implementation of internal literals representation, improvement of theories combination
architecture, rewriting some parts of the formulas module, bugfixes in records and numbers modules, new op-
tion "-no-Ematching" to perform matching without equality reasoning (i.e. without considering "equivalence
classes"). This option is very useful for benchmarks coming from Atelier-B, two new experimental options:
"-save-used-context" and "-replay-used-context". When the goal is proved valid, the first option allows to save
the names of useful axioms into a ".used" file. The second one is used to replay the proof using only the ax-
ioms listed in the corresponding ".used" file. Note that the replay may fail because of the absence of necessary
ground terms generated by useless axioms (that are not included in .used file) during the initial run.
• Participants: Alain Mebsout, Évelyne Contejean, Mohamed Iguernelala, Stéphane Lescuyer and

Sylvain Conchon
• Partner: OCamlPro
• Contact: Sylvain Conchon
• URL: http://alt-ergo.lri.fr

6.2. CoqInterval
Interval package for Coq

KEYWORDS: Interval arithmetic - Coq

FUNCTIONAL DESCRIPTION: CoqInterval is a library for the proof assistant Coq.

It provides several tactics for proving theorems on enclosures of real-valued expressions. The proofs are
performed by an interval kernel which relies on a computable formalization of floating-point arithmetic in
Coq.

The Marelle team developed a formalization of rigorous polynomial approximation using Taylor models in
Coq. In 2014, this library has been included in CoqInterval.
• Participants: Assia Mahboubi, Érik Martin-Dorel, Guillaume Melquiond, Jean-Michel Muller, Lau-

rence Rideau, Laurent Théry, Micaela Mayero, Mioara Joldes, Nicolas Brisebarre and Thomas Sibut-
Pinote

• Contact: Guillaume Melquiond
• Publications: Proving bounds on real-valued functions with computations - Floating-point arithmetic

in the Coq system - Proving Tight Bounds on Univariate Expressions with Elementary Functions in
Coq - Formally Verified Approximations of Definite Integrals - Formally Verified Approximations
of Definite Integrals

• URL: http://coq-interval.gforge.inria.fr/

http://www.inria.fr/equipes/toccata
http://alt-ergo.lri.fr
https://hal.inria.fr/hal-00180138
https://hal.inria.fr/hal-00797913
https://hal.inria.fr/hal-00797913
https://hal.inria.fr/hal-01086460
https://hal.inria.fr/hal-01086460
https://hal.inria.fr/hal-01289616
https://hal.inria.fr/hal-01630143
https://hal.inria.fr/hal-01630143
http://coq-interval.gforge.inria.fr/

98 Proofs and Verification - Software and Platforms - Project-Team TOCCATA

6.3. Coquelicot
The Coquelicot library for real analysis in Coq

KEYWORDS: Coq - Real analysis

FUNCTIONAL DESCRIPTION: Coquelicot is library aimed for supporting real analysis in the Coq proof assis-
tant. It is designed with three principles in mind. The first is the user-friendliness, achieved by implementing
methods of automation, but also by avoiding dependent types in order to ease the stating and readability of
theorems. This latter part was achieved by defining total function for basic operators, such as limits or inte-
grals. The second principle is the comprehensiveness of the library. By experimenting on several applications,
we ensured that the available theorems are enough to cover most cases. We also wanted to be able to extend
our library towards more generic settings, such as complex analysis or Euclidean spaces. The third principle
is for the Coquelicot library to be a conservative extension of the Coq standard library, so that it can be easily
combined with existing developments based on the standard library.
• Participants: Catherine Lelay, Guillaume Melquiond and Sylvie Boldo
• Contact: Sylvie Boldo
• URL: http://coquelicot.saclay.inria.fr/

6.4. Cubicle
The Cubicle model checker modulo theories

KEYWORDS: Model Checking - Software Verification

FUNCTIONAL DESCRIPTION: Cubicle is an open source model checker for verifying safety properties of
array-based systems, which corresponds to a syntactically restricted class of parametrized transition systems
with states represented as arrays indexed by an arbitrary number of processes. Cache coherence protocols and
mutual exclusion algorithms are typical examples of such systems.
• Participants: Alain Mebsout and Sylvain Conchon
• Contact: Sylvain Conchon
• URL: http://cubicle.lri.fr/

6.5. Flocq
The Flocq library for formalizing floating-point arithmetic in Coq

KEYWORDS: Floating-point - Arithmetic code - Coq

FUNCTIONAL DESCRIPTION: The Flocq library for the Coq proof assistant is a comprehensive formalization
of floating-point arithmetic: core definitions, axiomatic and computational rounding operations, high-level
properties. It provides a framework for developers to formally verify numerical applications.

Flocq is currently used by the CompCert verified compiler to support floating-point computations.
• Participants: Guillaume Melquiond, Pierre Roux and Sylvie Boldo
• Contact: Sylvie Boldo
• Publications: Flocq: A Unified Library for Proving Floating-point Algorithms in Coq - A Formally-

Verified C Compiler Supporting Floating-Point Arithmetic - Verified Compilation of Floating-Point
Computations - Innocuous Double Rounding of Basic Arithmetic Operations - Formal Proofs of
Rounding Error Bounds : With application to an automatic positive definiteness check - Computer
Arithmetic and Formal Proofs : Verifying Floating-point Algorithms with the Coq System

• URL: http://flocq.gforge.inria.fr/

6.6. Gappa
The Gappa tool for automated proofs of arithmetic properties

http://coquelicot.saclay.inria.fr/
http://cubicle.lri.fr/
https://hal.inria.fr/inria-00534854
https://hal.inria.fr/hal-00743090
https://hal.inria.fr/hal-00743090
https://hal.inria.fr/hal-00862689
https://hal.inria.fr/hal-00862689
https://hal.inria.fr/hal-01091186
https://hal.inria.fr/hal-01091189
https://hal.inria.fr/hal-01091189
https://hal.inria.fr/hal-01632617
https://hal.inria.fr/hal-01632617
http://flocq.gforge.inria.fr/

99 Proofs and Verification - Software and Platforms - Project-Team TOCCATA

KEYWORDS: Floating-point - Arithmetic code - Software Verification - Constraint solving

FUNCTIONAL DESCRIPTION: Gappa is a tool intended to help formally verifying numerical programs dealing
with floating-point or fixed-point arithmetic. It has been used to write robust floating-point filters for CGAL
and it is used to verify elementary functions in CRlibm. While Gappa is intended to be used directly, it can
also act as a backend prover for the Why3 software verification plateform or as an automatic tactic for the Coq
proof assistant.

• Participant: Guillaume Melquiond

• Contact: Guillaume Melquiond

• Publications: Generating formally certified bounds on values and round-off errors - Formal certifi-
cation of arithmetic filters for geometric predicates - Assisted verification of elementary functions -
From interval arithmetic to program verification - Formally Certified Floating-Point Filters For Ho-
mogeneous Geometric Predicates - Combining Coq and Gappa for Certifying Floating-Point Pro-
grams - Handbook of Floating-Point Arithmetic - Certifying the floating-point implementation of an
elementary function using Gappa - Automations for verifying floating-point algorithms - Automat-
ing the verification of floating-point algorithms - Computer Arithmetic and Formal Proofs : Verifying
Floating-point Algorithms with the Coq System

• URL: http://gappa.gforge.inria.fr/

6.7. Why3
The Why3 environment for deductive verification

KEYWORDS: Formal methods - Trusted software - Software Verification - Deductive program verification

FUNCTIONAL DESCRIPTION: Why3 is an environment for deductive program verification. It provides a rich
language for specification and programming, called WhyML, and relies on external theorem provers, both
automated and interactive, to discharge verification conditions. Why3 comes with a standard library of logical
theories (integer and real arithmetic, Boolean operations, sets and maps, etc.) and basic programming data
structures (arrays, queues, hash tables, etc.). A user can write WhyML programs directly and get correct-
by-construction OCaml programs through an automated extraction mechanism. WhyML is also used as an
intermediate language for the verification of C, Java, or Ada programs.

• Participants: Andriy Paskevych, Claude Marché, François Bobot, Guillaume Melquiond, Jean-
Christophe Filliâtre, Levs Gondelmans and Martin Clochard

• Partners: CNRS - Université Paris-Sud

• Contact: Claude Marché

• URL: http://why3.lri.fr/

6.8. Coq
The Coq Proof Assistant

KEYWORDS: Proof - Certification - Formalisation

SCIENTIFIC DESCRIPTION: Coq is an interactive proof assistant based on the Calculus of (Co-)Inductive
Constructions, extended with universe polymorphism. This type theory features inductive and co-inductive
families, an impredicative sort and a hierarchy of predicative universes, making it a very expressive logic. The
calculus allows to formalize both general mathematics and computer programs, ranging from theories of finite
structures to abstract algebra and categories to programming language metatheory and compiler verification.
Coq is organised as a (relatively small) kernel including efficient conversion tests on which are built a set of
higher-level layers: a powerful proof engine and unification algorithm, various tactics/decision procedures, a
transactional document model and, at the very top an IDE.

https://hal.inria.fr/inria-00070739
https://hal.inria.fr/inria-00344518
https://hal.inria.fr/inria-00344518
https://hal.inria.fr/inria-00070330
https://hal.inria.fr/tel-01094485
https://hal.inria.fr/inria-00071232
https://hal.inria.fr/inria-00071232
https://hal.inria.fr/inria-00432726
https://hal.inria.fr/inria-00432726
https://hal.inria.fr/ensl-00379167
https://hal.inria.fr/ensl-00200830
https://hal.inria.fr/ensl-00200830
https://hal.inria.fr/hal-01110666
https://hal.inria.fr/hal-01110669
https://hal.inria.fr/hal-01110669
https://hal.inria.fr/hal-01632617
https://hal.inria.fr/hal-01632617
http://gappa.gforge.inria.fr/
http://why3.lri.fr/

100 Proofs and Verification - Software and Platforms - Project-Team TOCCATA

FUNCTIONAL DESCRIPTION: Coq provides both a dependently-typed functional programming language and
a logical formalism, which, altogether, support the formalisation of mathematical theories and the specification
and certification of properties of programs. Coq also provides a large and extensible set of automatic or semi-
automatic proof methods. Coq’s programs are extractible to OCaml, Haskell, Scheme, ...

RELEASE FUNCTIONAL DESCRIPTION: Coq version 8.10 contains two major new features: support for
a native fixed-precision integer type and a new sort SProp of strict propositions. It is also the result of
refinements and stabilization of previous features, deprecations or removals of deprecated features, cleanups
of the internals of the system and API, and many documentation improvements. This release includes many
user-visible changes, including deprecations that are documented in the next subsection, and new features that
are documented in the reference manual.

Version 8.10 is the fifth release of Coq developed on a time-based development cycle. Its development spanned
6 months from the release of Coq 8.9. Vincent Laporte is the release manager and maintainer of this release.
This release is the result of 2500 commits and 650 PRs merged, closing 150+ issues.

See the Zenodo citation for more information on this release: https://zenodo.org/record/3476303#.Xe54f5NKjOQ

NEWS OF THE YEAR: Coq 8.10.0 contains:

- some quality-of-life bug fixes, - a critical bug fix related to template polymorphism, - native 63-bit machine
integers, - a new sort of definitionally proof-irrelevant propositions: SProp, - private universes for opaque
polymorphic constants, - string notations and numeral notations, - a new simplex-based proof engine for the
tactics lia, nia, lra and nra, - new introduction patterns for SSReflect, - a tactic to rewrite under binders: under,
- easy input of non-ASCII symbols in CoqIDE, which now uses GTK3.

All details can be found in the user manual.

• Participants: Yves Bertot, Frédéric Besson, Maxime Denes, Emilio Jesús Gallego Arias, Gaëtan
Gilbert, Jason Gross, Hugo Herbelin, Assia Mahboubi, Érik Martin-Dorel, Guillaume Melquiond,
Pierre-Marie Pédrot, Michael Soegtrop, Matthieu Sozeau, Enrico Tassi, Laurent Théry, Théo Zim-
mermann, Theo Winterhalter, Vincent Laporte, Arthur Charguéraud, Cyril Cohen, Christian Doczkal
and Chantal Keller

• Partners: CNRS - Université Paris-Sud - ENS Lyon - Université Paris-Diderot

• Contact: Matthieu Sozeau

• URL: http://coq.inria.fr/

http://coq.inria.fr/

101 Proofs and Verification - Software and Platforms - Project-Team VERIDIS

VERIDIS Project-Team

6. New Software and Platforms

6.1. Redlog
Reduce Logic System

KEYWORDS: Computer algebra system (CAS) - First-order logic - Constraint solving

SCIENTIFIC DESCRIPTION: Redlog is an integral part of the interactive computer algebra system Reduce.
It supplements Reduce’s comprehensive collection of powerful methods from symbolic computation by
supplying more than 100 functions on first-order formulas.

Redlog generally works with interpreted first-order logic in contrast to free first-order logic. Each first-
order formula in Redlog must exclusively contain atoms from one particular Redlog-supported theory, which
corresponds to a choice of admissible functions and relations with fixed semantics. Redlog-supported theories
include Nonlinear Real Arithmetic (Real Closed Fields), Presburger Arithmetic, Parametric QSAT, and many
more.

NEWS OF THE YEAR: Parts of the Redlog code are 25 years old now. Version 1 of the underlying computer
algebra system Reduce has been published even 50 years ago. In 2018 we therefore started to go for major
revisions and improvements of Redlog’s software architecture, which are still under way.

Redlog, as well as the underlying Reduce, depends on a quite minimalistic Lisp 1 dialect called Standard
Lisp. Today, there are two independent implementations of Standard Lisp left, which are supported only on
the basis of private commitment of essentially one individual per Lisp. With the large code base of Redlog
plus the necessary algebraic algorithms from Reduce, a migration to a different language or computer algebra
system is not feasible. We are therefore experimenting with the realization of a Standard Lisp on the basis of
ANSI Common Lisp.

Scientifically we are currently improving on Parametric Gaussian Elimination in Reduce/Redlog, which has
various applications in our bilateral interdisciplinary ANR/DFG project SYMBIONT (Symbolic Methods
for Biological Networks), e.g., classification of real singularities of systems of implicit ordinary differential
equations.
• Participant: Thomas Sturm
• Contact: Thomas Sturm
• URL: http://www.redlog.eu/

6.2. SPASS
KEYWORD: First-order logic

SCIENTIFIC DESCRIPTION: The classic SPASS is an automated theorem prover based on superposition that
handles first-order logic with equality and several extensions for particular classes of theories. With version
SPASS 3.9 we have stopped the development of the classic prover and have started the bottom-up development
of SPASS 4.0 that will actually be a workbench of automated reasoning tools. Furthermore, we use SPASS 3.9
as a test bed for the development of new calculi.

SPASS 3.9 has been used as the basis for SPASS-AR, a new approximation refinement theorem proving
approach.

FUNCTIONAL DESCRIPTION: SPASS is an automated theorem prover based on superposition that handles
first-order logic with equality and several extensions for particular classes of theories.
• Contact: Christoph Weidenbach
• URL: http://www.spass-prover.org/

http://www.inria.fr/equipes/veridis
http://www.redlog.eu/
http://www.spass-prover.org/

102 Proofs and Verification - Software and Platforms - Project-Team VERIDIS

6.3. SPASS-SATT
KEYWORDS: Automated deduction - Decision

SCIENTIFIC DESCRIPTION: SPASS -SATT is an SMT solver for the theories of linear integer arithmetic,
linear rational arithmetic and mixed linear arithmetic. It features new tests for the satisfiability of unbounded
systems, as well as new algorithms for the detection of integer solutions.

We further investigated the use of redundancy elimination in SAT solving and underlying implementation
techniques. Our aim is a new approach to SAT solving that needs fewer conflicts (on average) and is faster
than the current state-of-the art solvers. Furthermore, we have developed a new calculus and first prototypical
implementation of a SAT solver with mixed OR/XOR clauses.

FUNCTIONAL DESCRIPTION: SPASS-SATT is an SMT solver for linear integer arithmetic, mixed linear
arithmetic and rational linear arithmetic.

NEWS OF THE YEAR: SPASS-SATT participated in the SMT competition 2019 in the quantifier free integer
and rational linear arithmetic categories. It scored first on rational linear arithmetic and second on integer
linear arithmetic. (The winner of the latter category was a portfolio solver that includes SPASS-SATT.) The
main improvements are due to an advanced translation to clause normal form, a close interaction between
the theory and the SAT solvers, and a new transformation turning unbounded integer problems into bounded
integer problems.

• Participants: Martin Bromberger, Mathias Fleury and Christoph Weidenbach

• Contact: Martin Bromberger

• URL: https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/
spass-satt/

6.4. veriT
KEYWORDS: Automated deduction - Formula solving - Verification

SCIENTIFIC DESCRIPTION: veriT comprises a SAT solver, a decision procedure for uninterpreted symbols
based on congruence closure, a simplex-based decision procedure for linear arithmetic, and instantiation-based
quantifier handling.

FUNCTIONAL DESCRIPTION: VeriT is an open, trustable and efficient SMT (Satisfiability Modulo Theories)
solver, featuring efficient decision procedure for uninterpreted symbols and linear arithmetic, and quantifier
reasoning.

NEWS OF THE YEAR: Efforts in 2019 have been focused on quantifier handling, higher logic, and proof
production.

The veriT solver participated in the SMT competition SMT-COMP 2019 with good results. In particular, it
took the bronze medal in the QF_UF division, solving as many problems as the two leading solvers but taking
somewhat more time.

We target applications where validation of formulas is crucial, such as the validation of TLA+ and B
specifications, and work together with the developers of the respective verification platforms to make veriT
even more useful in practice. The solver is available as a plugin for the Rodin platform, and it is integrated
within Atelier B.

veriT is also a prototype platform for ideas developed within the Matryoshka project, aiming at greater
availability of automated reasoning for proof assistants.

• Participants: Haniel Barbosa, Daniel El Ouraoui, Pascal Fontaine and Hans-JÖrg Schurr

• Partner: Université de Lorraine

• Contact: Pascal Fontaine

• URL: http://www.veriT-solver.org

https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/spass-satt/
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/spass-satt/
http://www.smtcomp.org
http://www.veriT-solver.org

103 Proofs and Verification - Software and Platforms - Project-Team VERIDIS

6.5. SPIKE
KEYWORDS: Proof - Automated deduction - Automated theorem proving - Term Rewriting Systems - Formal
methods

SCIENTIFIC DESCRIPTION: SPIKE, an automatic induction-based theorem prover built to reason on condi-
tional theories with equality, is one of the few formal tools able to perform automatically mutual and lazy
induction. Designed in the 1990s, it has been successfully used in many non-trivial applications and served as
a prototype for different proof experiments and extensions.

FUNCTIONAL DESCRIPTION: Automated induction-based theorem prover

RELEASE FUNCTIONAL DESCRIPTION: Proof certification with Coq, cyclic induction, decision procedures

• Participant: Sorin Stratulat

• Contact: Sorin Stratulat

• URL: https://github.com/sorinica/spike-prover/wiki

6.6. TLAPS
TLA+ proof system

KEYWORD: Proof assistant

SCIENTIFIC DESCRIPTION: TLAPS is a platform for developing and mechanically verifying proofs about
TLA+ specifications. The TLA+ proof language is hierarchical and explicit, allowing a user to decompose
the overall proof into proof steps that can be checked independently. TLAPS consists of a proof manager that
interprets the proof language and generates a collection of proof obligations that are sent to backend verifiers.
The current backends include the tableau-based prover Zenon for first-order logic, Isabelle/TLA+, an encoding
of TLA+ set theory as an object logic in the logical framework Isabelle, an SMT backend designed for use
with any SMT-lib compatible solver, and an interface to a decision procedure for propositional temporal logic.

FUNCTIONAL DESCRIPTION: TLAPS is a proof assistant for the TLA+ specification language.

NEWS OF THE YEAR: Work in 2019 focused on providing support for reasoning about TLA+’s ENABLED
and action composition constructs. We also prepared a minor release, fixing some issues and switching to Z3
as the default SMT back-end solver.

• Participants: Damien Doligez, Stephan Merz and Ioannis Filippidis

• Contact: Stephan Merz

• URL: https://tla.msr-inria.inria.fr/tlaps/content/Home.html

6.7. Apalache
Abstraction-based Parameterized TLA+ Checker

KEYWORD: Model Checker

SCIENTIFIC DESCRIPTION: Apalache is a symbolic model checker that works under the following assump-
tions:

(1) As in TLC, all specification parameters are fixed and finite, e.g., the system is initialized integers, finite
sets, and functions of finite domains and co-domains. (2) As in TLC, all data structures evaluated during
an execution are finite, e.g., a system specification cannot operate on the set of all integers. (3) Only finite
executions up to a given bound are analysed.

Apalache translates bounded executions of a TLA+ specifications into a set of quantifier-free SMT constraints.
By querying the SMT solver, the model checker either finds a counterexample to an invariant, or proves that
there is no counterexample up to given computation length.

https://github.com/sorinica/spike-prover/wiki
https://tla.msr-inria.inria.fr/tlaps/content/Home.html

104 Proofs and Verification - Software and Platforms - Project-Team VERIDIS

FUNCTIONAL DESCRIPTION: The first version implements a symbolic bounded model checker for TLA+

that runs under the same assumptions as the explicit-state model checker TLC. It checks whether a TLA+

specification satisfies an invariant candidate by checking satisfiability of an SMT formula that encodes: (1) an
execution of bounded length, and (2) preservation of the invariant candidate in every state of the execution.
Our tool is still in the experimental phase, due to a number of challenges posed by the semantics of TLA+ to
SMT solvers.

NEWS OF THE YEAR: In 2019, we have simplified the set of rewriting rules, which are used in the translation
from TLA+ to SMT. We have shown that the rules are sound, that is, that the translator produces a set of
SMT constraints that are equisatisfiable to the given TLA+ formula. We have conducted the experiments on 10
TLA+ specifications of distributed algorithms. When running bounded model checking, Apalache outperforms
TLC in some cases. When checking inductive invariants, Apalache runs significantly faster than TLC. These
results were reported at ACM OOPSLA 2019.
• Partner: Technische Universität Wien
• Contact: Igor Konnov
• Publications: hal-01899719v1 - hal-01871131v1 - hal-02280888v1
• URL: https://forsyte.at/research/apalache/

6.8. IMITATOR
KEYWORDS: Verification - Parametric model - Parameter synthesis - Model Checking - Model Checker -
Timed automata

FUNCTIONAL DESCRIPTION: IMITATOR is a software tool for parametric verification and robustness
analysis of real-time systems with parameters. It relies on the formalism of networks of parametric timed
automata, augmented with integer variables and stopwatches.
• Participants: Etienne Andre and Jaime Eduardo Arias Almeida
• Partner: Loria
• Contact: Etienne Andre
• Publications: The Inverse Method - Formalizing Time4sys using parametric timed automata -

Minimal-Time Synthesis for Parametric Timed Automata - A benchmark library for parametric
timed model checking

• URL: https://www.imitator.fr/

6.9. ByMC
Byzantine Model Checker

KEYWORDS: Model Checker - Distributed computing - Verification

SCIENTIFIC DESCRIPTION: In recent work, we have introduced a series of techniques for automatic verifica-
tion of threshold-guarded distributed algorithms that have the following features: (1) up to t of n processes may
exhibit crash or Byzantine failures, (2) the correct processes count messages and progress when they receive
sufficiently many messages, e.g., at least t+ 1, (3) the number n of processes in the system is a parameter, as
well as t, (4) and the parameters are restricted by a resilience condition, e.g., n > 3t.

ByMC supports a parallel mode, which allows one to run verification experiments in an MPI cluster such as
Grid5000 and Vienna Scientific Cluster.

FUNCTIONAL DESCRIPTION: ByMC implements several techniques for the parameterized verification of
threshold-guarded distributed algorithms such as reliable broadcast, one-step Byzantine consensus, non-
blocking atomic commit, condition-based consensus, and randomized consensus. The tool accepts two kinds
of inputs: (i) threshold automata (the framework of our verification techniques) and (ii) Parametric Promela
(which is similar to the way in which the distributed algorithms are presented in the distributed computing
literature). Internally, the tool analyzes representative executions by querying an SMT solver. Apart from
verification, ByMC also implements a technique for the automatic synthesis of threshold guards.

https://hal.inria.fr/hal-01899719v1
https://hal.inria.fr/hal-01871131v1
https://hal.inria.fr/hal-02280888v1
https://forsyte.at/research/apalache/
https://hal.inria.fr/hal-00785289
https://hal.inria.fr/hal-02153214
https://hal.inria.fr/hal-02153342
https://hal.inria.fr/hal-01961496
https://hal.inria.fr/hal-01961496
https://www.imitator.fr/

105 Proofs and Verification - Software and Platforms - Project-Team VERIDIS

The tool can run on a single computer as well as in an MPI cluster, e.g., Grid5000 or Vienna Scientific Cluster.

NEWS OF THE YEAR: In 2019, we have shown how to apply ByMC to randomized fault-tolerant consensus
algorithms such as randomized consensus by Ben-Or and RS-BOSCO. This result was presented at CONCUR
2019.

• Partner: Technische Universität Wien

• Contact: Igor Konnov

• Publications: ByMC: Byzantine Model Checker - Reachability in Parameterized Systems: All
Flavors of Threshold Automata - Model Checking of Fault-Tolerant Distributed Algorithms: from
Classics towards Contemporary - Verification of Randomized Distributed Algorithms under Round-
Rigid Adversaries

• URL: https://forsyte.at/software/bymc/

https://hal.inria.fr/hal-01909653
https://hal.inria.fr/hal-01871142
https://hal.inria.fr/hal-01871142
https://hal.inria.fr/hal-01899723
https://hal.inria.fr/hal-01899723
https://hal.inria.fr/hal-01925533
https://hal.inria.fr/hal-01925533
https://forsyte.at/software/bymc/

106 Security and Confidentiality - Software and Platforms - Project-Team CIDRE

CIDRE Project-Team

5. New Software and Platforms

5.1. Blare
To detect intrusion using information flows

KEYWORDS: Cybersecurity - Intrusion Detection Systems (IDS) - Data Leakage Protection

SCIENTIFIC DESCRIPTION: Blare implements our approach of illegal information flow detection for a single
node (Android and Linux kernel, JVM) and a set of nodes (monitoring of flows between linux machines).

FUNCTIONAL DESCRIPTION: Blare IDS is a set of tools that implements our approach to illegal information
flow detection for a single node and a set of nodes.

NEWS OF THE YEAR: During this year, Laurent Georget has modified the implementation of Blare in order
to correctly monitor the kernel system calls with LSM hooks. He add also ported this new version of Blare to
the Lollipop Android emulator.

• Partner: CentraleSupélec

• Contact: Frédéric Tronel

• Publications: Information Flow Tracking for Linux Handling Concurrent System Calls and Shared
Memory - Verifying the Reliability of Operating System-Level Information Flow Control Systems
in Linux - Monitoring both OS and program level information flows to detect intrusions against
network servers - Experimenting a Policy-Based HIDS Based on an Information Flow Control Model
- Introducing reference flow control for intrusion detection at the OS level - Blare Tools: A Policy-
Based Intrusion Detection System Automatically Set by the Security Policy - Diagnosing intrusions
in Android operating system using system flow graph - Intrusion detection in distributed systems,
an approach based on taint marking - BSPL: A Language to Specify and Compose Fine-grained
Information Flow Policies - Information Flow Policies vs Malware - A taint marking approach to
confidentiality violation detection - Designing information flow policies for Android’s operating
system - Information Flow Control for Intrusion Detection derived from MAC Policy - Flow based
interpretation of access control: Detection of illegal information flows - A taint marking approach to
confidentiality violation detection

• URL: http://www.blare-ids.org

5.2. GroddDroid
KEYWORDS: Android - Detection - Malware

SCIENTIFIC DESCRIPTION: GroddDroid automates the dynamic analysis of a malware. When a piece of sus-
picious code is detected, groddDroid interacts with the user interface and eventually forces the execution of
the identified code. Using Blare (Information Flow Monitor), GroddDroid monitors how an execution contam-
inates the operating system. The output of GroddDroid can be visualized in an web browser. GroddDroid is
used by the Kharon software.

FUNCTIONAL DESCRIPTION: GroddDroid 1 - locates suspicious code in Android application 2 - computes
execution paths towards suspicious code 3 - forces executions of suspicious code 4 - automate the execution
of a malware or a regular Android application

http://www.inria.fr/equipes/cidre
https://hal.inria.fr/hal-01535949
https://hal.inria.fr/hal-01535949
https://hal.inria.fr/hal-01535862
https://hal.inria.fr/hal-01535862
https://hal.inria.fr/hal-00268408
https://hal.inria.fr/hal-00268408
https://hal.inria.fr/hal-00356441
https://hal.inria.fr/hal-00356484
https://hal.inria.fr/hal-00420117
https://hal.inria.fr/hal-00420117
https://hal.inria.fr/hal-00875211
https://hal.inria.fr/hal-00875211
https://hal.inria.fr/hal-00840338
https://hal.inria.fr/hal-00840338
https://hal.inria.fr/hal-00909400
https://hal.inria.fr/hal-00909400
https://hal.inria.fr/hal-00862468
https://hal.inria.fr/hal-00736045
https://hal.inria.fr/hal-00736045
https://hal.inria.fr/hal-00736034
https://hal.inria.fr/hal-00736034
https://hal.inria.fr/hal-00647116
https://hal.inria.fr/hal-00647170
https://hal.inria.fr/hal-00647170
https://hal.inria.fr/hal-00736045
https://hal.inria.fr/hal-00736045
http://www.blare-ids.org

107 Security and Confidentiality - Software and Platforms - Project-Team CIDRE

NEWS OF THE YEAR: In 2017, GroddDroid has integrated the work of Mourad Leslous, who have imple-
mented GFinder. GPFinder improves the computation of control flow paths by taking into account the Android
framework. The end of the year has been used to clean the code and to improves the graphical interface.
• Authors: Mourad Leslous, Adrien Abraham, Pierre Graux, Jean François Lalande, Valérie Viet Triem

Tong and Pierre Wilke
• Partners: CentraleSupélec - Insa Centre Val-de-Loire
• Contact: Valérie Viet Triem Tong
• Publications: Kharon dataset: Android malware under a microscope - GroddDroid: a Gorilla for Trig-

gering Malicious Behaviors - GPFinder: Tracking the Invisible in Android Malware - Information
flows at OS level unmask sophisticated Android malware

• URL: http://kharon.gforge.inria.fr/grodddroid.html

5.3. HardBlare
KEYWORDS: Intrusion Detection Systems (IDS) - FPGA - Static analysis

FUNCTIONAL DESCRIPTION: HardBlare is a hardware/software framework to implement hardware DIFC on
Xilinx Zynq Platform. HardBlare consists of three components : 1) the VHDL code of the coprocessor, 2) a
modified LLVM compiler to compute the static analysis, and 3) a dedicated Linux kernel. This last component
is a specific version of the Blare monitor.
• Partners: CentraleSupélec - Lab-STICC
• Contact: Guillaume Hiet
• Publications: ARMHEx: A hardware extension for DIFT on ARM-based SoCs - ARMHEx: a

framework for efficient DIFT in real-world SoCs - ARMHEx: embedded security through hardware-
enhanced information flow tracking - HardBlare: a Hardware-Assisted Approach for Dynamic
Information Flow Tracking - A portable approach for SoC-based Dynamic Information Flow
Tracking implementations - Towards a hardware-assisted information flow tracking ecosystem for
ARM processors - HardBlare: an efficient hardware-assisted DIFC for non-modified embedded
processors

5.4. GroddViewer
KEYWORDS: Android - Detection - Malware

FUNCTIONAL DESCRIPTION: To visualise data from GroddDroid
• Authors: Jean-François Lalande, Valérie Viet Triem Tong, Sébastien Campion, Mathieu Simon and

Pierre Wilke
• Contact: Valérie Viet Triem Tong

5.5. Survivor
KEYWORDS: Intrusion Response - Intrusion Recovery - Survivability - Resiliency - Linux - Check-
point/Restore - Threat Mitigation

FUNCTIONAL DESCRIPTION: Survivor is a set of low-level components to design a Linux-based operating
system able to withstand ongoing intrusions and to allow business continuity despite the presence of an
active adversary. Survivor provides an Intrusion Response System (IRS) with the low-level components and
interfaces needed to orchestrate a per-service checkpoint, recovery, and mitigation actions. It recovers infected
services (i.e., their processes and their associated files) to a previous safe state and it protects their state by
applying a set of mitigations (e.g., privilege restrictions and resource quotas) aimed at withstanding further
reinfections.
• Participants: Ronny Chevalier, Guillaume Hiet, David Plaquin and Chris Dalton
• Partners: CentraleSupélec - HP Labs
• Contact: Ronny Chevalier

https://hal.inria.fr/hal-01311917
https://hal.inria.fr/hal-01201743
https://hal.inria.fr/hal-01201743
https://hal.inria.fr/hal-01584989
https://hal.inria.fr/hal-01535678
https://hal.inria.fr/hal-01535678
http://kharon.gforge.inria.fr/grodddroid.html
https://hal.inria.fr/hal-01558473
https://hal.inria.fr/hal-01558475
https://hal.inria.fr/hal-01558475
https://hal.inria.fr/hal-01558155
https://hal.inria.fr/hal-01558155
https://hal.inria.fr/hal-01311032
https://hal.inria.fr/hal-01311032
https://hal.inria.fr/hal-01311045
https://hal.inria.fr/hal-01311045
https://hal.inria.fr/hal-01337579
https://hal.inria.fr/hal-01337579
https://hal.inria.fr/hal-01252597
https://hal.inria.fr/hal-01252597

108 Security and Confidentiality - Software and Platforms - Project-Team CIDRE

5.6. PyMaO
Python Malware Orchestrator

KEYWORDS: Android - Malware

FUNCTIONAL DESCRIPTION: PyMaO chains several analyses that are part of an experiment. An analysis is
most of the time, a call to an external tool that returns a result, for example apktool, grep, Androguard, Apkid.
An experiment is a collection of analyses that are run one by one, chained, if some conditions hold. For
example, if the unpacking of an application with Apktool succeeds, then you can grep the code for searching
a string.

PyMaO has a nice old-fashion graphical interface (ncurses).

RELEASE FUNCTIONAL DESCRIPTION: Initial release corresponding to the demo presented at MASCOTS
2019.

NEWS OF THE YEAR: A demo has been presented at the MASCOTS 2019 conference: https://hal-
centralesupelec.archives-ouvertes.fr/hal-02305473

• Authors: Jean-François Lalande, Pierre Graux and Tomas Javier Concepcion Miranda

• Contact: Jean-François Lalande

• URL: https://gitlab.inria.fr/cidre-public/pymao

5.7. OATs’inside
KEYWORDS: Android - Malware - Reverse engineering - Code analysis

FUNCTIONAL DESCRIPTION: OATs’inside is a Android reverse engineering tool that handles all native
obfuscation techniques. This tool uses a hybrid approach based on dynamic monitoring and trace-based
symbolic execution to output control flow graphs (CFGs) for each method of the analyzed application. These
CFGs spare users the need to dive into low-level instructions, which are difficult to reverse engineer.

• Participants: Pierre Graux, Jean-François Lalande, Valérie Viet Triem Tong and Pierre Wilke

• Contact: Pierre Graux

https://gitlab.inria.fr/cidre-public/pymao

109 Security and Confidentiality - Software and Platforms - Project-Team COMETE

COMETE Project-Team

6. New Software and Platforms

6.1. libqif - A Quantitative Information Flow C++ Toolkit Library
KEYWORDS: Information leakage - Privacy - C++ - Linear optimization

FUNCTIONAL DESCRIPTION: The goal of libqif is to provide an efficient C++ toolkit implementing a variety
of techniques and algorithms from the area of quantitative information flow and differential privacy. We plan
to implement all techniques produced by Comète in recent years, as well as several ones produced outside the
group, giving the ability to privacy researchers to reproduce our results and compare different techniques in a
uniform and efficient framework.

Some of these techniques were previously implemented in an ad-hoc fashion, in small, incompatible with
each-other, non-maintained and usually inefficient tools, used only for the purposes of a single paper and then
abandoned. We aim at reimplementing those – as well as adding several new ones not previously implemented
– in a structured, efficient and maintainable manner, providing a tool of great value for future research. Of
particular interest is the ability to easily re-run evaluations, experiments and case-studies from all our papers,
which will be of great value for comparing new research results in the future.

The library’s development continued in 2018 with several new added features. 82 new commits were pushed
to the project’s git repository during this year. The new functionality was directly applied to the exeperimental
results of several publications of the team (QEST’18, Entropy’18, POST’18, CSF’18).
• Contact: Konstantinos Chatzikokolakis
• URL: https://github.com/chatziko/libqif

6.2. F-BLEAU
KEYWORDS: Information leakage - Machine learning - Privacy

FUNCTIONAL DESCRIPTION: F-BLEAU is a tool for estimating the leakage of a system about its secrets in
a black-box manner (i.e., by only looking at examples of secret inputs and respective outputs). It considers a
generic system as a black-box, taking secret inputs and returning outputs accordingly, and it measures how
much the outputs "leak" about the inputs.

F-BLEAU is based on the equivalence between estimating the error of a Machine Learning model of a specific
class and the estimation of information leakage.

This code was also used for the experiments of a paper under submission, on the following evaluations:
Gowalla, e-passport, and side channel attack to finite field exponentiation.

RELEASE FUNCTIONAL DESCRIPTION: First F-BLEAU release. Supports frequentist and k-NN estimates
with several parameters, and it allows stopping according to delta-convergence criteria.
• Contact: Konstantinos Chatzikokolakis
• URL: https://github.com/gchers/fbleau

6.3. Location Guard
KEYWORDS: Privacy - Geolocation - Browser Extensions

SCIENTIFIC DESCRIPTION: The purpose of Location Guard is to implement obfuscation techniques for
achieving location privacy, in a an easy and intuitive way that makes them available to the general public.
Various modern applications, running either on smartphones or on the web, allow third parties to obtain the
user’s location. A smartphone application can obtain this information from the operating system using a system
call, while web application obtain it from the browser using a JavaScript call.

http://www.inria.fr/equipes/comete
https://github.com/chatziko/libqif
https://github.com/gchers/fbleau

110 Security and Confidentiality - Software and Platforms - Project-Team COMETE

FUNCTIONAL DESCRIPTION: Websites can ask the browser for your location (via JavaScript). When they do
so, the browser first asks your permission, and if you accept, it detects your location (typically by transmitting
a list of available wifi access points to a geolocation provider such as Google Location Services, or via GPS if
available) and gives it to the website.

Location Guard is a browser extension that intercepts this procedure. The permission dialog appears as usual,
and you can still choose to deny. If you give permission, then Location Guard obtains your location and adds
"random noise" to it, creating a fake location. Only the fake location is then given to the website.

Location Guard is by now a stable tool with a large user base. No new features were added in 2018, however
the tool is still actively maintained, and several issues have beed fixed during this year (new geocoder API,
manual installation method for Opera users, etc).
• Participants: Catuscia Palamidessi, Konstantinos Chatzikokolakis, Marco Stronati, Miguel Andrés

and Nicolas Bordenabe
• Contact: Konstantinos Chatzikokolakis
• URL: https://github.com/chatziko/location-guard

6.4. dspacenet
Distributed-Spaces Network.

KEYWORDS: Social networks - Distributed programming

FUNCTIONAL DESCRIPTION: DSpaceNet is a tool for social networking based on multi-agent spatial and
timed concurrent constraint language.

I - The fundamental structure of DSPaceNet is that of *space*: A space may contain

(1) spatial-mobile-reactive tcc programs, and (2) other spaces.

Furthermore, (3) each space belongs to a given agent. Thus, a space of an agent j within the space of agent i
means that agent i allows agent j to use a computation sub-space within its space.

II - The fundamental operation of DSPaceNet is that of *program posting*: In each time unit, agents can
post spatial-mobile-reactive tcc programs in the spaces they are allowed to do so (ordinary message posting
corresponds to the posting of tell processes). Thus, an agent can for example post a watchdog tcc process to
react to messages in their space, e.g. whenever (*happy b*frank*) do tell("thank you!"). More complex mobile
programs are also allowed (see below).

The language of programs is a spatial mobile extension of tcc programs:

P,Q... := tell(c)|whencdoP ||nextP |P ||Q|unlesscnextP |[P]i| ↑iP |recX.P
Computation of timed processes proceeds as in tcc. The spatial construct [P]i runs P in the space of agent
i and the mobile process ↑iP , extrudes P from the space of i. By combining space and mobility, arbitrary
processes can be moved from one a space into another. For example, one could send a trojan watchdog to
another space for spying for a given message and report back to one’s space.

III- Constraint systems can be used to specify advance text message deduction, arithmetic deductions,
scheduling, etc.

IV - Epistemic Interpretation of spaces can be used to derive whether they are users with conflict-
ing/inconsistent information, or whether a group of agents may be able to deduce certain message.

V - The scheduling of agent requests for program posts, privacy settings, friendship lists are handled by an
external interface. For example, one could use type systems to check whether a program complies with privacy
settings (for example checking that the a program does not move other program into a space it is not allowed
into).
• Partner: Pontificia Universidad Javeriana Cali
• Contact: Frank Valencia
• URL: http://www.dspacenet.com

https://github.com/chatziko/location-guard
http://www.dspacenet.com

111 Security and Confidentiality - Software and Platforms - Team DATASPHERE

DATASPHERE Team

5. New Software and Platforms

5.1. DNS data analysis
Data analytics tools for DNS data analysis were developed in a cooperation with ICT, Chinese Academy of
Sciences in the frame of the thesis of Jingxiu SU.

5.1.1. BGP Monitoring platform
An observatory of global BGP connectivity has been developed that is used to monitor and detect in real time
BGP level attacks. In addition, a set of tools were developed to analyse the structure of information propagation
over social networks.

5.1.2. Atlas of Data
A platform to visualize data flows over the planet is under construction. It can be accessed online at https://
theatlasofdata.earth/.

5.1.3. Observatory of foreign influence on social media
This observatory is monitoring on twitter and facebook the evolution of foreign influence. It is based on a
twitter collection platform that is using an extensive database of foreign actors to detect and monitor foreign
interference.

http://www.inria.fr/equipes/datasphere
https://theatlasofdata.earth/
https://theatlasofdata.earth/

112 Security and Confidentiality - Software and Platforms - Project-Team PESTO

PESTO Project-Team

6. New Software and Platforms

6.1. Akiss
AKISS - Active Knowledge in Security Protocols

KEYWORDS: Security - Verification

FUNCTIONAL DESCRIPTION: AKISS (Active Knowledge in Security Protocols) is a tool for verifying
indistinguishability properties in cryptographic protocols, modelled as trace equivalence in a process calculus.
Indistinguishability is used to model a variety of properties including anonymity properties, strong versions
of confidentiality and resistance against offline guessing attacks, etc. AKISS implements a procedure to verify
equivalence properties for a bounded number of sessions based on a fully abstract modelling of the traces
of a bounded number of sessions of the protocols into first-order Horn clauses and a dedicated resolution
procedure. The procedure can handle a large set of cryptographic primitives, namely those that can be modeled
by an optimally reducing convergent rewrite system, as well as the exclusive or (xor) operator.
• Contact: Steve Kremer
• URL: https://github.com/akiss

6.2. Belenios
Belenios - Verifiable online voting system

KEYWORD: E-voting

FUNCTIONAL DESCRIPTION: Belenios is an open-source online voting system that provides confidentiality
and verifiability. End-to-end verifiability relies on the fact that the ballot box is public (voters can check that
their ballots have been received) and on the fact that the tally is publicly verifiable (anyone can recount the
votes). Confidentiality relies on the encryption of the votes and the distribution of the decryption key.

Belenios builds upon Helios, a voting protocol used in several elections. The main design enhancement of
Belenios vs. Helios is that the ballot box can no longer add (fake) ballots, due to the use of credentials.
Moreover, Belenios includes a practical threshold decryption system that allows splitting the decryption key
among several authorities.

NEWS OF THE YEAR: Since 2015, it has been used by CNRS for remote election among its councils (more
than 30 elections every year) and since 2016, it has been used by Inria to elect representatives in the “comités
de centre” of each Inria center. In 2018, it has been used to organize about 250 elections (not counting test
elections). Belenios is typically used for elections in universities as well as in associations. This goes from
laboratory councils (e.g. Irisa, Cran), scientific societies (e.g. SMAI) to various associations (e.g. FFBS -
Fédération Française de Baseball et Softball, or SRFA - Société du Rat Francophone et de ses Amateurs).

In 2019, a threshold encryption mode has been added that makes the system more robust to the case where
(say) one trustee among three loses her part of the decryption key.
• Participants: Pierrick Gaudry, Stéphane Glondu and Véronique Cortier
• Partners: CNRS - Inria
• Contact: Stéphane Glondu
• URL: http://www.belenios.org/

6.3. Deepsec
DEEPSEC - DEciding Equivalence Properties in SECurity protocols

http://www.inria.fr/equipes/pesto
https://github.com/akiss
http://www.belenios.org/

113 Security and Confidentiality - Software and Platforms - Project-Team PESTO

KEYWORDS: Security - Verification

FUNCTIONAL DESCRIPTION: DEEPSEC (DEciding Equivalence Properties in SECurity protocols) is a tool
for verifying indistinguishability properties in cryptographic protocols, modelled as trace equivalence in a
process calculus. Indistinguishability is used to model a variety of properties including anonymity properties,
strong versions of confidentiality and resistance against offline guessing attacks, etc. DEEPSEC implements a
decision procedure to verify trace equivalence for a bounded number of sessions and cryptographic primitives
modeled by a subterm convergent destructor rewrite system. The procedure is based on constraint solving
techniques. The tool also implements state-of-the-art partial order reductions and allows to distribute the
computation on multiple cores and multiple machines.

NEWS OF THE YEAR: In 2019, to improve efficiency for non-determinate processes, we developed new op-
timisation techniques. This is achieved through a new, stronger equivalence for which partial-order reductions
are sound even for non-determinate processes, as well as new symmetry reductions. We demonstrated that
these techniques provide a significant (several orders of magnitude) speed-up in practice, thus increasing the
size of the protocols that can be analysed fully automatically. Even though the new equivalence is stronger, it
is nevertheless coarse enough to avoid false attacks on most practical examples.

• Participants: Steve Kremer, Itsaka Rakotonirina and Vincent Cheval

• Contact: Vincent Cheval

• Publications: Exploiting Symmetries When Proving Equivalence Properties for Security Protocols
- Exploiting symmetries when proving equivalence properties for security protocols (Technical
report) - DEEPSEC: Deciding Equivalence Properties in Security Protocols Theory and Practice
- DEEPSEC: Deciding Equivalence Properties in Security Protocols - Theory and Practice - The
DEEPSEC prover

• URL: https://deepsec-prover.github.io/

6.4. Tamarin
TAMARIN prover

KEYWORDS: Security - Verification

FUNCTIONAL DESCRIPTION: The TAMARIN prover is a security protocol verification tool that supports
both falsification and unbounded verification of security protocols specified as multiset rewriting systems with
respect to (temporal) first-order properties and a message theory that models Diffie-Hellman exponentiation,
bilinear pairing, multisets, and exclusive-or (XOR), combined with a user-defined convergent rewriting theory.
Its main advantages are its ability to handle stateful protocols and its interactive proof mode. Moreover, it has
been extended to verify equivalence properties. The tool is developed jointly by the PESTO team, the Institute
of Information Security at ETH Zurich, and the University of Oxford. In a joint effort, the partners wrote and
published a user manual in 2016, available from the Tamarin website.

• Contact: Jannik Dreier

• URL: http://tamarin-prover.github.io/

6.5. SAPIC
SAPIC: Stateful Applied Pi Calculus

KEYWORDS: Security - Verification

FUNCTIONAL DESCRIPTION: SAPIC is a plugin of the TAMARIN tool that translates protocols from a high-
level protocol description language akin to the applied pi-calculus into multiset rewrite rules, that can then be
analysed by the TAMARIN prover. TAMARIN has also been extended with dedicated heuristics that exploit
the form of translated rules and favor termination.

https://hal.inria.fr/hal-02269043
https://hal.inria.fr/hal-02267866
https://hal.inria.fr/hal-02267866
https://hal.inria.fr/hal-01698177
https://hal.inria.fr/hal-01763122
https://hal.inria.fr/hal-01763138
https://hal.inria.fr/hal-01763138
https://deepsec-prover.github.io/
http://tamarin-prover.github.io/

114 Security and Confidentiality - Software and Platforms - Project-Team PESTO

SAPIC offers support for the analysis of protocols that include states, for example Hardware Security Tokens
communicating with a possibly malicious user, or protocols that rely on databases. It also allows us to verify
liveness properties and a notion of location and reporting used for modelling trusted execution environments.
It has been successfully applied to several case studies including the Yubikey authentication protocol, and
extensions of the PKCS#11 standard. SAPIC also includes support for verifying liveness properties, which
are for instance important in fair exchange and contract signing protocols, as well as support for constructions
useful when modelling isolated execution environments.

• Contact: Steve Kremer

• URL: http://sapic.gforge.inria.fr/

6.6. TypeEquiv
A type checker for privacy properties

KEYWORDS: Security - Cryptographic protocol - Privacy

FUNCTIONAL DESCRIPTION: TypeEquiv provides a (sound) type system for proving equivalence of protocols
(to analyse privacy properties such as vote privacy, anonymity, unlinkability), for both a bounded or an
unbounded number of sessions and for the standard cryptographic primitives. TypeEquiv takes as input the
specification of a pair of security protocols, written in a dialect of the applied-pi calculus, together with some
type annotations. It checks whether the two protocols are in equivalence or not. The tool provides a significant
speed-up compared with tools that decide equivalence of security protocols for a bounded number of sessions.

• Partner: Technische Universität Wien

• Contact: Véronique Cortier

http://sapic.gforge.inria.fr/

115 Security and Confidentiality - Software and Platforms - Project-Team PRIVATICS

PRIVATICS Project-Team

5. New Software and Platforms

5.1. FECFRAME
FEC Framework following RFC 6363 specifications (https://datatracker.ietf.org/doc/rfc6363/)

KEYWORDS: Error Correction Code - Content delivery protocol - Robust transmission

FUNCTIONAL DESCRIPTION: This sofware implements the FECFRAME IETF standard (RFC 6363) co-
authored by V. Roca, and is compliant with 3GPP specifications for mobile terminals. It enables the simultane-
ous transmission of multimedia flows to one or several destinations, while being robust to packet erasures that
happen on wireless networks (e.g., 4G or Wifi). This software relies on the OpenFEC library (the open-source
http://openfec.org version or the commercial version) that provides the erasure correction codes (or FEC) and
thereby offer robustness in front of packet erasures.
• Participant: Vincent Roca
• Contact: Vincent Roca

5.2. Wombat
Wi-Fi tracking system for testing and demonstrational purpose

KEYWORDS: Wi-Fi - Privacy - Multimodal tracking of human activity - Wireless network

FUNCTIONAL DESCRIPTION: Wombat is a fully functional Wi-Fi tracking platform supporting three main fea-
tures: collection, storage/processing, query/output. These three features are implemented through a distributed
infrastructure composed of:

Sensor nodes: small devices with wireless monitoring capabilities. They collect information sent on wireless
channels and forward it to the server. Central server: the central entity of the system. It receives data sent by
sensor nodes and then stores it in an internal data structure. It is also in charge of answering queries related to
the stored data.

To ensure communication between the sensor nodes and the server, the Wombat system relies on a wired
network (Ethernet). In addition, Wombat can be enriched with a user interface and an opt-out node:

User interface: a device in charge of displaying detailed information about one or several tracked devices
(see figure below). The device to display can be specified manually by its MAC address or through proximity
detection. Opt-out node: an element in charge of implementing an opt-out mechanism for users refusing to be
tracked by the system.

The system is made to work on a dedicated network (the server includes a DHCP server). Nodes can be
switched off at any time (they function in read-only mode to be crash-proof).
• Partner: Insa de Lyon
• Contact: Mathieu Cunche
• URL: https://github.com/Perdu/wombat

5.3. Cookie glasses
KEYWORDS: GDPR - Cookie - Consent

SCIENTIFIC DESCRIPTION: In the paper Do Cookie Banners Respect my Choice? Measuring Legal Compli-
ance of Banners from IAB Europe’s Transparency and Consent Framework, we show that Consent Manage-
ment Providers (CMPs) of IAB Europe’s Transparency & Consent Framework (TCF) do not always respect
user’s choice. This extension allows users to verify that their consent is stored appropriately by themselves.

http://www.inria.fr/equipes/privatics
https://github.com/Perdu/wombat

116 Security and Confidentiality - Software and Platforms - Project-Team PRIVATICS

This extension for Firefox and Chrome queries CMPs of IAB Europe’s TCF in the same position as a third-
party advertiser, making it possible to see consent set by CMPs in real time. In other words, you can see
whether consent registered by cookie banners is actually the consent you gave. Will only work with cookie
banners of IAB Europe’s TCF.

We also added a functionality to manually decode a so-called "consent string" of the framework.

• Participants: Célestin Matte and Nataliia Bielova

• Contact: Alain Prette

5.4. BELL
Browser fingerprinting via Extensions and Login-Leaks

KEYWORDS: Browser Extensions - Security and Privacy in Web Services - Social Networks Security and
Privacy

FUNCTIONAL DESCRIPTION: Recent studies show that users can be tracked based on their web browser
properties. This software is designed to conduct an experiment on such kinds of user tracking. In this
experiment, we demonstrate that a Web user can also be tracked by

- her browser extensions (such as AdBlock, Pinterest, or Ghostery), and

- the websites she has logged in (such as Facebook, Gmail, or Twitter).

In the experiment, we collect user’s browser fingerprint, together with the browser extensions installed and a
list of websites she has logged in. We only collect anonymous data during the experiment (more details in our
Privacy Policy 0), we will securely store the data on an Inria server, use it only for research purposes and not
share it with anyone outside of Inria.

• Contact: Gabor Gulyas

• URL: https://extensions.inrialpes.fr/

5.5. SWIF-codec
An open-source sliding window FEC codec

KEYWORD: Error Correction Code

FUNCTIONAL DESCRIPTION: This development is done in the context of the "Coding for Efficient Net-
work Communications" IRTF Research Group (NWCRG, [https://datatracker.ietf.org/rg/nwcrg]) and IETF
hackathon.

This work has strong relationships with the Generic API I-D [https://datatracker.ietf.org/doc/draft-roca-nwcrg-
generic-fec-api/] and RFC 8681 on RLC codes [https://www.rfc-editor.org/rfc/rfc8681] as examples of sliding
window codes.

• Authors: Vincent Roca, Cédric Adjih, Oumaima Attia and François Michel

• Contact: Vincent Roca

• URL: https://github.com/irtf-nwcrg/swif-codec

0https://extensions.inrialpes.fr/privacy.php

https://extensions.inrialpes.fr/
https://github.com/irtf-nwcrg/swif-codec
https://extensions.inrialpes.fr/privacy.php

117 Security and Confidentiality - Software and Platforms - Project-Team PROSECCO

PROSECCO Project-Team

6. New Software and Platforms

6.1. Cryptosense Analyzer
SCIENTIFIC DESCRIPTION: Cryptosense Analyzer (formerly known as Tookan) is a security analysis tool
for cryptographic devices such as smartcards, security tokens and Hardware Security Modules that support the
most widely-used industry standard interface, RSA PKCS#11. Each device implements PKCS#11 in a slightly
different way since the standard is quite open, but finding a subset of the standard that results in a secure device,
i.e. one where cryptographic keys cannot be revealed in clear, is actually rather tricky. Cryptosense Analyzer
analyses a device by first reverse engineering the exact implementation of PKCS#11 in use, then building a
logical model of this implementation for a model checker, calling a model checker to search for attacks, and in
the case where an attack is found, executing it directly on the device. It has been used to find at least a dozen
previously unknown flaws in commercially available devices.

FUNCTIONAL DESCRIPTION: Cryptosense Analyzer (formerly known as Tookan) is a security analysis tool
for cryptographic devices such as smartcards,

• Participants: Graham Steel and Romain Bardou

• Contact: Graham Steel

• URL: https://cryptosense.com/

6.2. CryptoVerif
Cryptographic protocol verifier in the computational model

KEYWORDS: Security - Verification - Cryptographic protocol

FUNCTIONAL DESCRIPTION: CryptoVerif is an automatic protocol prover sound in the computational model.
In this model, messages are bitstrings and the adversary is a polynomial-time probabilistic Turing machine.
CryptoVerif can prove secrecy and correspondences, which include in particular authentication. It provides
a generic mechanism for specifying the security assumptions on cryptographic primitives, which can handle
in particular symmetric encryption, message authentication codes, public-key encryption, signatures, hash
functions, and Diffie-Hellman key agreements. It also provides an explicit formula that gives the probability
of breaking the protocol as a function of the probability of breaking each primitives, this is the exact security
framework.

NEWS OF THE YEAR: We implemented the following features in CryptoVerif:

1) We added to the library of cryptographic primitives several variants of the PRF-ODH (pseudo-random
function oracle Diffie-Hellman) assumption, pre-image resistant and second-preimage resistant hash functions,
IND-CPA encryption with a nonce, IND-CPA and INT-CTXT encryption with a nonce, encryption schemes
that satisfy IND$-CPA instead of IND-CPA.

2) To facilitate modular proofs, we allow querying indistinguishability properties with exactly the same syntax
as the one used to specify indistinguishability assumptions on primitives.

3) To simplify declarations of assumptions on primitives, replications (which model any number of copies of
processes or oracles) can be omitted at the root of indistinguishability assumptions. CryptoVerif adds them
internally, thus inferring the assumption for N independent copies from the assumption for one copy. For
instance, it infers the assumption for encryption with N keys from the assumption for encryption with a single
key.

http://www.inria.fr/equipes/prosecco
https://cryptosense.com/

118 Security and Confidentiality - Software and Platforms - Project-Team PROSECCO

4) When we delay random number generations, we allow the user to specify expressions for which it is not
necessary to generate the random value, so that the generation of the moved random value can be delayed
further. In particular, we used this extension to prove that the OAEP scheme is IND-CCA2 assuming the
underlying permutation is partial-domain one-way (a famous cryptographic result).

5) CryptoVerif can now remove parts of the code cannot be executed in case the adversary wins the game, by
replacing them with event "AdversaryLoses". That is specially helpful in order to deal with complex cases of
key compromise, e.g. for forward secrecy, by proving authentication by ignoring the compromise, showing
that authentication is preserved in case the key is compromised (because the adversary never wins against
the considered authentication property in case of compromise), and using the authentication to prove secrecy
even in case of compromise. For instance, that allows us to show that the PSK-DHE handshake of TLS 1.3
preserves forward secrecy in case of compromise of the PSK.

6) After a cryptographic transformation, CryptoVerif expands terms into processes, which leads to duplicating
code until the end of the protocol for each test that is expanded. The cryptographic transformation and
the expansion were initially considered as a single transformation. There are now considered as separate
transformations, so that other transformations can be performed in between, in particular to cut some branches
of the code and reduce the code duplication.

These changes are included in CryptoVerif version 2.02 available at https://cryptoverif.inria.fr.
• Participants: Bruno Blanchet and David Cadé
• Contact: Bruno Blanchet
• Publications: Composition Theorems for CryptoVerif and Application to TLS 1.3 - Composition

Theorems for CryptoVerif and Application to TLS 1.3 - A Mechanised Cryptographic Proof of
the WireGuard Virtual Private Network Protocol - A Mechanised Cryptographic Proof of the
WireGuard Virtual Private Network Protocol - Proved Implementations of Cryptographic Protocols
in the Computational Model - Proved Generation of Implementations from Computationally Secure
Protocol Specifications - Verified Models and Reference Implementations for the TLS 1.3 Standard
Candidate - Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate
- Symbolic and Computational Mechanized Verification of the ARINC823 Avionic Protocols -
Automated Verification for Secure Messaging Protocols and Their Implementations: A Symbolic
and Computational Approach

• URL: http://cryptoverif.inria.fr/

6.3. F*
FStar

KEYWORDS: Programming language - Software Verification

FUNCTIONAL DESCRIPTION: F* is a new higher order, effectful programming language (like ML) designed
with program verification in mind. Its type system is based on a core that resembles System Fw (hence
the name), but is extended with dependent types, refined monadic effects, refinement types, and higher
kinds. Together, these features allow expressing precise and compact specifications for programs, including
functional correctness properties. The F* type-checker aims to prove that programs meet their specifications
using an automated theorem prover (usually Z3) behind the scenes to discharge proof obligations. Programs
written in F* can be translated to OCaml, F#, or JavaScript for execution.
• Participants: Antoine Delignat-Lavaud, Catalin Hritcu, Cedric Fournet, Chantal Keller, Karthikeyan

Bhargavan and Pierre-Yves Strub
• Contact: Catalin Hritcu
• URL: https://www.fstar-lang.org/

6.4. miTLS
KEYWORDS: Cryptographic protocol - Software Verification

https://hal.inria.fr/hal-01947959
https://hal.inria.fr/hal-01764527
https://hal.inria.fr/hal-01764527
https://hal.inria.fr/hal-02396640
https://hal.inria.fr/hal-02396640
https://hal.inria.fr/hal-02100345
https://hal.inria.fr/hal-02100345
https://hal.inria.fr/tel-01112630
https://hal.inria.fr/tel-01112630
https://hal.inria.fr/hal-01102382
https://hal.inria.fr/hal-01102382
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575861
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01575923
http://cryptoverif.inria.fr/
https://www.fstar-lang.org/

119 Security and Confidentiality - Software and Platforms - Project-Team PROSECCO

FUNCTIONAL DESCRIPTION: miTLS is a verified reference implementation of the TLS protocol. Our code
fully supports its wire formats, ciphersuites, sessions and connections, re-handshakes and resumptions, alerts
and errors, and data fragmentation, as prescribed in the RFCs, it interoperates with mainstream web browsers
and servers. At the same time, our code is carefully structured to enable its modular, automated verification,
from its main API down to computational assumptions on its cryptographic algorithms.

• Participants: Alfredo Pironti, Antoine Delignat-Lavaud, Cedric Fournet, Jean-Karim Zinzindohoué,
Karthikeyan Bhargavan, Pierre-Yves Strub and Santiago Zanella

• Contact: Karthikeyan Bhargavan

• URL: https://github.com/mitls/mitls-fstar

6.5. ProVerif
KEYWORDS: Security - Verification - Cryptographic protocol

FUNCTIONAL DESCRIPTION: ProVerif is an automatic security protocol verifier in the symbolic model (so
called Dolev-Yao model). In this model, cryptographic primitives are considered as black boxes. This protocol
verifier is based on an abstract representation of the protocol by Horn clauses. Its main features are:

It can verify various security properties (secrecy, authentication, process equivalences).

It can handle many different cryptographic primitives, specified as rewrite rules or as equations.

It can handle an unbounded number of sessions of the protocol (even in parallel) and an unbounded message
space.

NEWS OF THE YEAR: Vincent Cheval and Bruno Blanchet worked on several extensions of ProVerif:
1) support for integer counters, with incrementation and inequality tests, 2) lemmas and axioms to give
intermediate results to ProVerif, which it exploits to help proving subsequent queries, by deriving additional
information in the Horn clauses that it uses to perform the proofs, 3) proofs by induction on the length of the
trace, by giving as lemma the property to prove, but obviously for strictly shorter traces. Detailed soundness
proofs for these extensions are in progress. These features are not released yet.

• Participants: Bruno Blanchet, Marc Sylvestre and Vincent Cheval

• Contact: Bruno Blanchet

• Publications: Automated reasoning for equivalences in the applied pi calculus with barriers - Auto-
mated Reasoning for Equivalences in the Applied Pi Calculus with Barriers - Automated reasoning
for equivalences in the applied pi calculus with barriers - Modeling and Verifying Security Protocols
with the Applied Pi Calculus and ProVerif - Automatic Verification of Security Protocols in the Sym-
bolic Model: The Verifier ProVerif - Verified Models and Reference Implementations for the TLS
1.3 Standard Candidate - Verified Models and Reference Implementations for the TLS 1.3 Standard
Candidate - Automated Verification for Secure Messaging Protocols and Their Implementations: A
Symbolic and Computational Approach - Symbolic and Computational Mechanized Verification of
the ARINC823 Avionic Protocols - Symbolic and Computational Mechanized Verification of the
ARINC823 Avionic Protocols

• URL: http://proverif.inria.fr/

6.6. HACL*
High Assurance Cryptography Library

KEYWORDS: Cryptography - Software Verification

FUNCTIONAL DESCRIPTION: HACL* is a formally verified cryptographic library in F*, developed by the
Prosecco team at Inria Paris in collaboration with Microsoft Research, as part of Project Everest.

https://github.com/mitls/mitls-fstar
https://hal.inria.fr/hal-01947972
https://hal.inria.fr/hal-01423742
https://hal.inria.fr/hal-01423742
https://hal.inria.fr/hal-01306440
https://hal.inria.fr/hal-01306440
https://hal.inria.fr/hal-01423760
https://hal.inria.fr/hal-01423760
https://hal.inria.fr/hal-01102136
https://hal.inria.fr/hal-01102136
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01575920
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01528752
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01575923
https://hal.inria.fr/hal-01527671
https://hal.inria.fr/hal-01527671
https://hal.inria.fr/hal-01575861
https://hal.inria.fr/hal-01575861
http://proverif.inria.fr/

120 Security and Confidentiality - Software and Platforms - Project-Team PROSECCO

HACL stands for High-Assurance Cryptographic Library and its design is inspired by discussions at the
HACS series of workshops. The goal of this library is to develop verified C reference implementations for
popular cryptographic primitives and to verify them for memory safety, functional correctness, and secret
independence.

• Contact: Karthikeyan Bhargavan

• URL: https://github.com/mitls/hacl-star

https://github.com/mitls/hacl-star

121 Security and Confidentiality - Software and Platforms - Project-Team TAMIS

TAMIS Project-Team

5. New Software and Platforms

5.1. MASSE
Modular Automated Syntactic Signature Extraction

KEYWORDS: Malware - Syntactic analysis

FUNCTIONAL DESCRIPTION: The Modular Automated Syntactic Signature Extraction (MASSE) architecture
is a new integrated open source client-server architecture for syntactic malware detection and analysis
based on the YARA, developed with Teclib’. MASSE includes highly effective automated syntactic malware
detection rule generation for the clients based on a server-side modular malware detection system. Multiple
techniques are used to make MASSE effective at detecting malware while keeping it from disrupting users
and hindering reverse-engineering of its malware analysis by malware creators. MASSE integrates YARA in
a distributed system able to detect malware on endpoint systems using YARA, analyze malware with multiple
analysis techniques, automatically generate syntactic malware detection rules, and deploy the new rules to the
endpoints. The MASSE architecture is freely available to companies and institutions as a complete, modular,
self-maintained antivirus solution. Using MASSE, a security department can immediately update the rule
database of the whole company, stopping an infection on its tracks and preventing future ones.

• Participants: Bruno Lebon, Olivier Zendra, Alexander Zhdanov and Fabrizio Biondi

• Contact: Bruno Lebon

5.2. IoTMLT
IoT Modeling Language and tool

KEYWORDS: Internet of things - Modeling language - Cyber attack

SCIENTIFIC DESCRIPTION: We propose a framework to analyze security in IoT systems consisting of a formal
languages for modeling IoT systems and of attack trees for modeling the possible attacks on the system.
In our approach a malicious entity is present in the system, called the Attacker. The other IoT entities can
inadvertently help the Attacker, by leaking their sensitive data. Equipped with the acquired knowledge the
Attacker can then communicate with the IoT entities undetected. The attack tree provided with the model
acts as a monitor: It observes the interactions the Attacker has with the system and detects when an attack is
successful.

An IoT system is then analyzed using statistical model checking (SMC). The first method we use is Monte
Carlo, which consists of sampling the executions of an IoT system and computing the probability of a
successful attack based on the number of executions for which the attack was successful. However, the
evaluation may be difficult if a successful attack is rare. We therefore propose a second SMC method,
developed for rare events, called importance splitting. Both methods are proposed by Plasma, the SMC tool
we use.

FUNCTIONAL DESCRIPTION: The IoT modeling language is a formal language and tool for specifying and
enforcing security in IoT systems.

• Participants: Delphine Beaulaton, Ioana-Domnina Cristescu and Najah Ben Said

• Partner: Vérimag

• Contact: Delphine Beaulaton

• URL: http://iot-modeling.gforge.inria.fr

http://www.inria.fr/equipes/tamis
http://iot-modeling.gforge.inria.fr

122 Security and Confidentiality - Software and Platforms - Project-Team TAMIS

5.3. SimFI
Tool for Simulation Fault injection

KEYWORDS: Fault injection - Fault-tolerance

FUNCTIONAL DESCRIPTION: Fault injections are used to test the robust and security of systems. We have
developed SimFI, a tool that can be used to simulate fault injection attacks against binary files. SimFI is
lightweight utility designed to be integrated into larger environments as part of robustness testing and fault
injection vulnerability detection.
• Contact: Nisrine Jafri
• URL: https://github.com/nisrine/Fault-Injection-Tool

5.4. AHMA
Automatic Malware Hardware Analysis

KEYWORDS: Side-channel - Deep learning - Malware

FUNCTIONAL DESCRIPTION: This framework is composed of several parts, each one of them taking in charge
the generation and the processing of the data at different levels. Drivers have been developed to automatically
control the different oscilloscopes we are working with (picoscope 6407 et infiniium keysight). We use signal
processing tools on the raw data to feed a deep neural network which is in charge of classifying the observed
malwares. We are using two different approaches to manage the infection of the system. The first one is to
reinitialize it each time we make a measurement to ensure its integrity. We have proposed a method allowing to
speed the procedure up a lot. Besides, we developed several malwares, to make our experiments in a controlled
environment, to avoid the necessity of cleaning the system up after each measurement.
• Contact: Annelie Heuser

5.5. SABR
Semantic-driven Analysis of BinaRies

KEYWORDS: Malware - Semantic - Binary analysis - Unsupervised graph clustering SCDG - Machine learning

FUNCTIONAL DESCRIPTION: Toolchain for binary analysis based on different techniques for capturing
binaries’ semantics and performing machine learning-assisted analysis. The primary use is malware analysis
for malware detection and classification, either based on supervised and unsupervised learning.

This toolchain includes modules of the former BMA toolchain, specifically the SCDG extraction.

Our approach is based on artificial intelligence. We use concolic analysis to extract behavioral signatures
from binaries in a form of system call dependency graphs (SCDGs). Our software can do both supervised
and unsupervised learning. The former learns the distinctive features of different malware families on a large
training set in order to classify the new binaries as malware or cleanware according to their behavioural
signatures. In the unsupervised learning the binaries are clustered according to their graph similarity. The
toolchain is orchestrated by an experiment manager that allows to easily setup, launch and view results of all
modules of the toolchain.
• Contact: Olivier Zendra

5.6. ORQAL
ORQchestration of ALgorithms

KEYWORDS: Docker - Orchestration

FUNCTIONAL DESCRIPTION: ORQAL is a simple batch scheduler for docker cluster which can be used to
remotely and without overhead in scientific experiment.
• Contact: Olivier Zendra

https://github.com/nisrine/Fault-Injection-Tool

123 Security and Confidentiality - Software and Platforms - Project-Team TAMIS

5.7. Side-channel deep learning evaluation platform
KEYWORDS: Deep learning - Evaluation

FUNCTIONAL DESCRIPTION: Our platform is based on several software. The first software permits to train a
deep neural network and evaluate it for side-channel analysis, we evaluate our neural network with guessing
entropy metrics. The second software is used for programming and communicating with the target devices, but
we also develop a software to communicate with the equipment and made some measurement for side-channel
analysis. The last software is used to make some attack and analysis of side-channel (e.g. made Correlation
Power Analysis)

• Contact: Annelie Heuser

5.8. E-PAC
Evolving-PAcker Classifier

KEYWORDS: Packer classification - Incremental learning - Clustering - Malware - Obfuscation

FUNCTIONAL DESCRIPTION: E-PAC is an Evolving packer classifier that identifies the class of the packer
used in a batch of packed binaries given in input. The software has the ability to identify both known packer
classes and new unseen packer classes. After each update, the evolving classifier self-updates itself with the
predicted packer classes.

The software is based on a semi-supervised machine learning system composed of an offline phase and an
online phase. In the offline phase, a set of features is extracted from a collection of packed binaries provided
with their ground truth labels, then a density-based clustering algorithm (DBSCAN) is used to group similar
packers together with respect to a distance measure. In this step, the similarity threshold is tuned in order to
form the clusters that fit the best with the the set of labels provided.

In the online phase, the software reproduces the same operations of features extraction and distances
calculation with the incoming packed samples, then uses a customized version of the incremental clustering
algorithm DBSCAN in order to classify them, either in knowns packer classes or fom new packer classes, or
provisoirely leave them unclassified (notion of noise with DBSCAN).

The clusters formed after each update serve as a baseline for the application to self-evolve.

• Contact: Lamine Noureddine

