Members
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

  • 2P. Buslaev, V. I. Gordeliy, S. Grudinin, I. Y. Gushchin.
    Principal component analysis of lipid molecule conformational changes in molecular dynamics simulations, in: Journal of Chemical Theory and Computation, January 2016. [ DOI : 10.1021/acs.jctc.5b01106 ]
    https://hal.inria.fr/hal-01258167
  • 3L. Debreu, E. Neveu, E. Simon, F.-X. Le Dimet, A. Vidard.
    Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems, in: Quarterly Journal of the Royal Meteorological Society, September 2015. [ DOI : 10.1002/qj.2676 ]
    https://hal.inria.fr/hal-01246349
  • 4S. Grudinin, P. Popov, E. Neveu, G. Cheremovskiy.
    Predicting Binding Poses and Affinities in the CSAR 2013―2014 Docking Exercises Using the Knowledge-Based Convex-PL Potential, in: Journal of Chemical Information and Modeling, 2015. [ DOI : 10.1021/acs.jcim.5b00339 ]
    https://hal.inria.fr/hal-01258022
  • 5P. Popov, S. Grudinin.
    Knowledge of Native Protein–Protein Interfaces Is Sufficient To Construct Predictive Models for the Selection of Binding Candidates, in: Journal of Chemical Information and Modeling, September 2015, vol. 55, no 10, pp. 2242–2255. [ DOI : 10.1021/acs.jcim.5b00372 ]
    https://hal.inria.fr/hal-01229886
  • 6D. W. Ritchie, S. Grudinin.
    Spherical polar Fourier assembly of protein complexes with arbitrary point group symmetry, in: Journal of Applied Crystallography, February 2016, vol. 49, no 1, pp. 158-167. [ DOI : 10.1107/S1600576715022931 ]
    https://hal.inria.fr/hal-01261402

Other Publications

References in notes
  • 8B. Ahmadi, M. Kassiriha, K. Khodabakhshi, E. R. Mafi.
    Effect of nano layered silicates on automotive polyurethane refinish clear coat, in: Progress in Organic Coatings, 2007, vol. 60, no 2, pp. 99 - 104. [ DOI : 10.1016/j.porgcoat.2007.07.008 ]
    http://www.sciencedirect.com/science/article/pii/S0300944007001464
  • 9F. H. Allen.
    The Cambridge Structural Database: a quarter of a million crystal structures and rising, in: Acta Crystallographica Section B, Jun 2002, vol. 58, no 3 Part 1, pp. 380–388.
    http://dx.doi.org/10.1107/S0108768102003890
  • 10F. Ample, S. Ami, C. Joachim, F. Thiemann, G. Rapenne.
    A Morse manipulator molecule for the modulation of metallic shockley surface states, in: Chemical Physics Letters, 2007, vol. 434, pp. 280-285. [ DOI : 10.1016/j.cplett.2006.12.021 ]
    http://www.sciencedirect.com/science/article/pii/S0009261406018148
  • 11F. Ample, C. Joachim.
    A semi-empirical study of polyacene molecules adsorbed on a Cu(1 1 0) surface, in: Surface Science, 2006, vol. 600, no 16, pp. 3243 - 3251. [ DOI : 10.1016/j.susc.2006.06.015 ]
    http://www.sciencedirect.com/science/article/pii/S003960280600700X
  • 12A. Arkhipov, P. Freddolino, K. Imada, K. Namba, K. Schulten.
    Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum, in: Biophysical Journal, 2006, vol. 91, pp. 4589-4597.
  • 13A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel, R. Halver, I. Kabadshow, F. Gähler, F. Heber, J. Iseringhausen, M. Hofmann, M. Pippig, D. Potts, G. Sutmann.
    Comparison of scalable fast methods for long-range interactions, in: Phys. Rev. E, December 2013, vol. 88, no 6, 063308. [ DOI : 10.1103/PhysRevE.88.063308 ]
  • 14S. Artemova, S. Grudinin, S. Redon.
    A comparison of neighbor search algorithms for large rigid molecules, in: Journal of Computational Chemistry, 2011, vol. 32, no 13, pp. 2865–2877.
    http://dx.doi.org/10.1002/jcc.21868
  • 15S. Artemova, S. Redon.
    Adaptively Restrained Particle Simulations, in: Phys. Rev. Lett., Nov 2012, vol. 109.
    http://link.aps.org/doi/10.1103/PhysRevLett.109.190201
  • 16H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne.
    The protein data bank, in: Nucleic acids research, 2000, vol. 28, no 1, pp. 235–242.
  • 17H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne.
    The Protein Data Bank, in: Nucleic Acids Research, 2000, vol. 28, no 1, pp. 235-242. [ DOI : 10.1093/nar/28.1.235 ]
    http://nar.oxfordjournals.org/content/28/1/235.abstract
  • 18X. Blanc, C. Le Bris, F. Legoll.
    Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2005, vol. 39, no 04, pp. 797-826.
    http://dx.doi.org/10.1051/m2an:2005035
  • 19M. Bosson, S. Grudinin, X. Bouju, S. Redon.
    Interactive physically-based structural modeling of hydrocarbon systems, in: Journal of Computational Physics, 2012, vol. 231, no 6, pp. 2581 - 2598. [ DOI : 10.1016/j.jcp.2011.12.006 ]
    http://www.sciencedirect.com/science/article/pii/S0021999111007042
  • 20D. W. Brenner.
    Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, in: Phys. Rev. B, Nov 1990, vol. 42, pp. 9458–9471.
    http://link.aps.org/doi/10.1103/PhysRevB.42.9458
  • 21T. Cagin, G. Wang, R. Martin, G. Zamanakos, N. Vaidehi, D. T. Mainz, W. A. Goddard III.
    Multiscale modeling and simulation methods with applications to dendritic polymers, in: Computational and Theoretical Polymer Science, 2001, vol. 11, no 5, pp. 345 - 356. [ DOI : 10.1016/S1089-3156(01)00026-5 ]
    http://www.sciencedirect.com/science/article/pii/S1089315601000265
  • 22E. Cances, F. Castella, P. Chartier, E. Faou, C. L. Bris, F. Legoll, G. Turinici.
    Long-time averaging for integrable Hamiltonian dynamics, in: Numerische Mathematik, 2005, vol. 100, pp. 211-232, 10.1007/s00211-005-0599-0.
    http://dx.doi.org/10.1007/s00211-005-0599-0
  • 23Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, A. Boxall, L. Castle, R. Aitken, R. Watkins.
    Applications and implications of nanotechnologies for the food sector, in: Food Additives & Contaminants: Part A, 2008, vol. 25, no 3, pp. 241-258.
    http://www.tandfonline.com/doi/abs/10.1080/02652030701744538
  • 24X. Chen, S. S. Mao.
    Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, in: ChemInform, 2007, vol. 38, no 41.
    http://dx.doi.org/10.1002/chin.200741216
  • 25G.-Y. Chuang, D. Kozakov, R. Brenke, S. R. Comeau, S. Vajda.
    DARS (Decoys As the Reference State) potentials for protein-protein docking, in: Biophysical journal, 2008, vol. 95, no 9, pp. 4217–4227.
  • 26S. R. Comeau, C. J. Camacho.
    Predicting oligomeric assemblies: N-mers a primer, in: Journal of structural biology, 2005, vol. 150, no 3, pp. 233–244.
  • 27S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay, D. Baker, Z. Popovic, F. Players.
    Predicting protein structures with a multiplayer online game, in: Nature, 2010, vol. 466, pp. 756-760.
  • 28M. Curreli, A. H. Nadershahi, G. Shahi.
    Emergence of nanomedical devices for the diagnosis and treatment of cancer: the journey from basic science to commercialization, in: International Journal of Technology Transfer and Commercialisation, 2008, vol. 7, no 4, pp. 290-307.
  • 29E. Darve.
    The Fast Multipole Method: Numerical Implementation, in: Journal of Computational Physics, 2000.
  • 30M. Deserno, C. Holm.
    How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines, in: J. Chem. Phys., 1998, vol. 109, pp. 7678 – 7693.
  • 31M. Deserno, C. Holm.
    How to mesh up Ewald sums. II. An accurate error estimate for the Particle-Particle-Particle-Mesh algorithm, in: J. Chem. Phys., 1998, vol. 109, pp. 7694 – 7701.
  • 32H. Dietz, S. M. Douglas, W. M. Shih.
    Folding DNA into Twisted and Curved Nanoscale Shapes, in: Science, 2009, vol. 325, no 5941, pp. 725-730. [ DOI : 10.1126/science.1174251 ]
    http://www.sciencemag.org/content/325/5941/725.abstract
  • 33S. J. Fleishman, T. A. Whitehead, D. C. Ekiert, C. Dreyfus, J. E. Corn, E.-M. Strauch, I. A. Wilson, D. Baker.
    Computational Design of Proteins Targeting the Conserved Stem Region of Influenza Hemagglutinin, in: Science, 2011, vol. 332, no 6031, pp. 816-821. [ DOI : 10.1126/science.1202617 ]
    http://www.sciencemag.org/content/332/6031/816.abstract
  • 34G. Fox-Rabinovich, B. Beake, K. Yamamoto, M. Aguirre, S. Veldhuis, G. Dosbaeva, A. Elfizy, A. Biksa, L. Shuster.
    Structure, properties and wear performance of nano-multilayered TiAlCrSiYN/TiAlCrN coatings during machining of Ni-based aerospace superalloys, in: Surface and Coatings Technology, 2010, vol. 204, pp. 3698 - 3706. [ DOI : 10.1016/j.surfcoat.2010.04.050 ]
    http://www.sciencedirect.com/science/article/pii/S0257897210003178
  • 35M. Goldberg, R. Langer, X. Jia.
    Nanostructured materials for applications in drug delivery and tissue engineering, in: Journal of Biomaterials Science, Polymer Edition, 2007, vol. 18, no 3, pp. 241-268. [ DOI : doi:10.1163/156856207779996931 ]
    http://www.ingentaconnect.com/content/vsp/bsp/2007/00000018/00000003/art00001
  • 36H. Hassanieh, P. Indyk, D. Katabi, E. Price.
    Simple and Practical Algorithm for Sparse Fourier Transform, in: Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '12, SIAM, 2012, pp. 1183–1194.
    http://dl.acm.org/citation.cfm?id=2095116.2095209
  • 37J.-H. He.
    An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering, in: International Journal of Modern Physics B, 2008, vol. 22, no 21, pp. 3487-3578.
  • 38S. Helveg.
    Structure and Dynamics of Nanocatalysts, in: Microscopy and Microanalysis, 2010, vol. 16, no Supplement S2, pp. 1712-1713.
    http://dx.doi.org/10.1017/S1431927610055005
  • 39A. Heyden, D. G. Truhlar.
    Conservative Algorithm for an Adaptive Change of Resolution in Mixed Atomistic/Coarse-Grained Multiscale Simulations, in: Journal of Chemical Theory and Computation, 2008, vol. 4, no 2, pp. 217-221.
    http://pubs.acs.org/doi/abs/10.1021/ct700269m
  • 40J. H. Holland.
    Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence., U Michigan Press, 1975.
  • 41V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, C. Simmerling.
    Comparison of multiple Amber force fields and development of improved protein backbone parameters, in: Proteins: Structure, Function, and Bioinformatics, 2006, vol. 65, no 3, pp. 712–725.
    http://dx.doi.org/10.1002/prot.21123
  • 42H. Hwang, T. Vreven, J. Janin, Z. Weng.
    Protein–protein docking benchmark version 4.0, in: Proteins: Structure, Function, and Bioinformatics, 2010, vol. 78, no 15, pp. 3111–3114.
  • 43J. Janin, K. Henrick, J. Moult, L. T. Eyck, M. J. Sternberg, S. Vajda, I. Vakser, S. J. Wodak.
    CAPRI: a critical assessment of predicted interactions, in: Proteins: Structure, Function, and Bioinformatics, 2003, vol. 52, no 1, pp. 2–9.
  • 44C. Joachim, H. Tang, F. Moresco, G. Rapenne, G. Meyer.
    The design of a nanoscale molecular barrow, in: Nanotechnology, 2002, vol. 13, no 3, 330 p.
    http://stacks.iop.org/0957-4484/13/i=3/a=318
  • 45L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten.
    NAMD2: Greater Scalability for Parallel Molecular Dynamics, in: Journal of Computational Physics, 1999, vol. 151, no 1, pp. 283 - 312. [ DOI : 10.1006/jcph.1999.6201 ]
    http://www.sciencedirect.com/science/article/pii/S0021999199962010
  • 46J. Kennedy.
    Particle swarm optimization, in: Encyclopedia of machine learning, Springer, 2011, pp. 760–766.
  • 47J. Kolafa, J. W. Perram.
    Cutoff errors in the Ewald summation formulae for point charge systems, in: Mol. Simul., 1992, vol. 9, no 5, pp. 351–368.
    https://dx.doi.org/10.1080%2F08927029208049126
  • 48D. Kozakov, R. Brenke, S. R. Comeau, S. Vajda.
    PIPER: an FFT-based protein docking program with pairwise potentials, in: Proteins: Structure, Function, and Bioinformatics, 2006, vol. 65, no 2, pp. 392–406.
  • 49D. Kozakov, K. H. Clodfelter, S. Vajda, C. J. Camacho.
    Optimal clustering for detecting near-native conformations in protein docking, in: Biophysical journal, 2005, vol. 89, no 2, pp. 867–875.
  • 50Z. Li, H. A. Scheraga.
    Monte Carlo-minimization approach to the multiple-minima problem in protein folding, in: Proceedings of the National Academy of Sciences, 1987, vol. 84, no 19, pp. 6611-6615.
    http://www.pnas.org/content/84/19/6611.abstract
  • 51L. Lo, Y. Li, K. Yeung, C. Yuen.
    Indicating the development stage of nanotechnology in the textile and clothing industry, in: International Journal of Nanotechnology, 2007, vol. 4, no 6, pp. 667-679.
  • 52W. Lu, C. M. Lieber.
    Nanoelectronics from the bottom up, in: Nature materials, 2007, vol. 6, no 11, pp. 841-850.
  • 53A. May, M. Zacharias.
    Energy minimization in low-frequency normal modes to efficiently allow for global flexibility during systematic protein–protein docking, in: Proteins: Structure, Function, and Bioinformatics, 2008, vol. 70, no 3, pp. 794–809.
  • 54I. H. Moal, P. A. Bates.
    SwarmDock and the use of normal modes in protein-protein docking, in: International journal of molecular sciences, 2010, vol. 11, no 10, pp. 3623–3648.
  • 55S. O. Nielsen, P. B. Moore, B. Ensing.
    Adaptive Multiscale Molecular Dynamics of Macromolecular Fluids, in: Phys. Rev. Lett., Dec 2010, vol. 105, 237802.
    http://link.aps.org/doi/10.1103/PhysRevLett.105.237802
  • 56A. Nikitin, X. Li, Z. Zhang, H. Ogasawara, H. Dai, A. Nilsson.
    Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C-H Bonds, in: Nano Letters, 2008, vol. 8, no 1, pp. 162-167, PMID: 18088150.
    http://pubs.acs.org/doi/abs/10.1021/nl072325k
  • 57P. Popov, S. Grudinin.
    Rapid determination of RMSDs corresponding to macromolecular rigid body motions, in: Journal of computational chemistry, 2014, vol. 35, no 12, pp. 950–956.
  • 58P. Popov, S. Grudinin.
    Knowledge of Native Protein–Protein Interfaces Is Sufficient To Construct Predictive Models for the Selection of Binding Candidates, in: Journal of chemical information and modeling, 2015, vol. 55, no 10, pp. 2242–2255.
  • 59P. Popov, D. W. Ritchie, S. Grudinin.
    DockTrina: Docking triangular protein trimers, in: Proteins: Structure, Function, and Bioinformatics, 2014, vol. 82, no 1, pp. 34–44.
  • 60M. Praprotnik, L. Delle Site, K. Kremer.
    Adaptive resolution scheme for efficient hybrid atomistic-mesoscale molecular dynamics simulations of dense liquids, in: Phys. Rev. E, Jun 2006, vol. 73, 066701.
    http://link.aps.org/doi/10.1103/PhysRevE.73.066701
  • 61M. Praprotnik, S. Matysiak, L. D. Site, K. Kremer, C. Clementi.
    Adaptive resolution simulation of liquid water, in: Journal of Physics: Condensed Matter, 2007, vol. 19, no 29, 292201.
    http://stacks.iop.org/0953-8984/19/i=29/a=292201
  • 62M. Praprotnik, L. D. Site, K. Kremer.
    A macromolecule in a solvent: Adaptive resolution molecular dynamics simulation, in: The Journal of Chemical Physics, 2007, vol. 126, no 13, 134902. [ DOI : 10.1063/1.2714540 ]
    http://link.aip.org/link/?JCP/126/134902/1
  • 63M. Praprotnik, L. D. Site, K. Kremer.
    Multiscale Simulation of Soft Matter: From Scale Bridging to Adaptive Resolution, in: Annual Review of Physical Chemistry, 2008, vol. 59, no 1, pp. 545-571.
    http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.59.032607.093707
  • 64P. Procacci, T. Darden, M. Marchi.
    A Very Fast Molecular Dynamics Method To Simulate Biomolecular Systems with Realistic Electrostatic Interactions, in: The Journal of Physical Chemistry, 1996, vol. 100, no 24, pp. 10464-10468.
    http://pubs.acs.org/doi/abs/10.1021/jp960295w
  • 65X. Qian, T. Schlick.
    Efficient multiple-time-step integrators with distance-based force splitting for particle-mesh-Ewald molecular dynamics simulations, in: Journal of Chemical Physics, 2002, vol. 116, pp. 5971-5983.
  • 66D. W. Ritchie, G. J. Kemp.
    Protein docking using spherical polar Fourier correlations, in: Proteins: Structure, Function, and Bioinformatics, 2000, vol. 39, no 2, pp. 178–194.
    http://dx.doi.org/10.1002/(SICI)1097-0134(20000501)39:2<178::AID-PROT8>3.0.CO;2-6
  • 67D. W. Ritchie, D. Kozakov, S. Vajda.
    Accelerating and focusing protein–protein docking correlations using multi-dimensional rotational FFT generating functions, in: Bioinformatics, 2008, vol. 24, no 17, pp. 1865–1873.
  • 68M. C. Roco.
    The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years, in: Journal of Nanoparticle Research, 2010.
  • 69B. Rooks.
    A shorter product development time with digital mock-up, in: Assembly Automation, 1998, vol. 18, no 1, pp. 34-38. [ DOI : doi:10.1108/01445159810201405 ]
    http://www.ingentaconnect.com/content/mcb/033/1998/00000018/00000001/art00004
  • 70R. Rossi, M. Isorce, S. Morin, J. Flocard, K. Arumugam, S. Crouzy, M. Vivaudou, S. Redon.
    Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design, in: Bioinformatics, 2007, vol. 23, no 13. [ DOI : 10.1093/bioinformatics/btm191 ]
    http://bioinformatics.oxfordjournals.org/content/23/13/i408.abstract
  • 71R. E. Rudd.
    Coarse-Grained Molecular Dynamics for Computer Modeling of Nanomechanical Systems, in: International Journal for Numerical Methods in Engineering, 2004.
  • 72A. Shih, P. Freddolino, A. Arkhipov, K. Schulten.
    Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations, in: Journal of Structural Biology, 2007, vol. 157, pp. 579-592.
  • 73Y. Shirai, A. J. Osgood, Y. Zhao, Y. Yao, L. Saudan, H. Yang, C. Yu-Hung, L. B. Alemany, T. Sasaki, J.-F. Morin, J. M. Guerrero, K. F. Kelly, J. M. Tour.
    Surface-Rolling Molecules, in: Journal of the American Chemical Society, 2006, vol. 128, no 14, pp. 4854-4864, PMID: 16594722.
    http://pubs.acs.org/doi/abs/10.1021/ja058514r
  • 74H. V. Sorensen, C. S. Burrus.
    Efficient computation of the DFT with only a subset of input or output points, in: IEEE Transactions on Signal Processing, 1993, vol. 41, no 3, pp. 1184–1200.
    http://dx.doi.org/10.1109/78.205723
  • 75E. G. Stein, L. M. Rice, A. T. Brünger.
    Torsion-Angle Molecular Dynamics as a New Efficient Tool for NMR Structure Calculation, in: Journal of Magnetic Resonance, 1997, vol. 124, no 1, pp. 154 - 164. [ DOI : 10.1006/jmre.1996.1027 ]
    http://www.sciencedirect.com/science/article/pii/S1090780796910277
  • 76R. Storn, K. Price.
    Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, ICSI Berkeley, 1995, vol. 3.
  • 77X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric, H. Dai.
    Nano-graphene oxide for cellular imaging and drug delivery, in: Nano Research, 2008, vol. 1, pp. 203-212, 10.1007/s12274-008-8021-8.
    http://dx.doi.org/10.1007/s12274-008-8021-8
  • 78G. Sutmann.
    Molecular Dynamics - Vision and Reality, in: Computational Nanoscience: Do It Yourself!, Jülich, J. Grotendorst, S. Blügel, D. Marx (editors), NIC Series, John von Neumann Institute for Computing, February 2006, vol. 31, pp. 159 – 194, Lecture Notes.
  • 79D. Tomalia, L. Reyna, S. Svenson.
    Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging, in: Biochemical Society Transactions, 2007, vol. 35, pp. 61-67.
  • 80N. Vaidehi, W. A. Goddard.
    Domain Motions in Phosphoglycerate Kinase using Hierarchical NEIMO Molecular Dynamics Simulations, in: The Journal of Physical Chemistry A, 2000, vol. 104, no 11, pp. 2375-2383.
    http://pubs.acs.org/doi/abs/10.1021/jp991985d
  • 81V. Venkatraman, D. W. Ritchie.
    Flexible protein docking refinement using pose-dependent normal mode analysis, in: Proteins: Structure, Function, and Bioinformatics, 2012, vol. 80, no 9, pp. 2262–2274.
  • 82T. Vettorel, A. Y. Grosberg, K. Kremer.
    Statistics of polymer rings in the melt: a numerical simulation study, in: Physical Biology, 2009, vol. 6, no 2, 025013 p.
    http://stacks.iop.org/1478-3975/6/i=2/a=025013
  • 83W. Yang.
    Direct calculation of electron density in density-functional theory, in: Phys. Rev. Lett., Mar 1991, vol. 66, pp. 1438–1441.
    http://link.aps.org/doi/10.1103/PhysRevLett.66.1438
  • 84W. Yang.
    Electron density as the basic variable: a divide-and-conquer approach to the ab initio computation of large molecules, in: Journal of Molecular Structure: THEOCHEM, 1992, vol. 255, no 0, pp. 461 - 479. [ DOI : 10.1016/0166-1280(92)85024-F ]
    http://www.sciencedirect.com/science/article/pii/016612809285024F
  • 85S. W. de Leeuw, J. W. Perram, E. R. Smith.
    Simulation of Electrostatic Systems in Periodic Boundary Conditions. I. Lattice Sums and Dielectric Constants, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1980, vol. 373, no 1752, pp. 27–56. [ DOI : 10.1098/rspa.1980.0135 ]
    http://rspa.royalsocietypublishing.org/content/373/1752/27
  • 86A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard.
    ReaxFF: A Reactive Force Field for Hydrocarbons, in: The Journal of Physical Chemistry A, 2001, vol. 105, no 41, pp. 9396-9409.
    http://pubs.acs.org/doi/abs/10.1021/jp004368u