Personnel
Overall Objectives
Research Program
New Software and Platforms
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

  • 1M. El Houasli, B. Maigret, M.-D. Devignes, A. W. Ghoorah, S. Grudinin, D. Ritchie.
    Modeling and minimizing CAPRI round 30 symmetrical protein complexes from CASP-11 structural models, in: Proteins: Structure, Function, and Genetics, March 2017, vol. 85, no 3, pp. 463–469. [ DOI : 10.1002/prot.25182 ]
    https://hal.inria.fr/hal-01388654
  • 2S. Grudinin, M. Garkavenko, A. Kazennov.
    Pepsi-SAXS : an adaptive method for rapid and accurate computation of small-angle X-ray scattering profiles, in: Acta Crystallographica Section D: Biological Crystallography, May 2017, vol. D73, pp. 449 - 464. [ DOI : 10.1107/S2059798317005745 ]
    https://hal.inria.fr/hal-01516719
  • 3I. Y. Gushchin, I. I. Melkinov, V. Polovinkin, A. Ishchenko, A. Yuzhakova, P. Buslaev, G. Bourenkov, S. Grudinin, E. Round, T. Balandin, V. Borshchevskiy, D. Willbold, G. Leonard, G. Büldt, A. Popov, V. I. Gordeliy.
    Mechanism of transmembrane signaling by sensor histidine kinases, in: Science, June 2017, vol. 356, no 6342, eaah6345 p. [ DOI : 10.1126/science.aah6345 ]
    https://hal.archives-ouvertes.fr/hal-01526454
  • 4A. Hoffmann, S. Grudinin.
    NOLB: Nonlinear Rigid Block Normal Mode Analysis Method, in: Journal of Chemical Theory and Computation, April 2017, vol. 13, no 5, pp. 2123-2134. [ DOI : 10.1021/acs.jctc.7b00197 ]
    https://hal.inria.fr/hal-01505843
  • 5A. Hoffmann, V. Perrier, S. Grudinin.
    A novel fast Fourier transform accelerated off-grid exhaustive search method for cryo-electron microscopy fitting, in: Journal of Applied Crystallography, August 2017, vol. 50, no 4, pp. 1036-1047. [ DOI : 10.1107/S1600576717008172 ]
    https://hal.inria.fr/hal-01553293
  • 6A. Ishchenko, E. Round, V. Borshchevskiy, S. Grudinin, I. Y. Gushchin, J. Klare, A. Remeeva, V. Polovinkin, P. Utrobin, T. Balandin, M. Engelhard, G. Büldt, V. I. Gordeliy.
    New Insights on Signal Propagation by Sensory Rhodopsin II/Transducer Complex, in: Scientific Reports, February 2017, vol. 7, 41811 p. [ DOI : 10.1038/srep41811 ]
    https://hal.inria.fr/hal-01458744
  • 7L. Jaillet, S. Artemova, S. Redon.
    IM-UFF: Extending the universal force field for interactive molecular modeling, in: Journal of Molecular Graphics and Modelling, October 2017, vol. 77, pp. 350 - 362. [ DOI : 10.1016/j.jmgm.2017.08.023 ]
    https://hal.inria.fr/hal-01676519
  • 8M. Kadukova, S. Grudinin.
    Convex-PL: a novel knowledge-based potential for protein-ligand interactions deduced from structural databases using convex optimization, in: Journal of Computer-Aided Molecular Design, October 2017, vol. 31, no 10, pp. 943–958. [ DOI : 10.1007/s10822-017-0068-8 ]
    https://hal.inria.fr/hal-01591154
  • 9M. Kadukova, S. Grudinin.
    Docking of small molecules to farnesoid X receptors using AutoDock Vina with the Convex-PL potential: lessons learned from D3R Grand Challenge 2, in: Journal of Computer-Aided Molecular Design, October 2017. [ DOI : 10.1007/s10822-017-0062-1 ]
    https://hal.inria.fr/hal-01591157
  • 10P.-L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, M.-P. Cani.
    Adaptive Physically Based Models in Computer Graphics, in: Computer Graphics Forum, September 2017, vol. 36, no 6, pp. 312–337. [ DOI : 10.1111/cgf.12941 ]
    https://hal.inria.fr/hal-01367170
  • 11M. K. Nguyen, L. Jaillet, S. Redon.
    As-Rigid-As-Possible molecular interpolation paths, in: Journal of Computer-Aided Molecular Design, April 2017, vol. 31, no 4, pp. 403 - 417. [ DOI : 10.1007/s10822-017-0012-y ]
    https://hal.inria.fr/hal-01676132
  • 12K. K. Singh, S. Redon.
    Adaptively Restrained Molecular Dynamics in LAMMPS, in: Modelling and Simulation in Materials Science and Engineering, June 2017, vol. 25, no 5, 055013 p. [ DOI : 10.1088/1361-651X/aa7345 ]
    https://hal.archives-ouvertes.fr/hal-01525253
  • 13K. K. Singh, S. Redon.
    Single-pass Incremental Force Updates for Adaptively Restrained Molecular Dynamics, in: Journal of Computational Chemistry, December 2017. [ DOI : 10.1002/jcc.25126 ]
    https://hal.inria.fr/hal-01635863

International Conferences with Proceedings

  • 14K. K. Singh, D. F. Marin, S. Redon.
    Parallel Adaptively Restrained Molecular Dynamics, in: 2017 International Conference on High Performance Computing & Simulation (HPCS), Genova, Italy, IEEE, July 2017, pp. 308 - 314. [ DOI : 10.1109/HPCS.2017.55 ]
    https://hal.inria.fr/hal-01591466

Other Publications

References in notes
  • 17B. Ahmadi, M. Kassiriha, K. Khodabakhshi, E. R. Mafi.
    Effect of nano layered silicates on automotive polyurethane refinish clear coat, in: Progress in Organic Coatings, 2007, vol. 60, no 2, pp. 99 - 104. [ DOI : 10.1016/j.porgcoat.2007.07.008 ]
    http://www.sciencedirect.com/science/article/pii/S0300944007001464
  • 18F. H. Allen.
    The Cambridge Structural Database: a quarter of a million crystal structures and rising, in: Acta Crystallographica Section B, Jun 2002, vol. 58, no 3 Part 1, pp. 380–388.
    http://dx.doi.org/10.1107/S0108768102003890
  • 19F. Ample, S. Ami, C. Joachim, F. Thiemann, G. Rapenne.
    A Morse manipulator molecule for the modulation of metallic shockley surface states, in: Chemical Physics Letters, 2007, vol. 434, pp. 280-285. [ DOI : 10.1016/j.cplett.2006.12.021 ]
    http://www.sciencedirect.com/science/article/pii/S0009261406018148
  • 20F. Ample, C. Joachim.
    A semi-empirical study of polyacene molecules adsorbed on a Cu(1 1 0) surface, in: Surface Science, 2006, vol. 600, no 16, pp. 3243 - 3251. [ DOI : 10.1016/j.susc.2006.06.015 ]
    http://www.sciencedirect.com/science/article/pii/S003960280600700X
  • 21A. Arkhipov, P. Freddolino, K. Imada, K. Namba, K. Schulten.
    Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum, in: Biophysical Journal, 2006, vol. 91, pp. 4589-4597.
  • 22S. Artemova, S. Grudinin, S. Redon.
    A comparison of neighbor search algorithms for large rigid molecules, in: Journal of Computational Chemistry, 2011, vol. 32, no 13, pp. 2865–2877.
    http://dx.doi.org/10.1002/jcc.21868
  • 23S. Artemova, S. Redon.
    Adaptively Restrained Particle Simulations, in: Phys. Rev. Lett., Nov 2012, vol. 109.
    http://link.aps.org/doi/10.1103/PhysRevLett.109.190201
  • 24A. Behn, P. M. Zimmerman, A. T. Bell, M. Head-Gordon.
    Efficient exploration of reaction paths via a freezing string method, in: The Journal of chemical physics, 2011, vol. 135, no 22, 224108 p.
  • 25H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne.
    The Protein Data Bank, in: Nucleic Acids Research, 2000, vol. 28, no 1, pp. 235-242. [ DOI : 10.1093/nar/28.1.235 ]
    http://nar.oxfordjournals.org/content/28/1/235.abstract
  • 26X. Blanc, C. Le Bris, F. Legoll.
    Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2005, vol. 39, no 04, pp. 797-826.
    http://dx.doi.org/10.1051/m2an:2005035
  • 27M. Bosson, S. Grudinin, X. Bouju, S. Redon.
    Interactive physically-based structural modeling of hydrocarbon systems, in: Journal of Computational Physics, 2012, vol. 231, no 6, pp. 2581 - 2598. [ DOI : 10.1016/j.jcp.2011.12.006 ]
    http://www.sciencedirect.com/science/article/pii/S0021999111007042
  • 28D. W. Brenner.
    Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, in: Phys. Rev. B, Nov 1990, vol. 42, pp. 9458–9471.
    http://link.aps.org/doi/10.1103/PhysRevB.42.9458
  • 29T. Cagin, G. Wang, R. Martin, G. Zamanakos, N. Vaidehi, D. T. Mainz, W. A. Goddard III.
    Multiscale modeling and simulation methods with applications to dendritic polymers, in: Computational and Theoretical Polymer Science, 2001, vol. 11, no 5, pp. 345 - 356. [ DOI : 10.1016/S1089-3156(01)00026-5 ]
    http://www.sciencedirect.com/science/article/pii/S1089315601000265
  • 30D. Camacho, Y. Niquet.
    Application of Keating's valence force field model to non-ideal wurtzite materials, in: Physica E: Low-dimensional Systems and Nanostructures, 2010, vol. 42, no 5, pp. 1361–1364.
  • 31E. Cances, F. Castella, P. Chartier, E. Faou, C. L. Bris, F. Legoll, G. Turinici.
    Long-time averaging for integrable Hamiltonian dynamics, in: Numerische Mathematik, 2005, vol. 100, pp. 211-232, 10.1007/s00211-005-0599-0.
    http://dx.doi.org/10.1007/s00211-005-0599-0
  • 32Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, A. Boxall, L. Castle, R. Aitken, R. Watkins.
    Applications and implications of nanotechnologies for the food sector, in: Food Additives & Contaminants: Part A, 2008, vol. 25, no 3, pp. 241-258.
    http://www.tandfonline.com/doi/abs/10.1080/02652030701744538
  • 33X. Chen, S. S. Mao.
    Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, in: ChemInform, 2007, vol. 38, no 41.
    http://dx.doi.org/10.1002/chin.200741216
  • 34S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay, D. Baker, Z. Popovic, F. Players.
    Predicting protein structures with a multiplayer online game, in: Nature, 2010, vol. 466, pp. 756-760.
  • 35M. Curreli, A. H. Nadershahi, G. Shahi.
    Emergence of nanomedical devices for the diagnosis and treatment of cancer: the journey from basic science to commercialization, in: International Journal of Technology Transfer and Commercialisation, 2008, vol. 7, no 4, pp. 290-307.
  • 36E. Darve.
    The Fast Multipole Method: Numerical Implementation, in: Journal of Computational Physics, 2000.
  • 37H. Dietz, S. M. Douglas, W. M. Shih.
    Folding DNA into Twisted and Curved Nanoscale Shapes, in: Science, 2009, vol. 325, no 5941, pp. 725-730. [ DOI : 10.1126/science.1174251 ]
    http://www.sciencemag.org/content/325/5941/725.abstract
  • 38P. Durand, G. Trinquier, Y.-H. Sanejouand.
    a New Approach for Determining Low-Frequency Normal Modes in Macromolecules, in: Biopolymers, jun 1994, vol. 34, no 6, pp. 759–771.
    http://dx.doi.org/10.1002/bip.360340608
  • 39S. J. Fleishman, T. A. Whitehead, D. C. Ekiert, C. Dreyfus, J. E. Corn, E.-M. Strauch, I. A. Wilson, D. Baker.
    Computational Design of Proteins Targeting the Conserved Stem Region of Influenza Hemagglutinin, in: Science, 2011, vol. 332, no 6031, pp. 816-821. [ DOI : 10.1126/science.1202617 ]
    http://www.sciencemag.org/content/332/6031/816.abstract
  • 40G. Fox-Rabinovich, B. Beake, K. Yamamoto, M. Aguirre, S. Veldhuis, G. Dosbaeva, A. Elfizy, A. Biksa, L. Shuster.
    Structure, properties and wear performance of nano-multilayered TiAlCrSiYN/TiAlCrN coatings during machining of Ni-based aerospace superalloys, in: Surface and Coatings Technology, 2010, vol. 204, pp. 3698 - 3706. [ DOI : 10.1016/j.surfcoat.2010.04.050 ]
    http://www.sciencedirect.com/science/article/pii/S0257897210003178
  • 41M. Goldberg, R. Langer, X. Jia.
    Nanostructured materials for applications in drug delivery and tissue engineering, in: Journal of Biomaterials Science, Polymer Edition, 2007, vol. 18, no 3, pp. 241-268. [ DOI : doi:10.1163/156856207779996931 ]
    http://www.ingentaconnect.com/content/vsp/bsp/2007/00000018/00000003/art00001
  • 42T. A. Halgren, W. N. Lipscomb.
    The synchronous-transit method for determining reaction pathways and locating molecular transition states, in: Chemical Physics Letters, 1977, vol. 49, no 2, pp. 225–232.
  • 43J.-H. He.
    An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering, in: International Journal of Modern Physics B, 2008, vol. 22, no 21, pp. 3487-3578.
  • 44S. Helveg.
    Structure and Dynamics of Nanocatalysts, in: Microscopy and Microanalysis, 2010, vol. 16, no Supplement S2, pp. 1712-1713.
    http://dx.doi.org/10.1017/S1431927610055005
  • 45G. Henkelman, H. Jónsson.
    A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives, in: The Journal of chemical physics, 1999, vol. 111, no 15, pp. 7010–7022.
  • 46A. Heyden, D. G. Truhlar.
    Conservative Algorithm for an Adaptive Change of Resolution in Mixed Atomistic/Coarse-Grained Multiscale Simulations, in: Journal of Chemical Theory and Computation, 2008, vol. 4, no 2, pp. 217-221.
    http://pubs.acs.org/doi/abs/10.1021/ct700269m
  • 47G. S. Ho, V. L. Lignères, E. A. Carter.
    Introducing PROFESS: A new program for orbital-free density functional theory calculations, in: Computer physics communications, 2008, vol. 179, no 11, pp. 839–854.
  • 48V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, C. Simmerling.
    Comparison of multiple Amber force fields and development of improved protein backbone parameters, in: Proteins: Structure, Function, and Bioinformatics, 2006, vol. 65, no 3, pp. 712–725.
    http://dx.doi.org/10.1002/prot.21123
  • 49J. S. Hub.
    Interpreting solution X-ray scattering data using molecular simulations, in: Current opinion in structural biology, 2018, vol. 49, pp. 18–26.
  • 50A. Jensen.
    Location of transition states and stable intermediates by MINIMAX/MINIMI optimization of synchronous transit pathways, in: Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 1983, vol. 63, no 4, pp. 269–290.
  • 51C. Joachim, H. Tang, F. Moresco, G. Rapenne, G. Meyer.
    The design of a nanoscale molecular barrow, in: Nanotechnology, 2002, vol. 13, no 3, 330 p.
    http://stacks.iop.org/0957-4484/13/i=3/a=318
  • 52M. Kadukova, S. Grudinin.
    Knowledge-based prediction of protein-ligand interactions, 2017.
  • 53M. Kadukova, S. Grudinin.
    Using machine learning to predict protein-ligand interactions, 2017.
  • 54L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten.
    NAMD2: Greater Scalability for Parallel Molecular Dynamics, in: Journal of Computational Physics, 1999, vol. 151, no 1, pp. 283 - 312. [ DOI : 10.1006/jcph.1999.6201 ]
    http://www.sciencedirect.com/science/article/pii/S0021999199962010
  • 55P. Keating.
    Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure, in: Physical Review, 1966, vol. 145, no 2, 637 p.
  • 56Z. Li, H. A. Scheraga.
    Monte Carlo-minimization approach to the multiple-minima problem in protein folding, in: Proceedings of the National Academy of Sciences, 1987, vol. 84, no 19, pp. 6611-6615.
    http://www.pnas.org/content/84/19/6611.abstract
  • 57L. Lo, Y. Li, K. Yeung, C. Yuen.
    Indicating the development stage of nanotechnology in the textile and clothing industry, in: International Journal of Nanotechnology, 2007, vol. 4, no 6, pp. 667-679.
  • 58W. Lu, C. M. Lieber.
    Nanoelectronics from the bottom up, in: Nature materials, 2007, vol. 6, no 11, pp. 841-850.
  • 59S. Maeda, K. Morokuma.
    Communications: A systematic method for locating transition structures of A + BX type reactions, in: The Journal of Chemical Physics, jun 2010, vol. 132, no 24, 241102 p.
    http://dx.doi.org/10.1063/1.3457903
  • 60S. O. Nielsen, P. B. Moore, B. Ensing.
    Adaptive Multiscale Molecular Dynamics of Macromolecular Fluids, in: Phys. Rev. Lett., Dec 2010, vol. 105, 237802.
    http://link.aps.org/doi/10.1103/PhysRevLett.105.237802
  • 61A. Nikitin, X. Li, Z. Zhang, H. Ogasawara, H. Dai, A. Nilsson.
    Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C-H Bonds, in: Nano Letters, 2008, vol. 8, no 1, pp. 162-167, PMID: 18088150.
    http://pubs.acs.org/doi/abs/10.1021/nl072325k
  • 62P. Popov, S. Grudinin.
    Rapid determination of RMSDs corresponding to macromolecular rigid body motions, in: Journal of computational chemistry, 2014, vol. 35, no 12, pp. 950–956.
  • 63M. Praprotnik, L. Delle Site, K. Kremer.
    Adaptive resolution scheme for efficient hybrid atomistic-mesoscale molecular dynamics simulations of dense liquids, in: Phys. Rev. E, Jun 2006, vol. 73, 066701.
    http://link.aps.org/doi/10.1103/PhysRevE.73.066701
  • 64M. Praprotnik, S. Matysiak, L. D. Site, K. Kremer, C. Clementi.
    Adaptive resolution simulation of liquid water, in: Journal of Physics: Condensed Matter, 2007, vol. 19, no 29, 292201.
    http://stacks.iop.org/0953-8984/19/i=29/a=292201
  • 65M. Praprotnik, L. D. Site, K. Kremer.
    A macromolecule in a solvent: Adaptive resolution molecular dynamics simulation, in: The Journal of Chemical Physics, 2007, vol. 126, no 13, 134902.
    http://aip.scitation.org/doi/abs/10.1063/1.2714540?journalCode=jcp
  • 66M. Praprotnik, L. D. Site, K. Kremer.
    Multiscale Simulation of Soft Matter: From Scale Bridging to Adaptive Resolution, in: Annual Review of Physical Chemistry, 2008, vol. 59, no 1, pp. 545-571.
    http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.59.032607.093707
  • 67P. Procacci, T. Darden, M. Marchi.
    A Very Fast Molecular Dynamics Method To Simulate Biomolecular Systems with Realistic Electrostatic Interactions, in: The Journal of Physical Chemistry, 1996, vol. 100, no 24, pp. 10464-10468.
    http://pubs.acs.org/doi/abs/10.1021/jp960295w
  • 68X. Qian, T. Schlick.
    Efficient multiple-time-step integrators with distance-based force splitting for particle-mesh-Ewald molecular dynamics simulations, in: Journal of Chemical Physics, 2002, vol. 116, pp. 5971-5983.
  • 69D. W. Ritchie, G. J. Kemp.
    Protein docking using spherical polar Fourier correlations, in: Proteins: Structure, Function, and Bioinformatics, 2000, vol. 39, no 2, pp. 178–194.
    http://dx.doi.org/10.1002/(SICI)1097-0134(20000501)39:2<178::AID-PROT8>3.0.CO;2-6
  • 70M. C. Roco.
    The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years, in: Journal of Nanoparticle Research, 2010.
  • 71B. Rooks.
    A shorter product development time with digital mock-up, in: Assembly Automation, 1998, vol. 18, no 1, pp. 34-38. [ DOI : doi:10.1108/01445159810201405 ]
    http://www.ingentaconnect.com/content/mcb/033/1998/00000018/00000001/art00004
  • 72R. Rossi, M. Isorce, S. Morin, J. Flocard, K. Arumugam, S. Crouzy, M. Vivaudou, S. Redon.
    Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design, in: Bioinformatics, 2007, vol. 23, no 13. [ DOI : 10.1093/bioinformatics/btm191 ]
    http://bioinformatics.oxfordjournals.org/content/23/13/i408.abstract
  • 73R. E. Rudd.
    Coarse-Grained Molecular Dynamics for Computer Modeling of Nanomechanical Systems, in: International Journal for Numerical Methods in Engineering, 2004.
  • 74H. Rücker, M. Methfessel.
    Anharmonic Keating model for group-IV semiconductors with application to the lattice dynamics in alloys of Si, Ge, and C, in: Physical Review B, 1995, vol. 52, no 15, 11059 p.
  • 75A. Shih, P. Freddolino, A. Arkhipov, K. Schulten.
    Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations, in: Journal of Structural Biology, 2007, vol. 157, pp. 579-592.
  • 76Y. Shirai, A. J. Osgood, Y. Zhao, Y. Yao, L. Saudan, H. Yang, C. Yu-Hung, L. B. Alemany, T. Sasaki, J.-F. Morin, J. M. Guerrero, K. F. Kelly, J. M. Tour.
    Surface-Rolling Molecules, in: Journal of the American Chemical Society, 2006, vol. 128, no 14, pp. 4854-4864, PMID: 16594722.
    http://pubs.acs.org/doi/abs/10.1021/ja058514r
  • 77E. G. Stein, L. M. Rice, A. T. Brünger.
    Torsion-Angle Molecular Dynamics as a New Efficient Tool for NMR Structure Calculation, in: Journal of Magnetic Resonance, 1997, vol. 124, no 1, pp. 154 - 164. [ DOI : 10.1006/jmre.1996.1027 ]
    http://www.sciencedirect.com/science/article/pii/S1090780796910277
  • 78X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric, H. Dai.
    Nano-graphene oxide for cellular imaging and drug delivery, in: Nano Research, 2008, vol. 1, pp. 203-212, 10.1007/s12274-008-8021-8.
    http://dx.doi.org/10.1007/s12274-008-8021-8
  • 79P. Suryanarayana, D. Phanish.
    Augmented Lagrangian formulation of orbital-free density functional theory, in: Journal of Computational Physics, oct 2014, vol. 275, pp. 524–538.
    http://dx.doi.org/10.1016/j.jcp.2014.07.006
  • 80F. Tama, F. X. Gadea, O. Marques, Y.-H. Sanejouand.
    Building-Block Approach for Determining Low-Frequency Normal Modes of Macromolecules, in: Proteins: Struct., Funct., Bioinf., 2000, vol. 41, no 1, pp. 1–7.
  • 81G. E. Tamò, L. A. Abriata, G. Fonti, M. Dal Peraro.
    Assessment of data-assisted prediction by inclusion of crosslinking/mass-spectrometry and small angle X-ray scattering data in the 12th Critical Assessment of protein Structure Prediction experiment, in: Proteins: Structure, Function, and Bioinformatics, 2017.
  • 82D. Tomalia, L. Reyna, S. Svenson.
    Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging, in: Biochemical Society Transactions, 2007, vol. 35, pp. 61-67.
  • 83N. Vaidehi, W. A. Goddard.
    Domain Motions in Phosphoglycerate Kinase using Hierarchical NEIMO Molecular Dynamics Simulations, in: The Journal of Physical Chemistry A, 2000, vol. 104, no 11, pp. 2375-2383.
    http://pubs.acs.org/doi/abs/10.1021/jp991985d
  • 84T. Vettorel, A. Y. Grosberg, K. Kremer.
    Statistics of polymer rings in the melt: a numerical simulation study, in: Physical Biology, 2009, vol. 6, no 2, 025013 p.
    http://stacks.iop.org/1478-3975/6/i=2/a=025013
  • 85W. Yang.
    Direct calculation of electron density in density-functional theory, in: Phys. Rev. Lett., Mar 1991, vol. 66, pp. 1438–1441.
    http://link.aps.org/doi/10.1103/PhysRevLett.66.1438
  • 86W. Yang.
    Electron density as the basic variable: a divide-and-conquer approach to the ab initio computation of large molecules, in: Journal of Molecular Structure: THEOCHEM, 1992, vol. 255, no 0, pp. 461 - 479. [ DOI : 10.1016/0166-1280(92)85024-F ]
    http://www.sciencedirect.com/science/article/pii/016612809285024F
  • 87A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard.
    ReaxFF: A Reactive Force Field for Hydrocarbons, in: The Journal of Physical Chemistry A, 2001, vol. 105, no 41, pp. 9396-9409.
    http://pubs.acs.org/doi/abs/10.1021/jp004368u